Armstrong, Andrew M.; Allerman, Andrew A.
2017-07-24
AlGaN:Si epilayers with uniform Al compositions of 60%, 70%, 80%, and 90% were grown by metal-organic vapor phase epitaxy along with a compositionally graded, unintentionally doped (UID) AlGaN epilayer with the Al composition varying linearly between 80% and 100%. The resistivity of AlGaN:Si with a uniform composition increased significantly for the Al content of 80% and greater, whereas the graded UID-AlGaN film exhibited resistivity equivalent to 60% and 70% AlGaN:Si owing to polarization-induced doping. Deep level defect studies of both types of AlGaN epilayers were performed to determine why the electronic properties of uniform-composition AlGaN:Si degraded with increased Al content,more » while the electronic properties of graded UID-AlGaN did not. The deep level density of uniform-composition AlGaN:Si increased monotonically and significantly with the Al mole fraction. Conversely, graded-UID AlGaN had the lowest deep level density of all the epilayers despite containing the highest Al composition. These findings indicate that Si doping is an impetus for point defect incorporation in AlGaN that becomes stronger with the increasing Al content. However, the increase in deep level density with the Al content in uniform-composition AlGaN:Si was small compared to the increase in resistivity. This implies that the primary cause for increasing resistivity in AlGaN:Si with the increasing Al mole fraction is not compensation by deep levels but rather increasing activation energy for the Si dopant. As a result, the graded UID-AlGaN films maintained low resistivity because they do not rely on thermal ionization of Si dopants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Andrew M.; Allerman, Andrew A.
AlGaN:Si epilayers with uniform Al compositions of 60%, 70%, 80%, and 90% were grown by metal-organic vapor phase epitaxy along with a compositionally graded, unintentionally doped (UID) AlGaN epilayer with the Al composition varying linearly between 80% and 100%. The resistivity of AlGaN:Si with a uniform composition increased significantly for the Al content of 80% and greater, whereas the graded UID-AlGaN film exhibited resistivity equivalent to 60% and 70% AlGaN:Si owing to polarization-induced doping. Deep level defect studies of both types of AlGaN epilayers were performed to determine why the electronic properties of uniform-composition AlGaN:Si degraded with increased Al content,more » while the electronic properties of graded UID-AlGaN did not. The deep level density of uniform-composition AlGaN:Si increased monotonically and significantly with the Al mole fraction. Conversely, graded-UID AlGaN had the lowest deep level density of all the epilayers despite containing the highest Al composition. These findings indicate that Si doping is an impetus for point defect incorporation in AlGaN that becomes stronger with the increasing Al content. However, the increase in deep level density with the Al content in uniform-composition AlGaN:Si was small compared to the increase in resistivity. This implies that the primary cause for increasing resistivity in AlGaN:Si with the increasing Al mole fraction is not compensation by deep levels but rather increasing activation energy for the Si dopant. As a result, the graded UID-AlGaN films maintained low resistivity because they do not rely on thermal ionization of Si dopants.« less
NASA Astrophysics Data System (ADS)
Zeng, Xiang; Teng, Jie; Yu, Jin-gang; Tan, Ao-shuang; Fu, Ding-fa; Zhang, Hui
2018-01-01
Graphene-reinforced aluminum (Al) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al composite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphologies, chemical compositions, and microstructures of the graphene and the graphene/Al composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.
Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan
2016-12-01
Reaction behavior, mechanical property and impact resistance of TiC-TiB 2 /Al composite reacted from Al-Ti-B 4 C system with various Al content via combination method of combustion synthesis and hot pressed sintering under air was investigated. Al content was the key point to the variation of mechanical property and impact resistance. Increasing Al content could increase the density, strength and toughness of the composite. Due to exorbitant ceramic content, 10wt.% and 20wt.% Al-Ti-B 4 C composites exhibited poor molding ability and machinability. Flexural strength, fracture toughness, compressive strength and impact toughness of 30-50wt.% Al-Ti-B 4 C composite were higher than those of Al matrix. The intergranular fracture dispersed and defused impact load and restricted crack extension, enhancing the impact resistance of the composite. The composite with 50wt.% Al content owned highest mechanical properties and impact resistance. The results were useful for the application of TiC-TiB 2 /Al composite in impact resistance field of ceramic reinforced Al matrix composite. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guo, Q; Sun, D L; Han, X L; Cheng, S R; Chen, G Q; Jiang, L T; Wu, G H
2012-02-01
Compressive properties of Al matrix composite reinforced with Ti-6Al-4V meshes (TC4(m)/5A06 Al composite) under the strain rates of 10(-3)S(-1) and 1S(-1) at different temperature were measured and microstructure of composites after compression was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Compressive strength decreased with the test temperature increased and the strain-rate sensitivity (R) of composite increased with the increasing temperature. SEM observations showed that grains of Al matrix were elongated severely along 45° direction (angle between axis direction and fracture surface) and TC4 fibres were sheared into several parts in composite compressed under the strain rate of 10(-3)S(-1) at 25°C and 250°C. Besides, amounts of cracks were produced at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases. With the compressive temperature increasing to 400°C, there was no damage at the interfacial layer between TC4 fibre and Al matrix and in (Fe, Mn)Al(6) phases, while equiaxed recrystal grains with sizes about 10 μm at the original grain boundaries of Al matrix were observed. However, interface separation of TC4 fibres and Al matrix occurred in composite compressed under the strain rate of 1S(-1) at 250°C and 400°C. With the compressive temperature increasing from 25°C to 100°C under the strain rate of 10(-3) S(-1), TEM microstructure in Al matrix exhibited high density dislocations and slipping bands (25°C), polygonized dislocations and dynamic recovery (100°C), equiaxed recrystals with sizes below 500 μm (250°C) and growth of equiaxed recrystals (400°C), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, B.; Imai, H.; Umeda, J.; Takahashi, M.; Kondoh, K.
2017-04-01
In this study, aluminum (Al) matrix composites containing 2 wt.% multiwalled carbon nanotubes (CNTs) were fabricated by powder metallurgy using high-energy ball milling (HEBM), spark plasma sintering (SPS), and subsequent hot extrusion. The effect of SPS conditions on the tensile properties of CNT/Al composites was investigated. The results showed that composites with well-dispersed CNTs and nearly full-density CNT/Al can be obtained. During HEBM, CNTs were shortened, inserted into welded Al powder particles, bonded to Al, and still stable without CNT-Al reaction. After consolidation, Al4C3 phases formed in composites under different sintering conditions. With the increase of sintering temperature and holding time, the strength decreased. Conversely, the ductility and toughness noticeably increased. As a result, a good balance between strength (367 MPa in ultimate tensile strength) and ductility (13% in elongation) was achieved in the as-extruded CNT/Al composite sintered at 630°C with a holding time of 300 min.
NASA Astrophysics Data System (ADS)
Shalaby, Essam. A. M.; Churyumov, Alexander. Yu.; Besisa, Dina. H. A.; Daoud, A.; Abou El-khair, M. T.
2017-07-01
A comparative study of thermal and wear behavior of squeeze cast A359 alloy and composites containing 5, 10 and 15 wt.% AlN and SiC particulates was investigated. It was pointed out that A359/AlN composites have a superior thermal conductivity as compared to A359 alloy or even to A359/SiC composites. Composites wear characteristics were achieved by pins-on-disk instrument over a load range of 20-60 N and a sliding speed of 2.75 m/s. Results showed that A359/AlN and A359/SiC composites exhibited higher wear resistance values compared to A359 alloy. Moreover, A359/AlN composites showed superior values of wear resistance than A359/SiC composites at relatively high loads. Friction coefficients and contact surface temperature for A359/AlN specimens decreased as AlN content increased, while they increased for A359/SiC. Investigations of worn surfaces revealed that A359/AlN composites were covered up by aluminum nitrides and iron oxides, which acted as smooth layers. However, A359/SiC composites were mainly covered only by iron oxides. The superior thermal conductivity and the significant wear resistance of the developed A359/AlN composites provided a high durable material suitable for industrial applications.
NASA Astrophysics Data System (ADS)
Xu, Hui; Zhang, Gong-zhen; Cui, Wei; Ren, Shu-bin; Wang, Qian-jin; Qu, Xuan-hui
2018-03-01
Aluminum (Al) 2024 matrix composites reinforced with alumina short fibers (Al2O3sf) and silicon carbide particles (SiCp) as wear-resistant materials were prepared by pressure infiltration in this study. Further, the effect of Al2O3sf on the friction and wear properties of the as-synthesized composites was systematically investigated, and the relationship between volume fraction and wear mechanism was discussed. The results showed that the addition of Al2O3sf, characterized by the ratio of Al2O3sf to SiCp, significantly affected the properties of the composites and resulted in changes in wear mechanisms. When the volume ratio of Al2O3sf to SiCp was increased from 0 to 1, the rate of wear mass loss ( K m) and coefficients of friction (COFs) of the composites decreased, and the wear mechanisms were abrasive wear and furrow wear. When the volume ratio was increased from 1 to 3, the COF decreased continuously; however, the K m increased rapidly and the wear mechanism became adhesive wear.
Fabrication of Al/Mg/Al Composites via Accumulative Roll Bonding and Their Mechanical Properties
Nie, Jinfeng; Liu, Mingxing; Wang, Fang; Zhao, Yonghao; Li, Yusheng; Cao, Yang; Zhu, Yuntian
2016-01-01
Al(1060)/Mg(AZ31)/Al(1060) multilayered composite was successfully produced using an accumulative roll bonding (ARB) process for up to four cycles at an elevated temperature (400 °C). The microstructure evolution of the composites and the bonding characteristics at the interfaces between Al and Mg layers with increasing ARB cycles were characterized through optical microscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). It was found that the grains of Al and Mg layers were significantly refined and Al3Mg2 and Al12 Mg17 intermetallic compound layers formed at the Al/Mg bonding interfaces. The strength increased gradually and the ultimate tensile strength (UTS) reached a maximum value of about 240 MPa at the third pass. Furthermore, the strengthening mechanism of the composite was analyzed based on the fracture morphologies. PMID:28774072
NASA Astrophysics Data System (ADS)
Asmi, D.; Low, I. M.; O'Connor, B.
2008-03-01
The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.
NASA Astrophysics Data System (ADS)
Yang, Suyuan; Bao, Jiawei
2018-03-01
A 5083 Al/1060 Al/AZ31 composite plate was fabricated by explosive welding. The microstructure and properties of the composite plate were investigated after explosive welding. The results showed that all bonding interfaces were wavy interfaces. With an increasing distance from the detonation point, the wavelength and the amplitude also increased. The EDS results indicated that a 5-μm diffusion layer was observed at the 1060 Al/AZ31 layer, including the Mg2Al3 phase. Adiabatic shear bands and twin structures were observed in AZ31. The shear bond strength of the 5083 Al/1060 Al interface was 60 MPa, and the shear bond strength of the 1060 Al/AZ31 interface was 84 MPa.
NASA Astrophysics Data System (ADS)
Juan, Li; Kehong, Wang; Deku, Zhang
2016-09-01
The effect of Ti on microstructural characteristics and reaction mechanism in bonding of Al-Ceramic composite was studied. Ti and Al-Ceramic composite were diffusion welded at 550, 600, 700, 800, and 900 °C in a vacuum furnace. The microstructures and compositions of the interface layers were analyzed, and the mechanical properties and fracture morphology of the joints were examined. The results indicated that there was a systematic switch from Ti/Ti7Al5Si12/composite at 600 °C and Ti/TiAl3/Ti7Al5Si12/composite at 700 °C to Ti/Ti7Al5Si12/TiAl3/Ti7Al5Si12/composite at 800 °C and Ti/Ti7Al5Si12/TiAl3/composite at 900 °C. The formation of TiAl3 at 700 and 800 °C depended on Al segregation, which was an uphill diffusion driven by chemical potential. The maximum shear strength was 40.9 MPa, found in the joint welded at 700 °C. Most joints fractured between Ti7Al5Si12 and Al-Ceramic composite. In any case, Ti7Al5Si12 was favorable for Al-Ceramic composite welding, which attached to Al-Ceramic composite, reducing the differences in physiochemical properties between SiC and metal, improving the mechanical properties of the joints and increasing the surface wettability of Al-Ceramic composite.
SEM and TEM characterization of the microstructure of post-compressed TiB2/2024Al composite.
Guo, Q; Jiang, L T; Chen, G Q; Feng, D; Sun, D L; Wu, G H
2012-02-01
In the present work, 55 vol.% TiB(2)/2024Al composites were obtained by pressure infiltration method. Compressive properties of 55 vol.% TiB(2)/2024Al composite under the strain rates of 10(-3) and 1S(-1) at different temperature were measured and microstructure of post-compressed TiB(2)/2024Al composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). No trace of Al(3)Ti compound flake was found. TiB(2)-Al interface was smooth without significant reaction products, and orientation relationships ( [Formula: see text] and [Formula: see text] ) were revealed by HRTEM. Compressive strength of TiB(2)/2024Al composites decreased with temperature regardless of strain rates. The strain-rate-sensitivity of TiB(2)/2024Al composites increased with the increasing temperature. Fracture surface of specimens compressed at 25 and 250°C under 10(-3)S(-1) were characterized by furrow. Under 10(-3)S(-1), high density dislocations were formed in Al matrix when compressed at 25°C and dynamic recrystallization occurred at 250°C. Segregation of Mg and Cu on the subgrain boundary was also revealed at 550°C. Dislocations, whose density increased with temperature, were formed in TiB(2) particles under 1S(-1). Deformation of composites is affected by matrix, reinforcement and strain rate. Copyright © 2011 Elsevier Ltd. All rights reserved.
Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3
NASA Astrophysics Data System (ADS)
Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.
2016-05-01
An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.
NASA Astrophysics Data System (ADS)
Mohsin, Mohammad; Mohd, Aas; Suhaib, M.; Arif, Sajjad; Arif Siddiqui, M.
2017-10-01
In this experimental work, aluminium Al-20Fe-5Cr (in wt.%) matrix reinforced with varying wt.% Al2O3 (0, 10, 20 and 30) and compaction pressure (470, 550 and 600 MPa) were prepared by powder metallurgy technique. The characterization of composites were performed by scanning electron microscopy (SEM), x-ray diffraction (XRD), energy dispersive spectrum (EDS) and elemental mapping. Uniform distribution of Al2O3 in aluminium matrix were observed by elemental mapping. The composites showed an increase in density and hardness by increasing both alumina and compaction pressure. While, electrical conductivity decreased by the addition of alumina. The tribological study of the composites were performed on pin-on-disc apparatus at sliding conditions (applied load 40 N, sliding speed 1.5 m s-1, sliding distance 300 m). The tribological properties of the composites were improved by increasing alumina and compaction pressure. SEM analysis were also carried out to understand wear mechanism of the worn surfaces of various fabricated composites and aluminium matrix.
Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition technology
NASA Astrophysics Data System (ADS)
Xia, Fafeng; Xu, Huibin; Liu, Chao; Wang, Jinwu; Ding, Junjie; Ma, Chunhua
2013-04-01
Ni-AlN composite coating was fabricated onto the surface of steel substrates by using pulse electrodeposition (PED) technique in this work. The effect of pulse current on the nucleation and growth of grains was investigated using transmission electronic microscopy (TEM), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The results show that the contents of AlN nanoparticles increase with density of pulse current and on-duty ratio of pulse current increasing. Whereas the size of nickel grains decreases with density of pulse current increasing and on-duty ratio of pulse current decreasing. Ni-AlN composite coating consists of crystalline nickel (˜68 nm) and AlN particles (˜38 nm). SEM and AFM observations show that the composite coatings obtained by PED showed more compact surfaces and less grain sizes, whereas those obtained by direct current electrodepositing have rougher surfaces and bigger grain sizes.
Production and mechanical properties of Al-SiC metal matrix composites
NASA Astrophysics Data System (ADS)
Karvanis, K.; Fasnakis, D.; Maropoulos, A.; Papanikolaou, S.
2016-11-01
The usage of Al-SiC Metal Matrix Composites is constantly increasing in the last years due to their unique properties such as light weight, high strength, high specific modulus, high fatigue strength, high hardness and low density. Al-SiC composites of various carbide compositions were produced using a centrifugal casting machine. The mechanical properties, tensile and compression strength, hardness and drop-weight impact strength were studied in order to determine the optimum carbide % in the metal matrix composites. Scanning electron microscopy was used to study the microstructure-property correlation. It was observed that the tensile and the compressive strength of the composites increased as the proportion of silicon carbide became higher in the composites. Also with increasing proportion of silicon carbide in the composite, the material became harder and appeared to have smaller values for total displacement and total energy during impact testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lityńska-Dobrzyńska, Lidia, E-mail: l.litynska@imim.pl; Mitka, Mikołaj; Góral, Anna
Aluminium matrix composites containing 15, 30 and 50 vol.% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} (in at.%) melt spun ribbons have been prepared by a vacuum hot pressing (T = 673 K, P = 600 MPa). The microstructure of the initial ribbon and the composites was investigated using X-ray, scanning and transmission electron microscopy. In the as-spun ribbon the quasicrystalline icosahedral phase (i-phase) coexisted with the cubic copper rich β-Al(Cu, Fe) intermetallic compound. The phase composition of Al-Cu-Fe particles changed after consolidation process and the i-phase transformed partially to the ω-Al{sub 70}Cu{sub 20}Fe{sub 10} phase. Additionally, the Θ-Al{sub 2}Cu phasemore » formed at the α(Al)/Al-Cu-Fe particle interfaces. With an increase in volume fraction of the reinforcement the hardness of the composites increased up to HV = 180 for the highest amount of added particles. The ultimate compression strength of the same sample reached the value of 545 MPa. - Highlights: • Al and 15, 30, 50% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} melt spun ribbon were consolidated. • The initial ribbon consisted of the icosahedral i-phase and copper rich β-Al(Cu, Fe). • The i-phase partially transforms to ω-Al{sub 7}Cu{sub 2}Fe phase in all composites. • Increase of microhardness and compressive strength with content of reinforcement • Ultimate compression strength 545 MPa for 50% of added particles.« less
Refining Mechanism of 7075 Al Alloy by In-Situ TiB₂ Particles.
Gan, Guisheng; Yang, Bin; Zhang, Bo; Jiang, Xin; Shi, Yunlong; Wu, Yiping
2017-02-04
The nucleation undercooling of TiB₂/7075 Al matrix composites, the microstructure observed after solidification at different cooling rate, and the size and distribution of TiB₂ particles were investigated. The experimental results have shown that the grain sizes of TiB₂/7075 Al matrix composites firstly decreased, then increased, and finally decreased again with the increase of TiB₂ content. The nucleation undercooling of TiB₂/7075 Al matrix composites first increased, then decreased, and finally increased again with the increase of TiB₂ content when the cooling rates was 5 and 10 °C/min respectively, but kept decreasing with the increase of TiB₂ content at a cooling rate of 20 °C/min. The melting and solidification process showed no significant change with the decrease of cooling rate in 9.0% TiB₂/7075 Al matrix composites. Most small particles can act as heterogeneous nucleus, which induced grain growth and were captured into the grain by the solid/liquid interface. At the same time, most of the larger particles and a minority of the small TiB₂ particles are pushed into the grain boundary; locating in the grain boundary can hinder the Al atoms from diffusing during the solidification process and restrain α-Al phase growth. The influence of particles shifted from dominating by locating to dominating by nucleation as the quantity of TiB₂ particles increased.
NASA Astrophysics Data System (ADS)
Tu, Bingtian; Wang, Hao; Liu, Xiao; Khan, Shahzad A.; Wang, Weimin; Fu, Zhengyi
2014-06-01
Spinel phase aluminum oxynitride solid solution (γ-alon, with formula of Al(8+x)/3O4-xNx) exists in the narrow Al2O3-rich region of Al2O3-AlN systems. The first-principles calculations were developed to investigate the composition-dependent bonding and hardness of γ-alon. Six supercell model for Al(8+x)/3O4-xNx (x = 0, 0.25, 0.44, 0.63, 0.81, and 1) was constructed to perform our calculations with high accuracy. It was found that the lattice constant increases with increasing composition of nitrogen in γ-alon. The bond lengths of AlIV-O, AlVI-O, AlIV-N, and AlVI-N all increase with the expansion of crystal structure. The well-known Mulliken overlap populations were calculated to estimate the bonding and hardness. As the content of nitrogen substitute increases, the Al-N bonds present more covalent characteristic, while the Al-O bonds present more ionic characteristic. The AlIV-N is the hardest bond in γ-alon. The theoretical hardness of γ-alon could be slightly enhanced from 17.16 GPa to 17.97 GPa by increasing content of nitrogen in full solubility range. The contribution ratio, CHμ, was proposed to quantify the contribution of bonds to hardness of γ-alon. The Al-O bonds are found to contribute more to the hardness. The Al-N bonds are the main influencing factor to enhance the hardness of γ-alon. These calculated results provide the basis for understanding the composition-dependent bonding and hardness of γ-alon.
Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp
2018-01-01
By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiCp/Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time. PMID:29682145
Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp.
Wang, Bin; Qu, Shengguan; Li, Xiaoqiang
2018-01-01
By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiC p /Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time.
Long-term thermal degradation and alloying constituent effects on five boron/aluminum composites
NASA Technical Reports Server (NTRS)
Olsen, G. C.
1982-01-01
Thermal exposure effects on the properties of five boron/aluminum composite systems were experimentally investigated. The composite systems were 49 volume percent boron fibers (203 micron diameter) in aluminum-alloy matrices 1100 Al, 2024 Al, 3003 Al, 5052 Al, and 6061 Al. Specimens were thermally exposed up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 2000 thermal cycles between 200 K and 590 K. Composite longitudinal and transverse tensile strengths, longitudinal compression strength, and in-plane shear strength were determined. None of the systems was severely degraded by exposure at 590 K. The best performing system was B-2024 Al. Effects of matrix alloys on degradation mechanisms were experimentally investigated. Composite specimens and individual fibers were metallurgically analyzed with a scanning electron microscope and an electron microprobe to determine failure characteristics, chemical element distribution, and reaction layer morphology. Alloying constituents were found to be affect the composite degradation mechanisms as follows: alloys containing iron, but without manganese as a stabilizer, caused increased low-temperature degradation; alloys containing magnesium, iron, or manganese caused increased degradation; and alloys containing copper caused increased fiber strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plucknett, K.P.; Becher, P.F.; Waters, S.B.
TiC/Ni{sub 3}Al composites were prepared using a simple melt-infiltration process, performed at either 1300 or 1400 C, with the Ni{sub 3}Al content varied over the range of 8--25 vol%. Densities >96% of theoretical were obtained for all composites. Four-point flexure strengths at 22 C increased as the Ni{sub 3}Al content increased (i.e., {approximately}1,100 MPa at 20 vol% Ni{sub 3}Al), with the highest strengths being observed for composites processed at 1300 C, because of reduced TiC grain size. Strengths at elevated temperatures increased with test temperature, up to {approximately}1,000 C. As with the yielding behavior of the Ni{sub 3}Al alloy used,more » a maximum in composite strength ({approximately}1,350 MPa) versus temperature was observed; this occurred at 950 C, which is {approximately}300 C above the yield maximum for the alloy. Extensive plastic strain was achieved in the composites even at high loading rates at 1,135 C, and the yield stress was dependent on the applied loading rate.« less
NASA Astrophysics Data System (ADS)
Sun, Chao; Shen, Rujuan; Song, Min
2012-03-01
This article studied the effects of sintering and extrusion on the microstructures and mechanical properties of SiC particle reinforced Al-Cu alloy composite produced by powder metallurgy method. It has been shown that both extrusion and increasing sintering temperature can significantly improve the strength and plasticity of the composite. The extrusion and increase of the sintering temperature can break up the oxide coating on the matrix powder surfaces, decrease the number of pores, accelerate the elements' diffusion and increase the density and particle interfacial bonding strength, thus significantly improve the mechanical properties of the composite. The strength and hardness of the composite increase and the elongation decreases with increasing the aging time at under-aged stage, while the strength and hardness start to decrease and the elongation starts to increase with increasing the aging time at over-aged stage due to the formation and growth of the secondary strengthening precipitates in the Al-Cu matrix.
NASA Astrophysics Data System (ADS)
Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman
2018-02-01
Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.
NASA Astrophysics Data System (ADS)
Alizadeh, Morteza; Khoramkhorshid, Saba; Taghvaei, Amir Hossein; Gokuldoss, Prashanth Konda
2017-07-01
Devitrified Al84Gd6Ni7Co3 glassy particles have been used to reinforce Al-matrix composites through repeated roll bonding (RRB) process. Microstructural characterization of the produced composites after various rolling cycles was performed by scanning electron microscopy. Mechanical properties of the fabricated composites were evaluated by the tensile and microhardness tests. The results indicate that the RRB process is successful to produce composites with the negligible amount of flaws and porosity, and it is followed by homogeneous distribution of Al84Gd6Ni7Co3 particles in the Al matrix after nine rolling passes. Elongation of the composites improves significantly upon RRB cycles and the tensile strength and microhardness of them increase more than two times compared to unreinforced Al. According to fractography results, the enhanced mechanical properties are correlated with formation of excellent bonding at the interface of Al84Gd6Ni7Co3 particles and Al matrix. The theoretical values of composites hardness and yield strength calculated based on iso-strain model show a good agreement with respect to the experimental results.
Refining Mechanism of 7075 Al Alloy by In-Situ TiB2 Particles
Gan, Guisheng; Yang, Bin; Zhang, Bo; Jiang, Xin; Shi, Yunlong; Wu, Yiping
2017-01-01
The nucleation undercooling of TiB2/7075 Al matrix composites, the microstructure observed after solidification at different cooling rate, and the size and distribution of TiB2 particles were investigated. The experimental results have shown that the grain sizes of TiB2/7075 Al matrix composites firstly decreased, then increased, and finally decreased again with the increase of TiB2 content. The nucleation undercooling of TiB2/7075 Al matrix composites first increased, then decreased, and finally increased again with the increase of TiB2 content when the cooling rates was 5 and 10 °C/min respectively, but kept decreasing with the increase of TiB2 content at a cooling rate of 20 °C/min. The melting and solidification process showed no significant change with the decrease of cooling rate in 9.0% TiB2/7075 Al matrix composites. Most small particles can act as heterogeneous nucleus, which induced grain growth and were captured into the grain by the solid/liquid interface. At the same time, most of the larger particles and a minority of the small TiB2 particles are pushed into the grain boundary; locating in the grain boundary can hinder the Al atoms from diffusing during the solidification process and restrain α-Al phase growth. The influence of particles shifted from dominating by locating to dominating by nucleation as the quantity of TiB2 particles increased. PMID:28772492
NASA Astrophysics Data System (ADS)
Wang, Liqin
Intermetallic matrix composites, with ceramic particle reinforcements, are among the most important candidates for high-temperature structural applications. These composites, however, are not always stronger than their matrix materials at elevated temperatures. Some of the composites have much better high-temperature strength than their matrix materials, such as NiAl and FeAl, while others are just the opposite, e.g. TiAl, Ti_3Al, and Ni_3Al. The reasons for either the strengthening or the weakening observed in the discontinuous aluminide matrix composites are not obvious. The purpose of this research is to understand the mechanisms which caused the increase of the strength achieved by adding TiB_2 particulates to NiAl, and to recognize the fundamental principles of the deformation process in TiB_2/NiAl composites. In order to accomplish this objective, the mechanical properties and thermal activation parameters of the deformation process in TiB_2/NiAl composites have been systematically evaluated. The microstructures, dislocation structures and the interface structures of TiB _2/NiAl composites have been also thoroughly characterized before and after the deformation. Emphasis is placed on the relationship between the microstructures and mechanical properties of TiB_2/NiAl composites.
Atomistic simulation of Al-graphene thin film growth on polycrystalline Al substrate
NASA Astrophysics Data System (ADS)
Zhang, Lan; Zhu, Yongchao; Li, Na; Rong, Yan; Xia, Huimin; Ma, Huizhong
2018-03-01
The growth of Al-Graphene composite coatings on polycrystalline Al substrate was investigated by using classical molecular dynamics (MD) simulations. Unlike the diffusion behaviors on single crystal surface, most of adatoms were easily bound by the steps on polycrystalline Al surface, owing to the local accelerated energy. Both Ehrlich-Schwoebel (ES) barriers and the steering effect backed up the volmer-weber growth mode, which was consistent with the dynamic growth process observed in the deposit. The morphology of composite coatings was significantly affected by graphene flakes. Enrichment of graphene flakes gave rise to an increase of the local thickness, and graphene flakes only existed in Al grain boundaries. The size of Al grains in the composite coating visibly decreased when compared with that in the pure Al coating. This grain refinement and the mechanical property can be reinforced by the increase of graphene flakes.
NASA Astrophysics Data System (ADS)
Zhan, Ke; Wu, Yihao; Li, Jiongli; Zhao, Bin; Yan, Ya; Xie, Lechun; Wang, Lianbo; Ji, V.
2018-03-01
Graphene reinforced Al composite with high mechanical property was successfully reported. However, there are quite limited studies about shot peening effect on this new type material. Here, 1.0 wt% graphene reinforced Al composite was produced by powder metallurgy and treated by shot peening. The surface layer characteristics of shot peened composite was investigated by X-ray diffraction line profile analysis. The microstructure including domain size, micro-strain, dislocation density and crystalline texture were analyzed. The results showed that after surface shot-peening, the domain size were refined, the dislocation density of the composite was increased sharply to 9.0 × 1011/cm2 at the top surface. The original strong texture was diminished after shot peening. Based on the calculated results, the microstructure variation of composite was more severe than that of Al without graphene reinforcement after shot peening. Besides, the micro-hardness of composite at the top surface increased up to 75HV one time higher than that of matrix. It is concluded that shot peening can be considered as an essential process of improving the surface properties of graphene reinforced Al composite.
Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites
NASA Astrophysics Data System (ADS)
Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M.
2006-12-01
The dry sliding wear behavior of Al 2219 alloy and Al 2219/SiCp/Gr hybrid composites are investigated under similar conditions. The composites are fabricated using the liquid metallurgy technique. The dry sliding wear test is carried out for sliding speeds up to 6 m/s and for normal loads up to 60 N using a pin on disc apparatus. It is found that the addition of SiCp and graphite reinforcements increases the wear resistance of the composites. The wear rate decreases with the increase in SiCp reinforcement content. As speed increases, the wear rate decreases initially and then increases. The wear rate increases with the increase in load. Scanning electron microscopy micrographs of the worn surface are used to predict the nature of the wear mechanism. Abrasion is the principle wear mechanism for the composites at low sliding speeds and loads. At higher loads, the wear mechanism changes to delamination.
NASA Technical Reports Server (NTRS)
Sliney, Harold E.; Deadmore, Daniel L.
1989-01-01
The friction and wear of oxide-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C were measured. The oxide materials tested were mullite (3Al2O3.2SiO2); lithium aluminum silicate (LiAlSi(x)O(y)); polycrystalline monolithic alpha alumina (alpha-Al2O3); single crystal alpha-Al2O3 (sapphire); zirconia (ZrO2); and silicon carbide (SiC) whisker-reinforced Al2O3 composites. At 25 C the mullite and zirconia had the lowest friction and the polycrystalline monolithic alumina had the lowest wear. At 800 C the Al2O3-8 vol/percent SiC whisker composite had the lowest friction and the Al2O3-25 vol/percent SiC composite had the lowest wear. The friction of the Al2O3-SiC whisker composites increased with increased whisker content while the wear decreased. In general, the wear-resistance of the ceramics improve with their hardness.
NASA Astrophysics Data System (ADS)
Feldshtein, E.; Kiełek, P.; Kiełek, T.; Dyachkova, L.; Letsko, A.
2017-05-01
In the paper, the changes in some mechanical properties and wear behavior of CuSn10 sintered bronze and MMCs based on this bronze reinforced with composite ultrafine aluminide powders FeAl/15 % Al2O3, NiAl/15 % Al2O3 and Ti-46Al-8Cr are described. It was observed that the presence of aluminides in the MMCs leads to an increase in the hardness, but the flexural strength may increase or decrease depending on the type of aluminide. The presence of aluminides in the MMC reduces the wear rate considerably. It is decreased in the direction of FeAl/15 % Al2O3 → NiAl/15 % Al2O3 → Ti-46Al-8Cr aluminides and for the best MMC composition the advantage is about 20 times. In the MMCs wear process, micro-craters are formed on the contact surface and it is the principal reason of a decrease in the wear rate.
NASA Astrophysics Data System (ADS)
Rafi-ud-din; Shafqat, Q. A.; Shahzad, M.; Ahmad, Ejaz; Asghar, Z.; Rafiq, Nouman; Qureshi, A. H.; Syed, Waqar adil; asim Pasha, Riffat
2016-12-01
Sodium benzoate (SB) is used for the first time to inhibit the corrosion of Al6061-B4C composites in H3BO3 and NaCl solutions. Al6061100-x -x wt% B4C (x = 0, 5, and 10) composites are manufactured by a powder metallurgy route. The corrosion inhibition efficiency of SB is investigated as a function of the volume fractions of B4C particles by using potentiodynamic polarization and electrochemical impedance techniques. Without the use of an inhibitor, an increase of the B4C particles in the composite decreases the corrosion resistance of Al6061-B4C composites. It is found that SB is an efficient corrosion inhibitor for Al6061-B4C composites in both investigated solutions. The corrosion inhibition efficiency of SB increases with an increase in B4C content. Since SB is an adsorption type inhibitor, it is envisaged that an extremely thin layer of molecules adsorbs onto the surface and suppresses the oxidation and reduction. It is found that the inhibitor effect of SB is more pronounced in a H3BO3 environment than in NaCl solution. Further, the mechanism of corrosion inhibition by SB is illustrated by using optical and scanning electron microscopy of corroded samples. It is found that the adsorption of benzoate ions on the Al surface and its bonding with Al3+ ions forms a hydrophobic layer on top of the exposed Al surface, which enhances the protection against dissolved boride ions.
Sun, Cuizhen; Qiu, Jinwei; Zhang, Zhibin; Marhaba, Taha F; Zhang, Yanhao
2016-10-01
In this paper, flocculating performance and mechanisms of a new composite coagulant, poly-ferric aluminum chloride-polydimethyl diallylammonium chloride (PFAC-PD) with different OH - /(Fe 3+ + Al 3+ ) molar ratios, were investigated for humic acid (HA)-kaolin synthetic wastewater treatment. The impact of OH - /(Fe 3+ + Al 3+ ) molar ratios on the removal efficiencies of turbidity and dissolved organic carbon, specific UV absorbance, coagulation mechanisms and dynamics was explored during the coagulation process using composite coagulants. The coagulation experimental results revealed that the composite coagulants with lower OH - /(Fe 3+ + Al 3+ ) molar ratio exhibited better coagulation efficiency. When OH - /(Fe 3+ + Al 3+ ) molar ratio of the composite coagulant was 1.5, adsorption-bridging played a dominant role in coagulating HA-kaolin synthetic wastewater. The floc growth rate and floc size, increased with increasing OH - /(Fe 3+ + Al 3+ ) molar ratio and the highest peak height of the size distribution was obtained by PFAC-PD with OH - /(Fe 3+ + Al 3+ ) = 1.5. Also, the composite coagulants with higher OH - /(Fe 3+ + Al 3+ ) molar ratio formed more compact flocs, as reflected by the higher fractal dimension value. The flocs coagulated by PFAC-PD with basicity value of 1.0 gave strong strength and good recoverability.
NASA Astrophysics Data System (ADS)
Wang, A. Q.; Tian, H. W.; Xie, J. P.
2018-01-01
In this study, 35 vol.% SiC particles with different sizes reinforced 6061 aluminium alloy matrix composites were prepared by a powder metallurgy method. The Scanning Electron Microscope (SEM) images of composites were observed, the Coefficient of Thermal Expansion (CTE) and tensile strength of composites were examined, and the influences of SiC particle size on microstructures and properties of the composites were analyzed. Furthermore, the SiCp/6061Al composites with SiC particle size of 7.5 µm were selected to investigate the SiCp/Al interface microstructure and precipitated phases by the means of SEM, TEM and HRTEM. The study indicated that, with the increase of SiC particle size, the SiC particles distributed more uniformly in the matrix, the CTE of composites increased, but the tensile strength of composites decreased. The SiCp/Al interface in this experiment is clean and smooth, and the combination mechanism of SiC and Al is the formation of a half coherent interface by closely matching of atoms. Some micron-sized coarse intermetallic particles existed in the hot-pressed composites, such as random-shaped Mg2Si, long stick shaped Al15(Mn, Fe, Cu)3Si2. When the composites were solution treated at 510 °C for 2 h and then aging treated at 190 °C for 9 h, except long stick shaped Al15(Mn, Fe, Cu)3Si2, numerous nano-sized precipitated phases (Mg2Si) with diameters of 50-200 nm dispersively distributed in the matrix. After heat treatment, the tensile strength of composite with SiC particle size of 7.5 µm enhance from 298 MPa to 341 MPa.
NASA Astrophysics Data System (ADS)
Yang, Miaosen; Gu, Lianghua; Yang, Bin; Wang, Li; Sun, Zhiyong; Zheng, Jiyong; Zhang, Jinwei; Hou, Jian; Lin, Cunguo
2017-12-01
This paper reports a novel method to prepare the antifouling composites with properties of self-adaptive controlled release (defined as control the release rate autonomously and adaptively according to the change of environmental conditions) by intercalation of sodium paeonolsilate (PAS) into MgAl and ZnAl layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1 and 3:1, respectively. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The controlled release behavior triggered by temperature for the PAS-LDH composites has been investigated, and the results show that the release rate of all PAS-LDH composites increases as the increase of temperature. However, the MgAl-PAS-LDH composites (Mg2Al-PAS-LDH and Mg3Al-PAS-LDH) exhibit the increased release rate of 0.21 ppm/°C from 15 to 30 °C in 3.5% NaCl solution, more than three times of the ZnAl-PAS-LDH composites (0.06 ppm/°C), owing to the confined microenvironment influenced by metal types in LDH layers. In addition, a possible diffusion-controlled process with surface diffusion, bulk diffusion and heterogeneous flat surface diffusion has been revealed via fitting four kinetic equations. Moreover, to verify the practical application of the PAS-LDH composites, a model coating denoted as Mg2Al-PAS-LDH coating was fabricated. The release result displays that the release rate increases or decreases as temperature altered at 15 and 25 °C alternately, indicating its self-adaptive controlled release behavior with temperature. Moreover, the superior resistance to the settlement of Ulva spores at 15 and 25 °C was observed for the Mg2Al-PAS-LDH coating, as a result of the controllable release of antifoulant. Therefore, this work provides a facile and effective method for the fabrication of antifouling composites with self-adaptive controlled release behavior in response to temperature, which can be used to prolong the lifetime of antifouling coatings.
Combustion synthesis of AlB2-Al2O3 composite powders with AlB2 nanowire structures
NASA Astrophysics Data System (ADS)
Yang, Pan; Xiao, Guoqing; Ding, Donghai; Ren, Yun; Yang, Shoulei; Lv, Lihua; Hou, Xing
2018-05-01
Using of Al and B2O3 powders as starting materials, and Mg-Al alloy as additives, AlB2-Al2O3 composite powders with AlB2 nanowire structures were successfully fabricated via combustion synthesis method in Ar atmosphere at a pressure of 1.5 MPa. The effect of different amount of Mg-Al alloy on the phase compositions and morphology of the combustion products was investigated. The results revealed that AlB2 and Al2O3 increased, whereas Al decreased with the content of Mg-Al alloy increasing. The impurities MgAl2O4 and AlB12 would exist in the sample with adding of 18 wt% Mg-Al alloy. Interestingly, FESEM/TEM/EDS results showed that AlB2 nanowires were observed in the products when the content of Mg-Al alloy is 6 wt% and 12 wt%. The more AlB2 nanowires can be found as the content of Mg-Al alloy increased. And the yield of AlB2 nanowires with the diameter of about 200 nanometers (nm) and the length up to several tens of micrometers (μm) in the combustion product is highest when the content of Mg-Al alloy is 12 wt%. The vapor, such as Mg-Al (g), B2O2 (g), AlO (g) and Al2O (g), produced during the process of combustion synthesis, reacted with each other to yield AlB2 nanowires by vapor-solid (VS) mechanism and the corresponding model was also proposed.
The Effect of Li Additions on Wear Properties of Al-Mg2Si Cast In-situ Composites
NASA Astrophysics Data System (ADS)
Ghorbani, M. R.; Emamy, M.; Ghiasinejad, J.; Malekan, A.
2010-06-01
Wear rate of a modified Al-Mg2Si composite was studied by the use of a conventional pin-on-disc technique. In-situ Al-Mg2Si composites (15, 20, 25 wt.%) were cast in a simple cylindrical mold. 0.3 wt.% Li was added into the molten composite to modify its microstructure. It has been found that Li addition decreases the mean size of primary Mg2Si particles. The wear behavior of different composites at different rates revealed that Li addition increases the wear properties of Al-15%Mg2Si to some extent but it did not have any significant influence on wear properties of two other composites.
Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings
Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia
2018-01-01
Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear. PMID:29883391
NASA Astrophysics Data System (ADS)
Gupta, Rahul; Chaudhari, G. P.; Daniel, B. S. S.
2018-03-01
In this study, in situ Titanium-tri-aluminide (Al3Ti) particles reinforced Al 6061 alloy matrix composites were fabricated by the reaction of potassium hexafluorotitanate (K2TiF6) inorganic salt with molten Al 6061 alloy via liquid metallurgy route. The development of in-situ Al3Ti particles and their effects on the mechanical properties such as yield strength (YS), ductility, ultimate tensile strength (UTS) and hardness, and microstructure of Al 6061 alloy were studied. It was observed from the results that in-situ formed Al3Ti particles were blocky in morphology whose average size was around 2.6 ± 1.1 μm. Microstructure studies showed that grain size of Al matrix was reduced due to the nucleating effect of Al3Ti particles. It was observed from the mechanical properties analysis that when the volume fraction of Al3Ti particles was increased, the hardness, UTS and YS of the composites were also increased as compared to that of Al 6061 alloy. An improvement in ductility was observed with the dispersion of Al3Ti particles in base alloy which is contrary to many other composites.
Anunziata, Oscar A; Gómez Costa, Marcos B; Sánchez, Rodolfo D
2005-12-15
Composite material formed from a mesoporous aluminosilicate, Na-AlMCM-41, with conducting polyaniline (PANI) has been synthesized by an in situ polymerization technique. Studies of aniline adsorption over mesoporous Na-AlMCM-41 synthesized in our laboratory allowed us to find the modes in which aniline interacts with the active sites of Na-AlMCM-41. In order to obtain the best reaction conditions to polymerize aniline onto Na-AlMCM-41, aniline was first polymerized to produce pure PANI. Hence, the oxidative in situ polymerization was carried out by two procedures, differing in the polymerization time and in static or stirring conditions. Studies of infrared spectroscopy and UV-vis spectroscopy indicated that higher polymerization time and static conditions allowed us to obtain mainly polyaniline in emeraldine form on the host. The N(2) isotherm of the polyaniline/Na-AlMCM-41 composite (PANI/MCM) indicated that the shape was similar to that of MCM, but the shift to saturation transition to lower partial pressure shows that the channels are occupied by PANI and they are now narrowed. The thermal properties of PANI, Na-AlMCM-41, and composite were investigated by TGA analyses and we found that the polymer shows higher thermal stability when it is forming the composite. Scanning electron microscopy indicated that PANI is not on the outer surface of the host. Conductivity studies show that PANI/Na-AlMCM-41 exhibits semiconductor behavior at room temperature and its conductivity was 7.0 x 10(-5) S/cm, smaller than that of pure polyaniline. PANI/Na-AlMCM-41 conductivity shows an increase as temperature increases. Magnetic measurements at room temperature confirmed that the composite has paramagnetic behavior; at lower temperatures the composite became diamagnetic.
NASA Astrophysics Data System (ADS)
Yan, Shaojian; Tian, Canxin; Huang, Zhihong; Yang, Bing; Fu, Dejun
2014-10-01
CrTiAlN/TiAlN composite coatings were deposited on cemented carbide by using a home-made industrial scale multi-arc ion plating system. The samples were studied by X-ray diffraction, scanning electron microscopy (SEM), microhardness and ball-on-disk testing. The properties of the CrTiAlN/TiAlN coatings were significantly influenced by the microstructure and the deposition time ratio of TiAlN over CrTiAlN layers. With the increase of deposition time ratio, the microhardness of CrTiAlN/TiAlN increased from 28.6 GPa to 37.5 GPa, much higher than that of CrTiAlN coatings. The friction coefficients of the CrTiAlN/TiAlN coatings were higher than those of CrTiAlN coatings against a cemented carbide ball. The microhardness of the CrTiAlN/TiAlN coatings was changed after annealing at 800°C, and the friction coefficients of the annealed coatings were increased against the cemented carbide ball.
NASA Astrophysics Data System (ADS)
Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva
2018-02-01
Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.
Analysis of Fracture Mechanism for Al-Mg/SiCp Composite Materials
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Adebisi, A. A.; Izzati, N.
2017-03-01
The present study aims to examine the fracture mechnism of silicon carbide particle (SiCp) reinforced aluminium matrix composite (AMC) material with 1 wt% addition of magnesium is fabricated using the stir casting process. The aluminium composite (Al-Mg/SiCp) is investigated for fatigue life and impact strength considering reinforcement weight fraction and influence of temperature on fracture toughness. The fabricated composite was tested using fatigue testing machine and charpy impact tester. Fractographic observations were evaluated with the scanning electron microscopy (SEM) on the fracture surface. It was found that increasing the SiCp weight fraction increased the fatigue life of the composite. Moreover, the 20 wt% SiCp Al-Mg composite attained the highest number of cycle and fatigue life compared to other variations. The mechanism responsible for the phenomena includes load transfer from the Al matrix alloy phase to the high strength and stiffness of the incorporated SiCp. The temperature variation influenced the impact strength of the composite and improved fracture toughness is achieved at 150 °C. It can be concluded from this study that reinforcement weight fraction and temperature affects the fracture behavior of the composites.
Sun, Yubing; Chen, Changlun; Tan, Xiaoli; Shao, Dadong; Li, Jiaxing; Zhao, Guixia; Yang, Shubin; Wang, Qi; Wang, Xiangke
2012-11-21
Mesoporous Al(2)O(3) was intercalated into an expanded graphite (EG) interlayer to prepare mesoporous Al(2)O(3)/EG composites. The basal spacing of mesoporous Al(2)O(3)/EG composites was enlarged as compared to raw graphite from the X-ray diffraction analysis. The massive surface functional groups and wedge-shaped pores were observed in terms of potentiometric acid-base titration analysis and scanning electron microscope, respectively. The pH-dependent adsorption of Eu(III) on mesoporous Al(2)O(3)/EG composites was evidently independent of ionic strength. The maximum adsorption capacity of Eu(III) on mesoporous Al(2)O(3)/EG composites at pH 6.0 and T = 293 K was calculated to be 5.14 mg g(-1). Desorption kinetics and cyclic operation results showed that mesoporous Al(2)O(3)/EG composites presented high hydrothermal stability in aqueous solution. The thermodynamic parameters suggested that Eu(III) adsorption on mesoporous Al(2)O(3)/EG composites is an endothermic and a spontaneous process. The decrease of Eu-O bond distance with the increasing pH demonstrated that the adsorption mechanism between Eu(III) and mesoporous Al(2)O(3)/EG composites would shift from outer-sphere surface complexation to inner-sphere surface complexation in terms of extended X-ray absorption fine structure spectroscopy analysis.
NASA Astrophysics Data System (ADS)
Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.
2018-06-01
In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.
Effect of Cold Forging on Microstructure and MechanicalProperties of Al/SiC Composites
NASA Astrophysics Data System (ADS)
Hanamantraygouda, M. B.; Shivakumar, B. P., Dr; Siddappa, P. N.; Sampathkumar, L.; Prashanth, L.
2018-02-01
The objective of this work was to investigate the effect of cold forging on mechanical properties and microstructural study of Al MMCs, at different wt% of SiC and forging cycle. The Al-SiC composite material was fabricated by stir casting method at different weight percentage of SiC such as 2.5, 5, 7.5 and 10%. Further, the deformation characteristics during open-die forging of Al-SiC composite at cold conditions was investigated. Cast and forged composite material was subjected to hardness test, tensile test and impact test. The grain size, microstructure behaviour was investigated using optical microscope. The results show that hardness and strength of Al-SiC composite increases and ductility decreases as compared to Al alloy in both as-cast and forged conditions. Optical microscope images showed that the distribution of SiC in Al matrix was more homogeneous in a forged composite as compared to cast one and reduction of porosity was found. Further, it showed that due to forging cycle the grain size was reduced by 30% to 35% from initial size.
NASA Astrophysics Data System (ADS)
Xu, Yibiao; Li, Yawei; Yang, Jianhong; Sang, Shaobai; Wang, Qinghu
2017-06-01
The application of ledge-free sidewalls in the Hall-Héroult cells can potentially reduce the energy requirement of aluminum production by about 30 pct (Nightingale et al. in J Eur Ceram, 33:2761-2765, 2013). However, this approach poses great material challenges since such sidewalls are in direct contact with corrosive electrolyte. In the present paper, (Ni,Mg)(Al,Fe)2O4 materials were prepared using fused magnesia, reactive alumina, nickel oxide, and iron oxide powders as the starting materials. The sintering behaviors of specimens as well as their corrosion resistance to molten electrolyte have been investigated by means of X-ray diffraction and scanning electron microscope. The results show that after firing at temperature ranging from 1673 K (1400 °C) up to 1873 K (1600 °C), all the specimens prepared are composed of single-phase (Ni,Mg)(Al,Fe)2O4 composite spinel, the lattice parameter of which increases with increasing Fe3+ ion concentration. Increasing the iron oxide content enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed smaller pores in the matrix. The corrosion tests show that corrosion layers consist of fluoride and Ni(Al,Fe)2O4 composite spinel grains are produced in specimens with Fe/Al mole ratio no more than 1, whereas dense Ni(Al,Fe)2O4 composite spinel layers are formed on the surface of the specimens with Fe/Al mole ratio more than 1. The dense Ni(Al,Fe)2O4 composite spinel layers formed improve the corrosion resistance of the specimens by inhibiting the infiltration of electrolyte and hindering the chemical reaction between the specimen and electrolyte.
Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution
Han, Yu-Mei; Chen, X.-Grant
2015-01-01
Aluminum based metal matrix composites (MMCs) have received considerable attention in the automotive, aerospace and nuclear industries. One of the main challenges using Al-based MMCs is the influence of the reinforcement particles on the corrosion resistance. In the present study, the corrosion behavior of Al-B4C MMCs in a 3.5 wt.% NaCl solution were investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Results indicated that the corrosion resistance of the composites decreased when increasing the B4C volume fraction. Al-B4C composite was susceptible to pitting corrosion and two types of pits were observed on the composite surface. The corrosion mechanism of the composite in the NaCl solution was primarily controlled by oxygen diffusion in the solution. In addition, the galvanic couples that formed between Al matrix and B4C particles could also be responsible for the lower corrosion resistance of the composites. PMID:28793574
NASA Astrophysics Data System (ADS)
Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.
2017-08-01
Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).
1200 and 1300 K slow plastic compression properties of Ni-50Al composites
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Kumar, K. S.; Mannan, S. K.
1991-01-01
XD synthesis, powder blending, and hot pressing techniques have been utilized to produce NiAl composites containing 4, 7.5, 15, and 25 vol pct alumina whiskers and hybrid composite materials with 15 vol pct Al2O3 + 10 or 20 vol pct, nominally 1 micron TiB2 particles. The resistance to slow plastic flow was determined at 1200 and 1300 K via compression testing in air under constant velocity conditions. The stress-strain behavior of the intermetallic composites depended on the fraction of second phases where the 4 and 7.5 percent Al2O3 materials flowed at a nominally constant stress after about 2 percent deformation, while all the other composites exhibited diffuse yielding followed by strain softening. The flow stress-strain rate properties increased with volume fraction of Al2O3 whiskers except for the 4 and 7.5 percent materials, which had similar strengths. The hybrid composite NiAl + 15Al2O3 + 10TiB2 was substantially stronger than the materials simply containing alumina. Deformation in these composites can be described by the Kelly and Street model of creep in perfectly bonded, rigid, discontinuous fiber materials.
NASA Astrophysics Data System (ADS)
Kaku, Sai Mahesh Yadav; Khanra, Asit Kumar; Davidson, M. J.
2018-04-01
Strain hardening behaviour has significant effect on altering the properties of materials. In the present study, Al-ZrB2 metal matrix composites are made through powder metallurgy route. Incremental weight percentage (wt%) of ZrB2 (0, 2, 4 and 6 wt%) are added to Aluminium matrix to produce different composites. The homogenous powder mixture is compacted and pressurelessly sintered. Sintering of composites is performed over a range of 450-575 °C. The optimized sintered condition is observed at 550 °C for 1 h in controlled atmosphere (argon gas flow). The sintered compacts are strained in incremental steps in different levels up to failure. A visible crack on the bulge of the powder preform is considered as the failure. Composites are strain hardened up to failure. To evaluate the effect of temperature on strain hardening, strain hardening is carried out at different temperatures. Composites are densified with the extent of straining and hardness increases with the increase of strain. Hardness increase with the increase in temperature is maintained during strain hardening. To evaluate the corrosion behaviour of Al-ZrB2 composite, potentiodynamic polarization study are performed on the strained composites. Corrosion rate decrease with the extent of straining.
Electrical switching in Sb doped Al23Te77 glasses
NASA Astrophysics Data System (ADS)
Pumlianmunga; Ramesh, K.
2017-08-01
Bulk glasses (Al23Te77)Sbx (0≤ x≤10) prepared by melt quenching method show a change in switching type from threshold to memory for x≥5. An increase in threshold current (Ith) and a concomitant decrease in threshold voltage (Vth) and resisitivity(ρ) have been observed with the increase of Sb content. Raman spectra of the switched region in memory switching compositions show a red shift with respect to the as prepared glasses whereas in threshold switching compositions no such shift is observed. The magic angle spinning nuclear magnetic resonance (MAS NMR) of 27Al atom shows three different environments for Al ([4]Al, [5]Al and [6]Al). The samples annealed at their respective crystallization temperatures show rapid increase in [4]Al sites by annihilating [5]Al sites. The melts of threshold switching glasses (x≤2.5) quenched in water at room temperature (27 °C) show amorphous structure whereas, the melt of memory switching glasses (x>2.5) solidify into crystalline structure. The higher coordination of Al increases the cross-linking and rigidity. The addition of Sb increases the glass transition(Tg) and decreases the crystallization temperature(Tc). The decrease in the interval between the Tg and Tc eases the transition between the amorphous and crystalline states and improves the memory properties. The temperature rise at the time of switching can be as high as its melting temperature and the material in between the electrodes may melt to form a filament. The filament may consists of temporary (high resistive amorphous) and permanent (high conducting crystalline) units. The ratio between the temporary and the permanent units may decide the switching type. The filament is dominated by the permanent units in memory switching compositions and by the temporary units in threshold switching compositions. The present study suggests that both the threshold and memory switching can be understood by the thermal model and filament formation.
NASA Astrophysics Data System (ADS)
Zheng, Yanwen; Zhang, Zhihao; Jiang, Yanbin
2018-04-01
The Ga liquid and Al powder were mechanically mixed and poured into a hollow iron plate, after alloying, the composite plate was rolled at room temperature for preparing an Fe/Ga-Al composite strip. The effect of annealing conditions on the diffusion, microstructures and magnetostrictive properties of the strip were studied. The composite plate had good cold rolling formability. After annealing at 750-850 °C for 5 h of the cold-rolled sample with a reduction of 97%, the diffusion distance of Ga and Al in the Fe matrix increased with an increase of the annealing temperature. However, some holes appeared in the center of the sample annealed at a temperature of more than 830 °C, which was detrimental to the subsequent rolling. The combination of the secondary cold rolling and annealing was beneficial to improve the composition homogeneity and magnetic properties of the sample. The magnetostriction coefficient (λ//) of the primary rolled sample was low, ∼4 × 10-6. After annealing and secondary cold rolling, the λ// of the sample increased to 9 × 10-6 and the λ// of the sample conducted by further annealing at 820 °C for 20 h reached 27.5 × 10-6.
Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms
NASA Astrophysics Data System (ADS)
Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.
2015-05-01
Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.
NASA Astrophysics Data System (ADS)
Park, S. Y.; Lee, S. K.
2015-12-01
Probing the structural disorder in multi-component silicate glasses and melts with varying composition is essential to reveal the change of macroscopic properties in natural silicate melts. While a number of NMR studies for the structure of multi-component silicate glasses and melts including basaltic and andesitic glasses have been reported (e.g., Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Park and Lee, Geochim. Cosmochim. Acta, 2014, 26, 42), many challenges still remain. The composition of multi-component basaltic melts vary with temperature, pressure, and melt fraction (Kushiro, Annu. Rev. Earth Planet. Sci., 2001, 71, 107). Especially, the eutectic point (the composition of first melt) of nepheline-forsterite-quartz (the simplest model of basaltic melts) moves with pressure from silica-saturated to highly undersaturated and alkaline melts. The composition of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1, the xenolith from Kilbourne Hole) also vary with pressure. In this study we report experimental results for the effects of composition on the atomic structure of Na2O-MgO-Al2O3-SiO2 (NMAS) glasses in nepheline (NaAlSiO4)-forsterite (Mg2SiO4)-quartz (SiO2) eutectic composition and basaltic glasses generated by partial melting of upper mantle peridotite (KLB-1) using high-resolution multi-nuclear solid-state NMR. The Al-27 3QMAS (triple quantum magic angle spinning) NMR spectra of NMAS glasses in nepheline-forsterite-quartz eutectic composition show only [4]Al. The Al-27 3QMAS NMR spectra of KLB-1 basaltic glasses show mostly [4]Al and a non-negligible fraction of [5]Al. The fraction of [5]Al, the degree of configurational disorder, increases from 0 at XMgO [MgO/(MgO+Al2O3)]=0.55 to ~3% at XMgO=0.79 in KLB-1 basaltic glasses while only [4]Al are observed in nepheline-forsterite-quartz eutectic composition. The current experimental results provide that the fraction of [5]Al abruptly increases by the effect of composition as well as pressure in natural silicate melts. The changes of the fraction of highly coordinated Al in multi-component silicate glasses and melts with composition can provide insight into the changes of macroscopic properties (e.g., entropy, viscosity, and diffusivity) with varying composition of melt.
NASA Astrophysics Data System (ADS)
Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui
2015-05-01
Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.
NASA Astrophysics Data System (ADS)
Yu, Byung Chul; Bae, Ki-Chang; Jung, Je Ki; Kim, Yong-Hwan; Park, Yong Ho
2018-05-01
This study examined the effects of heat treatment on the microstructure and wear properties of Al-Zn-Mg-Cu/in-situ Al-9Si-SiCp/pure Al composites. Pure Al powder was used to increase densification but it resulted in heterogeneous precipitation as well as differences in hardness among the grains. Heat treatment was conducted to solve this problem. The heat treatment process consisted of three stages: solution treatment, quenching, and aging treatment. After the solution treatment, the main dissolved phases were η'(Mg4Zn7), η(MgZn2), and Al2Cu phase. An aging treatment was conducted over the temperature range, 100-240 °C, for various times. The GP zone and η'(Mg4Zn7) phase precipitated at a low aging temperature of 100-160 °C, whereas the η(MgZn2) phase precipitated at a high aging temperature of 200-240 °C. The hardness of the sample aged at 100-160 °C was higher than that aged at 200-240 °C. The wear test was conducted under various linear speeds with a load of 100 N. The aged composite showed a lower wear rate than that of the as-sintered composite under all conditions. As the linear speed was increased to 1.0 m/s, the predominant wear behavior changed from abrasive to adhesive wear in all composites.
NASA Astrophysics Data System (ADS)
Kim, H. H.; Babu, J. S. S.; Kang, C. G.
2014-05-01
Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.
NASA Astrophysics Data System (ADS)
Lu, Lin; Zhang, Yu; Xu, Fujun; Ding, Gege; Liu, Yuhang
2018-06-01
Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with step-like and Al-composition graded quantum wells have been investigated. The simulation results show that compared to DUV-LEDs with the conventional AlGaN multiple quantum wells (MQWs) structure, the light output power (LOP) and efficiency droop of DUV-LEDs with the Al-composition graded wells were remarkably improved. The key factor accounting for the improved performance is ascribed to the better modulation of carrier distribution in the quantum wells to increase the overlap between electron and hole wavefunctions, which contributes to more efficient recombination of electrons and holes, and thereby a significant enhancement in the LOP.
NASA Astrophysics Data System (ADS)
Bongale, Arunkumar M.; Kumar, Satish
2018-03-01
Nano Metal Matrix Composites were fabricated by a novel approach by combining powder metallurgy and equal channel angular pressing (ECAP) using aluminium alloy 6061 (Al6061) as matrix phase and 2, 4 and 6 wt% of silicon carbide nanoparticles (SiCnp) as reinforcements. Alloying elements of Al6061 in their elemental form are blended together using high energy planetary ball mill and calculated wt% of SiCnp were mixed with it. Thus formed composite powder mixture is compacted in a uniaxial compaction die and then subjected to ECAP up to three passes. Density and porosity of samples were estimated using Archimedes’ principle. Pin on disc setup is used to evaluate the wear properties of the composites under different speed and loading conditions. Tests revealed that increase in wt% of SiCnp reduces the wear rate of the composites whereas increasing the load and speed increases wear rate of the composite samples. SEM micrographs of worn surfaces indicated different types of wear mechanism responsible for wear of the specimens under different testing conditions. Also, wt% of SiCnp and the number of passes through ECAP were found to increase the hardness value of the composite material.
NASA Astrophysics Data System (ADS)
Tang, Fei
Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the "low shear" consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that these strengthening mechanisms can be combined to predict accurately the strength of the composites. By neutron diffraction measurements, it also was found that the composites consolidated from Al and Al63Cu25Fe12 quasicrystal alloy reinforcement powders have compressive residual stress in the Al matrix, contrary to the tensile residual stress in typical Al/SiC composites. The composites made by the quasi-isostatic forging process exhibited higher tensile strengths and much higher compressive residual stresses than the composites made by the VHP process.
NASA Astrophysics Data System (ADS)
Dhaneswara, D.; Zulfia, A.; Pramudita, T. P.; Ferdian, D.; Utomo, B. W.
2018-03-01
Addition of Ti-B grain refiner in Al-ADC12/nanoSiC composite results in improvement of tensile strength, hardness, and wear resistance through grain refinement. In this research, composite of Al-ADC12/nano SiC (0.15 %vf) with variations of TiB respectively (0.0), (0.02), (0.04), (0.06), dan (0.08) wt% were produced by stir casting. 10% of Mg were added to promote wettability between reinforce and matrix. It was found the best addition of TiB is 0.04 wt% Ti-B which results 135,9 MPa in tensile strength, 46 HRB in hardness, and 1.47x10-5 mm3/s as wear rate. The increase in mechanical properties of composites mainly because of Al3Ti acts as nucleants which initiates the grain refinement and the existence of MgAl2O4 phase indicates an interphase between nano SiC and ADC12 matrix. However, the increase of Ti-B addition after optimum number gives no significant results. High composition of iron and magnesium addition will form intermetallic phase β-Fe, π-Fe, and Mg2Si.
NASA Astrophysics Data System (ADS)
Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.
2016-02-01
Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.
An investigation on dry sliding wear behaviour of AA6061-AlNp composite
NASA Astrophysics Data System (ADS)
Mahesh Naidu, K.; Mohan Reddy, Chandra
2018-03-01
This paper studies the effect of load, sliding distance, reinforcement percentage and temperature on dry sliding wear behaviour of Al-AlNp composites by using pin on disc machine. The wear test was conducted at different loads (1,2,3 & 4 Kg), temperatures (30°C, 100°C, 170°C & 240°C) and sliding distances (500m,1000m,1500m and 2000m). Increase in wear rate has been observed by increasing the load and sliding distance, at the same time it has been decreased by increasing the reinforcement percentage and temperature. At the higher loads, temperatures and sliding distances adhesive wear, abrasive wear and oxidation wear are observed to be dominant modes of wear mechanisms in the composite.
Corrosion behavior of aluminum-alumina composites in aerated 3.5 percent chloride solution
NASA Astrophysics Data System (ADS)
Acevedo Hurtado, Paul Omar
Aluminum based metal matrix composites are finding many applications in engineering. Of these Al-Al2O3 composites appear to have promise in a number of defense applications because of their mechanical properties. However, their corrosion behavior remains suspect, especially in marine environments. While efforts are being made to improve the corrosion resistance of Al-Al2O3 composites, the mechanism of corrosion is not well known. In this study, the corrosion behavior of powder metallurgy processed Al-Cu alloy reinforced with 10, 15, 20 and 25 vol. % Al2O3 particles (XT 1129, XT 2009, XT 2048, XT 2031) was evaluated in aerated 3.5% NaCl solution using microstructural and electrochemical measurements. AA1100-O and AA2024T4 monolithic alloys were also studied for comparison purposes. The composites and unreinforced alloys were subjected to potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) testing. Addition of 25 vol. % Al2O 3 to the base alloys was found to increase its corrosion resistance considerably. Microstructural studies revealed the presence of intermetallic Al2Cu particles in these composites that appeared to play an important role in the observations. Pitting potential for these composites was near corrosion potential values, and repassivation potential was below the corresponding corrosion potential, indicating that these materials begin to corrode spontaneously as soon as they come in contact with the 3.5 % NaCl solution. EIS measurements indicate the occurrence of adsorption/diffusion phenomena at the interface of the composites which ultimately initiate localized or pitting corrosion. Polarization resistance values were extracted from the EIS data for all the materials tested. Electrically equivalent circuits are proposed to describe and substantiate the corrosive processes occurring in these Al-Al2O 3 composite materials.
A review on mechanical properties of magnesium based nano composites
NASA Astrophysics Data System (ADS)
Tarafder, Nilanjan; Prasad, M. Lakshmi Vara
2018-04-01
A review was done on Magnesium (Mg) based composite materials reinforced with different nano particles such as TiO2, Cu, Y2O3, SiC, ZrO2 and Al2O3. TiO2 and Al2O3 nanoparticles were synthesised by melt deposition process. Cu, Y2O3, SiC and ZrO2 nanoparticles were synthesised by powder metallurgy process. Composite microstructural characteristics shows that the nano-size reinforcements are uniformly distributed in the composite matrix and also minimum porosity with solid interfacial integrity. The mechanical properties showed yield strength improvement by 0.2 percentage and Ultimate tensile strength (UTS) was also improved for all the nano-particles. But UTS was adversely affected with TiO2 reinforcement while ductility was increased. With Cu reinforcement elastic modulus, hardness and fracture resistance increased and improved the co-efficient of thermal expansion (CTE) of Mg based matrix. By Y2O3 reinforcement hardness, fracture resistance was improved and ductility reached maximum by 0.22 volume percentage of Y2O3 and decreased with succeeding increase in Y2O3 reinforcement. The readings exposed that mechanical properties were gathered from the composite comprising 2.0 weight percentage of Y2O3. Ductility and fracture resistance increased with ZrO2 reinforcement in Mg matrix. Using Al2O3 as reinforcement in Mg composite matrix hardness, elastic modulus and ductility was increased but porosity reduced with well interfacial integrity. Dissipation of energy in the form of damping capacity was resolved by classical vibration theory. The result showed that an increasing up to 0.4 volume percentage alumina content increases the damping capacity up to 34 percent. In another sample, addition of 2 weight percentage nano-Al2O3 particles showed big possibility in reducing CTE from 27.9-25.9×10-6 K-1 in Magnesium, tensile and yield strength amplified by 40MPa. In another test, Mg/1.1Al2O3 nanocomposite was manufactured by solidification process followed by hot extrusion. Results showed that strengthening effect was maintained up to 150°C and fracture characteristics of Mg composite transformed from brittle to mixed ductile mode and fully ductile in attendance of nano-Al2O3 particulates.
NASA Astrophysics Data System (ADS)
De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng
2018-01-01
Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.
Tribological Properties of NiAl Matrix Composites Filled with Serpentine Powders
NASA Astrophysics Data System (ADS)
Xue, Bing; Jing, Peixing; Ma, Weidong
2017-12-01
The unexplored tribological properties of NiAl matrix composites filled with serpentine powders are investigated using a reciprocating ball-on-disk configuration. Tribological test results reveal that increasing the serpentine concentration to some extent reduces the friction coefficients and wear rates of the composites. The best anti-friction and anti-wear performance is displayed by the NiAl matrix composite filled with 8 wt.% serpentine and 2 wt.% TiC (NAST). Microstructural analyses demonstrate that after adding serpentine, the self-lubricating films with different percentages of coverage form on the worn surfaces of the composites. A self-lubricating film with the highest percentage of coverage smears on the worn surface of NAST. This clearly suggests that serpentine can act as a new type of filler for NiAl matrix composites, whereas a combination of serpentine and TiC can enable serpentine to provide a full play to its excellent lubricating performance.
Research on self-propagating high temperature synthesis prepared ZrC-ZrB2 composite ceramic
NASA Astrophysics Data System (ADS)
Yong, Cheng; Xunjia, Su; Genliang, Hou; YaKun, Xing
2013-03-01
ZrC-ZrB2 composite ceramic material is prepared by self-propagating high temperature synthesis, using Zr powders, CrO2 powders and Al powders as raw materials. Samples are studied by XRD and SEM, the results show that: ZrC-ZrB2 composite ceramic is attained after self-propagating high-temperature reaction, with Zr+ B4C as the main reactive system, and which is added respectively different content (CrO3 + Al) system. The study finds that the ceramic composite products are mainly composed of ZrC and ZrB2 phase, and other subphase. Compared to the main reactive system composite ceramic, composite ceramic grains grow up obviously, after introduction of the highly exothermic system (CrO3 + Al) in the main reactive system, and with the gradual increase of the content (CrO3 + Al).
NASA Astrophysics Data System (ADS)
Dickenson, M. P.; Hess, P. C.
1986-02-01
The compositional dependence of the redox ratio (FeO/FeO1.5) has been experimentally determined in K2O-Al2O3-SiO2-Fe2O3-FeO (KASFF) and K2O-CaO-Al2O3-SiO2-Fe2O3-FeO (KCASFF) silicate melts. Compositions were equilibrated at 1,450° C in air, with 78 mol % SiO2. KASFF melts have from 1 to 5 mol % Fe2O3 and include both peraluminous (K2O
Nie, Jinfeng; Wang, Fang; Li, Yusheng; Cao, Yang; Liu, Xiangfa; Zhao, Yonghao; Zhu, Yuntian
2017-01-01
In this study, a kind of Al-TiB2/TiC in situ composite was successfully prepared using the melt reaction method and the accumulative roll-bonding (ARB) technique. The microstructure evolution of the composites with different deformation treatments was characterized using field emission scanning electron microscopy (FESEM) and a transmission electron microscope (TEM). The mechanical properties of the Al-TiB2/TiC in situ composite were also studied with tensile and microhardness tests. It was found that the distribution of reinforcement particles becomes more homogenous with an increasing ARB cycle. Meanwhile, the mechanical properties showed great improvement during the ARB process. The ultimate tensile strength (UTS) and microhardness of the composites were increased to 173.1 MPa and 63.3 Hv after two ARB cycles, respectively. Furthermore, the strengthening mechanism of the composite was analyzed based on its fracture morphologies. PMID:28772467
Carbon fibers coated with graphene reinforced TiAl alloy composite with high strength and toughness.
Cui, Sen; Cui, Chunxiang; Xie, Jiaqi; Liu, Shuangjin; Shi, Jiejie
2018-02-05
To meet the more rigorous requirement in aerospace industry, recent studies on strengthening and toughening TiAl alloys mostly focus on high Nb addition, which inevitably bring in an increasing of density. In this study, a carbon fibers coated with graphene reinforced TiAl alloy composite was fabricated by powder metallurgy, melt spun and vacuum melting. This composite got remarkable mechanical properties combined with a prominent density reduction. In contrast with pure TiAl ingots, this sample exhibits an average fracture strain from 16% up to 26.27%, and an average strength from 1801 MPa up to 2312 MPa. Thus, we can achieve a new method to fabricate this low-density, good mechanical performance TiAl composite which could bring in more opportunities for application in aerospace industry.
Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil
2014-01-01
Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.
Structure of high alumina content Al2O3-SiO2 composition glasses.
Weber, Richard; Sen, Sabyasachi; Youngman, Randall E; Hart, Robert T; Benmore, Chris J
2008-12-25
The structure of binary aluminosilicate glasses containing 60-67 mol % Al2O3 were investigated using high-resolution 27Al NMR and X-ray and neutron diffraction. The glasses were made by aerodynamic levitation of molten oxides. The 67% alumina composition required a cooling rate of approximately 1600 degrees C s(1-) to form glass from submillimeter sized samples. NMR results show that the glasses contain aluminum in 4-, 5-, and 6-fold coordination in the approximate ratio 4:5:1. The average Al coordination increases from 4.57 to 4.73 as the fraction of octahedral Al increases with alumina content. The diffraction results on the 67% composition are consistent with a disordered Al framework with Al ions in a range of coordination environments that are substantially different from those found in the equilibrium crystalline phases. Analysis of the neutron and X-ray structure factors yields an average bond angle of 125 +/- 4 degrees between an Al ion and the adjoining cation via a bridging oxygen. We propose that the structure of the glass is a "transition state" between the alumina-rich liquid and the equilibrium mullite phase that are dominated by 4- and 6-coordinated aluminum ions, respectively.
Crack-resistant Al2O3-SiO2 glasses.
Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki
2016-04-07
Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.
NASA Astrophysics Data System (ADS)
Chen, Yufei; Li, Zhichao; Teng, Chengjun; Li, Fangliang; Han, Yang
2016-11-01
Nano-alumina was chemically modified with super-critical ethanol enabling a surface active coating. Modified nano-alumina was incorporated in polymer blends based on thermoplastic polyether sulfone and thermosetting bismaleimide resin to produce novel nanocomposites designated as SCE-Al2O3/PES-MBAE. In the SCE-Al2O3/PES-MBAE nano-composites, the matrix was originally formed from 4,4'-diamino diphenyl methane bismaleimide (MBMI) using the diluents of 3,3'-diallyl bisphenol A (BBA) and bisphenol-A diallyl ether (BBE), while polyether sulfone (PES) was used as toughening agent along with super-critically modified nano-alumina (SCE-Al2O3) as filler material. The content of SCE-Al2O3 was varied from 0 wt.% to 6 wt.%. The nano-composites were characterized for their morphological, spectroscopic and dielectric properties. Fourier transform infrared spectroscopy (FT-IR) indicated that ethanol molecules had adhered to the surface of the nano-Al2O3 in super-critical state. A reaction between MBMI and allyl compound occurred and SCE-Al2O3 was doped into the polymer matrix. Volume resistivity of the composite initially increased and then decreased. The modification due to SCE-Al2O3 could overcome the undesirable impact of PES by using a bare minimum level of SCE-Al2O3. The dielectric constant ( ɛ) and dielectric loss (tan δ) as in the case of volume resistivity were initially increased and then decreased with the content of SCE-Al2O3 in the composite. The dielectric constant, dielectric loss and dielectric strength of SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE nano-composite were 3.53 (100 Hz), 1.52 × 10-3 (100 Hz) and 15.66 kV/mm, respectively, which indicated that the dielectric properties of the composite fulfilled the basic requirements of electrical and insulating material. It was evident from the morphological analysis that the SCE-Al2O3 was evenly dispersed at the nanoscale; for example, the size of SCE-Al2O3 in SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE measured less than 50 nm.
NASA Astrophysics Data System (ADS)
Yaman, Bilge; Onuklu, Eren; Korpe, Nese O.
2017-09-01
Pure Al and alumina (2, 5, 10 wt.% Al2O3)-added Al composite foams were fabricated through powder metallurgy technique, where boric acid (H3BO3) is employed as a new alternative foaming agent. It is aimed to determine the effects of boric acid on the foaming behavior and cellular structure and also purposed to develop the mechanical properties of Al foams by addition of Al2O3. Al and Al composite foams with porosity fraction in the range of 46-53% were achieved by sintering at 620 °C for 2 h. Cell morphology was characterized using a combination of stereomicroscope equipped with image analyzer and scanning electron microscopy. Microhardness values were measured via using Vickers indentation technique. Quasi-static compression tests were performed at strain rate of 10-3 s-1. Compressive strength and energy absorption of the composite foams enhanced not only by the increasing weight fraction of alumina, but also by the usage of boric acid which leads to formation of boron oxide (B2O3) acting as a binder in obtaining dense cell walls. The results revealed that the boric acid has outstanding potential as foaming agent in the fabrication of Al and Al composite foams by providing improved mechanical properties.
Metal/ceramic composites via infiltration of an interconnected wood-derived ceramic
NASA Astrophysics Data System (ADS)
Wilkes, Thomas E.
The use of composites is increasing as they afford scientists and engineers the ability to combine the advantageous properties of each constituent phase, e.g. metal ductility and ceramic stiffness. With respect to materials design, biomimetics is garnering increasing attention due to the complex, yet efficient, natural microstructures. One such biomimetic, or in this case 'bio-derived,' curiosity is wood-derived ceramic, which is made by either replicating or converting wood into a ceramic. The resulting porous and anisotropic material retains the precursor microstructure. The wide variety of precursors can yield materials with a range of pore sizes and distribution of pores. The purpose of this work was to study the processing, microstructure, and properties of aluminum/silicon carbide composites. The composites were made by infiltrating molten aluminum into porous wood-derived SIC, which was produced by the reactive melt-infiltration of silicon into pyrolyzed wood. The composite microstructure consisted of interconnected SiC surrounding Al-alloy 'fibers.' The strength, modulus, and toughness were measured in both longitudinal and transverse orientations. The Al → SiC load transfer was investigated with high-energy X-ray diffraction in combination with in-situ compressive loading. The properties in flexure were found to decrease with increasing temperature. Despite the complex microstructure, predictions of the composite flexural modulus and longitudinal fracture toughness were obtained using simple models: Halpin-Tsai bounds and the Ashby et al. model of the effect of ductile particle-reinforcements on the toughness of brittle materials (Ashby et al. 1989), respectively. In addition, the Al/SiC research inspired the investigation of carbon-reinforced copper composites. The goal was to explore the feasibility of making a high-thermal conductivity composite by infiltrating copper into wood-derived carbon. Results indicated that Cu/C composites could be made with pressurized infiltration, but the predicted thermal conductivity was low due to the amorphous wood-derived carbon.
Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300 K
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Sprissler, B.
1990-01-01
Elevated temperature compression testing has been conducted in air at 1200 and 1300 K with strain rates varying from about 10 to the -4th to about 10 to the -7th/sec on NiAl-TiB2 particulate composites. These materials, which consisted of a B2 crystal structure intermetallic Ni-50 at. pct Al matrix and from 0 to 30 vol pct of approximately 1- micron diameter TiB2 particles, were fabricated by XD synthesis and hot pressed to full density. Flow strength of the composites increased with volume fraction of the strengthening phase with NiAl-30TiB2 being approximately three times stronger than NiAl. Comparison of the light optical and TEM microstructures of as-received and tested samples revealed that reactions did not occur between the two phases, and NiAl-TiB2 interfaces were not cracked during deformation. Additional TEM indicated that the particles stabilize a vastly different microstructure in the NiAl matrix of the composites than that formed in unreinforced NiAl.
NASA Astrophysics Data System (ADS)
Peng, Yuandong; Nie, Junwu; Zhang, Wenjun; Ma, Jian; Bao, Chongxi; Cao, Yang
2016-02-01
We investigated the effect of the addition of Al2O3 nanoparticles on the permeability and core loss of Fe soft magnetic composites coated with silicone. Fourier transform infra-red spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis revealed that the surface layer of the powder particles consisted of a thin insulating Al2O3 layer with uniform surface coverage. The permeability and core loss of the composite with the Al2O3 addition annealed at 650 °C were excellent. The results indicated that the Al2O3 nanoparticle addition increases the permeability stablility with changing frequency and decreases the core loss over a wide range of frequencies.
Particles and Zinc on the Absorbed Impact Energy of Gravity Cast Aluminum Matrix Composites
NASA Astrophysics Data System (ADS)
Corchado, Marcos; Reyes, Fernando; Suárez, Oscar Marcelo
2014-06-01
The effect of different amounts of boron, in the form of AlB2 particles, as well as zinc concentration in a gravity cast Al-B-Zn composite, was studied and related to the absorbed energy upon fracture during Charpy impact experiments. In addition, the authors correlated the composite Brinell hardness with the quantitative assessment of brittle and ductile fracture areas of the Charpy fractured specimens and found that increasing AlB2 particle concentration resulted in a reduction of absorbed impact energy. Although larger zinc levels produced somewhat similar results, the AlB2 effect was prevalent. The energy absorption upon impact reached a maximum when no particles were present; conversely, the lowest amount of absorbed energy corresponded to a composite with a composition of 15 wt.% Zn and 8% in volume of AlB2, i.e., the highest concentration of AlB2 and zinc studied. Raising the amount of AlB2 as well as zinc, as expected, resulted in higher Brinell hardness. A statistical analysis allowed studying of the particle size distribution, whereas values for crack tip opening displacement were subsequently calculated for the range of particle sizes found and the corresponding AlB2 particle volume percent. Higher porosity values were measured for larger AlB2 volume percent. Finally, analyses of fracture surfaces corroborated that brittle fracture was favored in composites with higher amounts of AlB2 and zinc.
Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite
NASA Astrophysics Data System (ADS)
Murugan, S. Senthil; Jegan, V.; Velmurugan, M.
2018-04-01
This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.
Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia
NASA Astrophysics Data System (ADS)
Varanasi, Chakrapani; Juneja, Chetan; Chen, Christina; Kumar, Binod
Composites of 6 mol% scandia-stabilized zirconia materials (6ScSZ) and nanosize Al 2O 3 powder (0-30 wt.%) were prepared and characterized for electrical conductivity by the ac impedance method at various temperatures ranging from 300 to 950 °C. All the composites characterized showed improved conductivity at higher temperatures compared to the undoped ScSZ. An average conductivity of 0.12 S cm -1 was measured at 850 °C for 6ScSZ + 30 wt.% Al 2O 3 composite samples, an increase in conductivity up to 20% compared to the undoped 6ScSZ specimen at this temperature. Microstructural evaluation using scanning electron microscopy revealed that the ScSZ grain size was relatively unchanged up to 10 wt.% of Al 2O 3 additions. However, the grain size was reduced in samples with higher (20 and 30 wt.%) additions of Al 2O 3. Small grain size, reduced quantity of the 6ScSZ material (only 70%), and improved conductivity makes these ScSZ + 30 wt.% Al 2O 3 composites very attractive as electrolyte materials in view of their collective mechanical and electrical properties and cost requirements. The observed increase in conductivity values with the additions of an insulating Al 2O 3 phase is explained in light of the space charge regions at the 6ScSZ-Al 2O 3 grain boundaries.
Synthesis of new metal-matrix Al-Al2O3-graphene composite materials
NASA Astrophysics Data System (ADS)
Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.
2017-08-01
The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.
NASA Astrophysics Data System (ADS)
Luo, Yan; Zhang, Lifeng; Li, Ming; Sridhar, Seetharaman
2018-06-01
A complex nitride of Al x Mg(1- x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al + Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95 × 10-7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.
In-situ synthesis of MoSi{sub 2}-Al{sub 2}O{sub 3} composite by a thermite reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deevi, S.C.; Deevi, S.
1995-08-01
In this paper, the authors discuss the reaction mechanism involved in the thermite reaction leading to the synthesis of a composite since in an actual combustion synthesis, the reaction propagates at a velocity of 10 to 20 mm/sec. Reaction mechanism was determined by using a differential thermal analysis (DTA) and X-ray diffraction (XRD). During the combustion synthesis of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}, reaction of MoO{sub 3}, Al and Si occurs rapidly and the reactants and products are expected to be in the liquid state at the combustion temperature. MoO{sub 3} is first reduced to MoO{sub 2}, and the reaction betweenmore » MoO{sub 2}, Al and Si leads to a composite of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}. Differential thermal analysis reveals that the onset of exothermic reactions is preceded by melting indicating the necessity of molten Al for the synthesis of the composite. The reaction between MoO{sub 2} + 2Al +2Si can be moderated with Mo-Si mixtures such that the ratio of MoSi{sub 2} to Al{sub 2}O{sub 3} can be increased in the composite of MoSi{sub 2}-{alpha}Al{sub 2}O{sub 3}.« less
Li, Lingling; Dong, Xinfa; Dong, Yingchao; Zhu, Li; You, Sheng-Jie; Wang, Ya-Fen
2015-04-28
In order to reduce environment risk of zinc, a spinel-based porous membrane support was prepared by the high-temperature reaction of zinc and bauxite mineral. The phase evolution process, shrinkage, porosity, mechanical property, pore size distribution, gas permeation flux and microstructure were systematically studied. The XRD results, based on a Zn/Al stoichiometric composition of 1/2, show a formation of ZnAl2O4 structure starting from 1000°C and then accomplished at 1300°C. For spinel-based composite membrane, shrinkage and porosity are mainly influenced by a combination of an expansion induced by ZnAl2O4 formation and a general densification due to amorphous liquid SiO2. The highest porosity, as high as 44%, is observed in ZnAl4 membrane support among all the investigated compositions. Compared with pure bauxite (Al), ZnAl4 composite membrane support is reinforced by ZnAl2O4 phase and inter-locked mullite crystals, which is proved by the empirical strength-porosity relationships. Also, an increase in average pore diameter and gas flux can be observed in ZnAl4. A prolonged leaching experiment reveals the zinc can be successfully incorporated into ceramic membrane support via formation of ZnAl2O4, which has substantially better resistance toward acidic attack. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lei, Zhenglong; Tian, Ze; Li, Peng; Chen, Yanbin; Zhang, Hengquan; Gu, Jingyan; Su, Xuan
2017-12-01
Laser melting deposition (LMD), an additive manufacturing-based technology, was utilized to join Sip/6063Al composite creatively with different Si weight contents (Al-Si 5%, 12%, 20% and 30%). Influence of the Si content on the constitutional phases, microstructural characteristics, and thermo-physical properties of the layer by layer built-up weld beads was investigated. Experimental results showed that the increasing of deposited Si content could lead to a marked increment of both size and volume of precipitated Si phase, and the circled α-Al phase decreased as a whole. The Si/Al interface began to decrease for the sample Al-Si30 wt.% due to the connection of Si phases. The α-Al phase within the (Al, Si) eutectic were observed to exhibit two sub-micron solidification morphologies, columnar grains and equiaxed grains, respectively. In general, by increasing the content of the deposited Si, the thermal conductivity decreased owing to the decreasing of α-Al phase with high conductivity, and the coefficient of thermal expansion (CTE) had the same varying trend which was attributed to the increasing volume fraction of stiff precipitated Si phase and Si-Si contiguity.
Elevated temperature slow plastic deformation of NiAl/TiB2 particulate composites
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Mannan, S. K.; Sprissler, B.; Viswanadham, R. K.
1988-01-01
The 'XD' process for production of discontinuously-reinforced metal-matrix composites has been used to enhance the high-temperature strength of NiAl-TiB2 composites with particulate densities of up to 30 vol pct. SEM, TEM, and optical characterizations of the resulting microstructures showed the average TiB2 particle size to be about 1 micron, while the average grain of the NiAl matrix was of the order of 10 microns. Elevated temperature compression tests conducted at 1200 and 1300 K indicated flow strengths to increase with TiB2 content, so that the 20 vol pct TiB2-reinforced composite was three times stronger than the unreinforced NiAl; this is ascribed to the very high density of microstructural tangled dislocations, loops, and subgrain boundaries connecting the particles.
Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Vogt, Rustin
Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.
Synthesis and wear behavior of aluminum 6061 alloy reinforced with carbon nanotubes
NASA Astrophysics Data System (ADS)
Khalil, Abdullah
In the present work, Al6061 alloy was uniformly reinforced with 0.5, 0.75, 1 and 2 wt. % Carbon Nanotubes (CNTs) using two way dispersion method. For consolidation, Spark Plasma Sintering (SPS) was used which resulted in very high densification for the matrix as well as composite. Results showed that addition of CNTs lead to increased hardness of the material and maximum hardness was found for 1 wt. % CNTs. So this composition was selected for detailed wear analysis. Pin-on-disk wear tests were conducted for the monolithic Al6061 and the composite at a constant speed of 0.5 m/s with varying load from 5 N to 30 N under dry sliding conditions using AISI 4140 steel disk as a counterface. The composite displayed lower wear rate and friction coefficient at lower levels of applied stress (0.175 to 0.525 MPa). Under higher stresses (0.700 to 1.050 MPa), the increased brittleness and porosity of the composite caused severe fracturing and delamination resulting in excessive wear rate and friction coefficient for the composite as compared to monolithic Al6061. The transition from mild to severe wear regime in composite occurred also at lower stress as compared to monolith. Analysis of the worn surfaces revealed abrasion as the dominant wear mechanism for both the materials at lower stresses. At higher stress levels, adhesion was found to be dominant in monolithic Al6061 whereas in composite, excessive sub-surface fracturing and delamination was mainly observed.
Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings
Kong, Dejun; Song, Renguo
2018-01-01
Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555
Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.
He, Xing; Kong, Dejun; Song, Renguo
2018-01-26
Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liu; Liu, Jinxu, E-mail: liujinxu@bit.edu.cn; Zhang, Xinbo
2015-11-15
Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W)-polytetrafluoroethylene (PTFE)-aluminum (Al) with density of 4.12 g/cm{sup 3}, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt%) can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable atmore » 773 K. Under impact loading, when the strain rate up to ∼4820 s{sup −1} coupled with the absorbed energy per unit volume of 120 J/cm{sup 3}, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.« less
Cyclic Oxidation of FeCrAlY/Al2O3 Composites
NASA Technical Reports Server (NTRS)
Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.
1999-01-01
Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.
Component effects on crystallization of RE-containing aluminoborosilicate glass
NASA Astrophysics Data System (ADS)
Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.; Riley, Brian J.
2016-09-01
Lanthanide-aluminoborosilicate (LABS) glass is one option for immobilizing rare earth (RE) oxide fission products generated during reprocessing of pyroprocessed fuel. This glass system can accommodate a high loading of RE oxides and has excellent chemical durability. The present study describes efforts to model equilibrium crystallinity as a function of glass composition and temperature as well as liquidus temperature (TL) as a function of glass composition. The experimental method for determining TL was ASTM C1720-11. Typically, three crystalline phases were formed in each glass: Ce-borosilicate (Ce3BSi2O10), mullite (Al10Si2O19), and corundum (Al2O3). Cerianite (CeO2) was a common minor crystalline phase and Nd-silicate (Nd2Si2O7) occurred in some of the glasses. In the composition region studied, TL decreased as SiO2 and B2O3 fractions increased and strongly increased with increasing fractions of RE oxides; Al2O3 had a moderate effect on the TL but, as expected, it strongly affected the precipitation of Al-containing crystals.
Crack-resistant Al2O3–SiO2 glasses
Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki
2016-01-01
Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006
Crack-resistant Al2O3-SiO2 glasses
NASA Astrophysics Data System (ADS)
Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki
2016-04-01
Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.
Deformation behaviour of Cu-Al clad composites produced by rotary swaging
NASA Astrophysics Data System (ADS)
Kunčická, L.; Kocich, R.
2018-05-01
Al/Cu composites are an advantageous perspective material applicable in various industrial branches, from electrotechnics to transportation industry. This study focused on the investigation of Al/Cu clad composites produced by rotary swaging at two different temperatures, 20°C and 250°C. The composites were swaged from the original 30 mm down to 5 mm with the total swaging degree of 3.58, however, samples were acquired after multiple steps. The influences of the processing conditions on the structure were studied via scanning electron microscopy; the analyses mainly focused on the deformation behaviour of the component metals and the possible development of intermetallic phases on their interfaces, as well as on the grains orientation. During processing, the radial swaging forces were recorded with our own developed KOMAFU S600 system for dynamic detection of swaging forces. According to the results of the analyses, the swaging temperature influenced significantly the behaviour of the composites, as did also the total imposed strain. The composite swaged at 250°C was affected more notably, the cross-sections of the Al wires in the composite were deformed due to the influence of the radial swaging dies movement more significantly than in the composite swaged at 20°C. This effect was evident for all the investigated swaging steps and increased with increasing total imposed strain. The higher swaging temperature also decreased the plastic flow of the material; the deformation work was 730.3 kJ for 250°C composite and 650.7 kJ for the 20°C one. Tensile testing revealed similar effect; while the UTS for both the composites was slightly higher than 280 MPa, the plasticity of 250°C composite was evidently higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroll, Jared O.; Vienna, John D.; Schweiger, Michael J.
2016-09-15
Nepheline (nominally NaAlSiO4) formation during slow cooling of high-alumina (25.4 - 34.5 mass% Al2O3) Hanford high level waste glasses may significantly reduce product durability. To investigate the effects of composition on nepheline crystallization, 29 compositions were formulated by adjusting Al2O3, B2O3, Li2O, Na2O, and SiO2 around a baseline glass that precipitated 12 mass% nepheline. Thirteen of these compositions were generated by adjusting one-component-at-a-time, while two or three components were adjusted to produce the other 16 (with all remaining components staying in the same relative proportions). Quantitative X-ray diffraction was used to determine nepheline concentration in each sample. Twenty two glassesmore » precipitated nepheline, two of which also precipitated eucryptite (nominally LiAlSiO4), and one glass formed only eucryptite upon slow cooling. Increasing Na2O and Li2O had the strongest effect in promoting nepheline formation. Increasing B2O3 inhibited nepheline formation. SiO2 and Al2O3 showed non-linear behavior related to nepheline formation. The composition effects on nepheline formation in these glasses are reported.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knechtel, M.; Prielipp, H.; Claussen, N.
The rising fracture resistance with crack length in metal-toughened ceramics due to ductile bridging has been discussed from some selected microstructures and metal-ceramic combinations. An intriguing feature of these composites is the influence of interfacial fracture strength. Strong interfacial bonding leads to high geometrical constraint for the metal and high degree of triaxial tension in the metal ligament, thereby increasing the uniaxial yield strength by a factor of 5--7. This in turn increases the closure stress of the metal ligament, but ultimately limits the total plastic dissipation in the ductile reinforcement. The intent of this paper is to provide somemore » insight on the influence of metal ligament size on both fracture toughness and fracture strength. The materials chosen are Al/Al[sub 2]O[sub 3] and Cu/Al[sub 2]O[sub 3] composites, both prepared by gas-pressure metal-infiltration of porous alumina preforms. SEM observations of fracture surfaces in conjunction with preliminary TEM and PEELS investigations of the metal-ceramic interfaces are used to explain the trends in mechanical property data.« less
Synthesis and characterization of magnesium aluminate (MgAl2O4) spinel (MAS) thin films
NASA Astrophysics Data System (ADS)
Ahmad, Syed Muhammad; Hussain, Tousif; Ahmad, Riaz; Siddiqui, Jamil; Ali, Dilawar
2018-01-01
In a quest to identify more economic routes for synthesis of magnesium aluminate (MgAl2O4) spinel (MAS) thin films, dense plasma focus device was used with multiple plasma focus shots. Structural, bonding between composite films, surface morphological, compositional and hardness properties of MAS thin films were investigated by using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive x-rays (EDX) analysis and Vickers micro hardness test respectively. In XRD graph, the presence of MgAl2O4 diffraction peaks in crystallographic orientations (222), (400) and (622) pointed out the successful formation of polycrystalline thin films of MgAl2O4 with face centered cubic structure. The FTIR spectrums showed a major common transmittance band at 697.95 cm-1 which belongs to MgAl2O4. SEM micrographs illustrated a mesh type, granular and multi layers microstructures with significant melting effects. EDX spectrum confirmed the existence of magnesium, oxygen and aluminum in MAS films. A common increasing behavior in micro-hardness of composite MgAl2O4 films by increasing number of plasma focus shots was found.
Panah, Faride Gerami; Rezai, Sosan Mir Mohammad; Ahmadian, Leila
2008-07-01
An increasing demand for esthetic restorations has resulted in the development of new ceramic systems, but fracture of veneering ceramics still remains the primary cause of failure. Porcelain repair frequently involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studied extensively. The purpose of this study was to evaluate the influence of different ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2 coping material. Sixteen 7 x 7 x 1 mm(3) lithia disilicate-based core ceramic plates were fabricated using the lost wax technique. The plates were divided into eight groups, and eight different surface treatments were performed: (1) no treatment (NT); (2) airborne-particle abrasion with 50-mum alumina particles (Al); (3) acid etching with 9.6% hydrofluoric acid for 1 min (HF); (4) silane coating (S); (5) AlHF; (6) AlS; (7) HFS; and (8) AlHFS. Then, ten composite resin cylinders (0.8-mm diameter x 0.5-mm height) were light-polymerized onto the ceramic plates in each group. Each specimen was subjected to a shear load at a crosshead speed of 0.5 mm/min until fracture occurred. The fracture sites were examined with scanning electron microscopy (SEM) to determine the location of failure during debonding and to examine the surface treatment effects. One-way analysis of variance (ANOVA) and multiple comparison (Dunnet T3) tests were used for statistical analysis of data. The mean micro-shear bond strength values (SD) in MPa were--NT: 4.10 (3.06), Al: 7.56 (4.11), HF: 14.04 (2.60), S: 14.58 (2.14), AlHF: 15.56 (3.36), AlS: 23.02 (4.17), HFS: 24.7 (4.43), AlHFS: 26.0 (3.71). ANOVA indicated the influence of surface treatment was significant (p < 0.0001). SEM analysis did not reveal entirely cohesive failure in any composite or ceramic. The micro-shear bond strength of a composite resin to IPS Empress 2 was significantly different depending on the surface treatment method. Among the investigated methods, silane coating after airborne-particle abrasion and etching was the most effective surface treatment in terms of bond strength increase.
Jiao, Y; Huang, L J; Duan, T B; Wei, S L; Kaveendran, B; Geng, L
2016-09-13
Novel Ti6Al4V alloy matrix composites with a controllable two-scale network architecture were successfully fabricated by reaction hot pressing (RHP). TiB whiskers (TiBw) were in-situ synthesized around the Ti6Al4V matrix particles, and formed the first-scale network structure (FSNS). Ti5Si3 needles (Ti5Si3) precipitated in the β phase around the equiaxed α phase, and formed the secondary-scale network structure (SSNS). This resulted in increased deformation compatibility accompanied with enhanced mechanical properties. Apart from the reinforcement distribution and the volume fraction, the ratio between Ti5Si3 and TiBw fraction were controlled. The prepared (Ti5Si3 + TiBw)/Ti6Al4V composites showed higher tensile strength and ductility than the composites with a one-scale microstructure, and superior wear resistance over the Ti6Al4V alloy under dry sliding wear conditions at room temperature.
NASA Astrophysics Data System (ADS)
Charlena; Bikharudin, Ahmad; Wahyudi, Setyanto Tri
2018-01-01
HA-collagen-chitosan (HA/col/chi) composite is developed to increase bioactivity adhesiveness between the metal and the material composite and to improve corrosion resistance. The Ti6Al4V alloy was coated by soaking in HA/col/chi composite at room temperature and then allowed to stand for 5, 6, and 7 days. Diffraction pattern analysis of the coated Ti6Al4V alloy showed that the dominant phase were HA and Ti6Al4V alloy. Corrosion resistance test in media by using 0.9% NaCl showed the corrosion rate at the level of 0.3567 mpy, which was better than that of the uncoated Ti6Al4V alloy (0.4152 mpy). In vitro cytocompatibility assay on endothelial cell of calf pulmonary artery endothelium (CPAE) (ATCC-CCL 209) showed there was no toxicity in the cell culture with the percent inhibition of 33.33% after 72 hours of incubation.
NASA Astrophysics Data System (ADS)
Bharath, V.; Ajawan, Santhrusht S.; Nagaral, Madev; Auradi, Virupaxi; Kori, Shivaputrappa Amarappa
2018-02-01
Metal matrix composites (MMC's) form appropriate choice of materials where there is a demand for stiffness, strength combined with low weight for different applications. The applications of Aluminum based MMC's as engineering materials has been exceedingly increased in almost all industrial sectors. Aluminum strengthened with Al2O3p gives excellent physical and mechanical properties like high hardness, low density, high electrical conductivity etc., which are generally used in the field of aerospace, automobile and industrial applications. In present work, an attempt is being made to integrate 2014 Al alloy with Al2O3p by two stage stir casting with addition level of reinforcement maintained at 9 and 12 wt%. Microstructural characterization carried out using scanning electron microscopy showed fairly uniform distribution of Al2O3p with grain refinement of the matrix. These prepared composites are mechanically characterized as per the ASTM standards using computerized universal testing machine. Improvements in tensile strength, density and hardness of the prepared composites were observed with increase in the reinforcement wt%. Percentage improvements of 5.09% (9 wt%), 17.65% (12 wt%) in terms of tensile strength and 29.18% (9 wt%), 43.69% (12 wt%) in terms of hardness were obtained respectively.
NASA Astrophysics Data System (ADS)
Huang, Ying; Peng, Xuanyi; Yang, Yiwen; Wu, Haiwei; Sun, Xu; Han, Xiaopeng
2018-03-01
Proper process and parameter were investigated to coat Cu or Ni on graphite flake (Gf) by electroless plating. Microstructural characterization indicated that the Cu/Ni was coated on the Gf uniformly and comprehensively. Then aluminum matrix composites reinforced with Si and graphite were fabricated by a unique vacuum gas pressure infiltration. The thermal conductivity and mechanical properties of the composites, both with and without Cu or Ni coating layers on the graphite surface, have been studied. The obtained results indicated that the mechanical property of the Cu or Ni coated Gf/Si/Al composites dramatically increased, as compared with the non-coated Gf/Si/Al composite. In the meantime, Cu or Ni coated Gf proved to have better wettability and interfacial bonding with the aluminum matrix, which were expected to be a highly sustainable and dispersible reinforcement for metal matrix composites.
NASA Astrophysics Data System (ADS)
Denisova, E. A.; Kuzovnikova, L. A.; Iskhakov, R. S.; Bukaemskiy, A. A.; Eremin, E. V.; Nemtsev, I. V.
2014-05-01
The evolution of the magnetic properties of composite Al2O3/Co(P) particles during ball milling and dynamic compaction is investigated. To prepare starting composite particles, the Al2O3 granules were coated with a Co95P5 shell by electroless plating. The magnetic and structural properties of the composite particles are characterized by scanning electron microscopy, X-ray diffraction, and the use of the Physical Property Measurement System. The use of composite core-shell particles as starting powder for mechanoactivation allows to decrease treatment duration to 1 h and to produce a more homogeneous bulk sample than in the case of the mixture of Co and Al2O3 powders. The magnetic properties of the milled composite particles are correlated with changes in the microstructure. Reduction in grain size of Co during milling leads to an increase of the volume fraction of superparamagnetic particles and to a decrease of the saturation magnetization. The local magnetic anisotropy field depends on the amount of hcp-Co phase in sample. The anisotropy field value decreases from 8.4 kOe to 3.8 kOe with an increase in milling duration up to 75 min. The regimes of dynamic compaction were selected so that the magnetic characteristics—saturation magnetization and coercive field—remained unchanged.
NASA Astrophysics Data System (ADS)
Shanmugam, G.; Krishnakumar, V.
2018-05-01
Polymer composite films based on PVA-PVP with AlCl3 as the dopant at different concentrations were prepared using solution casting technique. XRD patterns reveal the increase in amorphousity of the films with AlCl3 doping. Optical absorption studies exhibit that the values of optical absorption coefficient, direct and indirect optical band gaps are found to decrease with increase in AlCl3 concentration. It confirms the charge transfer in complexes between the polymer and the dopant. The dielectric studies show the increase in dielectric constant at low frequency with increasing AlCl3 concentration and temperature. The ac conductivity and ionic conductivity increase with the AlCl3 content and the maximum value at room temperature is found to be 6.89 × 10-4 and 8.05 × 10-5 S/cm for higher AlCl3 doped PVA-PVP film. The estimated ionic conductivity value is three or four orders of magnitude greater than those obtained in the certain representative polymer-salt complexes as reported earlier. Electrical modulus plots confirm the removal of electrode polarization and the low conductivity relaxation time with Al doping. The activation energy estimated from the temperature dependent dc conductivity plot is agreed well with the migration energy calculated from the temperature dependent electric modulus plot.
Kamonsawas, Jirarat; Sirivat, Anuvat; Niamlang, Sumonman; Hormnirun, Pimpa; Prissanaroon-Ouajai, Walaiporn
2010-01-01
Poly(p-phenylenevinylene) (PPV) was chemically synthesized via the polymerization of p-xylene-bis(tetrahydrothiophenium chloride) monomer and doped with H2SO4. To improve the electrical conductivity sensitivity of the conductive polymer, Zeolites Y (Si/Al = 5.1, 30, 60, 80) were added into the conductive polymer matrix. All composite samples show definite positive responses towards NH4NO3. The electrical conductivity sensitivities of the composite sensors increase linearly with increasing Si/Al ratio: with values of 0.201, 1.37, 2.80 and 3.18, respectively. The interactions between NH4NO3 molecules and the PPV/zeolite composites with respect to the electrical conductivity sensitivity were investigated through the infrared spectroscopy. PMID:22219677
NASA Astrophysics Data System (ADS)
Wang, Peng; Xu, Dongxia; Niu, Jitai
2016-12-01
Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.
NASA Astrophysics Data System (ADS)
Jo, Ilguk
Lightweight Mg-based composites have been produced by in-situ combustion synthesis of the Al-Ti-C reaction system. The characteristics of the in-situ composites were investigated in terms of phase evolution and interfacial stability using various analysis techniques. The structural analysis results showed that full conversion of the Al-Ti-C reactants into spherical TiC reinforcements with sizes around 1mum was achieved by the combustion reaction. In-situ formed TiC had less oxygen and higher Al contents at the interface than ex-situ formed TiC; these clean interfaces with an Al layer on the reinforcements were shown to yield interfacial stability. For these reasons, the in-situ composites exhibited higher theoretical densities and also good mechanical properties compared with ex-situ produced composites. The interfacial characteristics of molten Mg with the Al-Ti-C reactants and the commercial TiC+Al substrates were evaluated using an infiltration technique under an argon atmosphere. Infiltration length increased with time at temperature, yielding activation energies (Ea) for each system. The value of Ea for the Al-Ti-C system (307.31kJ/mol) is lower than that for the other system (350.84kJ/mol); the high Ea value indicates that the infiltration is not a simple viscosity-controlled phenomenon but involves a chemical reaction. Formation of the Al3Ti phase was observed from the crystal structural analysis of the infiltrated area; thus, existence of reaction promoting the wetting of Mg. The phase evolution, reaction mechanism and kinetics of the Al-Ti-C reaction were studied using DSC and HT-XRD. It was confirmed that, along with the melting of Al, there was formation of Al3Ti by reaction between Al and Ti. A detailed structural analysis indicates that, the reaction mechanism involves melting of Al followed by formation and growth of Al 3Ti, which then contacts the graphite powder and initiates the combustion reaction. The effect of important process parameters, such as the Al content and the reactant sizes, on the microstructure of the resulting in-situ composites is discussed. Feasibility and castability of the composites were investigated by high pressure die casting the composite preforms into automotive parts and durability tests were conducted on the cast parts.
Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy
Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos
2016-01-01
The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10−1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found. PMID:28773536
Influence of Composition on the Environmental Impact of a Cast Aluminum Alloy.
Gómez, Patricia; Elduque, Daniel; Sarasa, Judith; Pina, Carmelo; Javierre, Carlos
2016-05-25
The influence of alloy composition on the environmental impact of the production of six aluminum casting alloys (Al Si12Cu1(Fe), Al Si5Mg, Al Si9Cu3Zn3Fe, Al Si10Mg(Fe), Al Si9Cu3(Fe)(Zn) and Al Si9) has been analyzed. In order to perform a more precise environmental impact calculation, Life Cycle Assessment (LCA) with ReCiPe Endpoint methodology has been used, with the EcoInvent v3 AlMg3 aluminum alloy dataset as a reference. This dataset has been updated with the material composition ranges of the mentioned alloys. The balanced, maximum and minimum environmental impact values have been obtained. In general, the overall impact of the studied aluminum alloys varies from 5.98 × 10 -1 pts to 1.09 pts per kg, depending on the alloy composition. In the analysis of maximum and minimum environmental impact, the alloy that has the highest uncertainty is AlSi9Cu3(Fe)(Zn), with a range of ±9%. The elements that contribute the most to increase its impact are Copper and Tin. The environmental impact of a specific case, an LED luminaire housing made out of an Al Si12Cu1(Fe) cast alloy, has been studied, showing the importance of considering the composition. Significant differences with the standard datasets that are currently available in EcoInvent v3 have been found.
NASA Astrophysics Data System (ADS)
Hoseini-Athar, M. M.; Tolaminejad, B.
2016-07-01
Explosive welding is a well-known solid state method for joining similar and dissimilar materials. In the present study, tri-layered Al-Cu-Al laminated composites with different interface morphologies were fabricated by explosive welding and subsequent rolling. Effects of explosive ratio and rolling thickness reduction on the morphology of interface and mechanical properties were evaluated through optical/scanning electron microscopy, micro-hardness, tensile and tensile-shear tests. Results showed that by increasing the thickness reduction, bonding strength of specimens including straight and wavy interfaces increases. However, bonding strength of the specimens with melted layer interface decreases up to a threshold thickness reduction, then rapidly increases by raising the reduction. Hardness Values of welded specimens were higher than those of original material especially near the interface and a more uniform hardness profile was obtained after rolling process.
Plasma-Sprayed Ti6Al4V Alloy Composite Coatings Reinforced with In Situ Formed TiB-TiN
NASA Astrophysics Data System (ADS)
Anand, Akrity; Das, Mitun; Kundu, Biswanath; Balla, Vamsi Krishna; Bodhak, Subhadip; Gangadharan, S.
2017-12-01
Plasma spraying was used to deposit premixed Ti6Al4V + 15 wt.% BN powder on titanium substrate to fabricate Ti6Al4V matrix composite coatings reinforced with in situ synthesized TiB-TiN. The formation of in situ TiB-TiN reinforcements increased with plasma power. The in situ reaction appears to be complete under present experimental conditions but with considerable oxidation of Ti in the composite coatings. The hardness of composite coatings was 7 times higher (855HV), and the in vitro wear rate (2.4 × 10-5 mm3/N m) was one order of magnitude less than that of titanium substrate. However, the microstructural non-uniformity decreased the corrosion resistance of these composite coatings in Hank's balanced salt solution.
McCollum, Jena; Pantoya, Michelle L; Iacono, Scott T
2015-08-26
Aluminum (Al) particles are passivated by an aluminum oxide (Al2O3) shell. Energetic blends of nanometer-sized Al particles with liquid perfluorocarbon-based oxidizers such as perfluoropolyethers (PFPE) excite surface exothermic reaction between fluorine and the Al2O3 shell. The surface reaction promotes Al particle reactivity. Many Al-fueled composites use solid oxidizers that induce no Al2O3 surface exothermicity, such as molybdenum trioxide (MoO3) or copper oxide (CuO). This study investigates a perfluorinated polymer additive, PFPE, incorporated to activate Al reactivity in Al-CuO and Al-MoO3. Flame speeds, differential scanning calorimetry (DSC), and quadrupole mass spectrometry (QMS) were performed for varying percentages of PFPE blended with Al/MoO3 or Al/CuO to examine reaction kinetics and combustion performance. X-ray photoelectron spectroscopy (XPS) was performed to identify product species. Results show that the performance of the thermite-PFPE blends is highly dependent on the bond dissociation energy of the metal oxide. Fluorine-Al-based surface reaction with MoO3 produces an increase in reactivity, whereas the blends with CuO show a decline when the PFPE concentration is increased. These results provide new evidence that optimizing Al combustion can be achieved through activating exothermic Al surface reactions.
Control of interface reactions in SIC/TI composites
NASA Technical Reports Server (NTRS)
Houska, C. R.; Rao, V.
1982-01-01
The reaction between a 0.5 to 1.0 Al film and a thick Ti substrate to form TiAl3 occurs very rapidly on heating to 635 C and causes the Al to be confined to the surface region. After heating to 900 C Ti3Al is formed with little release of Al into alpha Ti. Further annealing at 900 C eventually causes the Ti3Al phase to decompose and a substantial amount of Al is released into alpha Ti. The interdiffusion coefficient for Al in alpha Ti at 900 C increases by less than one order of magnitude as Al is varied from 0 to 20 at %. These data were obtained from the (101) X-ray diffraction intensity band using polycrystalline samples. Improvements in the analysis of X-ray diffraction data for the determination of composition profiles are discussed.
Hao, Guanghui; Liu, Junle; Ke, Senlin
2017-12-10
In order to research spectral response characteristics of transmission-mode nanostructure aluminum gallium nitride (AlGaN) photocathodes, the AlGaN photocathodes materials with varied aluminum (Al) composition were grown by metalorganic chemical vapor deposition (MOCVD) and its optical properties were measured. The Al compositions of each AlGaN film of the photocathodes were analyzed from their adsorption properties curves; their thickness was also calculated by the matrix formula of thin-film optics. The nanostructure AlGaN photocathodes were activated with the Caesium-Oxygen (Cs-O) alternation, and after the photocathode was packaged in vacuum, their spectrum responses were measured. The experimental results showed that the trend of spectrum response curves first increased and then decreased along with the increasing of the incident light wavelength. The peak spectrum response value was 17.5 mA/W at 255 nm, and its quantum efficiency was 8.5%. The lattice defects near the interface of the AlGaN heterostructure could impede the electron motion crossing this region and moving toward the photocathode surface; this was a factor that reduces the electron emission performance of the photocathodes. Also, the experimental result showed that the thickness of each AlGaN layer affected the electron diffusion characteristics; this was a key factor that influenced the spectrum response performance.
Study on erosion behaviour of hybrid aluminium composite
NASA Astrophysics Data System (ADS)
Vishwas, D. K.; Chandrappa, C. N.; Venkatesh, Shreyas
2018-04-01
The origin of the light metals, as compared to other metals in this century, is noticeable and an exciting area of expansion for innovation. Light metals, are need of the day in engineering, among them application of aluminium and its alloys is enormous. we observe that these metals tend to have a progressive loss of metal from having contact surface with other metals. Erosion is one such wear process, where damage occurs by the repeated application of high localised stresses. Erosion due to impact of solid particle, is a significant problem. In the present work, the erosion behaviour of hybrid aluminium composite is studied. AL 6061 is used as the base alloy. AL 6061 alloy has excellent corrosion resistance but poor wear resistance. So, in order to have improved properties, it is reinforced with Tungsten Chromium Nickel powder in varied proportions by the method of stir casting. The results are compared with the as-cast Al-alloy to determine the improvement in mechanical properties. The tests were conducted in ASTM G76 setup, to determine solid particle erosion behaviour and the results of the hybrid composite were compared with that of as-cast AL 6061 alloy. It was evident that mass loss was maximum at 300 inclinations, which is a characteristic of ductile materials. It was observed that upon increasing the percentages of reinforcement (wt.%), the wear resistance of the hybrid composite increased significantly. It was also observed that the inclusion of tungsten-chromium-nickel powder increased the hardness of the hybrid composite significantly.
NASA Astrophysics Data System (ADS)
Pu, Yuping; Guo, Baogang; Zhou, Jiansong; Zhang, Shitang; Zhou, Huidi; Chen, Jianmin
2008-12-01
TiC, TiN, and SiC reinforced Ti 3Al intermetallic matrix composite (IMC) coatings were in situ synthesized on a pure Ti substrate by laser cladding. It was found that the surface hardness and the wear resistance of the Ti 3Al coating were improved by the formation of these Ti 3Al IMC coatings. The surface hardness and the wear resistance of the TiC/Ti 3Al IMC coatings increased with the increasing volume fraction of TiC powder. Under the same dry sliding test conditions, the wear resistance of TiC, TiN, and SiC reinforced Ti 3Al IMC coatings with 40 vol.% reinforced powder was in the following order: TiN/Ti 3Al IMC coating > TiC/Ti 3Al IMC coating > SiC/Ti 3Al IMC coating. It should be noted that both the TiC/Ti 3Al IMC coating with 40 vol.% TiC powder and the TiN/Ti 3Al coating with 40 vol.% TiN powder showed excellent wear resistance under 5 N normal load.
Effect of cation size at Gd and Al site on ce energy levels in Gd3(GaAl)5O12 sintered pellets
NASA Astrophysics Data System (ADS)
Tyagi, Mohit; Meng, Fang; Darby, Kaitlyn; Koschan, Merry; Melcher, C. L.
2013-02-01
Radioluminescence and reflectivity measurements performed on sintered powder pellets of garnet compositions R3GaxAl5-xO12 (where R: Lu, Gd, Sc, Y) have shown that replacing "R" in these compositions with ions of larger radius shifts the excited 5d states of Ce to lower energy, while increased ionic radius at Ga/Al sites shifts these levels to higher energy. Stokes shifts were also calculated and results were verified by comparing the performance of the pellets with that of single crystals.
Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Gaston, Lewis A; Lahori, Altaf Hussain; Mahar, Amanullah
2016-07-15
Mg/Al ratio plays a significant role for anion adsorption by Mg/Al-layered double hydroxides (Mg/Al-LDHs) modified biochar. In this study, Mg/Al-LDHs biochar with different Mg/Al ratios (2, 3, 4) were prepared by co-precipitation for phosphate removal from aqueous solution. Factors on phosphate adsorption including Mg/Al ratio, pH, and the presence of other inorganic anions were investigated through batch experiments. Increasing Mg/Al ratio in the Mg/Al-LDHs biochar composites generally enhanced phosphate adsorption with Langmuir adsorption maximum calculated at 81.83mg phosphorous (P) per gram of 4:1Mg/Al-LDHs biochar at pH3.0. The adsorption process was best described by the pseudo-second-order kinetic model. Solution pH had greater effects on the phosphate adsorption by Mg/Al LDHs biochar composites with lower Mg/Al ratios. The presence of other inorganic anions decreased the phosphate adsorption efficiency in the order of F(-) > SO4(2-) > NO2(-) >Cl(-). Phosphate adsorption mechanism involves ion exchange, electrostatic attraction and surface inner-sphere complex formation. Overall, Mg/Al-LDHs biochar composites offer a potential alternative of carbon-based adsorbent for phosphate removal from aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, Wei; Gao, Xiang; Liu, Jingmao; Kwon, Se-Hun; Wang, Qimin
2017-12-01
Diamond-like carbon (DLC) coatings with AlTiSi multi-doping were prepared by a reactive high power impulse magnetron sputtering with using a gas mixture of Ar and C2H2 as precursor. The composition, microstructure, compressive stress, and mechanical property of the as-deposited DLC coatings were studied systemically by using SEM, XPS, TEM, Raman spectrum, stress-tester, and nanoindentation as a function of the Ar fraction. The results show that the doping concentrations of the Al, Ti and Si atoms increased as the Ar fraction increased. The doped Ti and Si preferred to bond with C while the doped Al mainly existed in oxidation state without bonding with C. As the doping concentrations increased, TiC carbide nanocrystals were formed in the DLC matrix. The microstructure of coatings changed from an amorphous feature dominant AlTiSi-DLC to a carbide nanocomposite AlTiSi-DLC with TiC nanoparticles embedding. In addition, the coatings exhibited the compositionally modulated multilayer consisting of alternate Al-rich layer and Al-poor layer due to the rotation of the substrate holder and the diffusion behavior of the doped Al which tended to separate from C and diffuse towards the DLC matrix surface owing to its weak interactions with C. The periodic Al-rich layer can effectively release the compressive stress of the coatings. On the other hand, the hard TiC nanoparticles were conducive to the hardness of the coatings. Consequently, the DLC coatings with relatively low residual stress and high hardness could be acquired successfully through AlTiSi multi-doping. It is believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings. In addition, we believe that the DLC coatings with Al-rich multilayered structure have a high oxidation resistance, which allows the DLC coatings application in high temperature environment.
NASA Astrophysics Data System (ADS)
Xu, Jiang; Kan, Yide; Liu, Wenjin
In order to improve the wear resistance of aluminum alloy, in-situ synthesized TiB2 and Ti3B4 peritectic composite particulate reinforced metal matrix composite, formed on a 2024 aluminum alloy by laser cladding with a powder mixture of Fe-coated Boron, Ti and Al, was successfully achieved using 3-KW CW CO2 laser. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM, AFM and XRD. The typical microstructure of the composite coating is composed of TiB2, Ti3B4, Al3Ti, Al3Fe and α-Al. The surface hardness of cladding coating increases with the amount of added Fe-coated B and Ti powder which determines the amount of TiB2 and Ti3B4 peritectic composite particulate. The nanohardness and the elastic modulus at the interface of the TiB2 and Ti3B4 peritectic composite particulate/matrix were investigated using the nanoindentation technique. The results showed that the nanohardness and the reduced elastic modulus from the peritectic composite particulate to the matrix is a gradient distribution.
NASA Astrophysics Data System (ADS)
Ochiai, Shojiro; Oki, Yuichiro; Sekino, Fumiaki; Ohno, Hiroaki; Hojo, Masaki; Moriai, Hidezumi; Sakai, Shuji; Koganeya, Masanobu; Hayashi, Kazuhiko; Yamada, Yuichi; Ayai, Naoki; Watanabe, Kazuo
2000-04-01
The influences of fatigue damage introduced at room temperature on critical current at 4.2 K and residual strength at room temperature of Ti-Nb superconducting composite wire with a low copper ratio (1.04) were studied. The experimental results were compared with those of Nb3 Al composite. The following differences between the composites were found: the fracture surface of the Ti-Nb filaments in the composite varies from a ductile pattern under static loading to a brittle one under cyclic loading, while the Nb3 Al compound always shows a brittle pattern under both loadings; the fracture strength of the Ti-Nb composite is given by the net stress criterion but that of Nb3 Al by the stress intensity factor criterion; in the Ti-Nb composite the critical current Ic decreases with increasing number of stress cycles simultaneously with the residual strength icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r , while in the Nb3 Al composite Ic decreases later than icons/Journals/Common/sigma" ALT="sigma" ALIGN="TOP"/> c ,r . On the other hand, both composites have the following similarities: the filaments are fractured due to the propagation of the fatigue crack nucleated in the copper; with increasing number of stress cycles, the damage progresses in the order of stage I (formation of cracks in the clad copper), stage II (stable propagation of the fatigue crack into the inner core) and stage III (overall fracture), among which stage II occurs in the late stage beyond 85 to 90% of the fatigue life; at intermediate maximum stress, many large cracks grow into the core portion at different cross sections but not at high and low maximum stresses; accordingly, the critical current and residual strength of the portion apart from the main crack are low for the intermediate maximum stress but not for low and high maximum stresses.
Determination of Optimum Cutting Parameters for Surface Roughness in Turning AL-B4C Composites
NASA Astrophysics Data System (ADS)
Channabasavaraja, H. K.; Nagaraj, P. M.; Srinivasan, D.
2016-09-01
Many materials such as alloys, composites find their applications on the basis of machinability, cost and availability. In the present work, machinability of Aluminium 1100 and Boron carbide (AL+ B4C) composite material is examined by using lathe tool dynometers (BANKA Lathe) by varying the cutting parameters like spindle speed, Depth of cut and Feed rate in 3 levels. Also, surface roughness is measured against the weight % of reinforcement in the composite (0, 4 and 8 %). From the study it is observed that the hardness of a composite material increases with increase in weight % of reinforcement material (B4C) by 26.27 and 66.7 % respectively. The addition of reinforcement materials influences the machinability. The cutting force in both X and Z direction were also found increment with the reinforcement percentage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Schweiger, Michael J.; Bonham, Charles C.
Roughly half of the projected Hanford high-level waste batches will have waste loadings limited by relatively high concentration of Al2O3. Individual glasses have been formulated and tested to demonstrate that it is possible to increase the loading of these high-Al2O3 wastes in glass by as much as 50%. To implement such increases in waste loading in the Hanford Tank Waste Treatment and Immobilization Plant, the impact of composition on the properties of high-Al2O3 waste glasses must be quantified in the form of validated glass property-composition models. To collect the data necessary for glass property-composition models, a multi-phase experimental approach wasmore » developed. In the first phase of the study, a set of 46 glass compositions were statistically designed to most efficiently backfill existing data in the composition region for high-Al2O3 (15 to 30 wt%) waste glasses. The glasses were fabricated and key glass properties were tested: •Product Consistency Test (PCT) on quench (Q) and canister centerline cooled (CCC) samples •Toxicity Characteristic Leaching Procedure (TCLP) on Q and CCC samples •Crystallinity as a function of temperature (T) at equilibrium and of CCC samples •Viscosity and electrical conductivity as a function of T The measured properties of these glasses were compared to predictions from previously existing models developed over lower Al2O3 concentration ranges. Areas requiring additional testing and modeling were highlighted.« less
Khalil, Khalil Abdelrazek; Sherif, El-Sayed M; Nabawy, A M; Abdo, Hany S; Marzouk, Wagih W; Alharbi, Hamad F
2016-05-20
TiC nanofibers reinforced Al matrix composites were produced by High Frequency Induction Heat Sintering (HFIHS).The titanium carbide nanofibers with an average diameter of 90 nm are first prepared by electrospinning technique and high temperature calcination process. A composite solution containing polyacrylonitrile and titanium isopropoxide is first electrospun into the nanofibers, which are subsequently stabilized and then calcined to produce the desired TiC nanofibers. The X-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The TiC nanofibers is then mixed with the aluminum powders and introduced into high frequency induction heat sintering (HFIHS) to produce composites of TiC nanofibers reinforced aluminum matrix. The potential application of the TiC nanofibers reinforced aluminum matrix composites was systematically investigated. 99.5% relative density and around 85 HV (833 MPa) Vickers hardness of the Al reinforced with 5 wt % TiC nanofiber has been obtained. Furthermore, the sample of Al contains 5 wt % TiC, has the highest value of compression and yield strength of about 415 and 350 MPa, respectively. The ductility of the Al/5 wt % TiC showed increasing with increasing the TiC contents.
An X-ray absorption spectroscopic study of the metal site preference in Al1-xGaxFeO3
NASA Astrophysics Data System (ADS)
Walker, James D. S.; Grosvenor, Andrew P.
2013-01-01
Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO3 (Pna21; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al1-xGaxFeO3 was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L2,3-, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al1-xGaxFeO3 indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO3 than in GaFeO3, implying more anti-site disorder is present in AlFeO3.
High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Jaskowiak, Martha H.
1999-01-01
Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.
Tash, Mahmoud M.; Mahmoud, Essam R. I.
2016-01-01
In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl2, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl2 at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature. PMID:28773564
Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating
NASA Astrophysics Data System (ADS)
Rosli, Z. M.; Kwan, W. L.; Juoi, J. M.
2016-07-01
Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (RN), and substrate temperature (TS). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % RN. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB2 phase within the coatings. The TS, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.
NASA Astrophysics Data System (ADS)
Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri
2017-04-01
SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.
Transformation to Ni5Al3 in a 63.0 at. pct Ni-Al alloy
NASA Technical Reports Server (NTRS)
Khadkikar, P. S.; Locci, I. E.; Vedula, K.; Michal, G. M.
1993-01-01
Microstructures of 63 at. pct P/M Ni-Al alloys with a composition close to the stoichiometry of the Ni5Al3 phase were investigated using homogenized and quenched specimens aged at low temperatures for various times. Results of analyses of XRD data and electron microscopy observations were used for quantitative phase analysis, performed to calculate the (NiAl + Ni5Al3)/Ni5Al3 phase boundary locations. The measured lattice parameters of Ni5Al3 phase formed at 823, 873, and 923 K indicated an increase in tetragonality of the phase with increasing nickel content.
Study on Preparing Al2O3 Particles Reinforced ZL109 Composite by in Situ Reaction of Fe2O3/Al System
NASA Astrophysics Data System (ADS)
Zhang, Jing; Yu, Huashun; Zhao, Qi; Wang, Haitao; Min, Guanghui
Al2O3 particles reinforced ZL109 composite was prepared by in situ reaction between Fe2O3 and Al. The phases were identified by XRD and the microstructures were observed by SEM and TEM. The Al2O3 particles in sub-micron size distribute uniformly in the matrix and Fe displaced from the in situ reaction forms net-like alloy phases with Cu, Ni, Al, Mn ect. The hardness and the tensile strength at room temperature of the composites have a small increase compared with the matrix. However, the tensile strength at 350°C can reach 92.18 MPa, which is 18.87 MPa higher than that of the matrix. The mechanism of the reaction in the Fe2O3/Al system was studied by DSC. The reaction between Fe2O3 and Al involves two steps. The first step in which Fe2O3 reacts with Al to form FeO and Al2O3 takes place at the matrix alloy melting temperature. The second step in which FeO reacts with Al to form Fe and Al2O3 takes place at a higher temperature.
Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.
Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X
2008-07-01
An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.
Hammons, Joshua A; Wang, Wei; Ilavsky, Jan; Pantoya, Michelle L; Weeks, Brandon L; Vaughn, Mark W
2008-01-07
Nanothermites composed of aluminum and molybdenum trioxide (MoO(3)) have a high energy density and are attractive energetic materials. To enhance the surface contact between the spherical Al nanoparticles and the sheet-like MoO(3) particles, the mixture can be cold-pressed into a pelleted composite. However, it was found that the burn rate of the pellets decreased as the density of the pellets increased, contrary to expectation. Ultra-small angle X-ray scattering (USAXS) data and scanning electron microscopy (SEM) were used to elucidate the internal structure of the Al nanoparticles, and nanoparticle aggregate in the composite. Results from both SEM imaging and USAXS analysis indicate that as the density of the pellet increased, a fraction of the Al nanoparticles are compressed into sintered aggregates. The sintered Al nanoparticles lost contrast after forming the larger aggregates and no longer scattered X-rays as individual particles. The sintered aggregates hinder the burn rate, since the Al nanoparticles that make them up can no longer diffuse freely as individual particles during combustion. Results suggest a qualitative relationship for the probability that nanoparticles will sinter, based on the particle sizes and the initial structure of their respective agglomerates, as characterized by the mass fractal dimension.
Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing
NASA Astrophysics Data System (ADS)
Xiang, Lian; Park, Sang-Shik
2016-12-01
Al2O3-TiO2 (Al-Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO2 films were prepared on etched Al foils by vacuum infiltration. TiO2 films prepared using a sol-gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al2O3 outer layer, an Al-Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO2 coating, the specific capacitances of the TiO2-coated specimens are increased. The specific capacitance of the anode Al foil with TiO2 coating increased by 42% compared to that of a specimen without TiO2 coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.
Jo, Sinae; Kang, Seunggu
2013-11-01
Low-melting zinc-borate glass was added to the cordierite/Al2O3 composite in order to improve the sintering facility of Al2O3 and formation of nano-sized spinel crystal of high thermal conductivity. Increasing the ZnO/B2O3 ratio in the zinc-borate glass increased the ZnAl2O4 spinel and decreased the Al4B2O9 crystal peak intensities in X-ray diffraction pattern. The XRD peak intensities of the ZnAl2O4 spinel and Al4B2O9 crystals in the specimen containing 10 wt% zinc-borate glass (10G series) are higher than that of the specimen containing 5 wt% zinc-borate glass (5G series). The microstructures of most 10G series specimens had the flower-shaped crystal which was composed of 50 nm wide and 250 nm long needle-like crystals and identified as ZnAl2O4 spinel phase. The thermal conductivity of the 10G series specimen was higher than that of the 5G series in any ZnO/B2O3 ratio due to the formation of plenty of nano-sized ZnAl2O4 spinel of high thermal conductivity. Particularly, the thermal conductivity of the cordierite/Al2O3 composite containing 10 wt% zinc-borate glass of ZnO/B2O3 weight ratio = 1.5 was 3.8 W/Km which is much higher than that of the published value (3.0 W/Km).
NASA Astrophysics Data System (ADS)
Pal, Arpan; Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta
2018-03-01
In the present study, the effects of WC nano-particles content on the microstructure, hardness, wear, and friction behavior of aluminum matrix composites are investigated. Al-WC nano composites with varying wt% of WC (0, 1, 1.5, and 2) are fabricated using ultrasonic cavitation assisted stir-cast method. The microstructure of the nano-composite samples is analyzed using optical microscopy and scanning electron microscopy. Elemental composition is determined by energy dispersive x-ray analysis. Vicker’s microhardness test is performed in different locations on the composite sample surface with a load of 50 gf and 10s dwell time. Wear and friction of the composites under dry sliding is studied using a pin-on-disk tribotester for varying normal load (10–40 N) and sliding speed (0.1–0.4 m/s). Uniform distribution of nano-WC is observed over composite surface without noticeable clustering. Reinforcement of nano-WC particles improves wear resistance and frictional behavior of the composite. Hardness is seen to increase with increase in wt% of nano-particles. Wear behavior of composites depends on formation of layers over the surface mixed with oxidized debris and counter-face particles. Wear mechanism changes from adhesion to abrasion with increase in wt% of hard nano particles.
High temperature coatings for gas turbines
Zheng, Xiaoci Maggie
2003-10-21
Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.
Jiao, Y.; Huang, L. J.; Duan, T. B.; Wei, S. L.; Kaveendran, B.; Geng, L.
2016-01-01
Novel Ti6Al4V alloy matrix composites with a controllable two-scale network architecture were successfully fabricated by reaction hot pressing (RHP). TiB whiskers (TiBw) were in-situ synthesized around the Ti6Al4V matrix particles, and formed the first-scale network structure (FSNS). Ti5Si3 needles (Ti5Si3) precipitated in the β phase around the equiaxed α phase, and formed the secondary-scale network structure (SSNS). This resulted in increased deformation compatibility accompanied with enhanced mechanical properties. Apart from the reinforcement distribution and the volume fraction, the ratio between Ti5Si3 and TiBw fraction were controlled. The prepared (Ti5Si3 + TiBw)/Ti6Al4V composites showed higher tensile strength and ductility than the composites with a one-scale microstructure, and superior wear resistance over the Ti6Al4V alloy under dry sliding wear conditions at room temperature. PMID:27622992
Li, Chuan-Peng; Wang, Zhi-Guo; Zha, Min; Wang, Cheng; Yu, Hong-Chen; Wang, Hui-Yuan; Jiang, Qi-Chuan
2016-01-01
Nano-SiC particulates (n-SiCp) reinforced Mg-8Al-1Sn (AT81) composites with different pre-oxidation parameters were fabricated by powder metallurgy (P/M) process combined with hot extrusion. The effects of pre-oxidization treatment of n-SiCp on the microstructure and tensile properties of 0.5 vol % n-SiCp/AT81 composites were investigated accordingly. The distribution of n-SiCp with different pre-oxidation parameters was homogeneous in the composites. Moreover, it was found that a thin MgAl2O4 layer formed at the interface when the n-SiCp were pre-oxidized at 1073 K for 2 h, while the MgAl2O4 layer became much thicker with pre-oxidization temperature increasing to 1273 K for 2 h. After an appropriate pre-oxidization treatment of n-SiCp at 1073 K for 2 h, the as-extruded 0.5 vol % n-SiCp/AT81 composites exhibited an enhanced strength. It was found that the yield strength (YS) and ultimate tensile strength (UTS) increased from 168 MPa and 311 MPa to 255 MPa and 393 MPa compared with the as-extruded AT81 alloy, reflecting 51.8% and 26.4% increments, respectively. The improvement of mechanical properties should be mainly attributed to the grain refinement and homogeneous distribution of n-SiCp in the composites. Moreover, a well-bonded interface and the formation of an appropriate amount of interfacial product (MgAl2O4) benefited the material’s mechanical properties. PMID:28774083
Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah
2016-03-01
A monolithic capillary column containing a composite of metal-organic framework MIL-53(Al) incorporated into hexyl methacrylate-co-ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL-53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer-Emmett-Teller surface area from 26.92 to 85.12 m(2) /g. The presence of 1,4-benzenedicarboxylate moieties within the structure of MIL-53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π-π interactions. High-resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96-1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed-phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhong, Xiaoxi; Liu, Ying; Li, Jun; Wang, Yiwei
2012-08-01
FeSiAl is widely used in switching power supply, filter inductors and pulse transformers. But when used under higher frequencies in some particular condition, it is required to reduce its high-frequency loss. Preparing a homogeneous insulating coating with good heat resistance and high resistivity, such as AlN and Al2O3, is supposed to be an effective way to reduce eddy current loss, which is less focused on. In this project, mixed AlN and Al2O3 insulating layers were prepared on the surface of FeSiAl powders after 30 min exposure at 1100 °C in high purity nitrogen atmosphere, by means of surface nitridation and oxidation. The results revealed that the insulating layers increase the electrical resistivity, and hence decrease the loss factor, improve the frequency stability and increase the quality factor, especially in the high-frequency range. The morphologies, microstructure and compositions of the oxidized and nitrided products on the surface were characterized by Scanning Electron Microscopy/Energy Disperse Spectroscopy, X-Ray Diffraction, Transmission Electron Microscopy, Selected Area Electron Diffraction and X-ray Photoelectron Spectroscopy.
NASA Astrophysics Data System (ADS)
Kumar, Rohit; Chaubey, A. K.; Bathula, Sivaiah; Prashanth, K. G.; Dhar, Ajay
2018-03-01
Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness ( R a = 6.53 µm) compared to the sample sintered at 1500 °C ( R a = 0.66 µm) corroborating the abrasion wear test results.
Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites
NASA Astrophysics Data System (ADS)
Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.
2017-11-01
In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalita, Samar Jyoti, E-mail: Samar.Kalita@und.nodak.edu; Somani, Vikas
2010-12-15
Novel biomaterials are of prime importance in tissue engineering. Here, we developed novel nanostructured Al{sub 2}TiO{sub 5}-Al{sub 2}O{sub 3}-TiO{sub 2} composite as a biomaterial for bone repair. Initially, nanocrystalline Al{sub 2}O{sub 3}-TiO{sub 2} composite powder was synthesized by a sol-gel process. The powder was cold compacted and sintered at 1300-1500 {sup o}C to develop nanostructured Al{sub 2}TiO{sub 5}-Al{sub 2}O{sub 3}-TiO{sub 2} composite. Nano features were retained in the sintered structures while the grains showed irregular morphology. The grain-growth and microcracking were prominent at higher sintering temperatures. X-ray diffraction peak intensity of {beta}-Al{sub 2}TiO{sub 5} increased with increasing temperature. {beta}-Al{sub 2}TiO{submore » 5} content increased from 91.67% at 1300 {sup o}C to 98.83% at 1500 {sup o}C, according to Rietveld refinement. The density of {beta}-Al{sub 2}TiO{sub 5} sintered at 1300 {sup o}C, 1400 {sup o}C and 1500 {sup o}C were computed to be 3.668 g cm{sup -3}, 3.685 g cm{sup -3} and 3.664 g cm{sup -3}, respectively. Nanocrystalline grains enhanced the flexural strength. The highest flexural strength of 43.2 MPa was achieved. Bioactivity and biomechanical properties were assessed in simulated body fluid. Electron microscopy confirmed the formation of apatite crystals on the surface of the nanocomposite. Spectroscopic analysis established the presence of Ca and P ions in the crystals. Results throw light on biocompatibility and bioactivity of {beta}-Al{sub 2}TiO{sub 5} phase, which has not been reported previously.« less
Yang, Yingli; Yan, Xinlong; Hu, Xiaoyan; Feng, Rui; Zhou, Min
2017-11-01
In-situ growth of Zeolite imidazolate frameworks (ZIFs) on layered double hydroxides (LDHs) to form porous composites is a promising and challenging strategy to develop materials for separation application. Herein, the Zn-Al LDH with different Zn/Al molar ratios was prepared and used as matrix for the growth of ZIF-8 on its surface. The resulting composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N 2 physisorption, thermogravimetric (TG), scanning electron microscope (SEM) and elemental analysis followed by testing for As V removal from aqueous solution. Results showed that ZIF-8 could form on the surface of LDH with different Zn/Al molar ratios. At low Zn/Al molar ratios, the morphology and surface area of the ZIF/LDH composites and the content of ZIF-8 in the composites were little affected by the Zn/Al molar ratio. With increasing Zn/Al molar ratio, ZIF-8/LDH exhibited a lower surface area, which resulted from reduced content of ZIF-8 caused by impurities generated in the LDH matrix. All ZIF-8/LDH samples showed high As V adsorption capacity, which was significantly higher than that of pure LDH or ZIF-8. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sobachkin, A. V.; Loginova, M. V.; Sitnikov, A. A.; Yakovlev, V. I.; Filimonov, V. Yu; Gradoboev, A. V.
2018-03-01
In the present work, the influence of the irradiation with gamma-quanta 60Co upon the structural and phase state of the components of the mechanically activated powder composition of Ti+Al is investigated. The phase composition, structural parameters, and crystallinity are examined by means of X-ray diffractometry. It is found out that the irradiation with gamma-quanta changes the structure of the mechanically activated powder composition. The higher irradiation dose, the higher the structure crystallinity of both components with no change in phase state. At the same time, the parameters of Ti and Al crystal lattices approach to the initial parameters observed before the mechanical activation. The irradiation with gammaquanta leads to decrease of internal stresses in the mechanically activated powder composition while nanocrystallinity of the structure remains unchanged. Using of powder compositions exposed to the irradiation with gamma-quanta for the SH-synthesis helps to increase speed of the reaction, decrease the peak firing temperature and improve homogeneity, as well as the main phase of the produced material is TiAl.
NASA Astrophysics Data System (ADS)
Basariya, M. Raviathul; Srivastava, V. C.; Mukhopadhyay, N. K.
2015-11-01
Effect of mechanical alloying/milling on microstructural evolution and hardness variations of garnet and multi-walled carbon nanotubes (MWCNTs)-reinforced Al-Mg-Si alloy (EN AW6082) composites are investigated. Structural and morphological studies revealed that the composite powders prepared by milling display a more homogenous distribution of the reinforcing particles. Improved nanoindentation hardness viz., 4.24 and 5.90 GPa are achieved for EN AW6082/Garnet and EN AW6082/MWCNTs composites, respectively, and it is attributed to severe deformation of the aluminum alloy powders and embedding of the harder reinforcement particles uniformly into the aluminum alloy matrix. However, enhancement in case of MWCNTs-reinforced composite makes apparent the effect of its nanosized uniform dispersion in the matrix, thereby resisting the plastic deformation at lower stress and increased dislocation density evolved during high-energy ball milling. The results of the present study indicate that carbon nanotubes and garnet can be effectively used as reinforcements for Al-based composites.
NASA Astrophysics Data System (ADS)
Patcharawit, T.; Ngeekoh, A.; Chuankrekkul, N.
2017-09-01
Wear properties of aluminum matrix composites reinforced with silicon carbide particulate of 10 vol.% addition was investigated in as-sintered and heat-treated conditions under varying loads at -5, -25, -45 and -65N using a ball on flat type of wear test. The composite was fabricated by powder injection molding and sintering at 650 °C for 3 hours. Solution treatment was carried out at 550 °C for 2 hours followed by age-hardening at 160 °C for 6 hours. SEM and XRD results indicated Al and SiCp are present as matrix and reinforcement, while AlN, Al2Cu and Mg2Si were also detected. Further precipitation of Al2Cu and Mg2Si in heat-treated samples promoted maximum macro and micro Vickers hardness values, which were achieved at 161 and 157 Hv respectively. Wear weight loss increased with increasing minus load level. The coefficient of friction was found in the range of 0.042-0.048. Wear mechanisms were determined as the combination of abrasive, adhesion and oxidation.
NASA Astrophysics Data System (ADS)
Kim, Bit-Na; Kim, Hyeong Jun; Chang, Hyo Sik; Hong, Hyun Seon; Ryu, Sung-Soo; Lee, Heon
2013-10-01
In this study, eco-friendly Pb-free Bi2O3-B2O3-ZnO glass frits were chosen as an inorganic additive for the Al paste used in Si solar cells. The effects of the molar ratio of Bi2O3 to B2O3 in the glass composition on the electrical resistance of the Al electrode and on the cell performance were investigated. The results showed that as the molar ratio of Bi2O3 to B2O3 increased, the glass transition temperature and softening temperature decreased because of the reduced glass viscosity. In Al screen-printed Si solar cells, as the molar ratio of Bi2O3 to B2O3 increased, the sheet electrical resistance of the Al electrode decreased and the cell efficiency increased. The uniformity and thickness of the back-surface field was significantly influenced by the glass composition.
NASA Astrophysics Data System (ADS)
Lv, Yanhong; Ji, Li; Liu, Xiaohong; Li, Hongxuan; Zhou, Huidi; Chen, Jianmin
2012-02-01
The CrAlN films were deposited on silicon and stainless steel substrates by unbalanced magnetron sputtering system. The influence of substrate bias on deposition rate, composition, structure, morphology and properties of the CrAlN films was investigated. The results showed that, with the increase of the substrate bias voltage, the deposition rate decreased accompanied by a change of the preferred orientation of the CrAlN film from (2 2 0) to (2 0 0). The grain size and the average surface roughness of the CrAlN films declined as the bias voltage increases above -100 V. The morphology of the films changed from obviously columnar to dense glass-like structure with the increase of the bias voltage from -50 to -250 V. Meanwhile, the films deposited at moderate bias voltage had better mechanical and tribological properties, while the films deposited at higher bias voltage showed better corrosion resistance. It was found that the corrosion resistance improvement was not only attributed to the low pinhole density of the film, but also to chemical composition of films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.
Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...
2017-02-18
Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less
NASA Astrophysics Data System (ADS)
Bliznakov, S.; Lefterova, E.; Dimitrov, N.; Petrov, K.; Popov, A.
AB 5-type hydrogen storage alloys with MmNi 4.4- xCo 0.6Al x (Mm-mischmetal) composition are synthesized, structurally and thermodynamically characterized, and electrochemically tested in 6 M KOH electrolyte. It is shown that an increase of the Al content in the alloy results in expansion of both the alloy lattice cell size and the unit cell volume. These structural changes lead to decrease of the plateau pressure and increase of the plateau width in the pressure-composition-temperature desorption isotherms. Improvement of the specific electrode capacity is also registered with the increase of the cell parameters. In addition to that the higher Al content is found to enhance the stability of the alloy components' hydrides. Maximum discharge capacity of 278 mAh g -1 is measured with an electrode made from a MmNi 3.6Co 0.6Al 0.8 alloy. Cycle life tests of the accordingly prepared electrodes suggest a stability that is comparable to the stability of commercially available hydrogen storage electrodes.
Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant
NASA Astrophysics Data System (ADS)
Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Ali, Wan Khairuddin Wan
2012-09-01
The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant
Composition dependence of superconductivity in YBa2(Cu(3-x)Al(x))O(y)
NASA Technical Reports Server (NTRS)
Bansal, N. P.
1993-01-01
Eleven different compositions in the system YBa2(Cu(3-x)Al(x))O(y) (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder X-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T sub c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa2Cu3O(7-x). However, T sub c(R = 0) gradually decreased, and the resistive tails became longer with increasing Al2O3 concentration. This was probably due to formation of BaAl2O4 and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al2O3.
NASA Astrophysics Data System (ADS)
Waldera, Benjamin L.
Titanium- and Aluminum-based metal matrix composites (MMC) have shown favorable properties for aerospace applications such as airframes, reinforcement materials and joining elements. In this research, such coatings were developed by direct metal laser deposition with a powder-fed fiber coupled diode laser. The MMC formulations consisted of pure titanium and aluminum matrices with reinforcing powder blends of chromium carbide and tungsten carbide nickel alloy. Two powder formulations were investigated for each matrix material (Ti1, Ti2, Al1 and Al2). Titanium based composites were deposited onto a Ti6Al4V plate while aluminum composites were deposited onto AA 7075 and AA 5083 for Al1 and Al2, respectively. Microstructures of the MMCs were studied by optical and scanning electron microscopy. The hardness and reduced Young's modulus (Er) were assessed through depth-sensing instrumented nanoindentation. microhardness (Vickers) was also analyzed for each composite. The corrosion resistance of the MMCs were compared by monitoring open circuit potential (OCP), polarization resistance (Rp) and potentiodynamic polarization in 0.5 M NaCl to simulate exposure to seawater. The Ti-MMCs demonstrated improvements in hardness between 205% and 350% over Ti6Al4V. Al-MMCs showed improvements between 47% and 79% over AA 7075 and AA 5083. The MMCs showed an increase in anodic current density indicating the formation of a less protective surface oxide than the base metals.
Structure of liquid tricalcium aluminate
NASA Astrophysics Data System (ADS)
Drewitt, James W. E.; Barnes, Adrian C.; Jahn, Sandro; Kohn, Simon C.; Walter, Michael J.; Novikov, Alexey N.; Neuville, Daniel R.; Fischer, Henry E.; Hennet, Louis
2017-02-01
The atomic-scale structure of aerodynamically levitated and laser-heated liquid tricalcium aluminate (Ca3Al2O6 ) was measured at 2073(30) K by using the method of neutron diffraction with Ca isotope substitution (NDIS). The results enable the detailed resolution of the local coordination environment around calcium and aluminum atoms, including the direct determination of the liquid partial structure factor, SCaCa(Q ) , and partial pair distribution function, gCaCa(r ) . Molecular dynamics (MD) simulation and reverse Monte Carlo (RMC) refinement methods were employed to obtain a detailed atomistic model of the liquid structure. The composition Ca3Al2O6 lies at the CaO-rich limit of the CaO:Al2O3 glass-forming system. Our results show that, although significantly depolymerized, liquid Ca3Al2O6 is largely composed of AlO4 tetrahedra forming an infinite network with a slightly higher fraction of bridging oxygen atoms than expected for the composition. Calcium-centered polyhedra exhibit a wide distribution of four- to sevenfold coordinated sites, with higher coordinated calcium preferentially bonding to bridging oxygens. Analysis of the MD configuration reveals the presence of ˜10 % unconnected AlO4 monomers and Al2O7 dimers in the liquid. As the CaO concentration increases, the number of these isolated units increases, such that the upper value for the glass-forming composition of CaO:Al2O3 liquids could be described in terms of a percolation threshold at which the glass can no longer support the formation of an infinitely connected AlO4 network.
Simulation and Experimental Study on Surface Formation Mechanism in Machining of SiCp/Al Composites
NASA Astrophysics Data System (ADS)
Du, Jinguang; Zhang, Haizhen; He, Wenbin; Ma, Jun; Ming, Wuyi; Cao, Yang
2018-03-01
To intuitively reveal the surface formation mechanism in machining of SiCp/Al composites, in this paper the removal mode of reinforced particle and aluminum matrix, and their influence on surface formation mechanism were analyzed by single diamond grit cutting simulation and single diamond grit scratch experiment. Simulation and experiment results show that when the depth of cut is small, the scratched surface of the workpiece is relatively smooth; however, there are also irregular pits on the machined surface. When increasing the depth of cut, there are many obvious laminar structures on the scratched surface, and the surface appearance becomes coarser. When the cutting speed is small, the squeezing action of abrasive grit on SiC particles plays a dominant role in the extrusion of SiC particles. When increasing the cutting speed, SiC particles also occur broken or fractured; but the machined surface becomes smooth. When machining SiCp/Al composites, the SiC may happen in such removal ways, such as fracture, debonding, broken, sheared, pulled into and pulled out, etc. By means of reasonably developing micro cutting finite element simulation model of SiCp/Al composites could be used to analyze the surface formation process and particle removal way in different machining conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumus, S. Cem, E-mail: cokumus@sakarya.edu.tr; Karslioglu, Ramazan, E-mail: cokumus@sakarya.edu.tr; Akbulut, Hatem, E-mail: cokumus@sakarya.edu.tr
Aluminum-lithium based unreinforced (Al-8090) alloy and Al-8090/SiCp/17 vol.% metal matrix composite produced by extrusion after spray co-deposition. A dry ball-on disk wear test was carried out for both alloy and composite. The tests were performed against an Al{sub 2}O{sub 3} ball, 10 mm in diameter, at room temperature and in laboratory air conditions with a relative humidity of 40-60%. Sliding speed was chosen as 1.0 ms{sup −1} and normal loads of 1.0, 3.0 and 5.0 N were employed at a constant sliding distance of 1000 m. The wear damage on the specimens was evaluated via measurement of wear depth andmore » diameter. Microstructural and wear characterization was carried out via scanning electron microscopy (SEM). The results showed that wear loss of the Al-8090/SiC composite was less than that of the Al-8090 matrix alloy. Plastic deformation observed on the wear surface of the composite and the matrix alloy, and the higher the applied load the greater the plastic deformation. Scanning electron microscopy examinations of wear tracks also reveal that delamination fracture was the dominant wear mechanism during the wear progression. Friction coefficient was maximum at the low applied load in the case of the Al-8090/SiC composite while a gradual increase was observed with applied load for the matrix alloy.« less
NASA Astrophysics Data System (ADS)
Amirkhanlou, Sajjad; Rahimian, Mehdi; Ketabchi, Mostafa; Parvin, Nader; Yaghinali, Parisa; Carreño, Fernando
2016-10-01
The strengthening mechanisms in nanostructured Al/SiCp composite deformed to high strain by a novel severe plastic deformation process, accumulative press bonding (APB), were investigated. The composite exhibited yield strength of 148 MPa which was 5 and 1.5 times higher than that of raw aluminum (29 MPa) and aluminum-APB (95 MPa) alloys, respectively. A remarkable increase was also observed in the ultimate tensile strength of Al/SiCp-APB composite, 222 MPa, which was 2.5 and 1.2 times greater than the obtained values for raw aluminum (88 MPa) and aluminum-APB (180 MPa) alloys, respectively. Analytical models well described the contribution of various strengthening mechanisms. The contributions of grain boundary, strain hardening, thermal mismatch, Orowan, elastic mismatch, and load-bearing strengthening mechanisms to the overall strength of the Al/SiCp microcomposite were 64.9, 49, 6.8, 2.4, 5.4, and 1.5 MPa, respectively. Whereas Orowan strengthening mechanism was considered as the most dominating strengthening mechanism in Al/SiCp nanocomposites, it was negligible for strengthening the microcomposite. Al/SiCp nanocomposite showed good agreement with quadratic summation model; however, experimental results exhibited good accordance with arithmetic and compounding summation models in the microcomposite. While average grain size of the composite reached 380 nm, it was less than 100 nm in the vicinity of SiC particles as a result of particle-stimulated nucleation mechanism.
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-03-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-06-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
NASA Astrophysics Data System (ADS)
Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta
2018-05-01
The present study reports the role of nano-graphite particles in determining wear and friction behavior of Al-TiB2-nano-Gr hybrid composites. Ultrasonic cavitation assisted stir casting method has been used for fabrication of composites. Al-Si5Cu3 alloy is used as base alloy along with micro sized TiB2 hard ceramic particles (2.5 and 5.5 wt%) as reinforcement and nano-Gr particles (2 and 4 wt%) as solid lubricant additives. SEM micrographs, EDAX spectrum and optical images are considered to observe uniform dispersion of reinforcing phases. Micro-hardness is evaluated using Vicker’s microhardness tester. Hardness is seen to increase with incorporation of TiB2 while the same decreases with incorporation of graphite. Wear and friction of composites are tested for varying load (10 to 40 N) and sliding speed (0.2 to 0.4 m s‑1) using a pin-on-disk tribometer. Worn surfaces are characterized using SEM and EDAX analysis. Wear resistance of composites increases with incorporation of reinforcing phases together. Nano-Gr particles are easily sheared out from the sub-surface and provide a layer over the tribo-surface of composite that enhances friction and wear behavior. Wear mechanism in composites is predominantly adhesion while abrasion and ploughing is prominent in base alloy.
Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen
NASA Astrophysics Data System (ADS)
Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.
2017-02-01
Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.
NASA Astrophysics Data System (ADS)
Syahrial, Anne Zulfia; Puspita, Lalita Padma; Dhaneswara, Donanta; Utomo, Budi Wahyu
2018-05-01
The effects of Sr addition on microstructure and mechanical properties of ADC12/nano Al2O3 composite has been studied. In this research ADC12 as a matrix was added by 0.3 vf% nano Al2O3 as a reinforcement and Al-5Sr varied from 0.00 wt% to 0.05 wt% to modify the eutectic structure of the matrix. The composites were further characterized both microstructural analysis and mechanical properties. The results showed that the intermetallic phases including β-Al5FeSi and Al2Cu were detected using scanning electron microscope and α-Al(Mn,Fe)Si or α-cubic phases was possible to form due to high content of Mn in the composites. The Mg2Si primary, binary, and ternary phases were detected in this composites by metallographic examination. Then, MgAl2O4 (spinnel) were found by XRD analysis. The higher of Sr content from 0,00 to 0.02 the lower SDAS formation from 15 µm to 14 µm as well as porosity content reduced from 4% to 3%. The ultimate tensile strength increased from 115 MPa to 137 MPa as well as in impact toughness from 0.016 J/mm2 to 0.025 J/mm2. The highest hardness and the lowest wear rate were obtained with the addition of 0.05 wt% Sr with 46 HRB and 1.04 10-5 mm3/m respectively due to the changed of chinese script became refined fibrous type.
Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition
NASA Astrophysics Data System (ADS)
France, Ryan; Xu, Tao; Chen, Papo; Chandrasekaran, R.; Moustakas, T. D.
2007-02-01
The authors report on the formation and evaluation of V-based Ohmic contacts to n-AlGaN films in the entire alloy composition. The films were produced by plasma assisted molecular beam epitaxy and doped n-type with Si. The conductivity of the films was determined to vary from 103to10-2(Ωcm )-1 as the AlN mole fraction increases from 0% to 100%. Ohmic contacts were formed by e-beam evaporation of V(15nm )/Al(80nm)/V(20nm)/Au(100nm). These contacts were rapid thermal annealed in N2 for 30s at various temperatures. The optimum annealing temperature for this contact scheme to n-GaN is about 650°C and increases monotonically to about 1000°C for 95%-100% AlN mole fraction. The specific contact resistivity was found to be about 10-6Ωcm2 for all films up to 70% AlN mole fraction and then increases to 0.1-1Ωcm2 for films from 95%-100% AlN mole fraction. These results were accounted for by hypothesizing that vanadium, upon annealing, interacts with the nitride film and forms vanadium nitride, which is consistent with reports that it is a metal with low work function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.L.; Wu, G.Q.; Zhang, D.C.
2015-06-15
The YAl{sub 2p}/MgLiAl composite prepared by stir casting was initially forged and then rolled at 200 °C to different thicknesses. The microstructural evolution in the composite during warm rolling was investigated by using transmission electron microscope (TEM). It is found that increasing rolling reduction is conducive to the uniform distribution and refinement of the YAl{sub 2} particles. The rolling deformation promoted the precipitation of an α phase, and the α precipitate is semi-coherent to the matrix with an orientation relationship to the β matrix as: (0002){sub α}‖(110){sub β}. In addition, many nano-sized YAl particles with a cubic shape were foundmore » in the matrix of the composite with a high rolling reduction due to the diffusion of Y from YAl{sub 2} to the matrix, which reacted with the Al in the matrix during warm rolling. - Highlights: • The reinforcement YAl{sub 2} particles were distributed more uniformly in the matrix and refined with increasing rolling reduction. • The rolling deformation promoted and refined the precipitation of an α phase with increasing rolling reduction. • Many nano-sized YAl phases were produced and distributed in the matrix of the composite at a high rolling reduction.« less
Wang, S.; Huang, L. J.; Geng, L.; Scarpa, F.; Jiao, Y.; Peng, H. X.
2017-01-01
We present a new class of TiBw/Ti6Al4V composites with a network reinforcement architecture that exhibits a significant creep resistance compared to monolithic Ti6Al4V alloys. Creep tests performed at temperatures between 773 K and 923 K and stress range of 100 MPa-300 MPa indicate both a significant improvement of the composites creep resistance due to the network architecture made by the TiB whiskers (TiBw), and a decrease of the steady-state creep rates by augmenting the local volume fractions of TiBw in the network region. The deformation behavior is driven by a diffusion-controlled dislocation climb process. Moreover, the activation energies of these composites are significantly higher than that of Ti6Al4V alloys, indicating a higher creep resistance. The increase of the activation energy can be attributed to the TiBw architecture that severely impedes the movements of dislocation and grain boundary sliding and provides a tailoring of the stress transfer. These micromechanical mechanisms lead to a remarkable improvement of the creep resistance of these networked TiBw/Ti6Al4V composites featuring the special networked architecture. PMID:28094350
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.
Lanthanide-aluminoborosilicate (LABS) glass is one option for immobilizing rare earth (RE) oxide fission products generated during reprocessing of pyroprocessed fuel. This glass system can accommodate a high loading of RE oxides and has excellent chemical durability. The present study describes efforts to model equilibrium crystallinity as a function of glass composition and temperature as well as liquidus temperature (TL) as a function of glass composition. The experimental method for determining TL was ASTM C1720-11. Typically, three crystalline phases were formed in each glass: Ce-borosilicate (Ce 3BSi 2O 10), mullite (Al 10Si 2O 19), and corundum (Al 2O 3). Cerianite (CeOmore » 2) was a common minor crystalline phase and Nd-silicate (Nd 2Si 2O 7) occurred in some of the glasses. In the composition region studied, TL decreased as SiO 2 and B 2O 3 fractions increased and strongly increased with increasing fractions of RE oxides; Al 2O 3 had a moderate effect on the TL but, as expected, it strongly affected the precipitation of Alcontaining crystals.« less
NASA Astrophysics Data System (ADS)
Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Chang, Han-Soo; Lee, Sung-Nam; Lee, Myung Sun; Reddy, V. Rajagopal; Choi, Chel-Jong
2017-11-01
Au-CuPc nanocomposite films were prepared by simultaneous evaporation of Au and CuPc with various Au and CuPc concentrations. Microstructural analysis of Au-CuPc films revealed elongated Au cluster formation from isolated Au nanoclusters with increasing Au concentration associated with coalescence of Au clusters. Au-CuPc films with different compositions were employed as interlayer in Al/n-Si Schottky diode. Barrier height and series resistance of the Al/n-Si Schottky diode with Au-CuPc interlayer decreased with increasing Au concentration. This could be associated with the enhancement of electron tunneling between neighboring clusters due to decrease in spacing of Au clusters and formation of conducting paths through the composite material. Interface state density of the Al/n-Si Schottky diode with Au-CuPc interlayer increased with increasing Au concentration. This might be because the inclusion of metal decreases the crystallinity and crystal size of the polymer matrix accompanied by the formation of local defect sites at the places of metal nucleation.
Deformation processed Al/Ca nano-filamentary composite conductors for HVDC applications
NASA Astrophysics Data System (ADS)
Czahor, C. F.; Anderson, I. E.; Riedemann, T. M.; Russell, A. M.
2017-07-01
Efficient long-distance power transmission is necessary as the world continues to implement renewable energy sources, often sited in remote areas. Light, strong, high-conductivity materials are desirable for this application to reduce both construction and operational costs. In this study an Al/Ca (11.5% vol.) composite with nano-filamentary reinforcement was produced by powder metallurgy then extruded, swaged, and wire drawn to a maximum true strain of 12.7. The tensile strength increased exponentially as the filament size was reduced to the sub-micron level. In an effort to improve the conductor’s ability to operate at elevated temperatures, the deformation-processed wires were heat-treated at 260°C to transform the Ca-reinforcing filaments to Al2Ca. Such a transformation raised the tensile strength by as much as 28%, and caused little change in ductility, while the electrical conductivity was reduced by only 1% to 3%. Al/Al2Ca composites are compared to existing conductor materials to show how implementation could affect installation and performance.
NASA Astrophysics Data System (ADS)
Liu, Chang; Cai, Jun; Duan, Yubing; Li, Xinghao; Zhang, Deyuan
2018-07-01
In order to enhance the microwave-absorbing and shielding properties of the composites, the flaky FeSiAl particles embedded in an epoxy polymer were aligned with a two-dimensional rotating magnetic field. The morphologies, electromagnetic (EM) characteristics, and microwave-absorbing and shielding properties of the unaligned and aligned FeSiAl/epoxy composites were investigated. The results showed that after alignment treatment, the flaky FeSiAl particles tend to orient uniformly in the rotating magnetic field, and the permittivity and permeability of the aligned composites were increased in the frequency range of 1-18 GHz compared with that of randomly distributed composites. The calculated microwave-absorbing properties indicated that the peak value of the return loss (RL) of the aligned composites can reach 8.8 dB, compared with 5.8 dB of the unaligned composites of 2.5 mm in thickness (60 wt%); and the bandwidth with RL value more than 6 dB is in a wider frequency range from 1 to 2.8 GHz. And the calculated shielding effectiveness (SE) of the aligned composites is 1.1-3 times higher than that of unaligned one in every thickness, and the maximum SE of the aligned one is 31.8 dB at 18 GHz with a thickness of 2.5 mm.
NASA Astrophysics Data System (ADS)
Kurai, Satoshi; Imura, Nobuto; Jin, Li; Miyake, Hideto; Hiramatsu, Kazumasa; Yamada, Yoichi
2018-06-01
We investigated the spatial distribution of luminescence near threading dislocations in AlGaN/AlGaN multiple quantum wells (MQWs) by cathodoluminescence mapping. Emission at the higher-energy side of the AlGaN MQW peak was locally observed near the threading dislocations, which were not accompanied by any surface V-pits. Such higher-energy emission was not observed in the AlGaN epilayers. The energy difference between the AlGaN MQW peak and the higher-energy emission peak increased with increasing barrier-layer Al composition. These results suggest that the origin of the higher-energy emission is likely local thickness fluctuation around dislocations in very thin AlGaN MQWs.
Cyclic oxidation resistance of a reaction milled NiAl-AlN composite
NASA Technical Reports Server (NTRS)
Lowell, Carl E.; Barrett, Charles A.; Whittenberger, J. D.
1990-01-01
Based upon recent mechanical property tests a NiAl-AlN composite produced by cryomilling has very attractive high temperature strength. This paper focuses on the oxidation resistance of the NiAl-AlN composite at 1473 and 1573 K as compared to that of Ni-47Al-0.15Zr, one of the most oxidation resistant intermetallics. The results of cyclic oxidation tests show that the NiAl-AlN composite has excellent properties although not quite as good as those of Ni-47Al-0.15Zr. The onset of failure of the NiAl-AlN was unique in that it was not accompanied by a change in scale composition from alumina to less protective oxides. Failure in the composite appears to be related to the entrapment of AlN particles within the alumina scale.
NASA Astrophysics Data System (ADS)
Siva Sankara Raju, R.; Panigrahi, M. K.; Ganguly, R. I.; Srinivasa Rao, G.
2017-08-01
The present investigation develops a next-generation hybrid Al metal matrix composite using coconut shell ash (CSA) and graphite (Gr) reinforcement. Stir-casting is adapted to prepare an Al-1100-based composite. Three other composites of Al-Al2O3, Al-Al2O3-Gr, and Al-CSA are prepared that contain equivalent volume fractions of Al2O3, CSA, and Gr. These assist in comparisons among the three composites and the developed hybrid Al-CSA-Gr composite. The study reveals that the addition of 3 pct Gr improves the specific strength, toughness, and tribological properties. The Al-CSA composite shows better mechanical properties, such as tensile strength and hardness, than the other three composites. Gr addition helps the hybrid Al-CSA-Gr composite to attain better tribological properties with a slightly lower specific strength. Scanning electron microscopy studies of the worn material surfaces corroborate the findings of the abrasion testing. Elemental analyses by energy-dispersive X-ray spectroscopy of the debris from the counter-face of the tribo surface confirm the presence of Al, O, Si, Fe, Mn, and C.
Luoto, K; Holopainen, M; Karppinen, K; Perander, M; Savolainen, K
1994-01-01
The effect of different chemical compositions of man-made vitreous fibers (MMVF) on their dissolution by alveolar macrophages (AM) in culture and in Gamble's solution was studied. The fibers were exposed to cultured rat AMs, culture medium alone; or Gamble's saline solution for 2, 4, or 8 days. The dissolution of the fibers was studied by measuring the amount of silicon (Si), iron (Fe), and aluminum (Al) in each medium. The AMs in culture dissolved Fe and Al from the fibers but the dissolution of Si was more marked in the cell culture medium without cells and in the Gamble's solution. The dissolution of Si, Fe, and Al was different for different fibers, and increased as a function of time. The Fe and Al content of the fibers correlated negatively with the dissolution of Si by AMs from the MMVF, i.e., when the content of Fe and Al of the fibers increased the dissolution of Si decreased. These results suggest that the chemical composition of MMVFs has a marked effect on their dissolution. AMs seem to affect the dissolution of Fe and Al from the fibers. This suggests that in vitro models with cells in the media rather than only culture media or saline solutions would be preferable in dissolution studies of MMVFs. PMID:7882911
Processing, microstructure and mechanics of functionally graded Al A359/SiC(p) composite
NASA Astrophysics Data System (ADS)
Rodriguez-Castro, Ramon
2000-11-01
Metal matrix composites (MMCs) have great promise for high temperature, high strength, wear resistant applications. However, their brittleness has limited their use in load bearing applications. Functionally graded MMCs with a reinforcement concentration higher on the surface than in the interior offer new opportunities, as these materials will have high surface hardness as well as high resistance to crack growth towards the interior. In this dissertation the processing and mechanical properties of a functionally graded MMC are investigated. Rectangular blocks (100 mmx60 mmx50 mm) of functionally graded SiC particulate reinforced aluminum A359 matrix composite were prepared by centrifugal casting techniques. The reinforcement volume fraction profiles varied as the centrifugal force was applied, owing to the different densities of Al and SiC. The casting at 1300 rpm (angular velocity) had a well-mixed, refined microstructure with the maximum SiC volume fraction of 44% near the outer surface of the blocks. This surface exhibited an elevated hardness. The effect of SiC particulate reinforcement on strengthening of A359 Al alloy was experimentally studied by tensile testing specimens prepared from the cast blocks. There was a continuous increase in tensile and yield strength with increasing SiC volume fractions in the range of 0.20 to 0.30. On the contrary, there was a reduction in tensile and yield strength for SiC concentrations in the range of 0.30 to 0.40. The elasticity modulus increased with increasing SiC volume fractions in the whole reinforcement range (0.20--0.40). Fractographic analysis by SEM revealed a ductile failure process of void growth in the matrix, but the amount of the void growth was less when the SiC concentration was higher. SEM also revealed SiC reinforcement fracture and decohesion, with the particle fracture increasing with the particle concentration. Appropriate flat specimens with a continuously graded microstructure for fracture mechanics testing were machined from the cast blocks. No published work has reported specimens of similar characteristics (size of the specimens and continuous reinforcement gradation). Fracture mechanics of the composite specimens with the crack parallel to the gradation in elastic properties was studied to investigate the effect of the nonhomogeneous microstructure on fracture toughness. Fatigue pre-cracking was used and a limited amount of fatigue crack propagation data was gathered. Low values of DeltaKth and increased crack growth resistance in the Paris region were observed for the functionally graded composite compared to a homogeneous 20 vol% composite. R-curve (KR) behavior of fracture was investigated in the functionally graded composite. At elevated SiC concentrations (low values of crack length), limited dissipation of energy by restrained plastic deformation of the matrix at the crack tip produced low fracture toughness values. On the contrary, at longer crack lengths SiC content decreased and there was more absorption of energy, resulting in higher fracture toughness values. In addition, the crack growth resistance behavior of the FGM composite was compared to the corresponding behavior of an Al A359/SiCp 20 vol% homogeneous composite. The latter exhibited a declining KR-curve behavior whereas the FGM composite displayed an increasing KR-curve behavior. Consequently, this increasing crack growth resistance behavior displayed by the functionally graded Al A359/SiCp composite shows that tailored changes in the microstructure could circumvent the low toughness inherent in MMCs.
NASA Technical Reports Server (NTRS)
Bhatt, R. T.
1981-01-01
The mechanical properties of FP-Al2O3 fiber reinforced composites prepared by liquid infiltration techniques are improved. A strengthening addition, magnesium, was incorporated with the aluminum-lithium matrix alloy usually selected for these composites because of its good wetting characteristics. This ternary composite, FP-Al2O3/Al-(2-3)Li-(3-5)Mg, showed improved transverse strength compared with FP-Al2O3/Al-(2-3)Li composites. The lower axial strengths found for the FP-Al2O3/Al-(2-3)Li-(3-5)Mg composites were attributed to fabrication related defects. Another technique was the use of Ti/B coated FP-Al2O3 fibers in the composites. This coating is readily wet by molten aluminum and permitted the use of more conventional aluminum alloys in the composites. However, the anticipated improvements in the axial and transverse strengths were not obtained due to poor bonding between the fiber coating and the matrix. A third approach studied to improve the strengths of FP-Al2O3 reinforced composites was the use of magnesium alloys as matrix materials. While these alloys wet fibers satisfactorily, the result indicated that the magnesium alloy composites used offered no axial strength or modulus advantage over FP-Al2O3/Al-(2-3)Li composites.
NASA Astrophysics Data System (ADS)
Fu, Yao; Zhang, Xian-Cheng; Sui, Jian-Feng; Tu, Shan-Tung; Xuan, Fu-Zhen; Wang, Zheng-Dong
2015-04-01
The aim of this paper was to develop a one-step in situ method to synthesize the TiN reinforced Al metallic matrix composite coatings on Ti6Al4V alloy. In this method, the Al powder and nitrogen gas were simultaneously fed into feeding nozzle during a laser nitriding process. The microstructure, microhardness and sliding wear resistance of TiN/Al coatings synthesized at different laser powers in laser nitriding were investigated. Results showed that the crack- and pore-free coatings can be made through the proposed method. However, the morphologies and distribution of TiN dendrites and wear resistance of coatings were strongly dependent on laser power used in nitriding. With increasing the laser power, the amount and density of massive TiN dendritic structure in the coating decreased and the elongated and narrow dendrites increased, leading to the increment of wear resistance of coating. When the laser power is high, the convectional flow pattern of the melt pool can be seen near the bottom of pool.
Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites.
Mirjalili, F; Chuah, L; Salahi, E
2014-01-01
A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colon, Albert; Stan, Liliana; Divan, Ralu
Gate insulation/surface passivation in AlGaN/GaN and InAlN/GaN heterojunction field-effect transistors is a major concern for passivation of surface traps and reduction of gate leakage current. However, finding the most appropriate gate dielectric materials is challenging and often involves a compromise of the required properties such as dielectric constant, conduction/valence band-offsets, or thermal stability. Creating a ternary compound such as Ti-Al-O and tailoring its composition may result in a reasonably good gate material in terms of the said properties. To date, there is limited knowledge of the performance of ternary dielectric compounds on AlGaN/GaN and even less on InAlN/GaN. To approachmore » this problem, the authors fabricated metal-insulator-semiconductor heterojunction (MISH) capacitors with ternary dielectrics Ti-Al-O of various compositions, deposited by atomic layer deposition (ALD). The film deposition was achieved by alternating cycles of TiO2 and Al2O3 using different ratios of ALD cycles. TiO2 was also deposited as a reference sample. The electrical characterization of the MISH capacitors shows an overall better performance of ternary compounds compared to the pure TiO2. The gate leakage current density decreases with increasing Al content, being similar to 2-3 orders of magnitude lower for a TiO2:Al2O3 cycle ratio of 2:1. Although the dielectric constant has the highest value of 79 for TiO2 and decreases with increasing the number of Al2O3 cycles, it is maintaining a relatively high value compared to an Al2O3 film. Capacitance voltage sweeps were also measured in order to characterize the interface trap density. A decreasing trend in the interface trap density was found while increasing Al content in the film. In conclusion, our study reveals that the desired high-kappa properties of TiO2 can be adequately maintained while improving other insulator performance factors. The ternary compounds may be an excellent choice as a gate material for both AlGaN/GaN and InAlN/GaN based devices.« less
Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Z. G.; Li, Y. Z.; Wang, Z.
2014-08-28
The β-relaxation of metallic glasses (MGs) bears nontrivial connections to their microscopic and macroscopic properties. In an effort to elucidate the mechanism of the β-relaxation, we studied by dynamical mechanical measurements the change of its properties on varying the composition of La{sub 60}Ni{sub 15}Al{sub 25} in various ways. The properties of the β-relaxation turn out to be very sensitive to the composition. It is found that the isochronal loss peak temperature of β-relaxation, T{sub β,peak}, is effectively determined by the total (La + Ni) content. When Cu is added into the alloy to replace either La, Ni, or Al, themore » T{sub β,peak} increases with decrease of the (La + Ni) content. The trend is in accordance with data of binary and ternary MGs formed from La, Ni, Al, and Cu. Binary La-Ni MGs have pronounced β-relaxation loss peaks, well separated from the α-relaxation. In contrast, the β-relaxation is not resolved in La-Al and La-Cu MGs, showing up as an excess wing. For the ternary La-Ni-Al MGs, increase of La or Ni content is crucial to lower the T{sub β,peak}. Keeping the Al content fixed, increase of La content lowers the T{sub β,peak} further, indicating the more important role La plays in lowering T{sub β,peak} than Ni. The observed effects on changing the composition of La{sub 60}Ni{sub 15}Al{sub 25} lead to the conclusion that the properties of the β-relaxation are mainly determined by the interaction between the largest solvent element, La, and the smallest element, Ni. From our data, it is further deduced that La and Ni have high mobility in the MGs, and this explains why the β-relaxation in this La-based MGs is prominent and well resolved from the α-relaxation as opposed to Pd- and Zr-based MGs where the solvent and largest atoms, Pd and Zr, are the least mobile.« less
NASA Astrophysics Data System (ADS)
Anawe, Paul Apeye Lucky; Fayomi, Ojo Sunday Isaac
2018-06-01
The application of rational design principles and process in electrodeposition can eliminate many engineering catastrophes related to corrosion and micromechanical failure in service. This has led to appreciate the need of surface modification on component for enhance life span. Admixed Zn-30Al-13Ti-chloride composite bath was electrolytically prepared and successfully deposited on UNS G10150 mild steel substrate by zinc dual anode deposition processes within an interval of applied current density, particle concentration and constant time. The codeposition of Zn-Al-Ti coating was studied in the presence of other bath ingredient. The effect of deposition current and particle concentration on structural property, adhesion behaviour, ideal crystal orientation, surface topography and electrochemical properties of Zn-Al-Ti alloy coating series on mild steel were analytically examined. The wear stability of the developed composite materials was examined via sliding reciprocating rig. The structural integrity was examined with scanning electron microscope equipped with EDS, X-ray diffraction; Atomic force microscope, dura scan micro-hardness tester and 3 μ metrohm Potentiostat/galvanostat. Interestingly the induced activity of the Zn-Al-Ti chloride composite alloy results into excellent structural modification and stable crystal precipitation within the structural interface as a result of Zn3Al, Zn2Ti and ZnAl3Ti2 intermetallic phase. The obtained results showed that the introduction of Ti particles in the presence of other bath additive in the plating bath mostly modified the surface and brings an increase in the microhardness, corrosion resistance and reduce wear deformation of Zn-Al-Ti chloride composite alloy.
Electrodeposition and Characterization of Ni-Al2O3 Nanocomposite Coatings on Steel
NASA Astrophysics Data System (ADS)
Akhtar, Khalida; Khan, Zia Ullah; Gul, Muhammad; Zubair, Naila; Shah, Syed Sajjad Ali
2018-05-01
Monodispersed alumina particles were synthesized by the homogeneous precipitation under reflux boiling. The particles were employed as reinforcement additives in the electrodeposited Ni-Al2O3 composite coatings on steel. The deposited pure Ni and Ni-Al2O3 composite coatings were analyzed by SEM, XRD, and microhardness tester. The wear resistance and friction coefficient of the coated samples were determined by using a ball-on-disk tribometer. Furthermore, XRD analysis showed that coating temperature and the presence of particles in the deposited coatings had a noticeable effect on the preferred orientation of the crystalline faces of the nickel grains. Significant differences were noted in the texture coefficient of the pure Ni and Ni-Al2O3 composite coatings produced at different temperatures. These differences were attributed to the changes in the microstructure of the matrix caused by the embedded Al2O3 particles. Results revealed that wear resistance and the friction coefficient were turned out to be higher and smaller, respectively, for the composite coatings as compared to pure Ni coating at a given sliding distance. It was noted that the corrosion resistance of these specimens increased in the following order: bare substrate < pure Ni coating < Ni-Al2O3 nanocomposite coatings.
High ink absorption performance of inkjet printing based on SiO2@Al13 core-shell composites
NASA Astrophysics Data System (ADS)
Chen, YiFan; Jiang, Bo; Liu, Li; Du, Yunzhe; Zhang, Tong; Zhao, LiWei; Huang, YuDong
2018-04-01
The increasing growth of the inkjet market makes the inkjet printing more necessary. A composite material based on core-shell structure has been developed and applied to prepare inkjet printing layer. In this contribution, the ink printing record layers based on SiO2@Al13 core-shell composite was elaborated. The prepared core-shell composite materials were characterized by X-ray photoelectron spectroscopy (XPS), zeta potential, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results proved the presence of electrostatic adsorption between SiO2 molecules and Al13 molecules with the formation of the well-dispersed system. In addition, based on the adsorption and the liquid permeability analysis, SiO2@Al13 ink printing record layer achieved a relatively high ink uptake (2.5 gmm-1) and permeability (87%), respectively. The smoothness and glossiness of SiO2@Al13 record layers were higher than SiO2 record layers. The core-shell structure facilitated the dispersion of the silica, thereby improved its ink absorption performance and made the clear printed image. Thus, the proposed procedure based on SiO2@Al13 core-shell structure of dye particles could be applied as a promising strategy for inkjet printing.
Lithium conductivity in glasses of the Li2O-Al2O3-SiO2 system.
Ross, Sebastian; Welsch, Anna-Maria; Behrens, Harald
2015-01-07
To improve the understanding of Li-dynamics in oxide glasses, i.e. the effect of [AlO4](-) tetrahedra and non-bridging oxygens on the potential landscape, electrical conductivity of seven fully polymerized and partly depolymerized lithium aluminosilicate glasses was investigated using impedance spectroscopy (IS). Lithium is the only mobile particle in these materials. Data derived from IS, i.e. activation energies, pre-exponential factors and diffusivities for lithium, are interpreted in light of Raman spectroscopic analyses of local structures in order to identify building units, which are crucial for lithium dynamics and migration. In polymerized glasses (compositional join LiAlSiO4-LiAlSi4O10) the direct current (DC) electrical conductivity continuously increases with increasing lithium content while lithium diffusivity is not affected by the Al/Si ratio in the glasses. Hence, the increase in electrical conductivity can be solely assigned to lithium concentration in the glasses. An excess of Li with respect to Al, i.e. the introduction of non-bridging oxygen into the network, causes a decrease in lithium mobility in the glasses. Activation energies in polymerized glasses (66 to 70 kJ mol(-1)) are significantly lower than those in depolymerized networks (76 to 78 kJ mol(-1)) while pre-exponential factors are nearly constant across all compositions. Comparison of the data with results for lithium silicates from the literature indicates a minimum in lithium diffusivity for glasses containing both aluminium tetrahedra and non-bridging oxygens. The findings allow a prediction of DC conductivity for a large variety of lithium aluminosilicate glass compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, X.C.; Fang, H.S.
1998-03-01
In Part 2 of this article, the high-strength Al-Si/TiC composite and the elevated-temperature-resistant Al-Fe(-V-Si)/TiC composite, developed on the basis of the in situ Al-TiC composites (Part 1 of the article), have been evaluated for their room- and elevated-temperature mechanical behavior. The microstructural characteristics of ingot metallurgy (IM) or rapid solidification (RS) Al-Si/TiC and Al-Fe(-V-Si)/TiC composites could be thought of as a combination of the related alloy matrix microstructures and the IM or RS Al/TiC composites. The IM Al/TiC and the Al-Si/TiC composites show superior strength and ductility to the relevant aluminum-based composites. The RS Al/TiC and the Al-Fe-V-Si/TiC exhibit highmore » Young`s moduli and substantial improvements in room- and elevated-temperature tensile properties compared to those of rapidly solidified alloys and conventional composites. The Young`s modulus values of RS Al/TiC and Al-Fe-V-Si/TiC composites are well within Hashin-Shtrikman (H-S) limits, in keeping with the strong interfacial bonding. In the micromechanics approach, the principal strengthening mechanisms for the present dispersed, particle-hardened RS in situ Al-TiC composites would include Orowan strengthening, grain-size and substructure strengthening, and solid-solution strengthening.« less
Upper mantle fluids evolution, diamond formation, and mantle metasomatism
NASA Astrophysics Data System (ADS)
Huang, F.; Sverjensky, D. A.
2017-12-01
During mantle metasomatism, fluid-rock interactions in the mantle modify wall-rock compositions. Previous studies usually either investigated mineral compositions in xenoliths and xenocrysts brought up by magmas, or examined fluid compositions preserved in fluid inclusions in diamonds. However, a key study of Panda diamonds analysed both mineral and fluid inclusions in the diamonds [1] which we used to develop a quantitative characterization of mantle metasomatic processes. In the present study, we used an extended Deep Earth Water model [2] to simulate fluid-rock interactions at upper mantle conditions, and examine the fluids and mineral assemblages together simultaneously. Three types of end-member fluids in the Panda diamond fluid inclusions include saline, rich in Na+K+Cl; silicic, rich in Si+Al; and carbonatitic, rich in Ca+Mg+Fe [1, 3]. We used the carbonatitic end-member to represent fluid from a subducting slab reacting with an excess of peridotite + some saline fluid in the host environment. During simultaneous fluid mixing and reaction with the host rock, the logfO2 increased by about 1.6 units, and the pH increased by 0.7 units. The final minerals were olivine, garnet and diamond. The Mg# of olivine decreased from 0.92 to 0.85. Garnet precipitated at an early stage, and its Mg# also decreased with reaction progress, in agreement with the solid inclusions in the Panda diamonds. Phlogopite precipitated as an intermediate mineral and then disappeared. The aqueous Ca, Mg, Fe, Si and Al concentrations all increased, while Na, K, and Cl concentrations decreased during the reaction, consistent with trends in the fluid inclusion compositions. Our study demonstrates that fluids coming from subducting slabs could trigger mantle metasomatism, influence the compositions of sub-lithospherc cratonic mantle, precipitate diamonds, and change the oxygen fugacity and pH of the upper mantle fluids. [1] Tomlinson et al. EPSL (2006); [2] Sverjensky, DA et al., GCA (2014), Huang, F, Ph. D. thesis, Johns Hopkins University, (2017); [3] Shirey et al., Rev. Mineral. Geochem. (2013)
Aluminum-Stabilized Magnesium Diboride Superconductors
NASA Astrophysics Data System (ADS)
Dou, S. X.; Collings, E. W.; Shcherbakova, O.; Shcherbakov, A.
2006-03-01
Use of aluminum as stabilizer and iron as reaction barrier for fabrication of MgB2 superconductor wires was studied. The MgB2/Fe/Al or SiC doped MgB2/Fe/Al composite wires were made using Mg+ 2 B powder or SiC doped Mg+2 B powder in Fe/Al tube technique. The composites were processed at 600°C to 650°C for 30 minutes to 3 hours to study the interaction between Fe and Al sheath and the formation of MgB2. No reaction between Fe and Al was found until annealing temperature at 620°C for 30 minutes. A thin layer of alloy, FeAl3 is formed for samples annealed at 620°C for 90 minutes and the reaction layer increases with increasing annealing temperature. Annealing at 650°C resulted in cracks in the Al sheath. Our results show that the Fe/Al sheathed wires achieved the same performance in magnetic and electrical properties as those using an all-Fe sheath. Comparing with the standard NbTi/Cu conductors, the MgB2/Fe/Al conductor having low structural mass, greater thermal conductivity and high efficient stabilization will make a tremendous difference especially for airborne, aerospace, and other applications when weight is important.
NASA Astrophysics Data System (ADS)
Fatchurrohman, N.; Farhana, N.; Marini, C. D.
2018-03-01
Friction stir processing (FSP) is an alternative way to produce the surface composites of aluminium alloy in order to modify the microstructure and improve the mechanical properties. In this experiment, Al6061 aluminium alloy has been chosen to be used as the matrix base plate for the FSP. Al606 has potential for the use in advanced application but it has low wear resistance. While, the reinforced used was rice husk ash (RHA) in order to produce surface composites which increased the micro hardness of the plate composites. The Al6061 was stirred individually and with 5 weight % of RHA at three different tool rotational speeds of 800 rpm, 1000 rpm and 1200 rpm. After running the FSP, the result in the distribution of particles and the micro hardness of the specimens were identified. The result showed that Al6061 plate with the existing 5 weight % of RHA reinforced at the highest of tool rotational speeds of 1200rpm has the best distribution of particles and the highest result in average of micro hardness with 80Hv.
Characteristics of ADC12/nano Al2O3composites with Addition of Ti Produced By Stir Casting Method
NASA Astrophysics Data System (ADS)
Zulfia, A.; Krisiphala; Ferdian, D.; Utomo, B. W.; Dhaneswara, D.
2018-03-01
The mechanical properties and microstructure of ADC12/nano Al2O3 matrix composites have been studied in this work. The composites were produced by stir casting method. ADC 12 as matrix composites was combined by Mg and Ti. The addition of Ti was varied from 0.02 to 0.08 wt-% as grain refinement wetting to improve mechanical properties such as tensile strength, hardness and wear resistance, while Mg addition was to promote wetting between ADC 12 and nano Al2O3. The optimum tensile strength was found at 0.04 wt-% addition of Ti with value of 132.5 MPa, further adding more Ti cause a poisoning mechanism that will hindered the grain refining process and reduce the tensile strength. The hardness and wear resistance of composites would also increase because of the refinement process. and the added Magnesium in the material that will form Mg2Si primary phases who have a high hardness value.
Optimization of Machining Process Parameters for Surface Roughness of Al-Composites
NASA Astrophysics Data System (ADS)
Sharma, S.
2013-10-01
Metal matrix composites (MMCs) have become a leading material among the various types of composite materials for different applications due to their excellent engineering properties. Among the various types of composites materials, aluminum MMCs have received considerable attention in automobile and aerospace applications. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcement element-like silicon carbide particles. In the present investigation Al-SiC composite was produced by stir casting process. The Brinell hardness of the alloy after SiC addition had increased from 74 ± 2 to 95 ± 5 respectively. The composite was machined using CNC turning center under different machining parameters such as cutting speed (S), feed rate (F), depth of cut (D) and nose radius (R). The effect of machining parameters on surface roughness (Ra) was studied using response surface methodology. Face centered composite design with three levels of each factor was used for surface roughness study of the developed composite. A response surface model for surface roughness was developed in terms of main factors (S, F, D and R) and their significant interactions (SD, SR, FD and FR). The developed model was validated by conducting experiments under different conditions. Further the model was optimized for minimum surface roughness. An error of 3-7 % was observed in the modeled and experimental results. Further, it was fond that the surface roughness of Al-alloy at optimum conditions is lower than that of Al-SiC composite.
NASA Astrophysics Data System (ADS)
Ravikumar, M.; Reddappa, H. N.; Suresh, R.
2018-04-01
The study of corrosion rate and the inhibition efficiency of inhibitor for Al 7075 and Al 7075/Al2O3/SiCp corrosion in 1 M hydrochloride acid solution under Laboratory temperature by electrochemical measurements process. The efficiency increases by increasing of wt. % of reinforcement. The premier efficiency 99.1% is observed in the presence of reinforcement. The Electrochemical Impedance spectroscopic (EIS) method exhibit the capacitive loop representing the corrosion effect was controlled by the charge transfer method.
Structure and electromagnetic properties of FeSiAl particles coated by MgO
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhou, Ting-dong
2017-03-01
FeSiAl particles with a layer of MgO surface coating have excellent soft magnetic and electromagnetic properties. In order to obtain the FeSiAl/MgO composites, Mg(OH)2 sol prepared by sol-gel process was well-mixed with FeSiAl flake particles, and then treated by calcination at 823 K in vacuum. The microstructural, morphological and electromagnetic parameters of FeSiAl/MgO particles were tested. Accordingly, the electromagnetic wave reflection loss in the frequency range of 0.5-18 GHz was calculated. The results show that the surface coating increases coercivity Hc and decreases complex permittivity, leading to a good impedance matching. When the coating amount was 7.5%, reflection loss of the composite particles can reach to -33 dB.
NASA Technical Reports Server (NTRS)
Paque, Julie M.; Lofgren, Gary E.; Le, Loan
2000-01-01
The observed textures and chemistry of Ca-Al-rich inclusions (CAIs) are presumed to be the culmination of a series of repeated heating and cooling events in the early history of the solar nebula. We have examined the effects of these heating/cooling cycles experimentally on a bulk composition representing an average Type B Ca-Al-rich inclusion composition. We have tested the effect of the nature of the starting material. Although the most recent and/or highest temperature event prior to incorporation into the parent body dominates the texture and chemistry of the CAI, prior events also affect the phase compositions and textures. We have determined that heating precursor grains to about 1275 C prior to the final melting event increases the likelihood of anorthite crystallization in subsequent higher temperature events and a prior high temperature even that produced dendritic melilite results in melilite that shows evidence of rapid crystallization in subsequent lower temperature events. Prior low temperature pre-crystallization events produce final ran products with pyroxene compositions similar to Type B Ca-Al-rich inclusions, and the glass (residual liquid) composition is more anorthitic than any other experiments to date. The addition of Pt powder to the starting material appears to enhance the ability of anorthite to nucleate from this composition.
NASA Astrophysics Data System (ADS)
Saleh, H.; Schmidtchen, M.; Kawalla, R.
2018-02-01
In an experiment in which twin-roll cast AZ31 magnesium alloy and commercial purity aluminum (AA 1050) sheets were bonded by hot rolling as Al/Mg/Al laminate composites, it was found that increasing the preheating temperatures up to 400 °C enhances the bonding strength of composites. Further increases in the preheating temperatures accelerate the magnesium oxide growth and thus reduce the bonding strength. The influence of the reduction ratio on the bonding properties was also studied, whereby it was observed that increasing the rolling reduction led to an increase in the bonding strength. The experimental results show that the optimum bonding strength can be obtained at rolling temperatures of 375-400 °C with a 50-60% reduction in thickness. On the other hand, the subsequent deformation behavior of composite was assessed using plane strain compression and deep drawing tests. We demonstrate that the composites produced using the optimum roll bonding conditions exhibited sufficient bonding during subsequent deformation and did not reveal any debonding at the bonding interface.
Wear study of Al-SiC metal matrix composites processed through microwave energy
NASA Astrophysics Data System (ADS)
Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit
2018-04-01
Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.
Preparation of MgO-SnO2-TiO2 Materials and Their Corrosion in Na3AlF6-AlF3-K3AlF6 Bath
NASA Astrophysics Data System (ADS)
Xu, Yibiao; Li, Yawei; Sang, Shaobai; Ren, Bo; Qin, Qingwei; Yang, Jianhong
2015-01-01
New types of refractory materials need to be developed for designing the so-called ledge-free sidewalls of the Hall-Héroult cell for aluminum extraction, which are currently constructed using Si3N4 bonded SiC refractories. In the present paper, MgO-based materials as potential candidate sidewalls were prepared using fused magnesia, tin dioxide, and anatase powder as starting materials. The reaction sintering process of the MgO-SnO2-TiO2 materials was investigated by means of X-ray diffraction and scanning electron microscope (SEM). All the specimens were corroded in a Na3AlF6-AlF3-K3AlF6 bath to assess the electrolyte corrosion resistance. The results show that reaction sintering occurs in the MgO-SnO2-TiO2 system in the range of 1373 K to 1873 K (1100 °C to 1600 °C). Firstly, MgO reacts separately with TiO2 and SnO2 to produce the Mg2TiO4 and Mg2SnO4 phases at 1373 K (1100 °C), which in turn react to form the Mg2Ti x Sn1-x O4 composite spinel at temperatures above 1373 K (1100 °C). All the specimens prepared are composed of the composite spinel and periclase phases. Increasing the SnO2 addition from 2 to 10 wt pct enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed composite spinels in the MgO matrix, but the density of the specimen decreases when the amount of SnO2 added is higher than 10 wt pct due to larger volume expansion and agglomeration of the composite spinel. The MgO-SnO2-TiO2 refractories prepared exhibit good corrosion resistance to the electrolyte melts owing to their high density and formation of the composite spinel in the specimens. Their corrosion resistance increases progressively with the increase in the SnO2 addition owing to the formation of more chemically stable composite spinel.
NASA Astrophysics Data System (ADS)
Kumar, Uday; Badawi, Emad; Mukhopadhyay, P. K.
A series of Al-Mgx alloys, with x = 0.82, 2.09, 2.28, 2.49 and 4.47 wt.%, respectively were characterized by using positron annihilation lifetime studies (PAL), X-ray diffraction (XRD), and sound velocity and internal friction using a vibrating reed technique (VRT). PAL lifetime values increase linearly as the composition is varied, but texturing or preferential orientation is maximum at an intermediate value of composition (x = 2.49%). The internal friction shows a minimum at the same composition, and the sound velocity changes show the maximum value here too. This means that at this composition the sample is the most ordered and defect free.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsatsulnikov, A. F., E-mail: andrew@beam.ioffe.ru; Lundin, V. W.; Zavarin, E. E.
The effect of the layer thickness and composition in AlGaN/AlN/GaN and InAlN/AlN/GaN transistor heterostructures with a two-dimensional electron gas on their electrical and the static parameters of test transistors fabricated from such heterostructures are experimentally and theoretically studied. It is shown that the use of an InAlN barrier layer instead of AlGaN results in a more than twofold increase in the carrier concentration in the channel, which leads to a corresponding increase in the saturation current. In situ dielectric-coating deposition on the InAlN/AlN/GaN heterostructure surface during growth process allows an increase in the maximum saturation current and breakdown voltages whilemore » retaining high transconductance.« less
Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite
NASA Astrophysics Data System (ADS)
Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi
2017-01-01
Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.
NASA Astrophysics Data System (ADS)
Jung, Sung Suk; Sohn, Il
2012-12-01
The crystallization behavior of a calcium-aluminate system with various MgO content from 2.5 to 7.5 wt pct and CaO/Al2O3 ratios between 0.8 and 1.2 has been examined using a confocal laser scanning microscope (CLSM). CCT (continuous cooling transformation) and time temperature transformation (TTT) diagrams were constructed to identify the primary crystal phase of slag at different compositions and at cooling rates between 25 and 800 K/minutes. In the slag at a CaO/Al2O3 ratio of 1.0, crystallization temperature increased during isothermal and continuous cooling with higher MgO content, and the shortest incubation time was observed at 5 wt pct MgO. When MgO content was fixed to be 5 wt pct, crystallization temperature increased with lower CaO/Al2O3 ratio. According to the slag composition, cooling rates and temperature, the primary phase could be CA, or C5A3, or C3A, or C3MA2, or MgO, and the crystal morphology changes from dendrites to faceted crystals to columnar crystals in this composition range.
Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites
NASA Astrophysics Data System (ADS)
Lin, C. B.; Wang, T. C.; Chang, Z. C.; Chu, H. Y.
2013-01-01
Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakabayashi, Ryo H.; Abruña, Héctor D., E-mail: hda1@cornell.edu; DiSalvo, Francis J., E-mail: fjd3@cornell.edu
2017-02-15
Quinary Ti{sub x}Ta{sub y}Al{sub z}N{sub 1-δ}O{sub γ} of various compositions have been prepared by a co-precipitation method followed by ammonolysis. The nitride samples were examined as potential catalyst supports in polymer electrolyte membrane fuel cells. The nitride products crystallized in the rock salt (NaCl) structure over a wide range of compositions. The addition of Ta and Al was highly beneficial towards improving the chemical and electrochemical stability of TiN, without a significant loss of electrical conductivity. Platinum particles were successfully deposited on the (oxy)nitride samples, and the composite samples at some compositions were found to be comparable to Pt/carbon inmore » their stability and catalytic activity even without optimizing the Pt deposition and dispersion processes. - Graphical abstract: The effect of additions of Ta and Al into TiN structure. Shifts the lattice constant, and increases its chemical stability in acidic environment.« less
Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli
2018-03-01
Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.
NASA Astrophysics Data System (ADS)
Peter, Samuel; Kuyanov, Paul; Isik Goktas, Nebile; LaPierre, Ray; Kitai, Adrian
2018-03-01
In an effort to control aggregation and sintering of phosphor nanoparticles at elevated annealing temperatures, glycothermally synthesized cerium-doped yttrium aluminum garnet (Ce:YAG) nanoparticles were annealed in a matrix of aluminum oxide between 1000 °C and 1200 °C. Scanning electron microscopy images showed that glycothermal synthesis yields ∼100 nm particles, and that the alumina matrix was able to control grain growth of Ce:YAG at annealing temperatures up to 1200 °C. Analysis by x-ray diffraction and Fourier transform infrared spectroscopy showed an increase in the degree of crystallinity at increasing temperatures as well as the evolution of alumina phases. Photoluminescence of the composite product showed the expected broad Ce:YAG spectrum, with characteristic chromium R lines present due to the formation of corundum at 1200 °C with trace chromium content. The same procedure was performed to synthesize a Ce:YAG/Cr:Al2O3 nanocomposite, yielding photoluminescence of both the expected Ce:YAG and Cr:Al2O3 peaks as well as clear evidence of energy transfer between Ce and Cr centers in YAG. The luminescence of these composites was used to determine their CIE colour co-ordinates. It was found that the colour profile of the resulting emission may be tuned by adjusting the Cr content and annealing conditions of the composite materials.
Aluminum silicide microparticles transformed from aluminum thin films by hypoeutectic interdiffusion
2014-01-01
Aluminum silicide microparticles with oxidized rough surfaces were formed on Si substrates through a spontaneous granulation process of Al films. This microparticle formation was caused by interdiffusion of Al and Si atoms at hypoeutectic temperatures of Al-Si systems, which was driven by compressive stress stored in Al films. The size, density, and the composition of the microparticles could be controlled by adjusting the annealing temperature, time, and the film thickness. High-density microparticles of a size around 10 μm and with an atomic ratio of Si/Al of approximately 0.8 were obtained when a 90-nm-thick Al film on Si substrate was annealed for 9 h at 550°C. The microparticle formation resulted in a rapid increase of the sheet resistance, which is a consequence of substantial consumption of Al film. This simple route to size- and composition-controllable microparticle formation may lay a foundation stone for the thermoelectric study on Al-Si alloy-based heterogeneous systems. PMID:24994964
Noh, Jin-Seo
2014-01-01
Aluminum silicide microparticles with oxidized rough surfaces were formed on Si substrates through a spontaneous granulation process of Al films. This microparticle formation was caused by interdiffusion of Al and Si atoms at hypoeutectic temperatures of Al-Si systems, which was driven by compressive stress stored in Al films. The size, density, and the composition of the microparticles could be controlled by adjusting the annealing temperature, time, and the film thickness. High-density microparticles of a size around 10 μm and with an atomic ratio of Si/Al of approximately 0.8 were obtained when a 90-nm-thick Al film on Si substrate was annealed for 9 h at 550°C. The microparticle formation resulted in a rapid increase of the sheet resistance, which is a consequence of substantial consumption of Al film. This simple route to size- and composition-controllable microparticle formation may lay a foundation stone for the thermoelectric study on Al-Si alloy-based heterogeneous systems.
Electrical and Electrorheological Properties of Alumina/Natural Rubber (STR XL) Composites
Tangboriboon, Nuchnapa; Uttanawanit, Nuttapot; Longtong, Mean; Wongpinthong, Piraya; Sirivat, Anuvat; Kunanuruksapong, Ruksapong
2010-01-01
The electrorheological properties (ER) of natural rubber (XL)/alumina (Al2O3) composites were investigated in oscillatory shear mode under DC electrical field strengths between 0 to 2 kV/mm. SEM micrographs indicate a mean particle size of 9.873 ± 0.034 µm and particles that are moderately dispersed in the matrix. The XRD patterns indicate Al2O3 is of the β-phase polytype which possesses high ionic conductivity. The storage modulus (G′) of the composites, or the rigidity, increases by nearly two orders of magnitude, with variations in particle volume fraction and electrical field strength. The increase in the storage modulus is caused the ionic polarization of the alumina particles and the induced dipole moments set up in the natural rubber matrix.
Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content.
Smith, J M; King, S P; Barney, E R; Hanna, J V; Newport, R J; Pickup, D M
2013-01-21
Calcium phosphate based biomaterials are extensively used in the context of tissue engineering: small changes in composition can lead to significant changes in properties allowing their use in a wide range of applications. Samples of composition (Al(2)O(3))(x)(Na(2)O)(0.11-x)(CaO)(0.445)(P(2)O(5))(0.445), where x = 0, 0.03, 0.05, and 0.08, were prepared by melt quenching. The atomic-scale structure has been studied using neutron diffraction and solid state (27)Al MAS NMR, and these data have been rationalised with the determined density of the final glass product. With increasing aluminium concentration the density increases initially, but beyond about 3 mol. % Al(2)O(3) the density starts to decrease. Neutron diffraction data show a concomitant change in the aluminium speciation, which is confirmed by (27)Al MAS NMR studies. The NMR data reveal that aluminium is present in 4, 5, and 6-fold coordination and that the relative concentrations of these environments change with increasing aluminium concentration. Materials containing aluminium in 6-fold coordination tend to have higher densities than analogous materials with the aluminium found in 4-fold coordination. Thus, the density changes may readily be explained in terms of an increase in the relative concentration of 4-coordinated aluminium at the expense of 6-fold aluminium as the Al(2)O(3) content is increased beyond 3 mol. %.
Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties.
Ionita, Mariana; Pandele, Madalina Andreea; Iovu, Horia
2013-04-15
Sodium alginate/graphene oxide (Al/GO) nanocomposite films with different loading levels of graphene oxide were prepared by casting from a suspension of the two components. The structure, morphologies and properties of Al/GO films were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM), thermal gravimetric (TG) analysis, and tensile tests. The results revealed that hydrogen bonding and high interfacial adhesion between GO filler and Al matrix significantly changed thermal stability and mechanical properties of the nanocomposite films. The tensile strength (σ) and Young's modulus (E) of Al films containing 6 wt% GO increased from 71 MPa and 0.85 GPa to 113 MPa and 4.18 GPa, respectively. In addition, TG analysis showed that the thermal stability of Al/GO composite films was better than that of neat Al film. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Haibo; Teng, Jie; Chen, Shuang; Wang, Yu; Zhang, Hui
2017-10-01
Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s-1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s-1 by combining the processing map with microstructural observation.
NASA Astrophysics Data System (ADS)
Vereschaka, Alexey; Migranov, Mars; Oganyan, Gaik; Sotova, Catherine S.; Batako, Andre
2018-03-01
This paper addresses the challenges of increasing the efficiency of the machining of austenitic stainless steels AISI 321 and S31600 by application of cutting tools with multilayer composite nano-structured coatings. The main mechanical properties and internal structures of the coatings under study (hardness, adhesion strength in the "coating-substrate" system) were investigated, and their chemical compositions were analyzed. The conducted research of tool life and nature of wear of carbide tools with the investigated coatings during turning of the above mentioned steels showed that the application of those coatings increases the tool life by up to 2.5 times. In addition, the use of a cutting tool with coatings allows machining at higher cutting speeds. It was also found that the use of a tool with multilayer composite nano-structured coating (Zr,Nb)N-(Zr,Al,Nb)N ensures better results compared with not only monolithic coating TiN, but also with nano-structured coatings Ti-TiN-(Ti,Al)N and (Zr,Nb)N-(Cr,Zr,Nb,Al)N. The mechanism of failure of the coatings under study was also investigated.
Microstructure and properties of aluminium-aluminium oxide graded composite materials
NASA Astrophysics Data System (ADS)
Kamaruzaman, F. F.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Iqbal, A. K. M. A.; Azhari, A.
2018-03-01
In this research works, four-layered aluminium-aluminium oxide (Al-Al2O3) graded composite materials were fabricated using powder metallurgy (PM) method. In processing, metal-ceramic graded composite materials of 0%, 10%, 20% and 30% weight percentage of ceramic concentration were prepared under 30 ton compaction load using a cylindrical die-punch set made of steel. After that, two-step pressureless sintering was carried out at sintering temperature and time 600°C and 3 hours respectively. It was observed that the sintered cylindrical specimens of 30 mm diameter were prepared successfully. The graded composite specimens were analysed and the properties such as density, microstructure and hardness were measured. It was found that after sintering process, the diameter of the graded cylindrical structure was decreased. Using both Archimedes method and rule of mixture (ROM), he density of structure was measured. The obtained results revealed that the microvickers hardness was increased as the ceramic component increases in the graded layer. Moreover, it was observed that the interface of the graded structure is clearly distinguished within the multilayer stack and the ceramic particles are almost uniformly distributed in the Al matrix.
NASA Astrophysics Data System (ADS)
Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold
2016-08-01
In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.
Fabrication of TiCx-TiB2/Al Composites for Application as a Heat Sink
Shu, Shili; Yang, Hongyu; Tong, Cunzhu; Qiu, Feng
2016-01-01
Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40–60 vol. % TiCx-TiB2/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B4C system. The effect of the TiCx-TiB2 content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite were studied and compared with the TiCx/Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite are all better than those of the TiCx/Al composite, which confirms that the TiCx-TiB2/Al composite is more appropriate for application as a heat sink. PMID:28773765
Fabrication of TiCx-TiB₂/Al Composites for Application as a Heat Sink.
Shu, Shili; Yang, Hongyu; Tong, Cunzhu; Qiu, Feng
2016-07-29
Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40-60 vol. % TiC x -TiB₂/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B₄C system. The effect of the TiC x -TiB₂ content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiC x -TiB₂/Al composite were studied and compared with the TiC x /Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiC x -TiB₂/Al composite are all better than those of the TiC x /Al composite, which confirms that the TiC x -TiB₂/Al composite is more appropriate for application as a heat sink.
Aluminum Matrix Composite (AlSi7Mg2Sr0.03/SiCp) Pistons Obtained by Mechanical Mixing Method
2017-01-01
Metal matrix composites are undoubtedly a group of advanced engineering materials. Compared to unreinforced matrix material, they are characterized by increased strength, greater stiffness, increased wear resistance, better mechanical properties and dimensional stability at elevated temperatures as well as lower density. Due to its very favorable tribological properties for many years research has been conducted on the application of MMC in friction node. The article presents important technological aspects related to the production and properties of composite pistons. Under industrial conditions, a composite suspension (AlSi7Mg2Sr0.03/SiCp 10 vol %) was prepared to allow casting of the semi-finished pistons series. Machining parameters of the working surfaces of the piston were selected on the basis of the turning test made on PCD, PCNM and uncoated carbide tools. The tribological properties of the composite pistons were determined on the basis of the pin-on-disc and the abrasion wear. The scuffing tests carried out under real operating conditions have confirmed the possibility of using composite pistons in air compressors. PMID:29283419
NASA Astrophysics Data System (ADS)
Çadırlı, Emin
2013-05-01
Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.
Microplastic flow in SIC/AL composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, N.; Arsenault, R.J.
Experimentally it has been determined that if a composite containing a reinforcement which has a different (in general lower) thermal coefficient of expansion as compared to the matrix, then upon cooling from the processing or annealing temperature, plastic relaxation of the misfit strain will occur. Also, experimentally it has been shown that as the size of the reinforcement is increased, i.e., from small spheres to large spheres, there is a decrease in the summation of the effective plastic strain in the matrix. In other words there is a decrease in the average dislocation density in the matrix. However, if themore » shape of the reinforcement is changed from spherical to short fiber to continuous filament, then the dislocation density increases. This experimental data is obtained at a constant volume fraction. A very simple model of plastic relaxation based on prismatic punching of dislocations from the interface can account for the decrease in the dislocation density with an increase reinforcement size, and the increase in dislocation density when changing the shape from a sphere to a continuous filament. A FEM analysis of the shape factor is also capable of predicting the correct trend. However, at present the continuum mechanics methods that have been investigated can not predict the size dependence. A simple model to explain the size effect in Al{sub 2}O{sub 3}/NiAl composites based on the deformation characteristics of NiAl will be discussed.« less
NASA Technical Reports Server (NTRS)
Draper, Susan L.; Aiken, Beverly J. M.
1998-01-01
Continuous single-crystal Al2O3 fibers have been incorporated into a variety of metal and intermetallic matrices and the results have consistently indicated that the fiber strength had been reduced by 32 to 50% during processing. Two iron-based alloys, FeNiCoCrAl and FeAlVCMn, were chosen as matrices for Al2O3 fiber reinforced metal matrix composites (MMC) with the goal of maintaining Al2O3 fiber strength after composite processing. The feasibility of Al2O3/FeNiCoCrAl and Al2O3/FeAlVCMn composite systems for high temperature applications were assessed in terms of fiber-matrix chemical compatibility, interfacial bond strength, and composite tensile properties. The strength of etched-out fibers was significantly improved by choosing matrices containing less reactive elements. The ultimate tensile strength (UTS) values of the composites could generally be predicted with existing models using the strength of etched-out fibers. However, the UTS of the composites were less than desired due to a low fiber Weibull modulus. Acoustic emission analysis during tensile testing was a useful tool for determining the efficiency of the fibers in the composite and for determining the failure mechanism of the composites.
NASA Astrophysics Data System (ADS)
Pourkhorshid, E.; Enayati, M. H.; Sabooni, S.; Karimzadeh, F.; Paydar, M. H.
2017-08-01
Bulk Al/Al3Zr composite was prepared by a combination of mechanical alloying (MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600°C for 1 h to form stable Al3Zr. The prepared Al3Zr powder was then mixed with the pure Al powder to produce an Al-Al3Zr composite. The composite powder was finally consolidated by hot extrusion at 550°C. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600°C for 1 h led to the formation of a stable Al3Zr phase. Differential scanning calorimetry (DSC) results confirmed that the formation of Al3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al3Zr structure. The tension yield strength of the Al-10wt%Al3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al (53 MPa). The yield stress of the Al/Al3Zr composite at 300°C is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.
Ceramics reinforced metal base composite coatings produced by CO II laser cladding
NASA Astrophysics Data System (ADS)
Yang, Xichen; Wang, Yu; Yang, Nan
2008-03-01
Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.
Characterisation of the Microstructure of Fe–Al/Cr3C2 Composite Coatings
NASA Astrophysics Data System (ADS)
Liu, Xiaoming; JunhuiDong; Yang, Yuehong; Sun, Changming; Tuo, Ya; Li, Yanwei
2018-03-01
An Fe-Al/Cr3C2 composite coating is investigated to assess its suitability for treating high-temperature components in a power plant. The coating exhibits excellent high- temperature properties including good corrosion, erosion and friction-wear resistance at high temperatures. To deduce the formation of the Fe-Al/Cr3C2 composite coating and to provide an adequate theoretical basis for its extensive application, its structures and microstructures are investigated. Scanning electronic microscopy (SEM)is used along with energy-dispersive X-ray analysis (EDAX) to analyse the surface of the coating. Energy-dispersive spectroscopy (EDS) is used to analyse the cross-section of the coating. Further, X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to analyse the phases and micro structural features within the coating. The results reveal that the basic phases are two orderly inter metallic compounds (Fe3Al and FeAl) and that the reinforcement includes two oxides (Al2O3 and Cr2O3) as well as substantial quantities of Cr3C2. Al2O3is formed using two mechanisms: oxidation of aluminium in the coating and separation of Al2O3crystals from Fe3Al and FeAl. The grain size of Al2O3 and Cr2O3 in the coatings is nanometric. These two oxides may increase the corrosion-erosion and wear resistances of the coating when they are used as reinforcements.
NASA Astrophysics Data System (ADS)
Ram, Subhash Chandra; Chattopadhyay, K.; Chakrabarty, I.
2018-04-01
Functionally graded A356 alloy (Al–7.2Si–0.3Mg) –Mg2Si in situ composites have been synthesized via centrifugal casting route. Mg2Si particles tend to migrate towards the core of the tubular product by centrifugal force. The in situ formed Mg2Si particles in composites are characterized by x-ray diffraction (XRD) analysis, Energy dispersive spectrometry (EDS), Optical, Scanning Electron and Transmission Electron Microscopy. Apart from primary blocky Mg2Si particles the matrix contains other phases viz. Al-Si eutectic, pseudo-binary Al-Mg2Si eutectic and Al-Fe-Si intermetallics. Density is found to decrease and %porosity is increased with increase in volume fraction of Mg2Si. Maximum hardness was observed at the inner core region due to maximum segregation of Mg2Si particles and gradually decreases towards the outer periphery region. The dry sliding wear was evaluated with varying parameters such as normal loads (N) and sliding distances (m). A substantial increase in wear resistance at the inner core region is observed. From the worn surface characterization, the wear mechanisms have been explained.
NASA Astrophysics Data System (ADS)
Kwon, M. R.; Park, T. H.; Lee, T. H.; Lee, B. R.; Kim, T. G.
2018-04-01
We propose a design for highly efficient AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using a heart-shaped graded Al composition electron-blocking layer (EBL). This novel structure reduced downward band bending at the interface between the last quantum barrier and the EBL and flattened the electrostatic field in the interlayer between the barriers of the multi-quantum barrier EBL. Consequently, electron leakage was significantly suppressed and hole injection efficiency was found to have improved. The parameter values of simulation were extracted from the experimental data of the reference DUV LEDs. Using the SimuLED, we compared the electrical and optical properties of three structures with different Al compositions in the active region and the EBL. The internal quantum efficiency of the proposed structure was shown to exceed those of the reference DUV LEDs by a factor of 1.9. Additionally, the output power at 20 mA was found to increase by a factor of 2.1.
NASA Astrophysics Data System (ADS)
Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul
2012-03-01
The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution 27Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the 27Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.
Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.
Khor, K A; Gu, Y W; Pan, D; Cheang, P
2004-08-01
Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA, Ti alloy and YSZ components.
NASA Astrophysics Data System (ADS)
Bista, S.; Stebbins, J. F.; Sisson, T. W.; Hankins, W. B.
2015-12-01
In this study, we compare the aluminum and boron coordination of glass samples recovered from piston-cylinder experiments carried out at 1 to 3 GPa and near to their ambient glass transition temperature (Tg), which we have found gives a more accurate picture of high pressure structural changes than experiments involving quenching from above the liquidus, as large pressure drops can occur in the latter. Aluminoborosilicate glasses with excess modifier (Ca, La and Y- aluminoborosilicate) quenched from melts at 1-3 GPa were studied with B-11 and Al-27 MAS NMR to assess relative effects on two different network cations. Structural changes in the Y-aluminoborosilicate are dramatic, going from mostly AlO4 at low pressure to mostly AlO5 and AlO6 at 3 GPa. Large increases in BO4 (vs. BO3) are also seen. Mg-aluminosilicate glasses, both tectosilicate (Mg2Al4Si6O20) and with excess modifier composition (Mg3Al2Si6O18) quenched from melts at 1-3 GPa pressure were studied with Al-27 MAS NMR. In contrast to our previous study (Bista et al., Am. Min., in press) of jadeite glass, where only 0.5% of fivefold aluminum was seen in glass recovered from 3 GPa, five and six fold aluminum species increase significantly with increasing pressure in both Mg aluminosilicate glass compositions studied here. We observe that the tectosilicate Mg aluminosilicate glass has more higher coordinated aluminum than the excess modifier containing composition in the pressure range in our study. In the previous study (Bista et al., in press) of jadeite and calcium aluminosilicate (Ca3Al2Si6O18) glasses, 6-8% densification was observed in glasses recovered from 3 GPa. In this study of Mg aluminosilicate glasses, we observe 12% densification in glasses recovered from 3 GPa. Both types of observation confirm that structural and density changes with pressure are enhanced by higher field strength modifier cations, and will be especially important in Mg- and Fe-rich mantle melts.
Thermite combustion enhancement resulting from biomodal luminum distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K. M.; Pantoya, M.; Son, S. F.
2004-01-01
In recent years many studies that incorporated nano-scale or ultrafine aluminum (Al) as part of an energetic formulation and demonstrated significant performance enhancement. Decreasing the fuel particle size from the micron to nanometer range alters the material's chemical and thermal-physical properties. The result is increased particle reactivity that translates to an increase in the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the energetic composite. Ignition sensitivity and combustion wave speed experiments were performed using a thermite composite of Al and MoO{sub 3} pressedmore » to a theoretical maximum density of 50% (2 g/cm{sup 3}). A bimodal Al particle size distribution was prepared using 4 or 20 {mu}m Al fuel particles that were replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bimodal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50W CO{sub 2} laser. High speed imaging diagnostics were used to measure the ignition delay time and combustion wave speed.« less
Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites
Mirjalili, F.; Chuah, L.; Salahi, E.
2014-01-01
A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421
Aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yanwei; Hong, Tianran; Geng, Jiwei
Transmission electron microscopy, differential scanning calorimetry and hardness tests have been performed on an in-situ TiB{sub 2}/Al-3.3Cu-1.0Li-0.60Mg-0.40Ag-0.14Zr-0.13Si composite to study its aging behavior at 175 °C. A cubic phase suspected to be the σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) phase or its variant is precipitated at all aging stages studied, and this phase is not typically observed in the Al-Cu-Li alloys. The primary hardening (aging for 3 h) phases consist of δ′ (Al{sub 3}Li), β′ (Al{sub 3}Zr) and the cubic phase. After aging for 18 h, all precipitates including T{sub 1} (Al{sub 2}CuLi), S (Al{sub 2}CuMg), θ′ (Al{sub 2}Cu), δ′, β′more » and the cubic phase have appeared, and the formation of T{sub 1} and S results in a rapid increase in hardness. With prolonging of aging time, the apparent coarsening of T{sub 1} and S results in a decline in hardness. - Highlights: •The aging behavior of an in-situ TiB{sub 2}/Al-Cu-Li-x composite was studied. •A cubic phase suspected to be σ (Al{sub 5}Cu{sub 6}Mg{sub 2}) or its variant was precipitated. •The hardness change was dominated by the evolution of T{sub 1} (Al{sub 2}CuLi) and S (Al{sub 2}CuMg).« less
NASA Astrophysics Data System (ADS)
Wu, Chen; Gao, Xinwei; Zhao, Guoliang; Jiang, Yinzhu; Yan, Mi
2018-04-01
Hydrolysis precipitation as a new method was used in the preparation of oxide insulation matrix for FeSiAl soft magnetic composites (SMCs). The growth and composition of the matrix can be tuned by the concentration of the Al(NO3)3 solution, reaction temperature and pH value during the hydrolysis. With optimized Al(NO3)3 concentration of 0.6 mol/L and hydrolysis temperature of 75 °C, two mechanisms have been revealed in the formation of the insulation coating depending on the pH of the Al(NO3)3 solution. When pH = 3, the coating layer contains a mixture of Al2O3 and Fe2O3, while Al2O3 and SiO2 form as the coating for pH = 8. Despite that the Al2O3 dominates for both conditions, it grows via different routes. The Al(OH)3 as the precursor forms through Al3+ hydrolysis and heterogeneous nucleation for pH = 3. With increased pH to 8, the Al3+ directly reacts with OH- to form Al(OH)3 colloidal particles which adsorb onto the surface of FeSiAl powders via electrostatic attraction. Both mechanisms give rise to satisfactory magnetic performance with high effective permeability (μe = 103.5 and 113.4) and low core loss (Pcv = 278.4 mW·cm-3 and 237.8 mW·cm-3) for pH = 3 and 8 measured at 100 mT, 50 kHz.
Synthesizing (ZrAl3 + AlN)/Mg-Al composites by a 'matrix exchange' method
NASA Astrophysics Data System (ADS)
Gao, Tong; Li, Zengqiang; Hu, Kaiqi; Han, Mengxia; Liu, Xiangfa
2018-06-01
A method named 'matrix exchange' to synthesize ZrAl3 and AlN reinforced Mg-Al composite was developed in this paper. By inserting Al-10ZrN master alloy into Mg matrix and reheating the cooled ingot to 550 °C, Al and Mg atoms diffuse to the opposite side. As a result, liquid melt occurs once the interface areas reach to proper compositions. Then dissolved Al atoms react with ZrN, leading to the in-situ formation of ZrAl3 and AlN particles, while the Al matrix is finally replaced by Mg. This study provides a new insight for preparing Mg composites.
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo; Sauti, Godfrey; Cano, Roberto J.; Wincheski, Russell A.; Ratcliffe, James G.; Czabaj, Michael; Siochi, Emilie J.
2015-01-01
Carbon nanotubes (CNTs) are one-dimensional nanomaterials with outstanding electrical and thermal conductivities and mechanical properties. This combination of properties offers routes to enable lightweight structural aerospace components. Recent advances in the manufacturing of CNTs have made bulk forms such as yarns, tapes and sheets available in commercial quantities to permit the evaluation of these materials for aerospace use, where the superior tensile properties of CNT composites can be exploited in tension dominated applications such as composite overwrapped pressure vessels (COPVs). To investigate their utility in this application, aluminum rings were overwrapped with thermoset/CNT yarn composite and their mechanical properties measured. CNT composite overwrap characteristics such as processing method, CNT/resin ratio, and applied tension during CNT yarn winding were varied to determine their effects on the mechanical performance of the CNT composite overwrapped Al rings (CCOARs). Mechanical properties of the CCOARs were measured under static and cyclic loads at room, elevated, and cryogenic temperatures to evaluate their mechanical performance relative to bare Al rings. At room temperature, the breaking load of CCOARs with a 10.8% additional weight due to the CNT yarn/thermoset overwrap increased by over 200% compared to the bare Al ring. The quality of the wound CNT composites was also investigated using x-ray computed tomography.
Neutron absorption of Al-Si-Mg-B{sub 4}C composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Ibrahim, Anis Syukriah
2016-01-22
Al-Si-Mg-B{sub 4}C composites containing 2-8 wt% of B{sub 4}C were prepared by stir casting technique. Homogenization treatment was carried out at temperatures of 540°C for 4 houra and followed by ageing at 180°C for 2 houra. Microstructure and phase identification were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. Neutron absorption study was investigated using neutron source Am/Be{sup 241}. The result indicated that higher B{sub 4}C content improved the neutron absorption property. Meanwhile homogeneity of the composite was increased by ageing processes. This composite is potential to be used as neutron shielding material especially for nuclear reactormore » application.« less
NASA Technical Reports Server (NTRS)
Asthana, R.; Tiwari, R.; Tewari, S. N.
1995-01-01
Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.
NASA Astrophysics Data System (ADS)
Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya
2018-02-01
In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.
Li, Jianyu; Lü, Shulin; Wu, Shusen; Gao, Qi
2018-04-01
Ultrasonic vibration (UV) treatment has been successfully applied to improve the particles distribution of nano-sized SiC particles (SiC p ) reinforced Al-5Cu alloy matrix composites which were prepared by combined processes of dry high energy ball milling and squeeze casting. When UV treatment is applied, the distribution of nano-sized SiC p has been greatly improved. After UV for 1 min, large particles aggregates are broken up into small aggregates due to effects of cavitation and the acoustic streaming. After UV for 5 min, all the particles aggregates are dispersed and the particles are uniformly distributed in the composites. Compared with the Al-5Cu matrix alloy, the ultimate tensile strength, yield strength and elongation of the 1 wt% nano-sized SiC p /Al-5Cu composites treated by UV for 5 min are 270 MPa, 173 MPa and 13.3%, which are increased by 7.6%, 6.8% and 29%, respectively. The improvements of mechanical properties after UV are attributed to the uniform distribution of nano particles, grain refinement of aluminum matrix alloy and reduction of porosity in the composites. Copyright © 2017 Elsevier B.V. All rights reserved.
High-volume-fraction Cu/Al2O3-SiC hybrid interpenetrating phase composite
NASA Astrophysics Data System (ADS)
Saidi, Hesam; Roudini, Ghodratollah; Afarani, Mahdi Shafiee
2015-10-01
Metal matrix particulate interpenetrating phase composites are a class of composites materials with three-dimensional internal connections of matrix and reinforcements. This kind of microstructure affects the mechanical and physical properties of the composites. In this study, Al2O3-SiC hybrid preforms were produced by polyurethane foams removal (replica method) within mean pore size of 30 pores per inch (ppi), and sintering at 1200 °C. Subsequently, the molten copper was infiltrated into the preforms by squeeze casting method. The microstructure, density, porosity, bending strength and thermal shock resistance of the preforms were investigated. Then, the composites microstructure and compressive strength were studied. The results showed that with SiC concentration increasing, the density, flexural strength and thermal shock resistance of the preforms were improved. Also the composites compressive strengths were changed with variation of SiC concentration.
NASA Astrophysics Data System (ADS)
da Silva, Antonio N.; Neto, Antonio B. S.; Oliveira, Alcemira C.; Junior, Manoel C.; Junior, Jose A. L.; Freire, Paulo T. C.; Filho, Josué M.; Oliveira, Alcineia C.; Lang, Rossano
2018-06-01
High temperature and pressure effects on the physicochemical properties of binary oxides catalysts were investigated. The nanocomposites catalysts comprising of CeAl, CeMn and NiAl were characterized through various physicochemical techniques. A study of the temperature and pressure induced phenomena monitored by Raman spectroscopy was proposed and discussed. Spectral modifications of the Raman modes belonging to the CeMn suggest structural changes in the solid due to the MnO2 phase oxidation with increasing temperature. The thermal expansion and lattice anharmonicity effects were observed on CeMn due to lack of stability of the lattice vacancies. The CeAl and NiAl composites presented crystallographic stability at low temperatures however, undertake a phase transformation of NiO/Al2O3 into NiAl2O4, mostly without any deformation in its structure with increasing the temperature. It was also inferred that the binary oxides are more stables in comparison with monoxides. Detailed pressure-dependent Raman measurements of the T2g phonon mode of CeMn and NiAl revealed that the pressure contributes to modify bonds length and reduces the particles sizes of the solids. On the contrary, high pressure on CeAl sample improved the stability with addition of Al2O3 in the CeO2 lattice. The results then suggest a good stability of CeAl and NiAl composite catalysts at high pressure and low temperature and show how to prospect of tuning the catalysis for surface reactions entirely through in situ spectroscopic investigations means.
Zirconia toughened SiC whisker reinforced alumina composites small business innovation research
NASA Technical Reports Server (NTRS)
Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.
1987-01-01
The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.
NASA Astrophysics Data System (ADS)
Wang, Zengjie; Guan, Chunyang; Liu, Qiaochu; Xue, Jilai
Molten salts electrolysis method to prepare Al-RE alloys has attracted increasing attention recently. CaCl2 and Na3AlF6 were the most often used melts for this purpose. In this work, Al-Sc alloys prepared by electrolytic deposition process in both CaCl2 and Na3AlF6 melts were investigated, respectively. It was found that Sc distributes almost uniformly and Sc contents increase with increasing current intensity in both melts. Current efficiency was measured for comparison among various current densities applied. The alloy products were analyzed using XRD and SEM, where the formation behaviors of Al-Sc intermetallics were investigated in details. The experimental and theoretical results demonstrate that Al3Sc and Al0.968Sc0.032 are the major precipitates in the Al-Sc alloys prepared by molten electrolysis. The results are useful for selection and optimization of the molten salts compositions and the parameters of electrolysis operation.
Image simulations of quantum dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, C.; Liao, Xiaozhou; Cockayne, D. J.
2001-01-01
Quantum dot (QD) nanostructures have drawn increased interest in recent years. Their small size leads to quantum confinement of the electrons, which is responsible for their unique electronic and optical properties. They promise to find use in a wide range of devices ranging from semiconductor lasers (Bimberg et al (2001), Ribbat et al (2001)) to quantum computing. The properties of QDs are also determined by their shape and composition. All three parameters (size, shape and composition) have a significant impact on their contrast in the transmission electron microscope (TEM), and consequently the possibility arises that these parameters can be extractedmore » from the images. Zone axis plan view images are especially sensitive to the composition of QDs, and image simulation is an important way to understand how the composition determines the contrast. This paper outlines a method of image simulation of QDs developed by Liao et. al. (1999) and presents an application of the method to QDs in wurtzite InN/GaN.« less
Chellappa, Manickam; Vijayalakshmi, Uthirapathy
2017-02-01
In this study, nanocomposite powder consisting of zirconia and titania (Zr-Ti) have been synthesised by sol-gel method, with the aim of protecting Ti-6Al-4V surface. A simple and low cost electrophoretic deposition (EPD) technique has been employed for coating the nanocomposite material on Ti-6Al-4V. The prepared nanocomposite powder was characterised for its functional groups, phase purity, surface topography by Fourier transform infrared spectroscopy, powder X-ray diffraction and scanning electron microscopy. Further, the biocompatibility nature of the composite powder was studied by [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] colorimetric assay and fluorescence analysis with MG63 osteoblast cell lines. The electrochemical behaviour of composite coating was investigated by potentiodynamic polarization and electrochemical impedance method. The results obtained from the electrochemical techniques indicate more corrosion resistance behaviour with increase of R ct value with the corresponding decrease in R dl values. From the above findings, the composite coating acts as a barrier layer against corrosion by preventing the leaching of metal ions from a dense and defect free coating. A scratch test analyser was used to assess the integrity of the coating; the lower traction force value of composite coating with increase in load has confirmed the presence of thick adherent layer on the substrate.
Aging effect of AlF3 coatings for 193 nm lithography
NASA Astrophysics Data System (ADS)
Zhao, Jia; Wang, Lin; Zhang, Weili; Yi, Kui; Shao, Jianda
2018-02-01
As important part of components for 193 nm lithography, AlF3 coatings deposited by resistive heating method acquire advantages like lower optical loss and higher laser damage threshold, but they also possess some disadvantages like worse stability, which is what aging effect focuses on. AlF3 single-layer coatings were deposited; optical property, surface morphology and roughness, and composition were characterized in different periods. Owing to aging effect, refractive index and extinction coefficient increased; larger and larger roughness caused more and more scattering loss, which was in the same order with absorption at 193.4 nm and part of optical loss; from composition analysis, proportional substitution of AlF3 by alumina may account for changes in refractive index as well as absorption.
Effect of fiber diameter and matrix alloys on impact-resistant boron/aluminum composites
NASA Technical Reports Server (NTRS)
Mcdanels, D. L.; Signorelli, R. A.
1976-01-01
Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Nonstandard thin-sheet charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on composites containing unidirectional 0.10mm, 0.14mm, and 0.20mm diameter boron fibers in 1100, 2024, 5052, and 6061 Al matrices. Impact failure modes of B/Al are proposed in an attempt to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of a ductile matrix and large diameter boron fibers gave the highest impact strengths. This combination resulted in improved energy absorption through matrix shear deformation and multiple fiber breakage.
Safari, Masoumeh; Ghanati, Faezeh; Safarnejad, Mohammad Reza; Chashmi, Najmeh Ahmadian
2018-02-01
Treatment with aluminum triggers a unique response in tea seedlings resulting in biochemical modification of the cell wall, regulation of the activity of the loosening agents, and elongation of root. Unlike most terrestrial plants, tea (Camellia sinensis L.) responds to aluminum (Al) through the promotion of its root elongation; but the real mechanism(s) behind this phenomenon is not well understood. A plausible relationship between the modifications of the cell wall and the promotion of root elongation was examined in tea seedlings treated for 8 days with 400 µM Al. The mechanical properties of the cell wall, the composition of its polysaccharides and their capacity to absorb Al, the expression of genes, and the activities of the wall-modifying proteins were studied. With 6 h of the treatment, about 40% of the absorbed Al was bound to the cell wall; however, the amount did not increase thereafter. Meanwhile, the activity of pectin methylesterase, the level of pectin demethylation, the amounts and the average molecular mass of xyloglucan in the root apices significantly decreased upon exposure to Al, resulting in the reduction of Al binding sites. On the other hand, the activity and the gene expression of peroxidase decreased, whereas the activity and gene expression of xyloglucan-degrading enzymes, the expression of expansin A and the H + -ATPase4 genes increased in the Al-treated plants. Interestingly, it was accompanied by the increase of elastic and viscous extensibility of the root apices. From the results, it can be suggested that the biochemical modification of the cell walls reduces sites of Al binding to roots and triggers the activity of the loosening agents, thereby increasing the length of tea roots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, Robert; Polcik, Peter; Anders, André
The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less
Franz, Robert; Polcik, Peter; Anders, André
2015-06-01
The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less
NASA Astrophysics Data System (ADS)
Li, Dien; Secco, R. A.; Bancroft, G. M.; Fleet, M. E.
Aluminum K-edge XANES spectra of high pressure and high temperature (4.4 GPa and 1575°C) glasses along the NaAlSi2O6 (Jd)-NaAlSi3O8 (Ab) join are reported using synchrotron radiation, and shown to provide direct experimental evidence for the pressure-induced coordination change of Al. Five- and six-fold coordinated Al (5Al and 6Al), characterized by Al K-edge positions at 1567.8 and 1568.7 eV, respectively, first appear in glass of composition Jd60Ab40 and increase in proportion progressively with increasing Jd content. The end-member jadeite glass contains about 6% of each of 5Al and 6Al. The present direct measurements confirm literature suggestions for the important role of Al in controlling viscosity and diffusion in mantle melts.
Longitudinal optical phonon-plasmon coupled modes of degenerate Al-doped ZnO films
NASA Astrophysics Data System (ADS)
Ding, K.; Hu, Q. C.; Lin, W. W.; Huang, J. K.; Huang, F.
2012-07-01
We have investigated the interaction between carriers and polar phonons by using Raman scattering spectroscopy in highly conductive Al-doped ZnO films grown by metalorganic chemical vapor deposition. Different from the longitudinal optical phonon-plasmon coupled modes (LOPPCM) observed in nondegenerate ZnO, an A1(LO)-like mode appears at the low frequency side of the uncoupled A1(LO) mode, and it monotonically shifts to higher frequencies and approaches to the uncoupled A1(LO) mode as Al composition increases. Based on line shape calculations, the A1(LO)-like mode is assigned to the large wave-vector LOPPCM arising from nonconserving scattering dominated by the Al impurity-induced Fröhlich mechanism. Benefiting from the nonmonotonic Al composition dependence of the electron density, it is revealed that the LOPPCM depends mainly on the doping level but not the carrier concentration.
Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.
Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei
2017-12-18
AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.
Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity
Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei
2017-01-01
AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277
Optical and electrical properties of P3HT:graphene composite based devices
NASA Astrophysics Data System (ADS)
Yadav, Anjali; Verma, Ajay Singh; Gupta, Saral Kumar; Negi, Chandra Mohan Singh
2018-04-01
The polymer-carbon derivate composites are well known for their uses and performances in the photovoltaic and optoelectronic industries. In this paper, we synthesis P3HT:graphene composites and discuss their optical and electrical properties. The composites have been prepared by using spin-coating technique onto the glass substrates. It has been found that the incorporation of graphene reduces absorption intensity. However, absorption peak remain unchanged with addition of graphene. The surface morphology studies display homogeneous distribution of graphene with P3HT. Raman studies suggest that chemical structure was not affected by graphene doping. Devices having the structure of glass/ITO/P3HT/ Al and glass ITO/P3HT:graphene/Al were then fabricated. I-V behavior of the fabricated devices was found to be similar to the Schottky diode. ITO/P3HT:graphene/Al structure shows tremendous increase in current values as compared to the ITO/P3HT/Al. Furthermore, charge transport mechanism were studied by analyzing the double logarithmic J-V characteristics curve, which indicates that the current at low voltage follows Ohmic behavior, trap-charge limited conduction (TCLC) mechanism at an intermediate voltage and space charge limited conduction (SCLC) mechanism at sufficiently high voltages.
NASA Astrophysics Data System (ADS)
Kusch, Gunnar; Mehnke, Frank; Enslin, Johannes; Edwards, Paul R.; Wernicke, Tim; Kneissl, Michael; Martin, Robert W.
2017-03-01
Detailed knowledge of the dopant concentration and composition of wide band gap Al x Ga{}1-x{{N}} layers is of crucial importance for the fabrication of ultra violet light emitting diodes. This paper demonstrates the capabilities of wavelength dispersive x-ray (WDX) spectroscopy in accurately determining these parameters and compares the results with those from high resolution x-ray diffraction (HR-XRD) and secondary ion mass spectrometry (SIMS). WDX spectroscopy has been carried out on different silicon-doped wide bandgap Al x Ga{}1-x{{N}} samples (x between 0.80 and 1). This study found a linear increase in the Si concentration with the SiH4/group-III ratio, measuring Si concentrations between 3× {10}18 cm-3 and 2.8× {10}19 cm-3, while no direct correlation between the AlN composition and the Si incorporation ratio was found. Comparison between the composition obtained by WDX and by HR-XRD showed very good agreement in the range investigated, while comparison of the donor concentration between WDX and SIMS found only partial agreement, which we attribute to a number of effects.
Deflagration of thermite - ammonium nitrate based propellant mixture
NASA Astrophysics Data System (ADS)
Duraes, Luisa; Morgado, Joel; Portugal, Antonio; Campos, Jose
2001-06-01
Reaction between iron oxide (Fe2O3) and aluminum (Al) is the reference of the classic thermite compositions. The efficency of the reaction, for a given initial composition of Fe2O3 and Al, is evaluated by the final temperature and by the mass ratio of Al2O3 /AlO in products of combustion (in condensed phase). In order to increase pressure in products of thermite reaction, the original composition is mixed, with an original twin screw extruder, with a propellant binder composed of ammonium and sodium nitrates, initialy solved in formamide (CH3NO) and mixed with a polyurethane solution. The products of combustion and pyrolysis of this binder, reacting with thermite products, generates high pressure and high temperature conditions. These experimental conditions are also predicted using THOR code. The study presents DSC and TGA results of components and mixtures, and correlates them to the ignition phenomena and reaction properties. The regression rate of combustion and final attained temperature and pressure, in a closed confinement, as a function of composition of thermite components/propellant binder, are presented and discussed. They show the influence of gaseous combustion and pyrolysis products of binder in final reaction.
Spark plasma sintering of titanium aluminide intermetallics and its composites
NASA Astrophysics Data System (ADS)
Aldoshan, Abdelhakim Ahmed
Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.
The Development of Ultraviolet Light Emitting Diodes on p-SiC Substrates
NASA Astrophysics Data System (ADS)
Brummer, Gordon
Ultraviolet (UV) light emitting diodes (LEDs) are promising light sources for purification, phototherapy, and resin curing applications. Currently, commercial UV LEDs are composed of AlGaN-based n-i-p junctions grown on sapphire substrates. These devices suffer from defects in the active region, inefficient p-type doping, and poor light extraction efficiency. This dissertation addresses the development of a novel UV LED device structure, grown on p-SiC substrates. In this device structure, the AlGaN-based intrinsic (i) and n-layers are grown directly on the p-type substrate, forming a p-i-n junction. The intrinsic layer (active region) is composed of an AlN buffer layer followed by three AlN/Al0.30Ga0.70N quantum wells. After the intrinsic layer, the n-layer is formed from n-type AlGaN. This device architecture addresses the deficiencies of UV LEDs on sapphire substrates while providing a vertical device geometry, reduced fabrication complexity, and improved thermal management. The device layers were grown by molecular beam epitaxy (MBE). The material properties were optimized by considering varying growth conditions and by considering the role of the layer within the device. AlN grown at 825 C and with a Ga surfactant yielded material with screw dislocation density of 1x10 7 cm-2 based on X-ray diffraction (XRD) analysis. AlGaN alloys grown in this work contained compositional inhomogeneity, as verified by high-resolution XRD, photoluminescence, and absorption measurements. Based on Stokes shift measurements, the degree of compositional inhomogeneity was correlated with the amount of excess Ga employed during growth. Compositional inhomogeneity yields carrier localizing potential fluctuations, which are advantages in light emitting device layers. Therefore, excess Ga growth conditions were used to grow AlN/Al0.30Ga0.70N quantum wells (designed using a wurtzite k.p model) with 35% internal quantum efficiency. Potential fluctuations limit the mobility of carriers and introduce sub-bandgap absorption, making them undesirable in the n-AlGaN layers. n-Al0.60Ga 0.40N grown under stoichiometric Ga flux and an In surfactant reduced the Stokes shift (compared to n-AlGaN grown without In) by 150 meV. However, even under these growth modes, some compositional inhomogeneity persisted which is speculatively attributed to the vicinal substrate. Device epitaxial layer stacks utilizing the optimum growth conditions were fabricated into prototype vertical UV LEDs which emit from 295-320 nm. In order to increase light extraction efficiency, UV distributed Bragg reflectors (DBRs) based on compositionally graded AlGaN alloys were designed using the transfer matrix method (TMM) and grown by MBE. DBRs were formed from repeated compositionally graded AlGaN alloys. This structure utilized the polarization doping and index of refraction variation of graded composition AlGaN. DBRs with square wave, sinusoidal, triangular, and sawtooth compositional profiles were realized, with reflectivity peaks over 50%, centered at 280 nm.
Khan, M Shahadat Hossain; Tawaraya, Keitarou; Sekimoto, Hiroshi; Koyama, Hiroyuki; Kobayashi, Yuriko; Murayama, Tetsuya; Chuba, Masaru; Kambayashi, Mihoko; Shiono, Yoshihito; Uemura, Matsuo; Ishikawa, Satoru; Wagatsuma, Tadao
2009-01-01
We investigated variations in aluminum (Al) tolerance among rice plants, using ancestor cultivars from the family line of the Al-tolerant and widely cultivated Japonica cultivar, Sasanishiki. The cultivar Rikuu-20 was Al sensitive, whereas a closely related cultivar that is a descendant of Rikuu-20, Rikuu-132, was Al tolerant. These two cultivars were compared to determine mechanisms underlying variations in Al tolerance. The sensitive cultivar Rikuu-20 showed increased permeability of the plasma membrane (PM) and greater Al uptake within 1 h of Al treatment. This could not be explained by organic acid release. Lipid composition of the PM differed between these cultivars, and may account for the difference in Al tolerance. The tolerant cultivar Rikuu-132 had a lower ratio of phospholipids to Delta(5)-sterols than the sensitive cultivar Rikuu-20, suggesting that the PM of Rikuu-132 is less negatively charged and less permeabilized than that of Rikuu-20. We used inhibitors of Delta(5)-sterol synthesis to alter the ratio of phospholipids to Delta(5)-sterols in both cultivars. These inhibitors reduced Al tolerance in Rikuu-132 and its Al-tolerant ancestor cultivars Kamenoo and Kyoku. In addition, Rikuu-132 showed a similar level of Al sensitivity when the ratio of phospholipids to Delta(5)-sterols was increased to match that of Rikuu-20 after treatment with uniconazole-P, an inhibitor of obtusifoliol-14alpha-demethylase. These results indicate that PM lipid composition is a factor underlying variations in Al tolerance among rice cultivars.
Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites
NASA Astrophysics Data System (ADS)
Abbass, Muna Khethier
2018-02-01
The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.
Hu, Liangfa; O’Neil, Morgan; Erturun, Veysel; Benitez, Rogelio; Proust, Gwénaëlle; Karaman, Ibrahim; Radovic, Miladin
2016-01-01
The prospect of extending existing metal-ceramic composites to those with the compositions that are far from thermodynamic equilibrium is examined. A current and pressure-assisted, rapid infiltration is proposed to fabricate composites, consisting of reactive metallic and ceramic phases with controlled microstructure and tunable properties. An aluminum (Al) alloy/Ti2AlC composite is selected as an example of the far-from-equilibrium systems to fabricate, because Ti2AlC exists only in a narrow region of the Ti-Al-C phase diagram and readily reacts with Al. This kind of reactive systems challenges conventional methods for successfully processing corresponding metal-ceramic composites. Al alloy/Ti2AlC composites with controlled microstructures, various volume ratios of constituents (40/60 and 27/73) and metallic phase sizes (42–83 μm, 77–276 μm, and 167–545 μm), are obtained using the Ti2AlC foams with different pore structures as preforms for molten metal (Al alloy) infiltration. The resulting composites are lightweight and display exceptional mechanical properties at both ambient and elevated temperatures. These structures achieve a compressive strength that is 10 times higher than the yield strength of the corresponding peak-aged Al alloy at ambient temperature and 14 times higher at 400 °C. Possible strengthening mechanisms are described, and further strategies for improving properties of those composites are proposed. PMID:27752106
NASA Astrophysics Data System (ADS)
Pitawala, H. M. J. C.; Dissanayake, M. A. K. L.; Seneviratne, V. A.
2006-06-01
Poly (ethylene oxide)-(PEO)-based composite polymer electrolytes are of great interest for solid-state-electrochemical devices. This paper presents the results of a preliminary study on electrical conductivity and thermal behavior (DSC) of composite polymer electrolytes (CPEs) containing PEO: LiCF3SO3 complexed with plasticizer (EC) and incorporating nano-sized particles of the ceramic filler Al2O3. Ionic conductivity enhancement in these electrolytes has been obtained by optimizing the combined effect of the plasticizer and the ceramic filler. Nano-composite, plasticized polymer electrolyte films (400-600μm) were prepared by common solvent casting method. It was revealed that the presence of the Al2O3 filler in PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity in the temperature range of interest, giving the maximum conductivity for (PEO)9LiTf+15 wt.% Al2O3 CPE [σRT (max)=2×10-5 S cm-1]. It was also observed that the addition of plasticizer (EC) to this electrolyte up to a concentration of 50 wt. % EC, showed a further conductivity enhancement [σRT (max) = 1.5×10-4 S cm-1]. It is suggested that the conductivity is enhanced mainly by two mechanisms. The plasticizer (EC) would directly contribute by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolytes. The ceramic filler (Al2O3) would contribute to conductivity enhancement by creating additional sites to migrating ionic species through transient bonding with O/OH groups in the filler surface. The decrease of Tg values of plasticized CPE systems seen in the DSC thermograms points towards the improved segmental flexibility of polymer chains, increasing the mobility of conducting ions.
Response of Cr and Cr-Al coatings on Zircaloy-2 to high temperature steam
NASA Astrophysics Data System (ADS)
Zhong, Weicheng; Mouche, Peter A.; Heuser, Brent J.
2018-01-01
The oxidation behavior of chromium (Cr) and chromium-aluminum (CrAl) coatings with various compositions deposited on Zircaloy-2 to 700 °C high-temperature steam (HTS) exposure has been investigated. CrAl coatings with higher Al compositions demonstrate lower oxidation weight gain. A layer of γ-alumina developed on the CrAl coatings with Al composition over 43 at%, while Al2O3 and Cr2O3 developed on CrAl coatings with Al composition below 33 at%. Oxidation of Zircaloy-2 substrate was inhibited by the 1um coatings to 20 h HTS exposure. Coating constituent elements diffused into the substrate and formed intermetallic phases with the Zircaloy substrate. Thicker layers of intermetallic phases developed on the coatings with higher Al composition. The intermetallic phases included Fe and Ni, indicating the dissolution of second phase particles (SPPs) during HTS exposure.
NASA Astrophysics Data System (ADS)
Yu, Peng
Aluminum-based metal matrix composites (MMCs) have been widely used as structural materials in the automobile and aerospace industry due to their specific properties. In this thesis, we report the fabrication of in-situ formed alumina and aluminide intermetallic reinforced aluminum-based metal matrix composites by the displacement reactions between Al and selected metal oxides (NiO, CuO and ZnO). These MMCs were produced when the Al-20wt% NiO, Al-20wt% CuO and Al-10wt% ZnO green compacts were reaction sintered in the tube furnaces. In this work, differential thermal analysis (DTA) was performed on the green samples. The green samples were then sintered separately in different tube furnaces for 30 minutes. In order to study the reaction mechanisms, the x-ray diffractometry (XRD) was used to obtain diffraction patterns of these sintered samples, the scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to study the microstructures of these samples. The elemental quantitative compositions of samples were determined by the energy dispersive x-ray spectrometry (EDX). In order to study the effect of cooling rate on the samples, the green samples were further sintered to 1000°C and cooled down to room temperature in different conditions: by furnace-cooling, air-quenching, oil-quenching or NaCl-solution-quenching. The SEM, TEM and atomic force microscopy (AFM) were conducted to investigate their microstructures. A microhardness tester was used to measure the hardness values of these samples. It was found that during sintering of the Al-20wt% NiO green sample, displacement reaction between Al and NiO initially occurred in solid-solid form and was soon halted by its products that separated the NiO particles from the Al matrix. The reaction then resumed in solid-liquid form as the temperature increased to the eutectic temperature of Al3Ni-Al when liquid (Al, Ni) phase appeared in the sample. After cooling, Al2O 3 particles, Al3Ni proeutectic phase and fiber-like Al 3Ni-Al eutectic were found in the sintered Al-MMC sample. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Pilsner, B. H.
1985-01-01
The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.
Dissolution Behavior of Mg from Magnesia-Chromite Refractory into Al-killed Molten Steel
NASA Astrophysics Data System (ADS)
Liu, Chunyang; Yagi, Motoki; Gao, Xu; Kim, Sun-Joong; Huang, Fuxiang; Ueda, Shigeru; Kitamura, Shin-ya
2018-06-01
Magnesia-chromite refractory materials are widely employed in steel production, and are considered a potential MgO source for the generation of MgO·Al2O3 spinel inclusions in steel melts. In this study, a square magnesia-chromite refractory rod was immersed into molten steel of various compositions held in an Al2O3 crucibles. As the immersion time was extended, Mg and Cr gradually dissolved from the magnesia-chromite refractory, and the Mg and Cr contents of the steel melts increased. However, it was found that the inclusions in the steel melts remained as almost pure Al2O3 because the Mg content of the steel melts was low, approximately 1 ppm. On the surface of the magnesia-chromite refractory, an MgO·Al2O3 spinel layer with a variable composition was formed, and the thickness of the MgO·Al2O3 spinel layer increased with the immersion time and the Al content of the steel melts. At the rod interface, the formed layer consisted of MgO-saturated MgO·Al2O3 spinel. The MgO content decreased along the thickness direction of the layer, and at the steel melts interface, the formed layer consisted of Al2O3-saturated MgO·Al2O3 spinel. Therefore, the low content of Mg in steel melts and the unchanged inclusions were because of the equilibrium between Al2O3-saturated MgO·Al2O3 layer and Al2O3. In addition, the effects of the Al and Cr contents of the steel melts on the dissolution of Mg from the magnesia-chromite refractory are insignificant.
The effect of aluminium on the creep behavior of titanium aluminide alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandy, T.K.; Mishra, R.S.; Gogia, A.K.
Small increases in the Al content of Ti{sub 3}Al-Nb alloys are known to improve creep resistance at the expense of the room temperature ductility. Though considerable work has been done on the creep behavior of titanium aluminide alloys, a systematic investigation involving the role of Al on the creep of aluminides is lacking. In the present study the authors have therefore carried out a complete investigation on stress and temperature effects on two alloys with differing Al contents, Ti-24Al-15Nb and Ti-26Al-15Nb (nominal composition in at%) in order to understand the effect of Al in terms of power law creep behavior.more » The following conclusions are made: (1) A strong Al effect on the creep resistance of O phase alloys in the Ti-Al-Nb systems has been confirmed, through a study of stress and temperature effects on the creep behavior of the Ti-24Al-15Nb and the Ti-26Al-15Nb compositions. (2) It has been shown, however, that the small differences in Al do not affect either the activation energies for creep ({approximately}370 kJ/mole) or the creep mechanism (climb controlled creep with a stress exponent of 4). The activation energies and stress exponents are similar to that observed in single phase O alloys. (3) It is suggested that Al influences creep strength through an intrinsic effect on the pre-exponential term AD{sub o} in the power law creep equation. It is possible that this effect is related to a higher ordering energy of the O phase with increasing Al content.« less
Effect of in-situ TiC particulate on the wear resistance of spray-deposited 7075 Al matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Feng; Liu Huimin; Yang Bin
2005-05-15
TiC reinforced 7075 Al matrix composites have been fabricated by a melt in-situ reaction spray deposition. The microstructures of spray-deposited alloys were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The dry sliding wear behavior of the alloys was investigated using a pin-on-disc machine under four loads, namely 8.9, 17.8, 26.7 and 35.6 N. It has been found that the wear behavior of the alloys was dependent on the TiC content in the microstructure and the applied load. At a lower load (8.9 N), with increasing TiC content, the wear rate of the alloy was decreased. At amore » higher loads (26.7, 35.6 N), a spray-deposited 7075 Al alloy exhibited superior wear resistance to the 7075/TiC composites.« less
Adhesion Improvement between Polyethylene and Aluminum Using Eco-Friendly Plasma Treatment
NASA Astrophysics Data System (ADS)
Popelka, Anton; Krupa, Igor; Novák, Igor; Ouederni, Mabrouk; Abdulaqder, Fatima; Al-Yazedi, Shrooq; Al-Gunaid, Taghreed; Al-Senani, Thuraya
Polyethylene (PE) belongs among the most widely used polymers in many industrial applications, such as in building, packaging or transport industry. Qatar is one of the largest producers of PE in the world. Composite laminates consisting of PE and metal materials, such as aluminum (Al) lead to an improvement of various mechanical and physical properties necessary for special applications in building industry. Aluminum composite panel (ACP) represents type of flat panel that consists of two thin aluminum sheets bonded to a non-aluminum core, often made from PE. ACPs are frequently used for external cladding or facades of buildings. The main problem relates the adhesion between both materials. In this research work the improvement of adhesion properties of composite laminates prepared from PE and Al using plasma treatment was investigated. This surface treatment led to the significantly increase of peel strength of PE-Al adhesive joints.
NASA Astrophysics Data System (ADS)
Kim, Woo Chul; Kim, Kang Chul; Na, Min Young; Jeong, Seok Hoan; Kim, Won Tae; Kim, Do Hyang
2017-11-01
The microstructural evolution and mechanical properties of Zr-Co-Al alloys, with compositions of (Zr50Co50)x (Zr56Co26Al18)1-x (x = 1/6, 2/6, 3/6, 4/6, 5/6, 1) and Zr54Co35Al11, (referred to as Z1, Z2, Z3, Z4, Z5, Z6, and Z4.5), were investigated. Alloys Z1-Z3 consisted of crystalline phases, while alloys Z4 and Z4.5 consisted of crystalline phase particles ( 3 vol% and 35 vol%, respectively) embedded within the glassy matrix. Alloys Z5 and Z6 consisted of a monolithic glass phase. The crystalline phase of alloys Z1-Z4.5 consisted of primary B2-ZrCo dendrite and an interdendritic B2-ZrCo/Zr6CoAl2 eutectic phase. The B2-ZrCo dendritic phase exhibited a high work-hardening rate, which originated from the deformation-induced B2-to-B33 martensitic transformation. However, when the brittle interdendritic B2-ZrCo/Zr6CoAl2 eutectic phase fraction increased, the work-hardening rate significantly decreased. The ductility of the glass-matrix composites was significantly impaired by the presence of the interdendritic eutectic phase in the crystalline phase. The results indicate that the design of the crystalline particle microstructure is important with regard to enhancing the plasticity of glass-matrix composites.
Vertical transport in isotype InAlN/GaN dipole induced diodes grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Fireman, M. N.; Li, Haoran; Keller, Stacia; Mishra, Umesh K.; Speck, James S.
2017-05-01
InAlN dipole diodes were developed and fabricated on both (0001) Ga-Face and (" separators="| 000 1 ¯) N-face oriented GaN on sapphire templates by molecular beam epitaxy. The orientation and direction of the InAlN polarization dipole are functions of the substrate orientation and composition, respectively. Special consideration was taken to minimize growth differences and impurity uptake during growth on these orientations of opposite polarity. Comparison of devices on similarly grown structures with In compositions in excess of 50% reveals that dipole diodes shows poorer forward bias performance and exhibited an increase in reverse bias leakage, regardless of orientation. Similarly, (0001) Ga-face oriented InAlN at a lowered 40% In composition had poor device characteristics, namely, the absence of expected exponential turn on in forward bias. By contrast, at In compositions close to 40%, (" separators="| 000 1 ¯) N-face oriented InAlN devices had excellent performance, with over five orders of magnitude of rectification and extracted barrier heights of 0.53- 0.62 eV; these values are in close agreement with simulation. Extracted ideality factors ranging from 1.08 to 1.38 on these devices are further evidence of their optimal performance. Further discussion focuses on the growth and orientation conditions that may lead to this discrepancy yet emphasizes that with proper design and growth strategy, the rectifying dipole diodes can be achieved with InAlN nitride dipole layers.
Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang
2009-04-22
This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grocholski, Brent; Catalli, Krystle; Shim, Sang-Heon
The discovery of a phase transition in Mg-silicate perovskite (Pv) to postperovskite (pPv) at lowermost mantle pressure-temperature (P - T) conditions may provide an explanation for the discontinuous increase in shear wave velocity found in some regions at a depth range of 200 to 400 km above the core-mantle boundary, hereafter the D{double_prime} discontinuity. However, recent studies on binary and ternary systems showed that reasonable contents of Fe{sup 2+} and Al for pyrolite increase the thickness (width of the mixed phase region) of the Pv - pPv boundary (400-600 km) to much larger than the D{double_prime} discontinuity ({le} 70 km).more » These results challenge the assignment of the D{double_prime} discontinuity to the Pv - pPv boundary in pyrolite (homogenized mantle composition). Furthermore, the mineralogy and composition of rocks that can host a detectable Pv {yields} pPv boundary are still unknown. Here we report in situ measurements of the depths and thicknesses of the Pv {yields} pPv transition in multiphase systems (San Carlos olivine, pyrolitic, and midocean ridge basaltic compositions) at the P - T conditions of the lowermost mantle, searching for candidate rocks with a sharp Pv - pPv discontinuity. Whereas the pyrolitic mantle may not have a seismologically detectable Pv {yields} pPv transition due to the effect of Al, harzburgitic compositions have detectable transitions due to low Al content. In contrast, Al-rich basaltic compositions may have a detectable Pv - pPv boundary due to their distinct mineralogy. Therefore, the observation of the D{prime} discontinuity may be related to the Pv {yields} pPv transition in the differentiated oceanic lithosphere materials transported to the lowermost mantle by subducting slabs.« less
Pöpsel, Christian; Becker, Jonathan; Jeon, Nari; Döblinger, Markus; Stettner, Thomas; Gottschalk, Yeanitza Trujillo; Loitsch, Bernhard; Matich, Sonja; Altzschner, Marcus; Holleitner, Alexander W; Finley, Jonathan J; Lauhon, Lincoln J; Koblmüller, Gregor
2018-06-13
Core-shell semiconductor nanowires (NW) with internal quantum heterostructures are amongst the most complex nanostructured materials to be explored for assessing the ultimate capabilities of diverse ultrahigh-resolution imaging techniques. To probe the structure and composition of these materials in their native environment with minimal damage and sample preparation calls for high-resolution electron or ion microscopy methods, which have not yet been tested on such classes of ultrasmall quantum nanostructures. Here, we demonstrate that scanning helium ion microscopy (SHeIM) provides a powerful and straightforward method to map quantum heterostructures embedded in complex III-V semiconductor NWs with unique material contrast at ∼1 nm resolution. By probing the cross sections of GaAs-Al(Ga)As core-shell NWs with coaxial GaAs quantum wells as well as short-period GaAs/AlAs superlattice (SL) structures in the shell, the Al-rich and Ga-rich layers are accurately discriminated by their image contrast in excellent agreement with correlated, yet destructive, scanning transmission electron microscopy and atom probe tomography analysis. Most interestingly, quantitative He-ion dose-dependent SHeIM analysis of the ternary AlGaAs shell layers and of compositionally nonuniform GaAs/AlAs SLs reveals distinct alloy composition fluctuations in the form of Al-rich clusters with size distributions between ∼1-10 nm. In the GaAs/AlAs SLs the alloy clustering vanishes with increasing SL-period (>5 nm-GaAs/4 nm-AlAs), providing insights into critical size dimensions for atomic intermixing effects in short-period SLs within a NW geometry. The straightforward SHeIM technique therefore provides unique benefits in imaging the tiniest nanoscale features in topography, structure and composition of a multitude of diverse complex semiconductor nanostructures.
NASA Astrophysics Data System (ADS)
Liu, Zhengdao; Zhang, Xiancheng; Xuan, Fuzhen; Wang, Zhengdong; Tu, Shandong
2013-07-01
Laser nitriding is one of the effective techniques to improve the surface properties of titanium alloys and has potential application in the life extension of last-stage steam turbine blades. However, cracking of surface coating is a common problem due to heat concentration in laser nitriding process. Conventionally, the cracks can be avoided through heat treatment, which may have an important influence on the mechanical properties of coating. Crack-free TiN/Ti3Al IMC coatings on Ti6Al4V are prepared by plasma spraying and laser nitriding. The microstructures, phase constitutes and compositions of the coating are observed and analyzed with scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray energy-dispersive spectroscopy(EDS). Microhardness, elastic modulus, fracture toughness of the coating are measured. The results show that the crack- and pore-free IMC coatings can be made through the proposed method; with increasing laser power, the amount and density of TiN phase in the coating first increased and then decreased, leading to the similar trend of microhardness and elastic modulus and the reverse trend of fracture toughness of the coating. Both the average microhardness and elastic modulus of the coating increase three times higher than those of the substrate. The volume fraction of the TiN reinforced phase in composite can be controlled by varying the laser power and the cracking problem in laser nitriding process is successfully solved.
Stabilisation of Ce-Cu-Fe amorphous alloys by addition of Al
NASA Astrophysics Data System (ADS)
Kelhar, Luka; Ferčič, Jana; Boulet, Pascal; Maček-Kržmanc, Marjeta; Šturm, Sašo; Lamut, Martin; Markoli, Boštjan; Kobe, Spomenka; Dubois, Jean-Marie
2016-10-01
The present work describes the formation of amorphous alloys in the (Al1-xCex)62Cu25Fe13 quaternary system (0 ≤ x ≤ 1). When the amount of Ce falls in the range 0.67 ≤ x ≤ 0.83, the alloys obtained exhibit a completely amorphous structure confirmed by powder X-ray diffraction. Otherwise, at compositions x = 0.5, 0.58, 0.92 and 1, a primary crystalline phase forms together with an amorphous matrix. The crystallisation temperature (Tx) decreases with increasing Ce content, varying from 593 K for x = 0.5-383 K for x = 1. Composition x = 0.75 is considered as the best glass former, exhibiting a large supercooled liquid region of 40 K width that precedes crystallisation. In order to form bulk amorphous alloys, ribbons with this later composition were consolidated into few millimetre thick discs using pulsed electric current sintering at different temperatures, yet preserving the amorphous structure. Meanwhile, increasing temperature above 483 K triggers crystallisation of a primary phase isostructural to AlCe3. Further increase in the temperature up to 573 K yields a higher fraction of the crystalline phase. Testing mechanical properties, using nanoindentation, revealed that both elastic modulus (E) and hardness (H) depend on the Al content, ranging from E = 85.6 ± 3.7 GPa and H = 6.2 ± 0.7 GPa for x = 0.5 down to E = 39.8 ± 1.0 GPa and H = 3.1 ± 0.2 GPa for x = 0.92.
High temperature dynamic modulus and damping of aluminum and titanium matrix composites
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Maisel, J. E.
1979-01-01
Dynamic modulus and damping capacity property data were measured from 20 to over 500 C for unidirectional B/Al (1100), B/Al (6061), B/SiC/Al (6061), Al2O3/Al, SiC/Ti-6Al-4V, and SiC/Ti composites. The measurements were made under vacuum by the forced vibration of composite bars at free-free flexural resonance near 2000 Hz and at amplitudes below 0.000001. Whereas little variation was observed in the dynamic moduli of specimens with approximately the same fiber content (50 percent), the damping of B/Al composites was found at all temperatures to be significantly greater than the damping of the Al2O3/Al and SiC/Ti composites. For those few situations where slight deviations from theory were observed, the dynamic data were examined for information concerning microstructural changes induced by composite fabrication and thermal treatment. The 270 C damping peak observed in B/Al (6061) composites after heat treatment above 460 C appears to be the result of a change in the 6061 aluminum alloy microstructure induced by interaction with the boron fibers. The growth characteristics of the damping peak suggest its possible value for monitoring fiber strength degration caused by excess thermal treatment during B/Al (6061) fabrication and use.
Selective Laser Sintering of Nano Al2O3 Infused Polyamide
Warnakula, Anthony; Singamneni, Sarat
2017-01-01
Nano Al2O3 polyamide composites are evaluated for processing by selective laser sintering. A thermal characterization of the polymer composite powders allowed us to establish the possible initial settings. Initial experiments are conducted to identify the most suitable combinations of process parameters. Based on the results of the initial trials, more promising ranges of different process parameters could be identified. The post sintering characterization showed evidence of sufficient inter-particle sintering and intra-layer coalescence. While the inter-particle coalescence gradually improved, the porosity levels slightly decreased with increasing laser power. The nano-filler particles tend to agglomerate around the beads along the solid tracks, possibly due to Van der Walls forces. The tensile stress results showed an almost linear increase with increasing nano-filler content. PMID:28773220
NASA Astrophysics Data System (ADS)
Youl Jung, Kyeong
2010-08-01
Conventional solution-based combinatorial chemistry was combined with spray pyrolysis and applied to optimize the luminescence properties of (Y x, Gd y, Al z)BO 3:Eu 3+ red phosphor under vacuum ultraviolet (VUV) excitation. For the Y-Gd-Al ternary system, a compositional library was established to seek the optimal composition at which the highest luminescence under VUV (147 nm) excitation could be achieved. The Al content was found to mainly control the relative peak ratio (R/O) of red and orange colors due to the 5D 0→ 7F 2 to 5D 0→ 7F 1 transitions of Eu 3+. The substitution of Gd atoms in the place of Y sites did not contribute to change the R/O ratio, but was helpful to enhance the emission intensity. As a result, the 613 nm emission peak due to the 5D 0→ 7F 2 transitions of Eu 3+ was intensified by increasing the Al/Gd ratio at a fixed Y content, resulting in the improvement of the color coordinate. Finally, the optimized host composition was (Y 0.11, Gd 0.10, Al 0.79)BO 3 in terms of the emission intensity at 613 nm and the color coordinate.
NASA Technical Reports Server (NTRS)
Kirkpatrick, R. J.; Klein, L.; Uhlmann, D. R.; Hays, J. F.
1979-01-01
The growth rates and interface morphologies of crystals of synthetic compositions in the anorthite (CaAl2Si2O8)-albite (NaAlSi3O8) plagioclase feldspar system are measured in an investigation of the crystallization of igneous rocks. Mixed plagioclase glasses with compositions of 75% and 50% anorthite were observed using the microscope heating technique as they crystallized at temperatures near the liquidus, and 75%, 50% and 20% anorthite crystals were treated by resistance heating and observed at greater degrees of undercooling. Growth rates were found to be independent of time and to decrease with increasing albite content, ranging from 0.5 to 2 x 10 to the -5th cm/min. The crystal morphologies for all compositions are faceted near the liquidus and become progressively skeletal, dendritic and fibrillar with increasing undercooling.
Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing
NASA Astrophysics Data System (ADS)
Verona, Maria Nalu; Setti, Dalmarino; Paredes, Ramón Sigifredo Cortés
2018-04-01
A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x ( κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.
Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Johnson, David Ray
1994-01-01
In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.
Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming
2016-03-23
A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr-Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK 0.1 . A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy.
Tang, Jingang; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing; Yu, Shouming
2016-01-01
A metallurgical zirconium nitride (ZrN) layer was fabricated using glow metallurgy using nitriding with zirconiuming prior treatment of the Ti6Al4V alloy. The microstructure, composition and microhardness of the corresponding layer were studied. The influence of this treatment on fretting wear (FW) and fretting fatigue (FF) behavior of the Ti6Al4V alloy was studied. The composite layer consisted of an 8-μm-thick ZrN compound layer and a 50-μm-thick nitrogen-rich Zr–Ti solid solution layer. The surface microhardness of the composite layer is 1775 HK0.1. A gradient in cross-sectional microhardness distribution exists in the layer. The plasma ZrN metallurgical layer improves the FW resistance of the Ti6Al4V alloy, but reduces the base FF resistance. This occurs because the improvement in surface hardness results in lowering of the toughness and increasing in the notch sensitivity. Compared with shot peening treatment, plasma ZrN metallurgy and shot peening composite treatment improves the FW resistance and enhances the FF resistance of the Ti6Al4V alloy. This is attributed to the introduction of a compressive stress field. The combination of toughness, strength, FW resistance and fatigue resistance enhance the FF resistance for titanium alloy. PMID:28773345
NASA Astrophysics Data System (ADS)
Su, Linlin; Wang, Ying; Guo, Qinglin; Li, Xiaowei; Wang, Shufang; Fu, Guangsheng; Mazur, Yuriy I.; E Ware, Morgan; Salamo, Gregory J.; Liang, Baolai; Huffaker, Diana L.
2017-08-01
Optical properties of GaAs/Al x Ga1-x As quantum rings (QRs) grown on GaAs (1 0 0) by droplet epitaxy have been investigated as a function of the Al-composition in the Al x Ga1-x As barrier. A transition from type-I to type-II band alignment is observed for the QRs via photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. While x ⩽ 0.45, the QR PL spectra show a blue-shift and an increasing intensity with increasing Al-composition, revealing the enhancement of quantum confinement in the QRs with type-I band alignment. While x ⩾ 0.60, the characteristic large blue-shift with excitation intensity and the much longer lifetime indicate the realization of a type-II band alignment. Due to the height fluctuation of QR structures grown by droplet epitaxy mode, it is not the large blue-shift of emission energy, but the long lifetime that becomes the more important feature to identify the type-II band alignment.
NASA Astrophysics Data System (ADS)
Stock, Michael J.; Isaia, Roberto; Humphreys, Madeleine C. S.; Smith, Victoria C.; Pyle, David M.
2016-04-01
Apatite is capable of incorporating all major magmatic volatile species (H2O, CO2, S, Cl and F) into its crystal structure. Analysis of apatite volatile contents can be related to parental magma compositions through the application of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994). Once included within phenocrysts, apatite inclusions are isolated from the melt and preserve a temporal record of magmatic volatile contents in the build-up to eruption. In this work, we measured the volatile compositions of apatite inclusions, apatite microphenocrysts and pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy (Stock et al. 2016). These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to decipher pre-eruptive magmatic processes. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset at shallow levels during ascent. Given the high diffusivity of volatiles in apatite (Brenan, 1993), the preservation of volatile-undersaturated melt compositions in microphenocrysts suggests that saturation was only achieved 10 - 103 days before eruption. We suggest that late-stage transition into a volatile-saturated state caused an increase in magma chamber overpressure, which ultimately triggered the Astroni 1 eruption. This has major implications for monitoring of Campi Flegrei and other similar volcanic systems. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Stock et al., 2016, Nat. Geosci. Gualda et al., 2012. J. Pet., 53, 875-890. Webster et al., 2014. J. Pet., 55, 2217-2248. Brenan, 1993. Chem. Geol., 110, 195-210.
NASA Astrophysics Data System (ADS)
Cai, M.; Li, W.; Dickinson, J. T.
2006-11-01
We report simultaneous measurements of strain and photoelectron emission from high purity Al (1350), Al-Mg (5052), Al-Mn (3003), Al-Cu (2024), and Al-Mg-Si (6061) alloys under uniaxial tension due to pulsed excimer laser radiation (248nm). The emission of low-energy photoelectrons is sensitive to deformation-induced changes in surface morphology, including the formation of slip lines and slip bands. Alloy composition and surface treatment significantly influence the photoemission during deformation. Surface oxide enhances the signal-to-noise level during photoemission measurement. In the early stage of deformation (strain ⩽0.04), photoemission intensity increases gradually in a nonlinear fashion. While subsequent photoemission increases almost linearly with strain until failure in samples with thin oxide layer (˜31Å), there are two linear segments of photoemission for the samples with oxide of 45Å. The onset of strain localization corresponds to the intersection point of two linear segments, usually at a strain of 0.08-0.20. A constitutive model incorporating microstructure evolution and work hardening during tensile deformation is proposed to qualitatively interpret the growth of the photoemission as a function of strain. Photoemissions from various alloys are interpreted in the light of surface treatment, work function, composition, and microstructural development during deformation.
NASA Astrophysics Data System (ADS)
Zhukov, I. A.; Promakhov, V. V.; Matveev, A. E.; Platov, V. V.; Khrustalev, A. P.; Dubkova, Ya. A.; Vorozhtsov, S. A.; Potekaev, A. I.
2018-03-01
The principles of formation of structure and properties of materials produced by self-propagating hightemperature synthesis (SHS) from the Al-Ti-B/B4C powder systems are identified. It is shown that the SHSmaterials produced from the Al-Ti-B powder systems consist of a TiAl intermetallic matrix with inclusions of titanium diboride particles. It is found out that an introduction of 1 wt.% of TiB2 particles into the melt of the AD35 aluminum alloy allows reducing the grain size from 620 to 220 μm and gives rise to an increase in the ultimate tensile strength of as-cast specimens from 100 to 145 MPa and in the plasticity from 7 to 9%.
NASA Astrophysics Data System (ADS)
Chen, Biqiang; Zhang, Guifeng; Zhang, Linjie; Xu, Tingting
2017-10-01
In order to broaden the application of SiC particle-reinforced aluminum matrix composite in electronics packaging, newly developed ZnAlGaMgTi filler with a low melting point of 418-441 °C was utilized as filler metal for active soldering of aluminum matrix composites (70 vol.%, SiCp/Al-MMCs) for the first time. The effect of loading pressure on joint properties of ZnAlGaMgTi active filler was investigated. The experimental results indicated that novel filler could successfully solder Al-MMCs, and the presence of Mg in the filler enhanced the penetration of Zn, while the forming of Zn-rich barrier layer influenced the active element MPD (melting point depressant) diffusion into parent composite, and the bulk-like (Mg-Si)-rich phase and Ti-containing phase were readily observed at the interface and bond seam. With the increase in loading pressure, the runout phenomenon appeared more significant, and the filler foil thickness and the Zn penetration depth varied pronouncedly. Sound joints with maximum shear strength of 29.6 MPa were produced at 480 °C at 1 MPa, and the crack occurred adjacent to the boundary of SiC particle and then propagated along the interface. A novel model describing the significant mutual diffusion of Al and Zn atoms between the parent material and solder was proposed.
NASA Astrophysics Data System (ADS)
Adiputra, R. F.; Wijanarko, R.; Angela, I.; Sofyan, B. T.
2018-01-01
Aluminium composite material as an alternative to steel used in body of tactical vehicles has been studied. Addition of SiC was expected to have strengthening effect on the composite matrix therefore improving its ballistic performance. Composites of Al-11Zn-6.7Mg matrix and SiC strengthening particles with the fraction of 0, 10, and 15 vol. % were fabricated through squeeze casting process. Composite samples were then precipitation strengthened at 130 °C for 102 h to further improve their toughness. Final products were characterized by using chemical composition testing, optical microscopy, Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) and quantitative metallography to calculate porosity, hardness test, impact test, and type III ballistic test in accordance with NIJ 0108.04 standard. The results showed that increase in SiC volume fraction from 0 to 10 and 15 vol. % managed to improve the hardness from 73 to 85 and 87 HRB, respectively, while on the other hand reduced the impact values from 12,278.69 to 11,290.35 and 9,924.54 J/m2. SEM-EDS observation confirmed the presence of Mg3Zn3Al2 intermetallic compound which formed during solidification and indicated the precipitation of MgZn2 precipitates during ageing. The ballistic testing demonstrated a promising result of the potential of Al-11Zn-6.7Mg composite strengthened by 15 vol. % SiC to withstand penetration of type III bullet (7.62 mm).
Developing precipitation hardenable high entropy alloys
NASA Astrophysics Data System (ADS)
Gwalani, Bharat
High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al 1.5CrCuFeNi2 over a length of ˜25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, and both compositions were subsequently thermo-mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates. Furthermore, precipitation of bcc based ordered phase B2 in Al0.3CoCrFeNi can further strengthen the alloy. Fine-tuning the microstructure by thermo-mechanical treatments achieved a wide range of mechanical properties in the same alloy. The Al0.3CoCrFeNi HEA exhibited ultimate tensile strength (UTS) of ˜250 MPa and ductility of ˜65%; a UTS of ˜1100 MPa and ductility of ˜30%; and a UTS of 1850 MPa and a ductility of 5% after various thermo-mechanical treatments. Grain sizes, precipitates type and size scales manipulated in the alloy result in different strength ductility combinations. Henceforth, the alloy presents a fertile ground for development by grain boundary strengthening and precipitation strengthening, and offers very high activation energy of grain growth aptly suitable for high-temperature applications.
Slow plastic deformation of extruded NiAl-10TiB2 particulate composites at 1200 and 1300 K
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Kumar, S.; Mannan, S. K.; Viswanadham, R. K.
1990-01-01
A dispersion of 1-micron TiB2 particles in the B2 crystal structure NiAl intermetallic can effectively increase its elevated temperature strength, in association with increasing deformation resistance with TiB2 volume fraction. Attention is presently given to alternative densification methods, which may increase the initial as-fabricated dislocation density and lead to enhanced elevated-temperature strength. The 'XD' extrusion method was used to produce NiAl with 10 vol pct TiB2. Although apparent extrusion defects were occasionally found, neither grain-boundary cracking nor particle-matrix separation occurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian, E-mail: snove418562@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081; Fan, Xi’an, E-mail: groupfxa@163.com
2015-11-15
Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by insulating SiO{sub 2} using the modified stöber method. The Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO{sub 2}=2α-Al{sub 2}O{sub 3}+3Si took place during the sintering process. As a result the new Fe{sub 3}Si/Al{sub 2}O{sub 3} composite was formed. The Fe{sub 3}Si/Al{sub 2}O{submore » 3} composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe{sub 3}Si{sub 0.7}Al{sub 0.3} core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties. - Graphical abstract: In Fe{sub 3}Si/Al{sub 2}O{sub 3} composite, Fe{sub 3}Si phases are separated by Al{sub 2}O{sub 3} layers and the eddy currents are confined in Fe{sub 3}Si phases, thus increasing resistivity and reducing core loss. - Highlights: • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} core–shell particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores were prepared. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3} particles could be uniformly coated by nano-sized SiO{sub 2} clusters. • Fe{sub 3}Si{sub 0.7}Al{sub 0.3}@SiO{sub 2} particles and Fe{sub 3}Si/Al{sub 2}O{sub 3} cores showed good soft magnetic properties. • Fe{sub 3}Si/Al{sub 2}O{sub 3} had lower core loss and better frequency stability than Fe{sub 3}Si{sub 0.7}Al{sub 0.3} cores.« less
Viscosity of Industrially Important Zn-Al Alloys Part II: Alloys with Higher Contents of Al and Si
NASA Astrophysics Data System (ADS)
Nunes, V. M. B.; Queirós, C. S. G. P.; Lourenço, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A.
2018-05-01
The viscosity of Zn-Al alloys melts, with industrial interest, was measured for temperatures between 693 K and 915 K, with an oscillating cup viscometer, and estimated expanded uncertainties between 3 and 5 %, depending on the alloy. The influence of minor components, such as Si, Mg and Ce + La, on the viscosity of the alloys is discussed. An increase in the amount of Mg triggers complex melt/solidification processes while the addition of Ce and La renders alloys viscosity almost temperature independent. Furthermore, increases in Al and Si contents decrease melts viscosity and lead to an Arrhenius type behavior. This paper complements a previous study describing the viscosity of Zn-Al alloys with quasi-eutectic compositions.
Carbon Fiber Reinforced Carbon-Al-Cu Composite for Friction Material.
Cui, Lihui; Luo, Ruiying; Ma, Denghao
2018-03-31
A carbon/carbon-Al-Cu composite reinforced with carbon fiber 2.5D-polyacrylonitrile-based preforms was fabricated using the pressureless infiltration technique. The Al-Cu alloy liquids were successfully infiltrated into the C/C composites at high temperature and under vacuum. The mechanical and metallographic properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS) of the C/C-Al-Cu composites were analyzed. The results showed that the bending property of the C/C-Al-Cu composites was 189 MPa, whereas that of the pure carbon slide material was only 85 MPa. The compressive strength of C/C-Al-Cu was 213 MPa, whereas that of the pure carbon slide material was only 102 MPa. The resistivity of C/C-Al-Cu was only 1.94 μΩm, which was lower than that of the pure carbon slide material (29.5 μΩm). This finding can be attributed to the "network conduction" structure. Excellent wettability was observed between Al and the carbon matrix at high temperature due to the existence of Al₄C₃. The friction coefficients of the C/C, C/C-Al-Cu, and pure carbon slide composites were 0.152, 0.175, and 0.121, respectively. The wear rate of the C/C-Al-Cu composites reached a minimum value of 2.56 × 10 -7 mm³/Nm. The C/C-Al-Cu composite can be appropriately used as railway current collectors for locomotives.
Layered composites made from bimetallic strips produced by plasma spraying of TiAl on niobium
NASA Astrophysics Data System (ADS)
Burmistrov, V. I.; Antonova, A. V.; Povarova, K. B.; Bannykh, I. O.
2007-12-01
The production and structure of a multilayer TiAl/Nb composite material made from bimetallic TiAl/Nb strips fabricated by plasma spraying of TiAl granules onto niobium plates are studied. Here, 3-mm-and 2-mm-thick plates of a layered composite material (LCM) are produced by hot isostatic pressing of a stack of 35 bimetallic plates followed by hot rolling (the total degree of reduction is 78.6 and 85.7%, respectively). The LCM consists of discontinuous TiAl layers separated by niobium layers, and the adhesion between the layers is good. Diffusional intermediate layers form at the TiAl/Nb interfaces in the 3-mm-thick LCM and consist of the following two solid solutions: an α2-Ti3Al-based solid solution contains up to 28 at % Nb, and a niobiumbased solid solution contains up to 27 at % Ti and 32 at % Al. The diffusional intermediate layers in the 2-mmthick LCM plates consist of an α2-Ti3Al-based solid solution with up to 16.0 at % Nb; a τ-Ti3Al2Nb-or Ti4Al3Nb-based solid solution with 51.5 at % Ti, 32 at % Al, and 16.5 at % Nb; and a niobium-based solid solution with up to 22 at % Ti and 30.5 at % Al. When a bimetallic TiAl/Nb strip is fabricated by plasma spraying of granules of the Ti-48 at % Al alloy, this alloy is depleted of aluminum to 42 45 at %, and the fraction of the α2-Ti3Al phase in the sprayed layer increases. When the LCM is produced by hot isostatic pressing followed by hot rolling, the layer of plain niobium (Nb1) dissolves up to 5 at % Ti and 7 at % Al.
NASA Astrophysics Data System (ADS)
Hibbitts, C.
2006-12-01
Many materials in addition to water ice have been discovered in the surfaces of the icy Galilean and Saturnian satellites. Spacecraft infrared spectroscopy show intriguing differences and similarities suggestive of variations in primordial compositions and subsequent alteration. However, within the diverse compositions in their surfaces are similarities that cross between the systems. For instance, when nonice material is detected on these satellites, it is always hydrated. CO2 is detected in both systems where it is trapped in a host material except possibly for Enceladus where it may be deposited as ice from plumes [1-7]. Satellites in both systems contain aromatic hydrocarbons [8] and possibly CN-bearing materials [9]. The surfaces of Callisto, Ganymede, Europa, Iapetus, Phoebe, Hyperion, and Dione each contain some low albedo non-ice materials. The spectra have a broad 3-micron absorption feature due to structural OH or adsorbed water. However, the band is not sharp like a well-ordered clay mineral but broad, similar in some regards to less well-structured palagonite, goethite, or Murchison meteorite. The hydration of Jovian satellite nonice materials is greater for surfaces that have experienced more tectonism and alteration (i.e. increases from Callisto inward to Europa). The nonice material on Callisto appears to be a single composition (though itself possibly a mixture) that is slightly hydrated [10]. The nonice material on Europa is also of uniform composition everywhere observed, a very heavily hydrated material, perhaps a salt, hydrated SO4 (i.e. sulfuric acid), or both, that either originates from the subsurface ocean, radiolytically altered surface material, or both [11-13]. Ganymede appears to contain two types nonice materials; one an unidentified heavily hydrated material spectrally distinct from the Europa hydrate [11] and a second much less-abundant, less hydrated material spectrally similar to the Callisto nonice material that is largely associated with dark ray craters, possibly impactor contamination or desiccated Ganymede hydrate. The nonice materials on Phoebe and Iapetus is redder (from 1-2.5 microns) than the reddest material on the Galilean satellites (on Callisto) and compositionally different from each other. Iapetus appears to contain some (more) tholin material than Phoebe [14]. The CO2 on both satellites is similar to the CO2 detected in the nonice materials on Callisto and Ganymede with a reflectance minimum ~ 4.258 microns. The spectrum of the CO2 detected on Hyperion and Dione is distinct from that on Iapetus and Phoebe, having a reflectance minimum 10nm shorter at ~ 4.246 microns. This suggests a different bonding energy and possibly a different host material. In summary, the compositions of the icy Galilean satellites reflect the evolutionary state of their surfaces. The compositions of the icy Saturnian satellites are also complex, but with the exception of Enceladus, do not yet show any obvious dependencies on surface structure. There may some commonality in primordial compositions between the satellites of the two systems. References: [1]1Carlson et al., (1996) Science; [2] McCord et al., (1998) J. Geophys. Res.;[3] Hibbitts et al., (2000), J. Geophys. Res; [4] Hibbitts et al., (2003) J. Geophys. Res; [5] Clark et al., (2005) Nature; [6] Buratti et al., (2005) Astrophys. J.; [7] Brown et al., (2006) , Icarus; [8] Clark et al., (2005), Fall AGU; [9] Cruikshank et al., (2005), DPS [10] Calvin et al., (1991), Icarus; [11] McCord et al., 2000; [12]Carlson et al., 1999; [13]Orlando et al., (2005) Icarus; [14] Owens et al., (2001) Icarus;.
The Growth and Characterization of the Bismuth Strontium-Calcium 2212 Superconductor
NASA Astrophysics Data System (ADS)
Moulton, Linda Vidale
A miniaturized float zone technique, sometimes referred to as the Laser-heated Pedestal Growth (LHPG) method, was used to produce high quality crystals of the incongruently melting rm Bi_2Sr_2CaCu _2O_{8+delta} (2212) superconductor. The main focus of this research was to (1) produce superconducting samples having different compositions, (2) identify the melt compositions and growth temperatures which produced these samples, and (3) determine the variation of their superconducting transition temperature (T _{rm C}) with composition and processing conditions. The rm Bi_2(Sr,Ca) _3Cu_2O_{8+delta} crystallization experiments were supplemented by a series of similar experiments on the incongruently melting compound rm Ca_3Al_2O_6. The phase equilibria in the CaO-rm Al_2O _3 system has been thoroughly studied, and by analyzing the float-zone growth of this simpler and better-characterized material, it was verified that phase equilibria information and solidification behavior could be extracted from and explained by these solidification experiments. Two different types of nonplanar, crystal/melt interface morphologies were observed in the rm Ca_3Al_2O_6 experiments. Each reflected the influence of the phase equilibria in the CaO-rm Al_2O_3 system and component segregation in the melt. The molten zone compositions were found to approach those predicted by the CaO-rm Al_2O_3 phase diagram as the growth rate decreased, in accordance with the Burton-Prim Slichter relationship. Excellent agreement was obtained between actual phases found to coexist at the rm Ca_3Al_2O_6 /melt interface and the predictions of classical crystal growth theory. Based on the results of the rm Ca _3Al_2O_6 crystallization study, the crystal/melt equilibria in the far more complex rm Bi_2O_3-SrO-CaO-CuO system was evaluated by determining the phases formed during the superconductor growth experiments. The melt compositions were found to be rm Bi_2O_3 -rich and SrO-poor relative to the compositions of the 2212 crystals grown from them. The CaO and CuO segregation coefficients, on the other hand, were observed to be near unity. As one would expect for an incongruently -melting compound, segregation at the solidification front generally decreased with increasing crystallization temperature, but all the segregation coefficients were not observed to simultaneously approach unity. The superconducting transition temperatures (T _{rm C}'s) of six as-crystallized samples having homogeneous crystal compositions were also measured. Sample T_{rm C} was observed to increase with increasing growth temperature and, therefore, change with crystal composition. The results of this study suggested that it is desirable to grow crystals at the highest possible crystallization temperature since they will: (1) have the highest as-grown T_{rm C} 's, and (2) solidify with the least component segregation at the growth interface. In addition, the analysis presented here suggests that such growth is not recommended at higher growth rates, since crystals with mid-range solidus compositions (and consequently, moderate growth temperatures) should crystallize most reliably as single-phase samples at higher growth rates.
NASA Astrophysics Data System (ADS)
Anawe, P. A. L.; Fayomi, O. S. I.; Popoola, A. P. I.
In other to overcome the devastating deterioration of mild steel in service, Zn-based embedded Al/SnO2 composite coatings have been considered as reinforcing alternative replacements to the more traditional deposition for improved surface properties by using Dual Anode Electrolytic Co-deposition (DAECD) technique from chloride bath. The structural characterization of the starting materials and deposited coating are evaluated using scanning electron microscopy (SEM), equipped with energy dispersive X-ray spectroscopy (EDX) elemental analysis and atomic force microscope (AFM). The hardness behaviour, wear and intermetallic distribution was examined by diamond based microhardness tester, CETR reciprocating sliding test rig and X-ray diffractometer (XRD) respectively. The corrosion properties of the developed coating were examined in 3.5% NaCl. The microstructure of the deposited sample obtained at 7% SnO2, revealed fine-grains deposit of the Al/SnO2 on the mild steel surface. The results showed that the Al/SnO2 strengthening alloy plays a significant role in impelling the wear and corrosion behaviour of Zn-Al/SnO2 coatings in an aggressive saline environment. Interestingly Zn-30Al-7Sn-chloride showed the highest wear and improved corrosion resistance due to Al/SnO2 oxide passive film that forms during anodic polarization. This work established that co-deposition of mild steel with Al/SnO2 is auspicious in increasing the anti-wear and corrosion progression.
Development of a Post-CMOS Compatible Nanoporous Thin Film layer Based on Al2O3
NASA Astrophysics Data System (ADS)
Dogan, Ö.; Buschhausen, A.; Walk, C.; Mokwa, W.; Vogt, H.
2018-05-01
Porous alumina is a popular material with numerous application fields. A post-CMOS compatible process chain for the fabrication of nanoporous surface based on Al2O3 by atomic layer deposition (ALD) is presented. By alternately applying small numbers of ALD cycles for Al2O3 and ZnO, a homogenous composite was accomplished, for which the principle of island growth of ALD materials at few deposition cycle numbers was utilised. By selective texture-etching of ZnO content via hydrofluoric acid (HF) in vaporous phase at 40 °C and 10.67 mbar, a porous surface of the etch resistant Al2O3 could be achieved. TOF-SIMS investigations verified the composition of ALD composite, whereas AFM and high resolution SEM images characterised the topographies of pre- and post-etched samples. Pores with opening diameters of up to 15 nm could be detected on the surface after vaporous HF treatment for 2 minutes. The amount of pores increased after an etching time of 5 minutes.
Interfacial reactions and wetting in Al-Mg sintered by powder metallurgy process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faisal, Heny, E-mail: faisal@physics.its.ac.id; Darminto,; Triwikantoro,
2016-04-19
Was conducted to analyze the effect of temperature variation on the bonding interface sintered composite Al-Mg and analyze the effect of variations of the density and hardness sinter. Research carried out by the base material powders of Al, Mg powder and solvent n-butanol. The method used in this study is a powder metallurgy, with a composition of 60% volume fraction of Al - 40% Mg. Al-Mg mixing with n-butanol for 1 hour at 500 rpm. Then the emphasis (cold comression) with a size of 1.4 cm in diameter dies and height of 2.8 cm, is pressed with a force of 20 MPa and heldmore » for 15 minutes. After the sample into pellets, then sintered at various temperatures 300 °C, 350 °C, 400 °C and 450 °C. Characterization is done by using the testing green density, sintered density, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), vickers microhardness, and press test. XRD data analysis done by using X’Pert High Score Plus (HSP) to determine whether there is a new phase is formed. Test results show that the sintered density increasing sintering temperature, the resulting density is also increasing (shrinkage). However, at a temperature of 450 °C decreased (swelling). With the increased sinter density, interfacial bonding getting Kuta and more compact so that its hardness is also increased. From the test results of SEM / EDX, there Mg into Al in the border area. At temperatures of 300 °C, 350 °C, 400 °C, the phase formed is Al, Mg and MgO. While phase is formed at a temperature of 450 °C is aluminum magnesium (Al{sub 3}Mg{sub 2}), Aluminum Magnesium Zinc (AlMg{sub 2}Zn).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurchenko, N.Yu.
2016-11-15
In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The densitymore » of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez-Bustamante, R.
Although carbon nanotubes/aluminum (CNT/Al) composites are promising materials in the production of structural components, their mechanical behavior under overaging conditions has not been considered. In this paper the effect of CNTs on the microstructural and mechanical behavior of a 2024 aluminum alloy (Al2024) synthesized by mechanical alloying (MA) and powder metallurgy routes is discussed, as well as the effect of aging heat treatments at different temperatures and aging times. The mechanical behavior of composites was screened by hardness measurements as function of aging time. After 96 h of aging time, composites showed mechanical stability in their hardness performance. Images frommore » transmission electron microscopy showed that the mechanical stability of composites was due to a homogeneous dispersion of CNTs in the aluminum matrix and a subsequent alteration in the kinetics of precipitation is due to their presence in the aluminum matrix. Even though strengthening precipitation took place during aging, this was not the main strengthening mechanism observed in composites. - Highlights: • Dispersion of carbon nanotubes during mechanical alloying • Microstructural evolution observed by HRTEM. • Mechanical performance evaluated through micro-hardness test. • Increased mechanical performance at high working temperatures • Acceleration of kinetics of precipitation due to CNTs, and milling conditions.« less
Mao, Fang; Taher, Mamoun; Kryshtal, Oleksandr; Kruk, Adam; Czyrska-Filemonowicz, Aleksandra; Ottosson, Mikael; Andersson, Anna M; Wiklund, Urban; Jansson, Ulf
2016-11-09
A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way. For low Al contents (<13 atom %), a highly (111)-textured fcc phase was formed. At higher Al contents, a (002)-textured hcp solid solution phase was formed followed by a fcc phase in the most Al-rich regions. No indication of a μ phase was observed. The Ag-Al films with fcc-Ag matrix is prone to adhesive material transfer leading to a high friction coefficient (>1) and adhesive wear, similar to the behavior of pure Ag. In contrast, the hexagonal solid solution phase (from ca. 15 atom %Al) exhibited dramatically reduced friction coefficients (about 15% of that of the fcc phase) and dramatically reduced adhesive wear when tested against the pure Ag counter surface. The increase in contact resistance of the Ag-Al films is limited to only 50% higher than a pure Ag reference sample at the low friction and low wear region (19-27 atom %). This suggests that a hcp Ag-Al alloy can have a potential use in sliding electrical contact applications and in the future will replace pure Ag in specific electromechanical applications.
NiAl-base composite containing high volume fraction of AlN for advanced engines
NASA Technical Reports Server (NTRS)
Hebsur, Mohan (Inventor); Whittenbeger, John D. (Inventor); Lowell, Carl F. (Inventor)
1994-01-01
A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 to 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAlY, and FeAl.
Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite
NASA Astrophysics Data System (ADS)
Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty
2016-07-01
(1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.
Deformation Behavior of SiC/2014 Al Metal-Matrix Composite
1989-05-01
the 2014 aluminum is an Al-Cu alloy with the eutectic temperature equal to 5400C, at which the specimens were tested in this study. Summary Room...temperature, decreasing heating rate, and increasing holding time, while ductility increased under the same condition until the eutectic temperature 540...drastically reduced the ductility to 1.5 percent. At high temperature, the modulus decreases but retains a large portion of it even at the eutectic
Amiriyan, Mahdi; Blais, Carl; Savoie, Sylvio; Schulz, Robert; Gariépy, Mario; Alamdari, Houshang
2016-01-01
This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. PMID:28787917
Bie, B. X.; Huang, J. Y.; Su, B.; ...
2016-03-30
Dynamic tensile experiments are conducted on 15% and 30% in weight percentage B 4C/Al composites with a split Hopkinson tension bar, along with high-speed synchrotron x-ray digital image correlation (XDIC) to map strain fields at μ m and μ s scales. As manifested by bulk-scale stress – strain curves, a higher particle content leads to a higher yield strength but lower ductility. Strain field mapping by XDIC demonstrates that tension deformation and tensile fracture, as opposed to shear and shear failure, dominate deformation and failure of the composites. The fractographs of recovered samples show consistent features. The particle-matrix interfaces aremore » nucleation sites for strain localizations, and their propagation and coalescence are diffused by the Al matrix. The reduced spacing between strain localization sites with increasing particle content, facilitates their coalescence and leads to decreased ductility. Furthermore, designing a particle-reinforced, metallic-matrix composite with balanced strength and ductility should consider optimizing the inter-particle distance as a key par« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavan, M.A.; Bingham, F.T.; Pratt, P.F.
A greenhouse experiment was carried out with 16 columns of an undisturbed Oxisol that had sufficient subsoil acidity to restrict root growth of a wide variety of crop plants. The objective was to determine the effects of surface applied CaCO/sub 3/, CaSO/sub 4/ x 2H/sup 2/O, and water on subsoil pH and exchangeable Al, Ca, and Mg. Eight soil columns were treated with CaCO/sub 3/ or CaSO/sub 4/ x 2H/sup 2/O at rates equal to 0.25 and 1.50 x the lime equivalent (KCL-extractable Al). The irrigation treatments consisted of trickle irrigation applied at 8.94 and 17.88 mm day/sup -1/ formore » 6 months. These treatments were superimposed on the amendment treatments. Observations included volume and composition of drainage water during the course of the experiment and chemical composition of the soil column by depth increments once the irrigation treatments were completed. Soil analysis included pH, cation exchange capacity (CEC), exchangeable cations, and composition of saturation extracts of soil. Effects of CaCO/sub 3/ treatments were observed only in the upper 20 cm of the profiles irrespective of irrigation and fertilizer treatments. The CaCO/sub 3/ treatments increased soil pH, CEC, and exchangeable Al; and CaSO/sub 4/ x 2H/sup 2/O treatments reduced the level of exchangeable Al and Mg throughout the 100-cm depth profiles while increasing the level of exhangeable Ca. Soil pH and CEC were unaffected by the latter treatment. Based on the effectiveness of CaSO/sup 4/ x 2H/sup 2/O in reducing exchangeable Al and Mg while increasing exchangeable Ca, the combination of dolomitic lime and gypsum appears to be an appropriate amendment treatment for Oxisols with toxic concentrations of available Al.« less
NASA Astrophysics Data System (ADS)
Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.
2018-02-01
In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.
Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots
NASA Astrophysics Data System (ADS)
Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.
2018-01-01
We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.
Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F
2016-04-27
Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.
NASA Astrophysics Data System (ADS)
Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.
2015-10-01
The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.
NASA Astrophysics Data System (ADS)
Kim, Seung Ho
2014-01-01
Self-lubricating Al2O3-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) serving as solid lubricants, were fabricated by using the pulse electric current sintering (PECS) technique. The coefficient of friction (COF) of the Al2O3-15wt% ZrO2 composite without/with sulfides was in the range of 0.37-0.48 and 0.27-0.49, respectively. As the amount of sulfides increased, the COF and the wear rate decreased. The reduction in COF and wear rate of the sulfide-containing composite is caused by a reduction in shear stresses between the specimen and the tribological medium due to the formation of a lubricating film resulting from the lamellar structure of sulfides located on the worn surface.
Effect of TiN coating on microstructure of Tif/Al composite.
Xiu, Z Y; Chen, G Q; Wang, M; Hussain, Murid
2013-02-01
In the present work, Ti fibre reinforced Al matrix composites (Ti(f)/Al) were fabricated by pressure infiltration method. In order to suppress the severe Ti-Al reaction and reduce the formation of brittle TiAl(3) phase, a TiN layer was coated on Ti fibres by an arc ion plating method before composite preparation. A thin TiN layer was coated on the Ti fibre surface, and the maximum and minimum thickness values of layer were about 3.5 and 1μm, respectively. Prefer orientation of TiN on (111) and (200) was found by XRD analysis. A thin and uniform TiAl(3) layer was observed in Ti(f)/Al composite. However, after coated with TiN layer, no significant reaction layer was found in (Ti(f)+TiN)/Al composite. Segregation of Mg element was found in Ti(f)/Al composite, and the presence of TiN layer showed little effect on this behaviour. Due to the large CTE difference between Ti fibre and Al matrix, high density dislocations were observed in the Al matrix. Meanwhile, fine dispersed Mg(2)Al(3) phases were also found in Al matrix. Ti fibre is mainly composed of α- and β-Ti. Small discontinuous needle-like TiAl(3) phases were detected at TiN/Al interface, which implies that the presence of TiN layer between the Ti fibre and Al matrix could effectively hinder the formation of TiAl(3) phases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre
2014-12-19
Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.
Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre
2014-01-01
Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295
Zhao, Yongfeng; Qian, Zhao; Ma, Xia; Chen, Houwen; Gao, Tong; Wu, Yuying; Liu, Xiangfa
2016-10-05
High-strength lightweight Al-based composites are promising materials for a wide range of applications. To provide high performance, a strong bonding interface for effective load transfer from the matrix to the reinforcement is essential. In this work, the novel Al 3 BC reinforced Al composites have been in situ fabricated through a liquid-solid reaction method and the bonding interface between Al 3 BC and Al matrix has been unveiled. The HRTEM characterizations on the Al 3 BC/Al interface verify it to be a semicoherent bonding structure with definite orientation relationships: (0001) Al 3 BC //(11̅1) Al ;[112̅0] Al 3 BC //[011] Al . Periodic arrays of geometrical misfit dislocations are also observed along the interface at each (0001) Al 3 BC plane or every five (11̅1) Al planes. This kind of interface between the reinforcement and the matrix is strong enough for effective load transfer, which would lead to the evidently improved strength and stiffness of the introduced new Al 3 BC/Al composites.
NASA Astrophysics Data System (ADS)
Anil, K. C.; Vikas, M. G.; Shanmukha Teja, B.; Sreenivas Rao, K. V.
2017-04-01
Many materials such as alloys, composites find their applications on the basis of machinability, cost and availability. In the present work, graphite (Grp) reinforced Aluminium 8011 is synthesized by convention stir casting process and Surface finish & machinability of prepared composite is examined by using lathe tool dynamometer attached with BANKA Lathe by varying the machining parameters like spindle speed, Depth of cut and Feed rate in 3 levels. Also, Roughness Average (Ra) of machined surfaces is measured by using Surface Roughness Tester (Mitutoyo SJ201). From the studies it is cleared that mechanical properties of a composites increases with addition of Grp and The cutting force were decreased with the reinforcement percentage and thus increases the machinability of composites and also results in increased surface finish.
Development and Processing of Nickel Aluminide-Carbide Alloys
NASA Technical Reports Server (NTRS)
Newport, Timothy Scott
1996-01-01
With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system: arc-melting, slow cooling, and containerless directional solidification. Arc-melting provided a wide range of compositions in an economical and simple fashion. The slow cooled ingots provided larger ingots and slower cooling rates than arc-melting. Directional solidification was used to produce in-situ composites consisting of NiAl reinforced with molybdenum carbides.
Oxidation of Al2O3 continuous fiber-reinforced/NiAl composites
NASA Technical Reports Server (NTRS)
Doychak, J.; Nesbitt, J. A.; Noebe, R. D.; Bowman, R. R.
1992-01-01
The 1200 C and 1300 C isothermal and cyclic oxidation behavior of Al2O3 continuous fiber-reinforced/NiAl composites were studied. Oxidation resulted in formation of Al2O3 external scales in a similar manner as scales formed on monolithic NiAl. The isothermal oxidation of an Al2O3/NiAl composite resulted in oxidation of the matrix along the fiber/matrix interface near the fiber ends. This oxide acted as a wedge between the fiber and the matrix, and, under cyclic oxidation conditions, led to further oxidation along the fiber lengths and eventual cracking of the composite. The oxidation behavior of composites in which the Al2O3 fibers were sputter coated with nickel prior to processing was much more severe. This was attributed to open channels around the fibers which formed during processing, most likely as a result of the diffusion of the nickel coating into the matrix.
NASA Technical Reports Server (NTRS)
Langan, T. J.; Pickens, J. R.
1991-01-01
Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.
CVD Fiber Coatings for Al2O3/NiAl Composites
NASA Technical Reports Server (NTRS)
Boss, Daniel E.
1995-01-01
While sapphire-fiber-reinforced nickel aluminide (Al2O3/NiAl) composites are an attractive candidate for high-temperature structures, the significant difference in the coefficient of thermal expansion between the NiAl matrix and the sapphire fiber creates substantial residual stresses in the composite. This study seeks to produce two fiber-coating systems with the potential to reduce the residual stresses in the sapphire/NiAl composite system. Chemical vapor deposition (CVD) was used to produce both the compensating and compliant-fiber coatings for use in sapphire/NiAl composites. A special reactor was designed and built to produce the FGM and to handle the toxic nickel precursors. This process was successfully used to produce 500-foot lengths of fiber with coating thicknesses of approximately 3 microns, 5 microns, and 10 microns.
Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...
2017-03-28
The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less
Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys
NASA Astrophysics Data System (ADS)
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Howard, Richard H.; Yamamoto, Yukinori
2017-06-01
The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloys with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). The results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.
NASA Astrophysics Data System (ADS)
Ruan, Mengnan; Yang, Dan; Guo, Wenli; Zhang, Liqun; Li, Shuxin; Shang, Yuwei; Wu, Yibo; Zhang, Min; Wang, Hao
2018-05-01
Surface functionalization of Al2O3 nano-particles by mussel-inspired poly(dopamine) (PDA) was developed to improve the dielectric properties, mechanical properties, and thermal conductivity properties of nitrile rubber (NBR) matrix. As strong adhesion of PDA to Al2O3 nano-particles and hydrogen bonds formed by the catechol groups of PDA and the polar acrylonitrile groups of NBR, the dispersion of Al2O3-PDA/NBR composites was improved and the interfacial force between Al2O3-PDA and NBR matrix was enhanced. Thus, the Al2O3-PDA/NBR composites exhibited higher dielectric constant, better mechanical properties, and larger thermal conductivity comparing with Al2O3/NBR composites at the same filler content. The largest thermal conductivity of Al2O3-PDA/NBR composite filled with 30 phr Al2O3-PDA was 0.21 W/m K, which was 122% times of pure NBR. In addition, the Al2O3-PDA/NBR composite filled with 30 phr Al2O3-PDA displayed a high tensile strength about 2.61 MPa, which was about 255% of pure NBR. This procedure is eco-friendly and easy handling, which provides a promising route to polymer composites in application of thermal conductivity field.
NASA Astrophysics Data System (ADS)
Mazaheri, Younes; Emadi, Rahmatollah; Meratian, Mahmood; Zarchi, Mehdi Karimi
2017-04-01
The wettability, incorporation, and gravity segregation of TiC and B4C particles into molten aluminum are important problems in the production of Al-TiC and Al-B4C composites by the casting techniques. In order to solve these problems, different methods consisting of adding the Na3AlF6 and K2TiF6 fluxes and Mg (as the alloying element) into the molten aluminum and injection of the (Al + TiC)CP and (Al + B4C)CP composite powders instead of B4C and TiC particles are evaluated. In this work, the conditions of sample preparation, such as particle addition temperature, stirring speed, and stirring time, are determined after many studies and tests. Microstructural characterizations of samples are investigated by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS) and X-ray diffractometry. The results show better distribution and incorporation of TiCp and B4Cp in aluminum matrix when the fluxes are used, as well as EDS analysis of the interface between the matrix and reinforcement-strengthened formation of the different phases such as Al4C3 in the Al-TiC composites and Al3BC, TiB2 in the Al-B4C composites.
Tash, Mahmoud M; Mahmoud, Essam R I
2016-06-02
In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl₂, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl₂ at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.
NASA Astrophysics Data System (ADS)
Temam, H. B.; Temam, E. G.
2016-04-01
Alloy coatings were prepared by co-deposition of Al2O3 particles in Ni matrix on carbon steel substrate from nickel chloride bath in which metallic powders were held in suspension. The influence of metal powder amount in the bath on chemical composition, morphology, thickness, microhardness and corrosion behavior of obtained coatings, has been investigated. It was shown that the presence of Al2O3 particles in deposit greatly improves the hardness and the wear resistance of alloy coatings. Characterization by microanalysis (EDX) of the various deposits elaborated confirms that the rate of particles incorporated increases as the concentration of solid particles increasing. The results showed that the presence of organic additives in Ni-Al2O3 electrolyte deposition led to an increase in the hardness and corrosion resistance of the deposits.
NASA Astrophysics Data System (ADS)
Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho
2016-01-01
The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen
1200 to 1400 K slow strain rate compressive properties of NiAl/Ni2AlTi-base materials
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Kumar, K. S.
1989-01-01
An attempt to apply the Martin Marietta Corporation's XD technology to the fabrication of NiAl-Ni2AlTi materials with improved creep properties is presented. Composite materials, containing from 0 to 30 vol pct of nominally 1-micron-diameter TiB2 particles in the intermetallic matrix have been produced by the XD process and compacted by hot pressing. Such composites demonstrated significant strength increases, approaching 3-fold for the 20 vol pct materials, in comparison to the unreinforced aluminide. This behavior was accomplished without deleterious side effects as the grain boundaries and particle-matrix interfaces were intact after compressive deformation to 10 percent or more strain. Typical true compressive stress-strain diagrams for materials tested in air between 1200 and 1400 K at approximate strain rates of 1.7 x 10 to the -6th/sec are presented.
NASA Astrophysics Data System (ADS)
Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.
2016-04-01
The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.
Ultra High Energy Density Cathodes with Carbon Nanotubes
2013-12-10
a) Carbon nanotube paper coated with NCA cathode composite for testing as positive electrode in Li-ion battery (b) Comparison of NCA specific...received and purified CNT electrodes coated with NCA cathode composite. (b) Discharge capacities as a function of rate and cycle for NCA on Al and...thickness increases. The first approach was to cast SOA NCA cathode composites onto CNT current collectors using an adjustable blade coater. The
On the hole accelerator for III-nitride light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn
2016-04-11
In this work, we systematically conduct parametric studies revealing the sensitivity of the hole injection on the hole accelerator (a hole accelerator is made of the polarization mismatched p-electron blocking layer (EBL)/p-GaN/p-Al{sub x}Ga{sub 1−x}N heterojunction) with different designs, including the AlN composition in the p-Al{sub x}Ga{sub 1−x}N layer, and the thickness for the p-GaN layer and the p-Al{sub x}Ga{sub 1−x}N layer. According to our findings, the energy that the holes obtain does not monotonically increase as the AlN incorporation in the p-Al{sub x}Ga{sub 1−x}N layer increases. Meanwhile, with p-GaN layer or p-Al{sub x}Ga{sub 1−x}N layer thickening, the energy that themore » holes gain increases and then reaches a saturation level. Thus, the hole injection efficiency and the device efficiency are very sensitive to the p-EBL/p-GaN/p-Al{sub x}Ga{sub 1−x}N design, and the hole accelerator can effectively increase the hole injection if properly designed.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua
2010-11-01
A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.
Effect of hot densification on tribotechnical properties of sintered (Al-12Si)-40Sn alloy
NASA Astrophysics Data System (ADS)
Rusin, N. M.; Skorentsev, A. L.; Kolubaev, E. A.
2017-12-01
The paper describes the effect of hot densification on mechanical and tribotechnical properties of sintered samples of (Al-12Si)-40Sn composition. It proves that such treatment increases the strength and ductility of the studied materials and makes higher their wear resistant under dry friction against a steel counterbody.
Nial-base composite containing high volume fraction of AlN for advanced engines
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G. (Inventor); Whittenberger, John D. (Inventor); Lowell, Carl E. (Inventor)
1997-01-01
A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 mm to about 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAY and FeAl.
Tribological Behavior of Al-Cr Coating Obtained by Dgpsm and IIP Composite Technology
NASA Astrophysics Data System (ADS)
Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Chen, Yu; Tao, Xuewei
An Al-Cr composite alloyed layer composed of an Al enriched layer, a Cr enriched layer and a transition layer from the surface to the bulk along the cross-section was deposited on a 45# steel substrate by composite technology, where Cr was deposited using double glow plasma surface metallurgy (DGPSM), and Al was then implanted by ion implantation (IIP) to achieve higher micro-hardness and excellent abrasive resistance. The composite alloyed layer is approximately 5μm, and as metallurgical adherence to the substrate. The phases are Al8Cr5, Fe2AlCr, Cr23C6, Cr (Al) and Fe (Cr, Al) solid solution. The wear resistance tests were performed under various rotational speed (i.e. 280, 560 and 840r/min) with silicon nitride balls as the counterface material at ambient temperature. The Al-Cr composite alloyed layer exhibits excellent wear resistance when the speed is 280r/min with a friction coefficient as low as 0.3, which is attributed to Al8Cr5 in the Al implanted layer that withstands abrasive wear. Better wear resistance (friction coefficient: 0.254) at 560r/min is resulted from the formation of a high micro-hardness zone, and an oxidation layer with lubrication capacity. In addition, the composite alloyed layer suffers severe oxidative wear and adhesive wear at 840r/min due to the increment of the frictional heating. When compared to the 45# steel substrate, the enhanced wear resistance of the Al-Cr composite alloyed layer demonstrates the viable method developed in this work.
Evaluation of hot corrosion behavior of thermal barrier coatings
NASA Technical Reports Server (NTRS)
Hodge, P. E.; Miller, R. A.; Gedwill, M. A.
1980-01-01
Calcium silicate and yttria stabilized zirconia/MCrAlY thermal barrier coating systems on air-cooled specimens were exposed to sodium plus vanadium doped Mach 0.3 combustion gases. Thermal barrier coating endurance was determined to be a strong inverse function of ceramic coating thickness. Coating system durability was increased through the use of higher Cr + Al NiCrAl and CoCrAlY bond coatings. Chemical and electron microprobe analyses supported the predictions of condensate compositions and the determination of their roles in causing spalling of the ceramic coatings.
Yu, Dunji; An, Ke; Chen, Xu; ...
2015-10-09
Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plucknett, K.P.; Tiegs, T.N.; Becher, P.F.
Ductile Ni{sub 3}Al alloys have been used as binder phase for fabrication of TiC and WC matrix composites. Ni{sub 3}Al has good corrosion resistance to aqueous acidic environments, and its yield strength increases with temperature to a max at 700-800 C; this combined with high tensile ductilities (up to 50% strain) make Ni{sub 3}Al attractive for replacing Co in cemented carbides. Materials have been fabricated by both hot pressing and vacuum sintering, with Ni{sub 3}Al contents of 15 to 95 vol%. Vacuum sintering cycles, similar to those used for WC/Co and TiC/Ni (1450-1600 C), resulted in sintered densities >95% theoretical.more » WC/Ni{sub 3}Al materials showed an order of magnitude improvement in corrosion resistance over WC/Co, in sulfuric/nitric acid. These materials also had improved high temperature strength retention compared to WC/Co cermets, though initial RT strengths were lower. Fracture toughness varied between 8 and 25 MPa.m{sup 1/2} and depended primarily on Ni{sub 3}Al content and composition.« less
NASA Technical Reports Server (NTRS)
Joslin, Steven M.
1995-01-01
A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.
Sun, Chengliang; Lu, Lingli; Yu, Yan; Liu, Lijuan; Hu, Yan; Ye, Yiquan; Jin, Chongwei; Lin, Xianyong
2016-01-01
Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induced NO accumulation in the root tips. Eliminating NO production with an NO scavenger (cPTIO) significantly alleviated the Al-induced inhibition of root growth and thus reduced Al accumulation. Elimination of NO, however, did not significantly affect malate efflux or rhizosphere pH changes under Al exposure. Levels of cell wall polysaccharides (pectin, hemicelluloses 1, and hemicelluloses 2) and pectin methylesterase activity, as well as pectin demethylation in the root apex, significantly increased under Al treatment. Exogenous cPTIO application significantly decreased pectin methylesterase activity and increased the degree of methylation of pectin in the root cell wall, thus decreasing the Al-binding capacity of pectin. These results suggest that the Al-induced enhanced production of NO decreases cell wall pectin methylation, thus increasing the Al-binding capacity of pectin and negatively regulating Al tolerance in wheat. PMID:26663393
NASA Astrophysics Data System (ADS)
Cheng, Jiang-feng; Li, Gui-rong; Wang, Hong-ming; Li, Pei-si; Li, Chao-qun
2018-03-01
At T6 state, Al-Zn-Mg-Cu aluminum matrix composites reinforced with Al2O3 particles generated in situ were subjected to high pulsed magnetic fields at different magnetic induction intensities ( B = 2, 3 and 4 T). The results show that the dislocation densities in the treated samples increased with increasing B, and the magnetoplastic effect was determined to be the primary cause. The effect of the magnetic field is believed to alter the spin state of free electrons between dislocations and obstacles from the singlet state (associated with high bonding energy) to the triplet state (low bonding energy). The maximum ultimate tensile strength of 532 MPa was obtained at B = 4 T with 30 pulses, which was 20.7% higher than that of the initial sample, primarily because of dislocation strengthening. At B = 2 T, the elongation was at its maximum of 9.3%, representing an increase of 12% compared with the initial sample, while the associated ultimate tensile strength (447 MPa) was still higher than that of the untreated sample (440 MPa). The relationship between mechanical properties and microstructure was analyzed, and the improved properties observed in this work are explained by the transition of the electron spin state and the piling up of dislocations.
Dropping the hammer: Examining impact ignition and combustion using pre-stressed aluminum powder
NASA Astrophysics Data System (ADS)
Hill, Kevin J.; Warzywoda, Juliusz; Pantoya, Michelle L.; Levitas, Valery I.
2017-09-01
Pre-stressing aluminum (Al) particles by annealing and quenching Al powder alters particle mechanical properties and has also been linked to an increase in particle reactivity. Specifically, energy propagation in composites consisting of aluminum mixed with copper oxide (Al + CuO) exhibits a 24% increase in flame speed when using pre-stressed aluminum (PS Al) compared to Al of the same particle size. However, no data exist for the reactivity of PS Al powders under impact loading. In this study, a drop weight impact tester with pressure cell was designed and built to examine impact ignition sensitivity and combustion of PS Al when mixed with CuO. Both micron and nanometer scale powders (i.e., μAl and nAl, respectively) were pre-stressed, then combined with CuO and analyzed. Three types of ignition and combustion events were identified: ignition with complete combustion, ignition with incomplete combustion, and no ignition or combustion. The PS nAl + CuO demonstrated a lower impact ignition energy threshold for complete combustion, differing from nAl + CuO samples by more than 3.5 J/mg. The PS nAl + CuO also demonstrated significantly more complete combustion as evidenced by pressure history data during ignition and combustion. Additional material characterization provides insight on hot spot formation in the incomplete combustion samples. The most probable reasons for higher impact-induced reactivity of pre-stressed particles include (a) delayed but more intense fracture of the pre-stressed alumina shell due to release of energy of internal stresses during fracture and (b) detachment of the shell from the core during impact due to high tensile stresses in the Al core leading to much more pronounced fracture of unsupported shells and easy access of oxygen to the Al core. The μAl + CuO composites did not ignite, even under pre-stressed conditions.
Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements
NASA Astrophysics Data System (ADS)
Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki
2018-04-01
Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.
Hydrogen generation from Al-NiCl2/NaBH4 mixture affected by lanthanum metal.
Sun, Wen Qiang; Fan, Mei-Qiang; Fei, Yong; Pan, Hua; Wang, Liang Liang; Yao, Jun
2012-01-01
The effect of La on Al/NaBH(4) hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) mixture (Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) weight ratio, 1 : 3) has 126 mL g(-1 )min(-1) maximum hydrogen generation rate and 1764 mL g(-1) hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl(2), La has great effect on NaBH(4) hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl(2) in the milling process, which induces that the hydrolysis byproduct Ni(2)B is highly distributed into Al(OH)(3) and the catalytic reactivity of Ni(2)B/Al(OH)(3) is increased therefore. But hydrolysis byproduct La(OH)(3) deposits on Al surface and leads to some side effect. The Al-La-NiCl(2)/NaBH(4) mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material.
Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys
NASA Astrophysics Data System (ADS)
Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin
2012-04-01
The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong
In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δmore » 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.« less
Caballero-Mancebo, Elena; Moreno, José María; Corma, Avelino; Díaz, Urbano; Cohen, Boiko; Douhal, Abderrazzak
2018-05-30
In this work, we unravel how the two-dimensional Al-ITQ-4-heptylbenzoic acid (HB) metal-organic framework (MOF) changes the interactions of Nile red (NR) adsorbed on its surface. Time-resolved emission experiments indicate the occurrence of energy transfer between adsorbed NR molecules, in abnormally long time constant of 2-2.5 ns, which gets shorter (∼0.25 ns) when the concentration of the surface-adsorbed NR increases. We identify the emission from local excited state of aggregates and charge transfer and energy transfer between adsorbed molecules. Femtosecond emission studies reveal an ultrafast process (∼425 fs) in the NR@Al-ITQ-HB composites, assigned to an intramolecular charge transfer in NR molecules. A comparison of the observed photobehavior with that of NR/SiO 2 and NR/Al 2 O 3 composites suggests that the occurrence of energy transfer in the NR@MOF complexes is a result of specific and nonspecific interactions, reflecting the different surface properties of Al-ITQ-HB that are of relevance to the reported high catalytic activity. Our results provide new knowledge for further researches on other composites with the aim to improve understanding of photocatalytic and photonic processes within MOFs.
Effect of 2D WS2 Addition on Cold-Sprayed Aluminum Coating
NASA Astrophysics Data System (ADS)
Loganathan, Archana; Rengifo, Sara; Hernandez, Alexander Franco; Emirov, Yusuf; Zhang, Cheng; Boesl, Benjamin; Karthikeyan, Jeganathan; Agarwal, Arvind
2017-10-01
Tungsten disulfide (WS2) has excellent solid lubrication properties due to its 2D layered structure. This study focuses on depositing Al-2 wt.% WS2 composite coating by cold spray technique. The effect of WS2 addition on the microstructure, mechanical and tribological properties of the composite coatings is examined in the as-deposited and heat-treated conditions. After heat treatment, the coating density increased to 99% with improved intersplat bonding. The microhardness of the heat-treated Al-2 wt.% WS2 coating increased by 56% as compared to the as-sprayed coating. The wear resistance of heat-treated Al-2 wt.% WS2 coating improved by 75% with a synergistic reduction in the coefficient of friction (COF) by 51%. Transmission electron microscopy investigation reveals the presence of layered WS2 within aluminum splats with a strong interface. This study shows that cold spraying can be effectively used to integrate 2D layered WS2 as a solid lubricant in the metallic coatings.
Pardo, L.H.; Geiser, L.H.; Fenn, M.E.; Driscoll, C.T.; Goodale, C.L.; Allen, E.B.; Baron, Jill S.; Bobbink, R.; Bowman, W.D.; Clark, C.M.; Emmett, B.; Gilliam, F.S.; Greaver, T.; Hall, S.J.; Lilleskov, E.A.; Liu, L.; Lynch, J.A.; Nadelhoffer, K.; Perakis, S.S.; Robin-Abbott, M. J.; Stoddard, J.L.; Weathers, K. C.
2011-01-01
Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition (Galloway et al. 2003). Because of past, and, in some regions, continuing increases in emissions (Lehmann et al. 2005, Nilles and Conley 2001), this N deposition has reached a level that has caused or is likely to cause alterations and damage in many ecosystems across the United States. In some ecoregions, the impact of N deposition has been severe and has changed the biotic community structure and composition of ecosystems. In the Mediterranean California ecoregion, for example (see Chapter 13), replacement of native by exotic invasive vegetation is accelerated because exotic species are often more productive under elevated N deposition than native species in some California grasslands, coastal sage scrub, and desert scrub (Fenn et al. 2010, Rao and Allen 2010, Rao et al. 2010, Weiss 1999, Yoshida and Allen 2004). Such shifts in plant community composition and species richness can have consequences beyond changes in ecosystem structure: shifts may lead to overall losses in biodiversity and further impair particular threatened or endangered species (Stevens et al. 2004). Th e extirpation of the endangered checkerspot butterfl y (Euphydryas editha bayensis), because the host plant for the larval stage disappears in N-enriched ecosystems (Fenn et al. 2010, Weiss 1999), is just one example of the detrimental impacts of elevated N deposition.
Interfacial properties of aluminum/glass-fiberreinforced polypropylene sandwich composites
NASA Astrophysics Data System (ADS)
Baştürk, S. B.; Guruşçu, A.; Tanoğlu, M.
2013-07-01
Aluminum/glass-fiber-reinforced polypropylene (Al/GFPP) laminates were manufactured by using various surface pretreatment techniques. Adhesion at the composite/metal interface was achieved by a surface pretreatment of Al sheets with amino-based silane coupling agents, incorporation of a polyolefin-based adhesive film and modification with a PP-based film containing 20 wt.% of maleic-anhydride-modified polypropylene (PP-g-MA). In order to increase the effect of bonding between components of the laminates, the combination of silane treatment and the addition of the PP-based film was also investigated. The mechanical properties (shear, peel, and bending strengths) of adhesively bonded Al/GFPP laminates were examined to evaluate the effects of the surface treatments mentioned. It was revealed that the adhesion in the laminated Al/GFPP systems could be improved by the treatment of aluminum surface with an amino-based silane coupling agent. Judging from the results of peel and bending strength, with incorporation of polyolefin-based films, adhesion in the Al/GFPP laminates increased significantly. The modification of Al/GFPP interfaces with a PP-g-MA/PP layer led to the highest improvement in their adhesion properties. The combination of surface modification with silane and addition of PP-based films did not yield the high bending strength desired. This may be due to the insufficient bonding between silane groups and PP-based films.
Pinto, Edgar; Almeida, Agostinho A; Aguiar, Ana A R M; Ferreira, Isabel M P L V O
2014-01-01
Changes in macrominerals, trace elements and photosynthetic pigments were monitored at 5 stages of lettuce growth. Plants were grown in three experimental agriculture greenhouse fields (A1, A2 and A3). Soil composition was also monitored to understand its influence on lettuce composition. In general, the content of macrominerals, trace elements, chlorophylls and carotenoids decreased during lettuce growth and consequently, high nutritional value was observed at younger stages. A2 lettuces showed an increase of Fe, Al, Cr, V and Pb due to the different soil physicochemical parameters. Multiple linear regression analysis with stepwise variable selection, indicated that soil characteristics, namely, pH(CaCl2) for Fe and Cr, silt and fine-sand for Al and V, OM for Al and Pb, coarse-sand and CEC for Cr, had a key role determining element bioavailability and plant mineral content. Thus, lettuce nutritional value was strongly dependent of growth stage and soil characteristics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; ...
2017-09-01
This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca 0.9La 0.1Al 0.1Mn 0.9O 3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 degrees C shows the importance of balance between surface area, purity of the perovskite phase, and surfacemore » composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm -2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm -2, demonstrating an ~50% increase when compared to the highest performing composite with undoped carbon at the same loading.« less
NASA Astrophysics Data System (ADS)
Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O'Hayre, Ryan; Pylypenko, Svitlana
2018-01-01
This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 °C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ∼50% increase when compared to the highest performing composite with undoped carbon at the same loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Eryong, E-mail: ley401@163.com; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
Silver vanadate (AgVO{sub 3}) nanowires were synthesized by hydrothermal method and self-lubricating NiAl/Mo-AgVO{sub 3} composites were fabricated by powder metallurgy technique. The composition and microstructure of NiAl/Mo-based composites were characterized and the tribological properties were investigated from room temperature to 900 °C. The results showed that NiAl/Mo-based composites were consisted of nanocrystalline B2 ordered NiAl matrix, Al{sub 2}O{sub 3}, Mo{sub 2}C, metallic Ag and vanadium oxide phase. The appearance of metallic Ag and vanadium oxide phase can be attributed to the decomposition of AgVO{sub 3} during sintering. Wear testing results confirmed that NiAl/Mo-based composites have excellent tribological properties over amore » wide temperature range. For example, the friction coefficient and wear rate of NiAl/Mo-based composites containing AgVO{sub 3} were significantly lower than the composites containing only metallic Mo or AgVO{sub 3} lubricant when the temperature is above 300 °C, which can be attributed to the synergistic lubricating action of metallic Mo and AgVO{sub 3} lubricants. Furthermore, Raman results indicated that the composition on the worn surface of NiAl-based composites was self-adjusted after wear testing at different temperatures. For example, Ag{sub 3}VO{sub 4} and Fe{sub 3}O{sub 4} lubricants were responsible for the improvement of tribological properties at 500 °C, AgVO{sub 3}, Ag{sub 3}VO{sub 4} and molybdate for 700 °C, and AgVO{sub 3} and molybdate for 900 °C of NiAl-based composites with the addition of metallic Mo and AgVO{sub 3}. - Highlights: • NiAl/Mo-AgVO{sub 3} nanocomposites were prepared by mechanical alloying and sintering. • AgVO{sub 3} decomposed to metallic Ag and vanadium oxide during the sintering process. • NiAl/Mo-AgVO{sub 3} exhibited superior tribological properties at a board temperature range. • Phase composition on the worn surface was varied with temperatures. • Self-adjusted action was responsible for the improvement of tribological properties.« less
NASA Technical Reports Server (NTRS)
Whalen, R. T.; Gonzalez-Doncel, G.; Robinson, S. L.; Sherby, O. D.
1989-01-01
The effect of substituting the Mg metal in Mg-B composites by a Mg-14 wt pct Li solid solution on the ductility of the resulting composite was investigated using elastic modulus measurements on the P/M composite material prepared with a dispersion of B particles (in a vol pct range of 0-30) in a matrix of Mg-14 wt pct Li-1.5 wt pct Al. It was found that the elastic modulus of the composites increased rapidly with increasing boron, with specific stiffness values reaching about two times that of most structural materials. The values of the compression and tensile strengths increased significantly with boron additions. Good tensile ductility was achieved at the level of 10 vol pct B. However, at 20 vol pct B, the Mg-Li composite exhibited only limited tensile ductility (about 2 percent total elongation).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bin, E-mail: huangbin@nwpu.edu.cn; Li, Maohua; Chen, Yanxia
The interfacial reactions of continuous SiC fiber reinforced Ti-6Al-4V matrix composite (SiC{sub f}/Ti-6Al-4V composite) and continuous SiC fiber coated by C reinforced Ti-6Al-4V matrix composite (SiC{sub f}/C/Ti-6Al-4V composite) were investigated by using micro-beam electron diffraction (MBED) and energy disperse spectroscopy (EDS) on transmission electron microscopy (TEM). The sequence of the interfacial reactions in the as-processed and exposed at 900°C for 50h SiC{sub f}/Ti-6Al-4V composites can be described as SiC||TiC||Ti{sub 5}Si{sub 3} + TiC||Ti-6Al-4V and SiC||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti{sub 5}Si{sub 3}||Ti-6Al-4V, respectively. Additionally, both in as-processed and exposed composites, Ti{sub 3}SiC{sub 2} and Ti{sub 3}Si are absent at the interfaces.more » For the SiC{sub f}/C/Ti-6Al-4V composite exposed at 900 °C for 50 h, the sequence of the interfacial reaction can be described as SiC||C||TiC{sub F}||TiC{sub C}||Ti-6Al-4V before C coating is completely consumed by interfacial reaction. When interfacial reaction consumes C coating completely, the sequence of the interfacial reaction can be described as SiC||TiC||Ti{sub 5}Si{sub 3}||TiC||Ti-6Al-4V. Furthermore, in SiC{sub f}/C/Ti-6Al-4V composite, C coating can absolutely prevent Si diffusion from SiC fiber to matrix. Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed. - Highlights: • We obtained the sequence of the interfacial reactions in the as-processed and exposed at 900 °C for 50 h SiC{sub f}/Ti-6Al-4 V composites as well as in the SiC{sub f}/C/Ti-6Al-4 V composite exposed at 900 °C for 50 h. • We verified that both in as-processed and exposed SiC{sub f}/Ti-6Al-4 V composites, Ti{sub 3}SiC{sub 2} and Ti{sub 3}Si are absent at the interfaces. • Carbon coating can absolutely prevent silicon diffusion from SiC fiber to matrix. • Basing on these results, the model of formation process of the interfacial reaction products in the composites was proposed.« less
Fabrication and Characterization of Plasma-Sprayed Carbon-Fiber-Reinforced Aluminum Composites
NASA Astrophysics Data System (ADS)
Xiong, Jiang-tao; Zhang, Hao; Peng, Yu; Li, Jing-long; Zhang, Fu-sheng
2018-04-01
Carbon fiber ( C f)/Al specimens were fabricated by plasma-spraying aluminum powder on unidirectional carbon fiber bundles (CFBs) layer by layer, followed by a densification heat treatment process. The microstructure and chemical composition of the C f/Al composites were examined by scanning electron microscopy and energy-dispersive spectrometry. The CFBs were completely enveloped by aluminum matrix, and the peripheral regions of the CFBs were wetted by aluminum. In the wetted region, no significant Al4C3 reaction layer was found at the interface between the carbon fibers and aluminum matrix. The mechanical properties of the C f/Al specimens were evaluated. When the carbon fiber volume fraction (CFVF) was 9.2%, the ultimate tensile strength (UTS) of the C f/Al composites reached 138.3 MPa with elongation of 4.7%, 2.2 times the UTS of the Al matrix (i.e., 63 MPa). This strength ratio (between the UTS of C f/Al and the Al matrix) is higher than for most C f/Al composites fabricated by the commonly used method of liquid-based processing at the same CFVF level.
NASA Astrophysics Data System (ADS)
Gujba, Kachalla Abdullahi
Composites are engineered materials developed from constituent materials; matrix and reinforcements, to attain synergistic behavior at the micro and macroscopic level which are different from the individual materials. The high specific strength, low weight, excellent chemical resistance and fatigue endurance makes these composites superior than other materials despite anisotropic behaviors. Metal matrix composites (MMCs) have excellent physical and mechanical properties and alumium (Al) alloy composites have gained considerable interest and are used in multiple industries including: aerospace, structural and automotive. The aim of this research work is to develop an advanced Al-based nanocomposites reinforced with Carbon nanotubes (CNTs) and silicon carbide particulates (SiCp) nanophases using mechanical alloying and advanced consolidation procedure (Non-conventional) i.e. Spark Plasma Sintering (SPS) using two types of aluminum alloys (Al-7Si-0.3mg and Al-12Si-0.3Mg). Different concentrations of SiCp and CNTs were added and ball milled for different milling periods under controlled atmosphere to study the effect of milling time and the distribution of the second phases. Characterization techniques were used to investigate the morphology of the as received monolithic and milled powder using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy (EDS), X-Ray Mapping, X-Ray Diffraction (XRD) and Particle Size Analyses (PSA). The results revealed that the addition of high concentrations of SiCp and CNTs in both alloys aided in refining the structure of the resulting powder further as the reinforcement particles acted like a grinding agent. Good distribution of reinforcing particles was observed from SEM and no compositional fluctuations were observed from the EDS. Some degree of agglomerations was observed despite the ethyl alcohol sonication effect of the CNTs before ball milling. From the XRD; continuous reduction in crystallite size and increase in internal strains were observed as milling progressed with increase in wt.% reinforcement due to the severe plastic deformation. Al/SiC and Al/CNTs were successfully consolidated by the SPS at sintering temperatures of 400, 450 and 500°C with SiC at 5, 12 and 20wt% and 0.5wt%CNT milled for 20hrs and 3 hrs respectively. It was obtained that sintering temperature of 500°C was the most suitable as the densification achieved for SiC reinforced sample was above 98% and 100% for unreinforced sample. The hardness increased with increasing SiC content from 0, 5 to 12 wt% i.e 68, 82, 85 respectively. At 20%wt of SiC a slight decrease in the hardness was observed i.e. 70 which might be attributed to high wt.% SiC, a similar trend was observed for the other alloy studied. For CNT reinforced samples, the hardness and densification increased significantly and 100% densification was obtained at 500ºC, a hardness value from 68 to 82 was achieved from 0 to 0.5wt%CNT with a similar trend to the other alloy of interest. Conclusively, sintering of both alloys at 500ºC and above is the most suitable, the use of SiCp and CNTs as reinforcements improved the hardness, 12wt% SiC showed better hardness values than 20wt% SiC at all three temperatures and the Al alloy containing higher Si in its alloying elements showed better hardness values using the same reinforcement and sintering parameters.
Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System
Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan
2016-01-01
Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar
The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajabtabar-Darvishi, A.; Center for Surface and Nanoanalytics; Bayati, R., E-mail: reza.bayati@intel.com, E-mail: mbayati@ncsu.edu, E-mail: wdfei@hit.edu.cn
2015-03-07
This study sheds light on the effect of alumina on dielectric constant and dielectric loss of novel CaCu{sub 3}Ti{sub 4}O{sub 12} composite ceramics. Alumina, at several concentrations, was deposited on the surface of CaCu{sub 3}Ti{sub 4}O{sub 12} particles via sol-gel technique. The dielectric constant significantly increased for all frequencies and the dielectric loss substantially decreased for low and intermediate frequencies. These observations were attributed to the change in characteristics of grains and grain boundaries. It was found that the insulating properties of the grain boundaries are improved following the addition of Al{sub 2}O{sub 3}. The relative density of CaCu{sub 3}Ti{submore » 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics decreased compared to the pure CaCu{sub 3}Ti{sub 4}O{sub 12} and the grain size was greatly changed with the alumina content affecting the dielectric properties. With the addition of alumina into CaCu{sub 3}Ti{sub 4}O{sub 12}, tighter interfaces formed. The 6%- and 10%-alumina ceramics showed the minimum dielectric loss and the maximum dielectric constant, respectively. Both the dielectric constant and loss tangent decreased in the 20%-alumina ceramic due to the formation of CuO secondary phase. It was revealed that Al serves as an electron acceptor decreasing the electron concentration, if Al{sup 3+} ions substitute for Ti{sup 4+} ions, and as an electron donor increasing the electron concentration, if Al{sup 3+} ions substitute for Ca{sup 2+} ions. We established a processing-microstructure-properties paradigm which opens new avenues for novel applications of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shieh, Sean R.; Dorfman, Susannah M.; Kubo, Atsushi
The formation and properties of the post-perovskite (CaIrO{sub 3}-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe){sub 3}Al{sub 2}Si{sub 3}O{sub 12}) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90 mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148 GPa and temperatures higher than 1600 K. In some cases, evidence for a minor amount of Al{sub 2}O{sub 3} post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite + post-perovskite two-phase region. Pressure-volume data formore » the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO{sub 3} system. The presence of Al{sub 2}O{sub 3} increases the stability of perovskite relative to post-perovskite, requiring higher pressures (> 148 GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al{sub 2}O{sub 3} may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D* region. The observed synthesis pressures (> 148 GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary ({approx} 135 GPa).« less
NASA Astrophysics Data System (ADS)
Ahmed, Syed Faisal; Srivastava, Sanjay; Agarwal, Alka Bani
2018-04-01
Metal matrix composite offers outstanding properties for better performance of disc brakes. In the present study, the composite of AlTiCr master alloy was prepared by stir die casting method. The developed material was reinforced with (0-10 wt%) silicon carbide (SiC) and boron carbide (B4C). The effects of SiC reinforcement from 0 to 10 wt% on mechanical, microstructure and surface morphological properties of Al MMC was investigated and compared with B4C reinforcement. Physical properties like density and micro Vickers hardness number show an increasing trend with an increase in the percentage of SiC and B4C reinforcement. Mechanical properties viz. UTS, yield strength and percentage of elongation are improved with increasing the fraction of reinforcement. The surface morphology and phase were identified from scanning electron microscopy (SEM) and X-ray diffraction analysis and the oxidized product formed during the casting was investigated by Fourier transformation infrared spectroscopy. This confirms the presence of crystallization of corundum (α-Al2O3) in small traces as one of the alumina phases, within casting sample. Micro-structural characterization by SEM depicted that the particles tend to be more agglomerated more and more with the percentage of the reinforcement. The AFM results reveal that the surface roughness value shows a decreasing trend with SiC reinforcement while roughness increases with increase the percentage of B4C.
NASA Astrophysics Data System (ADS)
Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min
2016-04-01
This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.
Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded
NASA Astrophysics Data System (ADS)
Carretta, Eugenio; Bragaglia, Angela
2018-06-01
The metal-rich and old bulge globular cluster (GC) NGC 6388 is one of the most massive Galactic GCs (M 106 M⊙). However, the spectroscopic properties of its multiple stellar populations rested only on 32 red giants (only 7 of which observed with UVES, the others with GIRAFFE), given the difficulties in observing a rather distant cluster, heavily contaminated by bulge and disc field stars. We bypassed the problem using the resources of the largest telescope facility ever: the European Southern Observatory (ESO) archive. By selecting member stars identified by other programmes, we derive atmospheric parameters and the full set of abundances for 15 species from high-resolution UVES spectra of another 17 red giant branch stars in NGC 6388. We confirm that no metallicity dispersion is detectable in this GC. About 30% of the stars show the primordial composition of first-generation stars, about 20% present an extremely modified second-generation composition, and 50% have an intermediate composition. The stars are clearly distributed in the Al-O and Na-O planes in three discrete groups. We find substantial hints that more than a single class of polluters is required to reproduce the composition of the intermediate component in NGC 6388. In the heavily polluted component the sum Mg+Al increases as Al increases. The sum Mg+Al+Si is constant, and is the fossil record of hot H-burning at temperatures higher than about 70 MK in the first-generation polluters that contributed to form multiple populations in this cluster. Based on observations collected at ESO telescopes under programmes 073.D-0211 (propr ietary), and 073.D-0760, 381.D-0329, 095.D-0834 (archival).
Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy
NASA Astrophysics Data System (ADS)
Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.
2018-06-01
The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.
McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi
2015-11-06
In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Our study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Furthermore, synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermalmore » treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. Our results show that altering the mechanical properties of Al particles affects their reactivity.« less
NASA Astrophysics Data System (ADS)
Evans, Thomas M.; O'Neill, Hugh St. C.; Tuff, James
2008-12-01
Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg 2SiO 4) and ten melt compositions in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients (DREEol/melt) decrease with increasing silica in the melt, indicating strong bonding between REEO 1.5 and SiO 2 in the melt. The variation of DREEol/melt as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO 1.5-SiO 2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that DScol/melt deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.
Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan
2015-12-17
Nano-sized TiC x /2009Al composites (with 5, 7, and 9 vol% TiC x ) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiC x particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiC x particles in 2009Al as well as the tensile properties of nano-sized TiC x /2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiC x particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiC x /2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiC x /2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiC x particles and tensile properties of composites.
Wang, Lei; Qiu, Feng; Ouyang, Licheng; Wang, Huiyuan; Zha, Min; Shu, Shili; Zhao, Qinglong; Jiang, Qichuan
2015-01-01
Nano-sized TiCx/2009Al composites (with 5, 7, and 9 vol% TiCx) were fabricated via the combustion synthesis of the 2009Al-Ti-CNTs system combined with vacuum hot pressing followed by hot extrusion. In the present study, CNTs were used as the carbon source to synthesize nano-sized TiCx particles. An attempt was made to correlate the effect of ground CNTs by milling and the distribution of synthesized nano-sized TiCx particles in 2009Al as well as the tensile properties of nano-sized TiCx/2009Al composites. Microstructure analysis showed that when ground CNTs were used, the synthesized nano-sized TiCx particles dispersed more uniformly in the 2009Al matrix. Moreover, when 2 h-milled CNTs were used, the 5, 7, and 9 vol% nano-sized TiCx/2009Al composites had the highest tensile properties, especially, the 9 vol% nano-sized TiCx/2009Al composites. The results offered a new approach to improve the distribution of in situ nano-sized TiCx particles and tensile properties of composites. PMID:28793749
Anthropogenic Litter in Urban Freshwater Ecosystems: Distribution and Microbial Interactions
Hoellein, Timothy; Rojas, Miguel; Pink, Adam; Gasior, Joseph; Kelly, John
2014-01-01
Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, terrestrial, and marine ecosystems, and 3) characterize the activity and composition of AL biofilms in freshwater habitats. We quantified AL from the Chicago River and Chicago's Lake Michigan shoreline, and found that AL abundance in Chicago freshwater ecosystems was comparable to previously reported data for marine and terrestrial ecosystems, although AL density and composition differed among habitats. To assess microbial interactions with AL, we incubated AL and natural substrates in 3 freshwater ecosystems, quantified biofilm metabolism as gross primary production (GPP) and community respiration (CR), and characterized biofilm bacterial community composition via high-throughput sequencing of 16S rRNA genes. The main driver of biofilm community composition was incubation location (e.g., river vs pond), but there were some significant differences in biofilm composition and metabolism among substrates. For example, biofilms on organic substrates (cardboard and leaves) had lower GPP than hard substrates (glass, plastic, aluminum and tiles). In addition, bacterial communities on organic substrates were distinct in composition from those on hard substrates, with higher relative abundances of bacteria associated with cellulose decomposition. Finally, we used our results to develop a conceptual diagram designed to unite the study of AL in terrestrial and freshwater environments with the well-established field of marine debris research. We suggest this broad perspective will be useful for future studies which synthesize AL sources, ecosystem effects, and fate across multiple ecosystem types, and will benefit management and reduction of global AL accumulations. PMID:24955768
Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions.
Hoellein, Timothy; Rojas, Miguel; Pink, Adam; Gasior, Joseph; Kelly, John
2014-01-01
Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, terrestrial, and marine ecosystems, and 3) characterize the activity and composition of AL biofilms in freshwater habitats. We quantified AL from the Chicago River and Chicago's Lake Michigan shoreline, and found that AL abundance in Chicago freshwater ecosystems was comparable to previously reported data for marine and terrestrial ecosystems, although AL density and composition differed among habitats. To assess microbial interactions with AL, we incubated AL and natural substrates in 3 freshwater ecosystems, quantified biofilm metabolism as gross primary production (GPP) and community respiration (CR), and characterized biofilm bacterial community composition via high-throughput sequencing of 16S rRNA genes. The main driver of biofilm community composition was incubation location (e.g., river vs pond), but there were some significant differences in biofilm composition and metabolism among substrates. For example, biofilms on organic substrates (cardboard and leaves) had lower GPP than hard substrates (glass, plastic, aluminum and tiles). In addition, bacterial communities on organic substrates were distinct in composition from those on hard substrates, with higher relative abundances of bacteria associated with cellulose decomposition. Finally, we used our results to develop a conceptual diagram designed to unite the study of AL in terrestrial and freshwater environments with the well-established field of marine debris research. We suggest this broad perspective will be useful for future studies which synthesize AL sources, ecosystem effects, and fate across multiple ecosystem types, and will benefit management and reduction of global AL accumulations.
Migration & Extra-solar Terrestrial Planets: Watering the Planets
NASA Astrophysics Data System (ADS)
Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.
2014-04-01
A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.
NASA Astrophysics Data System (ADS)
Rahmatabadi, Davood; Tayyebi, Moslem; Hashemi, Ramin; Faraji, Ghader
2018-05-01
In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding (ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.
NASA Astrophysics Data System (ADS)
Daoush, Walid Mohamed Rashad Mohamed; Park, Hee Sup; Inam, Fawad; Lim, Byung Kyu; Hong, Soon Hyung
2015-03-01
Ti-12Mo-6Zr/Al2O3 (titanium biomaterial) was prepared by a powder metallurgy route using Spark Plasma Sintering (SPS). Ti, Mo, and Zr powders were mixed by wet milling with different content of alumina nanoparticles (up to 5 wt pct) as an oxide dispersion strengthening phase. Composite powder mixtures were SPSed at 1273 K (1000 °C) followed by heat treatment and quenching. Composite powders, sintered materials, and heat-treated materials were examined using optical and high-resolution electronic microscopy (scanning and transmission) and X-ray diffraction to characterize particle size, surface morphology, and phase identifications for each composition. All sintered materials were evaluated by measuring density, Vickers hardness, and tensile properties. Fully dense sintered materials were produced by SPS and mechanical properties were found to be improved by subsequent heat treatment. The tensile properties as well as the hardness were increased by increasing the content of Al2O3 nanoparticles in the Ti-12Mo-6Zr matrix.
Effect of NaI/I 2 mediators on properties of PEO/LiAlO 2 based all-solid-state supercapacitors
NASA Astrophysics Data System (ADS)
Yin, Yijing; Zhou, Juanjuan; Mansour, Azzam N.; Zhou, Xiangyang
NaI/I 2 mediators and activated carbon were added into poly(ethylene oxide) (PEO)/lithium aluminate (LiAlO 2) electrolyte to fabricate composite electrodes. All solid-state supercapacitors were fabricated using the as prepared composite electrodes and a Nafion 117 membrane as a separator. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements were conducted to evaluate the electrochemical properties of the supercapacitors. With the addition of NaI/I 2 mediators, the specific capacitance increased by 27 folds up to 150 F g -1. The specific capacitance increased with increases in the concentration of mediators in the electrodes. The addition of mediators also reduced the electrode resistance and rendered a higher electron transfer rate between mediator and mediator. The stability of the all-solid-state supercapacitor was tested over 2000 charge/discharge cycles.
Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.
Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin
2015-01-01
Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.
NASA Astrophysics Data System (ADS)
Han, Tongtong; Li, Caifeng; Guo, Xiangyu; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli
2016-12-01
A series of SiO2@aluminum-MOF(MIL-68) composites with different SiO2 loadings have been synthesized by a simple and mild compositing strategy for high-efficiency removal of aniline. As evidenced from SEM and TEM images as well as the particle size distribution, the incorporation of SiO2 can improve the dispersity of MIL-68(Al) in composites, and result in the smaller particle size than that of pristine MIL-68(Al). Besides, the adsorption of aniline over SiO2, MIL-68(Al), the physical mixture of these two materials, and SiO2@MIL-68(Al) composites was investigated comparatively, demonstrating a relatively high adsorption capacity (531.9 mg g-1) of 7% SiO2@MIL-68(Al) towards aniline. Combining the ultrafast adsorption dynamics (reaching equilibrium within 40 s) and great reusability, 7% SiO2@MIL-68(Al) shows excellent adsorption performance. This indicates that the SiO2@MIL-68(Al) composites possess great potential applications as a kind of fascinating adsorbent in water pollution protection.
Structural, morphological and interfacial characterization of Al-Mg/TiC composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, A.; Angeles-Chavez, C.; Flores, O.
2007-08-15
Morphological and structural characterization of Al-Mg/TiC composites obtained by infiltration process and wetting by the sessile drop technique were studied. Focusing at the interface, wetting of TiC substrates by molten Al-Mg-alloys at 900 deg. C was investigated. Electron probe microanalysis (EPMA) indicated that aluminum carbide (Al{sub 4}C{sub 3}) is formed at the interface and traces of TiAl{sub 3} in the wetting assemblies were detected. Scanning Electron Microscopy (SEM) observations show that TiC particles do not appear to be uniformly attacked to produce a continuous layer of Al{sub 4}C{sub 3} at the interface. Molten Al-Mg-alloys were infiltrated into TiC preforms withmore » flowing argon at a temperature of 900 deg. C. In the composites no reaction phase was observed by SEM. Quantification of the Al phase in the composite was carried out by X-ray diffraction (XRD) and Rietveld analysis. Chemical mapping analyzed by SEM shows that the Al-Mg alloy surrounds TiC particles. In the composites with 20 wt.% of Mg the Al-Mg-{beta} phase was detected through XRD.« less
Chemical composition and strength of dolomite geopolymer composites
NASA Astrophysics Data System (ADS)
Aizat, E. A.; Al Bakri, A. M. M.; Liew, Y. M.; Heah, C. Y.
2017-09-01
The chemical composition of dolomite and the compressive strength of dolomite geopolymer composites were studied. The both composites prepared with mechanical mixer manufactured by with rotor speed of 350 rpm and curing in the oven for 24 hours at 80˚C. XRF analysis showThe dolomite raw materials contain fewer amounts of Si and Al but high Ca in its composition. Dolomite geopolymer composites with 20M of NaOH shows greater and optimum compressive strength compared to dolomite geopolymer with other NaOH molarity. This indicated better interaction of dolomite raw material and alkaline activator need high molarity of NaOH in order to increase the reactivity of dolomite.
Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki
2015-01-01
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions.
Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.
1995-01-01
Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.
Bozorgpour, Farahnaz; Ramandi, Hossein Fasih; Jafari, Pooya; Samadi, Saman; Yazd, Shabnam Sharif; Aliabadi, Majid
2016-12-01
In the present study the chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite bead adsorbent. The influence of Al 2 O 3 /Fe 3 O 4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibers for nitrate and phosphate compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite beads. Copyright © 2016 Elsevier B.V. All rights reserved.
Processing of In-Situ Al-AlN Metal Matrix Composites via Direct Nitridation Method
1998-04-01
to prepare the aluminum melts with desired chemical compositions. Table 1. Chemical compositions of the starting materials. Alloy Mg Fe Cr Si Ni Al...Al 0.001 0.11 0.001 0.04 0.005 bal. Alloy Al Fe Cr Si Ni Mg Mg 0.01 0.12 0.001 0.03 0.006 bal. The ingots were initially cut to chunks with...hours. Figure 26 shows the optical micrographs obtained from the ingots after nitridation reaction of the alloys initially containing Al- 5wt .% Si
Formation Mechanism of Oxide-Sulfide Complex Inclusions in High-Sulfur-Containing Steel Melts
NASA Astrophysics Data System (ADS)
Shin, Jae Hong; Park, Joo Hyun
2018-02-01
The [S] content in resulfurized steel is controlled in the range of 200 to 800 ppm to ensure good machinability and workability. It is well known that "MgAl2O4(spinel)+CaS" complex inclusions are formed in molten steel during the ladle refining process, and these cause nozzle clogging during continuous casting. Thus, in the present study, the "Refractory-Slag-Metal-Inclusions (ReSMI)" multiphase reaction model was employed in conjunction with experiments to investigate the influence of slag composition and [S] content in the steel on the formation of oxide-sulfide complex inclusions. The critical [S] and [Al] contents necessary for the precipitation of CaS in the CaO-Al2O3-MgO-SiO2 (CAMS) oxide inclusions were predicted from the composition of the liquid inclusions, as observed by scanning electron microscopy-electron dispersive spectrometry (SEM-EDS) and calculated using the ReSMI multiphase reaction model. The critical [S] content increases with increasing content of SiO2 in the slag at a given [Al] content. Formation mechanisms for spinel+CaS and spinel+MnS complex inclusions were also proposed.
High-pressure Phase Relation In The MgAl2O4-Mg2SiO4 System
NASA Astrophysics Data System (ADS)
Kojitani, H.; Hisatomi, R.; Akaogi, M.
2005-12-01
High-pressure and high-temperature experiments indicate that high-pressure phases of oceanic basalts contain Al-rich phases. MgAl2O4 with calcium ferrite-type crystal structure is considered as a main component of such the Al-rich phases. Since the calcium ferrite-type MgAl2O4 can be synthesized at only the maximum pressure of a Kawai-type high-pressure apparatus with tungsten carbide (WC) anvils, the amount of a synthesized sample is very limited. Therefore, the crystal structure of the calcium ferrite-type MgAl2O4 has been hardly known in detail due to these difficulties in sample synthesis. In our high-pressure experiments in the MgO-Al2O3-SiO2 system, it was shown that Mg2SiO4 component could be dissolved in the MgAl2O4 calcium ferrite. In this study, we tried to synthesize a single phase MgAl2O4 calcium ferrite sample and to make the Rietveld refinement of the XRD pattern of the sample. The high-pressure phase relations in the MgAl2O4-Mg2SiO4 system were studied to know the stability field of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions. Lattice parameters-composition relation of the MgAl2O4-Mg2SiO4 calcium ferrite solid solutions was also determined. High-pressure and high-temperature experiments were performed by using a Kawai-type high-pressure apparatus at Gakushuin University. WC anvils with truncated edge length of 1.5 mm were used. Heating was made by a Re heater. Temperature was measured by a Pt/Pt-13%Rh thermocouple. Starting materials for the phase relation experiments were the mixture of MgO, Al2O3 and SiO2 with bulk compositions of MgAl2O4:Mg2SiO4 = 90:10, 78:22, 70:30 and 50:50. The starting materials were held at 21-27 GPa and 1600 °C for 3 hours and then were recovered by the quenching method. The MgAl2O4 calcium ferrite sample for the Rietveld analysis was prepared by heating MgAl2O4 spinel at 27 GPa and about 2200 °C for one hour. Powder X-ray diffraction (XRD) profiles of obtained samples were measured by using a X-ray diffractometer at Gakushuin University (RINT 2500V, Cr Kα, 45 kV, 250 mA). Composition analysis of the recovered samples was made using SEM-DES. The RIETAN-2000 program was used to perform the Rietveld refinement. The results of the high-pressure phase relation experiments show that stability field of single phase of MgAl2O4-Mg2SiO4 solid solutions spreads at lower pressure than that of pure MgAl2O4 calcium ferrite. The lowest pressure at which the calcium ferrite solid solution can be synthesized is about 23 GPa. The maximum solubility of Mg2SiO4 component is about 35%. Lattice parameters of pure MgAl2O4 calcium ferrite were determined as a = 9.9495(6) Å, b = 8.6466(5) Å, c = 2.7901(2) Å ( Pbnm space group) by the Rietveld refinement. Obtained atomic positions for calcium ferrite-type MgAl2O4 are very similar to those of CaFe2O4 calcium ferrite. Lattice parameters of MgAl2O4-Mg2SiO4 calcium ferrite solid solutions with various compositions indicate that c-axis does not change with the composition and that a- and b-axes have a linear increase and decrease trend with increasing Mg2SiO4 component, respectively.
Sadat, Mohammad Rafat; Bringuier, Stefan; Asaduzzaman, Abu; Muralidharan, Krishna; Zhang, Lianyang
2016-10-07
In this paper, molecular dynamics simulations are used to study the effect of molecular water and composition (Si/Al ratio) on the structure and mechanical properties of fully polymerized amorphous sodium aluminosilicate geopolymer binders. The X-ray pair distribution function for the simulated geopolymer binder phase showed good agreement with the experimentally determined structure in terms of bond lengths of the various atomic pairs. The elastic constants and ultimate tensile strength of the geopolymer binders were calculated as a function of water content and Si/Al ratio; while increasing the Si/Al ratio from one to three led to an increase in the respective values of the elastic stiffness and tensile strength, for a given Si/Al ratio, increasing the water content decreased the stiffness and strength of the binder phase. An atomic-scale analysis showed a direct correlation between water content and diffusion of alkali ions, resulting in the weakening of the AlO 4 tetrahedral structure due to the migration of charge balancing alkali ions away from the tetrahedra, ultimately leading to failure. In the presence of water molecules, the diffusion behavior of alkali cations was found to be particularly anomalous, showing dynamic heterogeneity. This paper, for the first time, proves the efficacy of atomistic simulations for understanding the effect of water in geopolymer binders and can thus serve as a useful design tool for optimizing composition of geopolymers with improved mechanical properties.
Synthesis and Explosive Consolidation of Titanium, Aluminium, Boron and Carbon Containing Powders
NASA Astrophysics Data System (ADS)
Chikhradze, Mikheil; Oniashvili, George; Chikhradze, Nikoloz; D. S Marquis, Fernand
2016-10-01
The development of modern technologies in the field of materials science has increased the interest towards the bulk materials with improved physical, chemical and mechanical properties. Composites, fabricated in Ti-Al-B-C systems are characterized by unique physical and mechanical properties. They are attractive for aerospace, power engineering, machine and chemical applications. The technologies to fabricate ultrafine grained powder and bulk materials in Ti-Al-B-C system are described in the paper. It includes results of theoretical and experimental investigation for selection of powders composition and determination of thermodynamic conditions for bland preparation, as well as optimal technological parameters for mechanical alloying and adiabatic compaction. The crystalline coarse Ti, Al, C powders and amorphous B were used as precursors and blends with different compositions of Ti-Al, Ti-Al-C, Ti-B-C and Ti-Al-B were prepared. Preliminary determination/selection of blend compositions was made on the basis of phase diagrams. The powders were mixed according to the selected ratios of components to produce the blend. Blends were processed in “Fritsch” Planetary premium line ball mill for mechanical alloying, syntheses of new phases, amorphization and ultrafine powder production. The blends processing time was variable: 1 to 20 hours. The optimal technological regimes of nano blend preparation were determined experimentally. Ball milled nano blends were placed in metallic tube and loaded by shock waves for realization of consolidation in adiabatic regime. The structure and properties of the obtained ultrafine grained materials depending on the processing parameters are investigated and discussed. For consolidation of the mixture, explosive compaction technology is applied at room temperatures. The prepared mixtures were located in low carbon steel tube and blast energies were used for explosive consolidation compositions. The relationship of ball milling technological parameters and explosive consolidation conditions on the structure/properties of the obtained samples are described in the paper.
Barbosa, Julierme Z; Motta, Antonio C V; Consalter, Rangel; Poggere, Giovana C; Santin, Delmar; Wendling, Ivar
2018-01-01
Native to subtropical region of South America, yerba mate is responsive to P under some conditions, but the degree of influence of genetic and soil on the growth and composition of the leaf is unknown. The aim of study was to evaluate plant growth, nutrients and potentially toxic elements in leaves of yerba mate clones in response to P application in acid soils. In greenhouse condition, two yerba mate clone seedlings were grown (210 days) in pots, each clone in a completely randomized design in factorial scheme (with and without P; four acid soils). The elemental composition of leaves and the growth of plants were determined. Phosphorus promoted plant growth, but this was not accompanied by increased P in leaf tissue in all conditions tested. The P effect on the elemental composition varied: decrease/null (N, K, Mg, Mn, Cu, Ni, B, Mo, Al, Cd); increase/null (C/N, C, Ca, Fe, V); increase/decrease/null (Zn, Ba, Pb) and; null (Cr). The soils affect the elemental composition of the leaves, especially Mn, with accumulation greater than 1000 mg kg-1. The Ba, Pb, Al and Zn in the leaves varied among clones. Yerba mate response to P was affected by edaphic and plant factors.
Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite
NASA Technical Reports Server (NTRS)
Progar, Donald J.
1988-01-01
A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the poor results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.
Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite
NASA Technical Reports Server (NTRS)
Progar, Donald J.
1988-01-01
A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the por results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.
Mechanical behavior and fatigue performance of SMA short fiber reinforced MMC
NASA Astrophysics Data System (ADS)
Al-Matar, Basem Jawad
The mechanical behavior and performance of Shape Memory Alloy (SMA) short fiber NiTi reinforced Al was experimentally investigated for monotonic and fatigue test Al 6061 NiTi-SiC T6 was superior to unreinforced materials as well as to the reinforced Al T4. Taya three-dimensional model was performed on the monotonic tensile test at room temperature. It showed good agreement with experimental results. In order to utilize the compressive criterion for SMA, the NiTi reinforced Al composite was cooled at -10°C and prestrained at 1.2%. Beyond this limit composite suffered from damage. The net enhancement of SMA effect was around 10 MPa on composite yield stress. Results showed that the elastic constant for the composite did not change with loading and unloading suggesting that the inelastic behavior is plasticity. Further investigation on the inelastic behavior model as damage and/or plasticity by evaluating Poisson's ratio during loading was carried out by Adaptive Image Correlation Technique for Full-Field Strain Measurement. Poisson's ratio increased from around 0.33 to 0.5 demonstrating that it is plasticity that is responsible for the inelastic behavior. Scanning electron microscopy was also used and confirmed model results. The overall damage-behavior was quantified in terms of the post fatigue failure strength for low-cycle fatigue tests. Power law model was best to fit experimental findings.
NASA Astrophysics Data System (ADS)
Lutfi Anis, Ahmad; Ramli, Rosmamuhammadani; Darham, Widyani; Zakaria, Azlan; Talari, Mahesh Kumar
2016-02-01
Conventional Al-Cu alloys exhibit coarse grain structure leading to inferior mechanical properties in as-cast condition. Expensive thermo-mechanical treatments are needed to improve microstructure and corresponding mechanical properties. In situ Al-based composites were developed to improve mechanical properties by dispersion strengthening and grain refinement obtained by the presence of particulates in the melt during solidification. In this work Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 in situ composites were prepared by liquid casting method. XRD, electron microscopy and mechanical tests were performed on suitably sectioned and metallographically prepared surfaces to investigate the phase distribution, hardness and tensile properties. It was found that the reinforcement particles were segregated along the grain boundaries of Al dendrites. Tensile fracture morphology for both Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 were analyzed and compared to determine the fracture propagation mechanism in the composites. Al-4Cu-3ZrB2 in situ composites displayed higher strength and hardness compared to Al-4Cu-3TiB2 which could be ascribed to the stronger interfacial bonding between the Al dendrites and ZrB2 particulates as evidenced from fractographs.
NASA Astrophysics Data System (ADS)
Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.
2001-07-01
A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.
Development of Al2O3 fiber-reinforced Al2O3-based ceramics.
Tanimoto, Yasuhiro; Nemoto, Kimiya
2004-09-01
The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Sanders, Jeffrey H.; Hager, Carl H., Jr.; Zabinski, Jeffrey S.; VanderWal, Randall L.; Andrews, Rodney; Lerch, Bradley A.
2007-01-01
The wear behavior of low-cost, lightweight 10-wt% TiC-particulate-reinforced Ti-6Al-4V matrix composite (TiC/Ti- 6Al-4V) was examined under fretting at 296, 423, and 523 K in air. Bare 10-wt% TiC/Ti-6Al-4V hemispherical pins were used in contact with dispersed multiwalled carbon nanotubes (MWNTs), magnetron-sputtered diamondlike carbon/chromium (DLC/Cr), magnetron-sputtered graphite-like carbon/chromium (GLC/Cr), and magnetron-sputtered molybdenum disulphide/titanium (MoS2/Ti) deposited on Ti-6Al-4V, Ti-48Al-2Cr-2Nb, and nickel-based superalloy 718. When TiC/Ti-6Al-4V was brought into contact with bare Ti-6Al-4V, bare Ti-48Al-2Cr-2Nb, and bare nickel-based superalloy 718, strong adhesion, severe galling, and severe wear occurred. However, when TiC/Ti-6Al-4V was brought into contact with MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings, no galling occurred in the contact, and relatively minor wear was observed regardless of the coating. All the solid-film lubricants were effective from 296 to 523 K, but the effectiveness of the MWNT, DLC/Cr, GLC/Cr, and MoS2/Ti coatings decreased as temperature increased.
Effect of alumina on grain refinement of Al-Si hypereutectic alloys
NASA Astrophysics Data System (ADS)
Majhi, J.; Sahoo, S. K.; Patnaik, S. C.; Sarangi, B.; Sachan, N. K.
2018-03-01
The size, volume fraction and distribution of primary as well as eutectic silicon affect the mechanical properties of the Al-Si hypereutectic alloys. It is very difficult for the simultaneous refinement and modification of primary and secondary Si particles in hypereutectic Al-Si alloys through traditional processes. This paper explores the role of γ-Al2O3 nanoparticles on Si particles in the course of solidification in hypereutectic Al-Si alloys at particular pouring temperature. The present study involves incorporation of varying contents dispersed γ-Al2O3 nanoparticles into a molten base metal during stir casting and followed by solidification. It has been reported that the synthesized composites having good interfacial bonding (wetting) between the dispersed phase and the liquid matrix was achieved in order to provide improved mechanical properties of the composite. The cast product of hypereutectic Al-16Si alloy with the reinforcement of nanoparticles, illustrated a significant improvement in both wear behaviour and hardness. The dry sliding wear test has been performed on a group of specimens with varying parameters (different loads and sliding velocities) in a pin on disc wear testing machine. Moreover, the wear rate and specific wear rate also affected in different load and different sliding velocities. However in XRD analysis of the samples, the enhancement of wear resistance as well as hardness was due to the formation of brittle phases like SiO2, Al2O3 and Al-rich intermetallic compounds. The hardness value of the materials increases nearly 6% in addition to increase in the density of only 0.8%. As per literature, the large plate eutectic Si particles were modified in to the fine core particles and it acquires enough potential for various applications.
NASA Astrophysics Data System (ADS)
Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham
2018-02-01
Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karina, Wiwiek, E-mail: wiekarina@gmail.com; Heraldy, Eddy, E-mail: eheraldy@gmail.com; Pramono, Edi
Ca-Mg-Al hydrotalcite-like compound (Ca-Mg-Al HTlc) was prepared by co-precipitation method using brine water that is well known as the desalination process waste water. The structure of Ca-Mg-Al HTlc was determined by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis. Ca-Mg-Al HTlc was studied as a non-halogenated filler in ethylene vinyl acetate (EVA) matrix. Composites with different filler concentrations were prepared to evaluate the influence of Ca-Mg-Al HTlc on thermal and mechanical properties of EVA.The presence of Ca-Mg-Al HTlc in the composite has been confirmed by FTIR analysis. Thermal properties of composites show significant reduction of degradation temperature as wellmore » as the loading of HTlc in EVA. However, the total enthalpies combustion of composites with 1% and 5% HTlc loadings higher compared to neat EVA. Further, mechanical properties were determined by tensile test. The result shows that tensile strength and elongation at break of composites decrease relatively by Ca-Mg-Al HTlc addition.« less
Geochemical evolution of solutions derived from experimental weathering of sulfide-bearing rocks
Munk, L.; Faure, G.; Koski, R.
2006-01-01
The chemical composition of natural waters is affected by the weathering of geologic materials at or near the surface of the Earth. Laboratory weathering experiments of whole-rock sulfide rocks from the Shoe-Basin Mine (SBM) and the Pennsylvania Mine (PM) from the Peru Creek Basin, Summit County, Colorado, indicate that the mineral composition of the sulfide rocks, changes in pH, the duration of the experiment, and the formation of sorbents such as Fe and Al oxyhydroxides affect the chemical composition of the resulting solution. Carbonate minerals in the rock from SBM provide buffering capacity to the solution, contribute to increases in the pH and enhance the formation of Fe and Al oxyhydroxides, which sorb cations from solution. The final solution pH obtained in the experiments was similar to those measured in the field (i.e., 2.8 for PM and 5.0 for SBM). At PM, acidic, metal-rich mine effluent is discharged into Peru Creek where it mixes with stream water. As a result, the pH of the effluent increases causing Fe and Al oxyhydroxide and schwertmannite to precipitate. The resulting solids sorb metal cations from the water thereby improving the quality of the water in Peru Creek. ?? 2006.
Ren, Haizhou; Shehzad, Farooq Khurum; Zhou, Yunshan; Zhang, Lijuan; Iqbal, Arshad; Long, Yi
2018-05-01
Herein, new all-inorganic transparent composite films with the formula (Zn2Al-LDH/{Mo132-Ac})n have been fabricated by a layer-by-layer method using the exfoliated Zn2Al-LDH monolayer nanosheets and Keplerate-type macroanion {Mo132-Ac}. They were characterized by UV-vis absorption spectroscopy, SEM, AFM, and XPS techniques. The Z-scan measurements, which were conducted under laser irradiation at a wavelength of 532 nm, a pulse width of 6 ns, a repetition rate of 10 Hz, and the light intensity at a focus E0 of 10 μJ, revealed that all the films had notable saturated absorption and self-defocusing effect with a large third-order optical nonlinear susceptibility χ(3). With an increase in the number of layers (i.e., n) corresponding to the increase in the thickness of the films, the third-order nonlinear absorption β and refractive effects of the films were improved (i.e., the χ(3) value was up to 1.99 × 10-11 esu when n = 24); this implied that the NLO responses could be modified by fine-tuning the thickness of the composite films to meet the demands of different devices.
NASA Astrophysics Data System (ADS)
Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.
2009-03-01
The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 < x < 0.92) thin films made by radiofrequency (13.56 MHz) cathodic magnetron sputtering from composite Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.
NASA Astrophysics Data System (ADS)
Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif
2016-02-01
The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.
Thermal degradation of the tensile strength of unidirectional boron/aluminum composites
NASA Technical Reports Server (NTRS)
Grimes, H. H.; Lad, R. A.; Maisel, J. E.
1977-01-01
The variation of ultimate tensile strength with thermal treatment of B-Al composite materials and of boron fibers chemically removed from these composites in an attempt to determine the mechanism of the resulting strength degradation was studied. Findings indicate that thermally cycling B-Al represents a more severe condition than equivalent time at temperature. Degradation of composite tensile strength from about 1.3 GN/m squared to as low as 0.34 GN/m squared was observed after 3,000 cycles to 420 C for 203 micrometers B-1100 Al composite. In general, the 1100 Al matrix composites degraded somewhat more than the 6061 matrix material studied. Measurement of fiber strengths confirmed a composite strength loss due to the degradation of fiber strength. Microscopy indicated a highly flawed fiber surface.
Enhanced luminescence in SrMgAl(x)O(17±δ):yMn4+ composite phosphors.
Cao, Renping; Sharafudeen, Kaniyarakkal N; Qiu, Jianrong
2014-01-03
Red-emitting SrMgAlxO17±δ:yMn(4+) composite phosphors (x=10-100; y=0.05-4.0 mol%) are synthesized by solid-state reaction method in air. Addition of Al2O3 leads to the formation of two concomitant phases, i.e., SrMgAl10O17 and Al2O3 phases in the composite phosphor. Red emission from Mn(4+) ions in the composite phosphors is greatly enhanced due to multiple scattering and absorption of excitation light between SrMgAl10O17 and Al2O3 phases. SrMgAlxO17±δ:yMn(4+) composite phosphors would be a promising candidate as red phosphor in the application of a 397 nm near UV-based W-LED. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dang, Xudan; Wei, Meng; Fan, Bingbing; Guan, Keke; Zhang, Rui; Long, Weimin; Zhang, Hongsong
2017-06-01
In situ synthesis of mullite whisker was introduced to Al2O3-SiC composite by microwave sintering. The effects of sintering parameters (sintering temperature, holding time and SiC particle size) on thermal shock resistance of Al2O3-SiC composite were also studied in this paper. Original SiC particles coated with SiO2 by a sol-gel method were reacted with Al2O3 particles, resulting in the in situ growth of mullite. The phase composition was identified by x-ray diffraction (XRD). The bridging of mullite whisker between Al2O3 and SiC particles was observed by scanning electron microscopy (SEM) analysis. The thermal shock resistance of samples was investigated through the combination of water quenching and three-point bending methods. The results show that the thermal shock resistance of Al2O3-SiC composite with mullite whisker reinforced remarkably, indicating better mechanical properties than the Al2O3-SiC composite without mullite whisker. Finally, the optimum process parameters (the sintering temperature of 1500 °C, the holding time of 30 min, and the SiC particle size of 5 µm) for toughening Al2O3-SiC composite by in situ synthesized mullite whisker were obtained.
Effect of Carbon in Fabrication Al-SiC Nanocomposites for Tribological Application
Hekner, Bartosz; Myalski, Jerzy; Pawlik, Tomasz; Sopicka-Lizer, Małgorzata
2017-01-01
Aluminium-based hybrid composites are a new class of advanced materials with the potential of satisfying the demands in engineering applications. This paper describes the effects of carbon addition on the formation and properties of AMC with SiC nanoparticles reinforcement. The composites were produced via mechanical alloying followed by hot pressing. Three forms of carbon, graphite (GR), multiwalled carbon nanotubes (CNTs), and, for the first time, glassy carbon (GC), were used for the hybrid composites manufacturing and compared with tribological properties of Al-SiC composite without carbon addition. GC and CNTs enhanced formation of Al-SiC composite particles and resulted in a homogeneous distribution of reinforcing particles. On the other hand, GR addition altered mechanochemical alloying and did not lead to a proper distribution of nanoparticulate SiC reinforcement. Hot pressing technique led to the reaction between Al and carbon as well as SiC particles and caused the formation of Al4C3 and γ-Al2O3. The subsistence of carbon particles in the composites altered the predominant wear mechanisms since the wear reduction and the stabilization of the friction coefficient were observed. GC with simultaneous γ-Al2O3 formation in the hybrid Al-SiC(n)-C composites turned out to be the most effective additive in terms of their tribological behaviour. PMID:28773039
Investigation on Tribological Properties of the Pre-oxidized Ti2AlN/TiAl Composite
NASA Astrophysics Data System (ADS)
Wang, Daqun; Sun, Dongli; Han, Xiuli; Wang, Qing; Wang, Guangwei
2018-03-01
Different oxidation layers on the Ti2AlN/TiAl substrate which was fabricated by in situ synthesis were prepared through thermal oxidation process. The microstructure, phase identification and elements distribution of the oxidation layers were analyzed. The tribological performance of pre-oxidized composites against Si3N4 ball at 25 and 600 °C, as well as the effect of pre-oxidation layers on tribological performance was systematically investigated. The results show that, compared to Ti2AlN/TiAl, the pre-oxidized composites present more excellent tribological properties, especially the wear resistance at 600 °C. It is a significant finding that, different from severe abrasive wear and plastic deformation of Ti2AlN/TiAl, the tribo-films formed by the pre-oxidation layers on the worn surface of pre-oxidized composites weaken abrasive wear and suppress the development of plastic deformation to protect the underlying composite substrate from wear. Moreover, the stable cooperation on the interface between tribo-films and Si3N4 ball results in the relatively steady friction coefficient.
Dry sliding wear of heat treated hybrid metal matrix composites
NASA Astrophysics Data System (ADS)
Naveed, Mohammed; Khan, A. R. Anwar
2016-09-01
In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites. For all the heat treatment processes studied ice quenching with ageing duration of 6hrs resulted in improved wear resistance of both the unreinforced matrix alloy and its hybrid composites.
The oxidation of Ni-rich Ni-Al intermetallics
NASA Technical Reports Server (NTRS)
Doychak, Joseph; Smialek, James L.; Barrett, Charles A.
1988-01-01
The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.
NASA Technical Reports Server (NTRS)
Papike, J. J.; Burger, P. V.; Bell, A. S.; Shearer, C. K.; Le, Loan; Jones, J.
2014-01-01
A spiked (with REE, V, Sc) martian basalt Y980459 composition was used to synthesize olivine, spinel, and pyroxene at 1200 C at 5 oxygen fugacities: IW-1, IW, IW+1, IW+2, and QFM. The high spike levels for REE were used for two specific reasons. First, we wanted to be able to analyze REE by both electron microprobe and ion probe. Second, we wanted the most important "Others" components, (i.e., those outside the pyroxene quadrilateral such as Al, Cr3+, Fe3+, REE3+, V3+, V4+, etc.) to be REE3+Mg (Si,Al)2O6. At the doped levels we used, the most important "Others" component is REE3+ in the M2 site coupled with Al in the tetrahedral site. The goal of this paper is to explain the significant increase in the value of D(sub V)(sup pyroxene/melt) with increased Wo content of the pyroxene. We compare augite (Wo approx. 33), pigeonite (Wo approx. 13) and orthopyroxene (Wo approx 3.8). We also show olivine for comparison. The crystal chemical factors which account for this remarkable increase of DV with Wo are twofold. First, with Ca in the M2 site (as in diopside, CaMgSi2O6) the site is large and 8-coordinated while Mg in the M2 site (as in enstatite, Mg2Si2O6) the site is smaller and 6- coordinated. Second, tetrahedral Al in the pyroxene chains provides charge balance and makes the M2 site larger and more compliant for the introduction of REE.
NASA Astrophysics Data System (ADS)
Morissette, Sherry L.
A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and cross-linking agent concentration, where fAl2O3 decreased with increasing tip diameter and increased with increasing cross-linking agent concentration. Free-fomied Al2O3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no detectable micro-defects (e.g., bubbles or cracking).
Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment
NASA Astrophysics Data System (ADS)
Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi
2015-12-01
After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.
NASA Astrophysics Data System (ADS)
Li, Xinyi; Dong, Chaofang; Zhao, Qing; Pang, Yu; Cheng, Fasong; Wang, Shuaixing
2018-02-01
Titania-based composite coatings were prepared by plasma electrolytic oxidation (PEO) treatment of Ti6Al4V alloy in electrolyte with α-Al2O3, Cr2O3 or h-BN microparticles in suspension. The microstructure, composition of PEO composite coatings were analyzed by SEM, EDS and XRD. The wear resistance of composite ceramic coatings was studied by ball-on-disk wear test at ambient temperature and 300 °C. The results showed that the addition of microparticles accelerated the growth rate of PEO coating and changed the microstructure and composition of PEO coating. PEO coating was porous and mainly composed of rutile-TiO2, anatase-TiO2 and Al2TiO5. PEO/α-Al2O3 (Cr2O3 or h-BN) composite coating only had small micropores and appeared some α-Al2O3 (Cr2O3 or h-BN) phase. Besides, the addition of α-Al2O3 (Cr2O3 or h-BN) microparticles greatly improved the wear resistance of PEO coating. At ambient temperature, abrasive wear dominated the wear behavior of PEO coating, but abrasive wear and adhesive peel simultaneously happened at 300 °C. Whether at ambient temperature or 300 °C, PEO composite coating had better wear resistance than PEO coating. Besides, PEO/h-BN composite coating outperformed other composite coatings regardless of the temperature.
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites
2013-01-01
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction. PMID:23601907
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites
NASA Astrophysics Data System (ADS)
Wen, John Z.; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F.; Zhou, Y. Norman
2013-04-01
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.
Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites.
Wen, John Z; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F; Zhou, Y Norman
2013-04-20
Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.
Optical, structural, and nuclear scientific studies of AlGaN with high Al composition
NASA Astrophysics Data System (ADS)
Lin, Tse Yang; Chung, Yee Ling; Li, Lin; Yao, Shude; Lee, Y. C.; Feng, Zhe Chuan; Ferguson, Ian T.; Lu, Weijie
2010-08-01
AlGaN epilayers with higher Al-compositions were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on (0001) sapphire. Trimethylgallium (TMGa), trimethylaluminium (TMAl) and NH3 were used as the source precursors for Ga, Al, and N, respectively. A 25 nm AlN nucleation layer was first grown at low-temperature of 590 °C at 300 Torr. Followed, AlxGa1-xN layers were grown at 1080 °C on low-temperature AlN nucleation layers. The heterostructures were characterized by a series of techniques, including x-ray diffraction (XRD), Rutherford backscattering (RBS), photoluminescence (PL), scanning electron microscopy (SEM) and Raman scattering. Precise Al compositions were determined through XRD, RBS, and SEM combined measurements. Room Temperature Raman Scattering spectra shows three major bands from AlGaN alloys, which are AlN-like, A1 longitudinal optical (LO) phonon modes, and E2 transverse optical (TO) band, respectively, plus several peak comes from the substrate. Raman spectral line shape analysis lead to an optical determination of the electrical property free carrier concentration of AlGaN. The optical properties of AlGaN with high Al composition were presented here.
Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-ping
2014-01-01
Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications. PMID:24759082
Al-Mg isotopic evidence for episodic alteration of Ca-Al-rich inclusions from Allende
NASA Astrophysics Data System (ADS)
Fagan, T. J.; Guan, Y.; MacPherson, G. J.
2007-08-01
Textures, mineral assemblages, and Al-Mg isotope systematics indicate a protracted, episodic secondary mineralization history for Allende Ca-Al-rich inclusions (CAIs). Detailed observations from one type B1 CAI, one B2, one compact type A (CTA), and one fluffy type A (FTA) indicate that these diverse types of CAIs are characterized by two distinct textural and mineralogic types of secondary mineralization: (1) grossular-rich domains, concentrated along melilite grain boundaries in CAI interiors, and (2) feldspathoid-bearing domains, confined mostly to CAI margins just interior to the Wark-Lovering rim sequence. The Al-Mg isotopic compositions of most secondary minerals in the type B1 CAI, and some secondary minerals in the other CAIs, show no resolvable excesses of 26Mg, whereas the primary CAI phases mostly yield correlated excesses of 26Mg with increasing Al/Mg corresponding to "canonical" initial 26Al/27Al ˜ 4.5-5 × 10-5. These secondary minerals formed at least 3 Ma after the primary CAI minerals. All but two analyses of secondary minerals from the fluffy type-A CAI define a correlated increase in 26Mg/24Mg with increasing Al/Mg, yielding (26Al/27Al)0 = (4.9 ± 2.8) × 10-6. The secondary minerals in this CAI formed 1.8-3.2 Ma after the primary CAI minerals. In both cases, the timing of secondary alteration is consistent with, but does not necessarily require, alteration in an asteroidal setting. One grossular from the type B2 CAI, and several grossular and secondary feldspar analyses from the compact type A CAI, have excesses of 26Mg consistent with initial 26Al/27Al ˜ 4.5 × 10-5. Especially in the compact type A CAI, where 26Mg/24Mg in grossular correlates with increasing Al/Mg, these 26Mg excesses are almost certainly due to in situ decay of 26Al. They indicate a nebular setting for formation of the grossular. The preservation of these diverse isotopic patterns indicates that heating on the Allende parent body was not pervasive enough to reset isotopic systematics of fine-grained secondary minerals. Secondary mineralization clearly was not restricted to a short time interval, and at least some alteration occurred coincident with CAI formation and melting events (chondrule formation) in the nebula. This observation supports the possibility that alteration followed by melting affected the compositional evolution of CAIs.
Hydrogen Generation from Al-NiCl2/NaBH4 Mixture Affected by Lanthanum Metal
Qiang Sun, Wen; Fan, Mei-Qiang; Fei, Yong; Pan, Hua; Wang, Liang Liang; Yao, Jun
2012-01-01
The effect of La on Al/NaBH4 hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl2/NaBH4 mixture (Al-15 wt% La-5 wt% NiCl2/NaBH4 weight ratio, 1 : 3) has 126 mL g−1 min−1 maximum hydrogen generation rate and 1764 mL g−1 hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl2, La has great effect on NaBH4 hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl2 in the milling process, which induces that the hydrolysis byproduct Ni2B is highly distributed into Al(OH)3 and the catalytic reactivity of Ni2B/Al(OH)3 is increased therefore. But hydrolysis byproduct La(OH)3 deposits on Al surface and leads to some side effect. The Al-La-NiCl2/NaBH4 mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material. PMID:22619596
NASA Astrophysics Data System (ADS)
Anne Zulfia, S.; Salshabia, Nadella; Dhaneswara, Donanta; Utomo, Budi Wahyu
2018-05-01
ADC12 reinforced nano SiC has been successfully produced by stir casting process. Nano SiC was added into ADC12 alloy varied from 0.05 to 0.3 vf-% while Al-5Ti-1B and Sr were kept constant at 0.04 and 0.02 wt-% respectively to all composites. Mg was added 10 wt% to improve reinforce's wettability. The addition of Al-5Ti-1B to the alloy was as grain refiner while Sr was added to modify Mg2Si. All composites were characterized both microstructures analysis and mechanical properties include tensile strength, hardness, wear rate, impact strength, and porosity. The highest properties of composites was obtained at 0.3 vf-% nano SiC addition with UTS of 155.4 MPa, hardness of 46.16 HRB, impact strength of 0.22 J/mm2, and wear rate of 1.71 × 10-5 mm3/m. Tensile strength and hardness increased as grain size and porosities decreased. The highest wear resistance was investigated on the composition with the highest hardness. Impact strength decreased due to increasing volume fraction of nano-SiC. The phases present in microsturucture was dominantly Mg2Si which also affected mechanical properties of these composites.
Coatings for directional eutectics. [cyclic furnace oxidation tests
NASA Technical Reports Server (NTRS)
Jackson, M. R.; Rairden, J. R.; Hampton, L. V.
1974-01-01
Coating compositions were evaluated for oxidation protection of directionally solidified composite alloy NiTaC-13. These coatings included three NiCrAlY compositions (30-5-1, 25-10-1 and 20-15-1), two FeCrAlY compositions (30-5-1 and 25-10-1), a CoCrAlY composition (25-10-1), and one duplex coating, Ni-35Cr + Al. Duplicate pin samples of each composition were evaluated using two cyclic furnace oxidation tests of 100 hours at 871 C and 500 hours at 1093 C. The two best coatings were Ni-20Cr-15Al-lY and Ni-35Cr + Al. The two preferred coatings were deposited on pins and were evaluated in detail in .05 Mach cyclic burner rig oxidation to 1093 C. The NiCrAlY coating was protective after 830 hours of cycling, while the duplex coating withstood 630 hours. Test bars were coated and cycled for up to 500 hours. Tensile tests indicated no effect of coatings on strength. In 871 C air stress rupture, a degradation was observed for coated relative to bare material. The cycled NiCrAlY coating offered excellent protection with properties superior to the bare cycled NiTaC-13 in 1093 C air stress rupture.
Zeng, Fangxinyu; Chen, Jinyao; Yang, Feng; Kang, Jian; Cao, Ya; Xiang, Ming
2018-01-16
In this study, polyamide-aluminum foil-polypropylene (PA-Al-PP) composite films with different orientation status of the PP layer were prepared, and their morphology, tensile, peeling and heat seal behavior were studied. The comparative study of tensile and fracture behaviors of single-layer film of PA, Al and PP, as well as the composite films of PA-Al, PP-Al and PA-Al-PP revealed that in PA-Al-PP composite film, the PA layer with the highest tensile strength can share the tensile stress from the Al layer during stretching, while the PP layer with the lowest tensile strength can prevent further development of the small cracks on boundary of the Al layer during stretching. Moreover, the study of heat seal behavior suggested that both the orientation status and the heat seal conditions were important factors in determining the heat seal strength ( HSS ) and failure behavior of the sample. Four failure types were observed, and a clear correspondence between HSS and failure types was found. The results also elucidated that for the composite film, only in the cases where the tensile stress was efficiently released by each layer during HSS measurement could the composite film exhibit desired high HSS that was even higher than its tensile strength.
NASA Astrophysics Data System (ADS)
Sun, Guanhong; He, Xiaodong; Jiang, Jiuxing; Sun, Yue; Zhong, Yesheng
2013-02-01
To increase the wear resistance of polymer matrix composites, alumina coatings were deposited on polymer substrates by a two-step method combining plasma spraying and micro-arc oxidation. The microstructures and phase compositions of the processed coatings were investigated for different treatment times. Uniformly distributed pores were found in addition to the presence of various coral-like structures and floccules on the surface of the coatings. The presence of α-Al2O3 and γ-Al2O3 phases was identified by XRD. The distribution of alumina was analyzed by EDS and is discussed. The maximum bond strength of the coatings was found to be 5.89 MPa. There was little thermal damage in the polymer substrates after the coatings were produced.
Flaim, Chiara; Kob, Michael; Di Pierro, Angela M; Herrmann, Markus; Lucchin, Lucio
2017-12-01
Obesity and diabetes mellitus type 2 (DM2) are characterized by chronic inflammation and oxidative stress [Donath et al. 2013] and this leads to cardiovascular diseases [Hulsmans & Holvoet 2010]. Whey proteins (WP) have antioxidant [Chitapanarux et al. 2009], anti-inflammatory [Sugawara et al. 2012] and hypoglycemic activities [Mignone et al. 2015], while data on weight, body composition [Frestedt et al. 2008; Aldrich et al. 2011] and blood pressure are conflicting [Kawase et al. 2000; Lee et al. 2007]. WP have unpleasant taste and smell [Patel 2015], but a new WP isolate (ProLYOtin®) seems to be more palatable. 40 g/die of ProLYOtin® were supplemented to overweight people (n=31) with impaired fasting glucose/DM2 for 12 weeks. Markers of antioxidant status (total antioxidant status, glutathione peroxidase, glutathione reductase, uric acid), oxidative damage (thiobarbituric acid reactive substances, advanced oxidation protein products, 8-hydroxydeoxyguanosine), inflammation (interleukin-6, high sensitive reactive protein C) and glicemic status (fasting glucose, insulin, glycated hemoglobin), anthropometric data (weight, height, waist circumference), body composition (body cell mass, fat mass), blood pressure, hand grip strength and skin autofluorescence were measured before and at the end of supplementation. Isolate palatability was evaluated. An increase in glutathione peroxidase, a decrease in uric acid and no change in glutathione reductase, total antioxidant status, oxidative damage, inflammation and glucose markers were found. Significant improvements in anthropometric parameters and fat mass were detected. There wasn't any change in blood pressure, skin autofluorescence and physical performance. Two-thirds of subjects judged the supplement positively. ProLYOtin® seems suitable for treatment of OS and overweight. Copyright © 2017 Elsevier Inc. All rights reserved.
Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis?
Taylor, Lorna J; Brown, Richard G; Tsermentseli, Stella; Al-Chalabi, Ammar; Shaw, Christopher E; Ellis, Catherine M; Leigh, P Nigel; Goldstein, Laura H
2013-05-01
Systematic explorations of language abilities in patients with amyotrophic lateral sclerosis (ALS) are lacking in the context of wider cognitive change. Neuropsychological assessment data were obtained from 51 patients with ALS and 35 healthy controls matched for age, gender and IQ. Composite scores were derived for the domains of language and executive functioning. Domain impairment was defined as a composite score ≤5th centile relative to the control mean. Cognitive impairment was also classified using recently published consensus criteria. The patients with ALS were impaired on language and executive composite scores. Language domain impairment was found in 43% of patients with ALS, and executive domain impairment in 31%. Standardised language and executive composite scores correlated in the ALS group (r=0.68, p<0.001). Multiple regression analyses indicated that scores on the executive composite accounted for 44% of the variance in language composite scores. Language impairments are at least as prevalent as executive dysfunction in ALS. While the two domains are strongly associated, executive dysfunction does not fully account for the profile of language impairments observed, further highlighting the heterogeneity of cognitive impairment in non-demented patients with ALS.
Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite
NASA Astrophysics Data System (ADS)
Pandey, A. B.; Mishra, R. S.; Mahajan, Y. R.
1996-02-01
The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.
Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN
NASA Astrophysics Data System (ADS)
Manna, Sukriti; Brennecka, Geoff L.; Stevanović, Vladan; Ciobanu, Cristian V.
2017-09-01
Recent advances in microelectromechanical systems often require multifunctional materials, which are designed so as to optimize more than one property. Using density functional theory calculations for alloyed nitride systems, we illustrate how co-alloying a piezoelectric material (AlN) with different nitrides helps tune both its piezoelectric and mechanical properties simultaneously. Wurtzite AlN-YN alloys display increased piezoelectric response with YN concentration, accompanied by mechanical softening along the crystallographic c direction. Both effects increase the electromechanical coupling coefficients relevant for transducers and actuators. Resonator applications, however, require superior stiffness, thus leading to the need to decouple the increased piezoelectric response from the softened lattice. We show that co-alloying of AlN with YN and BN results in improved elastic properties while retaining some of the piezoelectric enhancements from YN alloying. This finding may lead to new avenues for tuning the design properties of piezoelectrics through composition-property maps.
NASA Astrophysics Data System (ADS)
Chandran, P.; Zafari, A.; Lui, E. W.; Xia, K.
2017-05-01
Mechanically alloyed Al with immiscible elements such as Nb can lead to a uniform distribution of nanoscaled precipitates which are highly stable compared to conventional alloying and with excellent interface, resulting in significant increase in strength without problems associated with nano ceramic particles in metal matrix composites. Although immiscible, Nb can be alloyed with Al through mechanical milling, forming trialuminide (Al3Nb), either directly or upon subsequent precipitation, which possesses high strength, stiffness and stability at elevated temperatures. In the present study, Al-5 at.% Nb supersaturated solid solution was achieved after prolonged ball milling and nano Al3Nb precipitates were formed during subsequent ageing at 530°C. The Al-Al3Nb powder was consolidated by equal channel angular pressing (ECAP) at 400°C, resulting in a fully dense material with a uniform distribution of nanoscaled Al3Nb precipitates in the Al matrix.
Entropy and structure of silicate glasses and melts
Richet, P.; Robie, R.A.; Hemingway, B.S.
1993-01-01
Low-temperature adiabatic Cp measurements have been made on NaAlSi2O6, MgSiO3, Ca3Al2Si3O12 and Ca1.5Mg1.5Al2Si3O12 glasses. Above about 50 K, these and previous data show that the heat capacity is an additive function of composition to within ??1% throughout the investigated glassforming part of the system CaO-MgO-Al2O3-SiO2. In view of the determining role of oxygen coordination polyhedra on the low-temperature entropy, this is interpreted as indicating that Si and Al are tetrahedrally coordinated in all these glasses, in agreement with structural data; whereas Ca and Mg remain octahedrally coordinated. In contrast, heat capacities and entropies are not additive functions of composition for alkali aluminosilicates, indicating increases in the coordination numbers of alkali elements from about six to nine when alumina is introduced. A thermochemical consequence of additivity of vibrational entropies of glasses is that entropies of mixing are essentially configurational for calcium and magnesium aluminosilicate melts. For alkali-bearing liquids, it is probable that vibrational entropies contribute significantly to entropies of mixing. At very low temperatures, the additive nature of the heat capacity with composition is less well followed, likely as a result of specific differences in medium-range order. ?? 1993.
NASA Astrophysics Data System (ADS)
Abolkassem, Shimaa A.; Elkady, Omayma A.; Elsayed, Ayman H.; Hussein, Walaa A.; Yehya, Hosam M.
2018-06-01
Al /Ni-SiC composite was prepared via powder metallurgy technique. SiC particles were coated with 10 wt% nano nickel by electroless deposition, then mixed by three percents (5, 10 and 15 wt%) with Al powder in a ball mill using 10:1 ball to powder ratio for 5 h. Three types of sintering techniques were used to prepare the composite. Uniaxial cold compacted samples were sintered in a vacuum furnace at 600 °C for 1 h. The second group was the vacuum sintered samples which were post-processed by hot isostatic press (HIP) at 600 °C for 1hr under the pressure of 190 MPa. The third group was the hot pressed samples that were consolidated at 550 °C under the uniaxial pressure of 840 MPa. The results showed that the hot pressed samples have the highest densification values (97-100%), followed by the HIP samples (94-98%), then come the vacuum sintered ones (92-96%). X-ray diffraction analysis (XRD) indicated the presence of Al and Al3Ni, which means that all SiC particles were encapsulated with nickel as short peaks for SiC were observed. Hardness results revealed that HIP samples have the highest hardness values. The magnetization properties were improved by increasing SiC/Ni percent, and HIP samples showed the highest magnetization parameter values.
Al-TiH2 Composite Foams Magnesium Alloy
NASA Astrophysics Data System (ADS)
Prasada Rao, A. K.; Oh, Y. S.; Ain, W. Q.; A, Azhari; Basri, S. N.; Kim, N. J.
2016-02-01
The work presented here in describes the synthesis of aluminum based titanium-hydride particulate composite by casting method and its foaming behavior of magnesium alloy. Results obtained indicate that the Al-10TiH2 composite can be synthesized successfully by casting method. Further, results also reveal that closed-cell magnesium alloy foam can be synthesized by using Al-10TiH2 composite as a foaming agent.
Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials
Zhao, Qian; Liang, Yunhong; Liu, Qingping; Zhang, Zhihui; Yu, Zhenglei; Ren, Luquan
2018-01-01
Based on microstructure characteristics of Meretrix lusoria shell and Rapana venosa shell, bionic coupling layered B4C/5083Al composites with different layered structures and hard/soft combination models were fabricated via hot pressed sintering. The simplified bionic coupling models with hard and soft layers were similar to layered structure and hardness tendency of shells, guiding the bionic design and fabrication. B4C/5083Al composites with various B4C contents and pure 5083Al were treated as hard and soft layers, respectively. Hot pressed sintering maintained the designed bionic structure and enhanced high bonding strength between ceramics and matrix. Compared with B4C/5083Al composites, bionic layered composites exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The hard layers absorbed applied loads in the form of intergranular fracture. Besides connection role, soft layers restrained slabbing phenomenon and reset extension direction of cracks among layers. The coupling functions of bionic composites proved the feasibility and practicability of bionic fabrication, providing a new method for improvement of ceramic/Al composite with properties of being lightweight and high mechanical strength. PMID:29701707
NASA Astrophysics Data System (ADS)
Varol, T.; Canakci, A.
2013-06-01
In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.
A method for introduction of Al2O3 nanofiber into aluminum alloy
NASA Astrophysics Data System (ADS)
Chen, Yijin; Qin, He; Kurganova, Y. A.; Gaaze, V. K.
2018-04-01
Experimental samples of aluminum matrix composites (AMCs) reinforced with Al2O3 nanofibers were obtained. In order to increase the wettability in liquid phase combination conditions, it is proposed to use copper powder as a carrier of nanofiber. When studying the structure of the samples, a modifying effect of the introduction of reinforcement, demonstrated by grinding the grain, was revealed.
David Roon; Jason Dunham; Bret Harvey; Ryan Bellmore; Deanna Olson; Gordon Reeves
2017-01-01
After decades of intensive timber harvest and land use change that removed forests from the landscape, recent satellite data show that forest cover has increased in North America (Liu et al. 2015). However, these regenerating forests differ greatly in structure and composition than the forests that preceded them (McIntyre et al. 2015). This has been especially evident...
Mg-Al-Ca In-Situ Composites with a Refined Eutectic Structure and Their Compressive Properties
NASA Astrophysics Data System (ADS)
Shi, Ling-Ling; Xu, Jian; Ma, Evan
2008-05-01
In a series of Mg x (Al2Ca)100- x (76 ≤ x ≤ 87) ternary alloys near the Mg-(Mg,Al)2Ca pseudo-binary eutectic point, different phases and morphologies based on ultrafine eutectic microstructure have been obtained by controlling the composition and changing the cooling rate via either induction melting or copper mold casting. For 81 ≤ x ≤ 87, the chill-cast alloys with ductile Mg dendrites embedded in an ultrafine [Mg + (Mg,Al)2Ca] eutectic matrix exhibit gradually increased fracture strength from 415 to 491 MPa with the decrease of Mg content. At x = 79, the Mg79Al14Ca7 alloy contains hard (Mg,Al)2Ca precipitates coexisting with ductile Mg dendrite, dispersed in the strong eutectic matrix. This alloy exhibits the highest compressive fracture strength (600 MPa), and the specific strength reaches 3.4 × 105 N·m·kg-1. The alloys all exhibit substantial plastic strain (5 to 6 pct). The attainment of such a combination of strength and plasticity is an interesting and useful step in improving the mechanical properties of lightweight Mg alloys.
NASA Astrophysics Data System (ADS)
Gao, Qiong; Wang, Kehong
2016-03-01
This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.
2017-01-01
In the present work, an aluminum metal matrix reinforced with (Al2O3) nanoparticles was fabricated as a surface composite sheet using friction stir processing (FSP). The effects of processing parameters on mechanical properties, hardness, and microstructure grain were investigated. The results revealed that multi-pass FSP causes a homogeneous distribution and good dispersion of Al2O3 in the metal matrix, and consequently an increase in the hardness of the matrix composites. A finer grain is observed in the microstructure examination in specimens subjected to second and third passes of FSP. The improvement in the grain refinement is 80% compared to base metal. The processing parameters, particularly rotational tool speed and pass number in FSP, have a major effect on strength properties and surface hardness. The ultimate tensile strength (UTS) and the average hardness are improved by 25% and 46%, respectively, due to presence of reinforcement Al2O3 nanoparticles. PMID:28885575
Effect of scandium on the phase composition and mechanical properties of ABM alloys
NASA Astrophysics Data System (ADS)
Molchanova, L. V.
2010-09-01
The effect of scandium on the composition and mechanical properties of ABM-1 alloys (Al-30% Be-5% Mg) is studied. The scandium content is varied from 0.1 to 0.5 wt %. It is established that, in the studied part of the Al-Be-Mg-Sc system, an aluminum solid solution (Al) and the ScBe13 compound are in equilibrium with a beryllium solid solution (Be). Magnesium dissolves in both the aluminum component and the ScBe13 compound. The strengthening effect related to the decomposition of the solid solution and the precipitation of Al3Sc cannot be extended to the strengthening of ABM-type alloys. Additions of 0.1-0.15 wt % Sc only weakly improve the mechanical properties of the alloys due to the refinement of beryllium-component grains. At high scandium contents, the strength increases insignificantly due to primary precipitation of ScBe13 and the plasticity decreases simultaneously.
Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium
NASA Astrophysics Data System (ADS)
Li, Peng
2014-12-01
This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.
Tong, Mengliang; Chen, Hongyan; Yang, Zhanhong; Wen, Runjuan
2011-01-01
A clean-route synthesis of Zn-Al-hydrotalcites (Zn-Al-LDHs) using zinc oxide and sodium aluminate solution has been developed. The as-obtained materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The effects of metal ions at different molar ratios on the performance of hydrotalcites were discussed. The results showed that the Zn-Al-hydrotalcites can be successfully synthesized at three different Zn/Al ratios of 3:1, 2:1 and 1:1. Thermal aging tests of polyvinyl chloride (PVC) mixed with Zn-Al-LDHs, calcium stearate (CaSt2) and β-diketone were carried out in a thermal aging test box by observing the color change. The results showed that Zn-Al-LDHs can not only enhance the stability of PVC significantly due to the improved capacity of HCl-adsorption but also increase the initial stability and ensure good-initial coloring due to the presence of the Zn element. The effects of various amounts of Zn-Al-LDHs, CaSt2 and β-diketone on the thermal stability of PVC were discussed. The optimum composition was determined to be 0.1 g Zn-Al-LDHs, 0.15 g CaSt2 and 0.25 g β-diketone in 5 g PVC. PMID:21673921
Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites
NASA Astrophysics Data System (ADS)
Herbold, E. B.; Cai, J.; Benson, D. J.; Nesterenko, V. F.
2007-12-01
Recent investigations of the dynamic compressive strength of cold isostatically pressed composites of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) powders show significant differences depending on the size of metallic particles. The addition of W increases the density and changes the overall strength of the sample depending on the size of W particles. To investigate relatively large deformations, multi-material Eulerian and arbitrary Lagrangian-Eulerian methods, which have the ability to efficiently handle the formation of free surfaces, were used. The calculations indicate that the increased sample strength with fine metallic particles is due to the dynamic formation of force chains. This phenomenon occurs for samples with a higher porosity of the PTFE matrix compared to samples with larger particle size of W and a higher density PTFE matrix.
The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys
NASA Astrophysics Data System (ADS)
Shen, Ye
The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the enthalpy analysis indicates that there are different mechanisms leading to the Tg shift before and after the break point. Before the break point, Tg shifts solely due to the increased glass stability through a relaxation process. However, after the break point, Tg shifts to higher temperatures because of both the relaxation and the composition change effects.
Wear resistance of CuZr-based amorphous-forming alloys against bearing steel in 3.5% NaCl solution
NASA Astrophysics Data System (ADS)
Ji, Xiulin; Wang, Hui; Bao, Yayun; Zheng, Dingcong
2017-11-01
To investigate the amorphous-crystalline microstructure on the tribocorrosion of bulk metallic glasses (BMGs), 6 mm diameter rods of Cu46-xZr47Al7Agx (x = 0, 2, 4) amorphous-forming alloys with in situ crystalline and amorphous phases were fabricated by arc-melting and Cu-mould casting. Using a pin-on-disc tribometer, the tribo-pair composed by CuZr-based amorphous-forming alloys and AISI 52100 steel were studied in 3.5% NaCl solution. With the increase of Ag content from 0 to 4 at.%, the compressive fracture strength and the average hardness decrease firstly and then increase. Moreover, 4 at.% Ag addition increases the amount of amorphous phase obviously and inhibits the formation of brittle crystalline phase, resulting in the improvement of corrosion resistance and the corrosive wear resistance. The primary wear mechanism of the BMG composites is abrasive wear accompanying with corrosive wear. The tribocorrosion mass loss of Cu42Zr47Al7Ag4 composite is 1.5 mg after 816.8 m sliding distance at 0.75 m s-1 sliding velocity under 10 N load in NaCl solution. And the volume loss evaluated from the mass loss is about 20 times lower than that of AISI 304 SS. Thus, Cu42Zr47Al7Ag4 composite may be a good candidate in the tribology application under marine environment.
Li, Xiaoqiang
2018-01-01
The in-house developed bismuthate glass and the SiCp/Al composites with different volume fractions of SiC particles (namely, 60 vol.%, 65 vol.%, 70 vol.%, and 75 vol.%) were jointed by vacuum hot-pressing process. The novel material can be used for the space mirror. The SiCp is an abbreviation for SiC particle. Firstly, the SiCp/Al composites with different vol.% of SiC particle were manufactured by using infiltration process. In order to obtain a stable bonding interface, the preoxide layers were fabricated on the surfaces of these composites for reacting with the bismuthate glass. The coefficient of thermal expansion (CTE) was carried out for characterizing the difference between the composites and bismuthate glass. The sealing quality of the composites and the bismuthate glass was quantified by using shear strength testing. The optical microstructures showed the particles were uniformly distributed in the Al matrix. The SEM image shows that a smooth oxidation layer was generated on the SiCp/Al composite. The CTE testing result indicated that the higher the vol.% of the particles in the composite, the lower the CTE value. The shear strength testing result disclosed that SiCp/Al composite with relatively low CTE value was favorable to obtain a bonding interface with high strength. PMID:29675118
Wang, Bin; Qu, Shengguan; Li, Xiaoqiang
2018-01-01
The in-house developed bismuthate glass and the SiC p /Al composites with different volume fractions of SiC particles (namely, 60 vol.%, 65 vol.%, 70 vol.%, and 75 vol.%) were jointed by vacuum hot-pressing process. The novel material can be used for the space mirror. The SiCp is an abbreviation for SiC particle. Firstly, the SiC p /Al composites with different vol.% of SiC particle were manufactured by using infiltration process. In order to obtain a stable bonding interface, the preoxide layers were fabricated on the surfaces of these composites for reacting with the bismuthate glass. The coefficient of thermal expansion (CTE) was carried out for characterizing the difference between the composites and bismuthate glass. The sealing quality of the composites and the bismuthate glass was quantified by using shear strength testing. The optical microstructures showed the particles were uniformly distributed in the Al matrix. The SEM image shows that a smooth oxidation layer was generated on the SiC p /Al composite. The CTE testing result indicated that the higher the vol.% of the particles in the composite, the lower the CTE value. The shear strength testing result disclosed that SiC p /Al composite with relatively low CTE value was favorable to obtain a bonding interface with high strength.
Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites
NASA Astrophysics Data System (ADS)
Huo, Shiyan; Xie, Lijing; Xiang, Junfeng; Pang, Siqin; Hu, Fang; Umer, Usama
2018-02-01
Molecular dynamics (MD) models for the study on the mechanical properties of β-SiC particles-reinforced aluminum matrix nano-composites (Al/SiC nano-composites) are established. The nano-composites in the model are fabricated by a powder metallurgy (P/M) process, followed by a hot isostatic pressing and then annealing to room temperature. The fabricated nano-composites have dense and even distributions of reinforced particles. Then representative volume elements (RVEs) of the fabricated nano-composites are built by adding periodic boundary conditions (PBCs). In this way, RVEs with different volume fractions and particle sizes of SiC are produced and put into the simulation of tension tests. The elasticity and strength in single axial tension obtained from MD analysis are in good agreement with those calculated according to the rule of mixture. It is found that the dispersion of SiC particles into the Al matrix leads to a significant enhancement in the strength of nano-composites compared to pure Al, which is also dramatically affected by both the volume fraction and particle size. Additionally, the Al/SiC nano-composites with finer SiC particles get greater enhancement in the mechanical behavior than those with coarser ones. MD analysis clearly shows the contributions of load-transfer effect, thermal mismatch strengthening and Orowan strengthening to the strengthening of Al/SiC nano-composites.
Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids
González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.
2017-01-01
The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681
Site preference of Mg acceptors and improvement of p-type doping efficiency in nitride alloys.
Park, Ji-Sang; Chang, K J
2013-06-19
We perform first-principles density functional calculations to investigate the effect of Al and In on the formation energy and acceptor level of Mg in group-III nitride alloys. Our calculations reveal a tendency for the Mg dopants to prefer to occupy the lattice sites surrounded with Al atoms, whereas hole carriers are generated in In- or Ga-rich sites. The separation of the Mg dopants and hole carriers is energetically more favourable than a random distribution of dopants, being attributed to the local bonding effect of weak In and strong Al potentials in alloys. As a consequence, the Mg acceptor level, which represents the activation energy of Mg, tends to decrease with increasing numbers of Al next-nearest neighbours, whereas it increases as the number of In next-nearest neighbours increases. Based on the results, we suggest that the incorporation of higher Al and lower In compositions will improve the p-type doping efficiency in quaternary alloys, in comparison with GaN or AlGaN ternary alloys with similar band gaps.
Site preference of Mg acceptors and improvement of p-type doping efficiency in nitride alloys
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chang, K. J.
2013-06-01
We perform first-principles density functional calculations to investigate the effect of Al and In on the formation energy and acceptor level of Mg in group-III nitride alloys. Our calculations reveal a tendency for the Mg dopants to prefer to occupy the lattice sites surrounded with Al atoms, whereas hole carriers are generated in In- or Ga-rich sites. The separation of the Mg dopants and hole carriers is energetically more favourable than a random distribution of dopants, being attributed to the local bonding effect of weak In and strong Al potentials in alloys. As a consequence, the Mg acceptor level, which represents the activation energy of Mg, tends to decrease with increasing numbers of Al next-nearest neighbours, whereas it increases as the number of In next-nearest neighbours increases. Based on the results, we suggest that the incorporation of higher Al and lower In compositions will improve the p-type doping efficiency in quaternary alloys, in comparison with GaN or AlGaN ternary alloys with similar band gaps.
NASA Astrophysics Data System (ADS)
Gudfinnsson, Gudmundur H.; Presnall, Dean C.
1996-12-01
Isobarically invariant phase relations in the CaO-MgO-Al2O3-SiO2 system (CMAS) involving the lherzolite phase assemblage in equilibrium with liquid have been determined at 2.4-3.4 GPa. These phase relations form the solidus of model lherzolite in the CMAS system. Our data, which include determinations of all phase compositions, are in excellent agreement with the 3.0 and 4.0 GPa points of Milholland and Presnall [1991] and Davis and Schairer [1965], respectively. The invariant transition on the P-T solidus curve from spinel- to garnet-lherzolite at 3.0 GPa, 1575°C [Milholland and Presnall, 1991], is confirmed, but we observe that the theoretically required temperature depression on the solidus curve at this point is not experimentally detectable. Composition trends along the solidus take a sharp turn at the transition. In the spinel-lherzolite stability field, melt compositions become increasingly Fo-normative and less En-normative with increasing pressure, but become less Fo-normative and more pyroxenitic as pressure increases in the garnet-lherzolite stability field. Calculated melting reactions indicate that forsterite is in reaction relationship with the melt up to 3.0 GPa. Orthopyroxene is also in reaction relationship at pressures higher than just over 2.8 GPa and is the only phase in reaction relationship with the melt in the garnet-lherzolite stability field. Comparison of the normative compositions and the CaO/Al2O3 values of the komatiites of Gorgona Island and of the Reliance Formation in Zimbabwe with the compositions of liquids along the solidus of model lherzolite in the CMAS system indicates that the former komatiites were generated at pressures close to 3.7 GPa and the latter at close to 4.5 GPa, assuming that the melt generation occurred in the presence of the complete garnet-lherzolite assemblage.
Welding bulk metallic glass using nanostructured reactive multilayer foils
NASA Astrophysics Data System (ADS)
Trenkle, Jonathan C.
We have used Al/Ni reactive foils to weld Zr57Ti 5Cu20Ni8Al10 metallic glasses. The welds are a composite morphology comprised of glass ligaments and intermetallic AlNi (the product of the reactive foil). The presence of the presumably brittle intermetallic (in lieu of the glass) is expected to limit the mechanical properties of the welds. Based on fracture toughness measurements and the crack propagation paths, we conclude that virtually all of the toughness can be ascribed to the presence of the metallic glass ligaments. Increasing the pressure applied during welding increases the fraction of the joint made of these ligaments and so increases the fracture toughness as well. To eliminate the intermetallic from the weld altogether, we attempted to fabricate reactive mulitlayer foils that form an amorphous product by melting and cooling rapidly during a self-propagating reaction. We began with reactive foils with overall composition Zr2Ni but quickly determined that the foils did not fully melt. We then attempted to lower the melting temperature and increase the glass forming ability and the heat of mixing by adding Al and Cu. These foils again did not fully melt. Finally we systematically determined that foils of overall compositions Hf37Ni63, Ni 80P20, and Ni60P40, which are all known binary metallic glasses, will potentially melt during a self-propagating reaction. Knowledge of the phase transformations during a self-propagating reaction is necessary to engineer reactive foils for future applications. Furthermore, reactive foils provide an opportunity to study phase transformations under high heating rates not easily achievable. Characterizing the processes in the reaction zone however is challenging, requiring both temporal resolution better than ˜ 100 mus (the time required for the reaction front to pass a fixed location) and spatial resolution of < 100 mum (the approximate width of the reaction zone). Using synchrotron x-ray radiation, we have studied these phase transformations in situ in Al/Ni multilayers. Unlike previous annealing and quenching studies in these multilayers, we observed no metastable or intermediate phases.
Walker, James D S; Grosvenor, Andrew P
2013-08-05
Magnetoelectric materials couple both magnetic and electronic properties, making them attractive for use in multifunctional devices. The magnetoelectric AFeO3 compounds (Pna2(1); A = Al, Ga) have received attention as the properties of the system depend on composition as well as the synthetic method used. Al(1-x)Ga(x)FeO3. (0 ≤ x ≤ 1) was synthesized by the sol-gel and coprecipitation methods and studied by X-ray absorption near-edge spectroscopy (XANES). Al L(2,3-), Ga K-, and Fe K-edge XANES spectra were collected to examine how the average metal coordination number (CN) changes with the synthetic method. Al and Fe were found to prefer octahedral sites, while Ga prefers the tetrahedral site. It was found that composition played a larger role in determining site occupancies than synthetic method. Samples made by the sol-gel or ceramic methods (reported previously; Walker, J. D. S.; Grosvenor, A. P. J. Solid State Chem. 2013, 197, 147-153) showed smaller spectral changes than samples made via the coprecipitation method. This is attributed to greater ion mobility in samples synthesized via coprecipitation as the reactants do not have a long-range polymeric or oxide network during synthesis like samples synthesized via the sol-gel or ceramic method. Increasing annealing temperature increases the average coordination number of Al, and to a lesser extent Ga, while the average coordination number of Fe decreases. This study indicates that greater disorder is observed when the Al(1-x)Ga(x)FeO3. compounds have high Al content, and when annealed at higher temperatures.
Microwave dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12}-Al{sub 2}O{sub 3} composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Zaman, Rosyaini Afindi
2016-07-19
(1-x)CaCu{sub 3}Ti{sub 4}O{sub 12} + (x)Al{sub 2}O{sub 3} composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO{sub 3}, CuO and TiO{sub 2} powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al{sub 2}O{sub 3} were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sinteredmore » samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl{sub 2}O{sub 4} and Corundum (Al{sub 2}O{sub 3}) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al{sub 2}O{sub 3} (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al{sub 2}O{sub 3} (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al{sub 2}O{sub 3} was reduced both dielectric loss and permittivity at least for an order of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkar, Hitesh; Kumar, Ashok, E-mail: ashok553@nplindia.org
2016-05-23
Choice of proper dopants at A or B-site of ABO{sub 3} perovskite structure can modify the morphotropic phase boundary (MPB), and hence functional properties of polar systems. The chemical nature of donor or acceptor will significantly influence the fundamental properties. Lead-free ferroelectrics have vast potential to replace the lead-based ceramics. The (Na{sub 0.5}Bi{sub 0.5}){sub 1-x}Ba{sub x}TiO{sub 3} (NBT-BT) (at x=0.08) near MPB with small substitution of trivalent cations (Al{sup 3+}) has been synthesized by solid state reaction route. The aim to choose the trivalent cations (Al{sup 3+}) was its relatively smaller radii than that of Bi{sup 3+} cations to developmore » the antipolar phases in the ferroelectric ceramic. Structural, morphological and elemental compositional analyses were studied by X-ray diffraction (XRD), Secondary electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDAX), respectively. Ferroelectric studies were carried out on various compositions of (Na{sub 0.46}Bi{sub 0.46-x}Al{sub x}Ba{sub 0.08})TiO{sub 3} (NBAT-BT) (x=0, 0.05, 0.07, 0.10) electroceramics. It was observed that with increase in concentration of Al the ferroelectricity state changes from soft to hard. Temperature dependent dielectric spectroscopy shows broad dielectric dispersion. The Al doping diminishes the relaxor behavior of NBT-BT ceramics. Impedance spectroscopy shows that electrical resistivity and relaxation frequency decreases with increase in Al-concentration. Modulus spectra indicate that Al significantly change the bulk capacitance of NBT-BT.« less
Physical and mechanical metallurgy of NiAl
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.
1994-01-01
Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.
The Possibility of Using Composite Nanoparticles in High Energy Materials
NASA Astrophysics Data System (ADS)
Komarova, M. V.; Vorozhtsov, A. B.; Wakutin, A. G.
2017-01-01
The effect of nanopowders on the burning rate varying with the metal content in mixtures of different high energy composition is investigated. Experiments were performed on compositions based on an active tetrazol binder and electroexplosive nanoaluminum with addition of copper, nickel, or iron nanopowders, and of Al-Ni, Al-Cu, or Al-Fe composite nanoparticles produced by electrical explosion of heterogeneous metal wires. The results obtained from thermogravimetric analysis of model metal-based compositions are presented. The advantages of the composite nanoparticles and the possibility of using them in high energy materials are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Li; Wu, Bao-lin; Liu, Yu-lin
2017-12-01
An Al-based composite reinforced with core-shell-structured Ti/Al3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate tensile strength and elongation of the composite sintered at 620°C for 5 h and extruded at a mass ratio of 12.75:1 reached 304 MPa and 14%, respectively, and its compressive deformation reached 60%. The promising mechanical properties are due to the core-shell-structured reinforcement, which is mainly composed of Al3Ti and Ti and is bonded strongly with the Al matrix, and to the reduced crack sensitivity of Al3Ti. The refined grains after hot extrusion also contribute to the mechanical properties of this composite. The mechanical properties might be further improved through regulating the relative thickness of Al-Ti intermetallics and Ti metal layers by adjusting the sintering time and the subsequent extrusion process.
2012-08-01
AFRL-RX-WP-TP-2012-0372 FORMATION OF EQUIAXED ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES...ALPHA AND TITANIUM NITRIDE PRECIPITATES IN SPARK PLASMA SINTERED TiB/Ti-6Al-4V COMPOSITES (PREPRINT) 5a. CONTRACT NUMBER FA8650-08-C-5226 5b...distribution of TiN precipitates, as revealed by TEM studies. 15. SUBJECT TERMS Ti-6Al-4V; TiB; TiN; Spark Plasma Sintering ; Composite; α/β phase
Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites
NASA Astrophysics Data System (ADS)
Wang, Peng; Gao, Zeng; Niu, Jitai
2016-06-01
Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.
NASA Technical Reports Server (NTRS)
Hsieh, Cheng; O'Donnell, Timothy P.
1991-01-01
The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.
NASA Astrophysics Data System (ADS)
Lazurenko, Daria V.; Mali, Vyacheslav I.; Bataev, Ivan A.; Thoemmes, Alexander; Bataev, Anatoly A.; Popelukh, Albert I.; Anisimov, Alexander G.; Belousova, Natalia S.
2015-09-01
Metal-intermetallic laminate composites are considered as promising materials for application in the aerospace industry. In this study, Ti-Al3Ti composites enclosed in titanium cases were produced by reactive spark plasma sintering. Sintering was carried out at 1103 K and 1323 K (830 °C and 1050 °C) for 10 minutes. In both cases, high-quality Ti-Al3Ti composites containing thin transition layers at the interfaces were obtained. Al2Ti, AlTi, and AlTi3 intermetallic phases and a solid solution of aluminum in titanium were observed in the transition layers by scanning and transmission electron microscopy. The material sintered at 1323 K (1050 °C) had higher strength in comparison with the composite obtained at 1103 K (830 °C). However, the hardness of the intermetallic component in the sample sintered at higher temperature decreased due to the grain growth. The impact toughness values of both materials were approximately identical.
NASA Astrophysics Data System (ADS)
Ghanaraja, S.; Gireesha, B. L.; Ravikumar, K. S.; Likith, P.
2018-04-01
During the past few years, material design has changed prominence to pursue light weight, environment friendliness, low cost, quality, higher service temperature, higher elastic modulus, improved wear resistance and performance. Straight monolithic materials have limitations in achieving the above decisive factors. To overcome these limitations and to convince the ever increasing demand of modern day technology, Attention has been shifted towards Metal Matrix Composites (MMC). Stir casting route is most hopeful for synthesizing discontinuous reinforcement aluminium matrix composites because of its relative simplicity and easy adaptability with all shape casting process used in metal casting industry. Hybridization of metal matrix composites is the introduction of more than one type/kind, size and shape of reinforcement during processing of composites. It is carried out to obtain synergistic properties of different reinforcements and matrix used, which may not be rea1ised in monolithic alloy or in conventional monocomposites. The present study involves synthesis of hybrid composites by addition of the desired amount of Silicon Carbide (SiC) and Rice Husk Ash (RHA) particles in to the molten Al 1100-Mg alloy through stir casting technique fallowed by hot forging of the cast composites. The influence of increasing in the wt% (3, 6, 9, 12 and 15 wt%) of SiC particles addition (3 wt% Rice husk ash kept constant) on evolution of microstructure is studied through XRD and SEM and their impact on the mechanical properties like hardness and tensile strength of the resulting forged hybrid composites has been investigated.
Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping
2013-09-09
GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.
NASA Astrophysics Data System (ADS)
Farges, Franã§Ois; Ponader, Carl W.; Brown, Gordon E., Jr.
1991-06-01
The structural environments of trace levels (2˜000 ppm) of Zr 4+ in several silicate glasses were examined as a function of melt composition and polymerization using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Glass compositions investigated were albite (NaAlSi 3O 8: AB) and a peralkaline composition (Na 3.3AlSi 7O 17: PR)- Zirconium was added to the oxide-carbonate mix prior to melting in the form of ZrO 2 (baddeleyite). A second set of Zr-silicate glasses containing 2000 ppm Zr and 1.0 to 2.4 wt% halogens (F as NaF and Cl as NaCl) was also synthesized. These included the Zr-AB and Zr-PR base-glass compositions as well as Zr-sodium trisilicate composition (Na2Si 3O 7: TS). In all glasses studied, Zr is mainly 6-coordinated by oxygen atoms ( d[Zr-O] ˜2.07 ± 0.01 Å). In the most polymerized glass (AB), a small but significant amount of Zr was also found to occur in 8-coordinated sites ( d[Zr-O] ˜2.22 Å). No clear evidence for F or Cl complexes of Zr was observed in any of the halogen-containing glasses. The regularity of the Zr site increases in the series AB < TS ˜PR. We attribute this change to an increase in the number of non-bridging oxygens in the first-coordination sphere of Zr related to the depolymerizing effects of halogens and/or sodium. Minor but significant interactions of Zr with the tetrahedral network were observed ( d[Zr-{Si, Al}] ˜3.65-3.71 Å ± 0.03 Å), which are consistent with Zr-O-{Si, Al} angles close to 160-170°, as in catapleiite (Na 2ZrSi 3O 9 · 2H 2O). Intermediaterange order, as reflected by the presence and number of second-neighbor {Si, Al} around Zr, increases significantly with increasing melt polymerization. The local environment around Zr is more strongly influenced by bonding requirements than by the network topology of the melt. Stabilization of zirconium in 6-coordinated sites in relatively depolymerized melts should act to decrease the crystal-melt partition coefficients of Zr and may explain the normally incompatible character of Zr during magmatic differentiation. The presence of Zr in sites of higher coordination (ZrO 8) in highly polymerized melts could be a precursor to the crystallization of zircon from such melts and thus may explain why Zr becomes a more compatible element, especially in the latest stages of magmatic differentiation.
The nature of geometric frustration in the Kob-Andersen mixture
NASA Astrophysics Data System (ADS)
Crowther, Peter; Turci, Francesco; Royall, C. Patrick
2015-07-01
Geometric frustration is an approach to the glass transition based upon the consideration of locally favoured structures (LFS), which are geometric motifs which minimise the local free energy. Geometric frustration proposes that a transition to a crystalline state is frustrated because these LFS do not tile space. However, this concept is based on icosahedra which are not always the LFS for a given system. The LFS of the popular Kob-Andersen (KA) model glassformer are the bicapped square antiprism, which does tile space. Such a LFS-crystal is indeed realised in the Al2Cu structure, which is predicted to be a low energy state for the KA model with a 2:1 composition. We, therefore, hypothesise that upon changing the composition in the KA model towards 2:1, geometric frustration may be progressively relieved, leading to larger and larger domains of LFS which would ultimately correspond to the Al2Cu crystal. Remarkably, rather than an increase, upon changing composition we find a small decrease in the LFS population, and the system remains impervious to nucleation of LFS crystals. We suggest that this may be related to the composition of the LFS, as only a limited subset is compatible with the crystal. We further demonstrate that the Al2Cu crystal will grow from a seed in the KA model with 2:1 composition and identify the melting temperature to be 0.447(2).
Experimentally determined wear behavior of an Al2O3-SiC composite from 25 to 1200 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Farmer, Serene C.; Book, Patricia O.
1990-01-01
The sliding wear behavior of a self-mated alumina-silicon carbide whisker toughened composite was studied using optical, scanning electron (SEM) and transmission electron (TEM) microscopy. Because of its excellent strength and toughness properties this composite material is under consideration for use in heat engine applications for sliding contacts which operate at elevated temperatures. The composite's wear behavior and especially its wear mechanisms are not well understood. Pin-on-disk specimens were slid in air at 2.7 m/s sliding velocity, under a 26.5-N load, at temperatures 25 to 1200 C. Pin wear increased with increasing temperature. Based upon the microscopic analyses, the wear mechanism seems to be loosening of the reinforcing whiskers due to frictional and bulk heating. This leads to whisker pullout and increased wear.
Silicon carbide whisker reinforced ceramic composites and method for making same
Wei, G.C.
1989-01-24
The present invention is directed to the fabrication of ceramic composites which possess improved mechanical properties especially increased fracture toughness. In the formation of these ceramic composites, the single crystal SiC whiskers are mixed with fine ceramic powders of a ceramic material such as Al{sub 2}O{sub 3}, mullite, or B{sub 4}C. The mixtures which contain a homogeneous dispersion of the SiC whiskers are hot pressed at pressures in a range of about 28 to 70 MPa and temperatures in the range of about 1,600 to 1,950 C with pressing times varying from about 0.75 to 2.5 hours. The resulting ceramic composites show an increase in fracture toughness which represents as much as a two-fold increase over that of the matrix material.
Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L
2018-04-10
Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.
Chen, Jinyao; Yang, Feng; Kang, Jian; Cao, Ya; Xiang, Ming
2018-01-01
In this study, polyamide-aluminum foil-polypropylene (PA-Al-PP) composite films with different orientation status of the PP layer were prepared, and their morphology, tensile, peeling and heat seal behavior were studied. The comparative study of tensile and fracture behaviors of single-layer film of PA, Al and PP, as well as the composite films of PA-Al, PP-Al and PA-Al-PP revealed that in PA-Al-PP composite film, the PA layer with the highest tensile strength can share the tensile stress from the Al layer during stretching, while the PP layer with the lowest tensile strength can prevent further development of the small cracks on boundary of the Al layer during stretching. Moreover, the study of heat seal behavior suggested that both the orientation status and the heat seal conditions were important factors in determining the heat seal strength (HSS) and failure behavior of the sample. Four failure types were observed, and a clear correspondence between HSS and failure types was found. The results also elucidated that for the composite film, only in the cases where the tensile stress was efficiently released by each layer during HSS measurement could the composite film exhibit desired high HSS that was even higher than its tensile strength. PMID:29337881
NASA Astrophysics Data System (ADS)
Ma, Xiaoxia; Cheng, Shengxian; Hu, Yan; Ye, Yinghua; Shen, Ruiqi
2018-03-01
The integration of composite energetic films (CEFs) with various types of initiators can effectively adjust their performance and represents potential applications in microscale energy-demanding systems. In this study, the Al/Bi2O3/graphene oxide (GO) CEFs were successfully integrated into copper micro-ignitors by electrophoretic deposition, a low-cost and time-saving method. The effects of the Al/Bi2O3/GO CEFs with different GO contents on exothermic performance and ignition properties of micro-ignitors were then systematically investigated in terms of heat release, activation energy, ignition duration, the maximum height of the ignition product, and ignition delay time. The results showed that the addition of GO promoted more heat releases and higher activation energies of Al/Bi2O3/GO CEFs. The addition of ≤3.5 wt. % GO prolonged the ignition duration from 450 μs to 950 μs and increased the maximum height of the ignition product from about 40 mm to 60 mm. However, the micro-ignitors with more than 3.5 wt. % GO cannot be ignited, which suggested that GO played a contradictory role in the ignition properties of micro-ignitors and the controlled GO content was a prerequisite for improved ignition performance. The ignition delay time gradually extended from 10.7 μs to 27.6 μs with increases in the GO contents of Al/Bi2O3 CEFs, revealing that an increase in the weight ratio of GO leads to lower ignition sensitivity of micro-ignitors.
The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel
NASA Astrophysics Data System (ADS)
Zuidema, B. K.; Subramanyam, D. K.; Leslie, W. C.
1987-09-01
A study has been made of the work-hardening and wear resistance of aluminum-modified Hadfield manganese steels ranging in composition from 1.00 to 1.75 Pct carbon and from 0.0 to 4.0 Pct aluminum. Aluminum additions reduced carbon activity and diffusivity in austenites of Hadfield’s composition, increasing the metastable solubility of carbon in Hadfield steel. Aluminum additions inhibited mechanical twinning and, by inference, increased the stacking fault energy of austenite. Increasing carbon in solution in austenite expanded the temperature range over which dynamic strain aging and rapid work hardening occurred. Simultaneous aluminum additions and increased carbon content increased the work-hardening rate and high-stress abrasion resistance of Hadfield steel, but there was an optimum aluminum content beyond which both declined. Maximum work-hardening rate was exhibited by an alloy containing nominally 1.75 Pct C, 13.5 Pct Mn, and 1.3 Pct Al. Improved high-stress abrasion resistance was also found in an alloy containing nominally 1.00 Pct C, 13.5 Pct Mn, and 4.0 Pct Al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carretta, E., E-mail: eugenio.carretta@oabo.inaf.it
2014-11-10
We present the homogeneous reanalysis of Mg and Al abundances from high resolution UVES/FLAMES spectra for 31 red giants in the globular cluster NGC 2808. We found a well defined Mg-Al anticorrelation reaching a regime of subsolar Mg abundance ratios, with a spread of about 1.4 dex in [Al/Fe]. The main result from the improved statistics of our sample is that the distribution of stars is not continuous along the anticorrelation because they are neatly clustered into three distinct clumps, each with different chemical compositions. One group (P) shows a primordial composition of field stars of similar metallicity, and the other twomore » (I and E) have increasing abundances of Al and decreasing abundances of Mg. The fraction of stars we found in the three components (P: 68%, I: 19%, E: 13%) is in excellent agreement with the ratios computed for the three distinct main sequences in NGC 2808: for the first time there is a clear correspondence between discrete photometric sequences of dwarfs and distinct groups of giants with homogeneous chemistry. The composition of the I group cannot be reproduced by mixing of matter with extreme processing in hot H-burning and gas with pristine, unprocessed composition, as also found in the recent analysis of three discrete groups in NGC 6752. This finding suggests that different classes of polluters were probably at work in NGC 2808 as well.« less
NASA Technical Reports Server (NTRS)
Rawal, Suraj P.; Misra, Mohan S.
1992-01-01
Mechanical, thermal, and physical property test data was generated for as-fabricated advanced composite materials at room temperature (RT), -150 and 250 F. The results are documented of mechanical and thermophysical property tests of IM7/PEEK and discontinuous SiC/Al (particulate (p) and whisker (w) reinforced) composites which were tested at three different temperatures to determine the effect of temperature on material properties. The specific material systems tested were IM7/PEEK (0)8, (0, + or - 45, 90)s, (+ or - 30, 04)s, 25 vol. pct. (v/o) SiCp/Al, and 25 v/o SiCw/Al. RT material property results of IM7/PEEK were in good agreement with the predicted values, providing a measure of consolidation integrity attained during fabrication. Results of mechanical property tests indicated that modulus values at each test temperature were identical, whereas the strength (e.g., tensile, compressive, flexural, and shear) values were the same at -150 F, and RT, and gradually decreased as the test temperature was increased to 250 F. Similar trends in the strength values was also observed in discontinuous SiC/Al composites. These results indicate that the effect of temperature was more pronounced on the strength values than modulus values.
NASA Astrophysics Data System (ADS)
Loser, Stephen C.
(Al,Ga,In)N semiconductor materials are widely used in high-frequency, high-power electronics due to their wide bandgaps. Both metal- and N-polar AlGaN/GaN high-electron-mobility transistors (HEMTs) demonstrated excellent performances as high-frequency signal amplifiers. While the majority of today's III-N transistors are based on metal-polar heterostructures, N-polar materials have gained attention following the breakthrough in the deposition of high quality films. Compared to their metal-polar counterparts, N-polar HEMT structures improve the scalability of devices, increase the electron confinement and reduce contact resistance, exhibiting great potentials in high-frequency device fabrications. In order to suppress alloy scattering in the HEMT structures, a thin AlN interlayer is usually introduced between the AlGaN barrier and the GaN channel. However, a significant amount of unintentional Ga incorporation was observed in AlN films grown by metal-organic chemical vapor deposition (MOCVD), one of the major techniques to produce the HEMT epi structures. In the first part of my thesis, the impact of impure AlN interlayers on HEMTs was examined, explaining the significant improvement in electron mobility despite of the high Ga concentration of ˜ 50%. Moreover, both metal-polar and N-polar AlN films grown by MOCVD under various conditions were investigated, the results of which indicated that the major source of unintentional Ga was the former Ga deposition on the susceptor in the same run. It was also observed that N-polar AlN films contained less Ga compared to metal-polar ones when they were grown under same conditions. Methods to suppress the Ga were also discussed. In addition, the morphological and electrical properties of the GaN/AlN/GaN heterostructures with AlN films grown under different conditions were analyzed by atomic force microscopy (AFM) and room temperature Van der Pauw hall measurement. Following the study of AlN interlayers in the HEMT structures, the development of N-polar HEMT epitaxial structures with highly-scaled channel thicknesses was discussed in detail. Small channel thickness is critical to prevent short channel effects when scaling down the lateral size of N-polar HEMT devices. By modifying the Si doping level in the back-barrier and the Al composition of the AlGaN cap, the channel thickness of the conventional N-polar HEMT structure with pure GaN channel was successfully scaled down to 8 nm. To further reduce the channel thickness, a thin InGaN layer was introduced between the channel and the AlGaN cap, leading to a decrease of the electric field in the channel and an increase of the distance between the centroid of the 2DEG and the AlN/GaN interface, which suppressed the scattering at the interface and significantly improved the electron mobility. The sheet charge density also increased due to the net positive polarization charge at the GaN/InGaN interface. The design was demonstrated by MOCVD. An increase of 73% in electron mobility from 606 to 1141 cm2/(V˙s) was observed when the 6 nm thick pure GaN channel was replaced by a 4 nm GaN / 2 nm In0.1Ga0.9N composite channel. The smallest applicable channel thickness was decreased to 4 nm with the composite channel design.
Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy
NASA Astrophysics Data System (ADS)
Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang
Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.
Protection from high-velocity impact particles for quartz glass by coatings on the basis of Al-Si-N
NASA Astrophysics Data System (ADS)
Bozhko, I. A.; Rybalko, E. V.; Fedorischeva, M. V.; Solntsev, V. L.; Cherniavsky, A. G.; Kaleri, A. Yu.; Psakhie, S. G.; Sergeev, V. P.
2016-11-01
The paper presents the results of the research of the phase composition and the mechanical properties of the coatings on the basis of Al-Si-N system produced by pulsed magnetron sputtering on the KV glass substrates. By the X-ray diffraction method, it has been discovered that the coatings contain AlN phase (hcp) with different thickness. The deposition of Al-Si-N coating system allows both increasing the microhardness of the surface layer of the quartz glass up to 29 GPa, and maintaining high elastic properties (We > 0.70). The laboratory tests have been carried out involving the impact of high-speed flows of iron particles on the Al-Si-N protective coating with different thicknesses produced by pulsed magnetron sputtering. The increase of Al-Si-N coating thickness from 1µm to 10µm decreases 4-fold the surface density of the craters on the samples caused by a high-speed flow of iron particles.
Designing novel bulk metallic glass composites with a high aluminum content
Chen, Z. P.; Gao, J. E.; Wu, Y.; Wang, H.; Liu, X. J.; Lu, Z. P.
2013-01-01
The long-standing challenge for forming Al-based BMGs and their matrix composites with a critical size larger than 1 mm have not been answered over the past three decades. In this paper, we reported formation of a series of BMG matrix composites which contain a high Al content up to 55 at.%. These composites can be cast at extraordinarily low cooling rates, compatible with maximum rod diameters of over a centimetre in copper mold casting. Our results indicate that proper additions of transition element Fe which have a positive heat of mixing with the main constituents La and Ce can appreciably improve the formability of the BMG matrix composites by suppressing the precipitation of Al(La,Ce) phase resulted from occurrence of the phase separation. However, the optimum content of Fe addition is strongly dependant on the total amount of the Al content in the Al-(CoCu)-(La,Ce) alloys. PMID:24284800
Designing novel bulk metallic glass composites with a high aluminum content.
Chen, Z P; Gao, J E; Wu, Y; Wang, H; Liu, X J; Lu, Z P
2013-11-27
The long-standing challenge for forming Al-based BMGs and their matrix composites with a critical size larger than 1 mm have not been answered over the past three decades. In this paper, we reported formation of a series of BMG matrix composites which contain a high Al content up to 55 at.%. These composites can be cast at extraordinarily low cooling rates, compatible with maximum rod diameters of over a centimetre in copper mold casting. Our results indicate that proper additions of transition element Fe which have a positive heat of mixing with the main constituents La and Ce can appreciably improve the formability of the BMG matrix composites by suppressing the precipitation of Al(La,Ce) phase resulted from occurrence of the phase separation. However, the optimum content of Fe addition is strongly dependant on the total amount of the Al content in the Al-(CoCu)-(La,Ce) alloys.
NASA Astrophysics Data System (ADS)
Famodimu, Omotoyosi H.; Stanford, Mark; Oduoza, Chike F.; Zhang, Lijuan
2018-06-01
Laser melting of aluminium alloy—AlSi10Mg has increasingly been used to create specialised products in various industrial applications, however, research on utilising laser melting of aluminium matrix composites in replacing specialised parts have been slow on the uptake. This has been attributed to the complexity of the laser melting process, metal/ceramic feedstock for the process and the reaction of the feedstock material to the laser. Thus, an understanding of the process, material microstructure and mechanical properties is important for its adoption as a manufacturing route of aluminium metal matrix composites. The effects of several parameters of the laser melting process on the mechanical blended composite were thus investigated in this research. This included single track formations of the matrix alloy and the composite alloyed with 5% and 10% respectively for their reaction to laser melting and the fabrication of density blocks to investigate the relative density and porosity over different scan speeds. The results from these experiments were utilised in determining a process window in fabricating near-fully dense parts.
High strain rate behavior of a SiC particulate reinforced Al{sub 2}O{sub 3} ceramic matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, I.W.; Guden, M.
The high strain rate deformation behavior of composite materials is important for several reasons. First, knowledge of the mechanical properties of composites at high strain rates is needed for designing with these materials in applications where sudden changes in loading rates are likely to occur. Second, knowledge of both the dynamic and quasi-static mechanical responses can be used to establish the constitutive equations which are necessary to increase the confidence limits of these materials, particularly if they are to be used in critical structural applications. Moreover, dynamic studies and the knowledge gained form them are essential for the further developmentmore » of new material systems for impact applications. In this study, the high strain rate compressive deformation behavior of a ceramic matrix composite (CMC) consisting of SiC particles and an Al{sub 2}O{sub 3} matrix was studied and compared with its quasi-static behavior. Microscopic observations were conducted to investigate the deformation and fracture mechanism of the composite.« less
NASA Astrophysics Data System (ADS)
Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann G.; Pourkaseb, Houshang; Asadi, Sina; Saed, Madineh; Lentz, David R.
2018-02-01
The present work attempts to discriminate between the geochemical features of magmatic-hydrothermal systems involved in the early stages of mineralization in high grade versus low grade porphyry copper systems, using chemical compositions of silicate and sulfide minerals (i.e., plagioclase, biotite, pyrite and chalcopyrite). The data indicate that magmatic plagioclase in all of the porphyry copper systems studied here has high An% and Al content with a significant trend of evolution toward AlAl3SiO8 and □Si4O8 endmembers, providing insight into the high melt water contents of the parental magmas. Comparably, excess Al and An% in the high grade deposits appears to be higher than that of selected low grade deposits, representing a direct link between the amounts of exsolving hydrothermal fluids and the potential of metal endowment in porphyry copper deposits (PCDs). Also, higher Al contents accompanied by elevated An% are linked to the increasing intensity of disruptive alteration (phyllic) in feldspars from the high grade deposits. As calculated from biotite compositions, chloride contents are higher in the exsolving hydrothermal fluids that contributed to the early mineralization stages of highly mineralized porphyry systems. However, as evidenced by scattered and elevated log (fH2O)/(fHF) and log (fH2O)/(fHCl) values, chloride contents recorded in biotite could be influenced by post potassic fluids. Geothermometry of biotite associated with the onset of sulfide mineralization indicates that there is a trend of increasing temperature from high grade to low grade porphyry systems. Significantly, this is coupled with a sharp change in copper content of pyrite assemblages precipitated at the early stages of mineralization such that Cu decreased with increasing temperature. Based on EMPA and detailed WDS elemental mapping, trace elements do not exhibit complex compositional zoning or solid solution in the sulfide structure. Nevertheless, significant amounts of Cu and Au are contained in pyrite assemblages as micro- to nano-sized inclusions, especially in the high grade fertile porphyry deposits. However, unexpectedly high concentrations of Te, Se, and Re may be associated with early stage of sulfide mineralization, especially when there is no epithermal lithocap. This may highlight the significance of trace metals partitioning in the sulfides formed at the early stages of mineralization in PCDs.
Density, Molar Volume, and Surface Tension of Liquid Al-Ti
NASA Astrophysics Data System (ADS)
Wessing, Johanna Jeanette; Brillo, Jürgen
2017-02-01
Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.
Organometallic Precursor Routes to Si-C-Al-O-N Ceramics
1991-05-15
Pyrolysis Chemistry of Polymeric Precursors to SiC and Si3 N 4", Kluwer Academic Publishers, Dordrecht, NATO Workshop or Organometallic Polymers with Special...the polymer to a preceramic SiC . Thus the IR and H CRAMPS spectra confirm the decreasing concentration of hydrogen with increasing pyrolysis ...generality of this polymer pyrolysis route to nanocrystalline composites of refractory nitride and carbide ceramics. Investigation of AlN Precursors Our
Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki
2015-01-01
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions. PMID:26641276