Sample records for increasing capture efficiency

  1. Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees.

    PubMed

    Räsänen, Janne V; Holopainen, Toini; Joutsensaari, Jorma; Ndam, Collins; Pasanen, Pertti; Rinnan, Åsmund; Kivimäenpää, Minna

    2013-12-01

    Trees can improve air quality by capturing particles in their foliage. We determined the particle capture efficiencies of coniferous Pinus sylvestris and three broadleaved species: Betula pendula, Betula pubescens and Tilia vulgaris in a wind tunnel using NaCl particles. The importance of leaf surface structure, physiology and moderate soil drought on the particle capture efficiencies of the trees were determined. The results confirm earlier findings of more efficient particle capture by conifers compared to broadleaved plants. The particle capture efficiency of P. sylvestris (0.21%) was significantly higher than those of B. pubescens, T. vulgaris and B. pendula (0.083%, 0.047%, 0.043%, respectively). The small leaf size of P. sylvestris was the major characteristic that increased particle capture. Among the broadleaved species, low leaf wettability, low stomatal density and leaf hairiness increased particle capture. Moderate soil drought tended to increase particle capture efficiency of P. sylvestris. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Experimental study of hydraulics and sediment capture efficiency in catchbasins.

    PubMed

    Tang, Yangbo; Zhu, David Z; Rajaratnam, N; van Duin, Bert

    2016-12-01

    Catchbasins (also known as gully pot in the UK and Australia) are used to receive surface runoff and drain the stormwater into storm sewers. The recent interest in catchbasins is to improve their effectiveness in removing sediments in stormwater. An experimental study was conducted to examine the hydraulic features and sediment capture efficiency in catchbasins, with and without a bottom sump. A sump basin is found to increase the sediment capture efficiency significantly. The effect of inlet control devices, which are commonly used to control the amount of flow into the downstream storm sewer system, is also studied. These devices will increase the water depth in the catchbasin and increase the sediment capture efficiency. Equations are developed for predicting the sediment capture efficiency in catchbasins.

  3. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  4. Effect of pitcher age on trapping efficiency and natural prey capture in carnivorous Nepenthes rafflesiana plants.

    PubMed

    Bauer, Ulrike; Willmes, Christoph; Federle, Walter

    2009-06-01

    Nepenthes pitchers are sophisticated traps that employ a variety of mechanisms to attract, capture and retain prey. The underlying morphological structures and physiological processes are subject to change over the lifetime of a pitcher. Here an investigation was carried out on how pitcher properties and capture efficiency change over the first 2 weeks after pitcher opening. Prey capture, trapping efficiency, extrafloral nectar secretion, pitcher odour, as well as pH and viscoelasticity of the digestive fluid in N. rafflesiana pitchers were monitored in the natural habitat from pitcher opening up to an age of 2 weeks. Pitchers not only increased their attractiveness over this period by becoming more fragrant and secreting more nectar, but also gained mechanical trapping efficiency via an enhanced wettability of the upper pitcher rim (peristome). Consistently, natural prey capture was initially low and increased 3-6 d after opening. It was, however, highly variable within and among pitchers. At the same time, the pH and viscoelasticity of the digestive fluid decreased, suggesting that the latter is not essential for effective prey capture. Prey capture and attraction by Nepenthes are dynamic processes strongly influenced by the changing properties of the pitcher. The results confirm insect aquaplaning on the peristome as the main capture mechanism in N. rafflesiana.

  5. Frosted Slides Decorated with Silica Nanowires for Detecting Circulating Tumor Cells from Prostate Cancer Patients.

    PubMed

    Cui, Haijun; Wang, Binshuai; Wang, Wenshuo; Hao, Yuwei; Liu, Chuanyong; Song, Kai; Zhang, Shudong; Wang, Shutao

    2018-06-13

    Developing low-cost and highly efficient nanobiochips are important for liquid biopsies, real-time monitoring, and precision medicine. By in situ growth of silica nanowires on a commercial frosted slide, we develop a biochip for effective circulating tumor cells (CTCs) detection after modifying epithelial cell adhesion molecule antibody (anti-EpCAM). The biochip shows the specificity and high capture efficiency of 85.4 ± 8.3% for prostate cancer cell line (PC-3). The microsized frosted slides and silica nanowires allow enhanced efficiency in capture EpCAM positive cells by synergistic topographic interactions. And the capture efficiency of biochip increased with the increase of silica nanowires length on frosted slide. The biochip shows that micro/nanocomposite structures improve the capture efficiency of PC-3 more than 70% toward plain slide. Furthermore, the nanobiochip has been successfully applied to identify CTCs from whole blood specimens of prostate cancer patients. Thus, this frosted slide-based biochip may provide a cheap and effective way of clinical monitoring of CTCs.

  6. A Learning Theory Conceptual Foundation for Using Capture Technology in Teaching

    ERIC Educational Resources Information Center

    Berardi, Victor; Blundell, Greg

    2014-01-01

    Lecture capture technologies are increasingly being used by instructors, programs, and institutions to deliver online lectures and courses. This lecture capture movement is important as it increases access to education opportunities that were not possible before, it can improve efficiency, and it can increase student engagement. However, this is…

  7. Capture Efficiency of Biocompatible Magnetic Nanoparticles in Arterial Flow: A Computer Simulation for Magnetic Drug Targeting.

    PubMed

    Lunnoo, Thodsaphon; Puangmali, Theerapong

    2015-12-01

    The primary limitation of magnetic drug targeting (MDT) relates to the strength of an external magnetic field which decreases with increasing distance. Small nanoparticles (NPs) displaying superparamagnetic behaviour are also required in order to reduce embolization in the blood vessel. The small NPs, however, make it difficult to vector NPs and keep them in the desired location. The aims of this work were to investigate parameters influencing the capture efficiency of the drug carriers in mimicked arterial flow. In this work, we computationally modelled and evaluated capture efficiency in MDT with COMSOL Multiphysics 4.4. The studied parameters were (i) magnetic nanoparticle size, (ii) three classes of magnetic cores (Fe3O4, Fe2O3, and Fe), and (iii) the thickness of biocompatible coating materials (Au, SiO2, and PEG). It was found that the capture efficiency of small particles decreased with decreasing size and was less than 5 % for magnetic particles in the superparamagnetic regime. The thickness of non-magnetic coating materials did not significantly influence the capture efficiency of MDT. It was difficult to capture small drug carriers (D<200 nm) in the arterial flow. We suggest that the MDT with high-capture efficiency can be obtained in small vessels and low-blood velocities such as micro-capillary vessels.

  8. A novel additive for the reduction of acid gases and NO(x) in municipal waste incinerator flue gas.

    PubMed

    Hall, William J; Williams, Paul T

    2006-08-01

    The reduction of SO2, HCl, and NO(x) concentrations using calcium magnesium acetate (CMA) as a novel sorbent in a simulated municipal waste incinerator flue gas was investigated. The reduction of individual SO2, HCl, and NO(x) concentrations was tested at 850 degrees C and it was found that CMA could reduce the SO2 concentration by 74%, HCl concentration by 64%, or NO(x) concentration by 94%. It was observed that individual SO2 or HCl capture increased with increasing initial oxygen concentration in the reacting gas or increasing sorbent input. NO(x) reduction decreased with increasing initial oxygen concentration in the reacting gas. The simultaneous reduction of SO2, HCl, and NO(x) concentrations by CMA was also investigated. It was found that CMA could simultaneously capture 60% SO2 and 61% HCl and reduce NO(x) concentrations by 26%, when the initial oxygen concentration in the reacting gas was 4%. During the simultaneous reduction of SO2, HCl, and NO(x), it was noted that as the initial oxygen concentration in the reacting gas increased, the efficiency of SO2 capture increased too, but the efficiency of HCl capture and the efficiency of NO(x) destruction decreased.

  9. Strategies for optimizing algal biology for enhanced biomass production

    DOE PAGES

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  10. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2015-10-20

    This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.

  11. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  12. Enhanced Adsorption Efficiency through Materials Design for Direct Air Capture over Supported Polyethylenimine.

    PubMed

    Sayari, Abdelhamid; Liu, Qing; Mishra, Prashant

    2016-10-06

    Until recently, carbon capture and sequestration (CCS) was regarded as the most promising technology to address the alarming increase in the concentration of anthropogenic CO 2 in the atmosphere. There is now an increasing interest in carbon capture and utilization (CCU). In this context, the capture of CO 2 from air is an ideal solution to supply pure CO 2 wherever it is needed. Here, we describe innovative materials for direct air capture (DAC) with unprecedented efficiency. Polyethylenimine (PEI) was supported on PME, which is an extra-large-pore silica (pore-expanded MCM-41) with its internal surfaces fully covered by a uniform layer of readily accessible C 16 chains from cetyltrimethylammonium (CTMA + ) cations. The CTMA + layer plays a key role in enhancing the amine efficiency toward dry or humid ultradilute CO 2 (400 ppm CO 2 /N 2 ) to unprecedented levels. At the same PEI content, the amine efficiency of PEI/PME was two to four times higher than that of the corresponding calcined mesoporous silica loaded with PEI or with different combinations of C 16 chains and PEI. Under humid conditions, the amine efficiency of 40 wt % PEI/PME reached 7.31 mmolCO2 /g PEI , the highest ever reported for any supported PEI in the presence of 400 ppm CO 2 . Thus, amine accessibility, which reflects both the state of PEI dispersion and the adsorption efficiency, is intimately associated with the molecular design of the adsorbent. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar

    PubMed Central

    Bauer, Ulrike; Bohn, Holger F; Federle, Walter

    2007-01-01

    The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by ‘aquaplaning’ on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and continuous field measurements of peristome wetness using electrical conductance with experimental assessments of the pitchers' capture efficiency. Our results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but completely ineffective at other times. These dramatic changes are due to the wetting condition of the peristome. Variation of peristome wetness and capture efficiency was perfectly synchronous, and caused by rain, condensation and nectar secreted from peristome nectaries. The presence of nectar on the peristome increased surface wetness mainly indirectly by its hygroscopic properties. Experiments confirmed that pitchers with removed peristome nectaries remained generally drier and captured prey less efficiently than untreated controls. This role of nectar in prey capture represents a novel function of plant nectar. We propose that the intermittent and unpredictable activation of Nepenthes pitcher traps facilitates ant recruitment and constitutes a strategy to maximize prey capture. PMID:18048280

  14. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar.

    PubMed

    Bauer, Ulrike; Bohn, Holger F; Federle, Walter

    2008-02-07

    The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by 'aquaplaning' on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and continuous field measurements of peristome wetness using electrical conductance with experimental assessments of the pitchers' capture efficiency. Our results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but completely ineffective at other times. These dramatic changes are due to the wetting condition of the peristome. Variation of peristome wetness and capture efficiency was perfectly synchronous, and caused by rain, condensation and nectar secreted from peristome nectaries. The presence of nectar on the peristome increased surface wetness mainly indirectly by its hygroscopic properties. Experiments confirmed that pitchers with removed peristome nectaries remained generally drier and captured prey less efficiently than untreated controls. This role of nectar in prey capture represents a novel function of plant nectar. We propose that the intermittent and unpredictable activation of Nepenthes pitcher traps facilitates ant recruitment and constitutes a strategy to maximize prey capture.

  15. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator.

    PubMed

    García, Luis Fernando; Viera, Carmen; Pekár, Stano

    2018-04-02

    Predators are traditionally classified as generalists and specialists based on the presence of adaptations that increase efficiency of prey capture and consumption and selection of particular prey types. Nevertheless, empirical evidence comparing foraging efficiency between generalist and specialist carnivores is scarce. We compared the prey-capture and feeding efficiency in a generalist and a specialist (araneophagous) spider predator. By using two related species, the generalist Harpactea rubicunda (Dysderidae) and the specialist Nops cf. variabilis (Caponiidae), we evaluated their fundamental trophic niche by studying the acceptance of different prey. Then, we compared their predatory behavior, efficiency in capturing prey of varying sizes, feeding efficiency, and nutrient extraction. Nops accepted only spiders as prey, while Harpactea accepted all offered prey, confirming that Nops is stenophagous, while Harpactea is euryphagous. Further, Nops displayed more specialized (stereotyped) capture behavior than Harpactea, suggesting that Nops is a specialist, while Harpactea is a generalist. The specialist immobilized prey faster, overcame much larger prey, and gained more mass (due to feeding on larger prey) than the generalist. Both the specialist and the generalist spider extracted more proteins than lipids, but the extraction of macronutrients in the specialist was achieved mainly by consuming the prosoma of the focal prey. We show that the specialist has more efficient foraging strategy than the generalist.

  16. Engineering cholesterol-based fibers for antibody immobilization and cell capture

    NASA Astrophysics Data System (ADS)

    Cohn, Celine

    In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing abilities of the CSS fibers were compared to that of hydrophobic polycaprolactone (PCL) fibers and hydrophilic plasma-treated PCL fibers. Electrospun CSS fibers were found to immobilize equivalent amounts of protein as hydrophobically immobilized proteins. However, these proteins captured 6 times more cells, indicative of retained protein function. The second key concept was the design and fabrication of a hybridized lipid fiber. Lipid fibers provide improved protein function but fabrication difficulties have limited their adoption. Thus, we sought to fabricate a lipid-polymer hybrid that is easily fabricated while maintaining protein function. The hybrid fiber consists of a PCL backbone with conjugated CSS. The hybrid lipid fibers showed improved protein function. In addition, higher lipid concentrations were directly correlated to higher cell capture efficiencies. The third key concept was on the development of dually functionalized lipid fibers and understanding the resulting cell capture efficiencies. Many platforms are unable to simultaneously search for heterogeneous populations of CTCs -- the ability to dually functionalize cell-capturing platforms would address this technological weakness. Studies indicated that dually functionalizing the lipid fibers did not compromise the platforms' abilities to capture the cells of interest. Such dually functionalized fibers allow for a single cell-capture platform to successfully detect heterogeneous populations of CTCs. The body of work encompassed herein describes the use of lipid fibers for antibody immobilization and cell capture. Data from various projects indicate that the use of cholesterol-based fibers produced from electrospun CSS are well suited for protein immobilization. The CSS fibers are able to immobilize equivalent amounts of protein as compared to other immobilization techniques. However, the benefit of these fibers is illustrated by the strong cell-capturing efficiencies, indicating that the immobilized proteins are able to retain their function and selectively target cells of interest. The successful immobilization of proteins and their retained function allows for the development of increasingly sensitive cancer diagnostic tools that are able to screen for CTCs early on in the cancer disease cycle.

  17. Variation in capture efficiency of a beach seine for small fishes

    USGS Publications Warehouse

    Parsley, M.J.; Palmer, D.E.; Burkhardt, R.W.

    1989-01-01

    We determined the capture efficiency of a beach seine as a means of improving abundance estimates of small fishes in littoral areas. Capture efficiency for 14 taxa (individual species or species groups) was determined by seining within an enclosure at night over fine and coarse substrates in the John Day Reservoir, Oregon–Washington. Mean efficiency ranged from 12% for prickly sculpin Cottus asper captured over coarse substrates to 96% for peamouth Mylocheilus caurinus captured over fine substrates. Mean capture efficiency for a taxon (genus or species) was generally higher over fine substrates than over coarse substrates, although mean capture efficiencies over fine substrates were significantly greater for only 3 of 10 taxa. Capture efficiency generally was not influenced by fish density or by water temperature (range, 8–26°C). Conclusions about the relative abundance of taxa captured by seining can change substantially after capture efficiencies are taken into account.

  18. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03779d

  19. Predicting the performance uncertainty of a 1-MW pilot-scale carbon capture system after hierarchical laboratory-scale calibration and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Lai, Canhai; Marcy, Peter William

    2017-05-01

    A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of theirmore » inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.« less

  20. 40 CFR 63.5875 - How do I determine the capture efficiency of the enclosure on my wet-out area and the capture...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous... efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous lamination/casting operations? (a) The capture efficiency of a wet-out area enclosure is assumed to be 100...

  1. 40 CFR 63.9322 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... capture system efficiency? 63.9322 Section 63.9322 Protection of Environment ENVIRONMENTAL PROTECTION... capture system efficiency? You must use the procedures and test methods in this section to determine capture efficiency as part of the performance test required by § 63.9310. (a) Assuming 100 percent capture...

  2. 40 CFR 63.9322 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... capture system efficiency? 63.9322 Section 63.9322 Protection of Environment ENVIRONMENTAL PROTECTION... capture system efficiency? You must use the procedures and test methods in this section to determine capture efficiency as part of the performance test required by § 63.9310. (a) Assuming 100 percent capture...

  3. 40 CFR 63.3554 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system efficiency? 63.3554 Section 63.3554 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements for the Control Efficiency/outlet Concentration Option § 63.3554 How do I determine the emission capture system efficiency? The capture efficiency of your emission capture system must be 100 percent to...

  4. 40 CFR 63.3554 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system efficiency? 63.3554 Section 63.3554 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Requirements for the Control Efficiency/outlet Concentration Option § 63.3554 How do I determine the emission capture system efficiency? The capture efficiency of your emission capture system must be 100 percent to...

  5. Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micropillars

    NASA Astrophysics Data System (ADS)

    Orlandi, G.; Kuzhir, P.; Izmaylov, Y.; Alves Marins, J.; Ezzaier, H.; Robert, L.; Doutre, F.; Noblin, X.; Lomenech, C.; Bossis, G.; Meunier, A.; Sandoz, G.; Zubarev, A.

    2016-06-01

    Microfluidic separation of magnetic particles is based on their capture by magnetized microcollectors while the suspending fluid flows past the microcollectors inside a microchannel. Separation of nanoparticles is often challenging because of strong Brownian motion. Low capture efficiency of nanoparticles limits their applications in bioanalysis. However, at some conditions, magnetic nanoparticles may undergo field-induced aggregation that amplifies the magnetic attractive force proportionally to the aggregate volume and considerably increases nanoparticle capture efficiency. In this paper, we have demonstrated the role of such aggregation on an efficient capture of magnetic nanoparticles (about 80 nm in diameter) in a microfluidic channel equipped with a nickel micropillar array. This array was magnetized by an external uniform magnetic field, of intensity as low as 6-10 kA/m, and experiments were carried out at flow rates ranging between 0.3 and 30 μ L /min . Nanoparticle capture is shown to be mostly governed by the Mason number Ma, while the dipolar coupling parameter α does not exhibit a clear effect in the studied range, 1.4 < α < 4.5. The capture efficiency Λ shows a strongly decreasing Mason number behavior, Λ ∝M a-1.78 within the range 32 ≤ Ma ≤ 3250. We have proposed a simple theoretical model which considers destructible nanoparticle chains and gives the scaling behavior, Λ ∝M a-1.7 , close to the experimental findings.

  6. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    PubMed

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  7. A Metamaterial-Inspired Approach to RF Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Fowler, Clayton; Zhou, Jiangfeng

    2016-03-01

    We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits a high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.

  8. A Metamaterial-Inspired Approach to RF Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Fowler, Clayton; Zhou, Jiangfeng

    We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.

  9. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    PubMed

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  10. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems

    PubMed Central

    Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862

  11. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces

    PubMed Central

    Seo, Donghyun; Lee, Junghun; Lee, Choongyeop; Nam, Youngsuk

    2016-01-01

    The efficient water harvesting from air-laden moisture has been a subject of great interest to address world-wide water shortage issues. Recently, it has been shown that tailoring surface wettability can enhance the moisture harvesting performance. However, depending on the harvesting condition, a different conclusion has often been reported and it remains unclear what type of surface wettability would be desirable for the efficient water harvesting under the given condition. Here we compare the water harvesting performance of the surfaces with various wettability under two different harvesting conditions–dewing and fogging, and show that the different harvesting efficiency of each surface under these two conditions can be understood by considering the relative importance of the water capturing and removal efficiency of the surface. At fogging, the moisture harvesting performance is determined by the water removal efficiency of the surface with the oil-infused surfaces exhibiting the best performance. Meanwhile, at dewing, both the water capturing and removal efficiency are crucial to the harvesting performance. And well-wetting surfaces with a lower barrier to nucleation of condensates exhibit a better harvesting performance due to the increasing importance of the water capture efficiency over the water removal efficiency at dewing. PMID:27063149

  12. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Cao; Quan-Hai Wang; Jun Li

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gasmore » inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.« less

  13. On the Efficiency of Particle Injection into the Damping Ring of the Budker Institute of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Balakin, V. V.; Vorobev, N. S.; Berkaev, D. V.; Glukhov, S. A.; Gornostaev, P. B.; Dorokhov, V. L.; Chao, Ma Xiao; Meshkov, O. I.; Nikiforov, D. A.; Shashkov, E. V.; Emanov, F. A.; Astrelina, K. V.; Blinov, M. F.; Borin, V. M.

    2018-03-01

    The efficiency of injection from a linear accelerator into the damping ring of the BINP injection complex has been experimentally studied. The estimations of the injection efficiency are in good agreement with the experimental results. Our method of increasing the capture efficiency can enhance the productivity of the injection complex by a factor of 1.5-2.

  14. Efficiency of insect capture by Sarracenia purpurea (Sarraceniaceae), the northern pitcher plant.

    PubMed

    Newell, S; Nastase, A

    1998-01-01

    Pitcher plants (Sarracenia purpurea L.) attract insects to pitchers and then capture them in fluid-filled, pitfall traps, but how efficient are pitcher plants at capturing prey in their natural environment? We monitored insect activity by videotaping pitchers and analyzing videotapes for several variables including identity of each visitor and outcome of each visit (e.g., departure or capture). Efficiency of capture (i.e., number of captures per number of visits) was low. Overall efficiency of capture was 0.83-0.93%, depending on whether potential prey were broadly or narrowly defined. Ants constituted 74% of the potential prey. Efficiency of capture of ants was even lower at 0.37%. Potential prey were more likely to visit pitchers with greater red venation and less water in the pitcher. There was no correlation between number of potential prey visiting a pitcher and pitcher age, length, or mouth width. Also, number of potential prey visits did not correlate with plant size, air temperature, time of day or date of videotaping. While the overall efficiency of prey capture was very low, pitcher plants may still benefit from the additional nutrients. However, the relationship between ants and S. purpurea remains an enigma, since it is unclear whether the plants capture enough ants to compensate for nectar lost to ants.

  15. Influence of trap modifications and environmental predictors on capture success of southern flying squirrels

    USGS Publications Warehouse

    Jacques, Christopher N.; Zweep, James S.; Scheihing, Mary E.; Rechkemmer, Will T.; Jenkins, Sean E.; Klaver, Robert W.; Dubay, Shelli A.

    2017-01-01

    Sherman traps are the most commonly used live traps in studies of small mammals and have been successfully used in the capture of arboreal species such as the southern flying squirrel (Glaucomys volans). However, southern flying squirrels spend proportionately less time foraging on the ground, which necessitates above-ground trapping methods and modifications of capture protocols. Further, quantitative estimates of the factors affecting capture success of flying squirrel populations have focused solely on effects of trapping methodologies. We developed and evaluated the efficacy of a portable Sherman trap design for capturing southern flying squirrels during 2015–2016 at the Alice L. Kibbe Field Station, Illinois, USA. Additionally, we used logistic regression to quantify potential effects of time-dependent (e.g., weather) and time-independent (e.g., habitat, extrinsic) factors on capture success of southern flying squirrels. We recorded 165 capture events (119 F, 44 M, 2 unknown) using our modified Sherman trap design. Probability of capture success decreased 0.10/1° C increase in daily maximum temperature and by 0.09/unit increase (km/hr) in wind speed. Conversely, probability of capture success increased by 1.2/1° C increase in daily minimum temperature. The probability of capturing flying squirrels was negatively associated with trap orientation. When tree-mounted traps are required, our modified trap design is a safe, efficient, and cost-effective method of capturing animals when moderate weather (temp and wind speed) conditions prevail. Further, we believe that strategic placement of traps (e.g., northeast side of tree) and quantitative information on site-specific (e.g., trap location) characteristics (e.g., topographical features, slope, aspect, climatologic factors) could increase southern flying squirrel capture success. © 2017 The Wildlife Society.

  16. Effects of drop acceleration and deceleration on particle capture in a cross-flow gravity tower at intermediate drop Reynolds numbers.

    PubMed

    Kumar, Anoop; Gupta, S K; Kale, S R

    2007-04-01

    Cross-flow gravity towers are particle scrubbing devices in which water is sprayed from the top into particle-laden flow moving horizontally. Models for predicting particle capture assume drops traveling at terminal velocity and potential flow (ReD > 1000) around it, however, Reynolds numbers in the intermediate range of 1 to 1000 are common in gravity towers. Drops are usually injected at velocities greater than their terminal velocities (as in nozzles) or from near rest (perforated tray) and they accelerate/decelerate to their terminal velocity in the tower. Also, the effects of intermediate drop Reynolds number on capture efficiency have been simulated for (a) drops at their terminal velocity and (b) drops accelerating/decelerating to their terminal velocity. Tower efficiency based on potential flow about the drop is 40%-50% greater than for 200 mm drops traveling at their terminal velocity. The corresponding values for 500 mm drops are about 10%-20%. The drop injection velocity is important operating parameter. Increase in tower efficiency by about 40% for particles smaller than 5 mm is observed for increase in injection velocity from 0 to 20 m/s for 200 and 500mm drops.

  17. Optimizing Sampling Design to Deal with Mist-Net Avoidance in Amazonian Birds and Bats

    PubMed Central

    Marques, João Tiago; Ramos Pereira, Maria J.; Marques, Tiago A.; Santos, Carlos David; Santana, Joana; Beja, Pedro; Palmeirim, Jorge M.

    2013-01-01

    Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas. PMID:24058579

  18. T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone.

    PubMed

    Liana, Ayu Ekajayanthi; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2017-03-01

    This work demonstrates the use of bacteriophage conjugated magnetic particles (Fe 3 O 4 ) for the rapid capturing and isolation of Escherichia coli. The investigation of T4 bacteriophage adsorption to silane functionalised Fe 3 O 4 with amine (NH 2 ), carboxylic (COOH) and methyl (CH 3 ) surface functional groups reveals the domination of net electrostatic and hydrophobic interactions in governing bacteriophage adsorption. The bare Fe 3 O 4 and Fe 3 O 4 -NH 2 with high T4 loading captured 3-fold more E. coli (∼70% capturing efficiency) compared to the low loading T4 on Fe 3 O 4 -COOH, suggesting the significance of T4 loading in E. coli capturing efficiency. Importantly, it is further revealed that E. coli capture is highly dependent on the incubation temperature and the presence of tryptone in the media. Effective E. coli capturing only occurs at 37°C in tryptone-containing media with the absence of either conditions resulted in poor bacteria capture. The incubation temperature dictates the capturing ability of Fe 3 O 4 /T4, whereby T4 and E. coli need to establish an irreversible binding that occurred at 37°C. The presence of tryptophan-rich tryptone in the suspending media was also critical, as shown by a 3-fold increase in E. coli capture efficiency of Fe 3 O 4 /T4 in tryptone-containing media compared to that in tryptone-free media. This highlights for the first time that successful bacteria capturing requires not only an optimum tailoring of the particle's surface physicochemical properties for favourable bacteriophage loading, but also an in-depth understanding of how factors, such as temperature and solution chemistry influence the subsequent bacteriophage-bacteria interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvin, Nick; Kowalczyk, Joseph

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality control systems performance.« less

  20. Analysis of daylight performance of solar light pipes influenced by size and shape of sunlight captures

    NASA Astrophysics Data System (ADS)

    Wu, Yanpeng; Jin, Rendong; Zhang, Wenming; Liu, Li; Zou, Dachao

    2009-11-01

    Experimental investigations on three different sunlight captures with diameter 150mm, 212mm, 300mm were carried out under different conditions such as sunny conditions, cloudy conditions and overcast conditions and the two different size solar light pipes with diameter 360mm and 160mm under sunny conditions. The illuminance in the middle of the sunlight capture have relationship with its size, but not linear. To improve the efficiency of the solar light pipes, the structure and the performance of the sunlight capture must be enhanced. For example, University of Science and Technology Beijing Gymnasium, Beijing 2008 Olympic events of Judo and Taekwondo, 148 solar light pipes were installed with the diameter 530mm for each light pipe. Two sunlight captures with different shape were installed and tested. From the measuring results of the illuminance on the work plane of the gymnasium, the improvement sunlight captures have better effects with the size of augmenting and the machining of the internal surface at the same time, so that the refraction increased and the efficiency of solar light pipes improved. The better effects of supplementary lighting for the gymnasium have been achieved.

  1. A CO2-Free Synthetic Host-Odor Mixture That Attracts and Captures Triatomines: Effect of Emitted Odorant Ratios.

    PubMed

    Guidobaldi, F; Guerenstein, P G

    2016-07-01

    Triatomines, vectors of Chagas Disease, are hematophagous insects. Efforts have been made to develop synthetic attractants based on vertebrate odor-to lure them into traps. However, because those lures are not practical or have low capture efficiency, they are not in use in control programs. Therefore, more work is needed to reach a practical and efficient odor lure. Recently, a three-component, CO 2 -free, synthetic blend of vertebrate odor (consisting of ammonia, l-(+)-lactic acid, and hexanoic acid), known as Sweetscent (Biogents AG, Regensburg, Germany), was shown to attract and capture triatomines in the laboratory. In this study, using a trap olfactometer and an odor blend with constituents similar to those of Sweetscent (delivered from low-density polyethylene sachets) we found that the odorant ratios of the mixtures have a strong effect in the capture of triatomines. The blend with the most efficient combination of odorant ratios evoked ca. 81% capture in two relevant triatomine species. In the case of the most effective odor mixtures, we measured the odor mass emission for the three components of the mixture and therefore were able to estimate the odorant ratios emitted that were responsible for such a high capture performance. Thus, in those mixtures, pentanoic acid was the main component (ca. 65 %) followed by ammonia (ca. 28%) and, l(+)-lactic acid (ca. 7 %). Our results are encouraging as efficient, practical, and cheap odor baits to trap triatomines in the field would be within reach. The odor-delivery system used should be improved to increase stability of odor emission. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathe, Mandar; Xu, Dikai; Hsieh, Tien-Lin

    2014-12-31

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol requiredmore » selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.« less

  3. Rare Cell Capture in Microfluidic Devices

    PubMed Central

    Pratt, Erica D.; Huang, Chao; Hawkins, Benjamin G.; Gleghorn, Jason P.; Kirby, Brian J.

    2010-01-01

    This article reviews existing methods for the isolation, fractionation, or capture of rare cells in microfluidic devices. Rare cell capture devices face the challenge of maintaining the efficiency standard of traditional bulk separation methods such as flow cytometers and immunomagnetic separators while requiring very high purity of the target cell population, which is typically already at very low starting concentrations. Two major classifications of rare cell capture approaches are covered: (1) non-electrokinetic methods (e.g., immobilization via antibody or aptamer chemistry, size-based sorting, and sheath flow and streamline sorting) are discussed for applications using blood cells, cancer cells, and other mammalian cells, and (2) electrokinetic (primarily dielectrophoretic) methods using both electrode-based and insulative geometries are presented with a view towards pathogen detection, blood fractionation, and cancer cell isolation. The included methods were evaluated based on performance criteria including cell type modeled and used, number of steps/stages, cell viability, and enrichment, efficiency, and/or purity. Major areas for improvement are increasing viability and capture efficiency/purity of directly processed biological samples, as a majority of current studies only process spiked cell lines or pre-diluted/lysed samples. Despite these current challenges, multiple advances have been made in the development of devices for rare cell capture and the subsequent elucidation of new biological phenomena; this article serves to highlight this progress as well as the electrokinetic and non-electrokinetic methods that can potentially be combined to improve performance in future studies. PMID:21532971

  4. 40 CFR 63.4361 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from the web coating/printing operation surfaces they are applied to occurs within the capture system... system efficiency? 63.4361 Section 63.4361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... emission capture system efficiency? You must use the procedures and test methods in this section to...

  5. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use... building enclosure. During the capture efficiency measurement, all organic compound emitting operations... enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting...

  6. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use... building enclosure. During the capture efficiency measurement, all organic compound emitting operations... enclosure is a building enclosure. During the capture efficiency measurement, all organic compound emitting...

  7. Estimation and modeling of electrofishing capture efficiency for fishes in wadeable warmwater streams

    USGS Publications Warehouse

    Price, A.; Peterson, James T.

    2010-01-01

    Stream fish managers often use fish sample data to inform management decisions affecting fish populations. Fish sample data, however, can be biased by the same factors affecting fish populations. To minimize the effect of sample biases on decision making, biologists need information on the effectiveness of fish sampling methods. We evaluated single-pass backpack electrofishing and seining combined with electrofishing by following a dual-gear, mark–recapture approach in 61 blocknetted sample units within first- to third-order streams. We also estimated fish movement out of unblocked units during sampling. Capture efficiency and fish abundances were modeled for 50 fish species by use of conditional multinomial capture–recapture models. The best-approximating models indicated that capture efficiencies were generally low and differed among species groups based on family or genus. Efficiencies of single-pass electrofishing and seining combined with electrofishing were greatest for Catostomidae and lowest for Ictaluridae. Fish body length and stream habitat characteristics (mean cross-sectional area, wood density, mean current velocity, and turbidity) also were related to capture efficiency of both methods, but the effects differed among species groups. We estimated that, on average, 23% of fish left the unblocked sample units, but net movement varied among species. Our results suggest that (1) common warmwater stream fish sampling methods have low capture efficiency and (2) failure to adjust for incomplete capture may bias estimates of fish abundance. We suggest that managers minimize bias from incomplete capture by adjusting data for site- and species-specific capture efficiency and by choosing sampling gear that provide estimates with minimal bias and variance. Furthermore, if block nets are not used, we recommend that managers adjust the data based on unconditional capture efficiency.

  8. Pre-capture multiplexing improves efficiency and cost-effectiveness of targeted genomic enrichment.

    PubMed

    Shearer, A Eliot; Hildebrand, Michael S; Ravi, Harini; Joshi, Swati; Guiffre, Angelica C; Novak, Barbara; Happe, Scott; LeProust, Emily M; Smith, Richard J H

    2012-11-14

    Targeted genomic enrichment (TGE) is a widely used method for isolating and enriching specific genomic regions prior to massively parallel sequencing. To make effective use of sequencer output, barcoding and sample pooling (multiplexing) after TGE and prior to sequencing (post-capture multiplexing) has become routine. While previous reports have indicated that multiplexing prior to capture (pre-capture multiplexing) is feasible, no thorough examination of the effect of this method has been completed on a large number of samples. Here we compare standard post-capture TGE to two levels of pre-capture multiplexing: 12 or 16 samples per pool. We evaluated these methods using standard TGE metrics and determined the ability to identify several classes of genetic mutations in three sets of 96 samples, including 48 controls. Our overall goal was to maximize cost reduction and minimize experimental time while maintaining a high percentage of reads on target and a high depth of coverage at thresholds required for variant detection. We adapted the standard post-capture TGE method for pre-capture TGE with several protocol modifications, including redesign of blocking oligonucleotides and optimization of enzymatic and amplification steps. Pre-capture multiplexing reduced costs for TGE by at least 38% and significantly reduced hands-on time during the TGE protocol. We found that pre-capture multiplexing reduced capture efficiency by 23 or 31% for pre-capture pools of 12 and 16, respectively. However efficiency losses at this step can be compensated by reducing the number of simultaneously sequenced samples. Pre-capture multiplexing and post-capture TGE performed similarly with respect to variant detection of positive control mutations. In addition, we detected no instances of sample switching due to aberrant barcode identification. Pre-capture multiplexing improves efficiency of TGE experiments with respect to hands-on time and reagent use compared to standard post-capture TGE. A decrease in capture efficiency is observed when using pre-capture multiplexing; however, it does not negatively impact variant detection and can be accommodated by the experimental design.

  9. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees.

    PubMed

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the question if N limitation in boreal forests acts primarily by constraining growth of young stands while the commonly recorded increase in stem growth of mature stands following N addition is primarily the result of altered allocation and only to a limited extent the result of increased stand C-capture.

  10. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.

    PubMed

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin

    2016-11-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency1[OPEN

    PubMed Central

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Feng, Dongru; Wang, Jinfa

    2016-01-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. PMID:27609860

  12. Propellers And Fans Based On The Moebius Strip

    NASA Technical Reports Server (NTRS)

    Seiner, John Milton; Gilinsky, Mikhail Markovich

    1996-01-01

    Moebius strip proposed as basis for optimally shaped airplane and boat propellers, fans, helicopter rotors, mixing screws, coffee grinders, and concrete mixers. Basic idea of optimal shaping of such device to increase working efficiency by increasing area for capture of still medium without increasing power needed for rotation.

  13. Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores.

    PubMed

    Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S

    2017-08-01

    The Huntington's disease protein Huntingtin (Htt) regulates axonal transport of dense-core vesicles (DCVs) containing neurotrophins and neuropeptides. DCVs travel down axons to reach nerve terminals where they are either captured in synaptic boutons to support later release or reverse direction to reenter the axon as part of vesicle circulation. Currently, the impact of Htt on DCV dynamics in the terminal is unknown. Here we report that knockout of Drosophila Htt selectively reduces retrograde DCV flux at proximal boutons of motoneuron terminals. However, initiation of retrograde transport at the most distal bouton and transport velocity are unaffected suggesting that synaptic capture rate of these retrograde DCVs could be altered. In fact, tracking DCVs shows that retrograde synaptic capture efficiency is significantly elevated by Htt knockout or knockdown. Furthermore, synaptic boutons contain more neuropeptide in Htt knockout larvae even though bouton size, single DCV fluorescence intensity, neuropeptide release in response to electrical stimulation and subsequent activity-dependent capture are unaffected. Thus, loss of Htt increases synaptic capture as DCVs travel by retrograde transport through boutons resulting in reduced transport toward the axon and increased neuropeptide in the terminal. These results therefore identify native Htt as a regulator of synaptic capture and neuropeptide storage. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Optimization of wave-guided luminescence for higher efficiency of bifacial thin-film microscale GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Shen, Ling; Shen, Yifeng; Li, Feng

    2018-01-01

    In pursuit of capturing more wave-guided luminescence for surface-printed bifacial GaAs μ-cells, the pyramid structure has been incorporated with specular back side reflector (BSR) to change the direction of photon propagation. Based on ray tracing model, the calculated photon capturing efficiency of GaAs μ-cells from back side via pyramid, dependent on the parameters of pyramid structure, achieve the largest 1.7× increase for dye absorption peak of 480 nm compared to the case without pyramid. More significantly, the short circuit current in experiment has been improved from original 16.5 mA/cm2 to 23.75 mA/cm2 for the AM 1.5G solar spectrum. Further experiment demonstrates that the optimized pyramid structure enables the integrated luminescent intensity to reach ∼3× increase in a smaller distance of optical transport, which means the advantages in photon capturing efficiency for cells with higher aspect ratio. The calculation further confirms that the cells with higher aspect ratio, among all cells with the same area, realize the higher concentration ratio for the same geometric gain. This provides a guideline for design of cell geometries to guarantee a higher power output in terms of cell modules.

  15. Comparaison de la performance environnementale de la production thermique d'electricite avec et sans sequestration geologique du dioxyde de carbone

    NASA Astrophysics Data System (ADS)

    Bellerive, Nathalie

    The research project hypothesis is that CO2 capture and sequestration technologies (CSC) leads to a significant decrease in global warming, but increases the impact of all other aspects of the study. This is because other processes used for CO2 capture and sequestration require additional quantities of raw materials and energy. Two other objectives are described in this project. The first is the modeling of an Integrated Gasification Combined Cycle power plant for which there is no known generic data. The second is to select the right hypothesis regarding electrical production technologies, CO2 capture, compression and transportation by pipeline and finally sequestration. "Life Cycle Assessment" (LCA) analyses were chosen for this research project. LCA is an exhaustive quantitative method used to evaluate potential environmental impacts associated with a product, a service or an activity from resource extraction to waste elimination. This tool is governed by ISO 14 040 through ISO 14 049 and is sustained by the Society of Environmental Toxicology and Chemistry (SETAC) and the United Nations Environment Program (UNEP). Two power plants were studied, the Integrated Gasification Combined Cycle (IGCC) power plant and the Natural Gas Combined Cycle (NGCC) power plant. In order to sequester CO2 in geological formation, it is necessary to extract CO2from emission flows. For the IGCC power plant, CO 2 was captured before the burning phase. For the NGCC power plant, the capture was done during the afterburning phase. Once the CO2 was isolated, it was compressed and directed through a transportation pipe 1 000 km in length on the ground surface and in the sea. It is hypothesized that the power plant is 300 km from the shore and the sequestration platform 700 km from France's shore, in the North Sea. The IGCC power plant modeling and data selection regarding CO2 capture and sequestration were done by using primary data from the industry and the Ecoinvent generic database (Version 1.2). This database was selected due to its European source. Finally, technical calculations and literature were used to complete the data inventory. This was validated by electrical experts in order to increase data and modeling precision. Results were similar for IGCC and NGCC power plants using Impact 2002+, an impacts analysis method. Global warming potential decreased by 67% with the implementation of CO2 capture and sequestration compared to systems without CSC. Results for all others impacts categories, demonstrated an increase from 16% to 116% in relative proportions compared to systems without CSC. The main contributor was the additional quantity of energy required to operate CO2 capture and compression facilities. This additional energy negatively affected the power plant's global efficiency because of the increase in the quantity of fossil fuel that needed to be extracted and consumed. The increase in other impacts was mainly due to additional electricity, fossil fuel (for extracting, treatment and transportation) and additional emissions generated during power plant operations. A scenario analysis was done to study the sensitivity and variability of uncertain data during the software modeling process of a power plant. Data on power plant efficiency is the most variable and sensitive during modeling, followed by the length of the transportation pipe and the leaking rate during CO2 sequestration. This result analysis is interesting because it led to the maximum efficiency scenario with capture (with a short CO 2 transportation distance and a low leaking rate) obtaining better results on all impact category indicators, compared to the minimum efficiency scenario without capture. In fact, positive results on all category indicators were possible during the system comparison between the two cases (with and without capture). (Abstract shortened by UMI.)

  16. Effect of CuO on the efficiency of sulfur capture of Ca-based compounds during coal combustion.

    PubMed

    Zheng, Li-Qing; Lu, Wen-Ying; Liu, Guo-Guang

    2003-05-01

    The efficiency of sulfur capture of CaO, Ca(OH)2 and CaCO3 as well as the effect of CuO on them were studied. Results showed that the efficiency of sulfur capture of Ca(OH)2 is the highest among these three compounds. When CuO was used with each of CaO, Ca(OH)2 and CaCO3 at the same time, the efficiency of all of them would rise, and that of Ca(OH)2 raise most. The efficiency of sulfur capture of Ca(OH)2 with CuO is 14.4% higher than that without CuO.

  17. Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Jing, X.

    2017-12-01

    Rainwater harvesting is now increasingly used to manage urban flood and alleviate water scarcity crisis. In this study, a computational tool based on water balance equation is developed to assess stormwater capture and water saving efficiency and economic viability of rainwater harvesting systems (RHS) in eight cities across four climatic zones of China. It requires daily rainfall, contributing area, runoff losses, first flush volume, storage capacity, daily water demand and economic parameters as inputs. Three non-potable water demand scenarios (i.e., toilet flushing, lawn irrigation, and combination of them) are considered. The water demand for lawn irrigation is estimated using the Cropwat 8.0 and Climwat 2.0. Results indicate that higher water saving efficiency and water supply time reliability can be achieved for RHS with larger storage capacities, for lower water demand scenarios and located in more humid regions, while higher stormwater capture efficiency is associated with larger storage capacity, higher water demand scenarios and less rainfall. For instance, a 40 m3 RHS in Shanghai (humid climate) for lawn irrigation can capture 17% of stormwater, while its water saving efficiency and time reliability can reach 96 % and 98%, respectively. The water saving efficiency and time reliability of a 20 m3 RHS in Xining (semi-arid climate) for toilet flushing are 19% and 16%, respectively, but it can capture 63% of stormwater. With the current values of economic parameters, economic viability of RHS can be achieved in humid and semi-humid regions for reasonably designed RHS; however, it is not financially viable to install RHS in arid regions as the benefit-cost ratio is much smaller than 1.0.

  18. 40 CFR 63.3965 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; coating solvent flash-off, curing, and drying occurs within the capture system; and the removal or... spray booth and a curing oven. (b) Measuring capture efficiency. If the capture system does not meet... surface preparation activities and drying and curing time. (c) Liquid-to-uncaptured-gas protocol using a...

  19. An evaluation of multipass electrofishing for estimating the abundance of stream-dwelling salmonids

    Treesearch

    James T. Peterson; Russell F. Thurow; John W. Guzevich

    2004-01-01

    Failure to estimate capture efficiency, defined as the probability of capturing individual fish, can introduce a systematic error or bias into estimates of fish abundance. We evaluated the efficacy of multipass electrofishing removal methods for estimating fish abundance by comparing estimates of capture efficiency from multipass removal estimates to capture...

  20. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture.

    PubMed

    Ates, Hatice Ceren; Ozgur, Ebru; Kulah, Haluk

    2018-03-23

    Methods for isolation and quantification of circulating tumor cells (CTCs) are attracting more attention every day, as the data for their unprecedented clinical utility continue to grow. However, the challenge is that CTCs are extremely rare (as low as 1 in a billion of blood cells) and a highly sensitive and specific technology is required to isolate CTCs from blood cells. Methods utilizing microfluidic systems for immunoaffinity-based CTC capture are preferred, especially when purity is the prime requirement. However, antibody immobilization strategy significantly affects the efficiency of such systems. In this study, two covalent and two bioaffinity antibody immobilization methods were assessed with respect to their CTC capture efficiency and selectivity, using an anti-epithelial cell adhesion molecule (EpCAM) as the capture antibody. Surface functionalization was realized on plain SiO 2 surfaces, as well as in microfluidic channels. Surfaces functionalized with different antibody immobilization methods are physically and chemically characterized at each step of functionalization. MCF-7 breast cancer and CCRF-CEM acute lymphoblastic leukemia cell lines were used as EpCAM positive and negative cell models, respectively, to assess CTC capture efficiency and selectivity. Comparisons reveal that bioaffinity based antibody immobilization involving streptavidin attachment with glutaraldehyde linker gave the highest cell capture efficiency. On the other hand, a covalent antibody immobilization method involving direct antibody binding by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction was found to be more time and cost efficient with a similar cell capture efficiency. All methods provided very high selectivity for CTCs with EpCAM expression. It was also demonstrated that antibody immobilization via EDC-NHS reaction in a microfluidic channel leads to high capture efficiency and selectivity.

  1. Evaluation of three elevated mist-net systems for sampling birds

    USGS Publications Warehouse

    Meyers, J.M.; Pardieck, K.L.

    1993-01-01

    Three light-weight, low-canopy mist-net systems were developed and tested in dry tropical scrub, mangrove and forest habitats. One plastic (polyvinyl chloride) and two aluminum pole systems (with and without pulleys) were used to support mist nets to heights of up to 7.3 m. Although the aluminum telescoping-pole system (without pulleys) was expensive initially ( 79-141/unit (US)), its use reduced capture of nontarget species and may have increased capture of target species when compared with ground-level netting. In one year, its use also reduced labor costs by 756, which completely offset the higher cost of the aluminum telescoping-pole system when compared to the plastic-pole system ( 19/unit). Unlike the plastic-pole system, the aluminum telescoping-pole system was adjustable to any height within its range of 1.8 to 7.3 m, was 1.5 m higher, was more efficient to operate in the field, and was easily moved to new locations. For capture of psittacines, the pulleys of the aluminum telescoping-pole system were not necessary, but their use may assist in efficiently retrieving large numbers of birds from the nets. The aluminum telescoping-pole system was efficient in capturing psittacines, columbids, passerines and possibly chiropterans in habitats with canopies lt 10 m or in the forest subcanopy.

  2. The limited importance of size-asymmetric light competition and growth of pioneer species in early secondary forest succession in Vietnam.

    PubMed

    van Kuijk, Marijke; Anten, N P R; Oomen, R J; van Bentum, D W; Werger, M J A

    2008-08-01

    It is generally believed that asymmetric competition for light plays a predominant role in determining the course of succession by increasing size inequalities between plants. Size-related growth is the product of size-related light capture and light-use efficiency (LUE). We have used a canopy model to calculate light capture and photosynthetic rates of pioneer species in sequential vegetation stages of a young secondary forest stand. Growth of the same saplings was followed in time as succession proceeded. Photosynthetic rate per unit plant mass (P(mass): mol C g(-1) day(-1)), a proxy for plant growth, was calculated as the product of light capture efficiency [Phi(mass): mol photosynthetic photon flux density (PPFD) g(-1) day(-1)] and LUE (mol C mol PPFD(-1)). Species showed different morphologies and photosynthetic characteristics, but their light-capturing and light-use efficiencies, and thus P (mass), did not differ much. This was also observed in the field: plant growth was not size-asymmetric. The size hierarchy that was present from the very early beginning of succession remained for at least the first 5 years. We conclude, therefore, that in slow-growing regenerating vegetation stands, the importance of asymmetric competition for light and growth can be much less than is often assumed.

  3. Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance.

    PubMed

    Lee, Hsu-Yi; Voldman, Joel

    2007-03-01

    We present an investigation into optimizing micromixer design for enhancing dielectrophoretic (DEP) microconcentrator performance. DEP-based microconcentrators use the dielectrophoretic force to collect particles on electrodes. Because the DEP force generated by electrodes decays rapidly away from the electrodes, DEP-based microconcentrators are only effective at capturing particles from a limited cross section of the input liquid stream. Adding a mixer can circulate the input liquid, increasing the probability that particles will drift near the electrodes for capture. Because mixers for DEP-based microconcentrators aim to circulate particles, rather than mix two species, design specifications for such mixers may be significantly different from that for conventional mixers. Here we investigated the performance of patterned-groove micromixers on particle trapping efficiency in DEP-based microconcentrators numerically and experimentally. We used modeling software to simulate the particle motion due to various forces on the particle (DEP, hydrodynamic, etc.), allowing us to predict trapping efficiency. We also conducted trapping experiments and measured the capture efficiency of different micromixer configurations, including the slanted groove, staggered herringbone, and herringbone mixers. Finally, we used these analyses to illustrate the design principles of mixers for DEP-based concentrators.

  4. A Method that Will Captivate U.

    PubMed

    Martin, Sophie; Coller, Jeff

    2015-09-03

    In an age of next-generation sequencing, the ability to purify RNA transcripts has become a critical issue. In this issue, Duffy et al. (2015) improve on a pre-existing technique of RNA labeling and purification by 4-thiouridine tagging. By increasing the efficiency of RNA capture, this method will enhance the ability to study RNA dynamics, especially for transcripts normally inefficiently captured by previous methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Encapsulated liquid sorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.

    2015-02-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  6. Hybrid photosynthesis-powering biocatalysts with solar energy captured by inorganic devices.

    PubMed

    Zhang, Tian; Tremblay, Pier-Luc

    2017-01-01

    The biological reduction of CO 2 driven by sunlight via photosynthesis is a crucial process for life on earth. However, the conversion efficiency of solar energy to biomass by natural photosynthesis is low. This translates in bioproduction processes relying on natural photosynthesis that are inefficient energetically. Recently, hybrid photosynthetic technologies with the potential of significantly increasing the efficiency of solar energy conversion to products have been developed. In these systems, the reduction of CO 2 into biofuels or other chemicals of interest by biocatalysts is driven by solar energy captured with inorganic devices such as photovoltaic cells or photoelectrodes. Here, we explore hybrid photosynthesis and examine the strategies being deployed to improve this biotechnology.

  7. CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions.

    PubMed

    Hassanpouryouzband, Aliakbar; Yang, Jinhai; Tohidi, Bahman; Chuvilin, Evgeny; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2018-04-03

    Injection of flue gas or CO 2 -N 2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO 2 . However, the thermodynamic process in which the CO 2 present in flue gas or a CO 2 -N 2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO 2 capture efficiency on reservoir conditions. The CO 2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO 2 in the flue gas was captured and stored as CO 2 hydrate or CO 2 -mixed hydrates, while methane-rich gas was produced. The efficiency of CO 2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO 2 can be captured from the injected flue gas or CO 2 -N 2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO 2 capture efficiency by flue gas or CO 2 -N 2 mixtures injection.

  8. 40 CFR 63.5875 - How do I determine the capture efficiency of the enclosure on my wet-out area and the capture...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lamination/casting operations? 63.5875 Section 63.5875 Protection of Environment ENVIRONMENTAL PROTECTION... lamination/casting operations? (a) The capture efficiency of a wet-out area enclosure is assumed to be 100...

  9. Local ventilation solution for large, warm emission sources.

    PubMed

    Kulmala, Ilpo; Hynynen, Pasi; Welling, Irma; Säämänen, Arto

    2007-01-01

    In a foundry casting line, contaminants are released from a large area. Casting fumes include both volatile and particulate compounds. The volatile fraction contains hydrocarbons, whereas the particulate fraction mostly comprises a mixture of vaporized metal fumes. Casting fumes lower the air quality in foundries. The design of local ventilation for the casting area is a challenging task, because of the large casting area and convection plumes from warm moulds. A local ventilation solution for the mould casting area was designed and dimensioned with the aid of computational fluid dynamic (CFD) calculations. According to the calculations, the most efficient solution was a push-pull ventilation system. The prototype of the push-pull system was built and tested in actual operation at the foundry. The push flow was generated by a free plane jet that blew across the 10 m wide casting area towards an exhaust hood on the opposite side of the casting lines. The capture efficiency of the prototype was determined by the tracer gas method. The measured capture efficiencies with push jet varied between 40 and 80%, depending on the distance between the source and the exhaust. With the aid of the push flow, the average capture efficiency was increased from 40 (without jet) to 60%.

  10. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees

    PubMed Central

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the question if N limitation in boreal forests acts primarily by constraining growth of young stands while the commonly recorded increase in stem growth of mature stands following N addition is primarily the result of altered allocation and only to a limited extent the result of increased stand C-capture. PMID:27489553

  11. Magnetic nanoparticles for efficient cell transduction with Semliki Forest virus.

    PubMed

    Kurena, Baiba; Vežāne, Aleksandra; Skrastiņa, Dace; Trofimova, Olga; Zajakina, Anna

    2017-07-01

    Semliki Forest virus (SFV) is a potential cancer gene therapy vector capable of providing high and transient expression of heterologous proteins in mammalian cells. However, SFV has shown suboptimal transduction levels in several cancer cell types as well as wide biodistribution of SFV has been observed after in vivo applications. Magnetic nanoparticles (MNPs) have been shown to increase cell transduction with several viral vectors in vitro under an external magnetic field and enhance magnetically guided viral vector delivery. Here, we examined a panel of MNPs for enhanced cancer cell transduction with SFV vector. Magneto-transduction using positively charged MNPs increased Semliki Forest virus transduction in TS/A mouse mammary carcinoma cells in vitro in the presence of fetal bovine serum. Positively charged MNPs efficiently captured SFV particles independently of capturing medium, and MNPs-SFV complexes were successfully separated from suspension by magnetic precipitation. These results reveal the potential application of MNPs for enhanced gene delivery by SFV vector as well as proposes magnetic precipitation for efficient concentration of SFV particles from different media. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Efficient Bioconjugation of Protein Capture Agents to Biosensor Surfaces Using Aniline-Catalyzed Hydrazone Ligation

    PubMed Central

    Byeon, Ji-Yeon; Limpoco, F. T.; Bailey, Ryan C.

    2010-01-01

    Aniline-catalyzed hydrazone ligation between surface immobilized hydrazines and aldehyde-modified antibodies is shown to be an efficient method for attaching protein capture agents to model oxide-coated biosensor substrates. Silicon photonic microring resonators are used to directly evaluate the efficiency of this surface bioconjugate reaction at various pHs and in the presence or absence of aniline as a nucleophilic catalyst. It is found that aniline significantly increases the net antibody loading for surfaces functionalized over a pH range from 4.5 to 7.4, allowing derivatization of substrates with reduced incubation time and sample consumption. This increase in antibody loading directly results in more sensitive antigen detection when functionalized microrings are employed in a label-free immunoassay. Furthermore, these experiments also reveal an interesting pH dependent non-covalent binding trend that plays an important role in dictating the amount of antibody attached onto the substrate, highlighting the competing contributions of the bioconjugate reaction rate and the dynamic interactions that control opportunities for a solution-phase biomolecule to react with a substrate-bound reagent. PMID:20809595

  13. Evaluation strategy of regenerative braking energy for supercapacitor vehicle.

    PubMed

    Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen

    2015-03-01

    In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Dynamics of neutrophil aggregation in couette flow revealed by videomicroscopy: effect of shear rate on two-body collision efficiency and doublet lifetime.

    PubMed Central

    Goldsmith, H L; Quinn, T A; Drury, G; Spanos, C; McIntosh, F A; Simon, S I

    2001-01-01

    During inflammation, neutrophil capture by vascular endothelial cells is dependent on L-selectin and beta(2)-integrin adhesion receptors. One of us (S.I.S.) previously demonstrated that homotypic neutrophil aggregation is analogous to this process in that it is also mediated by these receptors, thus providing a model for studying the dynamics of neutrophil adhesion. In the present work, we set out to confirm the hypothesis that cell-cell adhesion via selectins serves to increase the lifetimes of neutrophil doublets formed through shear-induced two-body collisions. In turn, this would facilitate the engagement of more stable beta(2)-integrin bonds and thus increase the two-body collision efficiency (fraction of collisions resulting in the formation of nonseparating doublets). To this end, suspensions of unstimulated neutrophils were subjected to a uniform shear field in a transparent counter-rotating cone and plate rheoscope, and the formation of doublets and growth of aggregates recorded using high-speed videomicroscopy. The dependence of neutrophil doublet lifetime and two-body collision-capture efficiency on shear rate, G, from 14 to 220 s(-1) was investigated. Bond formation during a two-body collision was indicated by doublets rotating well past the orientation predicted for break-up of doublets of inert spheres. A striking dependence of doublet lifetime on shear rate was observed. At low shear (G = 14 s(-1)), no collision capture occurred, and doublet lifetimes were no different from those of neutrophils pretreated with a blocking antibody to L-selectin, or in Ca(++)-depleted EDTA buffers. At G > or = 66 s(-1), doublet lifetimes increased, with increasing G reaching values twice those for the L-selectin-blocked controls. This correlated with capture efficiencies in excess of 20%, and, at G > or = 110 s(-1), led to the rapid formation of large aggregates, and this in the absence of exogenous chemotactic stimuli. Moreover, the aggregates almost completely broke up when the shear rate was reduced below 66 s(-1). Partial inhibition of aggregate formation was achieved by blocking beta(2)-integrin receptors with antibody. By direct observation of the shear-induced interactions between neutrophils, these data reveal that steady application of a threshold level of shear rate is sufficient to support homotypic neutrophil aggregation. PMID:11566775

  15. The influence of seine capture efficiency on fish abundance estimates in the upper Mississippi River

    USGS Publications Warehouse

    Holland Bartels, L. E.; Dewey, M.R.

    1997-01-01

    The effects of season, presence of vegetation, and time of day on seine capture efficiency for fish were evaluated using test enclosures in the upper Mississippi River. Overall capture efficiency of the seine haul was 49% (53% during the day and 43% at night). During daytime tests, the efficiency ranged from 39% to 74% but did not differ statistically between sites or among dates. At night, the efficiency was higher at the vegetated than at the nonvegetated site (55% vs 32%) and declined through time from 56% in May to 28% in October. Although susceptibility to capture differed among taxa, we could not predict either total catch efficiency or efficiency within a given taxon for a given sample. Adjustment of catch data with various estimates of efficiency reduced the mean absolute error for all sampling dates from 51% to 24%, but the error of the adjusted data still ranged from -58% to +54% on any given sampling date. These results indicate that it is difficult to make accurate adjustment of catch data to compensate for gear bias in studies of seasonal habitat use.

  16. Sublethal effects of catch-and-release fishing: measuring capture stress, fish impairment, and predation risk using a condition index

    USGS Publications Warehouse

    Campbell, Matthew D.; Patino, Reynaldo; Tolan, J.M.; Strauss, R.E.; Diamond, S.

    2009-01-01

    The sublethal effects of simulated capture of red snapper (Lutjanus campechanus) were analysed using physiological responses, condition indexing, and performance variables. Simulated catch-and-release fishing included combinations of depth of capture and thermocline exposure reflective of environmental conditions experienced in the Gulf of Mexico. Frequency of occurrence of barotrauma and lack of reflex response exhibited considerable individual variation. When combined into a single condition or impairment index, individual variation was reduced, and impairment showed significant increases as depth increased and with the addition of thermocline exposure. Performance variables, such as burst swimming speed (BSS) and simulated predator approach distance (AD), were also significantly different by depth. BSSs and predator ADs decreased with increasing depth, were lowest immediately after release, and were affected for up to 15 min, with longer recovery times required as depth increased. The impairment score developed was positively correlated with cortisol concentration and negatively correlated with both BSS and simulated predator AD. The impairment index proved to be an efficient method to estimate the overall impairment of red snapper in the laboratory simulations of capture and shows promise for use in field conditions, to estimate release mortality and vulnerability to predation.

  17. On-chip immunomagnetic separation of bacteria by in-flow dynamic manipulation of paramagnetic beads

    NASA Astrophysics Data System (ADS)

    Ahmed, Shakil; Noh, Jong Wook; Hoyland, James; de Oliveira Hansen, Roana; Erdmann, Helmut; Rubahn, Horst-Günter

    2016-11-01

    Every year, millions of people all over the world fall ill due to the consumption of unsafe food, where consumption of contaminated and spoiled animal origin product is the main cause for diseases due to bacterial growth. This leads to an intense need for efficient methods for detection of food-related bacteria. In this work, we present a method for integration of immunomagnetic separation of bacteria into microfluidic technology by applying an alternating magnetic field, which manipulates the paramagnetic beads into a sinusoidal path across the whole microchannel, increasing the probability for bacteria capture. The optimum channel geometry, flow rate and alternating magnetic field frequency were investigated, resulting in a capture efficiency of 68 %.

  18. Three-Dimensional Inverse Opal Photonic Crystal Substrates toward Efficient Capture of Circulating Tumor Cells.

    PubMed

    Xu, Hongwei; Dong, Biao; Xiao, Qiaoqin; Sun, Xueke; Zhang, Xinran; Lyu, Jiekai; Yang, Yudan; Xu, Lin; Bai, Xue; Zhang, Shuang; Song, Hongwei

    2017-09-13

    Artificial fractal structures have attracted considerable scientific interest in circulating tumor cells (CTCs) detection and capture, which plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we designed a bionic TiO 2 inverse opal photonic crystal (IOPC) structure for highly efficient immunocapture of CTCs by combination of a magnetic Fe 3 O 4 @C6@silane nanoparticles with anti-EpCAM (antiepithelial cell adhesion molecule) and microchannel structure. Porous structure and dimension of IOPC TiO 2 can be precisely controlled for mimicking cellular components, and anti-EpCAM antibody was further modified on IOPC interface by conjugating with polydopamine (PDA). The improvement of CTCs capture efficiency reaches a surprising factor of 20 for the IOPC interface compared to that on flat glass, suggesting that the IOPCs are responsible for the dramatic enhancement of the capture efficiency of MCF-7 cells. IOPC substrate with pore size of 415 nm leads to the optimal CTCs capture efficiency of 92% with 1 mL/h. Besides the cell affinity, IOPCs also have the advantage of light scattering property which can enhance the excitation and emission light of fluorescence labels, facilitating the real-time monitoring of CTCs capture. The IOPC-based platform demonstrates excellent performance in CTCs capture, which will take an important step toward specific recognition of disease-related rare cells.

  19. Hydrodynamics of the Capture Zone of a Partially Penetrating Well in a Confined Aquifer

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris A.; Javandel, Iraj; Witherspoon, Paul A.

    1995-04-01

    In the pump and treat approach to the problem of managing a contaminated aquifer, a key problem is to design an effective capture system that collects only the polluted groundwater without allowing any of it to escape. At present, it is customary to design a capture system using fully penetrating withdrawal wells. Very often, however, only part of the vertical thickness of the aquifer is contaminated, so the question may arise whether a more efficient capture system can be achieved using partially penetrating wells. Very little work has been done on the application of partially penetrating wells to this problem. A new semianalytic method that can be used in determining the geometry of the capture zone for steady state flow to a partially penetrating well that is screened from the top (or from the bottom) of a confined aquifer has been developed. By combining the velocity potentials for flow to the well with that for the regional flow field, a three-dimensional velocity potential that can be used in determining the complete geometry of the capture surface has been developed. The results have shown that with a constant pumping rate the maximum horizontal extent of the capture surface at the top (or bottom) of the aquifer increases as the degree of penetration decreases. As one would expect, the maximum vertical extent increases as the depth of penetration increases. Thus, if one knows the actual location of the contaminant plume, an appropriate combination of the degree of penetration and pumping rate can be selected to create an effective capture zone.

  20. 40 CFR 63.4181 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a.... Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or...

  1. 40 CFR 63.4181 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a.... Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or...

  2. 40 CFR 63.4181 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a.... Capture efficiency or capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or...

  3. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.

    PubMed

    Liu, Yan; Kelly, David J A; Yang, Hongqun; Lin, Christopher C H; Kuznicki, Steve M; Xu, Zhenghe

    2008-08-15

    A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250 degrees C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400 degrees C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC.

  4. Furrow Diking in Conservation Tillage

    USDA-ARS?s Scientific Manuscript database

    Crop production in the Southeastern U.S. can be limited by water; thus, supplemental irrigation is needed to sustain profitable crop production. Increased water capture would efficiently improve water use and reduce supplemental irrigation amounts/costs, thus improving producer’s profit margin. We q...

  5. Modelling foraging movements of diving predators: a theoretical study exploring the effect of heterogeneous landscapes on foraging efficiency

    PubMed Central

    Bartoń, Kamil A.; Scott, Beth E.; Travis, Justin M.J.

    2014-01-01

    Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the development of renewable sources it is unknown how the foraging activity of diving predators such as seabirds will respond to both the presence of underwater structures and the potential corresponding changes in prey distributions. Motivated by this issue we developed a theoretical model to gain general understanding of how the foraging efficiency of diving predators may vary according to landscape structure and foraging strategy. Our theoretical model highlights that animal movements, intervals between prey capture and foraging efficiency are likely to critically depend on the distribution of the prey resource and the size and distribution of introduced underwater structures. For multiple prey loaders, changes in prey distribution affected the searching time necessary to catch a set amount of prey which in turn affected the foraging efficiency. The spatial aggregation of prey around small devices (∼ 9 × 9 m) created a valuable habitat for a successful foraging activity resulting in shorter intervals between prey captures and higher foraging efficiency. The presence of large devices (∼ 24 × 24 m) however represented an obstacle for predator movement, thus increasing the intervals between prey captures. In contrast, for single prey loaders the introduction of spatial aggregation of the resources did not represent an advantage suggesting that their foraging efficiency is more strongly affected by other factors such as the timing to find the first prey item which was found to occur faster in the presence of large devices. The development of this theoretical model represents a useful starting point to understand the energetic reasons for a range of potential predator responses to spatial heterogeneity and environmental uncertainties in terms of search behaviour and predator–prey interactions. We highlight future directions that integrated empirical and modelling studies should take to improve our ability to predict how diving predators will be impacted by the deployment of manmade structures in the marine environment. PMID:25250211

  6. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns

    PubMed Central

    Spencer, J.; Schwarzacher, W.

    2016-01-01

    ABSTRACT In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This approach could be extended to encompass the capture and concentration of specific pathogens, for example, by functionalizing magnetic nanoparticles with antibodies or small molecule probes. PMID:27060124

  7. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns.

    PubMed

    Correia Carreira, S; Spencer, J; Schwarzacher, W; Seddon, A M

    2016-06-15

    In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This approach could be extended to encompass the capture and concentration of specific pathogens, for example, by functionalizing magnetic nanoparticles with antibodies or small molecule probes. Copyright © 2016 Correia Carreira et al.

  8. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Flow characteristics and spillage mechanisms of an inclined quad-vortex range hood subject to influence from draft.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Lin, Jyun-Hua

    2015-01-01

    The flow and spillage characteristics of an inclined quad-vortex (IQV) range hood subject to the influence of drafts from various directions were studied. The laser-assisted smoke flow visualization technique was used to reveal the flow characteristics, and the tracer-gas (sulfur hexafluoride) concentration detection method was used to indicate the quantitative values of the capture efficiency of the hood. It was found that the leakage mechanisms of the IQV range hood are closely related to the flow characteristics. A critical draft velocity of about 0.5 m/s and a critical face velocity of about 0.25 m/s for the IQV range hood were found. When the IQV range hood was influenced by a draft with a velocity larger than the critical draft velocity, the spillage of pollutants became significant and the pollutant spillage rate increased with increasing draft velocity. At draft velocities less than or equal to the critical value, no containment leakages induced by the turbulence diffusion, reverse flow, or boundary-layer separation were observed, and the capture efficiency was about 100%. The IQV range hood exhibited a high ability to resist the influences of lateral and frontal drafts. The capture efficiency of the IQV range hood operated at the suction flow rate 5 to 9 m(3)/min is higher than that of the conventional range hood operated at 11 to 15 m(3)/min.

  10. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors

    NASA Astrophysics Data System (ADS)

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.; Shklyaev, A. A.

    2016-10-01

    We study the effect of quantum dot charging on the mid-infrared photocurrent, optical gain, hole capture probability, and absorption quantum efficiency in remotely delta-doped Ge/Si quantum dot photodetectors. The dot occupation with holes is controlled by varying dot and doping densities. From our investigations of samples doped to contain from about one to nine holes per dot we observe an over 10 times gain enhancement and similar suppression of the hole capture probability with increased carrier population. The data are explained by quenching the capture process and increasing the photoexcited hole lifetime due to formation of the repulsive Coulomb potential of the extra holes inside the quantum dots. The normal incidence quantum efficiency is found to be strongly asymmetric with respect to applied bias polarity. Based on the polarization-dependent absorption measurements it is concluded that, at a positive voltage, when holes move toward the nearest δ-doping plane, photocurrent is originated from the bound-to-continuum transitions of holes between the ground state confined in Ge dots and the extended states of the Si matrix. At a negative bias polarity, the photoresponse is caused by optical excitation to a quasibound state confined near the valence band edge with subsequent tunneling to the Si valence band. In a latter case, the possibility of hole transfer into continuum states arises from the electric field generated by charge distributed between quantum dots and delta-doping planes.

  11. Age Mediation of Frontoparietal Activation during Visual Feature Search

    PubMed Central

    Madden, David J.; Parks, Emily L.; Davis, Simon W.; Diaz, Michele T.; Potter, Guy G.; Chou, Ying-hui; Chen, Nan-kuei; Cabeza, Roberto

    2014-01-01

    Activation of frontal and parietal brain regions is associated with attentional control during visual search. We used fMRI to characterize age-related differences in frontoparietal activation in a highly efficient feature search task, detection of a shape singleton. On half of the trials, a salient distractor (a color singleton) was present in the display. The hypothesis was that frontoparietal activation mediated the relation between age and attentional capture by the salient distractor. Participants were healthy, community-dwelling individuals, 21 younger adults (19 – 29 years of age) and 21 older adults (60 – 87 years of age). Top-down attention, in the form of target predictability, was associated with an improvement in search performance that was comparable for younger and older adults. The increase in search reaction time (RT) associated with the salient distractor (attentional capture), standardized to correct for generalized age-related slowing, was greater for older adults than for younger adults. On trials with a color singleton distractor, search RT increased as a function of increasing activation in frontal regions, for both age groups combined, suggesting increased task difficulty. Mediational analyses disconfirmed the hypothesized model, in which frontal activation mediated the age-related increase in attentional capture, but supported an alternative model in which age was a mediator of the relation between frontal activation and capture. PMID:25102420

  12. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    NASA Astrophysics Data System (ADS)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c0nr00720j

  13. A wind tunnel test of newly developed personal bioaerosol samplers.

    PubMed

    Su, Wei-Chung; Tolchinsky, Alexander D; Sigaev, Vladimir I; Cheng, Yung Sung

    2012-07-01

    In this study the performance of two newly developed personal bioaerosol samplers was evaluated. The two test samplers are cyclone-based personal samplers that incorporate a recirculating liquid film. The performance evaluations focused on the physical efficiencies that a personal bioaerosol sampler could provide, including aspiration, collection, and capture efficiencies. The evaluation tests were carried out in a wind tunnel, and the test personal samplers were mounted on the chest of a full-size manikin placed in the test chamber of the wind tunnel. Monodisperse fluorescent aerosols ranging from 0.5 to 20 microm were used to challenge the samplers. Two wind speeds of 0.5 and 2.0 m/sec were employed as the test wind speeds in this study. The test results indicated that the aspiration efficiency of the two test samplers closely agreed with the ACGIH inhalable convention within the size range of the test aerosols. The aspiration efficiency was found to be independent of the sampling orientation. The collection efficiency acquired from these two samplers showed that the 50% cutoff diameters were both around 0.6 microm. However the wall loss of these two test samplers increased as the aerosol size increased, and the wall loss of PAS-4 was considerably higher than that of PAS-5, especially in the aerosol size larger than 5 microm, which resulted in PAS-4 having a relatively lower capture efficiency than PAS-5. Overall, the PAS-5 is considered a better personal bioaerosol sampler than the PAS-4.

  14. Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture

    NASA Astrophysics Data System (ADS)

    Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh

    2015-01-01

    We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ∼100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.

  15. Capturing and concentrating adenovirus using magnetic anionic nanobeads

    PubMed Central

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  16. Heat recovery from sorbent-based CO.sub.2 capture

    DOEpatents

    Jamal, Aqil; Gupta, Raghubir P

    2015-03-10

    The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.

  17. Design of Stratified Functional Nanoporous Materials for CO 2 Capture and Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J. Karl; Ye, Jingyun

    The objective of this project is to develop novel nanoporous materials for CO 2 capture and conversion. The motivation of this work is that capture of CO 2 from flue gas or the atmosphere coupled with catalytic hydrogenation of CO 2 into valuable chemicals and fuels can reduce the net amount of CO 2 in the atmosphere while providing liquid transportation fuels and other commodity chemicals. One approach to increasing the economic viability of carbon capture and conversion is to design a single material that can be used for both the capture and catalytic conversion of CO 2, because suchmore » a material could increase efficiency through process intensification. We have used density functional theory (DFT) methods to design catalytic moieties that can be incorporated into various metal organic framework (MOF) materials. We chose to work with MOFs because they are highly tailorable, can be functionalized, and have been shown to selectively adsorb CO 2 over N 2, which is a requirement for CO 2 capture from flue gas. Moreover, the incorporation of molecular catalytic moieties into MOF, through covalent bonding, produces a heterogeneous catalytic material having activities and selectivities close to those of homogeneous catalysts, but without the draw-backs associated with homogeneous catalysis.« less

  18. The influence of mixed tree plantations on the nutrition of individual species: a review.

    PubMed

    Richards, Anna E; Forrester, David I; Bauhus, Jürgen; Scherer-Lorenzen, Michael

    2010-09-01

    Productivity of tree plantations is a function of the supply, capture and efficiency of use of resources, as outlined in the Production Ecology Equation. Species interactions in mixed-species stands can influence each of these variables. The importance of resource-use efficiency in determining forest productivity has been clearly demonstrated in monocultures; however, substantial knowledge gaps remain for mixtures. This review examines how the physiology and morphology of a given species can vary depending on whether it grows in a mixture or monoculture. We outline how physiological and morphological shifts within species, resulting from interactions in mixtures, may influence the three variables of the Production Ecology Equation, with an emphasis on nutrient resources [nitrogen (N) and phosphorus (P)]. These include (i) resource availability, including soil nutrient mineralization, N₂ fixation and litter decomposition; (ii) proportion of resources captured, resulting from shifts in spatial, temporal and chemical patterns of root dynamics; (iii) resource-use efficiency. We found that more than 50% of mixed-species studies report a shift to greater above-ground nutrient content of species grown in mixtures compared to monocultures, indicating an increase in the proportion of resources captured from a site. Secondly, a meta-analysis showed that foliar N concentrations significantly increased for a given species in a mixture containing N₂-fixing species, compared to a monoculture, suggesting higher rates of photosynthesis and greater resource-use efficiency. Significant shifts in N- and P-use efficiencies of a given species, when grown in a mixture compared to a monoculture, occurred in over 65% of studies where resource-use efficiency could be calculated. Such shifts can result from changes in canopy photosynthetic capacities, changes in carbon allocation or changes to foliar nutrient residence times of species in a mixture. We recommend that future research focus on individual species' changes, particularly with respect to resource-use efficiency (including nutrients, water and light), when trees are grown in mixtures compared to monocultures. A better understanding of processes responsible for changes to tree productivity in mixed-species tree plantations can improve species, and within-species, selection so that the long-term outcome of mixtures is more predictable.

  19. A Single Camera Motion Capture System for Human-Computer Interaction

    NASA Astrophysics Data System (ADS)

    Okada, Ryuzo; Stenger, Björn

    This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.

  20. Effects of the number of people on efficient capture and sample collection: a lion case study.

    PubMed

    Ferreira, Sam M; Maruping, Nkabeng T; Schoultz, Darius; Smit, Travis R

    2013-05-24

    Certain carnivore research projects and approaches depend on successful capture of individuals of interest. The number of people present at a capture site may determine success of a capture. In this study 36 lion capture cases in the Kruger National Park were used to evaluate whether the number of people present at a capture site influenced lion response rates and whether the number of people at a sampling site influenced the time it took to process the collected samples. The analyses suggest that when nine or fewer people were present, lions appeared faster at a call-up locality compared with when there were more than nine people. The number of people, however, did not influence the time it took to process the lions. It is proposed that efficient lion capturing should spatially separate capture and processing sites and minimise the number of people at a capture site.

  1. Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities.

    PubMed

    Li, Yun; Sjostrom, Marten; Olsson, Roger; Jennehag, Ulf

    2016-01-01

    One of the light field capturing techniques is the focused plenoptic capturing. By placing a microlens array in front of the photosensor, the focused plenoptic cameras capture both spatial and angular information of a scene in each microlens image and across microlens images. The capturing results in a significant amount of redundant information, and the captured image is usually of a large resolution. A coding scheme that removes the redundancy before coding can be of advantage for efficient compression, transmission, and rendering. In this paper, we propose a lossy coding scheme to efficiently represent plenoptic images. The format contains a sparse image set and its associated disparities. The reconstruction is performed by disparity-based interpolation and inpainting, and the reconstructed image is later employed as a prediction reference for the coding of the full plenoptic image. As an outcome of the representation, the proposed scheme inherits a scalable structure with three layers. The results show that plenoptic images are compressed efficiently with over 60 percent bit rate reduction compared with High Efficiency Video Coding intra coding, and with over 20 percent compared with an High Efficiency Video Coding block copying mode.

  2. Simultaneous high efficiency capture of CO.sub.2 and H.sub.2S from pressurized gas

    DOEpatents

    Gal, Eli; Krishnan, Gopala N.; Jayaweera, Indira S.

    2016-10-11

    Low-cost and energy-efficient CO.sub.2 and H.sub.2S capture is provided obtaining greater than 99.9% capture efficiency from pressurized gas. The acid species are captured in an ammonia solution, which is then regenerated by stripping the absorbed species. The solution can capture as much as 330 grams of CO.sub.2 and H.sub.2S per 1000 gram of water and when regenerated it produces pure pressurized acid gas containing more than 99.7% CO.sub.2 and H2S. The absorption of the acid species is accomplished in two absorbers in-series, each having multiple stages. More than 95% of the acid species are captured in the first absorber and the balance is captured in the second absorber to below 10 ppm concentration in the outlet gas. The two absorbers operate at temperatures ranging from 20-70 degrees Celsius. The two absorbers and the main stripper of the alkaline solution operate at similar pressures ranging from 5-200 bara.

  3. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancu, Dan; Wood, Benjamin; Genovese, Sarah

    GE Global Research has developed, over the last 8 years, a platform of cost effective CO 2 capture technologies based on a non-aqueous aminosilicone solvent (GAP-1m). As demonstrated in a previous funded DOE project (DE-FE0007502), the GAP-1m solvent has increased CO 2 working capacity, lower volatility and corrosivity than the benchmark aqueous amine technology. The current report describes the cooperative program between GE Global Research (GE GRC), and the National Carbon Capture Center (NCCC) to design, construct, and operate a pilot-scale process using GAP-1m solvent to demonstrate its performance at 0.5 MWe. (i) Performance of the GAP-1m solvent was demonstratedmore » in a 0.5 MWe pilot with real flue gas for over 900 hrs. of operation using two alternative desorption designs: a Continuous Stirred Tank Reactor (CSTR), and a Steam Stripper Column (SSC). The CSTR is a one-stage separation unit with reduced space requirements, and capital cost. The alternative is a multi-stage separation column, with improved desorption efficiency. Testing the two desorber options allowed us to identify the most cost effective, and space efficient desorber solution. (ii) CSTR Campaign: The CSTR desorber unit was designed, fabricated and integrated with the pilot solvent test unit (PSTU), replacing the PSTU Steam Stripper Column at NCCC. Solvent management and waste water special procedures were implemented to accommodate operation of the non-aqueous solvent in the PSTU. Performance of the GAP-1m solvent with the CSTR was demonstrated for over 500 hrs. while varying temperature of the desorption (230 – 265 oF), solvent circulation rate (GAP-1m : CO 2 (molar) = 1.5 – 4), and flue gas flow rates (0.2 – 0.5 MWe). Solvent carry-over in the CO 2 product was minimized by maintaining water content below 5 wt.%, and desorption pressure at 7 psig. CO 2 capture efficiency achieved was 95% at 0.25 MWe (GAP-1m : CO 2 = 4 (molar), 230 oF desorption), and 65% at 0.5 MWe (GAP-1m : CO 2 (molar) = 1.5, 248 oF). Solvent loss was dominated by thermal degradation of the rich solvent. (iii) Steam Stripper Column Campaign: Higher expected cost of the solvent vs. aqueous amines makes solvent management a top priority to maintain the low cost for the process. During the testing of the GAP-1m solvent with the CSTR, thermal degradation of the rich solvent was found to be the main mechanism in solvent loss. Small amounts of water in the working solution were found to be an effective way to enable steam stripping, thereby lowering desorption temperature, and hence reducing thermal degradation. Steam stripping also increased working capacity by 30% due to a more efficient desorption. The concept was first tested in a glass stripping column (lab scale, GE GRC), optimized in a continuous bench scale system (2 kWe, GE GRC), and demonstrated in a 0.5 MWe PSTU at NCCC. No special system modifications were required to the PSTU to accommodate the testing of the non-aqueous GAP-1 solvent with the regenerator column. SSC was found to be more robust towards solvent entrainment (H 2O < 35 wt.%). 90 – 95% CO 2 capture efficiency was achieved under stoichiometric conditions at 0.5 MWe (235 oF desorption, 2 psig and 19 wt. % H 2O). Both CO 2 capture efficiency and specific duty reached optimum conditions at 18 wt.% H 2O. Low amine degradation (< 0.05 wt.%/day) was recorded over 350 hrs. of operation. Controlled water addition to GAP-1m solvent decreased the desorption temperature, thermal degradation, and improved the CO 2 working capacity due to more efficient absorption and desorption processes. Under these conditions, the GAP-1m solvent exhibited a 25% increased working capacity, and 10% reduction in specific steam duty vs. MEA, at 10 oF lower desorption temperature. (iv) Techno-economic Analysis: The pilot-scale PSTU engineering data were used to update the capture system process models, and the techno-economic analysis was performed for a 550 MW coal fired power plant. The 1st year CO 2 removal cost for the aminosilicone-based carbon-capture process was evaluated at $48/ton CO 2 using the steam stripper column. This is a 20% reduction compared to MEA, primarily due to lower overall capital cost. CO 2 cost using the CSTR desorber is dominated by the economics of the solvent make-up. The steam stripper desorber is the preferred unit operation due to a more efficient desorption, and reduced solvent make-up rate. Further reduction in CO 2 capture cost is expected by lowering the manufacturing cost of the solvent, implementing flowsheet optimization and/or implementing the next generation aminosilicone solvent with improved stability and increased CO 2 working capacity.« less

  4. P.L. 110-140, "Energy Independence and Security Act of 2007" (2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2007-12-13

    An act to move the United States toward greater energy independence and security, to increase the production of clean renewable fuels, to protect consumers, to increase the efficiency of products, buildings, and vehicles, to promote research on and deploy greenhouse gas capture and storage options, and to improve the energy performance of the Federal Government, and for other purposes.

  5. Effect of Irrigation to Winter Wheat on the Radiation Use Efficiency and Yield of Summer Maize in a Double Cropping System

    PubMed Central

    Quanqi, Li; Yuhai, Chen; Xunbo, Zhou; Songlie, Yu; Changcheng, Guo

    2012-01-01

    In north China, double cropping of winter wheat and summer maize is a widely adopted agricultural practice, and irrigation is required to obtain a high yield from winter wheat, which results in rapid aquifer depletion. In this experiment conducted in 2001-2002, 2002-2003, and 2004-2005, we studied the effects of irrigation regimes during specific winter wheat growing stage with winter wheat and summer maize double cropping systems; we measured soil moisture before sowing (SMBS), the photosynthetic active radiation (PAR) capture ratio, grain yield, and the radiation use efficiency (RUE) of summer maize. During the winter wheat growing season, irrigation was applied at the jointing, heading, or milking stage, respectively. The results showed that increased amounts of irrigation and irrigation later in the winter wheat growing season improved SMBS for summer maize. The PAR capture ratio significantly (LSD, P < 0.05) increased with increased SMBS, primarily in the 3 spikes leaves. With improved SMBS, both the grain yield and RUE increased in all the treatments. These results indicate that winter wheat should be irrigated in later stages to achieve reasonable grain yield for both crops. PMID:22654613

  6. Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration.

    PubMed

    Ho, T C; Chuang, T C; Chelluri, S; Lee, Y; Hopper, J R

    2001-01-01

    Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental investigation, the effect of sulfur and chlorine on the metal capture process was also theoretically investigated through performing equilibrium calculations based on the minimization of system free energy. The observed results have indicated that, in general, the existence of sulfur and chlorine enhances the efficiency of metal capture especially at low to medium combustion temperatures. The capture mechanisms appear to include particulate scrubbing and chemisorption depending on the type of sorbents. Among the three sorbents tested, calcined limestone is capable of capturing all the three air pollutants simultaneously. The results also indicate that a mixture of the three sorbents, in general, captures more metals than a single sorbent during the process. In addition, the existence of sulfur and chlorine apparently enhances the metal capture process.

  7. Dynamic application of microprojection arrays to skin induces circulating protein extravasation for enhanced biomarker capture and detection.

    PubMed

    Coffey, Jacob W; Meliga, Stefano C; Corrie, Simon R; Kendall, Mark A F

    2016-04-01

    Surface modified microprojection arrays are a needle-free alternative to capture circulating biomarkers from the skin in vivo for diagnosis. The concentration and turnover of biomarkers in the interstitial fluid, however, may limit the amount of biomarker that can be accessed by microprojection arrays and ultimately their capture efficiency. Here we report that microprojection array insertion induces protein extravasation from blood vessels and increases the concentration of biomarkers in skin, which can synergistically improve biomarker capture. Regions of blood vessels in skin were identified in the upper dermis and subcutaneous tissue by multi-photon microscopy. Insertion of microprojection array designs with varying projection length (40-190 μm), density (5000-20,408 proj.cm(-2)) and array size (4-36 mm(2)) did not affect the degree of extravasation. Furthermore, the location of extravasated protein did not correlate with projection penetration to these highly vascularised regions, suggesting extravasation was not caused by direct puncture of blood vessels. Biomarker extravasation was also induced by dynamic application of flat control surfaces, and varied with the impact velocity, further supporting this conclusion. The extravasated protein distribution correlated well with regions of high mechanical stress generated during insertion, quantified by finite element models. Using this approach to induce extravasation prior to microprojection array-based biomarker capture, anti-influenza IgG was captured within a 2 min application time, demonstrating that extravasation can lead to rapid biomarker sampling and significantly improved microprojection array capture efficiency. These results have broad implications for the development of transdermal devices that deliver to and sample from the skin. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  8. Catch of channel catfish with tandem-set hoop nets and gill nets in lentic systems of Nebraska

    USGS Publications Warehouse

    Richters, Lindsey K.; Pope, Kevin L.

    2011-01-01

    Twenty-six Nebraska water bodies representing two ecosystem types (small standing waters and large standing waters) were surveyed during 2008 and 2009 with tandem-set hoop nets and experimental gill nets to determine if similar trends existed in catch rates and size structures of channel catfish Ictalurus punctatus captured with these gears. Gear efficiency was assessed as the number of sets (nets) that would be required to capture 100 channel catfish given observed catch per unit effort (CPUE). Efficiency of gill nets was not correlated with efficiency of hoop nets for capturing channel catfish. Small sample sizes prohibited estimation of proportional size distributions in most surveys; in the four surveys for which sample size was sufficient to quantify length-frequency distributions of captured channel catfish, distributions differed between gears. The CPUE of channel catfish did not differ between small and large water bodies for either gear. While catch rates of hoop nets were lower than rates recorded in previous studies, this gear was more efficient than gill nets at capturing channel catfish. However, comparisons of size structure between gears may be problematic.

  9. Polyethylene Glycol-Functionalized Magnetic Fe₃O₄/P(MMA-AA) Composite Nanoparticles Enhancing Efficient Capture of Circulating Tumor Cells.

    PubMed

    Ma, Shaohua; Zhan, Xiaohui; Yang, Minggang; Lan, Fang; Wu, Yao; Gu, Zhongwei

    2018-04-01

    Circulating tumor cells (CTCs) played a significant role in early diagnosis and prognosis of carcinomas, and efficient capture of CTCs was highly desired to provide important and reliable evidence for clinical diagnosis. In present work, we successfully synthesized functional magnetic Fe3O4/P(MMA-AA) composite nanoparticles (FCNPs) inspired by a counterbalance concept for recognition and capture of CTCs. This counterbalance, composed of polyethylene glycol (PEG) suppressing cell adhesion and anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody targeting tumor cells, could both enhance the specific capture of tumor cells and reduce unspecific adhesion of normal cells. The study showed that the PEG density on the surface of the FCNPs affected the specificity of the materials, and a density of ca. 15% was efficient for reducing the unspecific adhesion. After incubation with the mixture of HepG2 cells and Jurkat T cells, the FCNPs reached a capture efficiency as high as about 86.5% of the cancer cells, suggesting great potential on detection of CTCs in the diagnoses and prognoses of cancer metastasis.

  10. Vibration extraction based on fast NCC algorithm and high-speed camera.

    PubMed

    Lei, Xiujun; Jin, Yi; Guo, Jie; Zhu, Chang'an

    2015-09-20

    In this study, a high-speed camera system is developed to complete the vibration measurement in real time and to overcome the mass introduced by conventional contact measurements. The proposed system consists of a notebook computer and a high-speed camera which can capture the images as many as 1000 frames per second. In order to process the captured images in the computer, the normalized cross-correlation (NCC) template tracking algorithm with subpixel accuracy is introduced. Additionally, a modified local search algorithm based on the NCC is proposed to reduce the computation time and to increase efficiency significantly. The modified algorithm can rapidly accomplish one displacement extraction 10 times faster than the traditional template matching without installing any target panel onto the structures. Two experiments were carried out under laboratory and outdoor conditions to validate the accuracy and efficiency of the system performance in practice. The results demonstrated the high accuracy and efficiency of the camera system in extracting vibrating signals.

  11. Fabrication and application of a non-contact double-tapered optical fiber tweezers.

    PubMed

    Liu, Z L; Liu, Y X; Tang, Y; Zhang, N; Wu, F P; Zhang, B

    2017-09-18

    A double-tapered optical fiber tweezers (DOFTs) was fabricated by a chemical etching called interfacial layer etching. In this method, the second taper angle (STA) of DOFTs can be controlled easily by the interfacial layer etching time. Application of the DOFTs to the optical trapping of the yeast cells was presented. Effects of the STA on the axile trapping efficiency and the trapping position were investigated experimentally and theoretically. The experimental results are good agreement with the theoretical ones. The results demonstrated that the non-contact capture can be realized for the large STA (e.g. 90 deg) and there was an optimal axile trapping efficiency as the STA increasing. In order to obtain a more accurate measurement result of the trapping force, a correction factor to Stokes drag coefficient was introduced. This work provided a way of designing and fabricating an optical fiber tweezers (OFTs) with a high trapping efficient or a non-contact capture.

  12. Effect of elevation on distribution of female bats in the Black Hills, South Dakota

    USGS Publications Warehouse

    Cryan, P.M.; Bogan, M.A.; Altenbach, J.S.

    2000-01-01

    Presumably, reproductive female bats are more constrained by thermoregulatory and energy needs than are males and nonreproductive females. Constraints imposed on reproductive females may limit their geographic distribution relative to other bats. Such constraints likely increase with latitude and elevation. Males of 11 bat species that inhabit the Black Hills were captured more frequently than females, and reproductive females typically were encountered at low-elevational sites. To investigate the relationship between female distribution and elevation, we fitted a logistic regression model to evaluate the probability of reproductive-female capture as a function of elevation. Mist-net data from 1,197 captures of 7 species revealed that 75% of all captures were males. We found a significant inverse relationship between elevation and relative abundance of reproductive females. Relative abundance of reproductive females decreased as elevation increased. Reproductive females may be constrained from roosting and foraging in high-elevational habitats that impose thermoregulatory costs and decrease foraging efficiency. Failure to account for sex differences in distributional patterns along elevational gradients may significantly bias estimates of population size.

  13. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    PubMed

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.

  14. Age mediation of frontoparietal activation during visual feature search.

    PubMed

    Madden, David J; Parks, Emily L; Davis, Simon W; Diaz, Michele T; Potter, Guy G; Chou, Ying-hui; Chen, Nan-kuei; Cabeza, Roberto

    2014-11-15

    Activation of frontal and parietal brain regions is associated with attentional control during visual search. We used fMRI to characterize age-related differences in frontoparietal activation in a highly efficient feature search task, detection of a shape singleton. On half of the trials, a salient distractor (a color singleton) was present in the display. The hypothesis was that frontoparietal activation mediated the relation between age and attentional capture by the salient distractor. Participants were healthy, community-dwelling individuals, 21 younger adults (19-29 years of age) and 21 older adults (60-87 years of age). Top-down attention, in the form of target predictability, was associated with an improvement in search performance that was comparable for younger and older adults. The increase in search reaction time (RT) associated with the salient distractor (attentional capture), standardized to correct for generalized age-related slowing, was greater for older adults than for younger adults. On trials with a color singleton distractor, search RT increased as a function of increasing activation in frontal regions, for both age groups combined, suggesting increased task difficulty. Mediational analyses disconfirmed the hypothesized model, in which frontal activation mediated the age-related increase in attentional capture, but supported an alternative model in which age was a mediator of the relation between frontal activation and capture. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture: Part 1 Design and feasibility.

    PubMed

    Rajta, Istvan; Huszánk, Robert; Szabó, Atilla T T; Nagy, Gyula U L; Szilasi, Szabolcs; Fürjes, Peter; Holczer, Eszter; Fekete, Zoltan; Járvás, Gabor; Szigeti, Marton; Hajba, Laszlo; Bodnár, Judit; Guttman, Andras

    2016-02-01

    Design, fabrication, integration, and feasibility test results of a novel microfluidic cell capture device is presented, exploiting the advantages of proton beam writing to make lithographic irradiations under multiple target tilting angles and UV lithography to easily reproduce large area structures. A cell capture device is demonstrated with a unique doubly tilted micropillar array design for cell manipulation in microfluidic applications. Tilting the pillars increased their functional surface, therefore, enhanced fluidic interaction when special bioaffinity coating was used, and improved fluid dynamic behavior regarding cell culture injection. The proposed microstructures were capable to support adequate distribution of body fluids, such as blood, spinal fluid, etc., between the inlet and outlet of the microfluidic sample reservoirs, offering advanced cell capture capability on the functionalized surfaces. The hydrodynamic characteristics of the microfluidic systems were tested with yeast cells (similar size as red blood cells) for efficient capture. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Estimating juvenile Chinook salmon (Oncorhynchus tshawytscha) abundance from beach seine data collected in the Sacramento–San Joaquin Delta and San Francisco Bay, California

    USGS Publications Warehouse

    Perry, Russell W.; Kirsch, Joseph E.; Hendrix, A. Noble

    2016-06-17

    Resource managers rely on abundance or density metrics derived from beach seine surveys to make vital decisions that affect fish population dynamics and assemblage structure. However, abundance and density metrics may be biased by imperfect capture and lack of geographic closure during sampling. Currently, there is considerable uncertainty about the capture efficiency of juvenile Chinook salmon (Oncorhynchus tshawytscha) by beach seines. Heterogeneity in capture can occur through unrealistic assumptions of closure and from variation in the probability of capture caused by environmental conditions. We evaluated the assumptions of closure and the influence of environmental conditions on capture efficiency and abundance estimates of Chinook salmon from beach seining within the Sacramento–San Joaquin Delta and the San Francisco Bay. Beach seine capture efficiency was measured using a stratified random sampling design combined with open and closed replicate depletion sampling. A total of 56 samples were collected during the spring of 2014. To assess variability in capture probability and the absolute abundance of juvenile Chinook salmon, beach seine capture efficiency data were fitted to the paired depletion design using modified N-mixture models. These models allowed us to explicitly test the closure assumption and estimate environmental effects on the probability of capture. We determined that our updated method allowing for lack of closure between depletion samples drastically outperformed traditional data analysis that assumes closure among replicate samples. The best-fit model (lowest-valued Akaike Information Criterion model) included the probability of fish being available for capture (relaxed closure assumption), capture probability modeled as a function of water velocity and percent coverage of fine sediment, and abundance modeled as a function of sample area, temperature, and water velocity. Given that beach seining is a ubiquitous sampling technique for many species, our improved sampling design and analysis could provide significant improvements in density and abundance estimation.

  17. Techno-economic assessment of polymer membrane systems for postcombustion carbon capture at coal-fired power plants.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2013-03-19

    This study investigates the feasibility of polymer membrane systems for postcombustion carbon dioxide (CO(2)) capture at coal-fired power plants. Using newly developed performance and cost models, our analysis shows that membrane systems configured with multiple stages or steps are capable of meeting capture targets of 90% CO(2) removal efficiency and 95+% product purity. A combined driving force design using both compressors and vacuum pumps is most effective for reducing the cost of CO(2) avoided. Further reductions in the overall system energy penalty and cost can be obtained by recycling a portion of CO(2) via a two-stage, two-step membrane configuration with air sweep to increase the CO(2) partial pressure of feed flue gas. For a typical plant with carbon capture and storage, this yielded a 15% lower cost per metric ton of CO(2) avoided compared to a plant using a current amine-based capture system. A series of parametric analyses also is undertaken to identify paths for enhancing the viability of membrane-based capture technology.

  18. Nanotextured PDMS Substrates for Enhanced Roughness and Aptamer Immobilization for Cancer Cell Capture

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Mahmood, Arif; Bellah, Md.; Kim, Young-Tae; Iqbal, Samir

    2014-03-01

    Detection of circulating tumor cells (CTCs) in the early stages of cancer is requires very sensitive approach. Nanotextured polydimethylsiloxane (PDMS) substrates were fabricated by micro reactive ion etching (Micro-RIE) to have better control on surface morphology and to improve the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers. The aptamers were specific to epidermal growth factor receptors (EGFR) present in cell membranes, and overexpressed in tumor cells. We also investigated the effect of nano-scale features on cell capturing by implementing various surfaces of different roughnesses. Three different recipes were used to prepare nanotextured PDMS by micro-RIE using oxygen (O2) and carbon tetrafluoride (CF4). The measured average roughness of three nanotextured PDMS surfaces were found to impact average densities of captured cells. In all cases, nanotextured PDMS facilitated cell capturing possibly due to increased effective surface area of roughened substrates at nanoscale. It was also observed that cell capture efficiency was higher for higher surface roughness. The nanotextured PDMS substrates are thus useful for cancer cytology devices.

  19. Choices of capture chromatography technology in antibody manufacturing processes.

    PubMed

    DiLeo, Michael; Ley, Arthur; Nixon, Andrew E; Chen, Jie

    2017-11-15

    The capture process employed in monoclonal antibody downstream purification is not only the most critically impacted process by increased antibody titer resulting from optimized mammalian cell culture expression systems, but also the most important purification step in determining overall process throughput, product quality, and economics. Advances in separation technology for capturing antibodies from complex feedstocks have been one focus of downstream purification process innovation for past 10 years. In this study, we evaluated new generation chromatography resins used in the antibody capture process including Protein A, cation exchange, and mixed mode chromatography to address the benefits and unique challenges posed by each chromatography approach. Our results demonstrate the benefit of improved binding capacity of new generation Protein A resins, address the concern of high concentration surge caused aggregation when using new generation cation exchange resins with over 100mg/mL binding capacity, and highlight the potential of multimodal cation exchange resins for capture process design. The new landscape of capture chromatography technologies provides options to achieve overall downstream purification outcome with high product quality and process efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriello, Nicholas M.; Douglas, Erik S.; Mathies, Richard A.

    A microchip that performs directed capture and chemical activation of surface-modified single-cells has been developed. The cell-capture system is comprised of interdigitated gold electrodes microfabricated on a glass substrate within PDMS channels. The cell surface is labeled with thiol functional groups using endogenous RGD receptors and adhesion to exposed gold pads on the electrodes is directed by applying a driving electric potential. Multiple cell types can thus be sequentially and selectively captured on desired electrodes. Single-cell capture efficiency is optimized by varying the duration of field application. Maximum single-cell capture is attained for the 10 min trial, with 63+-9 percentmore » (n=30) of the electrode pad rows having a single cell. In activation studies, single M1WT3 CHO cells loaded with the calcium-sensitive dye fluo-4 AM were captured; exposure to the muscarinic agonist carbachol increased the fluorescence to 220+-74percent (n=79) of the original intensity. These results demonstrate the ability to direct the adhesion of selected living single cells on electrodes in a microfluidic device and to analyze their response to chemical stimuli.« less

  1. A two-magnet strategy for improved mixing and capture from biofluids

    PubMed Central

    Doyle, Andrew B.; Haselton, Frederick R.

    2016-01-01

    Magnetic beads are a popular method for concentrating biomolecules from solution and have been more recently used in multistep pre-arrayed microfluidic cartridges. Typical processing strategies rely on a single magnet, resulting in a tight cluster of beads and requiring long incubation times to achieve high capture efficiencies, especially in highly viscous patient samples. This report describes a two-magnet strategy to improve the interaction of the bead surface with the surrounding fluid inside of a pre-arrayed, self-contained assay-in-a-tube. In the two-magnet system, target biomarker capture occurs at a rate three times faster than the single-magnet system. In clinically relevant biomatrices, we find a 2.5-fold improvement in biomarker capture at lower sample viscosities with the two-magnet system. In addition, we observe a 20% increase in the amount of protein captured at high viscosity for the two-magnet configuration relative to the single magnet approach. The two-magnet approach offers a means to achieve higher biomolecule extraction yields and shorter assay times in magnetic capture assays and in self-contained processor designs. PMID:27158286

  2. Time and financial costs of programs for live trapping feral cats.

    PubMed

    Nutter, Felicia B; Stoskopf, Michael K; Levine, Jay F

    2004-11-01

    To determine the time and financial costs of programs for live trapping feral cats and determine whether allowing cats to become acclimated to the traps improved trapping effectiveness. Prospective cohort study. 107 feral cats in 9 colonies. 15 traps were set at each colony for 5 consecutive nights, and 5 traps were then set per night until trapping was complete. In 4 colonies, traps were immediately baited and set; in the remaining 5 colonies, traps were left open and cats were fed in the traps for 3 days prior to the initiation of trapping. Costs for bait and labor were calculated, and trapping effort and efficiency were assessed. Mean +/- SD overall trapping effort (ie, number of trap-nights until at least 90% of the cats in the colony had been captured or until no more than 1 cat remained untrapped) was 8.9 +/- 3.9 trap-nights per cat captured. Mean overall trapping efficiency (ie, percentage of cats captured per colony) was 98.0 +/- 4.0%. There were no significant differences in trapping effort or efficiency between colonies that were provided an acclimation period and colonies that were not. Overall trapping costs were significantly higher for colonies provided an acclimation period. Results suggest that these live-trapping protocols were effective. Feeding cats their regular diets in the traps for 3 days prior to the initiation of trapping did not have a significant effect on trapping effort or efficiency in the present study but was associated with significant increases in trapping costs.

  3. Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Tang, Yadong; Shi, Jian; Li, Sisi; Wang, Li; Cayre, Yvon E.; Chen, Yong

    2014-08-01

    Capture of circulating tumor cells (CTCs) from peripheral blood of cancer patients has major implications for metastatic detection and therapy analyses. Here we demonstrated a microfluidic device for high efficiency and high purity capture of CTCs. The key novelty of this approach lies on the integration of a microfilter with conical-shaped holes and a micro-injector with cross-flow components for size dependent capture of tumor cells without significant retention of non-tumor cells. Under conditions of constant flow rate, tumor cells spiked into phosphate buffered saline could be recovered and then cultured for further analyses. When tumor cells were spiked in blood of healthy donors, they could also be recovered at high efficiency and high clearance efficiency of white blood cells. When the same device was used for clinical validation, CTCs could be detected in blood samples of cancer patients but not in that of healthy donors. Finally, the capture efficiency of tumor cells is cell-type dependent but the hole size of the filter should be more closely correlated to the nuclei size of the tumor cells. Together with the advantage of easy operation, low-cost and high potential of integration, this approach offers unprecedented opportunities for metastatic detection and cancer treatment monitoring.

  4. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X. Chelsea; Oh, Hee Jeung; Yu, Jay F.

    In this paper, we introduce the use of block copolymer membranes for an emerging application, “drug capture”. The polymer is incorporated in a new class of biomedical devices, referred to as ChemoFilter, which is an image-guided temporarily deployable endovascular device designed to increase the efficacy of chemotherapy-based cancer treatment. We show that block copolymer membranes consisting of functional sulfonated polystyrene end blocks and a structural polyethylene middle block (SSES) are capable of capturing doxorubicin, a chemotherapy drug. We focus on the relationship between morphology of the membrane in the ChemoFilter device and efficacy of doxorubicin capture measured in vitro. Usingmore » small-angle X-ray scattering and cryogenic scanning transmission electron microscopy, we discovered that rapid doxorubicin capture is associated with the presence of water-rich channels in the lamellar-forming S-SES membranes in aqueous environment.« less

  5. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug

    DOE PAGES

    Chen, X. Chelsea; Oh, Hee Jeung; Yu, Jay F.; ...

    2016-07-23

    In this paper, we introduce the use of block copolymer membranes for an emerging application, “drug capture”. The polymer is incorporated in a new class of biomedical devices, referred to as ChemoFilter, which is an image-guided temporarily deployable endovascular device designed to increase the efficacy of chemotherapy-based cancer treatment. We show that block copolymer membranes consisting of functional sulfonated polystyrene end blocks and a structural polyethylene middle block (SSES) are capable of capturing doxorubicin, a chemotherapy drug. We focus on the relationship between morphology of the membrane in the ChemoFilter device and efficacy of doxorubicin capture measured in vitro. Usingmore » small-angle X-ray scattering and cryogenic scanning transmission electron microscopy, we discovered that rapid doxorubicin capture is associated with the presence of water-rich channels in the lamellar-forming S-SES membranes in aqueous environment.« less

  6. Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Shunqiang; Wan, Yuan; Liu, Yaling

    2014-10-01

    While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future. Electronic supplementary information (ESI) available: Additional details about calculation of maximal displacement of an individual NP; additional study of substrate wettability through Cassie's Law; additional details about selection of incubation time and shaking speeds. See DOI: 10.1039/c4nr02854f

  7. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays.

    PubMed

    Xue, Peng; Wu, Yafeng; Guo, Jinhong; Kang, Yuejun

    2015-04-01

    Circulating tumor cells (CTCs), which are derived from primary tumor site and transported to distant organs, are considered as the major cause of metastasis. So far, various techniques have been applied for CTC isolation and enumeration. However, there exists great demand to improve the sensitivity of CTC capture, and it remains challenging to elute the cells efficiently from device for further biomolecular and cellular analyses. In this study, we fabricate a dual functional chip integrated with herringbone structure and micropost array to achieve CTC capture and elution through EpCAM-based immunoreaction. Hep3B tumor cell line is selected as the model of CTCs for processing using this device. The results demonstrate that the capture limit of Hep3B cells can reach up to 10 cells (per mL of sample volume) with capture efficiency of 80% on average. Moreover, the elution rate of the captured Hep3B cells can reach up to 69.4% on average for cell number ranging from 1 to 100. These results demonstrate that this device exhibits dual functions with considerably high capture rate and elution rate, indicating its promising capability for cancer diagnosis and therapeutics.

  8. A horizontally polarizing liquid trap enhances the tabanid-capturing efficiency of the classic canopy trap.

    PubMed

    Egri, Á; Blahó, M; Száz, D; Kriska, G; Majer, J; Herczeg, T; Gyurkovszky, M; Farkas, R; Horváth, G

    2013-12-01

    Host-seeking female tabanid flies, that need mammalian blood for the development of their eggs, can be captured by the classic canopy trap with an elevated shiny black sphere as a luring visual target. The design of more efficient tabanid traps is important for stock-breeders to control tabanids, since these blood-sucking insects can cause severe problems for livestock, especially for horse- and cattle-keepers: reduced meat/milk production in cattle farms, horses cannot be ridden, decreased quality of hides due to biting scars. We show here that male and female tabanids can be caught by a novel, weather-proof liquid-filled black tray laid on the ground, because the strongly and horizontally polarized light reflected from the black liquid surface attracts water-seeking polarotactic tabanids. We performed field experiments to reveal the ideal elevation of the liquid trap and to compare the tabanid-capturing efficiency of three different traps: (1) the classic canopy trap, (2) the new polarization liquid trap, and (3) the combination of the two traps. In field tests, we showed that the combined trap captures 2.4-8.2 times more tabanids than the canopy trap alone. The reason for the larger efficiency of the combined trap is that it captures simultaneously the host-seeking female and the water-seeking male and female tabanids. We suggest supplementing the traditional canopy trap with the new liquid trap in order to enhance the tabanid-capturing efficiency.

  9. 78 FR 18974 - Increasing Market and Planning Efficiency Through Improved Software; Notice of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... bring together experts from diverse backgrounds and experiences including electric system operators... transmission switching; AC optimal power flow modeling; and use of active and dynamic transmission ratings. In... variability of the system, including forecast error? [cir] How can outage probability be captured in...

  10. On the problem of origin of periodic comets.

    NASA Astrophysics Data System (ADS)

    Guliev, A. S.

    The problem of origin of periodic comets is viewed under various aspects. A steady growth of the fraction of these comets in the overall population of comets is emphasized. The number of discovered periodic comets with small eccentricities and with the Jacobi constant close to 3 is also growing eventually. Comparison of maximum magnitudes of the same comets in different apparitions at the same elongations as well as the analysis of exhausted comets indicate that the age of these objects does not exceed 1000 years. Capture is considered as an efficient mechanism for preserving equilibrium over reasonable time intervals. The analysis of the data given by Everhart and the calculations of the evolution of cometary orbits reveal small efficiency of capture. Comparison of the number of well established capture cases with the corresponding time interval shows that the age of the system of periodic comets must be 17000 years within the framework of this mechanism. This is most unlikely. Secular variations in the distributions of semimajor axes, inclinations, longitudes of perihelia, eccentricities of orbits of periodic comets are analysed. On the average, the eccentricities tend to increase, but this conflicts with the capture mechanism. A conclusion is made that the concept of capture in its classical and modern versions is unable to solve the problem of the origin of periodic comets on the whole. Other, more effective sources and mechanisms seem to be also in operation in enlarging the cometary system.

  11. Mobile Laser Scanning for Indoor Modelling

    NASA Astrophysics Data System (ADS)

    Thomson, C.; Apostolopoulos, G.; Backes, D.; Boehm, J.

    2013-10-01

    The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM). At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS) present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  12. Increasing Storm Water Capture for Water Supply using Forecast Informed Reservoir Operations (FIRO) in Orange County, California

    NASA Astrophysics Data System (ADS)

    Hutchinson, A.; Woodside, G.; Ralph, F. M.

    2017-12-01

    Stormwater represents a significant source of water used by the Orange County Water District (OCWD) to recharge the Orange County groundwater basin. Over the last 20 years, OCWD has captured and recharged an average of 50,000 acre-feet per year (afy) of stormwater. Much of this recharge is made possible by the capture of stormwater in the Prado Dam Conservation Pool. OCWD has and continues to work closely with the US Army Corps of Engineers (USACE) to manage the conservation pool and to increase the amount of water that can be temporarily impounded in the conservation pool. Currently, the Conservation Pool is allowed to rise to elevation 498 ft msl (approx. 10,000 af of storage) during the storm season and to 505 ft msl (approx. 20,000 af of storage) during the non-storm season. OCWD has been working with the USACE on a Feasibility Study to permanently allow for storage of stormwater up to elevation 505 msl year-round. Even though increasing the Conservation Pool will increase the amount of stormwater captured, the weather forecasting used to manage the conservation pool can be improved in order to minimize lost opportunities to capture water or unnecessary releases of water to the ocean. To increase the efficiency of stormwater capture, OCWD is partnering with the Center for Western Weather and Water Extremes (http://cw3e.ucsd.edu/) to study the viability of using Forecast-Informed Reservoir Operations (FIRO) at Prado Dam. FIRO represents the next generation of operating water reservoirs using the best available technology. Moreover, given the importance of atmospheric river (AR) storms on water supplies in California, FIRO represents a methodology to take advantage of our increasing understanding of AR storms which are infrequent but provide a large percentage of total precipitation.

  13. 40 CFR 52.320 - Identification of plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Group II VOC sources were submitted on January 6, 1981, and the supplemental information received... Gasoline Transfer at Bulk Plants-Vapor Balance System), and D (Test Procedures for Annual Pressure/Vacuum... recent EPA capture efficiency protocols, and the commitment to adopt federal capture efficiency test...

  14. 40 CFR 52.320 - Identification of plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Group II VOC sources were submitted on January 6, 1981, and the supplemental information received... at Bulk Plants-Vapor Balance System), and D (Test Procedures for Annual Pressure/Vacuum Testing of... recent EPA capture efficiency protocols, and the commitment to adopt federal capture efficiency test...

  15. 40 CFR 52.320 - Identification of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Group II VOC sources were submitted on January 6, 1981, and the supplemental information received... at Bulk Plants-Vapor Balance System), and D (Test Procedures for Annual Pressure/Vacuum Testing of... recent EPA capture efficiency protocols, and the commitment to adopt federal capture efficiency test...

  16. A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Seol, Jin-Kyeong; Wu, Yu; Ji, Seungmuk; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Seung-Yong; Lim, Hyuneui; Fan, Rong; Lee, Sang-Kwon

    2012-03-01

    We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting.We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11338d

  17. Research on structural integration of thermodynamic system for double reheat coal-fired unit with CO2 capture

    NASA Astrophysics Data System (ADS)

    Wang, Lanjing; Shao, Wenjing; Wang, Zhiyue; Fu, Wenfeng; Zhao, Wensheng

    2018-02-01

    Taking the MEA chemical absorption carbon capture system with 85% of the carbon capture rate of a 660MW ultra-super critical unit as an example,this paper puts forward a new type of turbine which dedicated to supply steam to carbon capture system. The comparison of the thermal systems of the power plant under different steam supply schemes by using the EBSILON indicated optimal extraction scheme for Steam Extraction System in Carbon Capture System. The results show that the cycle heat efficiency of the unit introduced carbon capture turbine system is higher than that of the usual scheme without it. With the introduction of the carbon capture turbine, the scheme which extracted steam from high pressure cylinder’ s steam input point shows the highest cycle thermal efficiency. Its indexes are superior to other scheme, and more suitable for existing coal-fired power plant integrated post combustion carbon dioxide capture system.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng

    Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less

  19. Recent Developments in the Photophysics of Single-Walled Carbon Nanotubes for Their Use as Active and Passive Material Elements in Thin Film Photovoltaics

    DTIC Science & Technology

    2013-01-01

    photons of energy hn > 1.1 eV, which is the same spectral range captured by a silicon solar cell . The thermodynamic limit for the efficiency of a solar ...Park, NC 27709-2211 15. SUBJECT TERMS Carbon nanotube photovoltaic photophysics solar cell perspective Michael S. Arnold, Jeffrey L. Blackburn...increasing the efficiency and functionality of next-generation solar cells . Widely tunable properties open up possibilities for using nanotubes in many

  20. Trapping the Tiger: Efficacy of the Novel BG-Sentinel 2 With Several Attractants and Carbon Dioxide for Collecting Aedes albopictus (Diptera: Culicidae) in Southern France.

    PubMed

    Roiz, David; Duperier, Sandy; Roussel, Marion; Boussès, Philippe; Fontenille, Didier; Simard, Frédéric; Paupy, Christophe

    2016-03-01

    Targeted trapping of mosquito disease vectors plays an important role in the surveillance and control of mosquito-borne diseases. The Asian tiger mosquito, Aedes albopictus (Skuse), is an invasive species, which is spreading throughout the world, and is a potential vector of 24 arboviruses, particularly efficient in the transmission of chikungunya, dengue, and zika viruses. Using a 4 × 4 Latin square design, we assessed the efficacy of the new BG-Sentinel 2 mosquito trap using the attractants BG-lure and (R)-1-octen-3-ol cartridge, alone or in combination, and with and without carbon dioxide, for the field collection of Ae. albopictus mosquitoes.We found a synergistic effect of attractant and carbon dioxide that significantly increased twofold to fivefold the capture rate of Ae. albopictus. In combination with carbon dioxide, BG-lure cartridge is more effective than (R)-1-octen-3-ol in attracting females, while a combination of both attractants and carbon dioxide is the most effective for capturing males. In the absence of carbon dioxide, BG-lure cartridge alone did not increase the capture of males or females when compared with an unbaited trap. However, the synergistic effect of carbon dioxide and BG-lure makes this the most efficient combination in attracting Ae. albopictus.

  1. Dynamic CDM strategies in an EHR environment.

    PubMed

    Bieker, Michael; Bailey, Spencer

    2012-02-01

    A dynamic charge description master (CDM) integrates information from clinical ancillary systems into the charge-capture process, so an organization can reduce its reliance on the patient accounting system as the sole source of billing information. By leveraging the information from electronic ancillary systems, providers can eliminate the need for paper charge-capture forms and see increased accuracy and efficiency in the maintenance of billing information. Before embarking on a dynamic CDM strategy, organizations should first determine their goals for implementing an EHR system, include revenue cycle leaders on the EHR implementation team, and carefully weigh the pros and cons of CDM design decisions.

  2. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency.

    PubMed

    Kuo, Chiu-Mei; Lin, Tsung-Hsien; Yang, Yi-Chun; Zhang, Wen-Xin; Lai, Jinn-Tsyy; Wu, Hsi-Tien; Chang, Jo-Shu; Lin, Chih-Sheng

    2017-11-01

    An alkali-tolerant Chlorella sp. AT1 mutant strain was screened by NTG mutagenesis. The strain grew well in pH 6-11 media, and the optimal pH for growth was 10. The CO 2 utilization efficiencies of Chlorella sp. AT1 cultured with intermittent 10% CO 2 aeration for 10, 20 and 30min at 3-h intervals were approximately 80, 42 and 30%, respectively. In alkaline medium (pH=11) with intermittent 10% CO 2 aeration for 30min at 3-, 6- and 12-h intervals, the medium pH gradually changed to 10, and the biomass productivities of Chlorella sp. AT1 were 0.987, 0.848 and 0.710gL -1 d -1 , respectively. When Chlorella sp. AT1 was aerated with 10% CO 2 intermittently for 30min at 3-h intervals in semi-continuous cultivation for 21days, the biomass concentration and biomass productivity were 4.35gL -1 and 0.726gL -1 d -1 , respectively. Our results show that CO 2 utilization efficiency can be markedly increased by intermittent CO 2 aeration and alkaline media as a CO 2 -capturing strategy for alkali-tolerant microalga cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen

    PubMed Central

    2014-01-01

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency. PMID:24578590

  4. Comparative Assessment of Gasification Based Coal Power Plants with Various CO2 Capture Technologies Producing Electricity and Hydrogen.

    PubMed

    Mukherjee, Sanjay; Kumar, Prashant; Hosseini, Ali; Yang, Aidong; Fennell, Paul

    2014-02-20

    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H 2 ), with and without carbon dioxide (CO 2 ) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool "Aspen Plus". The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO 2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO 2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO 2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO 2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H 2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency.

  5. COMPARISON OF MERCURY CAPTURE EFFICIENCIES OF THREE DIFFERENT IN SITU GENERATED SORBENTS

    EPA Science Inventory

    Three different sorbent materials (Ti, Si and Ca based) were compared for their mercury capture efficiencies in an entrained flow reactor. Agglomerated particles with a high specific surface area were generated in situ by injecting gas phase sorbent precursors into a high tempera...

  6. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods... organic compound emitting operations inside the building enclosure, other than the coating operation for... the capture efficiency measurement, all organic compound emitting operations inside the building...

  7. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determination, substitute TVH for each occurrence of the term volatile organic compounds (VOC) in the methods... organic compound emitting operations inside the building enclosure, other than the coating operation for... the capture efficiency measurement, all organic compound emitting operations inside the building...

  8. Gluing the 'unwettable': soil-dwelling harvestmen use viscoelastic fluids for capturing springtails.

    PubMed

    Wolff, Jonas O; Schönhofer, Axel L; Schaber, Clemens F; Gorb, Stanislav N

    2014-10-01

    Gluing can be a highly efficient mechanism of prey capture, as it should require less complex sensory-muscular feedback. Whereas it is well known in insects, this mechanism is much less studied in arachnids, except spiders. Soil-dwelling harvestmen (Opiliones, Nemastomatidae) bear drumstick-like glandular hairs (clavate setae) at their pedipalps, which were previously hypothesized to be sticky and used in prey capture. However, clear evidence for this was lacking to date. Using high-speed videography, we found that the harvestman Mitostoma chrysomelas was able to capture fast-moving springtails (Collembola) just by a slight touch of the pedipalp. Adhesion of single clavate setae increased proportionally with pull-off velocity, from 1 μN at 1 μm s(-1) up to 7 μN at 1 mm s(-1), which corresponds to the typical weight of springtails. Stretched glue droplets exhibited characteristics of a viscoelastic fluid forming beads-on-a-string morphology over time, similar to spider capture threads and the sticky tentacles of carnivorous plants. These analogies indicate that viscoelasticity is a highly efficient mechanism for prey capture, as it holds stronger the faster the struggling prey moves. Cryo-scanning electron microscopy of snap-frozen harvestmen with glued springtails revealed that the gluey secretions have a high affinity to wet the microstructured cuticle of collembolans, which was previously reported to be barely wettable for both polar and non-polar liquids. Glue droplets can be contaminated with the detached scaly setae of collembolans, which may represent a counter-adaptation against entrapment by the glue, similar to the scaly surfaces of Lepidoptera and Trichoptera (Insecta) facilitating escape from spider webs. © 2014. Published by The Company of Biologists Ltd.

  9. Growth and stem form quality of clonal Pinus taeda following fertilization in the Virginia Piedmont

    Treesearch

    Jeremy P. Stovall; Colleen A. Carlson; John R. Seiler; Thomas R. Fox

    2013-01-01

    Clonal forestry offers the opportunity to increase yields, enhance uniformity, and improve wood characteristics. Intensive silvicultural practices, including fertilization, will be required to capture the full growth potential of clonal plantations. However, variation in nutrient use efficiency that exists among clones could affect growth responses. Our research...

  10. Attention capture by abrupt onsets: re-visiting the priority tag model.

    PubMed

    Sunny, Meera M; von Mühlenen, Adrian

    2013-01-01

    Abrupt onsets have been shown to strongly attract attention in a stimulus-driven, bottom-up manner. However, the precise mechanism that drives capture by onsets is still debated. According to the new object account, abrupt onsets capture attention because they signal the appearance of a new object. Yantis and Johnson (1990) used a visual search task and showed that up to four onsets can be automatically prioritized. However, in their study the number of onsets co-varied with the total number of items in the display, allowing for a possible confound between these two variables. In the present study, display size was fixed at eight items while the number of onsets was systematically varied between zero and eight. Experiment 1 showed a systematic increase in reactions times with increasing number of onsets. This increase was stronger when the target was an onset than when it was a no-onset item, a result that is best explained by a model according to which only one onset is automatically prioritized. Even when the onsets were marked in red (Experiment 2), nearly half of the participants continued to prioritize only one onset item. Only when onset and no-onset targets were blocked (Experiment 3), participants started to search selectively through the set of only the relevant target type. These results further support the finding that only one onset captures attention. Many bottom-up models of attention capture, like masking or saliency accounts, can efficiently explain this finding.

  11. Transparent air filter for high-efficiency PM2.5 capture.

    PubMed

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-16

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  12. Transparent air filter for high-efficiency PM2.5 capture

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-01

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  13. A Diagram Editor for Efficient Biomedical Knowledge Capture and Integration

    PubMed Central

    Yu, Bohua; Jakupovic, Elvis; Wilson, Justin; Dai, Manhong; Xuan, Weijian; Mirel, Barbara; Athey, Brian; Watson, Stanley; Meng, Fan

    2008-01-01

    Understanding the molecular mechanisms underlying complex disorders requires the integration of data and knowledge from different sources including free text literature and various biomedical databases. To facilitate this process, we created the Biomedical Concept Diagram Editor (BCDE) to help researchers distill knowledge from data and literature and aid the process of hypothesis development. A key feature of BCDE is the ability to capture information with a simple drag-and-drop. This is a vast improvement over manual methods of knowledge and data recording and greatly increases the efficiency of the biomedical researcher. BCDE also provides a unique concept matching function to enforce consistent terminology, which enables conceptual relationships deposited by different researchers in the BCDE database to be mined and integrated for intelligible and useful results. We hope BCDE will promote the sharing and integration of knowledge from different researchers for effective hypothesis development. PMID:21347131

  14. Role of Additives in Composite PEI/Oxide CO 2 Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO 2 Capture from Simulated Ambient Air

    DOE PAGES

    Sakwa-Novak, Miles A.; Tan, Shuai; Jones, Christopher W.

    2015-10-20

    Supported amines are promising candidate adsorbents for the removal of CO 2 from flue gases and directly from ambient air. The incorporation of additives into polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides is an effective strategy to improve the performance of the materials. Here, several practical aspects of this strategy are addressed with regards to direct air capture. The influence of three additives (CTAB, PEG200, PEG1000) was systematically explored under dry simulated air capture conditions (400 ppm of CO 2, 30 °C). With SBA-15 as a model support for poly(ethylenimine) (PEI), the nature of the additive inducedmore » heterogeneities in the deposition of organic on the interior and exterior of the particles, an important consideration for future scale up to practical systems. The PEG200 additive increased the observed thermodynamic performance (~60% increase in amine efficiency) of the adsorbents regardless of the PEI content, while the other molecules had less positive effects. A threshold PEG200/PEI value was identified at which the diffusional limitations of CO 2 within the materials were nearly eliminated. The threshold PEG/PEI ratio may have physical origin in the interactions between PEI and PEG, as the optimal ratio corresponded to nearly equimolar OH/reactive (1°, 2°) amine ratios. As a result, the strategy is shown to be robust to the characteristics of the host support, as PEG200 improved the amine efficiency of PEI when supported on two varieties of mesoporous γ-alumina with PEI.« less

  15. Role of Additives in Composite PEI/Oxide CO 2 Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO 2 Capture from Simulated Ambient Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakwa-Novak, Miles A.; Tan, Shuai; Jones, Christopher W.

    Supported amines are promising candidate adsorbents for the removal of CO 2 from flue gases and directly from ambient air. The incorporation of additives into polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides is an effective strategy to improve the performance of the materials. Here, several practical aspects of this strategy are addressed with regards to direct air capture. The influence of three additives (CTAB, PEG200, PEG1000) was systematically explored under dry simulated air capture conditions (400 ppm of CO 2, 30 °C). With SBA-15 as a model support for poly(ethylenimine) (PEI), the nature of the additive inducedmore » heterogeneities in the deposition of organic on the interior and exterior of the particles, an important consideration for future scale up to practical systems. The PEG200 additive increased the observed thermodynamic performance (~60% increase in amine efficiency) of the adsorbents regardless of the PEI content, while the other molecules had less positive effects. A threshold PEG200/PEI value was identified at which the diffusional limitations of CO 2 within the materials were nearly eliminated. The threshold PEG/PEI ratio may have physical origin in the interactions between PEI and PEG, as the optimal ratio corresponded to nearly equimolar OH/reactive (1°, 2°) amine ratios. As a result, the strategy is shown to be robust to the characteristics of the host support, as PEG200 improved the amine efficiency of PEI when supported on two varieties of mesoporous γ-alumina with PEI.« less

  16. 40 CFR 63.4565 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...

  17. 40 CFR 63.4565 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... occurrence of the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...

  18. 40 CFR 63.4565 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...

  19. 40 CFR 63.4565 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the term volatile organic compounds (VOC) in the methods. (3) Use Equation 1 of this section to... the capture efficiency measurement, all organic compound emitting operations inside the building... organic compound emitting operations inside the building enclosure, other than the coating operation for...

  20. SIMULTANEOUS CAPTURE OF METAL, SULFUR AND CHLORINE BY SORBENTS DURING FLUIDIZED BED INCINERATION. (R826694C697)

    EPA Science Inventory

    Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental...

  1. Efficient, quality-assured data capture in operational research through innovative use of open-access technology

    PubMed Central

    Naik, B.; Guddemane, D. K.; Bhat, P.; Wilson, N.; Sreenivas, A. N.; Lauritsen, J. M.; Rieder, H. L.

    2013-01-01

    Ensuring quality of data during electronic data capture has been one of the most neglected components of operational research. Multicentre studies are also challenged with issues about logistics of travel, training, supervision, monitoring and troubleshooting support. Allocating resources to these issues can pose a significant bottleneck for operational research in resource-limited settings. In this article, we describe an innovative and efficient way of coordinating data capture in multicentre operational research using a combination of three open access technologies—EpiData for data capture, Dropbox for sharing files and TeamViewer for providing remote support. PMID:26392997

  2. Integrated Georeferencing of Stereo Image Sequences Captured with a Stereovision Mobile Mapping System - Approaches and Practical Results

    NASA Astrophysics Data System (ADS)

    Eugster, H.; Huber, F.; Nebiker, S.; Gisi, A.

    2012-07-01

    Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations - in our case of the imaging sensors - normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.

  3. Multi-exposure high dynamic range image synthesis with camera shake correction

    NASA Astrophysics Data System (ADS)

    Li, Xudong; Chen, Yongfu; Jiang, Hongzhi; Zhao, Huijie

    2017-10-01

    Machine vision plays an important part in industrial online inspection. Owing to the nonuniform illuminance conditions and variable working distances, the captured image tends to be over-exposed or under-exposed. As a result, when processing the image such as crack inspection, the algorithm complexity and computing time increase. Multiexposure high dynamic range (HDR) image synthesis is used to improve the quality of the captured image, whose dynamic range is limited. Inevitably, camera shake will result in ghost effect, which blurs the synthesis image to some extent. However, existed exposure fusion algorithms assume that the input images are either perfectly aligned or captured in the same scene. These assumptions limit the application. At present, widely used registration based on Scale Invariant Feature Transform (SIFT) is usually time consuming. In order to rapidly obtain a high quality HDR image without ghost effect, we come up with an efficient Low Dynamic Range (LDR) images capturing approach and propose a registration method based on ORiented Brief (ORB) and histogram equalization which can eliminate the illumination differences between the LDR images. The fusion is performed after alignment. The experiment results demonstrate that the proposed method is robust to illumination changes and local geometric distortion. Comparing with other exposure fusion methods, our method is more efficient and can produce HDR images without ghost effect by registering and fusing four multi-exposure images.

  4. Constraints on the Efficiency of Radial Migration in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2015-01-01

    A transient spiral arm can permanently rearrange the orbital angular momentum of the stellar disk without inducing kinematic heating. This phenomenon is called radial migration because a star's orbital angular momentum determines its mean orbital radius. Should radial migration be an efficient process it could cause a large fraction of disk stars to experience significant changes in their individual orbital angular momenta on dynamically short timescales. Such scenarios have strong implications for the chemical, structural and kinematic evolution of disk galaxies. We have undertaken an investigation into the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure. In order for a disk star to migrate radially, it must first be 'trapped' in a particular family of orbits, called horseshoe orbits, that occur near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for horseshoe orbits has been for stars with zero random orbital energy. We present our analytically derived 'capture criterion' for stars with some finite random orbital energy in a disk with a given rotation curve. Our capture criterion predict that trapping in a horseshoe orbit is primarily determined by whether or not the position of a star's mean orbital radius (determined by its orbital angular momentum) is within the 'capture region', the location and shape of which can be derived from the capture criterion. We visualize and confirm this prediction via numerically integrated orbits. We then apply our capture criterion to snap shot models of disk galaxies to determine (1) the radial distribution of the fraction of stars initially trapped in horseshoe orbits, and (2) the dependence of the total fraction of captured stars in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation. We here present a model of an exponential disk with a flat rotation curve where the initial fraction of stars trapped in horseshoe orbits falls with increasing velocity dispersion as exp[-σR^2].

  5. Rubidium and Zirconium Production in Massive AGB Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raai, M. A. van; Lugaro, M.; Karakas, A. I.

    2008-04-06

    A recent survey of a large sample of massive Galactic asymptotic giant branch (AGB) stars shows that significant overabundances of rubidium (up to 100 times solar), but merely solar zirconium, are present in these stars. These observations can set constraints on our theoretical notion of the slow neutron capture process (the s process) in AGB stars, as well as on the rates of the neutron capture reactions involved in the production of Rb and Zr. We use the Monash nucleosynthesis code with a recently extended network to try to reproduce these observations. We present results for AGB stars of massesmore » 5, 6, and 6.5 M{center_dot} and solar metallicity. We also show results for different available choices of the neutron capture rates, as well as for the possible inclusion of a partial mixing zone (PMZ), leading to the activation of the {sup 13}C neutron source. We find increasing Rb overabundances with increasing stellar mass, as observed, but we are far from matching the highest observed Rb enhancements. Inclusion of a PMZ increases the Rb abundance, but also produces an overabundance of Zr, contrary to what is observed. Only if the third dredge up efficiency remains as high as before the onset of the superwind phase during the final few pulses of a massive AGB star, can we match the highest [Rb/Fe] ratios observed by Garcia-Hernandez et al. [l]. A better understanding of the third dredge up efficiency with decreasing envelope mass for massive AGB stars is essential for further investigation of this issue.« less

  6. Increased light-use efficiency in northern terrestrial ecosystems indicated by CO 2 and greening observations: INCREASE IN NH LIGHT USE EFFICIENCY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Rebecca T.; Prentice, Iain Colin; Graven, Heather

    2016-11-04

    Observations show an increasing amplitude in the seasonal cycle of CO2 (ASC) north of 45°N of 56 ± 9.8% over the last 50 years and an increase in vegetation greenness of 7.5–15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO2 concentrations. We find that the modeled change in ASC is too small but the mean greening trend ismore » generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE.« less

  7. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE PAGES

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; ...

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  8. A Broadband High Dynamic Range Digital Receiving System for Electromagnetic Signals

    DTIC Science & Technology

    2010-08-26

    dB. [0014] In Steinbrecher (United States Patent No. 7,250,920), an air interface metasurface is described that efficiently captures incident...broadband electromagnetic energy and provides a method for segmenting the total metasurface capture area into a plurality of smaller capture areas...such that the sum of the capture areas is equal to the total capture area of the metasurface . The segmentation of the electromagnetic capture area is

  9. 40 CFR 63.4361 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine the mass fraction of TVH liquid input from each regulated material used in the web coating.../printing or dyeing/finishing operation during the capture efficiency test run, kg. TVHi = Mass fraction of... enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in...

  10. Spatial and temporal variation in efficiency of the Moore egg collector

    USGS Publications Warehouse

    Worthington, Thomas A.; Brewer, Shannon K.; Farless, Nicole

    2013-01-01

    The Moore egg collector (MEC) was developed for quantitative and nondestructive capture of semibuoyant fish eggs. Previous studies have indicated that capture efficiency of the MEC was low and the use of one device did not adequately represent the spatial distribution within the water column of egg surrogates (gellan beads) of pelagic broadcast-spawning cyprinids. The objective of this study was to assess whether use of multiple MECs showed differences in spatial and temporal distribution of bead catches. Capture efficiency of three MECs was tested at four 500-m sites on the South Canadian River, a Great Plains river in Oklahoma. For each trial, approximately 100,000 beads were released and mean capture efficiency was 0.47–2.16%. Kolmogorov–Smirnov tests indicated the spatial distributions of bead catches were different among multiple MECs at three of four sites. Temporal variability in timing of peak catches of gellan beads was also evident between MECs. We concluded that the use of multiple MECs is necessary to properly sample eggs of pelagic broadcast-spawning cyprinids.

  11. Impact of Rate Design Alternatives on Residential Solar Customer Bills: Increased Fixed Charges, Minimum Bills and Demand-Based Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce; Davidson, Carolyn; Miller, John

    Utilities are proposing changes to residential rate structures to address concerns about lost revenue due to increased adoption of distributed solar generation. An investigation of the impacts of increased fixed charges, minimum bills and residential demand charges on PV and non-PV customer bills suggests that minimum bills more accurately capture utilities' revenue requirement than fixed charges, while not acting as a disincentive to efficiency or negatively impacting low-income customers.

  12. Efficient transformer for electromagnetic waves

    DOEpatents

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  13. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  14. Coordination effect-regulated CO2 capture with an alkali metal onium salts/crown ether system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhen-Zhen; Jiang, Deen; Zhu, Xiang

    2014-01-01

    A coordination effect was employed to realize equimolar CO2 absorption, adopting easily synthesized amino group containing absorbents (alkali metal onium salts). The essence of our strategy was to increase the steric hindrance of cations so as to enhance a carbamic acid pathway for CO2 capture. Our easily synthesized alkali metal amino acid salts or phenolates were coordinated with crown ethers, in which highly sterically hindered cations were obtained through a strong coordination effect of crown ethers with alkali metal cations. For example, a CO2 capacity of 0.99 was attained by potassium prolinate/18-crown-6, being characterized by NMR, FT-IR, and quantum chemistrymore » calculations to go through a carbamic acid formation pathway. The captured CO2 can be stripped under very mild conditions (50 degrees C, N-2). Thus, this protocol offers an alternative for the development of technological innovation towards efficient and low energy processes for carbon capture and sequestration.« less

  15. Spatial patterns of bee captures in North American bowl trapping surveys

    USGS Publications Warehouse

    Droege, Sam; Tepedino, Vincent J.; Lebuhn, Gretchen; Link, William; Minckley, Robert L.; Chen, Qian; Conrad, Casey

    2010-01-01

    1. Bowl and pan traps are now commonly used to capture bees (Hymenoptera: Apiformes) for research and surveys. 2. Studies of how arrangement and spacing of bowl traps affect captures of bees are needed to increase the efficiency of this capture technique. 3. We present results from seven studies of bowl traps placed in trapping webs, grids, and transects in four North American ecoregions (Mid-Atlantic, Coastal California, Chihuahuan Desert, and Columbia Plateau). 4. Over 6000 specimens from 31 bee genera were captured and analysed across the studies. 5. Based on the results from trapping webs and distance tests, the per bowl capture rate of bees does not plateau until bowls are spaced 3–5 m apart. 6. Minor clumping of bee captures within transects was detected, with 26 of 56 transects having index of dispersion values that conform to a clumped distribution and 39 transects having positive Green's index values, 13 with zero, and only four negative. However, degree of clumping was slight with an average value of only 0.06 (the index ranges from -1 to 1) with only five values >0.15. Similarly, runs tests were significant for only 5.9% of the transects. 7. Results indicate that (i) capture rates are unaffected by short distances between bowls within transects and (ii) that bowls and transects should be dispersed throughout a study site.

  16. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma.

    PubMed

    Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L

    2014-04-15

    Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization. © 2013 Elsevier B.V. All rights reserved.

  17. Robust, Efficient Depth Reconstruction With Hierarchical Confidence-Based Matching.

    PubMed

    Sun, Li; Chen, Ke; Song, Mingli; Tao, Dacheng; Chen, Gang; Chen, Chun

    2017-07-01

    In recent years, taking photos and capturing videos with mobile devices have become increasingly popular. Emerging applications based on the depth reconstruction technique have been developed, such as Google lens blur. However, depth reconstruction is difficult due to occlusions, non-diffuse surfaces, repetitive patterns, and textureless surfaces, and it has become more difficult due to the unstable image quality and uncontrolled scene condition in the mobile setting. In this paper, we present a novel hierarchical framework with multi-view confidence-based matching for robust, efficient depth reconstruction in uncontrolled scenes. Particularly, the proposed framework combines local cost aggregation with global cost optimization in a complementary manner that increases efficiency and accuracy. A depth map is efficiently obtained in a coarse-to-fine manner by using an image pyramid. Moreover, confidence maps are computed to robustly fuse multi-view matching cues, and to constrain the stereo matching on a finer scale. The proposed framework has been evaluated with challenging indoor and outdoor scenes, and has achieved robust and efficient depth reconstruction.

  18. Experimental evaluation of size-dependent predation by adult post-spawned rainbow smelt (Osmerus mordax) on larval lake whitefish (Coregonus clupeaformis)

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Gorsky, Dimitry

    2013-01-01

    Introduced landlocked Rainbow Smelt Osmerus mordax are hypothesized to be a major factor in the decline of Lake Whitefish Coregonus clupeaformis populations in many lakes. We sought to identify the size of Lake Whitefish preyed upon by adult Rainbow Smelt and how the efficiency of Rainbow Smelt predation changes Lake Whitefish ontogeny. In a laboratory setting, we exposed larval Lake Whitefish of increasing sizes to groups of seven Rainbow Smelt (>100 mm) for a 1-h period and observed predation behaviors and efficiencies. In each trial, the group of Rainbow Smelt consumed at least one larval Lake Whitefish, which were up to 45 mm in length (up to 89% of Rainbow Smelt gape width). Predation efficiency, the total number of Lake Whitefish consumed by Rainbow Smelt during trials, was 100% after Lake Whitefish hatching and followed a decreasing sigmoidal response to increasing lengths of Lake Whitefish. The apparent predatory window of Rainbow Smelt on Lake Whitefish is from Lake Whitefish size at hatch (∼12 mm) to approximately 34 mm. Rainbow Smelt generally required multiple attacks to capture a single Lake Whitefish. The capture efficiencies of Rainbow Smelt decreased from 30% as Lake Whitefish length increased and were highly variable within each Lake Whitefish size-group. The overall impact that Rainbow Smelt predation will have on Lake Whitefish populations is dependent on the growth rate of Lake Whitefish, environmental conditions that cause the Lake Whitefish hatching period to coincide with Rainbow Smelt spawning events, and the degree of overlap in habitat use between spawning Rainbow Smelt, nonspawning subadult Rainbow Smelt, and hatching Lake Whitefish.

  19. Development of a novel engineered E. coli host cell line platform with improved column capacity performance for ion-exchange chromatography.

    PubMed

    Mukherjee, Rudra Palash; Fruchtl, McKinzie S; Beitle, Robert R; Brune, Ellen M

    2018-02-01

    This article reports on the analysis of an engineered Escherichia coli designed to reduce the host cell protein (HCP) burden on recombinant protein purification by column chromatography. Since downstream purification accounts for a major portion of production costs when using a recombinant platform, minimization of HCPs that are initially captured or otherwise interfere during chromatography will positively impact the entire purification process. Such a strategy, of course, would also require the cell line to grow, and express recombinant proteins, at levels comparable to, or better than, its parent strain. An E. coli strain with a small number of strategic deletions (LTSF06) was transformed to produce three different recombinant biologics to examine growth and expression, and with another model protein to assess growth and the effect of selectively reduced HCPs on target product capture on DEAE ion exchange medium. Cell growth levels were maintained or increased for all constructs, and a significant reduction in HCP adsorption was realized. Indeed, a breakthrough analysis indicated that as a result of reducing adsorption of particular HCPs, a 37% increase in target protein capture was observed. This increase in product capture efficiency was achieved by focusing not on HCPs that co-elute with the recombinant target, but rather on those possessing particular column adsorption and elution characteristics. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Model of Carbon Capture and Storage with Demonstration of Global Warming Potential and Fossil Fuel Resource Use Efficiency

    NASA Astrophysics Data System (ADS)

    Suebsiri, Jitsopa

    Increasing greenhouse gas concentration in the atmosphere influences global climate change even though the level of impact is still unclear. Carbon dioxide capture and storage (CCS) is increasingly seen as an important component of broadly based greenhouse gas reduction measures. Although the other greenhouse gases are more potent, the sheer volume of CO 2 makes it dominant in term of its effect in the atmosphere. To understand the implications, CCS activities should be studied from a full life cycle perspective. This thesis outlines the successful achievement of the objectives of this study in conducting life cycle assessment (LCA), reviewing the carbon dioxide implications only, combining two energy systems, coal-fired electrical generations and CO2 used for enhanced oil recovery (EOR). LCA is the primary approach used in this study to create a tool for CCS environmental evaluation. The Boundary Dam Power Station (BDPS) and the Weyburn-Midale CO 2 EOR Project in Saskatchewan, Canada, are studied and adopted as case scenarios to find the potential for effective application of CCS in both energy systems. This study demonstrates two levels of retrofitting of the BDPS, retrofit of unit 3 or retrofit of all units, combined with three options for CO 2 geological storage: deep saline aquifer, CO2 EOR, and a combination of deep saline aquifer storage and CO2 EOR. Energy output is considered the product of combining these two energy resources (coal and oil). Gigajoules (GJ) are used as the fundamental unit of measurement in comparing the combined energy types. The application of this tool effectively demonstrates the results of application of a CCS system concerning global warming potential (GWP) and fossil fuel resource use efficiency. Other environmental impacts could be analyzed with this tool as well. In addition, the results demonstrate that the GWP reduction is directly related to resource use efficiency. This means the lower the GWP of CCS, the lower resource use efficiency as well. Three processes, coal mining, power production including CO2 capture unit operation, and crude oil usage, must be included when the GWP of CCS is calculated. Moreover, the results from the sensitivity analysis of power generation efficiency present not only a significant reduction of GWP, but also a competitive solution for improving or at least preventing the decrease of fossil fuel resource use efficiency when CCS is applied.

  1. Relative efficiency of anuran sampling methods in a restinga habitat (Jurubatiba, Rio de Janeiro, Brazil).

    PubMed

    Rocha, C F D; Van Sluys, M; Hatano, F H; Boquimpani-Freitas, L; Marra, R V; Marques, R V

    2004-11-01

    Studies on anurans in restinga habitats are few and, as a result, there is little information on which methods are more efficient for sampling them in this environment. Ten methods are usually used for sampling anuran communities in tropical and sub-tropical areas. In this study we evaluate which methods are more appropriate for this purpose in the restinga environment of Parque Nacional da Restinga de Jurubatiba. We analyzed six methods among those usually used for anuran samplings. For each method, we recorded the total amount of time spent (in min.), the number of researchers involved, and the number of species captured. We calculated a capture efficiency index (time necessary for a researcher to capture an individual frog) in order to make comparable the data obtained. Of the methods analyzed, the species inventory (9.7 min/searcher /ind.- MSI; richness = 6; abundance = 23) and the breeding site survey (9.5 MSI; richness = 4; abundance = 22) were the most efficient. The visual encounter inventory (45.0 MSI) and patch sampling (65.0 MSI) methods were of comparatively lower efficiency restinga, whereas the plot sampling and the pit-fall traps with drift-fence methods resulted in no frog capture. We conclude that there is a considerable difference in efficiency of methods used in the restinga environment and that the complete species inventory method is highly efficient for sampling frogs in the restinga studied and may be so in other restinga environments. Methods that are usually efficient in forested areas seem to be of little value in open restinga habitats.

  2. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  3. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  4. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  5. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating, thinner, and... operation during the capture efficiency test run, kg. TVHi = mass fraction of TVH in coating, thinner, or... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  6. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determine the mass fraction, kg TVH per kg material, of TVH liquid input from each coating, thinner, and... capture efficiency test run, lb. TVHi = Mass fraction of TVH in coating, thinner, or cleaning material, i... enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in materials used in the...

  7. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  8. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating, thinner, and... operation during the capture efficiency test run, kg. TVHi = mass fraction of TVH in coating, thinner, or... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  9. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mass fraction of TVH liquid input from each coating and thinner used in the coating operation during... materials used in the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of... protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH...

  10. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to 40 CFR part 51 to determine the mass fraction, kg TVH per kg material, of TVH liquid input from... the coating operation during the capture efficiency test run, lb. TVHi = Mass fraction of TVH in... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of...

  11. 40 CFR 63.4981 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in the CAA, in 40 CFR 63.2, and in this section as follows: Add-on control means an air pollution control device such as a thermal oxidizer or carbon adsorber that reduces pollution in an air stream by... add-on air pollution control device. Capture efficiency or capture system efficiency means the portion...

  12. Improving Engine Efficiency Through Core Developments

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.

    2011-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project and Fundamental Aeronautics Projects are supporting compressor and turbine research with the goal of reducing aircraft engine fuel burn and greenhouse gas emissions. The primary goals of this work are to increase aircraft propulsion system fuel efficiency for a given mission by increasing the overall pressure ratio (OPR) of the engine while maintaining or improving aerodynamic efficiency of these components. An additional area of work involves reducing the amount of cooling air required to cool the turbine blades while increasing the turbine inlet temperature. This is complicated by the fact that the cooling air is becoming hotter due to the increases in OPR. Various methods are being investigated to achieve these goals, ranging from improved compressor three-dimensional blade designs to improved turbine cooling hole shapes and methods. Finally, a complementary effort in improving the accuracy, range, and speed of computational fluid mechanics (CFD) methods is proceeding to better capture the physical mechanisms underlying all these problems, for the purpose of improving understanding and future designs.

  13. The mechanisms of filter feeding on oil droplets: Theoretical considerations.

    PubMed

    Mehrabian, Sasan; Letendre, Francis; Cameron, Christopher B

    2018-04-01

    Filter feeding animals capture food particles and oil droplets from the fluid environment using cilia or appendages composed of arrays of fibers. Here we review the theoretical models that have provided a foundation for observations on the efficiency of particle capture. We then provide the mathematical theoretical framework to characterize the efficient filtration of oil droplets. In the aquatic and marine environments oil droplets are released from the decay of organisms or as hydrocarbons. Droplet size and flow velocity, oil-to-water viscosity ratio, oil-water interfacial tension, oil and water density difference, and the surface wettability, or surface texture, of the filter fiber are the key parameters for oil droplet capture. Following capture, capillary force maintains the droplet at its location due to the oil-water interfacial tension. If the oil-coated fiber is subject to any external force such as viscous or gravitational forces, it may deform and separate from the fiber and re-enter the fluid stream. We show oil droplet capture in Daphnia and the barnacle Balanus glandula, and outline some of the ecological unknowns regarding oil capture in the oceans. Awareness of these mechanisms and their interrelationships will provide a foundation for investigations into the efficiency of various modes of filter feeding on oil droplets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Complementary effect of patient volume and quality of care on hospital cost efficiency.

    PubMed

    Choi, Jeong Hoon; Park, Imsu; Jung, Ilyoung; Dey, Asoke

    2017-06-01

    This study explores the direct effect of an increase in patient volume in a hospital and the complementary effect of quality of care on the cost efficiency of U.S. hospitals in terms of patient volume. The simultaneous equation model with three-stage least squares is used to measure the direct effect of patient volume and the complementary effect of quality of care and volume. Cost efficiency is measured with a data envelopment analysis method. Patient volume has a U-shaped relationship with hospital cost efficiency and an inverted U-shaped relationship with quality of care. Quality of care functions as a moderator for the relationship between patient volume and efficiency. This paper addresses the economically important question of the relationship of volume with quality of care and hospital cost efficiency. The three-stage least square simultaneous equation model captures the simultaneous effects of patient volume on hospital quality of care and cost efficiency.

  15. HelioTrope: An innovative and efficient prototype for solar power production

    NASA Astrophysics Data System (ADS)

    Papageorgiou, George; Maimaris, Athanasios; Hadjixenophontos, Savvas; Ioannou, Petros

    2014-12-01

    The solar energy alternative could provide us with all the energy we need as it exist in vast quantities all around us. We only should be innovative enough in order to improve the efficiency of our systems in capturing and converting solar energy in usable forms of power. By making a case for the solar energy alternative, we identify areas where efficiency can be improved and thereby Solar Energy can become a competitive energy source. This paper suggests an innovative approach to solar energy power production, which is manifested in a prototype given the name HelioTrope. The Heliotrope Solar Energy Production prototype is tested on its' capabilities to efficiently covert solar energy to generation of electricity and other forms of energy for storage or direct use. HelioTrope involves an innovative Stirling engine design and a parabolic concentrating dish with a sun tracking system implementing a control algorithm to maximize the capturing of solar energy. Further, it utilizes a patent developed by the authors where a mechanism is designed for the transmission of reciprocating motion of variable amplitude into unidirectional circular motion. This is employed in our prototype for converting linear reciprocating motion into circular for electricity production, which gives a significant increase in efficiency and reduces maintenance costs. Preliminary calculations indicate that the Heliotrope approach constitutes a competitive solution to solar power production.

  16. Crystal collimator systems for high energy frontier

    NASA Astrophysics Data System (ADS)

    Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.

    2017-07-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.

  17. Viability preserved capture of microorganism by plasma functionalized carbon-encapsulated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Sugiura, Kuniaki; Nagatsu, Masaaki

    2015-09-01

    Carbon-encapsulated iron nanoparticles (Fe@C NPs) were synthesized by DC arc discharge method. Carbon encapsulation makes the particles hydrophobic, however for most of the biomedical applications they need to be hydrophilic. To attain this, the particles were amino functionalized by RF plasma. Effect of gas mixture ratio (Ar/NH3), pretreatment, post-treatment times and RF power were optimized. By varying the RF plasma conditions, the amino group population on the surface of Fe@C NPs were increased. With conventional chemical method the amino group population on particles, synthesized in different conditions was found to be ranging from 3-7 × 104 per particle. Bioconjugation efficiency of the nanoparticles was examined by biotin-avidin system, which can be simulated for antigen-antibody reactions. Results from the UV absorption and fluorescence spectroscopy shows increment in bioconjugation efficiency, with the increase of amino group population on the nanoparticles. After confirming the bioconjugation efficiency, the amino functionalized Fe@C NPs were modified with antibodies for targeting specific microorganisms. Our aim is to capture the microbes in viable and concentrated form even from less populated samples, with lesser time compared to the presently available methods. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the Japan Society for the Promotion of Science (JSPS).

  18. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt

    PubMed Central

    Reyes, Andres; Messina, Carlos D.; Hammer, Graeme L.; Liu, Lu; van Oosterom, Erik; Lafitte, Renee; Cooper, Mark

    2015-01-01

    Breeders have successfully improved maize (Zea mays L.) grain yield for the conditions of the US corn-belt over the past 80 years, with the past 50 years utilizing single-cross hybrids. Long-term improvement for grain yield under water-limited conditions has also been reported. Grain yield under water-limited conditions depends on water use, water use efficiency, and harvest index. It has been hypothesized that long-term genetic gain for yield could be due, in part, to increased water capture from the soil. This hypothesis was tested using a set of elite single-cross hybrids that were released by DuPont Pioneer between 1963 and 2009. Eighteen hybrids were grown in the field during 2010 and 2011 growing seasons at Woodland, CA, USA. Crops grew predominantly on stored soil water and drought stress increased as the season progressed. Soil water content was measured to 300cm depth throughout the growing season. Significant water extraction occurred to a depth of 240–300cm and seasonal water use was calculated from the change in soil water over this rooting zone. Grain yield increased significantly with year of commercialization, but no such trend was observed for total water extraction. Therefore, the measured genetic gain for yield for the period represented by this set of hybrids must be related to either increased efficiency of water use or increased carbon partitioning to the grain, rather than increased soil water uptake. PMID:26428065

  19. High-sensitivity HLA typing by Saturated Tiling Capture Sequencing (STC-Seq).

    PubMed

    Jiao, Yang; Li, Ran; Wu, Chao; Ding, Yibin; Liu, Yanning; Jia, Danmei; Wang, Lifeng; Xu, Xiang; Zhu, Jing; Zheng, Min; Jia, Junling

    2018-01-15

    Highly polymorphic human leukocyte antigen (HLA) genes are responsible for fine-tuning the adaptive immune system. High-resolution HLA typing is important for the treatment of autoimmune and infectious diseases. Additionally, it is routinely performed for identifying matched donors in transplantation medicine. Although many HLA typing approaches have been developed, the complexity, low-efficiency and high-cost of current HLA-typing assays limit their application in population-based high-throughput HLA typing for donors, which is required for creating large-scale databases for transplantation and precision medicine. Here, we present a cost-efficient Saturated Tiling Capture Sequencing (STC-Seq) approach to capturing 14 HLA class I and II genes. The highly efficient capture (an approximately 23,000-fold enrichment) of these genes allows for simplified allele calling. Tests on five genes (HLA-A/B/C/DRB1/DQB1) from 31 human samples and 351 datasets using STC-Seq showed results that were 98% consistent with the known two sets of digitals (field1 and field2) genotypes. Additionally, STC can capture genomic DNA fragments longer than 3 kb from HLA loci, making the library compatible with the third-generation sequencing. STC-Seq is a highly accurate and cost-efficient method for HLA typing which can be used to facilitate the establishment of population-based HLA databases for the precision and transplantation medicine.

  20. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part B: Applications

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-09-01

    An important advantage of solid oxide fuel cells (SOFC) as future systems for large scale power generation is the possibility of being efficiently integrated with processes for CO2 capture. Focusing on natural gas power generation, Part A of this work assessed the performances of advanced pressurised and atmospheric plant configurations (SOFC + GT and SOFC + ST, with fuel cell integration within a gas turbine or a steam turbine cycle) without CO2 separation. This Part B paper investigates such kind of power cycles when applied to CO2 capture, proposing two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs with internal reforming and low temperature CO2 separation process. The power plants are simulated at the 100 MW scale with a set of realistic assumptions about FC performances, main components and auxiliaries, and show the capability of exceeding 70% LHV efficiency with high CO2 capture (above 80%) and a low specific primary energy consumption for the CO2 avoided (1.1-2.4 MJ kg-1). Detailed results are presented in terms of energy and material balances, and a sensitivity analysis of plant performance is developed vs. FC voltage and fuel utilisation to investigate possible long-term improvements. Options for further improvement of the CO2 capture efficiency are also addressed.

  1. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    NASA Astrophysics Data System (ADS)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  2. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria.

    PubMed

    Xu, Yueshuang; Wang, Huan; Luan, Chengxin; Liu, Yuxiao; Chen, Baoan; Zhao, Yuanjin

    2018-02-15

    Rapid and sensitive diagnosing hematological infections based on the separation and detection of pathogenic bacteria in the patient's blood is a significant challenge. To address this, we herein present a new barcodes technology that can simultaneously capture and detect multiple types of pathogenic bacteria from a complex sample. The barcodes are poly (ethylene glycol) (PEG) hydrogel inverse opal particles with characteristic reflection peak codes that remain stable during bacteria capture on their surfaces. As the spherical surface of the particles has ordered porous nanostructure, the barcodes can provide not only more surface area for probe immobilization and reaction, but also a nanopatterned platform for highly efficient bioreactions. In addition, the PEG hydrogel scaffold could decrease the non-specificity adsorption by its anti-adhesive effect, and the decorated aptamer probes in the scaffolds could increase the sensitivity, reliability, and specificity of the bacteria capture and detection. Moreover, the tagged magnetic nanoparticles in the PEG scaffold could impart the barcodes with controllable movement under magnetic fields, which can be used to significantly increase the reaction speed and simplify the processing of the bioassays. Based on the describe barcodes, it was demonstrated that the bacteria could be captured and identified even at low bacterial concentrations (100 CFU mL -1 ) within 2.5h, which is effectively shortened in comparison with the "gold standard" in clinic. These features make the barcodes ideal for capturing and detecting multiple bacteria from clinical samples for hematological infection diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterization of the Gamma Response of a Cadmium Capture-gated Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Hogan, Nathaniel; Rees, Lawrence; Czirr, Bart; Bastola, Suraj

    2010-10-01

    We have studied the gamma response of a newly developed capture-gated neutron spectrometer. Such spectrometers detect a dual signal from incoming neutrons, allowing for differentiation between other particles, such as gamma rays. The neutron provides a primary light pulse in either plastic or liquid scintillator through neutron-proton collisions. A capture material then delivers a second pulse as the moderated neutron captures in the intended material, which then de-excites with the release of gamma energy. The presented spectrometer alternates one centimeter thick plastic scintillators with sheets of cadmium inserted in between for neutron capture. The neutron capture in cadmium offers a release of gamma energy ˜ 9 MeV. To verify that the interaction was caused by a neutron, the response functions of both events must be well known. Due to the prior existence of many capture-gated neutron spectrometers, the proton recoil pulse has already been studied, but the capture pulse is unique to each spectrometer and must be measured. Experimental results agree with theoretical Monte-Carlo code, both suggesting that the optics and geometry of the spectrometer play a large role in its efficiency. Results prove promising for the efficiency of the spectrometer.

  4. A mechanistic model for mercury capture with in situ-generated titania particles: role of water vapor.

    PubMed

    Rodríguez, Sylian; Almquist, Catherine; Lee, Tai Gyu; Furuuchi, Masami; Hedrick, Elizabeth; Biswas, Pratim

    2004-02-01

    A mechanistic model to predict the capture of gas-phase mercury (Hg) species using in situ-generated titania nanosize particles activated by UV irradiation is developed. The model is an extension of a recently reported model for photochemical reactions by Almquist and Biswas that accounts for the rates of electron-hole pair generation, the adsorption of the compound to be oxidized, and the adsorption of water vapor. The role of water vapor in the removal efficiency of Hg was investigated to evaluate the rates of Hg oxidation at different water vapor concentrations. As the water vapor concentration is increased, more hydroxy radical species are generated on the surface of the titania particle, increasing the number of active sites for the photooxidation and capture of Hg. At very high water vapor concentrations, competitive adsorption is expected to be important and reduce the number of sites available for photooxidation of Hg. The predictions of the developed phenomenological model agreed well with the measured Hg oxidation rates in this study and with the data on oxidation of organic compounds reported in the literature.

  5. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating... materials used in the coating operation during the capture efficiency test run, kg. TVHi = mass fraction of... compares the mass of liquid TVH in materials used in the coating operation, to the mass of TVH emissions...

  6. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input from each coating... materials used in the coating operation during the capture efficiency test run, kg. TVHi = mass fraction of... compares the mass of liquid TVH in materials used in the coating operation, to the mass of TVH emissions...

  7. 40 CFR 63.4361 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input... the capture efficiency test run, kg. TVHi = Mass fraction of TVH in regulated material, i, that is... protocol compares the mass of liquid TVH in regulated materials applied in the web coating/printing or...

  8. 40 CFR 63.4361 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input... the capture efficiency test run, kg. TVHi = Mass fraction of TVH in regulated material, i, that is... protocol compares the mass of liquid TVH in regulated materials applied in the web coating/printing or...

  9. A Review of the Reliability and Validity of Likert-Type Scales for People with Intellectual Disability

    ERIC Educational Resources Information Center

    Hartley, S. L.; MacLean, W. E., Jr.

    2006-01-01

    Background: Likert-type scales are increasingly being used among people with intellectual disability (ID). These scales offer an efficient method for capturing a wide range of variance in self-reported attitudes and behaviours. This review is an attempt to evaluate the reliability and validity of Likert-type scales in people with ID. Methods:…

  10. The impact of intonation and valence on objective and subjective attention capture by auditory alarms.

    PubMed

    Ljungberg, Jessica K; Parmentier, Fabrice

    2012-10-01

    The objective was to study the involuntary capture of attention by spoken words varying in intonation and valence. In studies of verbal alarms, the propensity of alarms to capture attention has been primarily assessed with the use of subjective ratings of their perceived urgency. Past studies suggest that such ratings vary with the alarms' spoken urgency and content. We measured attention capture by spoken words varying in valence (negative vs. neutral) and intonation (urgently vs. nonurgently spoken) through subjective ratings and behavioral measures. The key behavioral measure was the response latency to visual stimuli in the presence of spoken words breaking away from the periodical repetition of a tone. The results showed that all words captured attention relative to a baseline standard tone but that this effect was partly counteracted by a relative speeding of responses for urgently compared with nonurgently spoken words. Word valence did not affect behavioral performance. Rating data showed that both intonation and valence increased significantly perceived urgency and attention grabbing without any interaction. The data suggest a congruency between subjective ratings and behavioral performance with respect to spoken intonation but not valence. This study demonstrates the usefulness and feasibility of objective measures of attention capture to help design efficient alarm systems.

  11. Highly Surface-Active Ca(OH)2 Monolayer as a CO2 Capture Material.

    PubMed

    Özçelik, V Ongun; Gong, Kai; White, Claire E

    2018-03-14

    Greenhouse gas emissions originating from fossil fuel combustion contribute significantly to global warming, and therefore the design of novel materials that efficiently capture CO 2 can play a crucial role in solving this challenge. Here, we show that reducing the dimensionality of bulk crystalline portlandite results in a stable monolayer material, named portlandene, that is highly effective at capturing CO 2 . On the basis of theoretical analysis comprised of ab initio quantum mechanical calculations and force-field molecular dynamics simulations, we show that this single-layer phase is robust and maintains its stability even at high temperatures. The chemical activity of portlandene is seen to further increase upon defect engineering of its surface using vacancy sites. Defect-containing portlandene is capable of separating CO and CO 2 from a syngas (CO/CO 2 /H 2 ) stream, yet is inert to water vapor. This selective behavior and the associated mechanisms have been elucidated by examining the electronic structure, local charge distribution, and bonding orbitals of portlandene. Additionally, unlike conventional CO 2 capturing technologies, the regeneration process of portlandene does not require high temperature heat treatment because it can release the captured CO 2 by application of a mild external electric field, making portlandene an ideal CO 2 capturing material for both pre- and postcombustion processes.

  12. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas

    DOE PAGES

    Alvizo, Oscar; Nguyen, Luan J.; Savile, Christopher K.; ...

    2014-11-03

    Carbonic anhydrase (CA) is one of nature’s fastest enzymes and can dramatically improve the economics of carbon capture under demanding environments such as coal-fired power plants. The use of CA to accelerate carbon capture is limited by the enzyme’s sensitivity to the harsh process conditions. Using directed evolution, the properties of a β-class CA from Desulfovibrio vulgaris were dramatically enhanced. Iterative rounds of library design, library generation, and high-throughput screening identified highly stable CA variants that tolerate temperatures of up to 107 °C in the presence of 4.2 M alkaline amine solvent at pH >10.0. This increase in thermostability andmore » alkali tolerance translates to a 4,000,000-fold improvement over the natural enzyme. In conclusion, at pilot scale, the evolved catalyst enhanced the rate of CO2 absorption 25-fold compared with the noncatalyzed reaction.« less

  13. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas

    PubMed Central

    Alvizo, Oscar; Nguyen, Luan J.; Savile, Christopher K.; Bresson, Jamie A.; Lakhapatri, Satish L.; Solis, Earl O. P.; Fox, Richard J.; Broering, James M.; Benoit, Michael R.; Zimmerman, Sabrina A.; Novick, Scott J.; Liang, Jack; Lalonde, James J.

    2014-01-01

    Carbonic anhydrase (CA) is one of nature’s fastest enzymes and can dramatically improve the economics of carbon capture under demanding environments such as coal-fired power plants. The use of CA to accelerate carbon capture is limited by the enzyme’s sensitivity to the harsh process conditions. Using directed evolution, the properties of a β-class CA from Desulfovibrio vulgaris were dramatically enhanced. Iterative rounds of library design, library generation, and high-throughput screening identified highly stable CA variants that tolerate temperatures of up to 107 °C in the presence of 4.2 M alkaline amine solvent at pH >10.0. This increase in thermostability and alkali tolerance translates to a 4,000,000-fold improvement over the natural enzyme. At pilot scale, the evolved catalyst enhanced the rate of CO2 absorption 25-fold compared with the noncatalyzed reaction. PMID:25368146

  14. Improved capture of stable flies (Diptera: Muscidae) by placement of knight stick sticky fly traps protected by electric fence inside animal exhibit yards at the Smithsonian's National Zoological Park.

    PubMed

    Hogsette, Jerome A; Ose, Gregory A

    2017-12-01

    Stable flies are noxious blood-feeding pests of exotic animals at zoological parks, inflicting painful bites, and causing discomfort to animals. Stable fly management is difficult because of the flies' tendency to remain on the host animals only when feeding. Non-toxic traps can be efficient but traps placed around exhibit perimeters captured fewer-than-expected numbers of flies. By surrounding traps with square electric fence enclosures, traps could be placed in the exhibits with the host animals and compared with an equal number of traps placed along perimeter fences. During a 21-week study, traps inside exhibits captured 5× more stable flies than traps placed along exhibit perimeters. Traps inside exhibits tended to show more fluctuations in fly populations than traps along perimeters. The increased numbers of flies captured using this technique should provide relief from this pestiferous fly and greatly improve animal health and welfare. We believe this to be the first study where traps were used to capture stable flies in exhibit yards at a zoological park. © 2017 The Authors. Zoo Biology Published by Wiley Periodicals, Inc.

  15. Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals.

    PubMed

    Bulgari, Dinara; Zhou, Chaoming; Hewes, Randall S; Deitcher, David L; Levitan, Edwin S

    2014-03-04

    Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function.

  16. Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals

    PubMed Central

    Bulgari, Dinara; Zhou, Chaoming; Hewes, Randall S.; Deitcher, David L.; Levitan, Edwin S.

    2014-01-01

    Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function. PMID:24550480

  17. Example-based human motion denoising.

    PubMed

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  18. Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics.

    PubMed

    Correia, Alexandre C M; Laskar, Jacques

    2004-06-24

    Mercury is locked into a 3/2 spin-orbit resonance where it rotates three times on its axis for every two orbits around the sun. The stability of this equilibrium state is well established, but our understanding of how this state initially arose remains unsatisfactory. Unless one uses an unrealistic tidal model with constant torques (which cannot account for the observed damping of the libration of the planet) the computed probability of capture into 3/2 resonance is very low (about 7 per cent). This led to the proposal that core-mantle friction may have increased the capture probability, but such a process requires very specific values of the core viscosity. Here we show that the chaotic evolution of Mercury's orbit can drive its eccentricity beyond 0.325 during the planet's history, which very efficiently leads to its capture into the 3/2 resonance. In our numerical integrations of 1,000 orbits of Mercury over 4 Gyr, capture into the 3/2 spin-orbit resonant state was the most probable final outcome of the planet's evolution, occurring 55.4 per cent of the time.

  19. Strengthening of Ocean Heat Uptake Efficiency Associated with the Recent Climate Hiatus

    NASA Technical Reports Server (NTRS)

    Watanabe, Masahiro; Kamae, Youichi; Yoshimori, Masakazu; Oka, Akira; Sato, Makiko; Ishii, Masayoshi; Mochizuki, Takashi; Kimoto, Masahide

    2013-01-01

    The rate of increase of global-mean surface air temperature (SAT(sub g)) has apparently slowed during the last decade. We investigated the extent to which state-of-the-art general circulation models (GCMs) can capture this hiatus period by using multimodel ensembles of historical climate simulations. While the SAT(sub g) linear trend for the last decade is not captured by their ensemble means regardless of differences in model generation and external forcing, it is barely represented by an 11-member ensemble of a GCM, suggesting an internal origin of the hiatus associated with active heat uptake by the oceans. Besides, we found opposite changes in ocean heat uptake efficiency (k), weakening in models and strengthening in nature, which explain why the models tend to overestimate the SAT(sub g) trend. The weakening of k commonly found in GCMs seems to be an inevitable response of the climate system to global warming, suggesting the recovery from hiatus in coming decades.

  20. Optimizing management of the condensing heat and cooling of gases compression in oxy block using of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Brzęczek, Mateusz; Bartela, Łukasz

    2013-12-01

    This paper presents the parameters of the reference oxy combustion block operating with supercritical steam parameters, equipped with an air separation unit and a carbon dioxide capture and compression installation. The possibility to recover the heat in the analyzed power plant is discussed. The decision variables and the thermodynamic functions for the optimization algorithm were identified. The principles of operation of genetic algorithm and methodology of conducted calculations are presented. The sensitivity analysis was performed for the best solutions to determine the effects of the selected variables on the power and efficiency of the unit. Optimization of the heat recovery from the air separation unit, flue gas condition and CO2 capture and compression installation using genetic algorithm was designed to replace the low-pressure section of the regenerative water heaters of steam cycle in analyzed unit. The result was to increase the power and efficiency of the entire power plant.

  1. The Effects of Nanotexturing Microfluidic Platforms to Isolate Brain Tumor Cells

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Sajid, Adeel; Kim, Young-Tae; Iqbal, Samir M.

    2015-03-01

    Detection of tumor cells in the early stages of disease requires sensitive and selective approaches. Nanotextured polydimethylsiloxane (PDMS) substrates were implemented to detect metastatic human glioblastoma (hGBM) cells. RNA aptamers that were specific to epidermal growth factor receptors (EGFR) were used to functionalize the substrates. EGFR is known to be overexpressed on many cancer cells including hGBM. Nanotextured PDMS was prepared by micro reactive ion etching. PDMS surfaces became hydrophilic uponnanotexturing. Nanotextured substrates were incubated in tumor cell solution and density of captured cells was determined. Nanotextured PDMS provided >300% cell capture compared to plain PDMS due to increased effective surface area of roughened substrates at nanoscale as well as mire focal points for cell adhesion. Next, aptamer functionalized nanotextured PDMS was incorporated in microfluidic device to detect tumor cells at different flow velocities. The shear stress introduced by the flow pressure and heterogeneity of the EGFR overexpression on cell membranes of the tumor cells had significant impact on the cell capture efficiency of aptamer anchored nanotextured microfluidic devices. Eventually tumor cells were detected from the mixture of white blood cells at an efficiency of 73% using the microfluidic device. The interplay of binding energies and surface energies was major factor in this system. Support Acknowledged from NSF through ECCS-1407990.

  2. CO2 Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System.

    PubMed

    Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei

    2015-09-01

    An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.

  3. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the coating operation during the capture efficiency test run, kg. TVHi = Mass fraction of TVH in... the mass of liquid TVH in materials used in the coating operation to the mass of TVH emissions not... 40 CFR part 51. (2) Use Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass...

  4. 40 CFR Appendix A to Subpart Kk of... - Data Quality Objective and Lower Confidence Limit Approaches for Alternative Capture Efficiency...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... approach follows: 4.3A source conducts an initial series of at least three runs. The owner or operator may... Confidence Limit Approaches for Alternative Capture Efficiency Protocols and Test Methods A Appendix A to... to Subpart KK of Part 63—Data Quality Objective and Lower Confidence Limit Approaches for Alternative...

  5. 40 CFR Appendix A to Subpart Kk of... - Data Quality Objective and Lower Confidence Limit Approaches for Alternative Capture Efficiency...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approach follows: 4.3A source conducts an initial series of at least three runs. The owner or operator may... Confidence Limit Approaches for Alternative Capture Efficiency Protocols and Test Methods A Appendix A to... to Subpart KK of Part 63—Data Quality Objective and Lower Confidence Limit Approaches for Alternative...

  6. 40 CFR Appendix A to Subpart Kk of... - Data Quality Objective and Lower Confidence Limit Approaches for Alternative Capture Efficiency...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the LCL approach follows: 4.3A source conducts an initial series of at least three runs. The owner... Confidence Limit Approaches for Alternative Capture Efficiency Protocols and Test Methods A Appendix A to... to Subpart KK of Part 63—Data Quality Objective and Lower Confidence Limit Approaches for Alternative...

  7. 40 CFR Appendix A to Subpart Kk of... - Data Quality Objective and Lower Confidence Limit Approaches for Alternative Capture Efficiency...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... approach follows: 4.3A source conducts an initial series of at least three runs. The owner or operator may... Confidence Limit Approaches for Alternative Capture Efficiency Protocols and Test Methods A Appendix A to... to Subpart KK of Part 63—Data Quality Objective and Lower Confidence Limit Approaches for Alternative...

  8. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop.

    PubMed

    Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee

    2018-06-05

    Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A Study on The Development of Local Exhaust Ventilation System (LEV’s) for Installation of Laser Cutting Machine

    NASA Astrophysics Data System (ADS)

    Harun, S. I.; Idris, S. R. A.; Tamar Jaya, N.

    2017-09-01

    Local exhaust ventilation (LEV) is an engineering system frequently used in the workplace to protect operators from hazardous substances. The objective of this project is design and fabricate the ventilation system as installation for chamber room of laser cutting machine and to stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed. LEV’s fabricated with rated voltage D.C 10.8V and 1.5 ampere. Its capacity 600 ml, continuously use limit approximately 12-15 minute, overall length LEV’s fabricated is 966 mm with net weight 0.88 kg and maximum airflow is 1.3 meter cubic per minute. Stimulate the air flow inside chamber room of laser cutting machine with the ventilation system that designed and fabricated overall result get 2 main gas vapor which air and carbon dioxide. For air gas which experimented by using anemometer, general duct velocity that produce is same with other gas produce, carbon dioxide which 5 m/s until 10 m/s. Overall result for 5 m/s and 10 m/s as minimum and maximum duct velocity produce for both air and carbon dioxide. The air gas flow velocity that captured by LEV’s fabricated, 3.998 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 79.960% and 7.667 m/s average velocity captured from 10 m/s duct velocity with efficiency of 76.665%. For carbon dioxide gas flow velocity that captured by LEV’s fabricated, 3.674 m/s average velocity captured from 5 m/s duct velocity which it efficiency of 73.480% and 8.255 m/s average velocity captured from 10 m/s duct velocity with efficiency of 82.545%.

  10. Capture success and efficiency of dragonflies pursuing different types of prey.

    PubMed

    Combes, S A; Salcedo, M K; Pandit, M M; Iwasaki, J M

    2013-11-01

    The dynamics of predator-prey interactions vary enormously, due both to the heterogeneity of natural environments and to wide variability in the sensorimotor systems of predator and prey. In addition, most predators pursue a range of different types of prey, and most organisms are preyed upon by a variety of predators. We do not yet know whether predators employ a general kinematic and behavioral strategy, or whether they tailor their pursuits to each type of prey; nor do we know how widely prey differ in their survival strategies and sensorimotor capabilities. To gain insight into these questions, we compared aerial predation in 4 species of libelluid dragonflies pursuing 4 types of dipteran prey, spanning a range of sizes. We quantified the proportion of predation attempts that were successful (capture success), as well as the total time spent and the distance flown in pursuit of prey (capture efficiency). Our results show that dragonfly prey-capture success and efficiency both decrease with increasing size of prey, and that average prey velocity generally increases with size. However, it is not clear that the greater distances and times required for capturing larger prey are due solely to the flight performance (e.g., speed or evasiveness) of the prey, as predicted. Dragonflies initiated pursuits of large prey when they were located farther away, on average, as compared to small prey, and the total distance flown in pursuit was correlated with initial distance to the prey. The greater initial distances observed during pursuits of larger prey may arise from constraints on dragonflies' visual perception; dragonflies typically pursued prey subtending a visual angle of 1°, and rarely pursued prey at visual angles greater than 3°. Thus, dragonflies may be unable to perceive large prey flying very close to their perch (subtending a visual angle greater than 3-4°) as a distinct target. In comparing the performance of different dragonfly species that co-occur in the same habitat, we found significant differences that are not explained by body size, suggesting that some dragonflies may be specialized for pursuing particular types of prey. Our results underscore the importance of performing comparative studies of predator-prey interactions with freely behaving subjects in natural settings, to provide insight into how the behavior of both participants influences the dynamics of the interaction. In addition, it is clear that gaining a full understanding of predator-prey interactions requires detailed knowledge not only of locomotory mechanics and behavior, but also of the sensory capabilities and constraints of both predator and prey.

  11. Trends in Department of Defense hospital efficiency.

    PubMed

    Ozcan, Y A; Bannick, R R

    1994-04-01

    This study employs a simple cross sectional design using longitudinal data to explore the underlying factors associated with differences in hospital technical efficiency using data envelopment analysis (DEA) in the Department of Defense (DOD) sector across three service components, the Army, Air Force and Navy. The results suggest that the services do not differ significantly in hospital efficiency. Nor does hospital efficiency appear to differ over time. With respect to the efficient use of input resources, the services experienced a general decline in excessive usage of various inputs over the three years. Analysis of the returns to scale captures opportunities for planners of changing the relative mix of output to input slacks for increasing a hospital's efficiency. That is, policy makers would get more immediate "bang per buck" with emphasis on improving the efficiencies of hospitals with higher returns to scale than other hospitals. Findings also suggest a significant degree of comparability between the DEA measure and these measures often used to indicate efficiency.

  12. Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering.

    PubMed

    Bardhan, Neelkanth M; Kumar, Priyank V; Li, Zeyang; Ploegh, Hidde L; Grossman, Jeffrey C; Belcher, Angela M; Chen, Guan-Yu

    2017-02-28

    With the global rise in incidence of cancer and infectious diseases, there is a need for the development of techniques to diagnose, treat, and monitor these conditions. The ability to efficiently capture and isolate cells and other biomolecules from peripheral whole blood for downstream analyses is a necessary requirement. Graphene oxide (GO) is an attractive template nanomaterial for such biosensing applications. Favorable properties include its two-dimensional architecture and wide range of functionalization chemistries, offering significant potential to tailor affinity toward aromatic functional groups expressed in biomolecules of interest. However, a limitation of current techniques is that as-synthesized GO nanosheets are used directly in sensing applications, and the benefits of their structural modification on the device performance have remained unexplored. Here, we report a microfluidic-free, sensitive, planar device on treated GO substrates to enable quick and efficient capture of Class-II MHC-positive cells from murine whole blood. We achieve this by using a mild thermal annealing treatment on the GO substrates, which drives a phase transformation through oxygen clustering. Using a combination of experimental observations and MD simulations, we demonstrate that this process leads to improved reactivity and density of functionalization of cell capture agents, resulting in an enhanced cell capture efficiency of 92 ± 7% at room temperature, almost double the efficiency afforded by devices made using as-synthesized GO (54 ± 3%). Our work highlights a scalable, cost-effective, general approach to improve the functionalization of GO, which creates diverse opportunities for various next-generation device applications.

  13. An efficient energy response model for liquid scintillator detectors

    NASA Astrophysics Data System (ADS)

    Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin

    2018-05-01

    Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.

  14. Increased light-use efficiency in northern terrestrial ecosystems indicated by CO 2 and greening observations

    DOE PAGES

    Ricciuto, Daniel M.; Mao, Jiafu; Shi, Xiaoying

    2016-11-04

    Observations show an increasing amplitude in the seasonal cycle of CO 2 (ASC) north of 45°N of 56 ± 9.8% over the last 50 years and an increase in vegetation greenness of 7.5 - 15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO 2 concentrations. We find that the modeled change in ASC is too small but themore » mean greening trend is generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO 2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE.« less

  15. EVALUATION OF ENGINEERING CONTROLS FOR THE MIXING OF FLAVORINGS CONTAINING DIACETYL AND OTHER VOLATILE INGREDIENTS

    PubMed Central

    Hirst, Deborah V.L.; Dunn, Kevin H.; Shulman, Stanley A.; Hammond, Duane R.; Sestito, Nicholas

    2015-01-01

    Exposures to diacetyl, a primary ingredient of butter flavoring, have been shown to cause respiratory disease among workers who mix flavorings. This study focused on evaluating ventilation controls designed to reduce emissions from the flavor mixing tanks, the major source of diacetyl in the plants. Five exhaust hood configurations were evaluated in the laboratory: standard hinged lid-opened, standard hinged lid-closed, hinged lid-slotted, dome with 38-mm gap, and dome with 114-mm gap. Tracer gas tests were performed to evaluate quantitative capture efficiency for each hood. A perforated copper coil was used to simulate an area source within the 1.2-meter diameter mixing tank. Capture efficiencies were measured at four hood exhaust flow rates (2.83, 5.66, 11.3, and 17.0 cubic meters per minute) and three cross draft velocities (0, 30, and 60 meters per minute). All hoods evaluated performed well with capture efficiencies above 90% for most combinations of exhaust volume and cross drafts. The standard hinged lid was the least expensive to manufacture and had the best average capture efficiency (over 99%) in the closed configuration for all exhaust flow rates and cross drafts. The hinged lid-slotted hood had some of the lowest capture efficiencies at the low exhaust flow rates compared to the other hood designs. The standard hinged lid performed well, even in the open position, and it provided a flexible approach to controlling emissions from mixing tanks. The dome hood gave results comparable to the standard hinged lid but it is more expensive to manufacture. The results of the study indicate that emissions from mixing tanks used in the production of flavorings can be controlled using simple inexpensive exhaust hoods. PMID:24649880

  16. Design of Aminopolymer Structure to Enhance Performance and Stability of CO2 Sorbents: Poly(propylenimine) vs Poly(ethylenimine).

    PubMed

    Pang, Simon H; Lee, Li-Chen; Sakwa-Novak, Miles A; Lively, Ryan P; Jones, Christopher W

    2017-03-15

    Studies on aminopolymer/oxide composite materials for direct CO 2 capture from air have often focused on the prototypical poly(ethylenimine) (PEI) as the aminopolymer. However, it is known that PEI will oxidatively degrade at elevated temperatures. This degradation has been ascribed to the presence of secondary amines, which, when oxidized, lose their CO 2 capture capacity. Here, we demonstrate the use of small molecule poly(propylenimine) (PPI) in linear and dendritic architectures supported in silica as adsorbent materials for direct CO 2 capture from air. Regardless of amine loading or aminopolymer architecture, the PPI-based sorbents are found to be more efficient for CO 2 capture than PEI-based sorbents. Moreover, PPI is found to be more resistant to oxidative degradation than PEI, even while containing secondary amines, as supported by FTIR, NMR, and ESI-MS studies. These results suggest that PPI-based CO 2 sorbents may allow for longer sorbent working lifetimes due to an increased tolerance to sorbent regeneration conditions and suggest that the presence of secondary amines may not mean that all aminopolymers will oxidatively degrade.

  17. Bioinspired Pollen-Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells.

    PubMed

    Wang, Wenshuo; Yang, Gao; Cui, Haijun; Meng, Jingxin; Wang, Shutao; Jiang, Lei

    2017-08-01

    The efficient recognition and isolation of rare cancer cells holds great promise for cancer diagnosis and prognosis. In nature, pollens exploit spiky structures to realize recognition and adhesion to stigma. Herein, a bioinspired pollen-like hierarchical surface is developed by replicating the assembly of pollen grains, and efficient and specific recognition to target cancer cells is achieved. The pollen-like surface is fabricated by combining filtering-assisted assembly and soft lithography-based replication of pollen grains of wild chrysanthemum. After modification with a capture agent specific to cancer cells, the pollen-like surface enables the capture of target cancer cells with high efficiency and specificity. In addition, the pollen-like surface not only assures high viability of captured cells but also performs well in cell mixture system and at low cell density. This study represents a good example of constructing cell recognition biointerfaces inspired by pollen-stigma adhesion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Physical particularities of nuclear reactors using heavy moderators of neutrons

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.

    2016-12-01

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using 233U as a fissile nuclide and 232Th and 231Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program package for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.

  19. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis

    PubMed Central

    Pavlovič, Andrej; Krausko, Miroslav; Libiaková, Michaela; Adamec, Lubomír

    2014-01-01

    Backround and Aims It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. Methods Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). Key Results Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). Conclusions According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved plant nutrient status and photosynthetic performance. This study supports the original cost/benefit model proposed by T. Givnish almost 30 years ago and underlines the importance of plant carnivory for increasing phosphorus, and thereby photosynthesis. PMID:24201141

  20. Simultaneous capture and in situ analysis of circulating tumor cells using multiple hybrid nanoparticles.

    PubMed

    Lee, Hun Joo; Cho, Hyeon-Yeol; Oh, Jin Ho; Namkoong, Kak; Lee, Jeong Gun; Park, Jong-Myeon; Lee, Soo Suk; Huh, Nam; Choi, Jeong-Woo

    2013-09-15

    Using hybrid nanoparticles (HNPs), we demonstrate simultaneous capture, in situ protein expression analysis, and cellular phenotype identification of circulating tumor cells (CTCs). Each HNP consists of three parts: (i) antibodies that bind specifically to a known biomarker for CTCs, (ii) a quantum dot that emits fluorescence signals, and (iii) biotinylated DNA that allows capture and release of CTC-HNP complex to an in-house developed capture & recovery chip (CRC). To evaluate our approach, cells representative of different breast cancer subtypes (MCF-7: luminal; SK-BR-3: HER2; and MDA-MB-231: basal-like) were captured onto CRC and expressions of EpCAM, HER2, and EGFR were detected concurrently. The average capture efficiency of CTCs was 87.5% with identification accuracy of 92.4%. Subsequently, by cleaving the DNA portion with restriction enzymes, captured cells were released at efficiencies of 86.1%. Further studies showed that these recovered cells are viable and can proliferate in vitro. Using HNPs, it is possible to count, analyze in situ protein expression, and culture CTCs, all from the same set of cells, enabling a wide range of molecular- and cellular-based studies using CTCs. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Electrochemical Capture and Release of CO2 in Aqueous Electrolytes Using an Organic Semiconductor Electrode

    PubMed Central

    2017-01-01

    Developing efficient methods for capture and controlled release of carbon dioxide is crucial to any carbon capture and utilization technology. Herein we present an approach using an organic semiconductor electrode to electrochemically capture dissolved CO2 in aqueous electrolytes. The process relies on electrochemical reduction of a thin film of a naphthalene bisimide derivative, 2,7-bis(4-(2-(2-ethylhexyl)thiazol-4-yl)phenyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NBIT). This molecule is specifically tailored to afford one-electron reversible and one-electron quasi-reversible reduction in aqueous conditions while not dissolving or degrading. The reduced NBIT reacts with CO2 to form a stable semicarbonate salt, which can be subsequently oxidized electrochemically to release CO2. The semicarbonate structure is confirmed by in situ IR spectroelectrochemistry. This process of capturing and releasing carbon dioxide can be realized in an oxygen-free environment under ambient pressure and temperature, with uptake efficiency for CO2 capture of ∼2.3 mmol g–1. This is on par with the best solution-phase amine chemical capture technologies available today. PMID:28378994

  2. Immuno-affinity Capture Followed by TMPP N-Terminus Tagging to Study Catabolism of Therapeutic Proteins.

    PubMed

    Kullolli, Majlinda; Rock, Dan A; Ma, Ji

    2017-02-03

    Characterization of in vitro and in vivo catabolism of therapeutic proteins has increasingly become an integral part of discovery and development process for novel proteins. Unambiguous and efficient identification of catabolites can not only facilitate accurate understanding of pharmacokinetic profiles of drug candidates, but also enables follow up protein engineering to generate more catabolically stable molecules with improved properties (pharmacokinetics and pharmacodynamics). Immunoaffinity capture (IC) followed by top-down intact protein analysis using either matrix-assisted laser desorption/ionization or electrospray ionization mass spectrometry analysis have been the primary methods of choice for catabolite identification. However, the sensitivity and efficiency of these methods is not always sufficient for characterization of novel proteins from complex biomatrices such as plasma or serum. In this study a novel bottom-up targeted protein workflow was optimized for analysis of proteolytic degradation of therapeutic proteins. Selective and sensitive tagging of the alpha-amine at the N-terminus of proteins of interest was performed by immunoaffinity capture of therapeutic protein and its catabolites followed by on-bead succinimidyloxycarbonylmethyl tri-(2,4,6-trimethoxyphenyl N-terminus (TMPP-NTT) tagging. The positively charged hydrophobic TMPP tag facilitates unambiguous sequence identification of all N-terminus peptides from complex tryptic digestion samples via data dependent liquid chromatgraphy-tandem mass spectroscopy. Utility of the workflow was illustrated by definitive analysis of in vitro catabolic profile of neurotensin human Fc (NTs-huFc) protein in mouse serum. The results from this study demonstrated that the IC-TMPP-NTT workflow is a simple and efficient method for catabolite formation in therapeutic proteins.

  3. 40 CFR 63.4181 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a... capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or more capture devices...

  4. 40 CFR 63.4181 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commercial or industrial HVAC systems. Manufacturer's formulation data means data on a material (such as a... capture system efficiency means the portion (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on control device. Capture system means one or more capture devices...

  5. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt.

    PubMed

    Reyes, Andres; Messina, Carlos D; Hammer, Graeme L; Liu, Lu; van Oosterom, Erik; Lafitte, Renee; Cooper, Mark

    2015-12-01

    Breeders have successfully improved maize (Zea mays L.) grain yield for the conditions of the US corn-belt over the past 80 years, with the past 50 years utilizing single-cross hybrids. Long-term improvement for grain yield under water-limited conditions has also been reported. Grain yield under water-limited conditions depends on water use, water use efficiency, and harvest index. It has been hypothesized that long-term genetic gain for yield could be due, in part, to increased water capture from the soil. This hypothesis was tested using a set of elite single-cross hybrids that were released by DuPont Pioneer between 1963 and 2009. Eighteen hybrids were grown in the field during 2010 and 2011 growing seasons at Woodland, CA, USA. Crops grew predominantly on stored soil water and drought stress increased as the season progressed. Soil water content was measured to 300cm depth throughout the growing season. Significant water extraction occurred to a depth of 240-300cm and seasonal water use was calculated from the change in soil water over this rooting zone. Grain yield increased significantly with year of commercialization, but no such trend was observed for total water extraction. Therefore, the measured genetic gain for yield for the period represented by this set of hybrids must be related to either increased efficiency of water use or increased carbon partitioning to the grain, rather than increased soil water uptake. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. 40 CFR Appendix A to Subpart Dddd... - Alternative Procedure To Determine Capture Efficiency From Enclosures Around Hot Presses in the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....2Response Time Test. Conduct this test once prior to each test series. Introduce zero gas into the... analysis. 3.0Definitions 3.1Capture efficiency (CE). The weight per unit time of SF6 entering the control device divided by the weight per unit time of SF6 released through manifolds at multiple locations within...

  7. 40 CFR Appendix A to Subpart Dddd... - Alternative Procedure To Determine Capture Efficiency From Enclosures Around Hot Presses in the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....2Response Time Test. Conduct this test once prior to each test series. Introduce zero gas into the... analysis. 3.0Definitions 3.1Capture efficiency (CE). The weight per unit time of SF6 entering the control device divided by the weight per unit time of SF6 released through manifolds at multiple locations within...

  8. 40 CFR Appendix A to Subpart Dddd... - Alternative Procedure To Determine Capture Efficiency From Enclosures Around Hot Presses in the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....2Response Time Test. Conduct this test once prior to each test series. Introduce zero gas into the... analysis. 3.0Definitions 3.1Capture efficiency (CE). The weight per unit time of SF6 entering the control device divided by the weight per unit time of SF6 released through manifolds at multiple locations within...

  9. 40 CFR Appendix A to Subpart Dddd... - Alternative Procedure To Determine Capture Efficiency From Enclosures Around Hot Presses in the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....2Response Time Test. Conduct this test once prior to each test series. Introduce zero gas into the... analysis. 3.0Definitions 3.1Capture efficiency (CE). The weight per unit time of SF6 entering the control device divided by the weight per unit time of SF6 released through manifolds at multiple locations within...

  10. Soft-X-Ray-Enhanced Electrostatic Precipitation for Protection against Inhalable Allergens, Ultrafine Particles, and Microbial Infections

    PubMed Central

    Kettleson, Eric M.; Schriewer, Jill M.; Buller, R. Mark L.

    2013-01-01

    Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems. PMID:23263945

  11. Soft-X-ray-enhanced electrostatic precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections.

    PubMed

    Kettleson, Eric M; Schriewer, Jill M; Buller, R Mark L; Biswas, Pratim

    2013-02-01

    Protection of the human lung from infectious agents, allergens, and ultrafine particles is difficult with current technologies. High-efficiency particulate air (HEPA) filters remove airborne particles of >0.3 μm with 99.97% efficiency, but they are expensive to maintain. Electrostatic precipitation has been used as an inexpensive approach to remove large particles from airflows, but it has a collection efficiency minimum in the submicrometer size range, allowing for a penetration window for some allergens and ultrafine particles. Incorporating soft X-ray irradiation as an in situ component of the electrostatic precipitation process greatly improves capture efficiency of ultrafine particles. Here we demonstrate the removal and inactivation capabilities of soft-X-ray-enhanced electrostatic precipitation technology targeting infectious agents (Bacillus anthracis, Mycobacterium bovis BCG, and poxviruses), allergens, and ultrafine particles. Incorporation of in situ soft X-ray irradiation at low-intensity corona conditions resulted in (i) 2-fold to 9-fold increase in capture efficiency of 200- to 600-nm particles and (ii) a considerable delay in the mean day of death as well as lower overall mortality rates in ectromelia virus (ECTV) cohorts. At the high-intensity corona conditions, nearly complete protection from viral and bacterial respiratory infection was afforded to the murine models for all biological agents tested. When optimized for combined efficient particle removal with limited ozone production, this technology could be incorporated into stand-alone indoor air cleaners or scaled for installation in aircraft cabin, office, and residential heating, ventilating, and air-conditioning (HVAC) systems.

  12. Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby

    Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less

  13. Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing

    DOE PAGES

    Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby; ...

    2016-02-12

    Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less

  14. Studies on the S-band bunching system with the Hybrid Bunching-accelerating Structure

    NASA Astrophysics Data System (ADS)

    Pei, Shi-Lun; Gao, Bin

    2018-04-01

    Generally, a standard bunching system is composed of a standing-wave (SW) pre-buncher (PB), a traveling-wave (TW) buncher (B) and a standard accelerating structure. In the industrial area, the bunching system is usually simplified by eliminating the PB and integrating the B and the standard accelerating structure together to form a β-varied accelerating structure. The beam capturing efficiency for this kind of simplified system is often worse than that for the standard one. The hybrid buncher (HB) has been proved to be a successful attempt to reduce the cost but preserve the beam quality as much as possible. Here we propose to exclusively simplify the standard bunching system by integrating the PB, the B and the standard accelerating structure together to form a Hybrid Bunching-accelerating Structure (HBaS). Compared to the standard bunching system, the one based on the HBaS is more compact, and the cost is lowered to the largest extent. With almost the same beam transportation efficiency (∼70%) from the electron gun to the linac exit, the peak-to-peak (p-to-p) beam energy spread and the 1 σ emittance of the linac with the HBaS are ∼20% and ∼60% bigger than those of the linac based on the split PB/B/standard accelerating structure system. Nonetheless, the proposed HBaS can be widely applied in the industrial linacs to greatly increase the beam capturing efficiency without fairly increasing the construction cost.

  15. Simulation of mercury capture by sorbent injection using a simplified model.

    PubMed

    Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping

    2009-10-30

    Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.

  16. The effect of perceptual load on attention-induced motion blindness: the efficiency of selective inhibition.

    PubMed

    Hay, Julia L; Milders, Maarten M; Sahraie, Arash; Niedeggen, Michael

    2006-08-01

    Recent visual marking studies have shown that the carry-over of distractor inhibition can impair the ability of singletons to capture attention if the singleton and distractors share features. The current study extends this finding to first-order motion targets and distractors, clearly separated in time by a visual cue (the letter X). Target motion discrimination was significantly impaired, a result attributed to the carry-over of distractor inhibition. Increasing the difficulty of cue detection increased the motion target impairment, as distractor inhibition is thought to increase under demanding (high load) conditions in order to maximize selection efficiency. The apparent conflict with studies reporting reduced distractor inhibition under high load conditions was resolved by distinguishing between the effects of "cognitive" and "perceptual" load. ((c) 2006 APA, all rights reserved).

  17. Freeze the Moment: High Speed Capturing of Weakly Bonded Dynamic Nanoparticle Assemblies in Solution by Ag Ion Soldering.

    PubMed

    Wang, Yueliang; Fang, Lingling; Chen, Gaoli; Song, Lei; Deng, Zhaoxiang

    2018-02-01

    Despite the versatile forms of colloidal aggregates, these spontaneously formed structures are often hard to find a suitable application in nanotechnology and materials science. A determinate reason is the lack of a suitable method to capture the transiently formed and quickly evolving colloidal structures in solution. To address this challenge, a simple but highly efficient strategy is herein reported to capture the dynamic and metastable colloidal assemblies formed in an aqueous or nonaqueous solution. This process takes advantage of a recently developed Ag ion soldering reaction to realize a rapid fixation of as-formed metastable assemblies. This method works efficiently for both solid (3D) nanoparticle aggregates and weakly bonded fractal nanoparticle chains (1D). In both cases, very high capturing speed and close to 100% efficiency are achieved to fully retain a quickly growing structure. The soldered nanochains further enable a fabrication of discrete, uniform, and functionalizable nanoparticle clusters with enriched linear conformation by mechanical shearing, which would otherwise be difficult to make. The captured products are water dispersible and mechanically robust, favoring an exploration of their properties toward possible applications. The work paves a way to previously untouched aspects of colloidal science and thus would create new chances in nanotechnology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CO2 Capture by Absorption with Potassium Carbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary T. Rochelle; Eric Chen; Babatunde Oyenekan

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Ethylenediamine was detected in a degraded solution of MEA/PZ solution, suggesting that piperazine is subject to oxidation. Stripper modeling has demonstrated that vacuum strippers will be more energy efficient if constructed short and fat rather than tall and skinny. The matrix stripper has been identified as a configuration that will significantly reduce energy use. Extensive measurements of CO{sub 2} solubility in 7 m MEA at 40 and 60 C have confirmedmore » the work by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 to 181 mpy in lean solutions of 6.2 m MEA/PZ as piperazine increases from 0 to 3.1 m.« less

  19. Simultaneous Wastewater Treatment, Algal Biomass Production and Electricity Generation in Clayware Microbial Carbon Capture Cells.

    PubMed

    Jadhav, Dipak A; Jain, Sumat C; Ghangrekar, Makarand M

    2017-11-01

    Performance of microbial carbon capture cells (MCCs), having a low-cost clayware separator, was evaluated in terms of wastewater treatment and electricity generation using algae Chlorella pyrenoidosa in MCC-1 and Anabaena ambigua in MCC-2 and without algae in a cathodic chamber of MCC-3. Higher power production was achieved in MCC-1 (6.4 W/m 3 ) compared to MCC-2 (4.29 W/m 3 ) and MCC-3 (3.29 W/m 3 ). Higher coulombic efficiency (15.23 ± 1.30%) and biomass production (66.4 ± 4.7 mg/(L*day)) in MCC-1 indicated the superiority of Chlorella over Anabaena algae for carbon capture and oxygen production to facilitate the cathodic reduction. Algal biofilm formation on the cathode surface of MCC-1 increased dissolved oxygen in the catholyte and decreased the cathodic charge transfer resistance with increase in reduction current. Electrochemical analyses revealed slow cathodic reactions and increase in internal resistance in MCC-2 (55 Ω) than MCC-1 (30 Ω), due to lower oxygen produced by Anabaena algae. Thus, biomass production in conjunction with wastewater treatment, CO 2 sequestration and electricity generation can be achieved using Chlorella algal biocathode in MCC.

  20. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.

    PubMed

    Lee, Ada; Park, Juhee; Lim, Minji; Sunkara, Vijaya; Kim, Shine Young; Kim, Gwang Ha; Kim, Mi-Hyun; Cho, Yoon-Kyoung

    2014-11-18

    Circulating tumor cells (CTCs) have gained increasing attention owing to their roles in cancer recurrence and progression. Due to the rarity of CTCs in the bloodstream, an enrichment process is essential for effective target cell characterization. However, in a typical pressure-driven microfluidic system, the enrichment process generally requires complicated equipment and long processing times. Furthermore, the commonly used immunoaffinity-based positive selection method is limited, as its recovery rate relies on EpCAM expression of target CTCs, which shows heterogeneity among cell types. Here, we propose a centrifugal-force-based size-selective CTC isolation platform that can isolate and enumerate CTCs from whole blood within 30 s with high purity. The device was validated using the MCF-7 breast cancer cell line spiked in phosphate-buffered saline and whole blood, and an average capture efficiency of 61% was achieved, which is typical for size-based filtration. The capture efficiency for whole blood samples varied from 44% to 84% under various flow conditions and dilution factors. Under the optimized operating conditions, a few hundred white blood cells per 1 mL of whole blood were captured, representing a 20-fold decrease compared to those obtained using a commercialized size-based CTC isolation device. In clinical validation, normalized CTC counts varied from 10 to 60 per 7.5 mL of blood from gastric and lung cancer patients, yielding a detection rate of 50% and 38%, respectively. Overall, our CTC isolation device enables rapid and label-free isolation of CTCs with high purity, which should greatly improve downstream molecular analyses of captured CTCs.

  1. Larval antlions show a cognitive ability/hunting efficiency trade-off connected with the level of behavioural asymmetry.

    PubMed

    Miler, Krzysztof; Kuszewska, Karolina; Zuber, Gabriela; Woyciechowski, Michal

    2018-05-14

    Recently, antlion larvae with greater behavioural asymmetry were shown to have improved learning abilities. However, a major evolutionary question that remained unanswered was why this asymmetry does not increase in all individuals during development. Here, we show that a trade-off exists between learning ability of larvae and their hunting efficiency. Larvae with greater asymmetry learn better than those with less, but the latter are better able to sense vibrational signals used to detect prey and can capture prey more quickly. Both traits, learning ability and hunting efficiency, present obvious fitness advantages; the trade-off between them may explain why behavioural asymmetry, which presumably stems from brain lateralization, is relatively rare in natural antlion populations.

  2. Magnetically Actuated Cilia for Microfluidic Manipulation

    NASA Astrophysics Data System (ADS)

    Hanasoge, Srinivas; Owen, Drew; Ballard, Matt; Hesketh, Peter J.; Alexeev, Alexander; Woodruff School of Mechanical Engineering Collaboration; Petit InstituteBioengineering; Biosciences Collaboration

    2015-11-01

    We demonstrate magnetic micro-cilia based microfluidic mixing and capture techniques. For this, we use a simple and easy to fabricate high aspect ratio cilia, which are actuated magnetically. These micro-features are fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The evaporated alloy curls upwards when the seed layer is removed to release the cilia, thus making a free standing `C' shaped magnetic microstructure. This is actuated using an external electromagnet or a rotating magnet. The artificial cilia can be actuated upto 20Hz. We demonstrate the active mixing these cilia can produce in the microchannel. Also, we demonstrate the capture of target species in a sample using these fast oscillating cilia. The surface of the cilia is functionalized by streptavidin which binds to biotin labelled fluorescent microspheres and mimic the capture of bacteria. We show very high capture efficiencies by using these methods. These simple to fabricate micro cilia can easily be incorporated into many microfluidic systems which require high mixing and capture efficiencies.

  3. A surface-associated activity trap for capturing water surface and aquatic invertebrates in wetlands

    USGS Publications Warehouse

    Hanson, Mark A.; Roy, Christiane C.; Euliss, Ned H.; Zimmer, Kyle D.; Riggs, Michael R.; Butler, Malcolm G.

    2000-01-01

    We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.

  4. A surface-associated activity trap for capturing water-surface and aquatic invertebrates in wetlands

    USGS Publications Warehouse

    Hanson, M.A.; Roy, C.C.; Euliss, N.H.; Zimmer, K.D.; Riggs, M.R.; Butler, Malcolm G.

    2000-01-01

    We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.

  5. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding.

    PubMed

    Bonthoux, Francis

    2016-07-01

    Welding fumes are classified as Group 2B 'possibly carcinogenic' and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s(-1) The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s(-1)) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s(-1) The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. A comparison of lead lengths for mini-fyke nets to sample age-0 gar species

    USGS Publications Warehouse

    Long, James M.; Snow, Richard A.; Patterson, Chas P.

    2016-01-01

    Mini-fyke nets are often used to sample small-bodied fishes in shallow (<1 m depth) water, especially in vegetated shoreline habitats where seines are ineffective. Recent interest in gar (Lepisosteidae) ecology and conservation led us to explore the use of mini-fyke nets to capture age-0 gar and specifically how capture is affected by lead length of the fyke net. In the summers of 2012, 2013, and 2015, mini-fyke nets with two different lead lengths (4.57 m and 9.14 m) were set at random sites in backwaters and coves of the Red River arm of Lake Texoma, Oklahoma. Mean CPUE (catch-per-unit-effort; number per net night) was significantly lower for mini-fyke nets with short leads (0.52) compared to those with long leads (1.51). Additionally, Spotted Gar (Lepisosteus oculatus) were captured at a higher rate than the other three gar species present in Lake Texoma, although this could have been an artifact of sampling location. We found that differences in length-frequency of captured gar between gear types were nearly significant, with total length ranging from 47mm to 590mm. Mini-fyke nets with longer leads increased the efficiency of sampling for age-0 gar by increasing catch rate without affecting estimates of other population parameters and appear to be useful for this purpose. 

  7. Glovebox stripper system tritium capture efficiency-literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, D. W.; Poore, A. S.

    2015-09-28

    Glovebox Stripper Systems (GBSS) are intended to minimize tritium emissions from glovebox confinement systems in Tritium facilities. A question was raised to determine if an assumed 99% stripping (decontamination) efficiency in the design of a GBBS was appropriate. A literature review showed the stated 99% tritium capture efficiency used for design of the GBSS is reasonable. Four scenarios were indicated for GBSSs. These include release with a single or dual stage setup which utilizes either single-pass or recirculation for stripping purposes. Examples of single-pass as well as recirculation stripper systems are presented and reviewed in this document.

  8. 40 CFR 63.4165 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system; coating solvent flash-off and coating, curing, and drying occurs within the capture system and... when being moved between a spray booth and a curing oven. (b) If the capture system does not meet both... surface preparation activities and drying or curing time. (c) Liquid-to-uncaptured-gas protocol using a...

  9. Enabling CCS via Low-temperature Geothermal Energy Integration for Fossil-fired Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Heldebrant, D. J.; Bearden, M. D.

    Here, among the key barriers to commercial scale deployment is the cost associated with CO 2 capture. This is particularly true for existing large, fossil-fired assets that account for a large fraction of the electricity generation fleet in developed nations, including the U.S. Fitting conventional combustion technologies with CO 2 capture systems can carry an energy penalty of thirty percent or more, resulting in an increased price of power to the grid, as well as an overall decrease in net plant output. Taken together with the positive growth in demand for electricity, this implies a need for accelerated capital build-outmore » in the power generation markets to accommodate both demand growth and decreased output at retrofitted plants. In this paper, the authors present the results of a study to assess the potential to use geothermal energy to provide boiler feedwater preheating, capturing efficiency improvements designed to offset the losses associated with CO 2 capture. Based on NETL benchmark cases and subsequent analysis of the application using site-specific data from the North Valmy power plant, several cases for CO 2 capture were evaluated. These included geothermally assisted MEA capture, CO2BOLs capture, and stand-alone hybrid power generation, compared with a baseline, no-geothermal case. Based on Case 10, and assuming 2.7 MMlb/h of geothermally sourced 150 ºC water, the parasitic power load associated with MEA capture could be offset by roughly seven percent, resulting in a small (~1 percent) overall loss to net power generation, but at levelized costs of electricity similar to the no-geothermal CCS case. For the CO 2BOLs case, the availability of 150°C geothermal fluid could allow the facility to not only offset the net power decrease associated with CO 2BOLs capture alone, but could increase nameplate capacity by two percent. The geothermally coupled CO 2BOLs case also decreases LCOE by 0.75 ¢/kWh relative to the non-hybrid CO 2BOLs case, with the improved performance over the MEA case driven by the lower regeneration temperature and associated duty for CO 2BOLs relative to MEA.« less

  10. Enabling CCS via Low-temperature Geothermal Energy Integration for Fossil-fired Power Generation

    DOE PAGES

    Davidson, Casie L.; Heldebrant, D. J.; Bearden, M. D.; ...

    2017-08-18

    Here, among the key barriers to commercial scale deployment is the cost associated with CO 2 capture. This is particularly true for existing large, fossil-fired assets that account for a large fraction of the electricity generation fleet in developed nations, including the U.S. Fitting conventional combustion technologies with CO 2 capture systems can carry an energy penalty of thirty percent or more, resulting in an increased price of power to the grid, as well as an overall decrease in net plant output. Taken together with the positive growth in demand for electricity, this implies a need for accelerated capital build-outmore » in the power generation markets to accommodate both demand growth and decreased output at retrofitted plants. In this paper, the authors present the results of a study to assess the potential to use geothermal energy to provide boiler feedwater preheating, capturing efficiency improvements designed to offset the losses associated with CO 2 capture. Based on NETL benchmark cases and subsequent analysis of the application using site-specific data from the North Valmy power plant, several cases for CO 2 capture were evaluated. These included geothermally assisted MEA capture, CO2BOLs capture, and stand-alone hybrid power generation, compared with a baseline, no-geothermal case. Based on Case 10, and assuming 2.7 MMlb/h of geothermally sourced 150 ºC water, the parasitic power load associated with MEA capture could be offset by roughly seven percent, resulting in a small (~1 percent) overall loss to net power generation, but at levelized costs of electricity similar to the no-geothermal CCS case. For the CO 2BOLs case, the availability of 150°C geothermal fluid could allow the facility to not only offset the net power decrease associated with CO 2BOLs capture alone, but could increase nameplate capacity by two percent. The geothermally coupled CO 2BOLs case also decreases LCOE by 0.75 ¢/kWh relative to the non-hybrid CO 2BOLs case, with the improved performance over the MEA case driven by the lower regeneration temperature and associated duty for CO 2BOLs relative to MEA.« less

  11. Thermally and chemically responsive nanoporous materials for efficient capture of fission product gases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroeve, Pieter; Faller, Roland

    The objective of this project was to develop robust, high-efficiency materials for capture of fission product gases such as He, Xe and Kr in scenarios relevant for both reactor fuels and reprocessing operations. The relevant environments are extremely harsh, encompassing temperatures up to 1500 °C, high levels of radiation, as well as potential exposures to highly-reactive chemicals such as nitric acid and organic solvents such as kerosene. The requirement for nanostructured capture materials is driven in part by the very short (few micron) diffusion distances for product gases in nuclear fuel. We achieved synthesis, characterization and detailed modeling of themore » materials. Although not all materials reviewed in this report will be feasible for the ultimate goal of integration in nuclear fuel, nevertheless each material studied has particular properties which will enable an optimized material to be efficiently developed and characterized.« less

  12. Exploring Thermoresponsive Affinity Agents to Enhance Microdialysis Sampling Efficiency of Proteins

    NASA Astrophysics Data System (ADS)

    Vasicek, Thaddeus

    Affinity agents increase microdialysis protein relative recovery, yet they have not seen widespread use within the microdialysis community due to their additional instrumentation requirements and prohibitive cost. This dissertation describes new affinity agents for microdialysis that require no additional instrumentation to use, have nearly 100% particle recovery, are 7 times more cost efficient than alternatives, and have low specificity enabling their use for a wide variety of proteins. Initially gold nanoparticles were chosen as an affinity ligand support due to their high surface area/volume ratio and colloidal stability. Poly (N-isopropylacrylamide) was immobilized to the gold nanoparticles, which served to sterically stabilize the particles and to act as a generic, reversible protein capture agent. A method was developed to reproducibly vary and quantify poly (N-isopropylacrylamide) graft density from 0.09 to 0.40 ligands/nm2 on gold nanoparticles. During characterization of the polymer coated gold nanoparticles, irreversible particle agglomeration was observed at low polymer graft density in ionic solutions, which prevented further development as a protein capture agent. Poly (N-isopropylacrylamide) nanogels, which have low nonspecific adsorption, low interparticle attractive forces owing to the low curvature of the particle, and a low Hamaker constant, were synthesized to overcome the agglomeration problem. A generic protein affinity ligand cibacron blue, was immobilized to the nanogels, which enabled rapid determination of particle recovery. The perfusion of the nanogels through a microdialysis probe was optimized yielding 100% particle recovery using a combination of a syringe and peristaltic pump. The microdialysis collection efficiency of CCL2, a physiologically relevant cytokine, was increased 3-fold with addition of the nanogel to the microdialysis perfusion fluid. The reduction in instrumentation requirements, low cost, and low specificity obtained with the new affinity agents will lead to increased affinity agent use for microdiaylsis protein sampling.

  13. Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production.

    PubMed

    Steinebach, Fabian; Müller-Späth, Thomas; Morbidelli, Massimo

    2016-09-01

    The economic advantages of continuous processing of biopharmaceuticals, which include smaller equipment and faster, efficient processes, have increased interest in this technology over the past decade. Continuous processes can also improve quality assurance and enable greater controllability, consistent with the quality initiatives of the FDA. Here, we discuss different continuous multi-column chromatography processes. Differences in the capture and polishing steps result in two different types of continuous processes that employ counter-current column movement. Continuous-capture processes are associated with increased productivity per cycle and decreased buffer consumption, whereas the typical purity-yield trade-off of classical batch chromatography can be surmounted by continuous processes for polishing applications. In the context of continuous manufacturing, different but complementary chromatographic columns or devices are typically combined to improve overall process performance and avoid unnecessary product storage. In the following, these various processes, their performances compared with batch processing and resulting product quality are discussed based on a review of the literature. Based on various examples of applications, primarily monoclonal antibody production processes, conclusions are drawn about the future of these continuous-manufacturing technologies. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbonated Science Cleans Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Roger; Heldebrant, David; Glezakou, Vand

    Similar to the properties of soda, liquid solvents can efficiently capture and convert carbon dioxide from coal power plants. Researchers at PNNL explain this process and how this method can turn captured carbon into plastic or fuel.

  15. Predicting the ultimate potential of natural gas SOFC power cycles with CO2 capture - Part A: Methodology and reference cases

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Mastropasqua, Luca; Gazzani, Matteo; Chiesa, Paolo; Romano, Matteo C.

    2016-08-01

    Driven by the search for the highest theoretical efficiency, in the latest years several studies investigated the integration of high temperature fuel cells in natural gas fired power plants, where fuel cells are integrated with simple or modified Brayton cycles and/or with additional bottoming cycles, and CO2 can be separated via chemical or physical separation, oxy-combustion and cryogenic methods. Focusing on Solid Oxide Fuel Cells (SOFC) and following a comprehensive review and analysis of possible plant configurations, this work investigates their theoretical potential efficiency and proposes two ultra-high efficiency plant configurations based on advanced intermediate-temperature SOFCs integrated with a steam turbine or gas turbine cycle. The SOFC works at atmospheric or pressurized conditions and the resulting power plant exceeds 78% LHV efficiency without CO2 capture (as discussed in part A of the work) and 70% LHV efficiency with substantial CO2 capture (part B). The power plants are simulated at the 100 MW scale with a complete set of realistic assumptions about fuel cell (FC) performance, plant components and auxiliaries, presenting detailed energy and material balances together with a second law analysis.

  16. Advanced Technologies in Safe and Efficient Operating Rooms

    DTIC Science & Technology

    2009-10-01

    focused on the video, not (initially) any other sensors and ii) tried to capture using machine learning techniques the ability of an expert surgeon to...plant (with humans playing the role of team leader) o a learning environment (where humans play the role of students ). As can be seen, this work...increased cognitive demands associated with the one-handed technique occur because the surgeon is providing instructions to the assistant performing

  17. LED lighting increases the ecological impact of light pollution irrespective of color temperature.

    PubMed

    Pawson, S M; Bader, M K-F

    Recognition of the extent and magnitude of night-time light pollution impacts on natural ecosystems is increasing, with pervasive effects observed in both nocturnal and diurnal species. Municipal and industrial lighting is on the cusp of a step change where energy-efficient lighting technology is driving a shift from “yellow” high-pressure sodium vapor lamps (HPS) to new “white” light-emitting diodes (LEDs). We hypothesized that white LEDs would be more attractive and thus have greater ecological impacts than HPS due to the peak UV-green-blue visual sensitivity of nocturnal invertebrates. Our results support this hypothesis; on average LED light traps captured 48% more insects than were captured with light traps fitted with HPS lamps, and this effect was dependent on air temperature (significant light × air temperature interaction). We found no evidence that manipulating the color temperature of white LEDs would minimize the ecological impacts of the adoption of white LED lights. As such, large-scale adoption of energy-efficient white LED lighting for municipal and industrial use may exacerbate ecological impacts and potentially amplify phytosanitary pest infestations. Our findings highlight the urgent need for collaborative research between ecologists and electrical engineers to ensure that future developments in LED technology minimize their potential ecological effects.

  18. Decoy trapping and rocket-netting for northern pintails in spring

    USGS Publications Warehouse

    Grand, James B.; Fondell, Thomas F.

    1994-01-01

    Decoy traps and rocket-nets were compared for capturing Northern Pintails (Anas acuta: hereafter pintails) during May 1991 on the Yukon Flats, Alaska. Males were captured at similar rates using both methods (1.38 vs. 1.07 males/trap d, respectively), but baited rocket-nets were more efficient than decoy traps for capturing females (0.52 vs. 0.12 females/trap d). There were no significant differences in masses of pintails captured by each method.

  19. [AFM fishing of proteins under impulse electric field].

    PubMed

    Ivanov, Yu D; Pleshakova, T O; Malsagova, K A; Kaysheva, A L; Kopylov, A T; Izotov, A A; Tatur, V Yu; Vesnin, S G; Ivanova, N D; Ziborov, V S; Archakov, A I

    2016-05-01

    A combination of (atomic force microscopy)-based fishing (AFM-fishing) and mass spectrometry allows to capture protein molecules from solutions, concentrate and visualize them on an atomically flat surface of the AFM chip and identify by subsequent mass spectrometric analysis. In order to increase the AFM-fishing efficiency we have applied pulsed voltage with the rise time of the front of about 1 ns to the AFM chip. The AFM-chip was made using a conductive material, highly oriented pyrolytic graphite (HOPG). The increased efficiency of AFM-fishing has been demonstrated using detection of cytochrome b5 protein. Selection of the stimulating pulse with a rise time of 1 ns, corresponding to the GHz frequency range, by the effect of intrinsic emission from water observed in this frequency range during water injection into the cell.

  20. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  1. Peptide-Mediated Platelet Capture at Gold Micropore Arrays.

    PubMed

    Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E

    2016-11-30

    Ordered spherical cap gold cavity arrays with 5.4, 1.6, and 0.98 μm diameter apertures were explored as capture surfaces for human blood platelets to investigate the impact of surface geometry and chemical modification on platelet capture efficiency and their potential as platforms for surface enhanced Raman spectroscopy of single platelets. The substrates were chemically modified with single-constituent self-assembled monolayers (SAM) or mixed SAMs comprised of thiol-functionalized arginine-glycine-aspartic acid (RGD, a platelet integrin target) with or without 1-octanethiol (adhesion inhibitor). As expected, platelet adhesion was promoted and inhibited at RGD and alkanethiol modified surfaces, respectively. Platelet adhesion was reversible, and binding efficiency at the peptide modified substrates correlated inversely with pore diameter. Captured platelets underwent morphological change on capture, the extent of which depended on the topology of the underlying substrate. Regioselective capture of the platelets enabled study for the first time of the surface enhanced Raman spectroscopy of single blood platelets, yielding high quality Raman spectroscopy of individual platelets at 1.6 μm diameter pore arrays. Given the medical importance of blood platelets across a range of diseases from cancer to psychiatric illness, such approaches to platelet capture may provide a useful route to Raman spectroscopy for platelet related diagnostics.

  2. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    PubMed

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.

  3. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture

    PubMed Central

    Bian, Shengtai; Cheng, Yinuo; Shi, Guanya; Liu, Peng; Ye, Xiongying

    2017-01-01

    Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation—high-efficiency cell enrichment and precise single cell capture—have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications. PMID:28217240

  4. Local trophic specialisation in a cosmopolitan spider (Araneae).

    PubMed

    Líznarová, Eva; Sentenská, Lenka; García, Luis Fernando; Pekár, Stano; Viera, Carmen

    2013-02-01

    Trophic specialisation can be observed in species with long-term constant exploitation of a certain prey in all populations or in a population of a species with short-term exploitation of a certain prey. While in the former case the species would evolve stereotyped or specialised trophic adaptations, the trophic traits of the latter should be versatile or generalised. Here, we studied the predatory behavioural adaptations of a presumed myrmecophagous spider, Oecobius navus. We chose two distinct populations, one in Portugal and the other in Uruguay. We analysed the actual prey of both populations and found that the Portuguese population feeds mainly on dipterans, while the Uruguayan population feeds mainly on ants. Indeed, dipterans and springtails in Portugal, and ants in Uruguay were the most abundant potential prey. In laboratory trials O. navus spiders recognised and captured a wide variety of prey. The capture efficiency of the Portuguese population measured as components of the handling time was higher for flies than for ants, while that of the Uruguayan population was higher for ants. We found phenotypic plasticity in behavioural traits that lead to increased capture efficiency with respect to the locally abundant prey, but it remains to be determined whether the traits of the two populations are genetically fixed. We conclude that O. navus is a euryphagous generalist predator which shows local specialisation on the locally abundant prey. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    NASA Astrophysics Data System (ADS)

    Yano, Takatomi; 2012B0025 Collaboration; 2014B0126 Collaboration

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  6. Status of the Neutron Capture Measurement on 237Np with the DANCE Array at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esch, E.-I.; Bond, E.M.; Bredeweg, T. A.

    2005-05-24

    Neptunium-237 is a major constituent of spent nuclear fuel. Estimates place the amount of 237Np bound for the Yucca Mountain high-level waste repository at 40 metric tons. The Department of Energy's Advanced Fuel Cycle Initiative program is evaluating methods for transmuting the actinide waste that will be generated by future operation of commercial nuclear power plants. The critical parameter that defines the transmutation efficiency of actinide isotopes is the neutron fission-to-capture ratio for the particular isotope in a given neutron spectrum. The calculation of transmutation efficiency therefore requires accurate fission and capture cross sections. Current 237Np evaluations available for transmutermore » system studies show significant discrepancies in both the fission and capture cross sections in the energy regions of interest. Herein we report on 237Np (n,{gamma}) measurements using the recently commissioned DANCE array.« less

  7. Design and evaluation of a simple signaling device for live traps

    USGS Publications Warehouse

    Benevides, F.L.; Hansen, H.; Hess, S.C.

    2008-01-01

    Frequent checks of live traps require enormous amounts of labor and add human scents associated with repeated monitoring, which may reduce capture efficiency. To reduce efforts and increase efficiency, we developed a trap-signaling device with long-distance reception, durability in adverse weather, and ease of transport, deployment, and use. Modifications from previous designs include a normally open magnetic switch and a mounting configuration to maximize reception. The system weighed <225 g, was effective ???17.1 km, and failed in <1% of trap-nights. Employing this system, researchers and wildlife managers may reduce the amount of effort checking traps while improving the welfare of trapped animals.

  8. Efficient Purification and Release of Circulating Tumor Cells by Synergistic Effect of Biomarker and SiO2 @Gel-Microbead-Based Size Difference Amplification.

    PubMed

    Huang, Qinqin; Cai, Bo; Chen, Bolei; Rao, Lang; He, Zhaobo; He, Rongxiang; Guo, Feng; Zhao, Libo; Kondamareddy, Kiran Kumar; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2016-07-01

    Microfluidics-based circulating tumor cell (CTC) isolation is achieved by using gelatin-coated silica microbeads conjugated to CTC-specific antibodies. Bead-binding selectively enlarges target cell size, providing efficient high-purity capture. CTCs captured can be further released non-invasively. This stratagem enables high-performance CTC isolation for subsequent studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Solvent Effects on the Photothermal Regeneration of CO 2 in Monoethanolamine Nanofluids

    DOE PAGES

    Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron

    2015-11-02

    We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO 2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO 2 without heating the bulk solvent. The mechanism by which CO 2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO 2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regenerationmore » of CO 2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO 2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO 2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.« less

  10. Solvent Effects on the Photothermal Regeneration of CO 2 in Monoethanolamine Nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Du; Stolaroff, Joshuah; Esser-Kahn, Aaron

    We present that a potential approach to reduce energy costs associated with carbon capture is to use external and renewable energy sources. The photothermal release of CO 2 from monoethanolamine mediated by nanoparticles is a unique solution to this problem. When combined with light-absorbing nanoparticles, vapor bubbles form inside the capture solution and release the CO 2 without heating the bulk solvent. The mechanism by which CO 2 is released remained unclear, and understanding this process would improve the efficiency of photothermal CO 2 release. Here we report the use of different cosolvents to improve or reduce the photothermal regenerationmore » of CO 2 captured by monoethanolamine. We found that properties that reduce the residence time of the gas bubbles (viscosity, boiling point, and convection direction) can enhance the regeneration efficiencies. The reduction of bubble residence times minimizes the reabsorption of CO 2 back into the capture solvent where bulk temperatures remain lower than the localized area surrounding the nanoparticle. These properties shed light on the mechanism of release and indicated methods for improving the efficiency of the process. We used this knowledge to develop an improved photothermal CO 2 regeneration system in a continuously flowing setup. Finally, using techniques to reduce residence time in the continuously flowing setup, such as alternative cosolvents and smaller fluid volumes, resulted in regeneration efficiency enhancements of over 200%.« less

  11. Highly efficient SO2 capture through tuning the interaction between anion-functionalized ionic liquids and SO2.

    PubMed

    Wang, Congmin; Zheng, Junjie; Cui, Guokai; Luo, Xiaoyan; Guo, Yan; Li, Haoran

    2013-02-11

    A strategy to improve SO(2) capture through tuning the electronegativity of the interaction site in ILs has been presented. Two types of imidazolium ionic liquids that include less electronegative sulfur or carbon sites were used for the capture of SO(2), which exhibit extremely highly available capacity, rapid absorption rate and excellent reversibility.

  12. Octopus: A Design Methodology for Motion Capture Wearables

    PubMed Central

    2017-01-01

    Human motion capture (MoCap) is widely recognised for its usefulness and application in different fields, such as health, sports, and leisure; therefore, its inclusion in current wearables (MoCap-wearables) is increasing, and it may be very useful in a context of intelligent objects interconnected with each other and to the cloud in the Internet of Things (IoT). However, capturing human movement adequately requires addressing difficult-to-satisfy requirements, which means that the applications that are possible with this technology are held back by a series of accessibility barriers, some technological and some regarding usability. To overcome these barriers and generate products with greater wearability that are more efficient and accessible, factors are compiled through a review of publications and market research. The result of this analysis is a design methodology called Octopus, which ranks these factors and schematises them. Octopus provides a tool that can help define design requirements for multidisciplinary teams, generating a common framework and offering a new method of communication between them. PMID:28809786

  13. Octopus: A Design Methodology for Motion Capture Wearables.

    PubMed

    Marin, Javier; Blanco, Teresa; Marin, Jose J

    2017-08-15

    Human motion capture (MoCap) is widely recognised for its usefulness and application in different fields, such as health, sports, and leisure; therefore, its inclusion in current wearables (MoCap-wearables) is increasing, and it may be very useful in a context of intelligent objects interconnected with each other and to the cloud in the Internet of Things (IoT). However, capturing human movement adequately requires addressing difficult-to-satisfy requirements, which means that the applications that are possible with this technology are held back by a series of accessibility barriers, some technological and some regarding usability. To overcome these barriers and generate products with greater wearability that are more efficient and accessible, factors are compiled through a review of publications and market research. The result of this analysis is a design methodology called Octopus, which ranks these factors and schematises them. Octopus provides a tool that can help define design requirements for multidisciplinary teams, generating a common framework and offering a new method of communication between them.

  14. [Fluorine removal efficiency of organic-calcium during coal combustion].

    PubMed

    Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa

    2006-08-01

    Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.

  15. Theory of the synchronous motion of an array of floating flap gates oscillating wave surge converter

    NASA Astrophysics Data System (ADS)

    Michele, Simone; Sammarco, Paolo; d'Errico, Michele

    2016-08-01

    We consider a finite array of floating flap gates oscillating wave surge converter (OWSC) in water of constant depth. The diffraction and radiation potentials are solved in terms of elliptical coordinates and Mathieu functions. Generated power and capture width ratio of a single gate excited by incoming waves are given in terms of the radiated wave amplitude in the far field. Similar to the case of axially symmetric absorbers, the maximum power extracted is shown to be directly proportional to the incident wave characteristics: energy flux, angle of incidence and wavelength. Accordingly, the capture width ratio is directly proportional to the wavelength, thus giving a design estimate of the maximum efficiency of the system. We then compare the array and the single gate in terms of energy production. For regular waves, we show that excitation of the out-of-phase natural modes of the array increases the power output, while in the case of random seas we show that the array and the single gate achieve the same efficiency.

  16. Charged Covalent Triazine Frameworks for CO2 Capture and Conversion.

    PubMed

    Buyukcakir, Onur; Je, Sang Hyun; Talapaneni, Siddulu Naidu; Kim, Daeok; Coskun, Ali

    2017-03-01

    The quest for the development of new porous materials addressing both CO 2 capture from various sources and its conversion into useful products is a very active research area and also critical in order to develop a more sustainable and environmentally-friendly society. Here, we present the first charged covalent triazine framework (cCTF) prepared by simply heating nitrile functionalized dicationic viologen derivatives under ionothermal reaction conditions using ZnCl 2 as both solvent and trimerization catalyst. It has been demonstrated that the surface area, pore volume/size of cCTFs can be simply controlled by varying the synthesis temperature and the ZnCl 2 content. Specifically, increasing the reaction temperature led to controlled increase in the mesopore content and facilitated the formation of hierarchical porosity, which is critical to ensure efficient mass transport within porous materials. The resulting cCTFs showed high specific surface areas up to 1247 m 2 g -1 , and high physicochemical stability. The incorporation of ionic functional moieties to porous organic polymers improved substantially their CO 2 affinity (up to 133 mg g -1 , at 1 bar and 273 K) and transformed them into hierarchically porous organocatalysts for CO 2 conversion. More importantly, the ionic nature of cCTFs, homogeneous charge distribution together with hierarchical porosity offered a perfect platform for the catalytic conversion of CO 2 into cyclic carbonates in the presence of epoxides through an atom economy reaction in high yields and exclusive product selectivity. These results clearly demonstrate the promising aspect of incorporation of charged units into the porous organic polymers for the development of highly efficient porous organocatalysts for CO 2 capture and fixation.

  17. Physical particularities of nuclear reactors using heavy moderators of neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Shmelev, A. N.

    2016-12-15

    In nuclear reactors, thermal neutron spectra are formed using moderators with small atomic weights. For fast reactors, inserting such moderators in the core may create problems since they efficiently decelerate the neutrons. In order to form an intermediate neutron spectrum, it is preferable to employ neutron moderators with sufficiently large atomic weights, using {sup 233}U as a fissile nuclide and {sup 232}Th and {sup 231}Pa as fertile ones. The aim of the work is to investigate the properties of heavy neutron moderators and to assess their advantages. The analysis employs the JENDL-4.0 nuclear data library and the SCALE program packagemore » for simulating the variation of fuel composition caused by irradiation in the reactor. The following main results are obtained. By using heavy moderators with small neutron moderation steps, one is able to (1) increase the rate of resonance capture, so that the amount of fertile material in the fuel may be reduced while maintaining the breeding factor of the core; (2) use the vacant space for improving the fuel-element properties by adding inert, strong, and thermally conductive materials and by implementing dispersive fuel elements in which the fissile material is self-replenished and neutron multiplication remains stable during the process of fuel burnup; and (3) employ mixtures of different fertile materials with resonance capture cross sections in order to increase the resonance-lattice density and the probability of resonance neutron capture leading to formation of fissile material. The general conclusion is that, by forming an intermediate neutron spectrum with heavy neutron moderators, one can use the fuel more efficiently and improve nuclear safety.« less

  18. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  19. An efficient smolt trap for sandy and debris-laden streams

    USGS Publications Warehouse

    Scace, J.G.; Letcher, B.H.; Noreika, J.

    2007-01-01

    Tripod weir and box traps are traditionally used to capture and enumerate out-migrating salmonid smolts in short-term studies and in streams where temporary or portable traps are the only practical option. Although traditional traps can be effective when conditions are ideal, they are often unable to withstand high-discharge events in streams containing a large amount of debris or sandy substrates. We created a rotary-screw trap and resistance board weir hybrid design that we evaluated along with a tripod weir and box trap, both in a 6.1-m-wide flume and in the field. The new design outperformed the tripod weir in both situations. The tripod weir failed in 10 min in the flume trial, whereas the new design was still operating at the conclusion of an 8-h trial under the same conditions. The new design operated continuously in the field during a high-discharge event that caused the tripod weir to fail. The new design also required less frequent cleaning than the tripod weir. The trap efficiency of the new design was estimated by using passive integrated transponder (PIT) tag antennas and radiotelemetry. The trap was 80% efficient (n = 40) in capturing migrating PIT-tagged individuals detected at an antenna upstream of the trap and 87.5% efficient (n = 48) at recapturing fish that had been tagged and released upstream. With its high efficiency and increased resiliency over the tripod weir, the new trap design will benefit management and research efforts in streams where traditional traps are unsuitable. ?? Copyright by the American Fisheries Society 2007.

  20. Energy Efficient Operation of Ammonia Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employmore » dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.« less

  1. Carbon Management in the Electric Power Industry

    NASA Astrophysics Data System (ADS)

    Stringer, John

    2002-03-01

    Approximately 53States in 2000 came from the combustion of coal in Rankine cycle plant; 16principally in Brayton cycle or combined cycle units. Electricity generation is responsible for 36amthropogenic CO2. This compares with 32transportation sector, but since the electric utility generators are large fixed sources it is likely that any legislation designed to reduce CO2 production will adress the utility generators first. Over the last 100 years there has been a continuous decrease in the carbon fraction of the fuels used for energy production world wide, and it is expected that this will continue, principally as a result of the increasing fraction of natural gas. It appears probable that the retirement of the existing nuclear fleet will be delayed by relicensing, and it seems more possible that new nuclear plant will be built than seemed likely even a couple of years ago. The impact of renewables should be increasing, but currently only about 2way currently, and without some considerable incentives, the rate of increase in this component over the next twenty years will probably be small. Currently, hydroelectric plants account for 7indication that this will increase appreciably. At the moment, a significant change would appear to require the capture of CO2 from the exhaust of the combustion plants, and particularly the large existing fleet of coal-fired Rankine units. Following the capture, the CO2 must then be sequestered in secure long-term locations. In addition, increases in the efficiency of power generation, and increases in the efficiency of end use leading to reductions in the energy intensity of the Gross Domestic Product, will be necessary. This paper will review the current state of art in these various approaches to the problem.

  2. Flexibility of CCS Power Plants and Transport Systems

    NASA Astrophysics Data System (ADS)

    Nimtz, Michael; Krautz, Hans-Joachim

    2013-04-01

    Growing shares of renewable energy in the German power grid urge fossil fuelled power plants to reduce load or to shut down completely with increasing frequency and amplitude. Shut down, load changes and the following restart or ramp-up often have to be carried out as fast as possible. To realize such fast transitions is already complicated and expensive for conventional power plants - if further measures for CO2 reduction are applied, the task is even harder. Capture equipment and transport systems will add further process steps as well as additional masses of fluids and construction material. This will result in a change of time constants and a generally slower system reaction on changes in parameters like load, temperature and pressure in the power plant components and capture units. On the other hand there is only limited time to earn money by selling electricity - if there is a chance to sell more electricity in a short term, efficiencies should be as high as possible. Any capture unit that would reduce the efficiency causes economic conflicts. Therefore measures are analysed to offset the power generation from the capture process in time or to reduce the capture load temporarily. The poster will present a case study for different CCS power plant configurations and load scenarios representing typical grid load from renewable energies. Approaches to balance the load and/or the CO2 output of these power plants will be presented. These approaches comprise: bypassing of flue gas, intermediate storage of heat and/or fluids. Amounts of additional steam, electrical energy and other process fluids (e.g. scrubbing fluids like MEA) and size of auxiliary equipment will be shown .Finally, effects on the transport system (e.g. cooling down of CO2 in the pipeline and changes in mass and volume flow) will be presented and discussed.

  3. Enhanced performance of solar cells with optimized surface recombination and efficient photon capturing via anisotropic-etching of black silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H. Y.; Peng, Y., E-mail: gdyuan@semi.ac.cn, E-mail: py@usst.edu.cn; Hong, M.

    2014-05-12

    We report an enhanced conversion efficiency of femtosecond-laser treated silicon solar cells by surface modification of anisotropic-etching. The etching improves minority carrier lifetime inside modified black silicon area substantially; moreover, after the etching, an inverted pyramids/upright pyramids mixed texture surface is obtained, which shows better photon capturing capability than that of conventional pyramid texture. Combing of these two merits, the reformed solar cells show higher conversion efficiency than that of conventional pyramid textured cells. This work presents a way for fabricating high performance silicon solar cells, which can be easily applied to mass-production.

  4. CO₂ carbonation under aqueous conditions using petroleum coke combustion fly ash.

    PubMed

    González, A; Moreno, N; Navia, R

    2014-12-01

    Fly ash from petroleum coke combustion was evaluated for CO2 capture in aqueous medium. Moreover the carbonation efficiency based on different methodologies and the kinetic parameters of the process were determined. The results show that petroleum coke fly ash achieved a CO2 capture yield of 21% at the experimental conditions of 12 g L(-1), 363°K without stirring. The carbonation efficiency by petroleum coke fly ash based on reactive calcium species was within carbonation efficiencies reported by several authors. In addition, carbonation by petroleum coke fly ash follows a pseudo-second order kinetic model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Evaluation of various models of propane-powered mosquito traps.

    PubMed

    Kline, Daniel L

    2002-06-01

    Large cage and field studies were conducted to determine the efficacy of various models of propane-powered mosquito traps. These traps utilized counterflow technology in conjunction with catalytic combustion to produce attractants (carbon dioxide, water vapor, and heat) and a thermoelectric generator that converted excess heat into electricity for stand-alone operation. The cage studies showed that large numbers of Aedes aegypti and Ochlerotatus taeniorhynchus were captured and that each progressive model resulted in increased trapping efficiency. In several field studies against natural populations of mosquitoes two different propane traps were compared against two other trap systems, the professional (PRO) and counterflow geometry (CFG) traps. In these studies the propane traps consistently caught more mosquitoes than the PRO trap and significantly fewer mosquitoes than the CFG traps. The difference in collection size between the CFG and propane traps was due mostly to Anopheles crucians. In spring 1997 the CFG trap captured 3.6X more An. crucians than the Portable Propane (PP) model and in spring 1998 it captured 6.3X more An. crucians than the Mosquito Magnet Beta-1 (MMB-1) trap. Both the PP and MMB-1 captured slightly more Culex spp. than the CFG trap.

  6. Increasing capture efficiency of pallid sturgeon Scaphirhynchus albus (Forbes and Richardson, 1905) and the reliability of catch rate estimates

    USGS Publications Warehouse

    DeVries, R. J.; Hann, D. A.; Schramm, H.L.

    2015-01-01

    This study evaluated the effects of environmental parameters on the probability of capturing endangered pallid sturgeon (Scaphirhynchus albus) using trotlines in the lower Mississippi River. Pallid sturgeon were sampled by trotlines year round from 2008 to 2011. A logistic regression model indicated water temperature (T; P < 0.01) and depth (D; P = 0.03) had significant effects on capture probability (Y = −1.75 − 0.06T + 0.10D). Habitat type, surface current velocity, river stage, stage change and non-sturgeon bycatch were not significant predictors (P = 0.26–0.63). Although pallid sturgeon were caught throughout the year, the model predicted that sampling should focus on times when the water temperature is less than 12°C and in deeper water to maximize capture probability; these water temperature conditions commonly occur during November to March in the lower Mississippi River. Further, the significant effect of water temperature which varies widely over time, as well as water depth indicate that any efforts to use the catch rate to infer population trends will require the consideration of temperature and depth in standardized sampling efforts or adjustment of estimates.

  7. Tethered catalysts for the hydration of carbon dioxide

    DOEpatents

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  8. Promoting Ethylene Selectivity from CO2 Electroreduction on CuO Supported onto CO2 Capture Materials.

    PubMed

    Yang, Hui-Juan; Yang, Hong; Hong, Yu-Hao; Zhang, Peng-Yang; Wang, Tao; Chen, Li-Na; Zhang, Feng-Yang; Wu, Qi-Hui; Tian, Na; Zhou, Zhi-You; Sun, Shi-Gang

    2018-03-09

    Cu is a unique catalyst for CO 2 electroreduction, since it can catalyze CO 2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO 2 is considered to facilitate the activity and selectivity of CO 2 reduction. Herein, a new strategy is presented for CO 2 reduction with improved C 2 H 4 selectivity on a Cu catalyst by using CO 2 capture materials as the support at ambient pressure. N-doped carbon (N x C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO 2 uptake capacity of N x C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/N x C catalysts exhibit a considerably higher C 2 H 4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C 2 H 4 faradaic efficiency and CO 2 uptake capacity of the supports for CuO. The local high CO 2 concentration near Cu catalysts, created by CO 2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C 2 H 4 . This study demonstrates that pairing Cu catalysts with CO 2 capture supports is a promising approach for designing highly effective CO 2 reduction electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells.

    PubMed

    Yu, Ling; Ng, Shu Rui; Xu, Yang; Dong, Hua; Wang, Ying Jun; Li, Chang Ming

    2013-08-21

    Circulating tumour cells (CTCs) are shed by primary tumours and are found in the peripheral blood of patients with metastatic cancers. Recent studies have shown that the number of CTCs corresponds with disease severity and prognosis. Therefore, detection and further functional analysis of CTCs are important for biomedical science, early diagnosis of cancer metastasis and tracking treatment efficacy in cancer patients, especially in point-of-care applications. Over the last few years, there has been an increasing shift towards not only capturing and detecting these rare cells, but also ensuring their viability for post-processing, such as cell culture and genetic analysis. High throughput lab-on-a-chip (LOC) has been fuelled up to process and analyse heterogeneous real patient samples while gaining profound insights for cancer biology. In this review, we highlight how miniaturisation strategies together with nanotechnologies have been used to advance LOC for capturing, separating, enriching and detecting different CTCs efficiently, while meeting the challenges of cell viability, high throughput multiplex or single-cell detection and post-processing. We begin this survey with an introduction to CTC biology, followed by description of the use of various materials, microstructures and nanostructures for design of LOC to achieve miniaturisation, as well as how various CTC capture or separation strategies can enhance cell capture and enrichment efficiencies, purity and viability. The significant progress of various nanotechnologies-based detection techniques to achieve high sensitivities and low detection limits for viable CTCs and/or to enable CTC post-processing are presented and the fundamental insights are also discussed. Finally, the challenges and perspectives of the technologies are enumerated.

  10. Inference of Population Structure using Dense Haplotype Data

    PubMed Central

    Lawson, Daniel John; Hellenthal, Garrett

    2012-01-01

    The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail, but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results of this “chromosome painting” can be summarized as a “coancestry matrix,” which directly reveals key information about ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost completely captures the information used by both standard Principal Components Analysis (PCA) and model-based approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix combines information across successive markers to increase the ability to discern fine-scale population structure using PCA. In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for 938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local, and family scales. We present multiple lines of evidence that, while many methods capture similar information among strongly differentiated groups, more subtle population structure in human populations is consistently present at a much finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/. PMID:22291602

  11. Louisiana SIP: LAC 33:III Ch 61 Subchap A, §6121 to § 6131--Method 43 - Capture Efficiency Test Procedures; SIP effective 1994-06-06 (LAc60) to to 2011-08-03 (LAd34 - Moved to Chap 21 Subchap N §§ 2155-2160 and revised)

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 61 Subchap A, §6121 to § 6131--Method 43 - Capture Efficiency Test Procedures; SIP effective 1994-06-06 (LAc60) to to 2011-08-03 (LAd34 - Moved to Chap 21 Subchap N §§ 2155-2160 and revised)

  12. Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture.

    PubMed

    Yang, Shubin; Zhan, Liang; Xu, Xiaoyue; Wang, Yanli; Ling, Licheng; Feng, Xinliang

    2013-04-18

    It is demonstrated that graphene-based porous silica sheets can serve as an efficient carrier support for PEI via a simple nanocasting technology. The resulting materials possess thin nature, high PEI loading content and high thermal-conductivity. Such features are favorable for the efficient diffusion and adsorption of CO2 as well as the rapid thermal transfer during the CO2 capture process. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Efficient and anonymous two-factor user authentication in wireless sensor networks: achieving user anonymity with lightweight sensor computation.

    PubMed

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks).

  14. Efficient and Anonymous Two-Factor User Authentication in Wireless Sensor Networks: Achieving User Anonymity with Lightweight Sensor Computation

    PubMed Central

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks). PMID:25849359

  15. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Kumfer, Benjamin; Gopan, Akshay

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702)more » include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.« less

  16. Development of Novel Carbon Sorbents for CO{sub 2} Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Gopala; Hornbostel, Marc; Bao, Jianer

    2013-11-30

    An innovative, low-cost, and low-energy-consuming carbon dioxide (CO{sub 2}) capture technology was developed, based on CO{sub 2}adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO{sub 2} -lean flue gas stream from which >more » 90% of the CP{sub 2} is removed and a pure stream of CO{sub 2} that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO{sub 2} capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO{sub 2} from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO{sub 2} is stripped by heating the CO{sub 2}-loaded sorbent to - 100°C, in contact with low-pressure (- 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO{sub 2} from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide > 90% CO{sub 2} capture from a 15% CO{sub 2} stream in the adsorber and produce > 98% CO{sub 2} at the outlet of the stripper. Long-term tests ( 1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal-fired boil at the University of Toledo campus for about 135 h, comprising 7,000 cycles of adsorption and desorption using the desulfurized flue gas that contained only 4.5% v/v CO{sub 2}. A capture efficiency of 85 to 95% CO{sub 2} was achieved under steady-state conditi ons. The CO{sub 2} adsorption capacity did not change significantly during the field test, as determined from the CO{sub 2} adsorptio isotherms of fresh and used sorbents. The process is also being tested using the flue gas from a PC-fired power plant at the National Carbon Capture Center (NCCC), Wilsonville, AL. The cost of electricity was calculated for CO{sub 2} capture using the carbon sorbent and compared with the no-CO{sub 2} capture and CO{sub 2} capture with an amine-based system. The increase i the levelized cost of electricity (L-COE) is about 37% for CO{sub 2} capture using the carbon sorbent in comparison to 80% for an amine-based system, demonstrating the economic advantage of C capture using the carbon sorbent. The 37% increase in the L-COE corresponds to a cost of capture of $30/ton of CO{sub 2}, including compression costs, capital cost for the capture system, and increased plant operating and capital costs to make up for reduced plant efficiency. Preliminary sensitivity analyses showed capital costs, pressure drops in the adsorber, and steam requirement for the regenerator are the major variables in determining the cost of CO{sub 2} capture. The results indicate that further long-term testing with a flue gas from a pulverized coal­ fired boiler should be performed to obtain additional data relating to the effects of flue gas contaminants, the ability to reduce pressure drop by using alternate structural packing , and the use of low-cost construction materials.« less

  17. Static and Alternating Field Magnetic Capture and Heating of Iron Oxide Nanoparticles in Simulated Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lee, Joanne Haeun; Shah, Rhythm R.; Brazel, Christopher S.

    2014-11-01

    Targeted drug delivery and localized hyperthermia are being studied as alternatives to conventional cancer treatments, which can affect the whole body and indiscriminately kill healthy cells. Magnetic nanoparticles (MNPs) have potential as drug carriers that can be captured and trigger hyperthermia at the site of the tumor by applying an external magnetic field. This study focuses on comparing the capture efficiency of the magnetic field applied by a static magnet to an alternating current coil. The effect of particle size, degree of dispersion, and the frequency of the AC field on capture and heating were studied using 3 different dispersions: 16 nm maghemite in water, 50 nm maghemite in dopamine, and 20--30 nm magnetite in dimercaptosuccinic acid. A 480G static field captured more MNPs than a similar 480G AC field at either 194 or 428 kHz; however, the AC field also allowed heating. The MNPs in water had a lower capture and heating efficiency than the larger, dopamine-coated MNPs. This finding was supported by dynamic light scattering data showing the particle size distribution and vibrating sample magnetometry data showing that the larger MNPs in the dopamine solution have a higher field of coercivity, exhibit ferrimagnetism and allow for better capture while smaller (16 nm) MNPs exhibit superparamagnetism. The dispersions that captured the best also heated the best. NSF ECE Grant #1358991 supported the first author as an REU student.

  18. Gear and survey efficiency of patent tongs for oyster populations on restoration reefs.

    PubMed

    Schulte, David M; Lipcius, Romuald N; Burke, Russell P

    2018-01-01

    Surveys of restored oyster reefs need to produce accurate population estimates to assess the efficacy of restoration. Due to the complex structure of subtidal oyster reefs, one effective and efficient means to sample is by patent tongs, rather than SCUBA, dredges, or bottom cores. Restored reefs vary in relief and oyster density, either of which could affect survey efficiency. This study is the first to evaluate gear (the first full grab) and survey (which includes selecting a specific half portion of the first grab for further processing) efficiencies of hand-operated patent tongs as a function of reef height and oyster density on subtidal restoration reefs. In the Great Wicomico River, a tributary of lower Chesapeake Bay, restored reefs of high- and low-relief (25-45 cm, and 8-12 cm, respectively) were constructed throughout the river as the first large-scale oyster sanctuary reef restoration effort (sanctuary acreage > 20 ha at one site) in Chesapeake Bay. We designed a metal frame to guide a non-hydraulic mechanical patent tong repeatedly into the same plot on a restored reef until all oysters within the grab area were captured. Full capture was verified by an underwater remotely-operated vehicle. Samples (n = 19) were taken on nine different reefs, including five low- (n = 8) and four high-relief reefs (n = 11), over a two-year period. The gear efficiency of the patent tong was estimated to be 76% (± 5% standard error), whereas survey efficiency increased to 81% (± 10%) due to processing. Neither efficiency differed significantly between young-of-the-year oysters (spat) and adults, high- and low-relief reefs, or years. As this type of patent tong is a common and cost-effective tool to evaluate oyster restoration projects as well as population density on fished habitat, knowing the gear and survey efficiencies allows for accurate and precise population estimates.

  19. The design and development of a spacecraft appendage tie down mechanism

    NASA Technical Reports Server (NTRS)

    Nygren, W. D.; Head, R.

    1985-01-01

    The design and evolution is described of a spacecraft Appendage Tie Down Mechanism (ATDM). Particular emphasis is paid to the mechanical aspects of using dry lubricants to increase the efficiency of acme threads and worm gearing. The ATDM consists of five major components. These are a dc torque motor, a worm gear speed reducer, the tension bolt (or T-bolt), nut capture and centering jaws and the capture nut. In addition, there are several minor components such as limit switch assemblies and an antibackdrive mechanism which couples the drive motor to the worm shaft. A development model of the ATDM in various configurations was under test for some time. In its latest version, it has successfully completed thermal vacuum testing, vibration testing, and extended life testing.

  20. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 1: Performance of pebble bed gasifier for coal and wastes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro

    1998-07-01

    A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less

  1. A versatile technique for capturing urban gulls during winter

    USGS Publications Warehouse

    Clark, Daniel E.; Koenen, Kiana K. G.; MacKenzie, Kenneth G.; Pereira, Jillian W.; DeStefano, Stephen

    2014-01-01

    The capture of birds is a common part of many avian studies but often requires large investments of time and resources. We developed a novel technique for capturing gulls during the non-breeding season using a net launcher that was effective and efficient. The technique can be used in a variety of habitats and situations, including urban areas. Using this technique, we captured 1,326 gulls in 125 capture events from 2008 to 2012 in Massachusetts, USA. On average, 10 ring-billed gulls (Larus delawarensis; range = 1–37) were captured per trapping event. Capture rate (the number of birds captured per trapping event) was influenced by the type of bait used and also the time of the year (greatest in autumn, lowest in winter). Our capture technique could be adapted to catch a variety of urban or suburban birds and mammals that are attracted to bait.

  2. The catalytic effect of H2O on the hydrolysis of CO32- in hydrated clusters and its implication in the humidity driven CO2 air capture.

    PubMed

    Xiao, Hang; Shi, Xiaoyang; Zhang, Yayun; Liao, Xiangbiao; Hao, Feng; Lackner, Klaus S; Chen, Xi

    2017-10-18

    The hydration of ions in nanoscale hydrated clusters is ubiquitous and essential in many physical and chemical processes. Here we show that the hydrolysis reaction is strongly affected by relative humidity. The hydrolysis of CO 3 2- with n = 1-8 water molecules is investigated using an ab initio method. For n = 1-5 water molecules, all the reactants follow a stepwise pathway to the transition state. For n = 6-8 water molecules, all the reactants undergo a direct proton transfer to the transition state with overall lower activation free energy. The activation free energy of the reaction is dramatically reduced from 10.4 to 2.4 kcal mol -1 as the number of water molecules increases from 1 to 6. Meanwhile, the degree of hydrolysis of CO 3 2- is significantly increased compared to the bulk water solution scenario. Incomplete hydration shells facilitate the hydrolysis of CO 3 2- with few water molecules to be not only thermodynamically favorable but also kinetically favorable. We showed that the chemical kinetics is not likely to constrain the speed of CO 2 air capture driven by the humidity-swing. Instead, the pore-diffusion of ions is expected to be the time-limiting step in the humidity driven CO 2 air capture. The effect of humidity on the speed of CO 2 air capture was studied by conducting a CO 2 absorption experiment using IER with a high ratio of CO 3 2- to H 2 O molecules. Our result is able to provide valuable insights into designing efficient CO 2 air-capture sorbents.

  3. Thermodynamic Modeling and Dispatch of Distributed Energy Technologies including Fuel Cell -- Gas Turbine Hybrids

    NASA Astrophysics Data System (ADS)

    McLarty, Dustin Fogle

    Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch heuristics are discussed using a case study of the UCI central plant. Thermal energy storage introduces a time horizon into the dispatch optimization which requires novel solution strategies. Highly efficient and responsive generators are required to meet the increasingly dynamic loads of today's efficient buildings and intermittent local renewable wind and solar power. Fuel cell gas turbine hybrids will play an integral role in the complex and ever-changing solution to local electricity production.

  4. Turbulence convective heat transfer for cooling the photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Arianmehr, Iman

    Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.

  5. Particulate capture efficiency of a vegetative environmental buffer surrounding an animal feeding operation

    USDA-ARS?s Scientific Manuscript database

    Particulate matter emitted from tunnel-ventilated animal feeding operations (AFOs) is known to transport malodorous compounds. As a mitigation strategy, vegetative environmental buffers (VEBs) are often installed surrounding AFOs to capture particulates and induce lofting and dispersion. Currently, ...

  6. Porous carbon material containing CaO for acidic gas capture: preparation and properties.

    PubMed

    Przepiórski, Jacek; Czyżewski, Adam; Pietrzak, Robert; Toyoda, Masahiro; Morawski, Antoni W

    2013-12-15

    A one-step process for the preparation of CaO-containing porous carbons is described. Mixtures of poly(ethylene terephthalate) with natural limestone were pyrolyzed and thus hybrid sorbents could be easily obtained. The polymeric material and the mineral served as a carbon precursor and CaO delivering agent, respectively. We discuss effects of the preparation conditions and the relative amounts of the raw materials used for the preparations on the porosity of the hybrid products. The micropore areas and volumes of the obtained products tended to decrease with increasing CaO contents. Increase in the preparation temperature entailed a decrease in the micropore volume, whereas the mesopore volume increased. The pore creation mechanism is proposed on the basis of thermogravimetric and temperature-programmed desorption measurements. The prepared CaO-containing porous carbons efficiently captured SO2 and CO2 from air. Washing out of CaO from the hybrid materials was confirmed as a suitable method to obtain highly porous carbon materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Roommore » AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.« less

  8. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubimov, Artem Y.; Stanford University, Stanford, CA 94305; Stanford University, Stanford, CA 94305

    A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressablemore » points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  9. A Comparative Study of the CO2 Absorption in Some Solvent-Free Alkanolamines and in Aqueous Monoethanolamine (MEA).

    PubMed

    Barzagli, Francesco; Mani, Fabrizio; Peruzzini, Maurizio

    2016-07-05

    The neat secondary amines 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(isopropylamino)ethanol, 2-(benzylamino)ethanol and 2-(butylamino)ethanol react with CO2 at 50-60 °C and room pressure yielding liquid carbonated species without their dilution with any additional solvent. These single-component absorbents have the theoretical CO2 capture capacity of 0.50 (mol CO2/mol amine) due to the formation of the corresponding amine carbamates and protonated amines that were identified by the (13)C NMR analysis. These single-component absorbents were used for CO2 capture (15% and 40% v/v in air) in two series of different procedures: (1) batch experiments aimed at investigating the efficiency and the rate of CO2 capture; (2) continuous cycles of absorption-desorption carried out in packed columns with absorption temperatures brought at 50-60 °C and desorption temperatures at 100-120 °C at room pressure. A number of different amines and experimental setups gave CO2 capture efficiency greater than 90%. For comparison purposes, 30 wt % aqueous MEA was used for CO2 capture under the same operational conditions described for the solvent-free amines. The potential advantages of solvent-free alkanolamines over aqueous MEA in the CO2 capture process were discussed.

  10. 40 CFR Table Jj-6 to Subpart Jj of... - Collection Efficiencies of Anaerobic Digesters

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Collection Efficiencies of Anaerobic..., Table JJ-6 Table JJ-6 to Subpart JJ of Part 98—Collection Efficiencies of Anaerobic Digesters Anaerobic digester type Cover type Methane collection efficiency Covered anaerobic lagoon (biogas capture) Bank to...

  11. Improving the delivery and efficiency of fungus-impregnated cloths for control of adult Aedes aegypti using a synthetic attractive lure.

    PubMed

    Paula, Adriano R; Silva, Leila E I; Ribeiro, Anderson; Butt, Tariq M; Silva, Carlos P; Samuels, Richard I

    2018-05-04

    Entomopathogenic fungi are highly promising agents for controlling Aedes aegypti mosquitoes. Deploying fungus-impregnated black cloths in PET traps efficiently reduced Ae. aegypti female survival rates under intra-domicile conditions. With the aim of further increasing the effectiveness of the traps, the addition of attractive lures to fungus-impregnated traps was evaluated. Black cloths were suspended inside 2 l plastic bottles called "PET traps". These traps were placed in rooms simulating human residences. The first experiments evaluated the attraction of mosquitoes to PET traps with black cloths covered in adhesive film with and without synthetic lures (AtrAedes™). Traps were left in the test rooms for either 24 or 48 h. The attractiveness of the lures over time was also evaluated. The efficiency of PET traps with fungus-impregnated black cloths associated with lures was compared to that of traps without lures. The highest percentage of captured mosquitoes (31 and 66%) were observed in PET traps with black cloths covered in adhesive film + attractive lure maintained in test rooms for 24 h and 48 h, respectively. Black cloths covered in adhesive film captured 17 or 36% of the mosquitoes at 24 h and 48 h, respectively. The attractiveness of the lures fell gradually over time, capturing 37% after 5 days on the bench and 22% of the mosquitoes after 30 days exposure to ambient conditions. Associating attractive synthetic lures with black cloths impregnated with M. anisopliae placed in test rooms for 120 h reduced mean survival to 32%, whilst black cloths impregnated with M. anisopliae without lures resulted in a 48% survival rate. Using Beauveria bassiana in the traps resulted in a 52% reduction in mosquito survival, whilst combining Beauveria and AtrAedes resulted in a 36% survival rate. PET traps impregnated with fungus + AtrAedes resulted in similar reductions in survival when left in the rooms for 24, 48, 72 or 120 h. AtrAedes increased attractiveness of PET traps with black cloths under intra-domicile conditions and when associated with M. anisopliae or B. bassiana, significantly reduced Aedes survival. This strategy will reduce the number of PET traps necessary per household.

  12. Information technology in the foxhole.

    PubMed

    Eyestone, S M

    1995-08-01

    The importance of digital data capture at the point of health care service within the military environment is highlighted. Current paper-based data capture does not allow for efficient data reuse throughout the medical support information domain. A simple, high-level process and data flow model is used to demonstrate the importance of data capture at point of service. The Department of Defense is developing a personal digital assistant, called MEDTAG, that accomplishes point of service data capture in the field using a prototype smart card as a data store in austere environments.

  13. The cost of meeting increased cooling-water demands for CO2 capture and storage utilizing non-traditional waters from geologic saline formations

    NASA Astrophysics Data System (ADS)

    Klise, Geoffrey T.; Roach, Jesse D.; Kobos, Peter H.; Heath, Jason E.; Gutierrez, Karen A.

    2013-05-01

    Deep (> ˜800 m) saline water-bearing formations in the United States have substantial pore volume that is targeted for storage of carbon dioxide (CO2) and the associated saline water can be extracted to increase CO2 storage efficiency, manage pressure build up, and create a new water source that, once treated, can be used for power-plant cooling or other purposes. Extraction, treatment and disposal costs of saline formation water to meet added water demands from CO2 capture and storage (CCS) are discussed. This underutilized water source may be important in meeting new water demand associated with CCS. For a representative natural gas combined-cycle (NGCC) power plant, simultaneous extraction of brine from the storage formation could provide enough water to meet all CCS-related cooling demands for 177 out of the 185 (96 %) saline formations analyzed in this study. Calculated total cost of water extraction, treatment and disposal is less than 4.00 US Dollars (USD) m-3 for 93 % of the 185 formations considered. In 90 % of 185 formations, treated water costs are less than 10.00 USD tonne-1 of CO2 injected. On average, this represents approximately 6 % of the total CO2 capture and injection costs for the NGCC scenario.

  14. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform

    USGS Publications Warehouse

    Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.

    2008-01-01

    In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.

  15. Optimization of Pressurized Oxy-Combustion with Flameless Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malavasi, Massimo; Landegger, Gregory

    2014-06-30

    Pressurized OxyECombustion is one of the most promising technologies for utility-scale power generation plants. Benefits include the ability to burn low rank coal and capture CO 2. By increasing the flue gas pressure during this process, greater efficiencies are derived from increased quantity and quality of thermal energy recovery. UPA with modeling support from MIT and testing and data verification by Georgia Tech’s Research Center designed and built a 100 kW system capable of demonstrating pressurized oxyEcombustion using a flameless combustor. Wyoming PRB coal was run at 15 and 32 bar. Additional tests were not completed but sampled data demonstratedmore » the viability of the technology over a broader range of operating pressures, Modeling results illustrated a flat efficiency curve over 20 bar, with optimum efficiency achieved at 29 bar. This resulted in a 33% (HHV) efficiency, a 5 points increase in efficiency versus atmospheric oxy-combustion, and a competitive cost of electricity plus greater CO 2 avoidance costs then prior study’s presented. UPA’s operation of the bench-scale system provided evidence that key performance targets were achieved: flue gas sampled at the combustor outlet had non-detectable residual fly ashes, and low levels of SO3 and heavy-metal. These results correspond to prior pressurized oxy-combustion testing completed by IteaEEnel.« less

  16. Capture, Release and Culture of Circulating Tumor Cells from Pancreatic Cancer Patients using an Enhanced Mixing Chip

    PubMed Central

    Sheng, Weian; Ogunwobi, Olorunseun O.; Chen, Tao; Zhang, Jinling; George, Thomas J.; Liu, Chen; Fan, Z. Hugh

    2013-01-01

    Circulating tumor cells (CTCs) from peripheral blood hold important information for cancer diagnosis and disease monitoring. Analysis of this “liquid biopsy” holds the promise to usher in a new era of personalized therapeutic treatments and real-time monitoring for cancer patients. But the extreme rarity of CTCs in blood makes their isolation and characterization technologically challenging. This paper reports the development of a geometrically enhanced mixing (GEM) chip for high-efficiency and high-purity tumor cell capture. We also successfully demonstrated the release and culture of the captured tumor cells, as well as the isolation of CTCs from cancer patients. The high-performance microchip is based on geometrically optimized micromixer structures, which enhance the transverse flow and flow folding, maximizing the interaction between CTCs and antibody-coated surfaces. With the optimized channel geometry and flow rate, the capture efficiency reached >90% with a purity of >84% when capturing spiked tumor cells in buffer. The system was further validated by isolating a wide range of spiked tumor cells (50–50,000) in 1 mL of lysed blood and whole blood. With the combination of trypsinization and high flow rate washing, captured tumor cells were efficiently released. The released cells were viable and able to proliferate, and showed no difference compared with intact cells that were not subjected to the capture and release process. Furthermore, we applied the device for detecting CTCs from metastatic pancreatic cancer patients’ blood; and CTCs were found from 17 out of 18 samples (>94%). We also tested the potential utility of the device in monitoring the response to anti-cancer drug treatment in pancreatic cancer patients, and the CTC numbers correlated with the clinical computed tomograms (CT scans) of tumors. The presented technology shows great promise for accurate CTC enumeration, biological studies of CTCs and cancer metastasis, as well as for cancer diagnosis and treatment monitoring. PMID:24220648

  17. The influence of hook type, angler experience, and fish size on injury rates and the duration of capture in an Alaskan catch-and-release rainbow trout fishery

    USGS Publications Warehouse

    Meka, Julie M.

    2004-01-01

    Owing to concerns about the high incidence of past hooking injuries in Alagnak River rainbow trout Oncorhynchus mykiss, fish were captured with spin- and fly-fishing gear with barbed and barbless circle and "J" hooks to determine gear types contributing to injury. Landing and hook removal times were measured for a portion of fish captured, and the anatomical hooking location, hooking scar locations, bleeding intensity, angler experience, and fish size were recorded for all captured fish. Approximately 62% of fish captured experienced at least one new hooking injury, and 29% of fish had at least one past hooking injury. Small fish sustained higher new injury and bleeding rates, but large fish had higher past injury rates. Injury rates were higher for barbed J hooks, barbed J hooks took longer to remove, and fish caught by spin-fishing were injured more frequently than fish caught by fly-fishing. Fewer fly-fishing-caught fish were injured using circle hooks, and circle hooks tended to hook fish in only one location, generally in the jaw. Barbed J hooks were more efficient at landing fish, and J hooks were more efficient at landing fish than circle hooks. Novice anglers injured proportionally more fish than experienced anglers, primarily during hook removal. Landing time was positively correlated with fish size, and experienced anglers took longer to land fish than novices because they captured larger fish. These results suggest that a reduction in hooking injuries may be achieved by using circle hooks as an alternative to J hooks and barbless J hooks to reduce injury and handling time, yet catch efficiency for both methods would be reduced. Although fish captured with barbless J hooks and circle hooks had fewer injuries, it is important to note that each hook type also caused significant injury, and angler education is recommended to promote proper hook removal techniques.

  18. Analysis of Phase-Type Stochastic Petri Nets With Discrete and Continuous Timing

    NASA Technical Reports Server (NTRS)

    Jones, Robert L.; Goode, Plesent W. (Technical Monitor)

    2000-01-01

    The Petri net formalism is useful in studying many discrete-state, discrete-event systems exhibiting concurrency, synchronization, and other complex behavior. As a bipartite graph, the net can conveniently capture salient aspects of the system. As a mathematical tool, the net can specify an analyzable state space. Indeed, one can reason about certain qualitative properties (from state occupancies) and how they arise (the sequence of events leading there). By introducing deterministic or random delays, the model is forced to sojourn in states some amount of time, giving rise to an underlying stochastic process, one that can be specified in a compact way and capable of providing quantitative, probabilistic measures. We formalize a new non-Markovian extension to the Petri net that captures both discrete and continuous timing in the same model. The approach affords efficient, stationary analysis in most cases and efficient transient analysis under certain restrictions. Moreover, this new formalism has the added benefit in modeling fidelity stemming from the simultaneous capture of discrete- and continuous-time events (as opposed to capturing only one and approximating the other). We show how the underlying stochastic process, which is non-Markovian, can be resolved into simpler Markovian problems that enjoy efficient solutions. Solution algorithms are provided that can be easily programmed.

  19. Clearing muddied waters: Capture of environmental DNA from turbid waters.

    PubMed

    Williams, Kelly E; Huyvaert, Kathryn P; Piaggio, Antoinette J

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest.

  20. Clearing muddied waters: Capture of environmental DNA from turbid waters

    PubMed Central

    Huyvaert, Kathryn P.; Piaggio, Antoinette J.

    2017-01-01

    Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA) is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest. PMID:28686659

  1. A microfluidic device for label-free, physical capture of circulating tumor cell-clusters

    PubMed Central

    Sarioglu, A. Fatih; Aceto, Nicola; Kojic, Nikola; Donaldson, Maria C.; Zeinali, Mahnaz; Hamza, Bashar; Engstrom, Amanda; Zhu, Huili; Sundaresan, Tilak K.; Miyamoto, David T.; Luo, Xi; Bardia, Aditya; Wittner, Ben S.; Ramaswamy, Sridhar; Shioda, Toshi; Ting, David T.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Haber, Daniel A.; Toner, Mehmet

    2015-01-01

    Cancer cells metastasize through the bloodstream either as single migratory circulating tumor cells (CTCs) or as multicellular groupings (CTC-clusters). Existing technologies for CTC enrichment are designed primarily to isolate single CTCs, and while CTC-clusters are detectable in some cases, their true prevalence and significance remain to be determined. Here, we developed a microchip technology (Cluster-Chip) specifically designed to capture CTC-clusters independent of tumor-specific markers from unprocessed blood. CTC-clusters are isolated through specialized bifurcating traps under low shear-stress conditions that preserve their integrity and even two-cell clusters are captured efficiently. Using the Cluster-Chip, we identify CTC-clusters in 30–40% of patients with metastatic cancers of the breast, prostate and melanoma. RNA sequencing of CTC-clusters confirms their tumor origin and identifies leukocytes within the clusters as tissue-derived macrophages. Together, the development of a device for efficient capture of CTC-clusters will enable detailed characterization of their biological properties and role in cancer metastasis. PMID:25984697

  2. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Wang, Shujuan; Xu, Xuchang

    2006-12-15

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of SO2 and trace selenium dioxide (SeO2) from flue gas by calcium oxide (CaO) adsorption in the moderate temperature range, especially the effect of SO2 presence on selenium capture. Experiments performed on a thermogravimetric analyzer (TGA) can reach the following conclusions. When the CaO conversion is relatively low and the reaction rate is controlled by chemical kinetics, the SO2 presence does not affect the selenium capture. When the CaO conversion is very high and the reaction rate is controlled by product layer diffusion, the SO2 presence and the product layer diffusion resistance jointly reduce the selenium capture. On the basis of the kinetics study, a method to estimate the trace selenium removal efficiency using kinetic parameters and the sulfur removal efficiency is developed.

  3. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Yan, Feng; Li, Kaimin; Chen, Xuejing

    2015-06-16

    Capturing anthropogenic CO2 in a cost-effective and highly efficient manner is one of the most challenging issues faced by scientists today. Herein, we report a novel structure-reforming approach to convert steel slag, a cheap, abundant, and nontoxic calcium-rich industrial waste, as the only feedstock into superior CaO-based, self-stabilizing CO2 sorbents. The CO2 capture capacity of all the steel slag-derived sorbents was improved more than 10-fold compared to the raw slag, with the maximum uptake of CO2 achieving at 0.50 gCO2 gsorbent(-1). Additionally, the initial steel slag-derived sorbent could retain 0.25 gCO2 gsorbent(-1), that is, a decay rate of only 12% over 30 carbonation-calcination cycles, the excellent self-stabilizing property allowed it to significantly outperform conventional CaO, and match with most of the existing synthetic CaO-based sorbents. A synergistic effect that facilitated CO2 capture by CaO-based sorbents was clearly recognized when Mg and Al, the most common elements in steel slag, coexisted with CaO in the forms of MgO and Al2O3, respectively. During the calcium looping process, MgO served as a well spacer to increase the porosity of sorbents together with Al2O3 serving as a durable stabilizer to coresist the sintering of CaCO3 grains at high temperatures.

  4. Potentiel des méthodes de séparation et stockage du CO2 dans la lutte contre l'effet de serreThe role of CO2 capture and sequestration in mitigation of climate change

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, Philippe; Ducroux, René

    2003-06-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2. Technical solutions exist to reduce CO 2 emission and stabilise atmospheric CO 2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO 2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO 2 (forests, soils, etc.), and last but not least, sequester CO 2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO 2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO 2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).

  5. High-efficiency power production from natural gas with carbon capture

    NASA Astrophysics Data System (ADS)

    Adams, Thomas A.; Barton, Paul I.

    A unique electricity generation process uses natural gas and solid oxide fuel cells at high electrical efficiency (74%HHV) and zero atmospheric emissions. The process contains a steam reformer heat-integrated with the fuel cells to provide the heat necessary for reforming. The fuel cells are powered with H 2 and avoid carbon deposition issues. 100% CO 2 capture is achieved downstream of the fuel cells with very little energy penalty using a multi-stage flash cascade process, where high-purity water is produced as a side product. Alternative reforming techniques such as CO 2 reforming, autothermal reforming, and partial oxidation are considered. The capital and energy costs of the proposed process are considered to determine the levelized cost of electricity, which is low when compared to other similar carbon capture-enabled processes.

  6. Review of Membrane Oxygen Enrichment for Efficient Combustion

    NASA Astrophysics Data System (ADS)

    Ariono, Danu; Kusuma Wardani, Anita

    2017-07-01

    Oxygen enrichment from air is a simple way of increasing the efficiency of combustion process, as in oxy-combustion. Oxy-combustion has become one of the most attracting combustion technologies because of its potential to address both pollutant reduction and CO2 capture. In oxy-combustion, the fuel and recycled flue gas are combusted with oxygen enriched air (OEA). By using OEA, many benefits can be obtained, such as increasing available heat, improving ignition characteristics, flue gas reduction, increasing productivity, energy efficiency, turndown ratio, and flame stability. Membrane-based gas separation for OEA production becomes an attractive technology over the conventional technology due to the some advantages, including low capital cost, low energy consumption, compact size, and modularity. A single pass through membrane usually can enrich O2 concentration in the air up to 35% and a 50% concentration can be achieved with a double pass of membrane. The use of OEA in the combustion process eliminates the presence of nitrogen in the flue gas. Hence, the flue gas is mainly composed of CO2 and condensable water that can be easily separated. This paper gives an overview of oxy-combustion with membrane technology for oxygen enrichment process. Special attention is given to OEA production and the effect of OEA to the efficiency of combustion.

  7. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.

    PubMed

    Strand, Stuart E; Benford, Gregory

    2009-02-15

    For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean.

  8. Efficient mutation identification in zebrafish by microarray capturing and next generation sequencing.

    PubMed

    Bontems, Franck; Baerlocher, Loic; Mehenni, Sabrina; Bahechar, Ilham; Farinelli, Laurent; Dosch, Roland

    2011-02-18

    Fish models like medaka, stickleback or zebrafish provide a valuable resource to study vertebrate genes. However, finding genetic variants e.g. mutations in the genome is still arduous. Here we used a combination of microarray capturing and next generation sequencing to identify the affected gene in the mozartkugelp11cv (mzlp11cv) mutant zebrafish. We discovered a 31-bp deletion in macf1 demonstrating the potential of this technique to efficiently isolate mutations in a vertebrate genome. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. A New Method for Computing Three-Dimensional Capture Fraction in Heterogeneous Regional Systems using the MODFLOW Adjoint Code

    NASA Astrophysics Data System (ADS)

    Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.

    2011-12-01

    Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model at 704,000 grid blocks (140,800 grid blocks x 5 layers) in just 6 minutes. The capture fraction maps from the perturbation and adjoint methods agree closely. The results of this study indicate that the adjoint capture method and its associated computational efficiency will enable scientists and engineers facing water resource management decisions to evaluate the sensitivity and uncertainty of impacts to regional water resource systems as part of groundwater supply strategies. Bredehoeft, J.D., S.S. Papadopulos, and H.H. Cooper Jr, Groundwater: The water budget myth. In Scientific Basis of Water-Resources Management, ed. National Research Council (U.S.), Geophysical Study Committee, 51-57. Washington D.C.: National Academy Press, 1982. Clemo, Tom, MODFLOW-2005 Ground-Water Model-Users Guide to Adjoint State based Sensitivity Process (ADJ), BSU CGISS 07-01, Center for the Geophysical Investigation of the Shallow Subsurface, Boise State University, 2007. Leake, S.A., H.W. Reeves, and J.E. Dickinson, A New Capture Fraction Method to Map How Pumpage Affects Surface Water Flow, Ground Water, 48(5), 670-700, 2010.

  10. Effective motion planning strategy for space robot capturing targets under consideration of the berth position

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Jinguo

    2018-07-01

    Although many motion planning strategies for missions involving space robots capturing floating targets can be found in the literature, relatively little has discussed how to select the berth position where the spacecraft base hovers. In fact, the berth position is a flexible and controllable factor, and selecting a suitable berth position has a great impact on improving the efficiency of motion planning in the capture mission. Therefore, to make full use of the manoeuvrability of the space robot, this paper proposes a new viewpoint that utilizes the base berth position as an optimizable parameter to formulate a more comprehensive and effective motion planning strategy. Considering the dynamic coupling, the dynamic singularities, and the physical limitations of space robots, a unified motion planning framework based on the forward kinematics and parameter optimization technique is developed to convert the planning problem into the parameter optimization problem. For getting rid of the strict grasping position constraints in the capture mission, a new conception of grasping area is proposed to greatly simplify the difficulty of the motion planning. Furthermore, by utilizing the penalty function method, a new concise objective function is constructed. Here, the intelligent algorithm, Particle Swarm Optimization (PSO), is worked as solver to determine the free parameters. Two capturing cases, i.e., capturing a two-dimensional (2D) planar target and capturing a three-dimensional (3D) spatial target, are studied under this framework. The corresponding simulation results demonstrate that the proposed method is more efficient and effective for planning the capture missions.

  11. Tuning anion-functionalized ionic liquids for improved SO2 capture.

    PubMed

    Cui, Guokai; Zheng, Junjie; Luo, Xiaoyan; Lin, Wenjun; Ding, Fang; Li, Haoran; Wang, Congmin

    2013-09-27

    You can have your cake and eat it too: A "dual-tuning" strategy for improving the capture of SO2 was developed by introducing electron-withdrawing sites on the anions to produce several kinds of functionalized ionic liquids. Those functionalized with a halogen group exhibited improved performance over their non-halogenated counterparts, leading to highly efficient and reversible capture. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach.

    PubMed

    Licht, S

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Requirements for Radial Migration: How does the migrating fraction depend on stellar velocity dispersion?

    NASA Astrophysics Data System (ADS)

    Tolfree, Kathryne; Wyse, R. F.

    2014-01-01

    Radial migration is a way to rearrange the orbital angular momentum of stars in an spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta in a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially given certain conditions. In order for a star in a spiral disk to migrate radially, it must first be “captured" in a family of resonant orbits near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for stars on non-circular orbits in a disk galaxy. We then use our analytically derived capture criteria to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve as well as the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation (|Φs|CR). We find that the captured fraction goes as Exp[-σR2/|Φs|CR].

  14. Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae).

    PubMed

    Pekár, Stano; Sobotník, Jan; Lubin, Yael

    2011-07-01

    In a predator-prey system where both intervenients come from the same taxon, one can expect a strong selection on behavioural and morphological traits involved in prey capture. For example, in specialised snake-eating snakes, the predator is unaffetced by the venom of the prey. We predicted that similar adaptations should have evolved in spider-eating (araneophagous) spiders. We investigated potential and actual prey of two Palpimanus spiders (P. gibbulus, P. orientalis) to support the prediction that these are araneophagous predators. Specific behavioural adaptations were investigated using a high-speed camera during staged encounters with prey, while morphological adaptations were investigated using electron microscopy. Both Palpimanus species captured a wide assortment of spider species from various guilds but also a few insect species. Analysis of the potential prey suggested that Palpimanus is a retreat-invading predator that actively searches for spiders that hide in a retreat. Behavioural capture adaptations include a slow, stealthy approach to the prey followed by a very fast attack. Morphological capture adaptations include scopulae on forelegs used in grabbing prey body parts, stout forelegs to hold the prey firmly, and an extremely thick cuticle all over the body preventing injury from a counter bite of the prey. Palpimanus overwhelmed prey that was more than 200% larger than itself. In trials with another araneophagous spider, Cyrba algerina (Salticidae), Palpimanus captured C. algerina in more than 90% of cases independent of the size ratio between the spiders. Evidence indicates that both Palpimanus species possesses remarkable adaptations that increase its efficiency in capturing spider prey.

  15. Influence of high-temperature steam on the reactivity of CaO sorbent for CO₂ capture.

    PubMed

    Donat, Felix; Florin, Nicholas H; Anthony, Edward J; Fennell, Paul S

    2012-01-17

    Calcium looping is a high-temperature CO(2) capture technology applicable to the postcombustion capture of CO(2) from power station flue gas, or integrated with fuel conversion in precombustion CO(2) capture schemes. The capture technology uses solid CaO sorbent derived from natural limestone and takes advantage of the reversible reaction between CaO and CO(2) to form CaCO(3); that is, to achieve the separation of CO(2) from flue or fuel gas, and produce a pure stream of CO(2) suitable for geological storage. An important characteristic of the sorbent, affecting the cost-efficiency of this technology, is the decay in reactivity of the sorbent over multiple CO(2) capture-and-release cycles. This work reports on the influence of high-temperature steam, which will be present in flue (about 5-10%) and fuel (∼20%) gases, on the reactivity of CaO sorbent derived from four natural limestones. A significant increase in the reactivity of these sorbents was found for 30 cycles in the presence of steam (from 1-20%). Steam influences the sorbent reactivity in two ways. Steam present during calcination promotes sintering that produces a sorbent morphology with most of the pore volume associated with larger pores of ∼50 nm in diameter, and which appears to be relatively more stable than the pore structure that evolves when no steam is present. The presence of steam during carbonation reduces the diffusion resistance during carbonation. We observed a synergistic effect, i.e., the highest reactivity was observed when steam was present for both calcination and carbonation.

  16. Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae)

    NASA Astrophysics Data System (ADS)

    Pekár, Stano; Šobotník, Jan; Lubin, Yael

    2011-07-01

    In a predator-prey system where both intervenients come from the same taxon, one can expect a strong selection on behavioural and morphological traits involved in prey capture. For example, in specialised snake-eating snakes, the predator is unaffetced by the venom of the prey. We predicted that similar adaptations should have evolved in spider-eating (araneophagous) spiders. We investigated potential and actual prey of two Palpimanus spiders ( P. gibbulus, P. orientalis) to support the prediction that these are araneophagous predators. Specific behavioural adaptations were investigated using a high-speed camera during staged encounters with prey, while morphological adaptations were investigated using electron microscopy. Both Palpimanus species captured a wide assortment of spider species from various guilds but also a few insect species. Analysis of the potential prey suggested that Palpimanus is a retreat-invading predator that actively searches for spiders that hide in a retreat. Behavioural capture adaptations include a slow, stealthy approach to the prey followed by a very fast attack. Morphological capture adaptations include scopulae on forelegs used in grabbing prey body parts, stout forelegs to hold the prey firmly, and an extremely thick cuticle all over the body preventing injury from a counter bite of the prey. Palpimanus overwhelmed prey that was more than 200% larger than itself. In trials with another araneophagous spider, Cyrba algerina (Salticidae), Palpimanus captured C. algerina in more than 90% of cases independent of the size ratio between the spiders. Evidence indicates that both Palpimanus species possesses remarkable adaptations that increase its efficiency in capturing spider prey.

  17. Mapping a Careflow Network to assess the connectedness of Connected Health.

    PubMed

    Carroll, Noel; Richardson, Ita

    2017-04-01

    Connected Health is an emerging and rapidly developing field which has the potential to transform healthcare service systems by increasing its safety, quality and overall efficiency. From a healthcare perspective, process improvement models have mainly focused on the static workflow viewpoint. The objective of this article is to study and model the dynamic nature of healthcare delivery, allowing us to identify where potential issues exist within the service system and to examine how Connected Health technological solutions may support service efficiencies. We explore the application of social network analysis (SNA) as a modelling technique which captures the dynamic nature of a healthcare service. We demonstrate how it can be used to map the 'Careflow Network' and guide Connected Health innovators to examine specific opportunities within the healthcare service. Our results indicate that healthcare technology must be correctly identified and implemented within the Careflow Network to enjoy improvements in service delivery. Oftentimes, prior to making the transformation to Connected Health, researchers use various modelling techniques that fail to identify where Connected Health innovation is best placed in a healthcare service network. Using SNA allows us to develop an understanding of the current operation of healthcare system within which they can effect change. It is important to identify and model the resource exchanges to ensure that the quality and safety of care are enhanced, efficiencies are increased and the overall healthcare service system is improved. We have shown that dynamic models allow us to study the exchange of resources. These are often intertwined within a socio-technical context in an informal manner and not accounted for in static models, yet capture a truer insight on the operations of a Careflow Network.

  18. Multimodal transport and dispersion of organelles in narrow tubular cells

    NASA Astrophysics Data System (ADS)

    Mogre, Saurabh S.; Koslover, Elena F.

    2018-04-01

    Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our model describes length and time scales over which each transport mode dominates organelle motion, along with various metrics to quantify exploration of intracellular space. For organelles that search for a specific target, we obtain the average capture time for given transport parameters and show that diffusion and active motion contribute to target capture in the biologically relevant regime. Because many organelles have been found to tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to tethering and increased probability of active transport. We derive parameter-dependent conditions under which tethering enhances long-range transport and improves the target capture time. These results shed light on the optimization of intracellular transport machinery and provide experimentally testable predictions for the effects of transport regulation mechanisms such as tethering.

  19. PNNL Report on the Development of Bench-scale CFD Simulations for Gas Absorption across a Wetted Wall Column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    This report is prepared for the demonstration of hierarchical prediction of carbon capture efficiency of a solvent-based absorption column. A computational fluid dynamics (CFD) model is first developed to simulate the core phenomena of solvent-based carbon capture, i.e., the CO2 physical absorption and chemical reaction, on a simplified geometry of wetted wall column (WWC) at bench scale. Aqueous solutions of ethanolamine (MEA) are commonly selected as a CO2 stream scrubbing liquid. CO2 is captured by both physical and chemical absorption using highly CO2 soluble and reactive solvent, MEA, during the scrubbing process. In order to provide confidence bound on themore » computational predictions of this complex engineering system, a hierarchical calibration and validation framework is proposed. The overall goal of this effort is to provide a mechanism-based predictive framework with confidence bound for overall mass transfer coefficient of the wetted wall column (WWC) with statistical analyses of the corresponding WWC experiments with increasing physical complexity.« less

  20. Compressor Performance Scaling in the Presence of Non-Uniform Flow

    NASA Astrophysics Data System (ADS)

    Hill, David Jarrod

    Fuselage-embedded engines in future aircraft will see increased flow distortions due to the ingestion of airframe boundary layers. This reduces the required propulsive power compared to podded engines. Inlet flow distortions mean that localized regions of flow within the fan and first stage compressor are operating at off-design conditions. It is important to weigh the benefit of increased vehicle propulsive efficiency against the resultant reduction in engine efficiency. High computational cost has limited most past research to single distortion studies. The objective of this thesis is to extract scaling laws for transonic compressor performance in the presence of various distortion patterns and intensities. The machine studied is the NASA R67 transonic compressor. Volumetric source terms are used to model rotor and stator blade rows. The modelling approach is an innovative combination of existing flow turning and loss models, combined with a compressible flow correction. This approach allows for a steady calculation to capture distortion transfer; as a result, the computational cost is reduced by two orders of magnitude. At peak efficiency, the rotor work coefficient and isentropic efficiency are matched within 1.4% of previously published experimental results. A key finding of this thesis is that, in non-uniform flow, the state-of-the-art loss model employed is unable to capture the impact of variations in local flow coefficient, limiting the analysis of local entropy generation. New insight explains the mechanism governing the interaction between a total temperature distortion and a compressor rotor. A parametric study comprising 16 inlet distortions reveals that for total temperature distortions, upstream flow redistribution and rotor diffusion factor changes are shown to scale linearly with distortion severity. Linear diffusion factor scaling does not hold true for total pressure distortions. For combined total temperature and total pressure distortions, the changes in rotor diffusion factor are predicted by the summation of the individual distortions, within 3.65%.

  1. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces

    NASA Astrophysics Data System (ADS)

    Tsao, Simon Chang-Hao; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Christophi, Christopher; Cebon, Jonathan; Shiddiky, Muhammad J. A.; Behren, Andreas; Trau, Matt

    2016-01-01

    With new systemic therapies becoming available for metastatic melanoma such as BRAF and PD-1 inhibitors, there is an increasing demand for methods to assist with treatment selection and response monitoring. Quantification and characterisation of circulating melanoma cells (CMCs) has been regarded as an excellent non-invasive candidate but a sensitive and efficient tool to do these is lacking. Herein we demonstrate a microfluidic approach for melanoma cell capture and subsequent on-chip evaluation of BRAF mutation status. Our approach utilizes a recently discovered alternating current electrohydrodynamic (AC-EHD)-induced surface shear forces, referred to as nanoshearing. A key feature of nanoshearing is the ability to agitate fluid to encourage contact with surface-bound antibody for the cell capture whilst removing nonspecific cells from the surface. By adjusting the AC-EHD force to match the binding affinity of antibodies against the melanoma-associated chondroitin sulphate proteoglycan (MCSP), a commonly expressed melanoma antigen, this platform achieved an average recovery of 84.7% from biological samples. Subsequent staining with anti-BRAFV600E specific antibody enabled on-chip evaluation of BRAFV600E mutation status in melanoma cells. We believe that the ability of nanoshearing-based capture to enumerate melanoma cells and subsequent on-chip characterisation has the potential as a rapid screening tool while making treatment decisions.

  2. Memory-Based Attention Capture when Multiple Items Are Maintained in Visual Working Memory

    PubMed Central

    Hollingworth, Andrew; Beck, Valerie M.

    2016-01-01

    Efficient visual search requires that attention is guided strategically to relevant objects, and most theories of visual search implement this function by means of a target template maintained in visual working memory (VWM). However, there is currently debate over the architecture of VWM-based attentional guidance. We contrasted a single-item-template hypothesis with a multiple-item-template hypothesis, which differ in their claims about structural limits on the interaction between VWM representations and perceptual selection. Recent evidence from van Moorselaar, Theeuwes, and Olivers (2014) indicated that memory-based capture during search—an index of VWM guidance—is not observed when memory set size is increased beyond a single item, suggesting that multiple items in VWM do not guide attention. In the present study, we maximized the overlap between multiple colors held in VWM and the colors of distractors in a search array. Reliable capture was observed when two colors were held in VWM and both colors were present as distractors, using both the original van Moorselaar et al. singleton-shape search task and a search task that required focal attention to array elements (gap location in outline square stimuli). In the latter task, memory-based capture was consistent with the simultaneous guidance of attention by multiple VWM representations. PMID:27123681

  3. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio.

    PubMed

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco

    2016-01-01

    Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population's sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns.

  4. Multi-dimensional upwinding-based implicit LES for the vorticity transport equations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Duraisamy, Karthik

    2017-11-01

    Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.

  5. Review of Telemicrobiology

    PubMed Central

    Rhoads, Daniel D.; Mathison, Blaine A.; Bishop, Henry S.; da Silva, Alexandre J.; Pantanowitz, Liron

    2016-01-01

    Context Microbiology laboratories are continually pursuing means to improve quality, rapidity, and efficiency of specimen analysis in the face of limited resources. One means by which to achieve these improvements is through the remote analysis of digital images. Telemicrobiology enables the remote interpretation of images of microbiology specimens. To date, the practice of clinical telemicrobiology has not been thoroughly reviewed. Objective Identify the various methods that can be employed for telemicrobiology, including emerging technologies that may provide value to the clinical laboratory. Data Sources Peer-reviewed literature, conference proceedings, meeting presentations, and expert opinions pertaining to telemicrobiology have been evaluated. Results A number of modalities have been employed for telemicroscopy including static capture techniques, whole slide imaging, video telemicroscopy, mobile devices, and hybrid systems. Telemicrobiology has been successfully implemented for applications including routine primary diagnois, expert teleconsultation, and proficiency testing. Emerging areas include digital culture plate reading, mobile health applications and computer-augmented analysis of digital images. Conclusions Static image capture techniques to date have been the most widely used modality for telemicrobiology, despite the fact that other newer technologies are available and may produce better quality interpretations. Increased adoption of telemicrobiology offers added value, quality, and efficiency to the clinical microbiology laboratory. PMID:26317376

  6. Differences in Movement Pattern and Detectability between Males and Females Influence How Common Sampling Methods Estimate Sex Ratio

    PubMed Central

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco

    2016-01-01

    Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population’s sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns. PMID:27441554

  7. Variation for nitrogen use efficiency traits in current and historical Great Plains hard winter wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat genotypes that efficiently capture and convert available soil nitrogen into harvested grain protein are key to sustainably meeting the rising global demand for grain protein. The purposes of this study were to characterize the genetic variation for nitrogen use efficiency (NUE) traits within ...

  8. 40 CFR 63.3981 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., activators, accelerators). Add-on control means an air pollution control device, such as a thermal oxidizer or carbon adsorber, that reduces pollution in an air stream by destruction or removal before... directing those emissions into an add-on air pollution control device. Capture efficiency or capture system...

  9. Limitations of using synthetic blood clots for measuring in vitro clot capture efficiency of inferior vena cava filters

    PubMed Central

    Robinson, Ronald A; Herbertson, Luke H; Das, Srilekha Sarkar; Malinauskas, Richard A; Pritchard, William F; Grossman, Laurence W

    2013-01-01

    The purpose of this study was first to evaluate the clot capture efficiency and capture location of six currently-marketed vena cava filters in a physiological venous flow loop, using synthetic polyacrylamide hydrogel clots, which were intended to simulate actual blood clots. After observing a measured anomaly for one of the test filters, we redirected the focus of the study to identify the cause of poor clot capture performance for large synthetic hydrogel clots. We hypothesized that the uncharacteristic low clot capture efficiency observed when testing the outlying filter can be attributed to the inadvertent use of dense, stiff synthetic hydrogel clots, and not as a result of the filter design or filter orientation. To study this issue, sheep blood clots and polyacrylamide (PA) synthetic clots were injected into a mock venous flow loop containing a clinical inferior vena cava (IVC) filter, and their captures were observed. Testing was performed with clots of various diameters (3.2, 4.8, and 6.4 mm), length-to-diameter ratios (1:1, 3:1, 10:1), and stiffness. By adjusting the chemical formulation, PA clots were fabricated to be soft, moderately stiff, or stiff with elastic moduli of 805 ± 2, 1696 ± 10 and 3295 ± 37 Pa, respectively. In comparison, the elastic moduli for freshly prepared sheep blood clots were 1690 ± 360 Pa. The outlying filter had a design that was characterized by peripheral gaps (up to 14 mm) between its wire struts. While a low clot capture rate was observed using large, stiff synthetic clots, the filter effectively captured similarly sized sheep blood clots and soft PA clots. Because the stiffer synthetic clots remained straight when approaching the filter in the IVC model flow loop, they were more likely to pass between the peripheral filter struts, while the softer, physiological clots tended to fold and were captured by the filter. These experiments demonstrated that if synthetic clots are used as a surrogate for animal or human blood clots for in vitro evaluation of vena cava filters, the material properties (eg, elastic modulus) and dynamic behavior of the surrogate should first be assessed to ensure that they accurately mimic an actual blood clot within the body. PMID:23690701

  10. Limitations of using synthetic blood clots for measuring in vitro clot capture efficiency of inferior vena cava filters.

    PubMed

    Robinson, Ronald A; Herbertson, Luke H; Sarkar Das, Srilekha; Malinauskas, Richard A; Pritchard, William F; Grossman, Laurence W

    2013-01-01

    The purpose of this study was first to evaluate the clot capture efficiency and capture location of six currently-marketed vena cava filters in a physiological venous flow loop, using synthetic polyacrylamide hydrogel clots, which were intended to simulate actual blood clots. After observing a measured anomaly for one of the test filters, we redirected the focus of the study to identify the cause of poor clot capture performance for large synthetic hydrogel clots. We hypothesized that the uncharacteristic low clot capture efficiency observed when testing the outlying filter can be attributed to the inadvertent use of dense, stiff synthetic hydrogel clots, and not as a result of the filter design or filter orientation. To study this issue, sheep blood clots and polyacrylamide (PA) synthetic clots were injected into a mock venous flow loop containing a clinical inferior vena cava (IVC) filter, and their captures were observed. Testing was performed with clots of various diameters (3.2, 4.8, and 6.4 mm), length-to-diameter ratios (1:1, 3:1, 10:1), and stiffness. By adjusting the chemical formulation, PA clots were fabricated to be soft, moderately stiff, or stiff with elastic moduli of 805 ± 2, 1696 ± 10 and 3295 ± 37 Pa, respectively. In comparison, the elastic moduli for freshly prepared sheep blood clots were 1690 ± 360 Pa. The outlying filter had a design that was characterized by peripheral gaps (up to 14 mm) between its wire struts. While a low clot capture rate was observed using large, stiff synthetic clots, the filter effectively captured similarly sized sheep blood clots and soft PA clots. Because the stiffer synthetic clots remained straight when approaching the filter in the IVC model flow loop, they were more likely to pass between the peripheral filter struts, while the softer, physiological clots tended to fold and were captured by the filter. These experiments demonstrated that if synthetic clots are used as a surrogate for animal or human blood clots for in vitro evaluation of vena cava filters, the material properties (eg, elastic modulus) and dynamic behavior of the surrogate should first be assessed to ensure that they accurately mimic an actual blood clot within the body.

  11. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    PubMed Central

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei

    2015-01-01

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K. PMID:26233132

  12. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lei; Zhang, Jie; Freund, William M.

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature,more » the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.« less

  13. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets.

    PubMed

    Chen, Lei; Zhang, Jie; Freund, William M; Kong, Wei

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.

  14. Closed flume inlet efficiency : [summary].

    DOT National Transportation Integrated Search

    2014-04-01

    The storm drain is an inconspicuous but critical : part of the roadway, especially in Florida. Drains : look deceptively simple, but they must capture : water as efficiently as possible. To help assure : the performance of storm drains, the Florida :...

  15. Bottles as models: predicting the effects of varying swimming speed and morphology on size selectivity and filtering efficiency in fishes.

    PubMed

    Paig-Tran, E W Misty; Bizzarro, Joseph J; Strother, James A; Summers, Adam P

    2011-05-15

    We created physical models based on the morphology of ram suspension-feeding fishes to better understand the roles morphology and swimming speed play in particle retention, size selectivity and filtration efficiency during feeding events. We varied the buccal length, flow speed and architecture of the gills slits, including the number, size, orientation and pore size/permeability, in our models. Models were placed in a recirculating flow tank with slightly negatively buoyant plankton-like particles (~20-2000 μm) collected at the simulated esophagus and gill rakers to locate the highest density of particle accumulation. Particles were captured through sieve filtration, direct interception and inertial impaction. Changing the number of gill slits resulted in a change in the filtration mechanism of particles from a bimodal filter, with very small (≤ 50 μm) and very large (>1000 μm) particles collected, to a filter that captured medium-sized particles (101-1000 μm). The number of particles collected on the gill rakers increased with flow speed and skewed the size distribution towards smaller particles (51-500 μm). Small pore sizes (105 and 200 μm mesh size) had the highest filtration efficiencies, presumably because sieve filtration played a significant role. We used our model to make predictions about the filtering capacity and efficiency of neonatal whale sharks. These results suggest that the filtration mechanics of suspension feeding are closely linked to an animal's swimming speed and the structural design of the buccal cavity and gill slits.

  16. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    PubMed

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. An innovative permanent total enclosure for blast cleaning and painting ships in drydock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garland, C.; Lukey, M.

    1997-12-31

    This paper describes a new innovative Permanent Total Enclosure, or CAPE system, which encloses and captures emissions from blast cleaning and painting ship hulls in drydock. A description of the modular enclosure towers with unique seals is shown with several figures. The support barge with its environmental control equipment which includes a dust collector, VOC thermal oxidizer, dehumidifier, boiler, heating coils, air flow fans and, system controls is also described. Data measurements from the first two applications rate this system at 100 percent capture efficiency, 99 percent VOC destruction efficiency and 99.9 percent dust collection efficiency. Ships can be blastmore » cleaned and painted using noncompliant paints and meet all state and federal standards for air emissions.« less

  18. The steps of activating a prospective CO 2 hydrogenation catalyst with combined CO 2 capture and reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, D. B.; Galan, B. R.; Linehan, J. C.

    2016-08-10

    Combining carbon capture and reduction is an efficient strategy to alleviate the high energy requirements for seperation, compression, and storage of CO2 prior to reduction. Recent studies have shown that catalytic hydrogenations of CO2 can be performed without added pressure of CO2 using switchable ionic liquids. It’s ambiguous whether the alkylcarbonate (captured CO2) is reduced as it is in dynamic equilibrium with neutral CO2 in solution. New studies are presented to elucidate the reactivity of CO2 and CO2 captured in solution.

  19. Micromotors to capture and destroy anthrax simulant spores.

    PubMed

    Orozco, Jahir; Pan, Guoqing; Sattayasamitsathit, Sirilak; Galarnyk, Michael; Wang, Joseph

    2015-03-07

    Towards addressing the need for detecting and eliminating biothreats, we describe a micromotor-based approach for screening, capturing, isolating and destroying anthrax simulant spores in a simple and rapid manner with minimal sample processing. The B. globilli antibody-functionalized micromotors can recognize, capture and transport B. globigii spores in environmental matrices, while showing non-interactions with excess of non-target bacteria. Efficient destruction of the anthrax simulant spores is demonstrated via the micromotor-induced mixing of a mild oxidizing solution. The new micromotor-based approach paves a way to dynamic multifunctional systems that rapidly recognize, isolate, capture and destroy biological threats.

  20. Micro-abrasion package capture cell experiment on the trailing edge of LDEF: Impactor chemistry and whipple bumper shield efficiencies

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Howard J.; Yano, Hajime

    1995-01-01

    Four of the eight available double layer microparticle capture cells, flown as the experiment A0023 on the trailing (West) face of LDEF, have been extensively studied. An investigation of the chemistry of impactors has been made using SEM/EDX techniques and the effectiveness of the capture cells as bumper shields has also been examined. Studies of these capture cells gave positive EDX results, with 53 percent of impact sites indicating the presence of some chemical residues, the predominant residue identified as being silicon in varying quantities.

  1. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor.

    PubMed

    Adams, André A; Okagbare, Paul I; Feng, Juan; Hupert, Matuesz L; Patterson, Don; Göttert, Jost; McCarley, Robin L; Nikitopoulos, Dimitris; Murphy, Michael C; Soper, Steven A

    2008-07-09

    A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (>/=1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 mum width x 150 mum depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation.

  2. Highly Efficient Circulating Tumor Cell Isolation from Whole Blood and Label-Free Enumeration Using Polymer-Based Microfluidics with an Integrated Conductivity Sensor

    PubMed Central

    Adams, André A.; Okagbare, Paul I.; Feng, Juan; Hupert, Matuesz L.; Patterson, Don; Göttert, Jost; McCarley, Robin L.; Nikitopoulos, Dimitris; Murphy, Michael C.; Soper, Steven A.

    2008-01-01

    A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (≥1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 μm width × 150 μm depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation. PMID:18557614

  3. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    PubMed Central

    Yu, Fei; Wang, Chengxian; Ma, Jie

    2016-01-01

    Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy. PMID:28773929

  4. Incorporation of rapid thermodynamic data in fragment-based drug discovery.

    PubMed

    Kobe, Akihiro; Caaveiro, Jose M M; Tashiro, Shinya; Kajihara, Daisuke; Kikkawa, Masato; Mitani, Tomoya; Tsumoto, Kouhei

    2013-03-14

    Fragment-based drug discovery (FBDD) has enjoyed increasing popularity in recent years. We introduce SITE (single-injection thermal extinction), a novel thermodynamic methodology that selects high-quality hits early in FBDD. SITE is a fast calorimetric competitive assay suitable for automation that captures the essence of isothermal titration calorimetry but using significantly fewer resources. We describe the principles of SITE and identify a novel family of fragment inhibitors of the enzyme ketosteroid isomerase displaying high values of enthalpic efficiency.

  5. Improving ED efficiency to capture additional revenue.

    PubMed

    Mandavia, Sujal; Samaniego, Loretta

    2016-06-01

    An increase in the number of patients visiting emergency departments (EDs) presents an opportunity for additional revenue if hospitals take four steps to optimize resources: Streamline the patient pathway and reduce the amount of time each patient occupies a bed in the ED. Schedule staff according to the busy and light times for patient arrivals. Perform registration and triage bedside, reducing initial wait times. Create an area for patients to wait for test results so beds can be freed up for new arrivals.

  6. System and process for polarity swing assisted regeneration of gas selective capture liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heldebrant, David J.; Tegrotenhuis, Ward E.; Freeman, Charles J.

    A polarity swing-assisted regeneration (PSAR) process is disclosed for improving the efficiency of releasing gases chemically bound to switchable ionic liquids. Regeneration of the SWIL involves addition of a quantity of non-polar organic compound as an anti-solvent to destabilize the SWIL, which aids in release of the chemically bound gas. The PSAR decreases gas loading of a SWIL at a given temperature and increases the rate of gas release compared to heating in the absence of anti-solvent.

  7. Conservation of design knowledge. [of large complex spaceborne systems

    NASA Technical Reports Server (NTRS)

    Sivard, Cecilia; Zweben, Monte; Cannon, David; Lakin, Fred; Leifer, Larry

    1989-01-01

    This paper presents an approach for acquiring knowledge about a design during the design process. The objective is to increase the efficiency of the lifecycle management of a space-borne system by providing operational models of the system's structure and behavior, as well as the design rationale, to human and automated operators. A design knowledge acquisition system is under development that compares how two alternative design versions meet the system requirements as a means for automatically capturing rationale for design changes.

  8. Magnetohydrodynamic Simulations of Black Hole Accretion Flows Using PATCHWORK, a Multi-Patch, multi-code approach

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; Noble, Scott; Shiokawa, Hotaka; Cheng, Roseanne; Campanelli, Manuela; Krolik, Julian H.

    2017-08-01

    A multi-patch approach to numerical simulations of black hole accretion flows allows one to robustly match numerical grid shape and equations solved to the natural structure of the physical system. For instance, a cartesian gridded patch can be used to cover coordinate singularities on a spherical-polar grid, increasing computational efficiency and better capturing the physical system through natural symmetries. We will present early tests, initial applications, and first results from the new MHD implementation of the PATCHWORK framework.

  9. Implementing targeted region capture sequencing for the clinical detection of Alagille syndrome: An efficient and cost‑effective method.

    PubMed

    Huang, Tianhong; Yang, Guilin; Dang, Xiao; Ao, Feijian; Li, Jiankang; He, Yizhou; Tang, Qiyuan; He, Qing

    2017-11-01

    Alagille syndrome (AGS) is a highly variable, autosomal dominant disease that affects multiple structures including the liver, heart, eyes, bones and face. Targeted region capture sequencing focuses on a panel of known pathogenic genes and provides a rapid, cost‑effective and accurate method for molecular diagnosis. In a Chinese family, this method was used on the proband and Sanger sequencing was applied to validate the candidate mutation. A de novo heterozygous mutation (c.3254_3255insT p.Leu1085PhefsX24) of the jagged 1 gene was identified as the potential disease‑causing gene mutation. In conclusion, the present study suggested that target region capture sequencing is an efficient, reliable and accurate approach for the clinical diagnosis of AGS. Furthermore, these results expand on the understanding of the pathogenesis of AGS.

  10. Efficacy of Mosquito Traps for Collecting Potential West Nile Mosquito Vectors in a Natural Mediterranean Wetland

    PubMed Central

    Roiz, David; Roussel, Marion; Muñoz, Joaquin; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2012-01-01

    Surveillance, research, and control of mosquito-borne diseases such as West Nile virus require efficient methods for sampling mosquitoes. We compared the efficacy of BG-Sentinel and Centers for Disease Control and Prevention (CDC)-CO2 traps in terms of the abundances of host-seeking and blood-fed female mosquitoes and the origin of mosquito bloodmeals. Our results indicate that BG-Sentinel traps that use CO2 and attractants are as effective as CDC-CO2 traps for Culex mosquito species, Ochlerotatus caspius, and they are also highly efficient at capturing Anopheles atroparvus host-seeking and blood-fed females with or without CO2. The CDC-CO2 trap is the least efficient method for capturing blood-fed females. BG-Sentinel traps with attractants and CO2 were significantly better at capturing mosquitoes that had fed on mammals than the unbaited BG-Sentinel and CDC-CO2 traps in the cases of An. atroparvus and Cx. theileri. These results may help researchers to optimize trapping methods by obtaining greater sample sizes and saving time and money. PMID:22492149

  11. Quasi-model free control for the post-capture operation of a non-cooperative target

    NASA Astrophysics Data System (ADS)

    She, Yuchen; Sun, Jun; Li, Shuang; Li, Wendan; Song, Ting

    2018-06-01

    This paper investigates a quasi-model free control (QMFC) approach for the post-capture control of a non-cooperative space object. The innovation of this paper lies in the following three aspects, which correspond to the three challenges presented in the mission scenario. First, an excitation-response mapping search strategy is developed based on the linearization of the system in terms of a set of parameters, which is efficient in handling the combined spacecraft with a high coupling effect on the inertia matrix. Second, a virtual coordinate system is proposed to efficiently compute the center of mass (COM) of the combined system, which improves the COM tracking efficiency for time-varying COM positions. Third, a linear online corrector is built to reduce the control error to further improve the control accuracy, which helps control the tracking mode within the combined system's time-varying inertia matrix. Finally, simulation analyses show that the proposed control framework is able to realize combined spacecraft post-capture control in extremely unfavorable conditions with high control accuracy.

  12. Light-energy conversion in engineered microorganisms.

    PubMed

    Johnson, Ethan T; Schmidt-Dannert, Claudia

    2008-12-01

    Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.

  13. Energy-efficient stirred-tank photobioreactors for simultaneous carbon capture and municipal wastewater treatment.

    PubMed

    Mohammed, K; Ahammad, S Z; Sallis, P J; Mota, C R

    2014-01-01

    Algal based wastewater treatment (WWT) technologies are attracting renewed attention because they couple energy-efficient sustainable treatment with carbon capture, and reduce the carbon footprint of the process. A low-cost energy-efficient mixed microalgal culture-based pilot WWT system, coupled with carbon dioxide (CO2) sequestration, was investigated. The 21 L stirred-tank photobioreactors (STPBR) used light-emitting diodes as the light source, resulting in substantially reduced operational costs. The STPBR were operated at average optimal light intensity of 582.7 μmol.s(-1).m(-2), treating synthetic municipal wastewater containing approximately 250, 90 and 10 mg.L(-1) of soluble chemical oxygen demand (SCOD), ammonium (NH4-N), and phosphate, respectively. The STPBR were maintained for 64 days without oxygen supplementation, but had a supply of CO2 (25 mL.min(-1), 25% v/v in N2). Relatively high SCOD removal efficiency (>70%) was achieved in all STPBR. Low operational cost was achieved by eliminating the need for mechanical aeration, with microalgal photosynthesis providing all oxygenation. The STPBR achieved an energy saving of up to 95%, compared to the conventional AS system. This study demonstrates that microalgal photobioreactors can provide effective WWT and carbon capture, simultaneously, in a system with potential for scaling-up to municipal WWT plants.

  14. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming

    2016-09-01

    Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR. Copyright © 2016. Published by Elsevier B.V.

  15. Atmospheric CO2 capture for the artificial photosynthetic system.

    PubMed

    Nogalska, Adrianna; Zukowska, Adrianna; Garcia-Valls, Ricard

    2018-04-15

    The aim of these studies is to evaluate the ambient CO 2 capture abilities of the membrane contactor system in the same conditions as leafs, such as ambient temperature, pressure and low CO 2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane employed was made by a phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and the hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of membrane and absorbent was evaluated, in order to exclude wetting issues by meaning of swelling, dynamic contact angle and AFM analysis. The prepared membranes were introduced into a cross flow module and used as contactors between CO 2 and the absorbing media, a potassium hydroxide solution. The influence of the membrane thickness, absorbent stirring rate, solution pH and absorption time on CO 2 capture were evaluated. Absorbent solution stirring rate showed no statistically significant influence on absorption. We observed a non-linear correlation between the capture rate and the increase of absorbent solution pH as well as absorption time. The results showed that the efficiency of our CO 2 capture system is similar to stomatal carbon dioxide assimilation rate, achieving stable value of 20μmol/m 2 ·s after 1h of experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.

    PubMed

    Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia

    2017-12-01

    Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Improvement of automatic fish feeder machine design

    NASA Astrophysics Data System (ADS)

    Chui Wei, How; Salleh, S. M.; Ezree, Abdullah Mohd; Zaman, I.; Hatta, M. H.; Zain, B. A. Md; Mahzan, S.; Rahman, M. N. A.; Mahmud, W. A. W.

    2017-10-01

    Nation Plan of action for management of fishing is target to achieve an efficient, equitable and transparent management of fishing capacity in marine capture fisheries by 2018. However, several factors influence the fishery production and efficiency of marine system such as automatic fish feeder machine could be taken in consideration. Two latest fish feeder machines have been chosen as the reference for this study. Based on the observation, it has found that the both machine was made with heavy structure, low water and temperature resistance materials. This research’s objective is to develop the automatic feeder machine to increase the efficiency of fish feeding. The experiment has conducted to testing the new design of machine. The new machine with maximum storage of 5 kg and functioning with two DC motors. This machine able to distribute 500 grams of pellets within 90 seconds and longest distance of 4.7 meter. The higher speed could reduce time needed and increase the distance as well. The minimum speed range for both motor is 110 and 120 with same full speed range of 255.

  18. Panorama parking assistant system with improved particle swarm optimization method

    NASA Astrophysics Data System (ADS)

    Cheng, Ruzhong; Zhao, Yong; Li, Zhichao; Jiang, Weigang; Wang, Xin'an; Xu, Yong

    2013-10-01

    A panorama parking assistant system (PPAS) for the automotive aftermarket together with a practical improved particle swarm optimization method (IPSO) are proposed in this paper. In the PPAS system, four fisheye cameras are installed in the vehicle with different views, and four channels of video frames captured by the cameras are processed as a 360-deg top-view image around the vehicle. Besides the embedded design of PPAS, the key problem for image distortion correction and mosaicking is the efficiency of parameter optimization in the process of camera calibration. In order to address this problem, an IPSO method is proposed. Compared with other parameter optimization methods, the proposed method allows a certain range of dynamic change for the intrinsic and extrinsic parameters, and can exploit only one reference image to complete all of the optimization; therefore, the efficiency of the whole camera calibration is increased. The PPAS is commercially available, and the IPSO method is a highly practical way to increase the efficiency of the installation and the calibration of PPAS in automobile 4S shops.

  19. CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo

    PubMed Central

    Moreno-Mateos, Miguel A.; Vejnar, Charles E.; Beaudoin, Jean-Denis; Fernandez, Juan P.; Mis, Emily K.; Khokha, Mustafa K.; Giraldez, Antonio J.

    2015-01-01

    CRISPR/Cas9 technology provides a powerful system for genome engineering. However, variable activity across different single guide RNAs (sgRNAs) remains a significant limitation. We have analyzed the molecular features that influence sgRNA stability, activity and loading into Cas9 in vivo. We observe that guanine enrichment and adenine depletion increase sgRNA stability and activity, while loading, nucleosome positioning and Cas9 off-target binding are not major determinants. We additionally identified truncated and 5′ mismatch-containing sgRNAs as efficient alternatives to canonical sgRNAs. Based on these results, we created a predictive sgRNA-scoring algorithm (CRISPRscan.org) that effectively captures the sequence features affecting Cas9/sgRNA activity in vivo. Finally, we show that targeting Cas9 to the germ line using a Cas9-nanos-3′-UTR fusion can generate maternal-zygotic mutants, increase viability and reduce somatic mutations. Together, these results provide novel insights into the determinants that influence Cas9 activity and a framework to identify highly efficient sgRNAs for genome targeting in vivo. PMID:26322839

  20. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    PubMed Central

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization. PMID:26713213

  1. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  2. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    NASA Astrophysics Data System (ADS)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  3. The Role of Natural Gas Power Plants with Carbon Capture and Storage in a Low-Carbon Future

    EPA Science Inventory

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...

  4. Synthesis of amino-rich silica coated magnetic nanoparticles and their application in the capture of DNA for PCR

    USDA-ARS?s Scientific Manuscript database

    Magnetic separation has great advantages over traditional bioseparation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor in allowing efficient capture of t...

  5. 40 CFR 63.4981 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows: Add-on control means an air pollution control device such as a thermal oxidizer or carbon adsorber that reduces pollution in... those emissions into an add-on air pollution control device. Capture efficiency or capture system...

  6. 40 CFR 63.4981 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows: Add-on control means an air pollution control device such as a thermal oxidizer or carbon adsorber that reduces pollution in... those emissions into an add-on air pollution control device. Capture efficiency or capture system...

  7. 40 CFR 63.4981 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows: Add-on control means an air pollution control device such as a thermal oxidizer or carbon adsorber that reduces pollution in... those emissions into an add-on air pollution control device. Capture efficiency or capture system...

  8. 40 CFR 63.4964 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation are applied within the capture system; coating solvent flash-off and coating, curing, and drying... parts enter the open shop environment when being moved between a spray booth and a curing oven. (b... from the beginning to the end of production, which includes surface preparation activities and drying...

  9. Comparing Energy Use and Efficiency in Central Iowa Agroecosystems

    ERIC Educational Resources Information Center

    Cox, Rachael; Wiedenhoeft, Mary

    2009-01-01

    Energy is relevant to all areas of human life; energy sustains us through food, drives our transportation, warms and cools our buildings, and powers our electrical gadgets. In nature, ecosystems function by capturing and transforming energy. Agroecosystems are formed when humans manipulate the capture and flow of energy for food, fiber, and fuel…

  10. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture.

    PubMed

    Zhou, Fanglei; Tien, Huynh Ngoc; Xu, Weiwei L; Chen, Jung-Tsai; Liu, Qiuli; Hicks, Ethan; Fathizadeh, Mahdi; Li, Shiguang; Yu, Miao

    2017-12-13

    Among the current CO 2 capture technologies, membrane gas separation has many inherent advantages over other conventional techniques. However, fabricating gas separation membranes with both high CO 2 permeance and high CO 2 /N 2 selectivity, especially under wet conditions, is a challenge. In this study, sub-20-nm thick, layered graphene oxide (GO)-based hollow fiber membranes with grafted, brush-like CO 2 -philic agent alternating between GO layers are prepared by a facile coating process for highly efficient CO 2 /N 2 separation under wet conditions. Piperazine, as an effective CO 2 -philic agent, is introduced as a carrier-brush into the GO nanochannels with chemical bonding. The membrane exhibits excellent separation performance under simulated flue gas conditions with CO 2 permeance of 1,020 GPU and CO 2 /N 2 selectivity as high as 680, demonstrating its potential for CO 2 capture from flue gas. We expect this GO-based membrane structure combined with the facile coating process to facilitate the development of ultrathin GO-based membranes for CO 2 capture.

  11. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei

    2013-03-01

    We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a

  12. Methanol from CO2 by organo-cocatalysis: CO2 capture and hydrogenation in one process step.

    PubMed

    Reller, Christian; Pöge, Matthias; Lißner, Andreas; Mertens, Florian O R L

    2014-12-16

    Carbon dioxide chemically bound to alcohol-amines was hydrogenated to methanol under retrieval of these industrially used CO2 capturing reagents. The energetics of the process can be seen as a partial cancellation of the exothermic heat of reaction of the hydrogenation with the endothermic one of the CO2 release from the capturing reagent. The process provides a means to significantly improve the energy efficiency of CO2 to methanol conversions.

  13. Mechanisms of nitrate capture in biochar: Are they related to biochar properties, post-treatment and soil environment?

    NASA Astrophysics Data System (ADS)

    Cimo, Giulia; Haller, Andreas; Spokas, Kurt; Novak, Jeff; Ippolito, Jim; Löhnertz, Otmar; Kammann, Claudia

    2017-04-01

    Biochar use in soils is assumed to increase soil fertility and the efficiency of nutrient use, particularly nitrogen. It was demonstrated recently that biochar is able to capture considerable amounts of the mobile anion nitrate which was observed in co-composted as well as field aged biochar1,2. Moreover the nitrate was not sufficiently extractable with standard methods from biochar particles; extractions had to be repeated to effectively remove the nitrate1. Subsequently the co-composted nitrate-enriched biochar stimulated plant growth due to N supply to the plants2. However, in a field study in sandy soil in Germany, a different biochar also captured nitrate, increasing the topsoil nitrate concentration and likely reducing nitrate leaching to subsoils1. This was particularly seen after a dry year in the re-picked and analysed particles. However, in the field experiment this aged, nitrate-enriched biochar did not improve crop yields3. To better understand the way biochar interacts with nitrate we undertook several laboratory experiments with 13 well characterized biochars produced from cypress, pine and grapewood at 350, 500, 700 and 900 °C including one Kon-Tiki produced grapewood biochar (600-700°C). Our results showed that (1) pure, pristine (not post-treated) biochar captured more nitrate when they were air-moist and not totally dry; that (2) letting biochar particles dry in nitrate solution forces more nitrate into biochar particles than incubating them in the solution, but (3) that shaking during drying nevertheless caused a higher nitrate uptake into biochar particles; that(4) the counter ion K+ in nitrate solution was more effective than Na+ for N-loading of biochar; (5)that drying a soil-biochar mix in nitrate solution produced a higher nitrate loading of the mixture (i.e. the biochar) than drying both components separately in the same solution; (6)that a higher biochar production temperature caused higher nitrate capture up to 700-900°C. Furthermore we found (7)that this captured nitrate was well protected against leaching, (8)that repeated drying-wetting cycles increased nitrate capture, with the amount protected against leaching remaining more or less constant; and (9) that an organic "coating" (or application of the nitrate in an organic solution, here: black tea) increased biochars' capability of nitrate capture. Our results thus underline that the phenomenon of nitrate capture is not purely due to ionic mechanisms but may partly rely on physical interactions and the pore structure of the biochar. Acknowledgement: JC acknowledges funding by the COST action TD1107 (short term scientific mission), CK acknowledges the financial support of DFG grant no. Ka3442/1-1 and of the HMWK Hessia funded OptiChar4EcoVin project. 1-Haider, G., Steffens, D., Müller, C. & Kammann, C. I. Standard extraction methods may underestimate nitrate stocks captured by field aged biochar. J. Environ. Qual. 45, 1196-1204 (2016). 2-Kammann, C. I. et al. Plant growth improvement mediated by nitrate capture in co-composted biochar. Scientific Reports 5, doi: 10.1038/srep11080 (2015). 3-Haider, G., Steffens, D., Moser, G., Müller, C. & Kammann, C. I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agri. Ecosys. Environ. 237, 80-94 (2017).

  14. Thermal Propulsion Capture System Heat Exchanger Design

    NASA Technical Reports Server (NTRS)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  15. Latent heat of traffic moving from rest

    NASA Astrophysics Data System (ADS)

    Farzad Ahmadi, S.; Berrier, Austin S.; Doty, William M.; Greer, Pat G.; Habibi, Mohammad; Morgan, Hunter A.; Waterman, Josam H. C.; Abaid, Nicole; Boreyko, Jonathan B.

    2017-11-01

    Contrary to traditional thinking and driver intuition, here we show that there is no benefit to ground vehicles increasing their packing density at stoppages. By systematically controlling the packing density of vehicles queued at a traffic light on a Smart Road, drone footage revealed that the benefit of an initial increase in displacement for close-packed vehicles is completely offset by the lag time inherent to changing back into a ‘liquid phase’ when flow resumes. This lag is analogous to the thermodynamic concept of the latent heat of fusion, as the ‘temperature’ (kinetic energy) of the vehicles cannot increase until the traffic ‘melts’ into the liquid phase. These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to lessen the likelihood of collisions with no loss in flow efficiency. In contrast, motion capture experiments of a line of people walking from rest showed higher flow efficiency with increased packing densities, indicating that the importance of latent heat becomes trivial for slower moving systems.

  16. Increasing the information acquisition volume in iris recognition systems.

    PubMed

    Barwick, D Shane

    2008-09-10

    A significant hurdle for the widespread adoption of iris recognition in security applications is that the typically small imaging volume for eye placement results in systems that are not user friendly. Separable cubic phase plates at the lens pupil have been shown to ameliorate this disadvantage by increasing the depth of field. However, these phase masks have limitations on how efficiently they can capture the information-bearing spatial frequencies in iris images. The performance gains in information acquisition that can be achieved by more general, nonseparable phase masks is demonstrated. A detailed design method is presented, and simulations using representative designs allow for performance comparisons.

  17. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Roommore » AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.« less

  18. Use of a Novel Fluidics Microbead Trap/Flow-cell Enhances Speed and Sensitivity of Bead-Based Bioassays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozanich, Rich M.; Antolick, Kathryn C.; Bruckner-Lea, Cindy J.

    2007-09-15

    Automated devices and methods for biological sample preparation often utilize surface functionalized microbeads (superparamagnetic or non-magnetic) to allow capture, purification and pre-concentration of trace amounts of proteins, cells, or nucleic acids (DNA/RNA) from complex samples. We have developed unique methods and hardware for trapping either magnetic or non-magnetic functionalized beads that allow samples and reagents to be efficiently perfused over a micro-column of beads. This approach yields enhanced mass transport and up to 5-fold improvements in assay sensitivity or speed, dramatically improving assay capability relative to assays conducted in more traditional “batch modes” (i.e., in tubes or microplate wells). Summarymore » results are given that highlight the analytical performance improvements obtained for automated microbead processing systems utilizing novel microbead trap/flow-cells for various applications, including: 1) simultaneous capture of multiple cytokines using an antibody-coupled polystyrene bead assay with subsequent flow cytometry detection; 2) capture of nucleic acids using oligonucleotide coupled polystyrene beads with flow cytometry detection; and 3) capture of Escherichia coli 0157:H7 (E. coli) from 50 mL sample volumes using antibody-coupled superparamagnetic microbeads with subsequent culturing to assess capture efficiency.« less

  19. Hierarchical Structure and Multifunctional Surface Properties of Carnivorous Pitcher Plants Nepenthes

    NASA Astrophysics Data System (ADS)

    Hsu, Chiao-Peng; Lin, Yu-Min; Chen, Po-Yu

    2015-04-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved specialized leaves fulfilling the multi-functions of attracting, capturing, retaining and digesting the prey, mostly arthropods. Different capturing mechanisms have been proposed and discussed in previous works. The most important capture mechanism is the unique super-hydrophilic surface properties of the peristome. The combination of a hierarchical surface structure and nectar secretions results in an exceptional water-lubricated trapping system. Anisotropic and unidirectional wettability is attributed to the ridge-like surface and epidermal folding. The three-dimensional plate-like wax crystals in the hydrophobic waxy zone can further prevent the prey from escaping. The captured prey are then digested in the hydrophilic digestive zone. The hybrid species Nepenthes × Miranda was investigated in this study. The surface morphology and hierarchical microstructure were characterized by scanning electron microscope. Contact angle measurement and wetting efficiency tests were performed to determine the wettability of the peristome under fresh, nectar-free and sucrose-coated conditions with controlled temperature and humidity. The results showed that sucrose-coated peristome surfaces possess the best wetting efficiency. The structure-property-function relationship and the capturing mechanism of Nepenthes were elucidated, which could further lead to the design and synthesis of novel bio-inspired surfaces and potential applications.

  20. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage

    NASA Astrophysics Data System (ADS)

    Yang, Jae Hwan; Cho, Yong-Jun; Shin, Jin Myeong; Yim, Man-Sung

    2015-10-01

    Efficient capture and stable storage of the long-lived iodine-129 (129I), released as off-gas from nuclear fuel reprocessing, have been of significant concern in the waste management field. In this study, bismuth-embedded SBA-15 mesoporous silica was firstly applied for iodine capture and storage. SBA-15 was functionalized with thiol (-SH) groups, followed by bismuth adsorption with Bi-S bonding, which was thermally treated to form Bi2S3 within SBA-15. The bismuth-embedded SBA-15s demonstrated high iodine loading capacities (up to 540 mg-I/g-sorbent), which benefitted from high surface area and porosity of SBA-15 as well as the formation of thermodynamically stable BiI3 compound. Iodine physisorption was effectively suppressed due to the large pores present in SBA-15, resulting in chemisorption as a main mechanism for iodine confinement. Furthermore, a chemically durable iodine-bearing material was made with a facile post-sorption process, during which the iodine-incorporated phase was changed from BiI3 to chemically durable Bi5O7I. Thus, our results showed that both efficient capture and stabilization of 129I would be possible with the bismuth-embedded SBA-15, in contrast to other sorbents mainly focused on iodine capture.

  1. Use of a fishery-independent trawl survey to evaluate distribution patterns of subadult sharks in Georgia

    USGS Publications Warehouse

    Belcher, C.N.; Jennings, Cecil A.

    2009-01-01

    We investigated the utility of a fishery-independent trawl survey for assessing a potential multispecies shark nursery in Georgia's nearshore and inshore waters. A total of 234 subadult sharks from six species were captured during 85 of 216 trawls. Catch rates and size distributions for subadult sharks and the ratio of neonates to juveniles were consistent among areas. The highest concentrations of subadult sharks occurred in creeks and sounds. Species composition varied among areas. The Atlantic sharpnose shark Rhizoprionodon terraenovae was the most abundant species in sound and nearshore stations, whereas the bonnethead Sphyrna tiburo was the most abundant species in creeks. The aggregate of other species occurred with higher frequency in the sounds and nearshore. Sampling characteristics of the trawl survey were compared with those from a fishery-independent longline survey of subadult sharks to assess the similarity of the two gears. A total of 193 subadult sharks from seven species were captured during 57 of 96 longline sets, whereas 52 subadults from four species were captured during 20 of 48 trawls. Selectivity and efficiency differed between the two gears. The trawl had lower catch rates, caught smaller sharks, and encountered a different suite of species than the longline. General seasonal trends in relative abundance also differed between the two gears; the longline showed an increasing trend in abundance, whereas the trawl showed a stable trend. Although trawls were not found to be efficient for sampling subadult sharks from most species, they can be a useful source of supplemental data.

  2. Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture

    PubMed Central

    Hämmerle, Martin; Höfle, Bernhard

    2014-01-01

    3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. PMID:25521383

  3. Contribution of manipulable and non-manipulable environmental factors to trapping efficiency of invasive sea lamprey

    USGS Publications Warehouse

    Dawson, Heather A.; Bravener, Gale; Beaulaurier, Joshua; Johnson, Nicholas S.; Twohey, Michael; McLaughlin, Robert L.; Brenden, Travis O.

    2017-01-01

    We identified aspects of the trapping process that afforded opportunities for improving trap efficiency of invasive sea lamprey (Petromyzon marinus) in a Great Lake's tributary. Capturing a sea lamprey requires it to encounter the trap, enter, and be retained until removed. Probabilities of these events depend on the interplay between sea lamprey behavior, environmental conditions, and trap design. We first tested how strongly seasonal patterns in daily trap catches (a measure of trapping success) were related to nightly rates of trap encounter, entry, and retention (outcomes of sea lamprey behavior). We then tested the degree to which variation in rates of trap encounter, entry, and retention were related to environmental features that control agents can manipulate (attractant pheromone addition, discharge) and features agents cannot manipulate (water temperature, season), but could be used as indicators for when to increase trapping effort. Daily trap catch was most strongly associated with rate of encounter. Relative and absolute measures of predictive strength for environmental factors that managers could potentially manipulate were low, suggesting that opportunities to improve trapping success by manipulating factors that affect rates of encounter, entry, and retention are limited. According to results at this trap, more sea lamprey would be captured by increasing trapping effort early in the season when sea lamprey encounter rates with traps are high. The approach used in this study could be applied to trapping of other invasive or valued species.

  4. Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency

    NASA Astrophysics Data System (ADS)

    Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.

    2011-05-01

    This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.

  5. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles.more » The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts between the point of evaporation and the baffle plates. Second, the slots in the baffle plates create jets that force the mercury particles to impinge and adhere on downstream surfaces. The baffle plates should closely follow the designs developed for this system to be most effective.« less

  6. CliniProteus: A flexible clinical trials information management system

    PubMed Central

    Mathura, Venkatarajan S; Rangareddy, Mahendiranath; Gupta, Pankaj; Mullan, Michael

    2007-01-01

    Clinical trials involve multi-site heterogeneous data generation with complex data input-formats and forms. The data should be captured and queried in an integrated fashion to facilitate further analysis. Electronic case-report forms (eCRF) are gaining popularity since it allows capture of clinical information in a rapid manner. We have designed and developed an XML based flexible clinical trials data management framework in .NET environment that can be used for efficient design and deployment of eCRFs to efficiently collate data and analyze information from multi-site clinical trials. The main components of our system include an XML form designer, a Patient registration eForm, reusable eForms, multiple-visit data capture and consolidated reports. A unique id is used for tracking the trial, site of occurrence, the patient and the year of recruitment. Availability http://www.rfdn.org/bioinfo/CTMS/ctms.html. PMID:21670796

  7. Metabolic specialisation on preferred prey and constraints in the utilisation of alternative prey in an ant-eating spider.

    PubMed

    Líznarová, Eva; Pekár, Stano

    2016-10-01

    Trophic specialists are expected to possess adaptations that increase the efficiency of handling preferred prey. Such adaptations may constrain the ability to utilise alternative prey. Here we tested whether the ant-eating spider Euryopis episinoides possesses metabolic specialisations with increased efficiency in utilising preferred prey and decreased efficiency in utilising alternative prey. In addition, we investigated the contribution of genetic variation via maternal effects. We reared E. episinoides spiders from the first instar on two different diets, either ants (preferred prey) or fruit flies (alternative prey). Spider survival rate and increases in body mass were significantly higher on the ant diet. The total development time did not differ between diet groups, nor did the number of egg sacs per female or the incubation period. However, the number of eggs per egg sac and hatching success were higher on the ant diet. There was a genetic variation in several offspring traits. Our data support the hypothesis that stenophagous ant-eating E. episinoides have a metabolic specialisation on ant utilisation indicated by higher efficiency in utilising ants than fruit flies. While most individuals of E. episinoides were able to capture fruit flies, only very few spiders were able to develop and reproduce on a pure fruit fly diet, suggesting the existence of within-species genetic variation regarding the tolerance to alternative prey. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Utilisation of biomass gasification by-products for onsite energy production.

    PubMed

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency. © The Author(s) 2016.

  9. A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells.

    PubMed

    Tang, Man; Wen, Cong-Ying; Wu, Ling-Ling; Hong, Shao-Li; Hu, Jiao; Xu, Chun-Miao; Pang, Dai-Wen; Zhang, Zhi-Ling

    2016-04-07

    The detection of circulating tumor cells (CTCs), a kind of "liquid biopsy", represents a potential alternative to noninvasive detection, characterization and monitoring of carcinoma. Many previous studies have shown that the number of CTCs has a significant relationship with the stage of cancer. However, CTC enrichment and detection remain notoriously difficult because they are extremely rare in the bloodstream. Herein, aided by a microfluidic device, an immunomagnetic separation system was applied to efficiently capture and in situ identify circulating tumor cells. Magnetic nanospheres (MNs) were modified with an anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody to fabricate immunomagnetic nanospheres (IMNs). IMNs were then loaded into the magnetic field controllable microfluidic chip to form uniform IMN patterns. The IMN patterns maintained good stability during the whole processes including enrichment, washing and identification. Apart from its simple manufacture process, the obtained microfluidic device was capable of capturing CTCs from the bloodstream with an efficiency higher than 94%. The captured cells could be directly visualized with an inverted fluorescence microscope in situ by immunocytochemistry (ICC) identification, which decreased cell loss effectively. Besides that, the CTCs could be recovered completely just by PBS washing after removal of the permanent magnets. It was observed that all the processes showed negligible influence on cell viability (viability up to 93%) and that the captured cells could be re-cultured for more than 5 passages after release without disassociating IMNs. In addition, the device was applied to clinical samples and almost all the samples from patients showed positive results, which suggests it could serve as a valuable tool for CTC enrichment and detection in the clinic.

  10. Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.

    NASA Astrophysics Data System (ADS)

    Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane

    2017-04-01

    The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.

  11. DESIGN STUDY OF 20 T, 15 CM BORE HYBRID MAGNET WITH RADIATION RESISTANT INSERT FOR PION CAPTURE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEGGEL,R.J.; PEARSON,C.E.; KING,B.J.

    2001-06-18

    To capture pions the Neutrino Factory and Muon Collider Collaboration needs a field of {approx}20 T throughout a cylinder 15 cm in diameter and 60 cm long, falling over the next 18 m to 1.25 T, while the bore increases fourfold inversely as the square root of the field. We propose a hybrid system. The superconducting magnet is of world-class parameters, storing 600 MJ and including a coil to generate 14 T in a bore of {approx}1.3 m. Intercoil forces reach 100 MN. For high radiation resistance, the insert coil is of mineral-insulated hollow conductor, as developed for the Japanmore » Hadron Facility; it would require 12 MW to generate 6 T. Needed is research to develop a more efficient hollow conductor or radiation-resistant insulator for a Bitter coil.« less

  12. Respiratory care management information systems.

    PubMed

    Ford, Richard M

    2004-04-01

    Hospital-wide computerized information systems evolved from the need to capture patient information and perform billing and other financial functions. These systems, however, have fallen short of meeting the needs of respiratory care departments regarding work load assessment, productivity management, and the level of outcome reporting required to support programs such as patient-driven protocols. The respiratory care management information systems (RCMIS) of today offer many advantages over paper-based systems and hospital-wide computer systems. RCMIS are designed to facilitate functions specific to respiratory care, including assessing work demand, assigning and tracking resources, charting, billing, and reporting results. RCMIS incorporate mobile, point-of-care charting and are highly configurable to meet the specific needs of individual respiratory care departments. Important and substantial benefits can be realized with an RCMIS and mobile, wireless charting devices. The initial and ongoing costs of an RCMIS are justified by increased charge capture and reduced costs, by way of improved productivity and efficiency. It is not unusual to recover the total cost of an RCMIS within the first year of its operation. In addition, such systems can facilitate and monitor patient-care protocols and help to efficiently manage the vast amounts of information encountered during the practitioner's workday. Respiratory care departments that invest in RCMIS have an advantage in the provision of quality care and in reducing expenses. A centralized respiratory therapy department with an RCMIS is the most efficient and cost-effective way to monitor work demand and manage the hospital-wide allocation of respiratory care services.

  13. Gold nanoparticle-based enhanced lateral flow immunoassay for detection of Cronobacter sakazakii in powdered infant formula.

    PubMed

    Pan, Ruili; Jiang, Yujun; Sun, Luhong; Wang, Rui; Zhuang, Kejin; Zhao, Yueming; Wang, Hui; Ali, Md Aslam; Xu, Honghua; Man, Chaoxin

    2018-05-01

    Cronobacter sakazakii is an opportunistic foodborne pathogen that can infect newborns through powdered infant formula (PIF). In this study, we developed a novel enhanced lateral flow immunoassay (LFA) with enhanced sensitivity for detection of C. sakazakii in PIF by the naked eye. The proposed strategy for signal enhancement of the traditional LFA used concentrated gold nanoparticles (AuNP) as the enhancer to conjugate with capture antibodies, which could increase the immobilized capture antibodies concentration at the detection zone to improve capture efficiency. Besides, the detection signal was further amplified by accumulated AuNP as the C. sakazakii labeled with AuNP probes was captured by antibodies conjugated with enhancer at the test line. We also studied the effect of different concentrations of capture antibodies and concentrated AuNP on detection performance, and found that 2.2 mg/mL of capture antibodies and 0.06 nM concentrated AuNP were the optimal combination that could avoid a false-positive signal and maximally amplify the detection signal of the enhanced LFA. Using this strategy, the detection sensitivity of the enhanced LFA was 10 3 cfu/mL and improved 100-fold compared with traditional LFA. The strip was highly specific to C. sakazakii, and the time for detection of C. sakazakii in PIF was shortened by 3 h. In summary, the enhanced LFA developed by the addition of concentrated AuNP as the enhancer can be used as a sensitive, rapid, visual qualitative and point-of-care test method for detecting target analytes. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-emore » project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.« less

  15. An evaluation of the efficiency of minnow traps for estimating the abundance of minnows in desert spring systems

    USGS Publications Warehouse

    Peterson, James T.; Scheerer, Paul D.; Clements, Shaun

    2015-01-01

    Desert springs are sensitive aquatic ecosystems that pose unique challenges to natural resource managers and researchers. Among the most important of these is the need to accurately quantify population parameters for resident fish, particularly when the species are of special conservation concern. We evaluated the efficiency of baited minnow traps for estimating the abundance of two at-risk species, Foskett Speckled Dace Rhinichthys osculus ssp. and Borax Lake Chub Gila boraxobius, in desert spring systems in southeastern Oregon. We evaluated alternative sample designs using simulation and found that capture–recapture designs with four capture occasions would maximize the accuracy of estimates and minimize fish handling. We implemented the design and estimated capture and recapture probabilities using the Huggins closed-capture estimator. Trap capture probabilities averaged 23% and 26% for Foskett Speckled Dace and Borax Lake Chub, respectively, but differed substantially among sample locations, through time, and nonlinearly with fish body size. Recapture probabilities for Foskett Speckled Dace were, on average, 1.6 times greater than (first) capture probabilities, suggesting “trap-happy” behavior. Comparison of population estimates from the Huggins model with the commonly used Lincoln–Petersen estimator indicated that the latter underestimated Foskett Speckled Dace and Borax Lake Chub population size by 48% and by 20%, respectively. These biases were due to variability in capture and recapture probabilities. Simulation of fish monitoring that included the range of capture and recapture probabilities observed indicated that variability in capture and recapture probabilities in time negatively affected the ability to detect annual decreases by up to 20% in fish population size. Failure to account for variability in capture and recapture probabilities can lead to poor quality data and study inferences. Therefore, we recommend that fishery researchers and managers employ sample designs and estimators that can account for this variability.

  16. Requirements for Radial Migration: How Does the Migrating Fraction Depend on Stellar Velocity Dispersion?

    NASA Astrophysics Data System (ADS)

    Tolfree, K. J. D.; Wyse, R. F. G.

    2014-03-01

    Radial migration is a mechanism that can rearrange the orbital angular momentum of stars in a spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta over a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially. In order for a star in a spiral disk to migrate radially, it must first be “captured” in a family of resonant orbits near the radius of corotation with a transient spiral pattern. To date, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for disk stars on non-circular orbits. We then use our analytically derived capture criterion to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve. Further, we derive the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential evaluated at corotation (|Φs|CR). We find that within an annulus centered around corotation where σR is constant, the captured fraction goes as e-σR2/|Φs|CR.

  17. Oxidatively-Stable Linear Poly(propylenimine)-Containing Adsorbents for CO2 Capture from Ultra-Dilute Streams.

    PubMed

    Pang, Simon H; Lively, Ryan P; Jones, Christopher W

    2018-05-29

    Aminopolymer-based solid sorbents have been widely investigated for CO2 capture from dilute streams such as flue gas or ambient air. However, the oxidative stability of the most well-studied aminopolymer, poly(ethylenimine) (PEI), is limited, causing it to lose its CO2 capture capacity after exposure to oxygen at elevated temperatures. Here we demonstrate the use of linear poly(propylenimine) (PPI), synthesized via a simple cationic ring-opening polymerization, as a more oxidatively-stable alternative to PEI with high CO2 capacity and amine efficiency. The performance of linear PPI/SBA-15 composites is investigated over a range of CO2 capture conditions (CO2 partial pressure, adsorption temperature) to examine the trade-off between adsorption capacity and sorption site accessibility, which may be expected to be more limited in linear polymers relative to the prototypical hyperbranched PEI. Linear PPI/SBA-15 composites are more efficient at CO2 capture and retain 65-83% of their CO2 capacity after exposure to a harsh oxidative treatment, compared to 20-40% retention for linear PEI. Additionally, we demonstrate long-term stability of linear PPI sorbents over 50 adsorption/desorption cycles with no loss in performance. Combined with other strategies for improving oxidative stability and adsorption kinetics, linear PPI may play a role as a component of stable, solid adsorbents in commercial applications for CO2 capture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Potential Role of Natural Gas Power Plants with Carbon Capture and Storage as a Bridge to a Low-Carbon Future

    EPA Science Inventory

    Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) are a promising technology for reducing carbon dioxide (CO2) emissions in the electric sector. However, the high cost and efficiency penalties associated with CCS, as well as methane leakage from nat...

  19. 40 CFR 63.3544 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system, and coating solvent flash-off, curing, and drying occurs within the capture system. For example, the criterion is not met if parts enter the open shop environment when being moved between a spray... time required for a single part to go from the beginning to the end of production, and includes drying...

  20. 40 CFR 63.4565 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solvent flash-off, curing, and drying occurs within the capture system; and the removal or evaporation of..., this criterion is not met if parts enter the open shop environment when being moved between a spray... surface preparation activities and drying and curing time. (c) Liquid-to-uncaptured-gas protocol using a...

  1. 40 CFR 63.4765 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coating, curing, and drying occurs within the capture system; and the removal or evaporation of cleaning... criterion is not met if parts enter the open shop environment when being moved between a spray booth and a... activities and drying or curing time. (c) Liquid-to-uncaptured-gas protocol using a temporary total enclosure...

  2. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...

  3. To catch a fly: landing and capture of ceratitis capitata in a Jackson trap with and without an insecticide

    USDA-ARS?s Scientific Manuscript database

    Attractant-based traps are a cornerstone of detection, delimitation and eradication programs for tephritid fruit flies and other pests. The ideal trap and lure combination has high attraction (it brings pest tephritids to the trap from a distance) and high capture efficiency (it has a high probabili...

  4. Efficiency dilution: long-term exergy conversion trends in Japan.

    PubMed

    Williams, Eric; Warr, Benjamin; Ayres, Robert U

    2008-07-01

    This analysis characterizes century-scale trends in exergy efficiency in Japan. Exergy efficiency captures the degree to which energy inputs (such as coal) are converted into useful work (such as electricity or power to move a vehicle). This approach enables the estimation of net efficiencies which aggregate different technologies. Sectors specifically analyzed are electricity generation, transport, steel production, and residential space heating. One result is that the aggregate exergy efficiency of the Japanese economy declined slightly over the last half of the 20th century, reaching a high of around 38% in the late 1970s and falling to around 33% by 1998. The explanation for this is that while individual technologies improved dramatically over the century, less exergy-efficient ones were progressively adopted, yielding a net stabilization or decline. In the electricity sector, for instance, adoption of hydropower was followed by fossil-fired plants and then by nuclear power, each technology being successively less efficient from an exergy perspective. The underlying dynamic of this trend is analogous to declining ore grades in the mining sector. Increasing demand for exergy services requires expended utilization of resources from which it is more difficult to extract utility (e.g., falling water versus coal). We term this phenomenon efficiency dilution.

  5. Comparative efficiency of two models of CO2 traps in the collection of free-living stages of ixodides.

    PubMed

    Guedes, Elizângela; de Azevedo Prata, Márcia Cristina; dos Reis, Eder Sebastião; Cançado, Paulo Henrique Duarte; Leite, Romário Cerqueira

    2012-12-01

    Traps using carbon dioxide (CO(2)) as a chemical attractant are known to be effective when capturing nymphs and adults of some free-living tick species such as Amblyomma cajennense and Amblyomma parvum. Despite the fact that the main source of CO(2) is dry ice, the chemical trap which uses 20 % lactic acid (C(3)H(6)O(3)) and calcium carbonate (CaCO(3)) has been tested as an alternative source of CO(2) whenever it is difficult to obtain dry ice. The objective of this paper was to test and compare the efficiency of these two models of traps during the study of population dynamics of A. cajennense and Amblyomma dubitatum in Coronel Pacheco, Minas Gerais, Brazil. Within the period comprising May 2006 to April 2008, eight CO(2) traps, of which four were dry ice and four chemical, were put in the pasture every 14 days at preestablished areas over a 1.0-m(2) white cotton flannel cloth with a capture dispositive which constituted of double-sided adhesive tapes fixed onto the four corners of the flannels. On every collection day, a cotton flannel without any chemical attractant was placed in the same area of the pasture to become an instrument to control the traps' capture efficiency. After 1 h, the white flannels were collected and placed in plastic bags for later identification and counting of the ticks. A total of 2,133 nymphs of Amblyomma sp., 328 adults of A. cajennense, and 292 adults of A. dubitatum were collected. Out of this total, the dry ice traps captured 1,087 nymphs (51 %), 188 A. cajennense (58.2 %), and 151 A. dubitatum (53 %), while the chemical traps captured 1,016 nymphs (47.6 %), 133 A. cajennense (41 %), and 133 A. dubitatum (46.5 %); 30 nymphs (1.4 %), 7 A. cajennense (0.8 %), and 8 A. dubitatum (0.5 %) were found on the control flannel. The capture potentials of ticks, nymphs, and adults, by the two models of traps tested, were statistically similar (p > 0.05). These results confirm the efficiency of the chemical trap enabling its use in areas of either difficult access or too distant from a dry ice supplier as is the case of forest areas where studies about ixodological fauna are generally carried out.

  6. Firm performance and the role of environmental management.

    PubMed

    Lundgren, Tommy; Zhou, Wenchao

    2017-12-01

    This paper analyzes the interactions between three dimensions of firm performance - productivity, energy efficiency, and environmental performance - and especially sheds light on the role of environmental management. In this context, environmental management is investments to reduce environmental impact, which may also affect firm competitiveness, in terms of change in productivity, and spur more (or less) efficient use of energy. We apply data envelopment analysis (DEA) technique to calculate the Malmquist firm performance indexes, and a panel vector auto-regression (VAR) methodology is utilized to investigate the dynamic and causal relationship between the three dimensions of firm performance and environmental investment. Main results show that energy efficiency and environmental performance are integrated, and energy efficiency and productivity positively reinforce each other, signifying the cost saving property of more efficient use of energy. Hence, increasing energy efficiency, as advocated in many of today's energy policies, could capture multiple benefits. The results also show that improved environmental performance and environmental investments constrain next period productivity, a result that would be in contrast with the Porter hypothesis and strategic corporate social responsibility; both concepts conveying the notion that pro-environmental management can boost productivity and competitiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Towards a More Efficient Detection of Earthquake Induced FAÇADE Damages Using Oblique Uav Imagery

    NASA Astrophysics Data System (ADS)

    Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G.

    2017-08-01

    Urban search and rescue (USaR) teams require a fast and thorough building damage assessment, to focus their rescue efforts accordingly. Unmanned aerial vehicles (UAV) are able to capture relevant data in a short time frame and survey otherwise inaccessible areas after a disaster, and have thus been identified as useful when coupled with RGB cameras for façade damage detection. Existing literature focuses on the extraction of 3D and/or image features as cues for damage. However, little attention has been given to the efficiency of the proposed methods which hinders its use in an urban search and rescue context. The framework proposed in this paper aims at a more efficient façade damage detection using UAV multi-view imagery. This was achieved directing all damage classification computations only to the image regions containing the façades, hence discarding the irrelevant areas of the acquired images and consequently reducing the time needed for such task. To accomplish this, a three-step approach is proposed: i) building extraction from the sparse point cloud computed from the nadir images collected in an initial flight; ii) use of the latter as proxy for façade location in the oblique images captured in subsequent flights, and iii) selection of the façade image regions to be fed to a damage classification routine. The results show that the proposed framework successfully reduces the extracted façade image regions to be assessed for damage 6 fold, hence increasing the efficiency of subsequent damage detection routines. The framework was tested on a set of UAV multi-view images over a neighborhood of the city of L'Aquila, Italy, affected in 2009 by an earthquake.

  8. Memory-based attention capture when multiple items are maintained in visual working memory.

    PubMed

    Hollingworth, Andrew; Beck, Valerie M

    2016-07-01

    Efficient visual search requires that attention is guided strategically to relevant objects, and most theories of visual search implement this function by means of a target template maintained in visual working memory (VWM). However, there is currently debate over the architecture of VWM-based attentional guidance. We contrasted a single-item-template hypothesis with a multiple-item-template hypothesis, which differ in their claims about structural limits on the interaction between VWM representations and perceptual selection. Recent evidence from van Moorselaar, Theeuwes, and Olivers (2014) indicated that memory-based capture during search, an index of VWM guidance, is not observed when memory set size is increased beyond a single item, suggesting that multiple items in VWM do not guide attention. In the present study, we maximized the overlap between multiple colors held in VWM and the colors of distractors in a search array. Reliable capture was observed when 2 colors were held in VWM and both colors were present as distractors, using both the original van Moorselaar et al. singleton-shape search task and a search task that required focal attention to array elements (gap location in outline square stimuli). In the latter task, memory-based capture was consistent with the simultaneous guidance of attention by multiple VWM representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Production of biodiesel from microalgae through biological carbon capture: a review.

    PubMed

    Mondal, Madhumanti; Goswami, Shrayanti; Ghosh, Ashmita; Oinam, Gunapati; Tiwari, O N; Das, Papita; Gayen, K; Mandal, M K; Halder, G N

    2017-06-01

    Gradual increase in concentration of carbon dioxide (CO 2 ) in the atmosphere due to the various anthropogenic interventions leading to significant alteration in the global carbon cycle has been a subject of worldwide attention and matter of potential research over the last few decades. In these alarming scenario microalgae seems to be an attractive medium for capturing the excess CO 2 present in the atmosphere generated from different sources such as power plants, automobiles, volcanic eruption, decomposition of organic matters and forest fires. This captured CO 2 through microalgae could be used as potential carbon source to produce lipids for the generation of biofuel for replacing petroleum-derived transport fuel without affecting the supply of food and crops. This comprehensive review strives to provide a systematic account of recent developments in the field of biological carbon capture through microalgae for its utilization towards the generation of biodiesel highlighting the significance of certain key parameters such as selection of efficient strain, microalgal metabolism, cultivation systems (open and closed) and biomass production along with the national and international biodiesel specifications and properties. The potential use of photobioreactors for biodiesel production under the influence of various factors viz., light intensity, pH, time, temperature, CO 2 concentration and flow rate has been discussed. The review also provides an economic overview and future outlook on biodiesel production from microalgae.

  10. Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications

    NASA Astrophysics Data System (ADS)

    Keyrouz, Shady; Visser, Huib

    2013-12-01

    This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.

  11. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  12. Indentured Parts List Maintenance and Part Assembly Capture Tool - IMPACT

    NASA Technical Reports Server (NTRS)

    Jain, Bobby; Morris, Jill; Sharpe, Kelly

    2004-01-01

    Johnson Space Center's (JSC's) indentured parts list (IPL) maintenance and parts assembly capture tool (IMPACT) is an easy-to-use graphical interface for viewing and maintaining the complex assembly hierarchies of large databases. IMPACT, already in use at JSC to support the International Space Station (ISS), queries, updates, modifies, and views data in IPL and associated resource data, functions that it can also perform, with modification, for any large commercial database. By enabling its users to efficiently view and manipulate IPL hierarchical data, IMPACT performs a function unlike that of any other tool. Through IMPACT, users will achieve results quickly, efficiently, and cost effectively.

  13. Search for Neutrinos from the Sun

    DOE R&D Accomplishments Database

    Davis, Raymond Jr.

    1968-09-01

    A solar neutrino detection system has been built to observe the neutrino radiation from the sun. The detector uses 3,900,000 liters of tetrachloroethylene as the neutrino capturing medium. Argon is removed from the liquid by sweeping with helium gas, and counted in a small low level proportional counter. The recovery efficiency of the system was tested with Ar{sup 36} by the isotope dilution method, and also with Ar{sup 37} produced in the liquid by fast neutrons. These tests demonstrate that Ar{sup 37} produced in the liquid by neutrino capture can be removed with a 95 percent efficiency by the procedure used.

  14. Microwave-induced activation of additional active edge sites on the MoS2 surface for enhanced Hg0 capture

    NASA Astrophysics Data System (ADS)

    Zhao, Haitao; Mu, Xueliang; Yang, Gang; Zheng, Chengheng; Sun, Chenggong; Gao, Xiang; Wu, Tao

    2017-10-01

    In recent years, significant effort has been made in the development of novel materials for the removal of mercury from coal-derived flue gas. In this research, microwave irradiation was adopted to induce the creation of additional active sites on the MoS2 surface. The results showed that Hg0 capture efficiency of the adsorbent containing MoS2 nanosheets being microwave treated was as high as 97%, while the sample prepared via conventional method only showed an efficiency of 94% in its first 180 min testing. After the adsorbent was treated by microwave irradiation for 3 more times, its mercury removal efficiency was still noticeably higher than that of the sample prepared via conventional method. Characterization of surface structure of the MoS2 containing material together with DFT study further revealed that the (001) basal planes of MoS2 crystal structure were cracked into (100) edge planes (with an angle of approximately 75°) under microwave treatment, which subsequently resulted in the formation of additional active edge sites on the MoS2 surface and led to the improved performance on Hg0 capture.

  15. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  16. Achievements and challenges in structural bioinformatics and computational biophysics.

    PubMed

    Samish, Ilan; Bourne, Philip E; Najmanovich, Rafael J

    2015-01-01

    The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field. © The Author 2014. Published by Oxford University Press.

  17. Achievements and challenges in structural bioinformatics and computational biophysics

    PubMed Central

    Samish, Ilan; Bourne, Philip E.; Najmanovich, Rafael J.

    2015-01-01

    Motivation: The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. Results: An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. Conclusion: The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field. Contact: Rafael.Najmanovich@USherbrooke.ca PMID:25488929

  18. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.

    PubMed

    Jalilov, Almaz S; Ruan, Gedeng; Hwang, Chih-Chau; Schipper, Desmond E; Tour, Josiah J; Li, Yilun; Fei, Huilong; Samuel, Errol L G; Tour, James M

    2015-01-21

    Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

  19. Label-Free Isolation and mRNA Detection of Circulating Tumor Cells from Patients with Metastatic Lung Cancer for Disease Diagnosis and Monitoring Therapeutic Efficacy.

    PubMed

    Wang, Jidong; Lu, Wenjing; Tang, Chuanhao; Liu, Yi; Sun, Jiashu; Mu, Xuan; Zhang, Lin; Dai, Bo; Li, Xiaoyan; Zhuo, Hailong; Jiang, Xingyu

    2015-12-01

    We develop an inertial-based microfluidic cell sorter combined with an integrated membrane filter, allowing for size-based, label-free, and high-efficiency separation and enrichment of circulating tumor cells (CTCs) in whole blood. The cell sorter is composed of a double spiral microchannel that hydrodynamically focuses and separates large CTCs from small blood cells. The focused CTCs with the equilibrium position around the midline of microchannel are further captured and enriched by a membrane filter (pore size of 8 μm) attached at the middle outlet. This integrated microfluidic device can process 1 mL of whole blood containing spiked tumor cells (A549, human lung adenocarcinoma epithelial cell line) within 15 min, with the capture efficiency of 74.4% at the concentration as low as tens of A549 cells per mL of whole blood. This microfluidic cell sorter is further adopted for isolation of CTCs from peripheral blood samples of patients with metastatic lung cancer. The immunostaining and CK-19 mRNA detection are applied for identification of captured CTCs, showing that our method can detect 90% of metastatic lung cancer patients before therapy, whereas the commercially used system can only detect 40% of the same patients. We also use the expression of CK-19 mRNA from captured CTCs as an indicator for monitoring the therapeutic efficiency, which correlates well with X-ray computed tomography (CT) assessment of the disease.

  20. Computational simulation of formin-mediated actin polymerization predicts homologue-dependent mechanosensitivity.

    PubMed

    Bryant, Derek; Clemens, Lara; Allard, Jun

    2017-01-01

    Many actin structures are nucleated and assembled by the barbed-end tracking polymerase formin family, including filopodia, focal adhesions, the cytokinetic ring and cell cortex. These structures respond to forces in distinct ways. Formins typically have profilin-actin binding sites embedded in highly flexible disordered FH1 domains, hypothesized to diffusively explore space to rapidly capture actin monomers for delivery to the barbed end. Recent experiments demonstrate that formin-mediated polymerization accelerates when under tension. The acceleration has been attributed to modifying the state of the FH2 domain of formin. Intriguingly, the same acceleration is reported when tension is applied to the FH1 domains, ostensibly pulling monomers away from the barbed end. Here we develop a mesoscale coarse-grain model of formin-mediated actin polymerization, including monomer capture and delivery by FH1, which sterically interacts with actin along its entire length. The binding of actin monomers to their specific sites on FH1 is entropically disfavored by the high disorder. We find that this penalty is attenuated when force is applied to the FH1 domain by revealing the binding site, increasing monomer capture efficiency. Overall polymerization rates can decrease or increase with increasing force, depending on the length of FH1 domain and location of binding site. Our results suggest that the widely varying FH1 lengths and binding site locations found in known formins could be used to differentially respond to force, depending on the actin structure being assembled. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. New objects do not capture attention without a sensory transient.

    PubMed

    Hollingworth, Andrew; Simons, Daniel J; Franconeri, Steven L

    2010-07-01

    Attention capture occurs when a stimulus event involuntarily recruits attention. The abrupt appearance of a new object is perhaps the most well-studied attention-capturing event, yet there is debate over the root cause of this capture. Does a new object capture attention because it involves the creation of a new object representation or because its appearance creates a characteristic luminance transient? The present study sought to resolve this question by introducing a new object into a search display, either with or without a unique luminance transient. Contrary to the results of a recent study (Davoli, Suszko, & Abrams, 2007), when the new object's transient was masked by a brief interstimulus interval introduced between the placeholder and search arrays, a new object did not capture attention. Moreover, when a new object's transient was masked, participants could not locate a new object efficiently even when that was their explicit goal. Together, these data suggest that luminance transient signals are necessary for attention capture by new objects.

  2. Engineering Rubisco activase from thermophilic cyanobacteria into high-temperature sensitive plants.

    PubMed

    Ogbaga, Chukwuma C; Stepien, Piotr; Athar, Habib-Ur-Rehman; Ashraf, Muhammad

    2018-06-01

    In the past decade, various strategies to improve photosynthesis and crop yield, such as leaf morphology, light interception and use efficiency, biochemistry of light reactions, stomatal conductance, carboxylation efficiency, and source to sink regulation, have been discussed at length. Leaf morphology and physiology are tightly coupled to light capturing efficiency, gas exchange capacity, and temperature regulation. However, apart from the photoprotective mechanism of photosystem-II (PSII), i.e. non-photochemical quenching, very low genetic variation in the components of light reactions has been observed in plants. In the last decade, biochemistry-based enhancement of carboxylation efficiency that improves photosynthesis in plants was one of the potential strategies for improving plant biomass production. Enhancement of activation of the ubiquitous enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) by Rubisco activase may be another potential strategy for improving a photosynthesis-driven increase in crop yield. Rubisco activase modifies the conformation of the active center in Rubisco by removing tightly bound inhibitors, thereby contributing to enzyme activation and rapid carboxylation. Thermophilic cyanobacteria are oxygenic photosynthetic bacteria that thrive in high-temperature environments. This critical review discusses the prospects for and the potential of engineering Rubisco activase from thermophilic cyanobacteria into temperature-sensitive plants, to increase the threshold temperature and survival of these plants in arid regions.

  3. The minimal amount of starting DNA for Agilent’s hybrid capture-based targeted massively parallel sequencing

    PubMed Central

    Chung, Jongsuk; Son, Dae-Soon; Jeon, Hyo-Jeong; Kim, Kyoung-Mee; Park, Gahee; Ryu, Gyu Ha; Park, Woong-Yang; Park, Donghyun

    2016-01-01

    Targeted capture massively parallel sequencing is increasingly being used in clinical settings, and as costs continue to decline, use of this technology may become routine in health care. However, a limited amount of tissue has often been a challenge in meeting quality requirements. To offer a practical guideline for the minimum amount of input DNA for targeted sequencing, we optimized and evaluated the performance of targeted sequencing depending on the input DNA amount. First, using various amounts of input DNA, we compared commercially available library construction kits and selected Agilent’s SureSelect-XT and KAPA Biosystems’ Hyper Prep kits as the kits most compatible with targeted deep sequencing using Agilent’s SureSelect custom capture. Then, we optimized the adapter ligation conditions of the Hyper Prep kit to improve library construction efficiency and adapted multiplexed hybrid selection to reduce the cost of sequencing. In this study, we systematically evaluated the performance of the optimized protocol depending on the amount of input DNA, ranging from 6.25 to 200 ng, suggesting the minimal input DNA amounts based on coverage depths required for specific applications. PMID:27220682

  4. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  5. Holey graphene frameworks for highly selective post-combustion carbon capture

    PubMed Central

    Chowdhury, Shamik; Balasubramanian, Rajasekhar

    2016-01-01

    Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications. PMID:26879393

  6. Holey graphene frameworks for highly selective post-combustion carbon capture.

    PubMed

    Chowdhury, Shamik; Balasubramanian, Rajasekhar

    2016-02-16

    Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.

  7. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    PubMed

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  8. Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks.

    PubMed

    Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O; Cohn, Emily; Mekaru, Sumiko R; Brownstein, John S; Ramakrishnan, Naren

    2017-01-19

    In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.

  9. Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks

    NASA Astrophysics Data System (ADS)

    Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren

    2017-01-01

    In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.

  10. Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks

    PubMed Central

    Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren

    2017-01-01

    In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations. PMID:28102319

  11. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.

    PubMed

    Sathre, Roger; Masanet, Eric

    2012-09-04

    To understand the long-term energy and climate implications of different implementation strategies for carbon capture and storage (CCS) in the US coal-fired electricity fleet, we integrate three analytical elements: scenario projection of energy supply systems, temporally explicit life cycle modeling, and time-dependent calculation of radiative forcing. Assuming continued large-scale use of coal for electricity generation, we find that aggressive implementation of CCS could reduce cumulative greenhouse gas emissions (CO(2), CH(4), and N(2)O) from the US coal-fired power fleet through 2100 by 37-58%. Cumulative radiative forcing through 2100 would be reduced by only 24-46%, due to the front-loaded time profile of the emissions and the long atmospheric residence time of CO(2). The efficiency of energy conversion and carbon capture technologies strongly affects the amount of primary energy used but has little effect on greenhouse gas emissions or radiative forcing. Delaying implementation of CCS deployment significantly increases long-term radiative forcing. This study highlights the time-dynamic nature of potential climate benefits and energy costs of different CCS deployment pathways and identifies opportunities and constraints of successful CCS implementation.

  12. Holey graphene frameworks for highly selective post-combustion carbon capture

    NASA Astrophysics Data System (ADS)

    Chowdhury, Shamik; Balasubramanian, Rajasekhar

    2016-02-01

    Atmospheric CO2 concentrations continue to rise rapidly in response to increased combustion of fossil fuels, contributing to global climate change. In order to mitigate the effects of global warming, development of new materials for cost-effective and energy-efficient CO2 capture is critically important. Graphene-based porous materials are an emerging class of solid adsorbents for selectively removing CO2 from flue gases. Herein, we report a simple and scalable approach to produce three-dimensional holey graphene frameworks with tunable porosity and pore geometry, and demonstrate their application as high-performance CO2 adsorbents. These holey graphene macrostructures exhibit a significantly improved specific surface area and pore volume compared to their pristine counterparts, and can be effectively used in post-combustion CO2 adsorption systems because of their intrinsic hydrophobicity together with good gravimetric storage capacities, rapid removal capabilities, superior cycling stabilities, and moderate initial isosteric heats. In addition, an exceptionally high CO2 over N2 selectivity can be achieved under conditions relevant to capture from the dry exhaust gas stream of a coal burning power plant, suggesting the possibility of recovering highly pure CO2 for long-term sequestration and/or utilization for downstream applications.

  13. APTES Functionalized Iron Oxide-Silver Magnetic Hetero-Nanocomposites for Selective Capture and Rapid Removal of Salmonella enteritidis from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Trang, Vu Thi; Dinh, Ngo Xuan; Lan, Hoang; Tam, Le Thi; Huy, Tran Quang; Tuan, Pham Anh; Phan, Vu Ngoc; Le, Anh-Tuan

    2018-02-01

    Magnetic nanomaterials, as a promising platform for the fast and sensitive detection of bacterial pathogens, have attracted increasing interest from researchers in recent years. In this work, by utilizing a two-step synthetic technique consisting of co-precipitation and subsequent hydrothermal reaction, followed by functionalization steps with (3-aminopropyl)triethoxysilane (APTES) and the antibody against Salmonella enteritidis, antibody-conjugated Fe3O4-Ag@APTES hetero-nanocomposites were successfully prepared. Due to the specific antibody, the developed Fe3O4-Ag@APTES@SE-Ab conjugates are capable of selectively capturing S. enteritidis at a low concentration of about 101 CFU/mL. Moreover, the prepared magnetic conjugates also revealed that the S. enteritidis could be rapidly removed from water solution in 20 min by using an external magnetic field with a removal efficiency obtained of ˜ 91.36%. These results indicated that the Fe3O4-Ag@APTES@SE-Ab conjugates are promising for the rapid selective capture and removal of bacterial pathogens from aqueous environments, and can be used for improving the detection quality of pathogens in water samples using immunosensor-based diagnostic tests.

  14. Bypassing the malfunction junction in warm dense matter simulations

    NASA Astrophysics Data System (ADS)

    Cangi, Attila; Pribram-Jones, Aurora

    2015-03-01

    Simulation of warm dense matter requires computational methods that capture both quantum and classical behavior efficiently under high-temperature and high-density conditions. The state-of-the-art approach to model electrons and ions under those conditions is density functional theory molecular dynamics, but this method's computational cost skyrockets as temperatures and densities increase. We propose finite-temperature potential functional theory as an in-principle-exact alternative that suffers no such drawback. In analogy to the zero-temperature theory developed previously, we derive an orbital-free free energy approximation through a coupling-constant formalism. Our density approximation and its associated free energy approximation demonstrate the method's accuracy and efficiency. A.C. has been partially supported by NSF Grant CHE-1112442. A.P.J. is supported by DOE Grant DE-FG02-97ER25308.

  15. Constant-parameter capture-recapture models

    USGS Publications Warehouse

    Brownie, C.; Hines, J.E.; Nichols, J.D.

    1986-01-01

    Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.

  16. Source Update Capture in Information Agents

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen; Kulkarni, Deepak; Wang, Yao

    2003-01-01

    In this paper we present strategies for successfully capturing updates at Web sources. Web-based information agents provide integrated access to autonomous Web sources that can get updated. For many information agent applications we are interested in knowing when a Web source to which the application provides access, has been updated. We may also be interested in capturing all the updates at a Web source over a period of time i.e., detecting the updates and, for each update retrieving and storing the new version of data. Previous work on update and change detection by polling does not adequately address this problem. We present strategies for intelligently polling a Web source for efficiently capturing changes at the source.

  17. 40 CFR Appendix A to Subpart Mmmm... - Alternative Capture Efficiency and Destruction Efficiency Measurement and Monitoring Procedures...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...

  18. 40 CFR Appendix A to Subpart Mmmm... - Alternative Capture Efficiency and Destruction Efficiency Measurement and Monitoring Procedures...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...

  19. 40 CFR Appendix A to Subpart Mmmm... - Alternative Capture Efficiency and Destruction Efficiency Measurement and Monitoring Procedures...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...

  20. 40 CFR Appendix A to Subpart Mmmm... - Alternative Capture Efficiency and Destruction Efficiency Measurement and Monitoring Procedures...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...

  1. 40 CFR Appendix A to Subpart Mmmm... - Alternative Capture Efficiency and Destruction Efficiency Measurement and Monitoring Procedures...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire... Method D5291-02, “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen...

  2. From Förster resonance energy transfer to coherent resonance energy transfer and back

    NASA Astrophysics Data System (ADS)

    Clegg, Robert M.; Sener, Melih; Govindjee, .

    2010-02-01

    Photosynthesis converts solar energy into chemical energy. It provides food and oxygen; and, in the future, it could directly provide bioenergy or renewable energy sources, such as bio-alcohol or hydrogen. To exploit such a highly efficient capture of energy requires an understanding of the fundamental physics. The process is initiated by photon absorption, followed by highly efficient and extremely rapid transfer and trapping of the excitation energy. We first review early fluorescence experiments on in vivo energy transfer, which were undertaken to understand the mechanism of such efficient energy capture. A historical synopsis is given of experiments and interpretations by others that dealt with the question of how energy is transferred from the original location of photon absorption in the photosynthetic antenna system into the reaction centers, where it is converted into useful chemical energy. We conclude by examining the physical basis of some current models concerning the roles of coherent excitons and incoherent hopping in the exceptionally efficient transfer of energy into the reaction center.

  3. Affective-cognitive meta-bases versus structural bases of attitudes predict processing interest versus efficiency.

    PubMed

    See, Ya Hui Michelle; Petty, Richard E; Fabrigar, Leandre R

    2013-08-01

    We proposed that (a) processing interest for affective over cognitive information is captured by meta-bases (i.e., the extent to which people subjectively perceive themselves to rely on affect or cognition in their attitudes) and (b) processing efficiency for affective over cognitive information is captured by structural bases (i.e., the extent to which attitudes are more evaluatively congruent with affect or cognition). Because processing speed can disentangle interest from efficiency by being manifest as longer or shorter reading times, we hypothesized and found that more affective meta-bases predicted longer affective than cognitive reading time when processing efficiency was held constant (Study 1). In contrast, more affective structural bases predicted shorter affective than cognitive reading time when participants were constrained in their ability to allocate resources deliberatively (Study 2). When deliberation was neither encouraged nor constrained, effects for meta-bases and structural bases emerged (Study 3). Implications for affective-cognitive processing and other attitudes-relevant constructs are discussed.

  4. Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungho; Hwang, Soo Min; Park, Jeong-Sun; Han, Jinhyup; Kim, Junsoo; Kim, Youngsik

    2016-05-01

    Cost-effective and eco-friendly battery system with high energy density is highly desirable. Herein, we report a seawater battery with a high voltage efficiency, in which a chloride ion-capturing electrode (CICE) consisting of Ag foil is utilized as the cathode. The use of Ag as the cathode leads to a sharp decrease in the voltage gaps between charge and discharge curves, based on reversible redox reaction of Ag/AgCl (at ∼2.9 V vs. Na+/Na) in a seawater catholyte during cycling. The Ag/AgCl reaction proves to be highly reversible during battery cycling. The battery employing the Ag electrode shows excellent cycling performance with a high Coulombic efficiency (98.6-98.7%) and a highly improved voltage efficiency (90.3% compared to 73% for carbonaceous cathode) during 20 cycles (total 500 h). These findings demonstrate that seawater batteries using a CICE could be used as next-generation batteries for large-scale stationary energy storage plants.

  5. Capture of irregular satellites at Jupiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encountersmore » with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.« less

  6. A comparative analysis of exome capture.

    PubMed

    Parla, Jennifer S; Iossifov, Ivan; Grabill, Ian; Spector, Mona S; Kramer, Melissa; McCombie, W Richard

    2011-09-29

    Human exome resequencing using commercial target capture kits has been and is being used for sequencing large numbers of individuals to search for variants associated with various human diseases. We rigorously evaluated the capabilities of two solution exome capture kits. These analyses help clarify the strengths and limitations of those data as well as systematically identify variables that should be considered in the use of those data. Each exome kit performed well at capturing the targets they were designed to capture, which mainly corresponds to the consensus coding sequences (CCDS) annotations of the human genome. In addition, based on their respective targets, each capture kit coupled with high coverage Illumina sequencing produced highly accurate nucleotide calls. However, other databases, such as the Reference Sequence collection (RefSeq), define the exome more broadly, and so not surprisingly, the exome kits did not capture these additional regions. Commercial exome capture kits provide a very efficient way to sequence select areas of the genome at very high accuracy. Here we provide the data to help guide critical analyses of sequencing data derived from these products.

  7. Phenotypic and genetic correlations among milk energy output, body weight, and feed intake, and their effects on feed efficiency in lactating dairy cattle

    USDA-ARS?s Scientific Manuscript database

    Continued improvements in feed efficiency are essential for a thriving and sustainable dairy industry. Gross efficiency (GrEff) is defined as the energy captured in milk and body tissues as a percentage of gross energy intake. Our objective was to characterize the relationships among component tra...

  8. 40 CFR 63.3965 - How do I determine the emission capture system efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Method 204A or 204F of appendix M to 40 CFR part 51 to determine the mass fraction of TVH liquid input... temporary total enclosure or building enclosure. The liquid-to-uncaptured-gas protocol compares the mass of liquid TVH in materials used in the coating operation to the mass of TVH emissions not captured by the...

  9. 40 CFR 63.3556 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system and add-on control device operating limits during the performance test? 63.3556 Section 63.3556... of key parameters of the valve operating system (e.g., solenoid valve operation, air pressure... Control Efficiency/outlet Concentration Option § 63.3556 How do I establish the emission capture system...

  10. Highly efficient SO2 capture by dual functionalized ionic liquids through a combination of chemical and physical absorption.

    PubMed

    Cui, Guokai; Wang, Congmin; Zheng, Junjie; Guo, Yan; Luo, Xiaoyan; Li, Haoran

    2012-03-07

    Two kinds of dual functionalized ionic liquids with ether-functionalized cations and tetrazolate anions were designed, prepared, and used for SO(2) capture, which exhibit an extremely high SO(2) capacity and excellent reversibility through a combination of chemical and physical absorption. This journal is © The Royal Society of Chemistry 2012

  11. Reversible capture of SO2 through functionalized ionic liquids.

    PubMed

    Yang, Dezhong; Hou, Minqiang; Ning, Hui; Ma, Jun; Kang, Xinchen; Zhang, Jianling; Han, Buxing

    2013-07-01

    Emission of SO2 in flue gas from the combustion of fossil fuels leads to severe environmental problems. Exploration of green and efficient methods to capture SO2 is an interesting topic, especially at lower SO2 partial pressures. In this work, ionic liquids (ILs) 1-(2-diethylaminoethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Et2 NEMim][Tf2 N]) and 1-(2-diethylaminoethyl)-3-methylimidazolium tetrazolate ([Et2 NEMim][Tetz]) were synthesized. The performances of the two ILs to capture SO2 were studied under different conditions. It was demonstrated that the ILs were very efficient for SO2 absorption. The [Et2 NEMim][Tetz] IL designed in this work could absorb 0.47 g(SO2)g(IL)(-1) at 0.0101 MPa SO2 partial pressure, which is the highest capacity reported to date under the same conditions. The main reason for the large capacity was that both the cation and the anion could capture SO2 chemically. In addition, the IL could easily be regenerated, and the very high absorption capacity and rapid absorption/desorption rates were not changed over five repeated cycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. On the potential for BECCS efficiency improvement through heat recovery from both post-combustion and oxy-combustion facilities.

    PubMed

    Dowell, N Mac; Fajardy, M

    2016-10-20

    In order to mitigate climate change to no more than 2 °C, it is well understood that it will be necessary to directly remove significant quantities of CO 2 , with bioenergy CCS (BECCS) regarded as a promising technology. However, BECCS will likely be more costly and less efficient at power generation than conventional CCS. Thus, approaches to improve BECCS performance and reduce costs are of importance to facilitate the deployment of this key technology. In this study, the impact of biomass co-firing rate and biomass moisture content on BECCS efficiency with both post- and oxy-combustion CO 2 capture technologies was evaluated. It was found that post-combustion capture BECCS (PCC-BECCS) facilities will be appreciably less efficient than oxy-combustion capture BECCS (OCC-BECCS) facilities. Consequently, PCC-BECCS have the potential to be more carbon negative than OCC-BECCS per unit electricity generated. It was further observed that the biomass moisture content plays an important role in determining the BECCS facilities' efficiency. This will in turn affect the enthalpic content of the BECCS plant exhaust and implies that exhaust gas heat recovery may be an attractive option at higher rates of co-firing. It was found that there is the potential for the recovery of approximately 2.5 GJ heat per t CO 2 at a temperature of 100 °C from both PCC-BECCS and OCC-BECCS. On- and off-site applications for this recovered heat are discussed, considering boiler feedwater pre-heating, solvent regeneration and district heating cases.

  13. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    PubMed Central

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. PMID:27930331

  14. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    DOE PAGES

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; ...

    2016-12-05

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PVmore » conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.« less

  15. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  16. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.

    PubMed

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A

    2016-12-20

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV + scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV + modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  17. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    PubMed

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  18. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency.

    PubMed

    VandeHaar, M J; Armentano, L E; Weigel, K; Spurlock, D M; Tempelman, R J; Veerkamp, R

    2016-06-01

    Feed efficiency, as defined by the fraction of feed energy or dry matter captured in products, has more than doubled for the US dairy industry in the past 100 yr. This increased feed efficiency was the result of increased milk production per cow achieved through genetic selection, nutrition, and management with the desired goal being greater profitability. With increased milk production per cow, more feed is consumed per cow, but a greater portion of the feed is partitioned toward milk instead of maintenance and body growth. This dilution of maintenance has been the overwhelming driver of enhanced feed efficiency in the past, but its effect diminishes with each successive increment in production relative to body size and therefore will be less important in the future. Instead, we must also focus on new ways to enhance digestive and metabolic efficiency. One way to examine variation in efficiency among animals is residual feed intake (RFI), a measure of efficiency that is independent of the dilution of maintenance. Cows that convert feed gross energy to net energy more efficiently or have lower maintenance requirements than expected based on body weight use less feed than expected and thus have negative RFI. Cows with low RFI likely digest and metabolize nutrients more efficiently and should have overall greater efficiency and profitability if they are also healthy, fertile, and produce at a high multiple of maintenance. Genomic technologies will help to identify these animals for selection programs. Nutrition and management also will continue to play a major role in farm-level feed efficiency. Management practices such as grouping and total mixed ration feeding have improved rumen function and therefore efficiency, but they have also decreased our attention on individual cow needs. Nutritional grouping is key to helping each cow reach its genetic potential. Perhaps new computer-driven technologies, combined with genomics, will enable us to optimize management for each individual cow within a herd, or to optimize animal selection to match management environments. In the future, availability of feed resources may shift as competition for land increases. New approaches combining genetic, nutrition, and other management practices will help optimize feed efficiency, profitability, and environmental sustainability. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Policies to Enhance Prescribing Efficiency in Europe: Findings and Future Implications

    PubMed Central

    Godman, Brian; Shrank, William; Andersen, Morten; Berg, Christian; Bishop, Iain; Burkhardt, Thomas; Garuoliene, Kristina; Herholz, Harald; Joppi, Roberta; Kalaba, Marija; Laius, Ott; Lonsdale, Julie; Malmström, Rickard E.; Martikainen, Jaana E.; Samaluk, Vita; Sermet, Catherine; Schwabe, Ulrich; Teixeira, Inês; Tilson, Lesley; Tulunay, F. Cankat; Vlahović-Palčevski, Vera; Wendykowska, Kamila; Wettermark, Bjorn; Zara, Corinne; Gustafsson, Lars L.

    2010-01-01

    Introduction: European countries need to learn from each other to address unsustainable increases in pharmaceutical expenditures. Objective: To assess the influence of the many supply and demand-side initiatives introduced across Europe to enhance prescribing efficiency in ambulatory care. As a result provide future guidance to countries. Methods: Cross national retrospective observational study of utilization (DDDs – defined daily doses) and expenditure (Euros and local currency) of proton pump inhibitors (PPIs) and statins among 19 European countries and regions principally from 2001 to 2007. Demand-side measures categorized under the “4Es” – education engineering, economics, and enforcement. Results: Instigating supply side initiatives to lower the price of generics combined with demand-side measures to enhance their prescribing is important to maximize prescribing efficiency. Just addressing one component will limit potential efficiency gains. The influence of demand-side reforms appears additive, with multiple initiatives typically having a greater influence on increasing prescribing efficiency than single measures apart from potentially “enforcement.” There are also appreciable differences in expenditure (€/1000 inhabitants/year) between countries. Countries that have not introduced multiple demand side measures to counteract commercial pressures to enhance the prescribing of generics have seen considerably higher expenditures than those that have instigated a range of measures. Conclusions: There are considerable opportunities for European countries to enhance their prescribing efficiency, with countries already learning from each other. The 4E methodology allows European countries to concisely capture the range of current demand-side measures and plan for the future knowing that initiatives can be additive to further enhance their prescribing efficiency. PMID:21833180

  20. Improved integral images compression based on multi-view extraction

    NASA Astrophysics Data System (ADS)

    Dricot, Antoine; Jung, Joel; Cagnazzo, Marco; Pesquet, Béatrice; Dufaux, Frédéric

    2016-09-01

    Integral imaging is a technology based on plenoptic photography that captures and samples the light-field of a scene through a micro-lens array. It provides views of the scene from several angles and therefore is foreseen as a key technology for future immersive video applications. However, integral images have a large resolution and a structure based on micro-images which is challenging to encode. A compression scheme for integral images based on view extraction has previously been proposed, with average BD-rate gains of 15.7% (up to 31.3%) reported over HEVC when using one single extracted view. As the efficiency of the scheme depends on a tradeoff between the bitrate required to encode the view and the quality of the image reconstructed from the view, it is proposed to increase the number of extracted views. Several configurations are tested with different positions and different number of extracted views. Compression efficiency is increased with average BD-rate gains of 22.2% (up to 31.1%) reported over the HEVC anchor, with a realistic runtime increase.

Top