Science.gov

Sample records for increasing co2 concentration

  1. A usage of CO2 hydrate: convenient method to increase CO2 concentration in culturing algae.

    PubMed

    Nakano, Sho; Chang, Kwang-Hyeon; Shijima, Atsushi; Miyamoto, Hiroyuki; Sato, Yukio; Noto, Yuji; Ha, Jin-Yong; Sakamoto, Masaki

    2014-11-01

    The addition of CO2 to algal culture systems can increase algal biomass effectively. Generally, gas bubbling is used to increase CO2 levels in culture systems; however, it is difficult to quantitatively operate to control the concentration using this method. In this study, we tested the usability of CO2 hydrate for phytoplankton culture. Specifically, green algae Pseudokirchneriella subcapitata were cultured in COMBO medium that contained dissolved CO2 hydrate, after which its effects were evaluated. The experiment was conducted according to a general bioassay procedure (OECD TG201). CO2 promoted algae growth effectively (about 2-fold relative to the control), and the decrease in pH due to dissolution of the CO2 in water recovered soon because of photosynthesis. Since the CO2 hydrate method can control a CO2 concentration easily and quantitatively, it is expected to be useful in future applications.

  2. Will atmospheric CO2 concentration continue to increase if anthropogenic CO2 emissions cease?

    NASA Astrophysics Data System (ADS)

    MacDougall, A. H.; Eby, M.; Weaver, A. J.

    2013-12-01

    If anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that overall carbon sinks would dominate. However, these models have typically neglected the permafrost carbon pool, which has the potential to introduce an additional terrestrial source of carbon to the atmosphere. Here we use the University of Victoria Earth System Climate Model, which has recently been expanded to include permafrost carbon stocks and exchanges with the atmosphere. In a scenario of zeroed CO2 and sulphate aerosol emissions, we assess whether the warming induced by specified constant concentrations of non-CO2 greenhouse gases could slow the CO2 decline following zero emissions, or even reverse this trend and cause CO2 to increase over time. We find that a radiative forcing from non-CO2 gases of approximately 0.6 W m-2 results in a near balance of CO2 emissions from the terrestrial biosphere and uptake of CO2 by the oceans, resulting in near-constant atmospheric CO2 concentrations for at least a century after emissions are eliminated. At higher values of non-CO2 radiative forcing, CO2 concentrations increase over time, regardless of when emissions cease during the 21st century. Given that the present-day radiative forcing from non-CO2 greenhouse gases is about 0.95 W m-2, our results suggest that if we were to eliminate all CO2 and aerosols emissions without also decreasing non-CO2 greenhouse gas emissions, CO2 levels would increase over time, resulting in a small increase in climate warming. The sudden and total cessation of anthropogenic CO2 emissions is an unlikely future scenario. However, such cessation experiments provide a useful method for evaluating the relative strength of the terrestrial and oceanic carbon cycle feedbacks in the presence of forcing from non-CO2 greenhouse gasses.

  3. High indoor CO2 concentrations in an office environment increases the transcutaneous CO2 level and sleepiness during cognitive work.

    PubMed

    Vehviläinen, Tommi; Lindholm, Harri; Rintamäki, Hannu; Pääkkönen, Rauno; Hirvonen, Ari; Niemi, Olli; Vinha, Juha

    2016-01-01

    The purpose of this study is to perform a multiparametric analysis on the environmental factors, the physiological stress reactions in the body, the measured alertness, and the subjective symptoms during simulated office work. Volunteer male subjects were monitored during three 4-hr work meetings in an office room, both in a ventilated and a non-ventilated environment. The environmental parameters measured included CO(2), temperature, and relative humidity. The physiological test battery consisted of measuring autonomic nervous system functions, salivary stress hormones, blood's CO(2)- content and oxygen saturation, skin temperatures, thermal sensations, vigilance, and sleepiness. The study shows that we can see physiological changes caused by high CO(2) concentration. The findings support the view that low or moderate level increases in concentration of CO(2) in indoor air might cause elevation in the blood's transcutaneously assessed CO(2). The observed findings are higher CO(2) concentrations in tissues, changes in heart rate variation, and an increase of peripheral blood circulation during exposure to elevated CO(2) concentration. The subjective parameters and symptoms support the physiological findings. This study shows that a high concentration of CO(2) in indoor air seem to be one parameter causing physiological effects, which can decrease the facility user's functional ability. The correct amount of ventilation with relation to the number of people using the facility, functional air distribution, and regular breaks can counteract the decrease in functional ability. The findings of the study suggest that merely increasing ventilation is not necessarily a rational solution from a technical-economical viewpoint. Instead or in addition, more comprehensive, anthropocentric planning of space is needed as well as instructions and new kinds of reference values for the design and realization of office environments.

  4. Elevated CO2 concentration around alfalfa nodules increases N2 fixation.

    PubMed

    Fischinger, Stephanie A; Hristozkova, Marieta; Mainassara, Zaman-Allah; Schulze, Joachim

    2010-01-01

    Nodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration. The hypothesis of the present paper was that nitrogen fixation in alfalfa plants is enhanced when the nodules are exposed to elevated CO2 concentrations. Therefore nodulated plants of alfalfa were grown in a hydroponic system that allowed separate aeration of the root/nodule compartment that avoided any gas leakage to the shoots. The root/nodule compartments were aerated either with a 2500 microl l(-1) (+CO2) or zero microl l(-1) (-CO2) CO2-containing N2/O2 gas flow (80/20, v/v). Nodule CO2 fixation, nitrogen fixation, and growth were strongly increased in the +CO2 treatment in a 3-week experimental period. More intensive CO2 and nitrogen fixation coincided with higher per plant amounts of amino acids and organic acids in the nodules. Moreover, the concentration of asparagine was increased in both the nodules and the xylem sap. Plants in the +CO2 treatment tended to develop nodules with higher %N concentration and individual activity. In a parallel experiment on plants with inefficient nodules (fix-) the +CO2 treatment remained without effect. Our data support the thesis that nodule CO2 fixation is pivotal for efficient nitrogen fixation. It is concluded that strategies which enhance nodule CO2 fixation will improve nitrogen fixation and nodule formation. Moreover, sufficient CO2 application to roots and nodules is necessary for growth and efficient nitrogen fixation in hydroponic and aeroponic growth systems.

  5. Effects of increased CO2 concentrations on surface temperature of the early earth

    NASA Technical Reports Server (NTRS)

    Kuhn, W. R.; Kasting, J. F.

    1983-01-01

    It is pointed out that enhanced levels of CO2 in the atmosphere could have provided the necessary warming to maintain the temperature above freezing. The processes that have been proposed for these larger amounts of CO2 are increased tectonic activity, a decrease in the solubility of CO2 in the oceans, rock weathering, and sediment deposition. It is shown here that large CO2 concentrations are necessary to maintain the early earth's surface temperature at approximately today's level. A thousand times the present atmospheric level of CO2 in the atmosphere would yield a temperature of 292 K, whereas a 100-fold increase in CO2 concentration would give a temperature of 284 K. The surface warming is highly dependent on the amount of water vapor and clouds, and knowledge of both of these during the early history of the earth is scant.

  6. Response of plants' water use efficiency to increasing atmospheric CO2 concentration.

    PubMed

    Wang, Guoan; Feng, Xiahong

    2012-08-21

    This study assesses plants' adaptation to the elevated atmospheric CO(2) concentrations (c(a)) using 83 tree-ring δ(13)C series from the mid- to high-latitudes of the northern hemisphere. We found that the variation of Δ with the atmospheric CO(2) concentration is nonlinear and that the range of Δ change is relatively small. After 1950, the mean increase in Δ is 0.43‰, corresponding to the average coefficient of Δ-c(a) relationship to be about 0.006‰/ ppmv CO(2). In contrast to the changes in Δ, intercellular CO(2) concentration (c(i)) and intrinsic water-use efficiency (W(i)) both increase linearly with c(a). For the past two and a half centuries, changes in the intercellular CO(2) concentration (c(i)) and intrinsic water-use efficiency (W(i)) are, on average, both about 30%, while the mean change of the c(i)/c(a) ratio is 3%. Most changes have occurred after 1950. W(i) responds to c(a) linearly with sensitivities ranging from 0.06 to 0.6 μmol CO(2)/mmol H(2)O ppmv(-1), and an average 0.33 μmol CO(2)/mmol H(2)O ppmv(-1) during the past 50 years. Statistical analysis shows that the increase in c(a) accounts for 98% of the W(i) variation. The remaining small variance is explained by altitude and temperature. Trees at higher elevations show slightly higher increase in W(i), and they are also more sensitive to the CO(2) increase than trees at lower altitudes. Trees growing at low temperature environments are slightly more sensitive to CO(2) increase than those at higher temperature sites. No significant relationship between precipitation and plants' W(i) response to the atmospheric CO(2) increase is found with these data. Although the temperature and altitude both impact the W(i) response to elevated CO(2), the size of the impact is physically small and can be omitted from ecological models.

  7. Thermodynamic balance of photosynthesis and transpiration at increasing CO2 concentrations and rapid light fluctuations.

    PubMed

    Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé

    2014-02-01

    Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance.

  8. Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro-algae.

    PubMed

    Wu, HongYan; Zou, DingHui; Gao, KunShan

    2008-12-01

    Marine photosynthesis drives the oceanic biological CO(2) pump to absorb CO(2) from the atmosphere, which sinks more than one third of the industry-originated CO(2) into the ocean. The increasing atmospheric CO(2) and subsequent rise of pCO(2) in seawater, which alters the carbonate system and related chemical reactions and results in lower pH and higher HCO(3) (-) concentration, affect photosynthetic CO(2) fixation processes of phytoplanktonic and macroalgal species in direct and/or indirect ways. Although many unicellular and multicellular species can operate CO(2)-concentrating mechanisms (CCMs) to utilize the large HCO(3) (-) pool in seawater, enriched CO(2) up to several times the present atmospheric level has been shown to enhance photosynthesis and growth of both phytoplanktonic and macro-species that have less capacity of CCMs. Even for species that operate active CCMs and those whose photosynthesis is not limited by CO(2) in seawater, increased CO(2) levels can down-regulate their CCMs and therefore enhance their growth under light-limiting conditions (at higher CO(2) levels, less light energy is required to drive CCM). Altered physiological performances under high-CO(2) conditions may cause genetic alteration in view of adaptation over long time scale. Marine algae may adapt to a high CO(2) oceanic environment so that the evolved communities in future are likely to be genetically different from the contemporary communities. However, most of the previous studies have been carried out under indoor conditions without considering the acidifying effects on seawater by increased CO(2) and other interacting environmental factors, and little has been documented so far to explain how physiology of marine primary producers performs in a high-CO(2) and low-pH ocean.

  9. Adaptation of the NDIR technology to 13CO2 breath tests under increased inspiratory O2 concentrations.

    PubMed

    Vogt, Josef A; Wachter, Ulrich; Mehring, Jürgen; Radermacher, Peter; Georgieff, Michael; Fischer, Heinz; Hölscher, Uvo; Moede, Michael; Fabinski, Walter

    2009-07-01

    Nondispersive infrared spectroscopy (NDIR) allows the continuous analysis of respiratory gases. Due to its high selectivity, simple and robust setup, and small footprint, it is also used to support (13)CO(2) breath tests to assess bacterial growth in the stomach, gut, or liver function. CO(2) NDIR signals, however, are biased by oxygen in the gas matrix. This complicates NDIR-based breath tests, if the inspired oxygen concentration has to be adjusted to the subject's requirements, or hyperoxia-induced effects were studied. To avoid the oxygen-induced bias, a "dilution" approach was developed: expired gas is mixed with N(2) to lower the oxygen content down to the usual range of 15-20%. Accuracy and precision were tested using synthetic gas mixtures with increasing (13)CO(2)-to-(12)CO(2) ratios ((13)CO(2)/(12)CO(2)), either based on synthetic air with approximately 20% volume O(2) or on pure O(2). For samples with delta(13)C values smaller than 300 (or (13)CO(2)/(12)CO(2) smaller than 0.003), the dilution does not significantly increase the bias in the (13)CO(2)/(12)CO(2) determination, and the within-run imprecision is smaller than 1 delta(13)C. The practical use of this approach was validated in a pig study using a sepsis model reflecting a clinical situation that requires an increased oxygen concentration for respiration. The N(2) dilution eliminated the high bias in NDIR measurement, thus allowing the determination of the impact of oxygenation on glucose oxidation in patients ventilated with increased oxygen.

  10. Elevated CO2 concentration increase the mobility of Cd and Zn in the rhizosphere of hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Tao, Qi; Liang, Chengfeng; Yang, Xiaoe

    2014-05-01

    The effects of elevated CO2 on metal species and mobility in the rhizosphere of hyperaccumulator are not well understood. We report an experiment designed to compare the effects of elevated CO2 on Cd/Zn speciation and mobility in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μl l(-1)) or elevated (800 μl l(-1)) CO2 conditions. No difference in solution pH of NHE was observed between ambient and elevated CO2 treatments. For HE, however, elevated CO2 reduced soil solution pH by 0.22 unit, as compared to ambient CO2 conditions. Elevated CO2 increased dissolved organic carbon (DOC) and organic acid levels in soil solution of both ecotypes, but the increase in HE solution was much greater than in NHE solution. After the growth of HE, the concentrations of Cd and Zn in soil solution decreased significantly regardless of CO2 level. The visual MINTEQ speciation model predicted that Cd/Zn-DOM complexes were the dominant species in soil solutions, followed by free Cd(2+) and Zn(2+) species for both ecotypes. However, Cd/Zn-DOM complexes fraction in soil solution of HE was increased by the elevated CO2 treatment (by 8.01 % for Cd and 8.47 % for Zn, respectively). Resin equilibration experiment results indicated that DOM derived from the rhizosphere of HE under elevated CO2 (HE-DOM-E) (90 % for Cd and 73 % for Zn, respectively) showed greater ability to form complexes with Cd and Zn than those under ambient CO2 (HE-DOM-A) (82 % for Cd and 61 % for Zn, respectively) in the undiluted sample. HE-DOM-E showed greater ability to extract Cd and Zn from soil than HE-DOM-A. It was concluded that elevated CO2 could increase the mobility of Cd and Zn due to the enhanced formation of DOM-metal complexes in the rhizosphere of HE S. alfredii.

  11. Modeling the response of forest isoprene emissions to future increases in atmospheric CO2 concentration and changes in climate (Invited)

    NASA Astrophysics Data System (ADS)

    Monson, R. K.; Heald, C. L.; Guenther, A. B.; Wilkinson, M.

    2009-12-01

    Isoprene emissions from plants to the atmosphere are sensitive to changes in temperature, light and atmospheric CO2 concentration in both the short- (seconds-to-minutes) and long-term (hours-to-months). We now understand that the different time constants for these responses are due to controls by different sets of biochemical and physiological processes n leaves. Progress has been made in the past few years toward converting this process-level understanding into quantitative models. In this talk, we consider this progress with special emphasis on the short- and long-term responses to atmospheric CO2 concentration and temperature. A new biochemically-based model is presented for describing the CO2 responses, and the model is deployed in a global context to predict interactions between the influences of temperature and CO2 on the global isoprene emission rate. The model is based on the theory of enzyme-substrate kinetics, particularly with regard to those reactions that produce puruvate or glyceraldehyde 3-phosphate, the two chloroplastic substrates for isoprene biosynthesis. In the global model, when we accounted for CO2 inhibition of isoprene emission in the long-term response, we observed little impact on present-day global isoprene emission (increase from 508 to 523 Tg C yr-1). However, the large increases in future isoprene emissions predicted from past models which are due to a projected warmer climate, were entirely offset by including the CO2 effects. The isoprene emission response to CO2 was dominated by the long-term growth environment effect, with modulations of 10% or less from the short-term effect. We use this analysis as a framework for grounding future global models of isoprene emission in biochemical and physiological observations.

  12. Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom species

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Smith, Walker O.; Wang, Xiaodong; Li, Shaoshan

    2010-05-01

    Recent investigations into the role of carbon dioxide on phytoplankton growth and composition have clearly shown differential effects among species and assemblages, suggesting that increases in oceanic CO2 may play a critical role in structuring lower trophic levels of marine systems in the future. Furthermore, alarming increases in the occurrence of harmful algal blooms (HABs) in coastal waters have been observed, and while not uniform among systems, appear in some manner to be linked to human impacts (eutrophication) on coastal systems. Models of HABs are in their infancy and do not at present include sophisticated biological effects or their environmental controls. Here we show that subtle biological responses occur in the HAB species Phaeocystis globosa Scherffel as a result of CO2 enrichment induced by gentle bubbling. The alga, which has a polymorphic life history involving the formation of both colonies and solitary cells, exhibited altered growth rates of colonial and solitary forms at [CO2] of 750 ppm, as well as increased colony formation. In addition, substantial modifications of elemental and photosynthetic constituents of the cells (C cell-1, N cell-1, potential quantum yield, chl a cell-1) occurred under elevated CO2 concentrations compared to those found at present CO2 levels. In contrast, other individual and population variables (e.g., colony diameter, total chlorophyll concentration, carbon/nitrogen ratio) were unaffected by increased CO2. Our results suggest that predictions of the future impacts of Phaeocystis blooms on coastal ecosystems and local biogeochemistry need to carefully examine the subtle biological responses of this alga in addition to community and ecosystem effects.

  13. Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE)

    NASA Astrophysics Data System (ADS)

    Schleppi, Patrick; Inga, Bucher-Wallin; Frank, Hagedorn; Christian, Körner

    2013-04-01

    In a mature temperate forest in Hofstetten, Switzerland, deciduous tree canopies were subjected to a free-air CO2 enrichment (FACE) for a period of eight years. The effect of this treatment on the availability of nitrogen (N) in the soil was assessed along three transects across the experimental area, one under Fagus sylvatica, one under Quercus robur and Q. petraea and one under Carpinus betulus. Nitrate, ammonium and dissolved organic N (DON) were analysed in soil solution obtained with suction cups. Nitrate and ammonium were also captured in buried ion-exchange resin bags. These parameters were related to the local intensity of the FACE treatment as measured from the 13C depletion of dissolved inorganic carbon in the soil solution, because the CO2 used for the treatment was depleted in 13C (Schleppi et al., 2012). Over the eight years of the experiment, the CO2 enrichment reduced DON concentrations, did not affect ammonium, but induced higher nitrate concentrations, both in soil solution and in resin bags. In the nitrate captured in the resin bags, the natural abundance of the isotope 15N strongly increased. This indicates that the CO2 enrichment accelerated net nitrification, probably as an effect of the higher soil moisture resulting from the reduced transpiration of the CO2-enriched trees. It is also possible that N mineralisation was enhanced by root exudates (priming effect) or that the uptake of inorganic N by these trees decreased slightly as the result of a reduced N demand for fine root growth. In this mature deciduous forest we did not observe any progressive N limitation due to elevated atmospheric CO2 concentrations; on the contrary, we observed an enhanced N availability over the eight years of our measurements. This may, together with the global warming projected, exacerbate problems related to N saturation and nitrate leaching, although it is uncertain how long the observed trends will last in the future. Following the experiment with deciduous

  14. The effect of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw.

    PubMed

    He, Xiangyu; Wu, Yanping; Cai, Min; Mu, Chunlong; Luo, Weihong; Cheng, Yanfen; Zhu, Weiyun

    2015-01-01

    This experiment was conducted to investigate the effects of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw. The field experiment was carried out from November 2012 to June 2013 at Changshu (31°32'93″N, 120°41'88″E) agro-ecological experimental station. A total of three treatments were set. The concentration of CO2 was increased to 500 μmol/mol in the first treatment (CO2 group). The temperature was increased by 2 °C in the second treatment (TEM group) and the concentration of CO2 and temperature were both increased in the third treatment (CO2 + TEM group). The mean temperature and concentration of CO2 in control group were 10.5 °C and 413 μmol/mol. At harvesting, the wheat straws were collected and analyzed for chemical composition and in vitro digestibility. Results showed that dry matter was significantly increased in all three treatments. Ether extracts and neutral detergent fiber were significantly increased in TEM and CO2 + TEM groups. Crude protein was significantly decreased in CO2 + TEM group. In vitro digestibility analysis of wheat straw revealed that gas production was significantly decreased in CO2 and CO2 + TEM groups. Methane production was significantly decreased in TEM and CO2 + TEM groups. Ammonia nitrogen and microbial crude protein were significantly decreased in all three treatments. Total volatile fatty acids were significantly decreased in CO2 and CO2 + TEM groups. In conclusion, the chemical composition of the wheat straw was affected by temperature and CO2 and the in vitro digestibility of wheat straw was reduced, especially in the combined treatment of temperature and CO2.

  15. Sedum-dominated green-roofs in a semi-arid region increase CO2 concentrations during the dry season.

    PubMed

    Agra, Har'el; Klein, Tamir; Vasl, Amiel; Shalom, Hadar; Kadas, Gyongyver; Blaustein, Leon

    2017-04-15

    Green roofs are expected to absorb and store carbon in plants and soils and thereby reduce the high CO2 concentration levels in big cities. Sedum species, which are succulent perennials, are commonly used in extensive green roofs due to their shallow root system and ability to withstand long water deficiencies. Here we examined CO2 fixation and emission rates for Mediterranean Sedum sediforme on green-roof experimental plots. During late winter to early spring, we monitored CO2 concentrations inside transparent tents placed over 1m(2) plots and followed gas exchange at the leaf level using a portable gas-exchange system. We found high rates of CO2 emission at daytime, which is when CO2 concentration in the city is the highest. Both plot- and leaf-scale measurements showed that these CO2 emissions were not fully compensated by the nighttime uptake. We conclude that although carbon sequestration may only be a secondary benefit of green roofs, for improving this ecosystem service, other plant species than Sedum should also be considered for use in green roofs, especially in Mediterranean and other semi-arid climates.

  16. Increasing CO2 differentially affects essential and non-essential amino acid concentration of rice grains grown in cadmium-contaminated soils.

    PubMed

    Wu, Huibin; Song, Zhengguo; Wang, Xiao; Liu, Zhongqi; Tang, Shirong

    2016-09-01

    Environmental pollution by both ambient CO2 and heavy metals has been steadily increasing, but we do not know how fluctuating CO2 concentrations influence plant nutrients under high Cd pollution, especially in crops. Here, we studied the effects of elevated CO2 and Cd accumulation on proteins and amino acids in rice under Cd stress. In this pot experiment, we analyzed the amino-acid profile of 20 rice cultivars that accumulate Cd differently; the plants were grown in Cd-containing soils under ambient conditions and elevated CO2 levels. We found that although Cd concentrations appeared to be higher in most cultivars under elevated CO2 than under ambient CO2, the effect was significant only in seven cultivars. Combined exposure to Cd and elevated CO2 strongly decreased rice protein and amino acid profiles, including essential and non-essential amino acids. Under elevated CO2, the ratios of specific amino acids were either higher or lower than the optimal ratios provided by FAO/WHO, suggesting that CO2 may flatten the overall amino-acid profile, leading to an excess in some amino acids and deficiencies in others when the rice is consumed. Thus, Cd-tainted rice limits the concentration of essential amino acids in rice-based diets, and the combination with elevated CO2 further exacerbates the problem.

  17. Sudden increase in atmospheric CO2 concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees.

    PubMed

    Delaire, Mickaël; Frak, Ela; Sigogne, Monique; Adam, Boris; Beaujard, François; Le Roux, Xavier

    2005-02-01

    We studied the short-term (i.e., a few days) effect of a sudden increase in CO2 uptake by shoots on nutrient (NO3-, P ion, K+, Ca2+ and Mg2+) uptake by roots during vegetative growth of young walnut (Juglans nigra x J. major L.) trees. The increase in CO2 uptake was induced by a sudden increase in atmospheric CO2 concentration ([CO2]). Twelve 2-year-old trees were transplanted and grown in perlite-filled pots in a greenhouse. Rates of CO2 uptake and water loss by individual trees were determined by a branch bag method from 3 days before until 6 days after [CO2] was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system that provided non-limiting supplies of water and nutrients. Six control trees were kept in ambient [CO2] (360 ppm), and [CO2] was increased to 550 ppm for one set of three trees and to 800 ppm for another set of three trees. Before imposing the elevated [CO2] treatments, all trees exhibited similar daily water loss, CO2 uptake and nutrient uptake rates when expressed per unit leaf area to account for the tree size effect. Daily water loss rates were only slightly affected by elevated [CO2]. Carbon dioxide uptake rates greatly increased with increasing atmospheric [CO2], and nutrient uptake rates were proportional to CO2 uptake rates during the study period, except for P ion. Our results show that, despite the important carbon and nitrogen storage capacities previously observed in young walnut trees, nutrient uptake by roots is strongly coupled to carbon uptake by shoots over periods of a few days.

  18. Increasing atmospheric [CO2] from glacial to future concentrations affects drought tolerance via impacts on leaves, xylem and their integrated function.

    PubMed

    Medeiros, Juliana S; Ward, Joy K

    2013-08-01

    Changes in atmospheric carbon dioxide concentration ([CO2]) affect plant carbon/water tradeoffs, with implications for drought tolerance. Leaf-level studies often indicate that drought tolerance may increase with rising [CO2], but integrated leaf and xylem responses are not well understood in this respect. In addition, the influence of the low [CO2] of the last glacial period on drought tolerance and xylem properties is not well understood. We investigated the interactive effects of a broad range of [CO2] and plant water potentials on leaf function, xylem structure and function and the integration of leaf and xylem function in Phaseolus vulgaris. Elevated [CO2] decreased vessel implosion strength, reduced conduit-specific hydraulic conductance, and compromised leaf-specific xylem hydraulic conductance under moderate drought. By contrast, at glacial [CO2], transpiration was maintained under moderate drought via greater conduit-specific and leaf-specific hydraulic conductance in association with increased vessel implosion strength. Our study involving the integration of leaf and xylem responses suggests that increasing [CO2] does not improve drought tolerance. We show that, under glacial conditions, changes in leaf and xylem properties could increase drought tolerance, while under future conditions, greater productivity may only occur when higher water use can be accommodated.

  19. Increased Accumulation of Carbohydrates and Decreased Photosynthetic Gene Transcript Levels in Wheat Grown at an Elevated CO2 Concentration in the Field.

    PubMed Central

    Nie, G.; Hendrix, D. L.; Webber, A. N.; Kimball, B. A.; Long, S. P.

    1995-01-01

    Repression of photosynthetic genes by increased soluble carbohydrate concentrations may explain acclimation of photosynthesis to elevated CO2 concentration. This hypothesis was examined in a field crop of spring wheat (Triticum aestivum L.) grown at both ambient (approximately 360 [mu]mol mol-1) and elevated (550 [mu]mol mol-1) atmospheric CO2 concentrations using free-air CO2 enrichment at Maricopa, Arizona. The correspondence of steady-state levels of mRNA transcripts (coding for the 83-kD photosystem I apoprotein, sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, phosphoglycerokinase, and the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase) with leaf carbohydrate concentrations (glucose-6-phosphate, glucose, fructose, sucrose, fructans, and starch) was examined at different stages of crop and leaf development and through the diurnal cycle. Overall only a weak correspondence between increased soluble carbohydrate concentrations and decreased levels for nuclear gene transcripts was found. The difference in soluble carbohydrate concentration between leaves grown at elevated and current ambient CO2 concentrations diminished with crop development, whereas the difference in transcript levels increased. In the flag leaf, soluble carbohydrate concentrations declined markedly with the onset of grain filling; yet transcript levels also declined. The results suggest that, whereas the hypothesis may hold well in model laboratory systems, many other factors modified its significance in this field wheat crop. PMID:12228521

  20. Aridity under conditions of increased CO2

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Roderick, Micheal L.; Seneviratne, Sonia I.

    2016-04-01

    A string of recent of studies led to the wide-held assumption that aridity will increase under conditions of increasing atmospheric CO2 concentrations and associated global warming. Such results generally build upon analyses of changes in the 'aridity index' (the ratio of potential evaporation to precipitation) and can be described as a direct thermodynamic effect on atmospheric water demand due to increasing temperatures. However, there is widespread evidence that contradicts the 'warmer is more arid' interpretation, leading to the 'global aridity paradox' (Roderick et al. 2015, WRR). Here we provide a comprehensive assessment of modeled changes in a broad set of dryness metrics (primarily based on a range of measures of water availability) over a large range of realistic atmospheric CO2 concentrations. We use an ensemble of simulations from of state-of-the-art climate models to analyse both equilibrium climate experiments and transient historical simulations and future projections. Our results show that dryness is, under conditions of increasing atmospheric CO2 concentrations and related global warming, generally decreasing at global scales. At regional scales we do, however, identify areas that undergo changes towards drier conditions, located primarily in subtropical climate regions and the Amazon Basin. Nonetheless, the majority of regions, especially in tropical and mid- to northern high latitudes areas, display wetting conditions in a warming world. Our results contradict previous findings and highlight the need to comprehensively assess all aspects of changes in hydroclimatological conditions at the land surface. Roderick, M. L., P. Greve, and G. D. Farquhar (2015), On the assessment of aridity with changes in atmospheric CO2, Water Resour. Res., 51, 5450-5463

  1. Differential Response in Plant Taxa Morphology and Physiology During Increases in Late-Quaternary Atmospheric CO2 Concentrations Affect Plant-Climate Interactions.

    NASA Astrophysics Data System (ADS)

    van de Water, P. K.; Barnum, E.

    2004-12-01

    The effects of changing atmospheric CO2 on plant physiology mediate vegetation response to climate change. For example, growth chamber studies on short-lived plants show significant changes in plant morphology and physiological parameters such as changes in biomass and water-use efficiency (WUE; the amount of carbon assimilated to plant water-loss) as atmospheric CO2 concentrations increases from ˜200 p.p.m. to modern concentrations and beyond. Many modern studies show WUE increases linearly with rising atmospheric CO2 meaning that less water is expended for each unit of carbon assimilated. To test for the consistency of these findings with past, long-lived plants and in past communities growing under a similar range of atmospheric CO2 levels, macrofossils of select species were analyzed from packrat (Neotoma sp.) midden chronologies gathered throughout western North America. Measurement of and analysis for the stable isotope content of these macrofossils shows greater morphological and eco-physiological differences between species than expected from study results using growth chambers. For example, isotopic analysis shows long-standing associates, Pinus edulis and Juniperus spp. have significantly different WUE during the transition from the Pleistocene to the Holocene. The WUE in Pinus edulis matches changes in atmospheric CO2 whereas Juniperus spp. does not. Yet over the same period, changes observed in Pinus flexilis needles from trees growing in cooler habitats above the pinyon-juniper woodlands are more similar to Juniperus spp. changes compared against trends in the more closely related Pinus edulis. Morphology changes occurring during this period include increased biomass and reduced stomata. These results show taxonomic differences in the morphological and physiological adaptation to changing CO2 concentrations. These responses need further assessment especially in light of their direct affect on plant-climate interactions.

  2. Zinc depolarized electrochemical CO2 concentration

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.

    1975-01-01

    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers.

  3. Recent and Projected Increases in Atmospheric CO2 Concentration Can Enhance Gene Flow between Wild and Genetically Altered Rice (Oryza sativa)

    PubMed Central

    Ziska, Lewis H.; Gealy, David R.; Tomecek, Martha B.; Jackson, Aaron K.; Black, Howard L.

    2012-01-01

    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO2 from an early 20th century concentration (300 µmol mol−1) to current (400 µmol mol−1) and projected, mid-21st century (600 µmol mol−1) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol−1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems. PMID:22649533

  4. The rise of the photosynthetic rate when light intensity increases is delayed in ndh gene-defective tobacco at high but not at low CO2 concentrations.

    PubMed

    Martín, Mercedes; Noarbe, Dolores M; Serrot, Patricia H; Sabater, Bartolomé

    2015-01-01

    The 11 plastid ndh genes have hovered frequently on the edge of dispensability, being absent in the plastid DNA of many algae and certain higher plants. We have compared the photosynthetic activity of tobacco (Nicotiana tabacum, cv. Petit Havana) with five transgenic lines (ΔndhF, pr-ΔndhF, T181D, T181A, and ndhF FC) and found that photosynthetic performance is impaired in transgenic ndhF-defective tobacco plants at rapidly fluctuating light intensities and higher than ambient CO2 concentrations. In contrast to wild type and ndhF FC, which reach the maximum photosynthetic rate in less than 1 min when light intensity suddenly increases, ndh defective plants (ΔndhF and T181A) show up to a 5 min delay in reaching the maximum photosynthetic rate at CO2 concentrations higher than the ambient 360 ppm. Net photosynthesis was determined at different CO2 concentrations when sequences of 130, 870, 61, 870, and 130 μmol m(-2) s(-1) PAR sudden light changes were applied to leaves and photosynthetic efficiency and entropy production (Sg) were determined as indicators of photosynthesis performance. The two ndh-defective plants, ΔndhF and T181A, had lower photosynthetic efficiency and higher Sg than wt, ndhF FC and T181D tobacco plants, containing full functional ndh genes, at CO2 concentrations above 400 ppm. We propose that the Ndh complex improves cyclic electron transport by adjusting the redox level of transporters during the low light intensity stage. In ndhF-defective strains, the supply of electrons through the Ndh complex fails, transporters remain over-oxidized (specially at high CO2 concentrations) and the rate of cyclic electron transport is low, impairing the ATP level required to rapidly reach high CO2 fixation rates in the following high light phase. Hence, ndh genes could be dispensable at low but not at high atmospheric concentrations of CO2.

  5. The rise of the photosynthetic rate when light intensity increases is delayed in ndh gene-defective tobacco at high but not at low CO2 concentrations

    PubMed Central

    Martín, Mercedes; Noarbe, Dolores M.; Serrot, Patricia H.; Sabater, Bartolomé

    2015-01-01

    The 11 plastid ndh genes have hovered frequently on the edge of dispensability, being absent in the plastid DNA of many algae and certain higher plants. We have compared the photosynthetic activity of tobacco (Nicotiana tabacum, cv. Petit Havana) with five transgenic lines (ΔndhF, pr-ΔndhF, T181D, T181A, and ndhF FC) and found that photosynthetic performance is impaired in transgenic ndhF-defective tobacco plants at rapidly fluctuating light intensities and higher than ambient CO2 concentrations. In contrast to wild type and ndhF FC, which reach the maximum photosynthetic rate in less than 1 min when light intensity suddenly increases, ndh defective plants (ΔndhF and T181A) show up to a 5 min delay in reaching the maximum photosynthetic rate at CO2 concentrations higher than the ambient 360 ppm. Net photosynthesis was determined at different CO2 concentrations when sequences of 130, 870, 61, 870, and 130 μmol m-2 s-1 PAR sudden light changes were applied to leaves and photosynthetic efficiency and entropy production (Sg) were determined as indicators of photosynthesis performance. The two ndh-defective plants, ΔndhF and T181A, had lower photosynthetic efficiency and higher Sg than wt, ndhF FC and T181D tobacco plants, containing full functional ndh genes, at CO2 concentrations above 400 ppm. We propose that the Ndh complex improves cyclic electron transport by adjusting the redox level of transporters during the low light intensity stage. In ndhF-defective strains, the supply of electrons through the Ndh complex fails, transporters remain over-oxidized (specially at high CO2 concentrations) and the rate of cyclic electron transport is low, impairing the ATP level required to rapidly reach high CO2 fixation rates in the following high light phase. Hence, ndh genes could be dispensable at low but not at high atmospheric concentrations of CO2. PMID:25709611

  6. Increasing Ambient CO2 Concentrations are Reflected in the Stable C and O Isotopes from Tree Rings along a Siberian North South Transect in the Last 150 Years

    NASA Astrophysics Data System (ADS)

    Siegwolf, R. T.; Sidorova, O. V.; Saurer, M.; Knorre, A.; Kirdyanov, A.

    2010-12-01

    The ongoing industrialization in the last 150 years left its fingerprints with an increase in atmospheric CO2 (ca) from ca. 260 to 385 ppm due to the growing use of fossil fuels. Elevated CO2 affects the vegetation, as plants respond instantaneously with an increased photosynthetic rate, and a reduction in stomatal conductance. This results in a lower ci/ca ratio (ci leaf intercellular CO2 concentration), causing a reduced 13C fractionation during photosynthesis. This is reflected in the intrinsic water use efficiency (WUEi), although plants acclimatize, i.e. down regulate the maximum photosynthetic capacity (Amax) as a consequence of elevated CO2 for the last 150 years. The degree of the long-term response to changes in CO2 varies largely between plants growing under different growth conditions, i.e. water availability, temperature, nutrient supply and between different species. Along with an increasing CO2 concentration a rise in the mean annual temperature is observed at the Northern timberline. An increasing temperature might stimulate tree growth, yet it also increases the Air to Leaf Vapor Pressure Difference (ALVPD), resulting in an increase of drought stress, as the precipitation in the Siberian regions is rather low. This will induce a reduction in stomatal conductance and a diminished productivity, reflected in tree ring width. We present C and O isotope values from tree rings for the last 150 years. The data reflect changes in the carbon water relations (WUEi) from central Siberia (Russia) along a north south transect of ca. 2400 km from the northern timberline to the forest steppe. Changes in the environment either increase or reduce the effect of elevated CO2 on trees, growing in the highly sensitive Siberian ecosystem. The combination of the C and O isotope values in a conceptual model (Scheidegger et al., 2000; Saurer and Siegwolf, 2007) allows the link between tree response reflected in δ13C and δ18O data and gas exchange patterns providing a

  7. Searching for a Relationship Between Forest Water Use and Increasing Atmospheric CO2 Concentration with Long-Term Hydrologic Data from the Hubbard Brook Experimental Forest

    SciTech Connect

    Amthor, J.S.

    1998-11-01

    Increases in atmospheric C02 concentration from mid-1956 through mid-1997 were compared with hydrologic records from five forested, gaged watersheds in the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, U.S.A. The purpose of the comparison was to assess whether a relationship between increasing atmospheric CO2 concentration and whole-ecosystem evapotranspiration (ET) could be determined. The HBEF is particularly well suited to this type of study because of the length of the hydrologic record and the physical properties of the watersheds. This analysis is based on HBEF water years (which begin 1 June and end the following 31 May) rather than calendar years. Hydrologic records from individual watersheds used in this analysis ranged from 28 to 41 water years. During the full 41-water-year period, it is estimated that water-year mean atmospheric CO2 concentration increased more than 15% (from about 314 to 363 ppm). In one south-facing watershed (i.e., HBEF watershed 3), there was a statistically significant negative relationship between atmospheric C02 concentration and ET. This translated into a nearly 77 rnndyear reduction in ET as a result of a 50 ppm increase in atmospheric C02 concentration, a result of practical significance. Evapotranspiration from the other watersheds was also negatively related to atmospheric CO2 concentration, but with smaller (and statistically insignificant) magnitudes. Evapotranspiration from the three south-facing (but not the two north-facing) watersheds included in the analysis was "abnormally" low during the most recent 2 years (i.e., water years beginning in 1995 and 1996), and this affected the trends in ET. This recent and abrupt, reduction in ET deserves further analysis, most importantly by an extension of the hydrologic record through continued long-term monitoring in the HBEF (which is ongoing). If ET remains relatively low during the coming years in south-facing watersheds, studies of the physical and/or biological

  8. Detection of CO2 leakage by the surface-soil CO2-concentration monitoring (SCM) system in a small scale CO2 release test

    NASA Astrophysics Data System (ADS)

    Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu

    2015-04-01

    Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2

  9. Photoassimilation, assimilate translocation and plasmodesmal biogenesis in the source leaves of Arabidopsis thaliana grown under an increased atmospheric CO2 concentration.

    PubMed

    Duan, Zhongrui; Homma, Ayumi; Kobayashi, Megumi; Nagata, Noriko; Kaneko, Yasuko; Fujiki, Yuki; Nishida, Ikuo

    2014-02-01

    Using 18-day-old Arabidopsis thaliana seedlings grown under increased (780 p.p.m., experimental plants) or ambient (390 p.p.m., control plants) CO2 conditions, we evaluated (14)CO2 photoassimilation in and translocation from representative source leaves. The total (14)CO2 photoassimilation amounts increased in the third leaves of the experimental plants in comparison with that found for the third leaves of the control plants, but the rates were comparable for the first leaves of the two groups. In contrast, translocation of labeled assimilates doubled in the first leaves of the experimental group, whereas translocation was, at best, passively enhanced even though photoassimilation increased in their third leaves. The transcript levels of the companion cell-specific sucrose:H(+) symporter gene SUC2 were not significantly affected in the two groups of plants, whereas those of the sucrose effluxer gene SWEET12 and the sieve element-targeted sucrose:H(+) symporter gene SUT4 were up-regulated in the experimental plants, suggesting up-regulation of SUT4-dependent apoplastic phloem loading. Compared with SUC2, SUT4 is a minor component that is expressed in companion cells but functions in sieve elements after transfer through plasmodesmata. The number of aniline blue-stained spots for plasmodesma-associated callose in the midrib wall increased in the first leaf of the experimental plants but was comparable in the third leaf between the experimental and control plants. These results suggest that A. thaliana responds to greater than normal concentrations of CO2 differentially in the first and third leaves in regards to photoassimilation, assimilate translocation and plasmodesmal biogenesis.

  10. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    PubMed

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production.

  11. A CO2 concentration gradient facility for testing CO2 enrichment and soil effects on grassland ecosystem function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuing increases in atmospheric CO2 concentrations mandate techniques for examining impacts on terrestrial ecosystems. Most experiments examine only two or a few levels of CO2 concentration and a single soil type, but if CO2 can be varied as a gradient from subambient to superambient concentra...

  12. Increasing CO2 threatens human nutrition.

    PubMed

    Myers, Samuel S; Zanobetti, Antonella; Kloog, Itai; Huybers, Peter; Leakey, Andrew D B; Bloom, Arnold J; Carlisle, Eli; Dietterich, Lee H; Fitzgerald, Glenn; Hasegawa, Toshihiro; Holbrook, N Michele; Nelson, Randall L; Ottman, Michael J; Raboy, Victor; Sakai, Hidemitsu; Sartor, Karla A; Schwartz, Joel; Seneweera, Saman; Tausz, Michael; Usui, Yasuhiro

    2014-06-05

    Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health.

  13. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?

    PubMed

    Wheeler, R M; Mackowiak, C L; Yorio, N C; Sager, J C

    1999-03-01

    Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in

  14. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Yorio, N. C.; Sager, J. C.

    1999-01-01

    Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in

  15. [CO2-Concentrating Mechanism and Its Traits in Haloalkaliphilic Cyanobacteria].

    PubMed

    Kupriyanova, E V; Samylina, O S

    2015-01-01

    Cyanobacteria are a group of oxygenic phototrophs existing for at least 3.5 Ga. Photosynthetic CO2 assimilation by cyanobacteria occurs via the Calvin cycle, with RuBisCO, its key enzyme, having very low affinity to CO2. This is due to the fact that atmospheric CO2 concentration in Archaean, when the photosynthetic apparatus evolved, was several orders higher than now. Later, in the epoch of Precambrian microbial communities, CO2 content in the atmosphere decreased drastically. Thus, present-day phototrophs, including cyanobacteria, require adaptive mechanisms for efficient photosynthesis. In cyanobacterial cells, this function is performed by the CO2-concentrating mechanism (CCM), which creates elevated CO2 concentrations in the vicinity of RuBisCO active centers, thus significantly increasing the rate of CO2 fixation in the Calvin cycle. CCM has been previously studied only for freshwater and marine cyanobacteria. We were the first to investigate CCM in haloalkaliphilic cyanobacteria from soda lakes. Extremophilic haloalkaliphilic cyanobacteria were shown to possess a well-developed CCM with the structure and functional principles similar to those of freshwater and marine strains. Analysis of available data suggests that regulation of the amount of inorganic carbon transported into the cell is probably the general CCM function under these conditions.

  16. CO(2)-concentrating: consequences in crassulacean acid metabolism.

    PubMed

    Lüttge, Ulrich

    2002-11-01

    The consequences of CO(2)-concentrating in leaf air-spaces of CAM plants during daytime organic acid decarboxylation in Phase III of CAM (crassulacean acid metabolism) are explored. There are mechanistic consequences of internal CO(2) partial pressures, p(i)(CO(2)). These are (i) effects on stomata, i.e. high p(i)(CO(2)) eliciting stomatal closure in Phase III, (ii) regulation of malic acid remobilization from the vacuole, malate decarboxylation and refixation of CO(2) via Rubisco (ribulose bisphosphate carboxylase/oxygenase), and (iii) internal signalling functions during the transitions between Phases II and III and III and IV, respectively, in the natural day/night cycle and in synchronizing the circadian clocks of individual leaf cells or leaf patches in the free-running endogenous rhythmicity of CAM. There are ecophysiological consequences. Obvious beneficial ecophysiological consequences are (i) CO(2)-acquisition, (ii) increased water-use- efficiency, (iii) suppressed photorespiration, and (iv) reduced oxidative stress by over-energization of the photosynthetic apparatus. However, the general potency of these beneficial effects may be questioned. There are also adverse ecophysiological consequences. These are (i) energetics, (ii) pH effects and (iii) Phase III oxidative stress. A major consequence of CO(2)-concentrating in Phase III is O(2)-concentrating, increased p(i)(CO(2)) is accompanied by increased p(i)(O(2)). Do reversible shifts of C(3)/CAM-intermediate plants between the C(3)-CAM-C(3) modes of photosynthesis indicate that C(3)-photosynthesis provides better protection from irradiance stress? There are many open questions and CAM remains a curiosity.

  17. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1978-01-01

    The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.

  18. Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO2 between genetically mod...

  19. Effects of elevated CO2 concentrations on denitrifying and nitrifying popualtions at terrestrial CO2 leakeage analogous sites

    NASA Astrophysics Data System (ADS)

    Christine, Dictor Marie; Catherine, Joulian; Valerie, Laperche; Stephanie, Coulon; Dominique, Breeze

    2010-05-01

    CO2 capture and geological storage (CCS) is recognized to be an important option for carbon abatement in Europe. One of the risks of CCS is the leakage from storage site. A laboratory was conducted on soil samples sampled near-surface from a CO2 leakage analogous site (Latera, Italy) in order to evaluate the impact of an elevated soil CO2 concentration on terrestrial bacterial ecosystems form near surface terrestrial environments and to determine a potential bacterial indicator of CO2 leakage from storage site. Surveys were conducted along a 50m long transect across the vent centre, providing a spectrum of CO2 flux rates, soil gas concentrations and compositions (Beaubien et al., 2007). A bacterial diversity studies, performed by CE-SSCP technique, on a soil profile with increasing CO2 soil concentrations (from 0.3% to 100%) showed that a change on bacterial diversity was noted when CO2 concentration was above 50 % of CO2. From this result, 3 soil samples were taken at 70 cm depth in 3 distinct zones (background soil CO2 content, soil CO2 content of 20% and soil CO2 content of 50%). Then theses soil samples were incubated under closed jars flushed with different air atmospheres (20, 50 and 90 % of CO2) during 18 months. At initial, 3, 6, 12 and 18 months, some soil samples were collected in order to estimate the denitrifying, nitrifying activities as a function of CO2 concentration content and times. Theses enzymatic activities were chosen because one occurs under anaerobic conditions (denitrification) and the other occurs under aerobic conditions (nitrification). Both of them were involved in the nitrogen cycle and are major actors of soil function and groundwater quality preservation. Metabolic diversity using BIOLOG Ecoplates was determined on every soil samples. Physico-chemical parameters (e.g. pH, bulk chemistry, mineralogy) were analyzed to have some information about the evolution of the soil during the incubation with increasing soil CO2 concentrations

  20. Effect of increasing CO2 on the terrestrial carbon cycle.

    PubMed

    Schimel, David; Stephens, Britton B; Fisher, Joshua B

    2015-01-13

    Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation.

  1. Effect of increasing CO2 on the terrestrial carbon cycle

    PubMed Central

    Schimel, David; Fisher, Joshua B.

    2015-01-01

    Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation. PMID:25548156

  2. Effect of increasing CO2 on the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Schimel, David; Stephens, Britton B.; Fisher, Joshua B.

    2015-01-01

    Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Our results, however, show significant tropical uptake and, combining tropical and extratropical fluxes, suggest that up to 60% of the present-day terrestrial sink is caused by increasing atmospheric CO2. This conclusion is consistent with a validated subset of atmospheric analyses, but uncertainty remains. Improved model diagnostics and new space-based observations can reduce the uncertainty of tropical and temperate zone carbon flux estimates. This analysis supports a significant feedback to future atmospheric CO2 concentrations from carbon uptake in terrestrial ecosystems caused by rising atmospheric CO2 concentrations. This feedback will have substantial tropical contributions, but the magnitude of future carbon uptake by tropical forests also depends on how they respond to climate change and requires their protection from deforestation.

  3. Spatial response of coastal marshes to increased atmospheric CO2.

    PubMed

    Ratliff, Katherine M; Braswell, Anna E; Marani, Marco

    2015-12-22

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought.

  4. Spatial response of coastal marshes to increased atmospheric CO2

    PubMed Central

    Ratliff, Katherine M.; Braswell, Anna E.; Marani, Marco

    2015-01-01

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought. PMID:26644577

  5. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    PubMed

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change.

  6. Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Stark, J. M.; Bugbee, B.

    1997-01-01

    We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity.

  7. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Mo, Gang; Deng, Feng

    2017-03-01

    Observations of 13CO2 at 73 sites compiled in the GLOBALVIEW database are used for an additional constraint in a global atmospheric inversion of the surface CO2 flux using CO2 observations at 210 sites (62 collocated with 13CO2 sites) for the 2002-2004 period for 39 land regions and 11 ocean regions. This constraint is implemented using prior CO2 fluxes estimated with a terrestrial ecosystem model and an ocean model. These models simulate 13CO2 discrimination rates of terrestrial photosynthesis and ocean-atmosphere diffusion processes. In both models, the 13CO2 disequilibrium between fluxes to and from the atmosphere is considered due to the historical change in atmospheric 13CO2 concentration. This joint inversion system using both13CO2 and CO2 observations is effectively a double deconvolution system with consideration of the spatial variations of isotopic discrimination and disequilibrium. Compared to the CO2-only inversion, this 13CO2 constraint on the inversion considerably reduces the total land carbon sink from 3.40 ± 0.84 to 2.53 ± 0.93 Pg C year-1 but increases the total oceanic carbon sink from 1.48 ± 0.40 to 2.36 ± 0.49 Pg C year-1. This constraint also changes the spatial distribution of the carbon sink. The largest sink increase occurs in the Amazon, while the largest source increases are in southern Africa, and Asia, where CO2 data are sparse. Through a case study, in which the spatial distribution of the annual 13CO2 discrimination rate over land is ignored by treating it as a constant at the global average of -14. 1 ‰, the spatial distribution of the inverted CO2 flux over land was found to be significantly modified (up to 15 % for some regions). The uncertainties in our disequilibrium flux estimation are 8.0 and 12.7 Pg C year-1 ‰ for land and ocean, respectively. These uncertainties induced the unpredictability of 0.47 and 0.54 Pg C year-1 in the inverted CO2 fluxes for land and ocean, respectively. Our joint inversion system is therefore

  8. Hazardous indoor CO2 concentrations in volcanic environments.

    PubMed

    Viveiros, Fátima; Gaspar, João L; Ferreira, Teresa; Silva, Catarina

    2016-07-01

    Carbon dioxide is one of the main soil gases released silently and permanently in diffuse degassing areas, both in volcanic and non-volcanic zones. In the volcanic islands of the Azores (Portugal) several villages are located over diffuse degassing areas. Lethal indoor CO2 concentrations (higher than 10 vol %) were measured in a shelter located at Furnas village, inside the caldera of the quiescent Furnas Volcano (S. Miguel Island). Hazardous CO2 concentrations were detected not only underground, but also at the ground floor level. Multivariate regression analysis was applied to the CO2 and environmental time series recorded between April 2008 and March 2010 at Furnas village. The results show that about 30% of the indoor CO2 variation is explained by environmental variables, namely barometric pressure, soil water content and wind speed. The highest indoor CO2 concentrations were recorded during bad weather conditions, characterized by low barometric pressure together with rainfall periods and high wind speed. In addition to the spike-like changes observed on the CO2 time series, long-term oscillations were also identified and appeared to represent seasonal variations. In fact, indoor CO2 concentrations were higher during winter period when compared to the dry summer months. Considering the permanent emission of CO2 in various volcanic regions of the world, CO2 hazard maps are crucial and need to be accounted by the land-use planners and authorities.

  9. Low pCO2 Air-Polarized CO2 Concentrator Development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H.

    1997-01-01

    Life Systems completed a Ground-based Space Station Experiment Development Study Program which verifies through testing the performance and applicability of the electrochemical Air-Polarized Carbon Dioxide Concentrator (APC) process technology for space missions requiring low (i.e., less than 3 mm Hg) CO2 partial pressure (pCO2) in the cabin atmosphere. Required test hardware was developed and testing was accomplished at an approximate one-person capacity CO2 removal level. Initially, two five-cell electrochemical modules using flight-like 0.5 sq ft cell hardware were tested individually, following by their testing at the integrated APC system level. Testing verified previously projected performance and established a database for sizing of APC systems. A four person capacity APC system was sized and compared with four candidate CO2 removal systems. At its weight of 252 lb, a volume of 7 cu ft and a power consumption of 566 W while operating at 2.2 mm Hg pCO2, the APC was surpassed only by an Electrochemical Depolarized CO2 Concentrator (EDC) (operating with H2), when compared on a total equivalent basis.

  10. Integration of the electrochemical depolorized CO2 concentrator with the Bosch CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Hallick, T. M.

    1976-01-01

    Regenerative processes for the revitalization of spacecraft atmospheres require an Oxygen Reclamation System (ORS) for the collection of carbon dioxide and water vapor and the recovery of oxygen from these metabolic products. Three life support subsystems uniquely qualified to form such an ORS are an Electrochemical CO2 Depolarized Concentrator (EDC), a CO2 Reduction Subsystem (BRS) and a Water Electrolysis Subsystem (WES). A program to develop and test the interface hardware and control concepts necessary for integrated operation of a four man capacity EDC with a four man capacity BRS was successfully completed. The control concept implemented proved successful in operating the EDC with the BRS for both constant CO2 loading as well as variable CO2 loading, based on a repetitive mission profile of the Space Station Prototype (SSP).

  11. [Effects of nitrogen fertilization on wheat leaf photosynthesis under elevated atmospheric CO2 concentration].

    PubMed

    Yu, Xian-feng; Zhang, Xu-cheng; Guo, Tian-wen; Yu, Jia

    2010-09-01

    In this paper, the effects of nitrogen (N) fertilization on the wheat leaf photosynthesis under long-term elevated atmospheric CO2 concentration (760 micromol x mol(-1)) was studied, based on the measurements of photosynthetic gas exchange parameters and light intensity-photosynthetic rate response curves at jointing stage. Under the long-term elevated atmospheric CO2 concentration, applying sufficient N could increase the wheat leaf photosynthetic rate (Pn), transpiration rate (Tr), and instantaneous water use efficiency (WUEi). Comparing with those under ambient atmospheric CO2 concentration, the Po and WUEi under the elevated atmospheric CO2 concentration increased, while the stomatal conductance (Gs) and intercellular CO2 concentration (Ci) decreased. With the increase of light flux intensity, the Pn and WUEi under the elevated atmospheric CO2 concentration were higher those under ambient atmospheric CO2 concentration, Gs was in adverse, while Ci and Tr had less change. At high fertilization rate of N, the Gs was linearly positively correlated with Pn, Tr, and WUEi, and the Gs and Ci had no correlation with each other under the elevated atmospheric CO2 concentration but negatively correlated under ambient atmospheric CO2 concentration. At low fertilization rate of N, the Gs had no correlations with Pn and WUEi but linearly positively correlated with Ci and Tr. It was suggested that under the elevated atmospheric CO2 concentration, the wheat leaf Pn at low N fertilization rate was limited by non-stomatal factor.

  12. Electrochemical CO2 concentration for the Space Station Program

    NASA Technical Reports Server (NTRS)

    Lance, N.; Schwartz, M.; Boyda, R. B.

    1985-01-01

    Under the sponsorship of NASA, Electrochemical Carbon Dioxide (CO2) Concentration EDC technology has been developed that removes CO2 continuously or cyclically from low CO2 partial pressure (400 Pa) atmospheres with the performance and operating characteristics required for Space Station applications. The most recent advancement of this technology is the development of an advanced preprototype subsystem, the CS-3A, to remove the metabolic CO2 produced by three persons from the projected Space Station atmosphere. This paper provides an overview of EDC technology, shows how it is ideally suited for Space Station application, and presents technology enhancements that will be demonstrated by the CS-3A subsystem development program.

  13. How increasing CO2 leads to an increased negative greenhouse effect in Antarctica

    NASA Astrophysics Data System (ADS)

    Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas

    2015-12-01

    CO2 is the strongest anthropogenic forcing agent for climate change since preindustrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, the emission to space is higher than the surface emission; and the greenhouse effect of CO2 is around zero or even negative, which has not been discussed so far. We investigated this in detail and show that for central Antarctica an increase in CO2 concentration leads to an increased long-wave energy loss to space, which cools the Earth-atmosphere system. These findings for central Antarctica are in contrast to the general warming effect of increasing CO2.

  14. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    NASA Astrophysics Data System (ADS)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  15. CO2 Fluxes and Concentrations in a Residential Area in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Weissert, L. F.; Salmond, J. A.; Turnbull, J. C.; Schwendenmann, L.

    2014-12-01

    While cities are generally major sources of anthropogenic carbon dioxide (CO2) emissions, recent research has shown that parts of urban areas may also act as CO2 sinks due to CO2 uptake by vegetation. However, currently available results are related to a large degree of uncertainty due to the limitations of the applied methods and the limited number of studies available from urban areas, particularly from the southern hemisphere. In this study, we explore the potential of eddy covariance and tracer measurements (13C and 14C isotopes of CO2) to quantify and partition CO2 fluxes and concentrations in a residential urban area in Auckland, New Zealand. Based on preliminary results from autumn and winter (March to July 2014) the residential area is a small source of CO2 (0.11 mol CO2 m-2 day-1). CO2 fluxes and concentrations follow a distinct diurnal cycle with a morning peak between 7:00 and 9:00 (max: 0.25 mol CO2 m-2 day-1/412 ppm) and midday low with negative CO2 fluxes (min: -0.17 mol CO2 m-2 day-1/392 ppm) between 10:00 and 15:00 local time, likely due to photosynthetic CO2 uptake by local vegetation. Soil CO2 efflux may explain that CO2 concentrations increase and remain high (401 ppm) throughout the night. Mean diurnal winter δ13C values are in anti-phase with CO2 concentrations and vary between -9.0 - -9.7‰. The depletion of δ13C compared to clean atmospheric air (-8.2‰) is likely a result of local CO2 sources dominated by gasoline combustion (appr. 60%) during daytime. A sector analysis (based on prevailing wind) of CO2 fluxes and concentrations indicates lower CO2 fluxes and concentrations from the vegetation-dominated sector, further demonstrating the influence of vegetation on local CO2 concentrations. These results provide an insight into the temporal and spatial variability CO2 fluxes/concentrations and potential CO2 sinks and sources from a city in the southern hemisphere and add valuable information to the global database of urban CO2 fluxes.

  16. Effects of atmospheric CO2 concentration, irradiance, and soil nitrogen availability on leaf photosynthetic traits of Polygonum sachalinense around natural CO2 springs in northern Japan.

    PubMed

    Osada, Noriyuki; Onoda, Yusuke; Hikosaka, Kouki

    2010-09-01

    Long-term exposure to elevated CO2 concentration will affect the traits of wild plants in association with other environmental factors. We investigated multiple effects of atmospheric CO2 concentration, irradiance, and soil N availability on the leaf photosynthetic traits of a herbaceous species, Polygonum sachalinense, growing around natural CO2 springs in northern Japan. Atmospheric CO2 concentration and its interaction with irradiance and soil N availability affected several leaf traits. Leaf mass per unit area increased and N per mass decreased with increasing CO2 and irradiance. Leaf N per area increased with increasing soil N availability at higher CO2 concentrations. The photosynthetic rate under growth CO2 conditions increased with increasing irradiance and CO2, and with increasing soil N at higher CO2 concentrations. The maximal velocity of ribulose 1,5-bisphosphate carboxylation (V (cmax)) was affected by the interaction of CO2 and soil N, suggesting that down-regulation of photosynthesis at elevated CO2 was more evident at lower soil N availability. The ratio of the maximum rate of electron transport to V (cmax) (J (max)/V (cmax)) increased with increasing CO2, suggesting that the plants used N efficiently for photosynthesis at high CO2 concentrations by changes in N partitioning. To what extent elevated CO2 influenced plant traits depended on other environmental factors. As wild plants are subject to a wide range of light and nutrient availability, our results highlight the importance of these environmental factors when the effects of elevated CO2 on plants are evaluated.

  17. Rising CO2 concentration altered wheat grain proteome and flour rheological characteristics.

    PubMed

    Fernando, Nimesha; Panozzo, Joe; Tausz, Michael; Norton, Robert; Fitzgerald, Glenn; Khan, Alamgir; Seneweera, Saman

    2015-03-01

    Wheat cv. H45 was grown under ambient CO2 concentration and Free Air CO2 Enrichment (FACE; e[CO2], ∼550 μmol CO2 mol(-1)). The effect of FACE on wheat grain proteome and associated changes in the flour rheological properties was investigated. A comparative proteomic analysis was performed using 2-D-DIGE followed by MALDI/TOF-MS. Total grain protein concentration was decreased by 9% at e[CO2]. Relative abundance of three high molecular weight glutenin sub units (HMW-GS) were decreased at e[CO2]. In contrast, relative abundance of serpins Z1C and 1-Cys peroxiredoxin was increased at e[CO2]. Elevated [CO2] also decreased the bread volume (by 11%) and dough strength (by 7%) while increased mixing time. However, dough extensibility and dough stability were unchanged at elevated [CO2]. These findings suggest that e[CO2] has a major impact on gluten protein concentration which is associated lower bread quality at e[CO2].

  18. The expression of a carbon concentrating mechanism in Chlamydomonas acidophila under variable phosphorus, iron, and CO2 concentrations.

    PubMed

    Spijkerman, Elly

    2011-09-01

    The CO(2) acquisition was analyzed in Chlamydomonas acidophila at pH 2.4 in a range of medium P and Fe concentrations and at high and low CO(2) condition. The inorganic carbon concentrating factor (CCF) was related to cellular P quota (Q(p)), maximum CO(2)-uptake rate by photosynthesis (V(max,O2)), half saturation constant for CO(2) uptake (K(0.5)), and medium Fe concentration. There was no effect of the medium Fe concentration on the CCF. The CCF increased with increasing Q(p) in both high and low CO(2) grown algae, but maximum Q(p) was 6-fold higher in the low CO(2) cells. In high CO(2) conditions, the CCF was low, ranging between 0.8 and 3.5. High CCF values up to 9.1 were only observed in CO(2)-limited cells, but P- and CO(2)-colimited cells had a low CCF. High CCF did not relate with a low K(0.5) as all CO(2)-limited cells had a low K(0.5) (<4 μM CO(2)). High C(i)-pools in cells with high Q(p) suggested the presence of an active CO(2)-uptake mechanism. The CCF also increased with increasing V(max,O2) which reflect an adaptation to the nutrient in highest demand (CO(2)) under balanced growth conditions. It is proposed that the size of the CCF in C. acidophila is more strongly related to porter density for CO(2) uptake (reflected in V(max,O2)) and less- to high-affinity CO(2) uptake (low K(0.5)) at balanced growth. In addition, high CCF can only be realized with high Q(p).

  19. [Effects of plastic film mulching on soil CO2 efflux and CO2 concentration in an oasis cotton field].

    PubMed

    Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua

    2015-01-01

    A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.

  20. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    PubMed

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves.

  1. Simulation of CO 2 concentrations at Tsukuba tall tower using WRF-CO 2 tracer transport model

    NASA Astrophysics Data System (ADS)

    Ballav, Srabanti; Patra, Prabir K.; Sawa, Yousuke; Matsueda, Hidekazu; Adachi, Ahoro; Onogi, Shigeru; Takigawa, Masayuki; de, Utpal K.

    2016-02-01

    Simulation of carbon dioxide (CO2) at hourly/weekly intervals and fine vertical resolution at the continental or coastal sites is challenging because of coarse horizontal resolution of global transport models. Here the regional Weather Research and Forecasting (WRF) model coupled with atmospheric chemistry is adopted for simulating atmospheric CO2 (hereinafter WRF-CO2) in nonreactive chemical tracer mode. Model results at horizontal resolution of 27 × 27 km and 31 vertical levels are compared with hourly CO2 measurements from Tsukuba, Japan (36.05°N, 140.13 oE) at tower heights of 25 and 200 m for the entire year 2002. Using the wind rose analysis, we find that the fossil fuel emission signal from the megacity Tokyo dominates the diurnal, synoptic and seasonal variations observed at Tsukuba. Contribution of terrestrial biosphere fluxes is of secondary importance for CO2 concentration variability. The phase of synoptic scale variability in CO2 at both heights are remarkably well simulated the observed data (correlation coefficient >0.70) for the entire year. The simulations of monthly mean diurnal cycles are in better agreement with the measurements at lower height compared to that at the upper height. The modelled vertical CO2 gradients are generally greater than the observed vertical gradient. Sensitivity studies show that the simulation of observed vertical gradient can be improved by increasing the number of vertical levels from 31 in the model WRF to 37 (4 below 200 m) and using the Mellor-Yamada-Janjic planetary boundary scheme. These results have large implications for improving transport model simulation of CO2 over the continental sites.

  2. Carbon dioxide consumption of the microalga Scenedesmus obtusiusculus under transient inlet CO2 concentration variations.

    PubMed

    Cabello, Juan; Morales, Marcia; Revah, Sergio

    2017-04-15

    The extensive microalgae diversity offers considerable versatility for a wide range of biotechnological applications in environmental and production processes. Microalgal cultivation is based on CO2 fixation via photosynthesis and, consequently, it is necessary to evaluate, in a short time and reliable way, the effect of the CO2 gas concentration on the consumption rate and establish the tolerance range of different strains and the amount of inorganic carbon that can be incorporated into biomass in order to establish the potential for industrial scale application. Dynamic experiments allow calculating the short-term microalgal photosynthetic activity of strains in photobioreactors. In this paper, the effect of step-changes in CO2 concentration fed to a 20L bubble column photobioreactor on the CO2 consumption rate of Scenedesmus obtusiusculus was evaluated at different operation times. The highest apparent CO2 consumption rate (336μmolm(-2)s(-1) and 5.6% of CO2) was 6530mgCO2gb(-1)d(-1) and it decreased to 222mgCO2gb(-1)d(-1) when biomass concentration increased of 0.5 to 3.1gbL(-1) and 5.6% of CO2 was fed. For low CO2 concentrations (<3.8%) the pH remained close to the optimal value (7.5 and 8). The CO2 consumption rates show that S. obtusiusculus was not limited by CO2 availability for concentrations above of 3.8%. The CO2 mass balance showed that 90% of the C-CO2 transferred was used for S. obtusiusculus growth.

  3. Regulation of hormonal responses of sweet pepper as affected by salinity and elevated CO2 concentration.

    PubMed

    Piñero, María Carmen; Houdusse, Fabrice; Garcia-Mina, Jose M; Garnica, María; Del Amor, Francisco M

    2014-08-01

    This study examines the extent to which the predicted CO2 -protective effects on the inhibition of growth, impairment of photosynthesis and nutrient imbalance caused by saline stress are mediated by an effective adaptation of the endogenous plant hormonal balance. Therefore, sweet pepper plants (Capsicum annuum, cv. Ciclón) were grown at ambient or elevated [CO2] (400 or 800 µmol mol(-1)) with a nutrient solution containing 0 or 80 mM NaCl. The results show that, under saline conditions, elevated [CO2] increased plant dry weight, leaf area, leaf relative water content and net photosynthesis compared with ambient [CO2], whilst the maximum potential quantum efficiency of photosystem II was not modified. In salt-stressed plants, elevated [CO2 ] increased leaf NO3(-) concentration and reduced Cl(-) concentration. Salinity stress induced ABA accumulation in the leaves but it was reduced in the roots at high [CO2], being correlated with the stomatal response. Under non-stressed conditions, IAA was dramatically reduced in the roots when high [CO2] was applied, which resulted in greater root DW and root respiration. Additionally, the observed high CK concentration in the roots (especially tZR) could prevent downregulation of photosynthesis at high [CO2], as the N level in the leaves was increased compared with the ambient [CO2], under salt-stress conditions. These results demonstrate that the hormonal balance was altered by the [CO2], which resulted in significant changes at the growth, gas exchange and nutritional levels.

  4. Effect of elevated atmospheric CO2 concentration on soil CO2 and N2O effluxes in a loess grassland

    NASA Astrophysics Data System (ADS)

    Cserhalmi, Dóra; Balogh, János; Papp, Marianna; Horváth, László; Pintér, Krisztina; Nagy, Zoltán

    2014-05-01

    Increasing atmospheric CO2 concentration proved to be the primary factor causing global climate change. Exposition systems to study the response to increasing CO2 levels by the terrestrial vegetation include the open top chamber (OTC) exposition system, also used in this study. Response of biomass growth and ecophysiological variables (e.g. emission of greenhouse gases (CO2, N2O) from the soil) to elevated atmospheric CO2 concentration were investigated in the OTC station, located in the Botanical Garden of the Szent István University, Gödöllő , Hungary. Loess grassland (Salvio nemorosae - Festucetum rupicolae) monoliths were studied in OTCs with target air CO2 concentration of 600 mikromol.mol-1 in 3 chambers. The chamber-effect (shade effect of the side of the chambers) was measured in 3 control chambers under present CO2 level. This management was compared to 3 free air parcels under the natural conditions. Changes of soil temperature and soil water content were recorded in each treatment, while PAR, air temperature, precipitation, wind velocity and humidity were measured by a micrometeorological station. Plant biomass was cut down to 5 cm height once a year. Leaf area index (LAI) was estimated weekly from ceptometer measurements, soil CO2 and N2O effluxes were also measured weekly during the growing period and less frequently during the rest of the year. Soil water content in the upper 30 cm of the soil was lower in the chambers by 3 % (v/v) in average than in the field plots. Soil temperature in the chambers at 3 cm depth was 1.5oC lower than in the free air parcels probably due to the shading effect of the larger biomass in the chambers. In the chambers (both the high CO2 and control ones) biomass values (536.59 ±222.43 gm-2) were higher than in the free parcels (315.67 ±73.36 gm-2). Average LAI was also higher (3.07 ± 2.78) in the chambers than in the free air treatment (2.08 ± 1.95). Soil respiration values in the high CO2 treatment was higher in

  5. Rising CO2 concentrations affect settlement behaviour of larval damselfishes

    NASA Astrophysics Data System (ADS)

    Devine, B. M.; Munday, P. L.; Jones, G. P.

    2012-03-01

    Reef fish larvae actively select preferred benthic habitat, relying on olfactory, visual and acoustic cues to discriminate between microhabitats at settlement. Recent studies show exposure to elevated carbon dioxide (CO2) impairs olfactory cue recognition in larval reef fishes. However, whether this alters the behaviour of settling fish or disrupts habitat selection is unknown. Here, the effect of elevated CO2 on larval behaviour and habitat selection at settlement was tested in three species of damselfishes (family Pomacentridae) that differ in their pattern of habitat use: Pomacentrus amboinensis (a habitat generalist), Pomacentrus chrysurus (a rubble specialist) and Pomacentrus moluccensis (a live coral specialist). Settlement-stage larvae were exposed to current-day CO2 levels or CO2 concentrations that could occur by 2100 (700 and 850 ppm) based on IPCC emission scenarios. First, pair-wise choice tests were performed using a two-channel flume chamber to test olfactory discrimination between hard coral, soft coral and coral rubble habitats. The habitat selected by settling fish was then compared among treatments using a multi-choice settlement experiment conducted overnight. Finally, settlement timing between treatments was compared across two lunar cycles for one of the species, P. chrysurus. Exposure to elevated CO2 disrupted the ability of larvae to discriminate between habitat odours in olfactory trials. However, this had no effect on the habitats selected at settlement when all sensory cues were available. The timing of settlement was dramatically altered by CO2 exposure, with control fish exhibiting peak settlement around the new moon, whereas fish exposed to 850 ppm CO2 displaying highest settlement rates around the full moon. These results suggest larvae can rely on other sensory information, such as visual cues, to compensate for impaired olfactory ability when selecting settlement habitat at small spatial scales. However, rising CO2 could cause larvae

  6. Estimates of CO2 traffic emissions from mobile concentration measurements

    NASA Astrophysics Data System (ADS)

    Maness, H. L.; Thurlow, M. E.; McDonald, B. C.; Harley, R. A.

    2015-03-01

    We present data from a new mobile system intended to aid in the design of upcoming urban CO2-monitoring networks. Our collected data include GPS probe data, video-derived traffic density, and accurate CO2 concentration measurements. The method described here is economical, scalable, and self-contained, allowing for potential future deployment in locations without existing traffic infrastructure or vehicle fleet information. Using a test data set collected on California Highway 24 over a 2 week period, we observe that on-road CO2 concentrations are elevated by a factor of 2 in congestion compared to free-flow conditions. This result is found to be consistent with a model including vehicle-induced turbulence and standard engine physics. In contrast to surface concentrations, surface emissions are found to be relatively insensitive to congestion. We next use our model for CO2 concentration together with our data to independently derive vehicle emission rate parameters. Parameters scaling the leading four emission rate terms are found to be within 25% of those expected for a typical passenger car fleet, enabling us to derive instantaneous emission rates directly from our data that compare generally favorably to predictive models presented in the literature. The present results highlight the importance of high spatial and temporal resolution traffic data for interpreting on- and near-road concentration measurements. Future work will focus on transport and the integration of mobile platforms into existing stationary network designs.

  7. Increased CO2 stimulates reproduction in a coral reef fish.

    PubMed

    Miller, Gabrielle M; Watson, Sue-Ann; McCormick, Mark I; Munday, Philip L

    2013-10-01

    Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO(2)) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO(2) on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO(2) treatments [Current-day Control (430 μatm), Moderate (584 μatm) and High (1032 μatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO(2) dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO(2) treatment. Pairs in the High CO(2) group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO(2) group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO(2). However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined.

  8. Impact of elevated CO2 concentration under three soil water levels on growth of Cinnamomum camphora *

    PubMed Central

    Zhao, Xing-Zheng; Wang, Gen-Xuan; Shen, Zhu-Xia; Zhang, Hao; Qiu, Mu-Qing

    2006-01-01

    Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO2 concentrations and different soil moisture when the possible effects of elevated CO2 concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO2 concentrations (350 μmol/mol and 500 μmol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO2 on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO2 concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO2 enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO2 enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO2 concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO2 concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO2 enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO2 depend on soil water availability, and plants may benefit more from CO2 enrichment with sufficient water supply. PMID:16532530

  9. Impact of elevated CO2 concentration under three soil water levels on growth of Cinnamomum camphora.

    PubMed

    Zhao, Xing-zheng; Wang, Gen-xuan; Shen, Zhu-xia; Zhang, Hao; Qiu, Mu-qing

    2006-04-01

    Forest plays very important roles in global system with about 35% land area producing about 70% of total land net production. It is important to consider both elevated CO(2) concentrations and different soil moisture when the possible effects of elevated CO(2) concentration on trees are assessed. In this study, we grew Cinnamomum camphora seedlings under two CO(2) concentrations (350 micromol/mol and 500 micromol/mol) and three soil moisture levels [80%, 60% and 40% FWC (field water capacity)] to focus on the effects of exposure of trees to elevated CO(2) on underground and aboveground plant growth, and its dependence on soil moisture. The results indicated that high CO(2) concentration has no significant effects on shoot height but significantly impacts shoot weight and ratio of shoot weight to height under three soil moisture levels. The response of root growth to CO(2) enrichment is just reversed, there are obvious effects on root length growth, but no effects on root weight growth and ratio of root weight to length. The CO(2) enrichment decreased 20.42%, 32.78%, 20.59% of weight ratio of root to shoot under 40%, 60% and 80% FWC soil water conditions, respectively. And elevated CO(2) concentration significantly increased the water content in aboveground and underground parts. Then we concluded that high CO(2) concentration favours more tree aboveground biomass growth than underground biomass growth under favorable soil water conditions. And CO(2) enrichment enhanced lateral growth of shoot and vertical growth of root. The responses of plants to elevated CO(2) depend on soil water availability, and plants may benefit more from CO(2) enrichment with sufficient water supply.

  10. Decarbonization rate and the timing and magnitude of the CO2 concentration peak

    NASA Astrophysics Data System (ADS)

    Seshadri, Ashwin K.

    2016-11-01

    Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to be the major factor in the timing of maximum radiative forcing. Other forcers such as aerosols and non-CO2 greenhouse gases may also influence the timing of maximum radiative forcing. This paper approximates solutions to a linear model of atmospheric CO2 dynamics with four time-constants to identify factors governing the timing of its concentration peak. The most important emissions-related factor is the ratio between average rates at which emissions increase and decrease, which in turn is related to the rate at which the emissions intensity of CO2 is reduced. Rapid decarbonization of CO2 can not only limit global warming but also achieve an early CO2 concentration peak. The most important carbon cycle parameters are the long multi-century time-constant of atmospheric CO2, and the ratio of contributions to the impulse response function of atmospheric CO2 from the infinitely long lived and the multi-century contributions respectively. Reducing uncertainties in these parameters can reduce uncertainty in forecasts of the radiative forcing peak. A simple approximation for peak CO2 concentration, valid especially if decarbonization is slow, is developed. Peak concentration is approximated as a function of cumulative emissions and emissions at the time of the concentration peak. Furthermore peak concentration is directly proportional to cumulative CO2 emissions for a wide range of emissions scenarios. Therefore, limiting the peak CO2 concentration is equivalent to limiting cumulative emissions. These relationships need to be verified using more complex models of Earth system's carbon cycle.

  11. Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses.

    PubMed

    Alonso, Aitor; Pérez, Pilar; Morcuende, Rosa; Martinez-Carrasco, Rafael

    2008-01-01

    The temperature dependence of C3 photosynthesis is known to vary according to the growth environment. Atmospheric CO2 concentration and temperature are predicted to increase with climate change. To test whether long-term growth in elevated CO2 and temperature modifies photosynthesis temperature response, wheat (Triticum aestivum L.) was grown in ambient CO2 (370 micromol mol(-1)) and elevated CO2 (700 micromol mol(-1)) combined with ambient temperatures and 4 degrees C warmer ones, using temperature gradient chambers in the field. Flag leaf photosynthesis was measured at temperatures ranging from 20 to 35 degrees C and varying CO2 concentrations between ear emergence and anthesis. The maximum rate of carboxylation was determined in vitro in the first year of the experiment and from the photosynthesis-intercellular CO2 response in the second year. With measurement CO2 concentrations of 330 micromol mol(-1) or lower, growth temperature had no effect on flag leaf photosynthesis in plants grown in ambient CO2, while it increased photosynthesis in elevated growth CO2. However, warmer growth temperatures did not modify the response of photosynthesis to measurement temperatures from 20 to 35 degrees C. A central finding of this study was that the increase with temperature in photosynthesis and the photosynthesis temperature optimum were significantly higher in plants grown in elevated rather than ambient CO2. In association with this, growth in elevated CO2 increased the temperature response (activation energy) of the maximum rate of carboxylation. The results provide field evidence that growth under CO2 enrichment enhances the response of Rubisco activity to temperature in wheat.

  12. Nocturnal intermittency in surface CO2 concentrations in sub-Saharan Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data obtained over four adjacent fields of differing management practices in Zimbabwe illustrate the role of atmospheric intermittency as a mechanism for transferring CO2 between the surface and the atmosphere above. At night, limited atmospheric mixing permits CO2 concentrations to increase to leve...

  13. Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions.

    PubMed

    Moroney, James V; Jungnick, Nadine; Dimario, Robert J; Longstreth, David J

    2013-11-01

    This review presents an overview of the two ways that cyanobacteria, algae, and plants have adapted to high O2 and low CO2 concentrations in the environment. First, the process of photorespiration enables photosynthetic organisms to recycle phosphoglycolate formed by the oxygenase reaction catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Second, there are a number of carbon concentrating mechanisms that increase the CO2 concentration around Rubisco which increases the carboxylase reaction enhancing CO2 fixation. This review also presents possibilities for the beneficial modification of these processes with the goal of improving future crop yields.

  14. Leaf functional response to increasing atmospheric CO(2) concentrations over the last century in two northern Amazonian tree species: a historical δ(13) C and δ(18) O approach using herbarium samples.

    PubMed

    Bonal, Damien; Ponton, Stéphane; Le Thiec, Didier; Richard, Béatrice; Ningre, Nathalie; Hérault, Bruno; Ogée, Jérôme; Gonzalez, Sophie; Pignal, Marc; Sabatier, Daniel; Guehl, Jean-Marc

    2011-08-01

    We assessed the extent of recent environmental changes on leaf morphological (stomatal density, stomatal surface, leaf mass per unit area) and physiological traits (carbon isotope composition, δ(13)C(leaf) , and discrimination, Δ(13)C(leaf) , oxygen isotope composition, δ(18)O(leaf) ) of two tropical rainforest species (Dicorynia guianensis; Humiria balsamifera) that are abundant in the Guiana shield (Northern Amazonia). Leaf samples were collected in different international herbariums to cover a 200 year time-period (1790-2004) and the whole Guiana shield. Using models describing carbon and oxygen isotope fractionations during photosynthesis, different scenarios of change in intercellular CO(2) concentrations inside the leaf (C(i)), stomatal conductance (g), and photosynthesis (A) were tested in order to understand leaf physiological response to increasing air CO(2) concentrations (C(a)). Our results confirmed that both species displayed physiological response to changing C(a) . For both species, we observed a decrease of about 1.7‰ in δ(13)C(leaf) since 1950, without significant change in Δ(13)C(leaf) and leaf morphological traits. Furthermore, there was no clear change in δ(18)O(leaf) for Humiria over this period. Our simulation approach revealed that an increase in A, rather than a decrease in g, explained the observed trends for these tropical rainforest species, allowing them to maintain a constant ratio of C(i)/C(a) .

  15. How much has the increase in atmospheric CO2 directly affected past soybean production?

    PubMed

    Sakurai, Gen; Iizumi, Toshichika; Nishimori, Motoki; Yokozawa, Masayuki

    2014-05-15

    Understanding the effects of climate change is vital for food security. Among the most important environmental impacts of climate change is the direct effect of increased atmospheric carbon dioxide concentration ([CO2]) on crop yields, known as the CO2 fertilization effect. Although several statistical studies have estimated past impacts of temperature and precipitation on crop yield at regional scales, the impact of past CO2 fertilization is not well known. We evaluated how soybean yields have been enhanced by historical atmospheric [CO2] increases in three major soybean-producing countries. The estimated average yields during 2002-2006 in the USA, Brazil, and China were 4.34%, 7.57%, and 5.10% larger, respectively, than the average yields estimated using the atmospheric [CO2] of 1980. Our results demonstrate the importance of considering atmospheric [CO2] increases in evaluations of the past effects of climate change on crop yields.

  16. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2.

    PubMed

    van Groenigen, Kees Jan; Osenberg, Craig W; Hungate, Bruce A

    2011-07-13

    Increasing concentrations of atmospheric carbon dioxide (CO(2)) can affect biotic and abiotic conditions in soil, such as microbial activity and water content. In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N(2)O) and methane (CH(4)) (refs 2, 3). However, studies on fluxes of N(2)O and CH(4) from soil under increased atmospheric CO(2) have not been quantitatively synthesized. Here we show, using meta-analysis, that increased CO(2) (ranging from 463 to 780 parts per million by volume) stimulates both N(2)O emissions from upland soils and CH(4) emissions from rice paddies and natural wetlands. Because enhanced greenhouse-gas emissions add to the radiative forcing of terrestrial ecosystems, these emissions are expected to negate at least 16.6 per cent of the climate change mitigation potential previously predicted from an increase in the terrestrial carbon sink under increased atmospheric CO(2) concentrations. Our results therefore suggest that the capacity of land ecosystems to slow climate warming has been overestimated.

  17. Precise measurements of the total concentration of atmospheric CO2 and 13CO2/12CO2 isotopic ratio using a lead-salt laser diode spectrometer.

    PubMed

    Croizé, Laurence; Mondelain, Didier; Camy-Peyret, Claude; Delmotte, Marc; Schmidt, Martina

    2008-04-01

    We have developed a tunable diode laser spectrometer, called SIMCO (spectrometer for isotopic measurements of CO(2)), for determining the concentrations of (12)CO(2) and (13)CO(2) in atmospheric air, from which the total concentration of CO(2) and the isotopic composition (expressed in delta units) delta(13)CO(2) are calculated. The two concentrations are measured using a pair of lines around 2290.1 cm(-1), by fitting a line profile model, taking into account the confinement narrowing effect to achieve a better accuracy. Using the Allan variance, we have demonstrated (for an integration time of 25 s) a precision of 0.1 ppmv for the total CO(2) concentration and of 0.3[per thousand] for delta(13)CO(2). The performances on atmospheric air have been tested during a 3 days campaign by comparing the SIMCO instrument with a gas chromatograph (GC) for the measurement of the total CO(2) concentration and with an isotopic ratio mass spectrometer (MS) for the isotopic composition. The CO(2) concentration measurements of SIMCO are in very good agreement with the GC data with a mean difference of Delta(CO(2))=0.16+/-1.20 ppmv for a comparison period of 45 h and the linearity of the concentration between the two instruments is also very good (slope of correlation: 0.9996+/-0.0003) over the range between 380 and 415 ppmv. For delta(13)CO(2), the comparison with the MS data shows a larger mean difference of Delta(delta(13)CO(2))=(-1.9+/-1.2)[per thousand], which could be partly related to small residual fluctuations of the overall SIMCO instrument response.

  18. Effect of elevated CO2 concentration on microalgal communities in Antarctic pack ice

    NASA Astrophysics Data System (ADS)

    Coad, Thomas; McMinn, Andrew; Nomura, Daiki; Martin, Andrew

    2016-09-01

    Increased anthropogenic CO2 emissions are causing changes to oceanic pH and CO2 concentrations that will impact many marine organisms, including microalgae. Phytoplankton taxa have shown mixed responses to these changes with some doing well while others have been adversely affected. Here, the photosynthetic response of sea-ice algal communities from Antarctic pack ice (brine and infiltration microbial communities) to a range of CO2 concentrations (400 ppm to 11,000 ppm in brine algae experiments, 400 ppm to 20,000 ppm in the infiltration ice algae experiment) was investigated. Incubations were conducted as part of the Sea-Ice Physics and Ecosystem Experiment II (SIPEX-2) voyage, in the austral spring (September-November), 2012. In the brine incubations, maximum quantum yield (Fv/Fm) and relative electron transfer rate (rETRmax) were highest at ambient and 0.049% (experiment 1) and 0.19% (experiment 2) CO2 concentrations, although, Fv/Fm was consistently between 0.53±0.10-0.68±0.01 across all treatments in both experiments. Highest rETRmax was exhibited by brine cultures exposed to ambient CO2 concentrations (60.15). In a third experiment infiltration ice algal communities were allowed to melt into seawater modified to simulate the changed pH and CO2 concentrations of future springtime ice-edge conditions. Ambient and 0.1% CO2 treatments had the highest growth rates and Fv/Fm values but only the highest CO2 concentration produced a significantly lower rETRmax. These experiments, conducted on natural Antarctic sea-ice algal communities, indicate a strong level of tolerance to elevated CO2 concentrations and suggest that these communities might not be adversely affected by predicted changes in CO2 concentration over the next century.

  19. The hysteresis response of soil respiration and soil CO2 concentration to soil temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Q., Sr.; Katul, G. G.; Oren, R.; Daly, E.; Manzoni, S.; Yang, D.

    2015-12-01

    Diurnal hysteresis between soil temperature (Ts) and both CO2 concentration ([CO2]) and soil respiration rate (Rs) were reported across different field experiments. However, the causes of these hysteresis patterns remain a subject of debate, with biotic and abiotic factors both invoked as explanations. To address these issues, a CO2 gas transport model is developed by combining layer-wise mass conservation for subsurface gas-phase CO2, Fickian diffusion for gas transfer, and a CO2 source term that depends on soil temperature, moisture, and photosynthetic rate. Using this model, a hierarchy of numerical experiments were employed to disentangle the causes of the hysteretic [CO2]-Ts and CO2 flux-Ts (i.e., F -Ts) relations. Model results show that gas transport alone can introduce both [CO2]-Ts and F-Ts hysteresis, and also confirm prior findings that heat flow in soils lead to [CO2] and F(z) being out of phase with Ts, thereby providing another reason for the occurrence of both hysteresis. The area (Ahys) of the [CO2]-Ts hysteresis near the surface increases, while the Ahys of the Rs-Ts hysteresis decreases as soils become wetter. Moreover, a time-lagged carbon input from photosynthesis deformed the [CO2]-Ts and Rs-Ts patterns, causing a change in the loop direction from counterclockwise to clockwise with decreasing time lag. An asymmetric 8-shaped pattern emerged as the transition state between the two loop directions. Tracing the pattern and direction of the hysteretic [CO2]-Ts and Rs-Ts relations can provide new ways to fingerprint the effects of photosynthesis stimulation on soil microbial activity and detect the corresponding time lags. Key words: Hysteresis; Photosynthesis; Soil CO2 concentration; Soil respiration; Soil temperature; Soil moisture

  20. Phenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 Concentration1

    PubMed Central

    Kumagai, Etsushi; Aoki, Naohiro; Masuya, Yusuke; Shimono, Hiroyuki

    2015-01-01

    Selection for cultivars with superior responsiveness to elevated atmospheric CO2 concentrations (eCO2) is a powerful option for boosting crop productivity under future eCO2. However, neither criteria for eCO2 responsiveness nor prescreening methods have been established. The purpose of this study was to identify traits responsible for eCO2 responsiveness of soybean (Glycine max). We grew 12 Japanese and U.S. soybean cultivars that differed in their maturity group and determinacy under ambient CO2 and eCO2 for 2 years in temperature gradient chambers. CO2 elevation significantly increased seed yield per plant, and the magnitude varied widely among the cultivars (from 0% to 62%). The yield increase was best explained by increased aboveground biomass and pod number per plant. These results suggest that the plasticity of pod production under eCO2 results from biomass enhancement, and would therefore be a key factor in the yield response to eCO2, a resource-rich environment. To test this hypothesis, we grew the same cultivars at low planting density, a resource-rich environment that improved the light and nutrient supplies by minimizing competition. Low planting density significantly increased seed yield per plant, and the magnitude ranged from 5% to 105% among the cultivars owing to increased biomass and pod number per plant. The yield increase due to low-density planting was significantly positively correlated with the eCO2 response in both years. These results confirm our hypothesis and suggest that high plasticity of biomass and pod production at a low planting density reveals suitable parameters for breeding to maximize soybean yield under eCO2. PMID:26373658

  1. Coccolithophore Response to CO2 Increase and Related Ecological Changes

    NASA Astrophysics Data System (ADS)

    Ziveri, P.

    2007-12-01

    Changes in ocean chemistry due to anthropogenic CO2 emissions affect marine life, nutrient cycles and biocalcification. Ocean acidification has been identified as a major consequence of rising atmospheric CO2 levels. This makes understanding the response of calcareous plankton, and other effects of global change, an urgent challenge. There have been controversial results from culture experiments and field observations, on the impact of CO2 increase on coccolithophore calcification and ecology. The objective of this presentation is to report the state-of-the-art on the impact of ocean acidification on coccolithophores and possible consequences on their biogeography and ecology. Results will also be reported from a workshop sponsored by the European Science Foundation (Euroclimate Program) and PAGES on Atmopheric CO2, ocean acidification and ecological changes in planktonic calcifying organisms. A wide range of experts contributed to that workshop, from the cellular and genetic to the ecological and global carbon cycle levels. Questions include how the predicted CO2 increase and acidification is likely to affect coccolithophores, what the possible secondary consequences may be, and what research is needed to allow robust predictions for the future.

  2. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy.

    PubMed

    Tor-ngern, Pantana; Oren, Ram; Ward, Eric J; Palmroth, Sari; McCarthy, Heather R; Domec, Jean-Christophe

    2015-01-01

    Models of forest energy, water and carbon cycles assume decreased stomatal conductance with elevated atmospheric CO2 concentration ([CO2]) based on leaf-scale measurements, a response not directly translatable to canopies. Where canopy-atmosphere are well-coupled, [CO2 ]-induced structural changes, such as increasing leaf-area index (LD), may cause, or compensate for, reduced mean canopy stomatal conductance (GS), keeping transpiration (EC) and, hence, runoff unaltered. We investigated GS responses to increasing [CO2] of conifer and broadleaved trees in a temperate forest subjected to 17-yr free-air CO2 enrichment (FACE; + 200 μmol mol(-1)). During the final phase of the experiment, we employed step changes of [CO2] in four elevated-[CO2 ] plots, separating direct response to changing [CO2] in the leaf-internal air-space from indirect effects of slow changes via leaf hydraulic adjustments and canopy development. Short-term manipulations caused no direct response up to 1.8 × ambient [CO2], suggesting that the observed long-term 21% reduction of GS was an indirect effect of decreased leaf hydraulic conductance and increased leaf shading. Thus, EC was unaffected by [CO2] because 19% higher canopy LD nullified the effect of leaf hydraulic acclimation on GS . We advocate long-term experiments of duration sufficient for slow responses to manifest, and modifying models predicting forest water, energy and carbon cycles accordingly.

  3. Adaptation by macrophytes to inorganic carbon down a river with naturally variable concentrations of CO2.

    PubMed

    Maberly, S C; Berthelot, S A; Stott, A W; Gontero, B

    2015-01-01

    The productivity and ecological distribution of freshwater plants can be controlled by the availability of inorganic carbon in water despite the existence of different mechanisms to ameliorate this, such as the ability to use bicarbonate. Here we took advantage of a short, natural gradient of CO2 concentration, against a background of very high and relatively constant concentration of bicarbonate, in a spring-fed river, to study the effect of variable concentration of CO2 on the ability of freshwater plants to use bicarbonate. Plants close to the source, where the concentration of CO2 was up to 24 times air equilibrium, were dominated by Berula erecta. pH-drift results and discrimination against (13)C were consistent with this and the other species being restricted to CO2 and unable to use the high concentration of bicarbonate. There was some indication from stable (13)C data that B. erecta may have had access to atmospheric CO2 at low water levels. In contrast, species downstream, where concentrations of CO2 were only about 5 times air-equilibrium were almost exclusively able to use bicarbonate, based on pH-drift results. Discrimination against (13)C was also consistent with bicarbonate being the main source of inorganic carbon for photosynthesis in these species. There was, therefore, a transect downstream from the source of increasing ability to use bicarbonate that closely matched the decreasing concentration of CO2. This was produced largely by altered species composition, but partly by phenotypic changes in individual species.

  4. Improved Criteria for Increasing CO2 Storage Potential with CO2 Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Bauman, J.; Pawar, R.

    2013-12-01

    In recent years it has been found that deployment of CO2 capture and storage technology at large scales will be difficult without significant incentives. One of the technologies that has been a focus in recent years is CO2 enhanced oil/gas recovery, where additional hydrocarbon recovery provides an economic incentive for deployment. The way CO2 EOR is currently deployed, maximization of additional oil production does not necessarily lead to maximization of stored CO2, though significant amounts of CO2 are stored regardless of the objective. To determine the potential of large-scale CO2 storage through CO2 EOR, it is necessary to determine the feasibility of deploying this technology over a wide range of oil/gas field characteristics. In addition it is also necessary to accurately estimate the ultimate CO2 storage potential and develop approaches that optimize oil recovery along with long-term CO2 storage. This study uses compositional reservoir simulations to further develop technical screening criteria that not only improve oil recovery, but maximize CO2 storage during enhanced oil recovery operations. Minimum miscibility pressure, maximum oil/ CO2 contact without the need of significant waterflooding, and CO2 breakthrough prevention are a few key parameters specific to the technical aspects of CO2 enhanced oil recovery that maximize CO2 storage. We have developed reduced order models based on simulation results to determine the ultimate oil recovery and CO2 storage potential in these formations. Our goal is to develop and demonstrate a methodology that can be used to determine feasibility and long-term CO2 storage potential of CO2 EOR technology.

  5. [Effects of elevated rhizosphere CO2 concentration on the photosynthetic characteristics, yield, and quality of muskmelon].

    PubMed

    Liu, Yi-Ling; Sun, Zhou-Ping; Li, Tian-Lai; Gu, Feng-Ying; He, Yu

    2013-10-01

    By using aeroponics culture system, this paper studied the effects of elevated rhizosphere CO2 concentration on the leaf photosynthesis and the fruit yield and quality of muskmelon during its anthesis-fruiting period. In the fruit development period of muskmelon, as compared with those in the control (350 microL CO2 x L (-1)), the leaf chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and the maximal photochemical efficiency of PS II (Fv/Fm) in treatments 2500 and 5000 microL CO2 x L(-1) decreased to some extents, but the stomatal limitation value (Ls) increased significantly, and the variation amplitudes were larger in treatment 5000 microL CO2 x L(-1) than in treatment 2500 microL CO2 x L(-1). Under the effects of elevated rhizosphere CO2 concentration, the fruit yield per plant and the Vc and soluble sugar contents in fruits decreased markedly, while the fruit organic acid content was in adverse. It was suggested that when the rhizosphere CO2 concentration of muskmelon during its anthesis-fruiting period reached to 2500 microL x L(-1), the leaf photosynthesis and fruit development of muskmelon would be depressed obviously, which would result in the decrease of fruit yield and quality of muskmelon.

  6. Effects of Elevated CO2 Concentration on Photosynthesis and Respiration of Populus Deltodies

    NASA Technical Reports Server (NTRS)

    Anderson, Angela M.

    1998-01-01

    To determine how increased atmospheric CO2 will affect the physiology of cottonwood trees, cuttings of the cloned Populus deltodies [cottonwood] were grown in open-top chambers containing ambient or elevated CO2 concentration. The control treatment was maintained at ambient Biosphere 2 atmospheric CO2 (c. 450 +/- 50 micro l/l), and elevated CO2 treatment was maintained at approximately double ambient Biosphere 2 atmospheric CO2 (c. 1000 +/- 50 micro l/l). The effects of elevated CO2 on leaf photosynthesis, and stomatal conductance were measured. The cottonwoods exposed to CO2 enrichment showed no significant indication of photosynthetic down-regulation. There was no significant difference in the maximum assimilation rate between the treatment and the control (P less than 0.24). The CO2 enriched treatment showed a decreased stomatal conductance of 15% (P less than 0.03). The elevated CO2 concentrated atmosphere had an effect on the respiration rates of the plants; the compensation point of the treatment was on average 13% higher than the control (P less than 0.01).

  7. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    PubMed

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon.

  8. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations.

    PubMed

    Long, Stephen P; Ainsworth, Elizabeth A; Leakey, Andrew D B; Nösberger, Josef; Ort, Donald R

    2006-06-30

    Model projections suggest that although increased temperature and decreased soil moisture will act to reduce global crop yields by 2050, the direct fertilization effect of rising carbon dioxide concentration ([CO2]) will offset these losses. The CO2 fertilization factors used in models to project future yields were derived from enclosure studies conducted approximately 20 years ago. Free-air concentration enrichment (FACE) technology has now facilitated large-scale trials of the major grain crops at elevated [CO2] under fully open-air field conditions. In those trials, elevated [CO2] enhanced yield by approximately 50% less than in enclosure studies. This casts serious doubt on projections that rising [CO2] will fully offset losses due to climate change.

  9. Land plants equilibrate O2 and CO2 concentrations in the atmosphere.

    PubMed

    Igamberdiev, Abir U; Lea, Peter J

    2006-02-01

    The role of land plants in establishing our present day atmosphere is analysed. Before the evolution of land plants, photosynthesis by marine and fresh water organisms was not intensive enough to deplete CO(2) from the atmosphere, the concentration of which was more than the order of magnitude higher than present. With the appearance of land plants, the exudation of organic acids by roots, following respiratory and photorespiratory metabolism, led to phosphate weathering from rocks thus increasing aquatic productivity. Weathering also replaced silicates by carbonates, thus decreasing the atmospheric CO(2) concentration. As a result of both intensive photosynthesis and weathering, CO(2 )was depleted from the atmosphere down to low values approaching the compensation point of land plants. During the same time period, the atmospheric O(2) concentration increased to maximum levels about 300 million years ago (Permo-Carboniferous boundary), establishing an O(2)/CO(2) ratio above 1000. At this point, land plant productivity and weathering strongly decreased, exerting negative feedback on aquatic productivity. Increased CO(2) concentrations were triggered by asteroid impacts and volcanic activity and in the Mesozoic era could be related to the gymnosperm flora with lower metabolic and weathering rates. A high O(2)/CO(2) ratio is metabolically linked to the formation of citrate and oxalate, the main factors causing weathering, and to the production of reactive oxygen species, which triggered mutations and stimulated the evolution of land plants. The development of angiosperms resulted in a decrease in CO(2) concentration during the Cenozoic era, which finally led to the glacial-interglacial oscillations in the Pleistocene epoch. Photorespiration, the rate of which is directly related to the O(2)/CO(2) ratio, due to the dual function of Rubisco, may be an important mechanism in maintaining the limits of O(2) and CO(2) concentrations by restricting land plant productivity

  10. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.

    PubMed

    Fan, Jianhua; Xu, Hui; Luo, Yuanchan; Wan, Minxi; Huang, Jianke; Wang, Weiliang; Li, Yuanguang

    2015-03-01

    Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration.

  11. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    NASA Astrophysics Data System (ADS)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  12. Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Martínez, Carlos; Correa, Edwin; Aranda, Jorge; Garcia, Milton; Jaramillo, Carlos; Turner, Benjamin L

    2011-09-01

    We investigated responses of growth, leaf gas exchange, carbon-isotope discrimination, and whole-plant water-use efficiency (W(P)) to elevated CO(2) concentration ([CO(2)]) in seedlings of five leguminous and five nonleguminous tropical tree species. Plants were grown at CO(2) partial pressures of 40 and 70 Pa. As a group, legumes did not differ from nonlegumes in growth response to elevated [CO(2)]. The mean ratio of final plant dry mass at elevated to ambient [CO(2)] (M(E)/M(A)) was 1.32 and 1.24 for legumes and nonlegumes, respectively. However, there was large variation in M(E)/M(A) among legume species (0.92-2.35), whereas nonlegumes varied much less (1.21-1.29). Variation among legume species in M(E)/M(A) was closely correlated with their capacity for nodule formation, as expressed by nodule mass ratio, the dry mass of nodules for a given plant dry mass. W(P) increased markedly in response to elevated [CO(2)] in all species. The ratio of intercellular to ambient CO(2) partial pressures during photosynthesis remained approximately constant at ambient and elevated [CO(2)], as did carbon isotope discrimination, suggesting that W(P) should increase proportionally for a given increase in atmospheric [CO(2)]. These results suggest that tree legumes with a strong capacity for nodule formation could have a competitive advantage in tropical forests as atmospheric [CO(2)] rises and that the water-use efficiency of tropical tree species will increase under elevated [CO(2)].

  13. Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated CO2 Concentration1[OA

    PubMed Central

    Cernusak, Lucas A.; Winter, Klaus; Martínez, Carlos; Correa, Edwin; Aranda, Jorge; Garcia, Milton; Jaramillo, Carlos; Turner, Benjamin L.

    2011-01-01

    We investigated responses of growth, leaf gas exchange, carbon-isotope discrimination, and whole-plant water-use efficiency (WP) to elevated CO2 concentration ([CO2]) in seedlings of five leguminous and five nonleguminous tropical tree species. Plants were grown at CO2 partial pressures of 40 and 70 Pa. As a group, legumes did not differ from nonlegumes in growth response to elevated [CO2]. The mean ratio of final plant dry mass at elevated to ambient [CO2] (ME/MA) was 1.32 and 1.24 for legumes and nonlegumes, respectively. However, there was large variation in ME/MA among legume species (0.92–2.35), whereas nonlegumes varied much less (1.21–1.29). Variation among legume species in ME/MA was closely correlated with their capacity for nodule formation, as expressed by nodule mass ratio, the dry mass of nodules for a given plant dry mass. WP increased markedly in response to elevated [CO2] in all species. The ratio of intercellular to ambient CO2 partial pressures during photosynthesis remained approximately constant at ambient and elevated [CO2], as did carbon isotope discrimination, suggesting that WP should increase proportionally for a given increase in atmospheric [CO2]. These results suggest that tree legumes with a strong capacity for nodule formation could have a competitive advantage in tropical forests as atmospheric [CO2] rises and that the water-use efficiency of tropical tree species will increase under elevated [CO2]. PMID:21788363

  14. The hysteresis response of soil CO2 concentration and soil respiration to soil temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Katul, Gabriel G.; Oren, Ram; Daly, Edoardo; Manzoni, Stefano; Yang, Dawen

    2015-08-01

    Diurnal hysteresis between soil temperature (Ts) and both CO2 concentration ([CO2]) and soil respiration rate (Rs) were reported across different field experiments. However, the causes of these hysteresis patterns remain a subject of debate, with biotic and abiotic factors both invoked as explanations. To address these issues, a CO2 gas transport model is developed by combining a layer-wise mass conservation equation for subsurface gas phase CO2, Fickian diffusion for gas transfer, and a CO2 source term that depends on soil temperature, moisture, and photosynthetic rate. Using this model, a hierarchy of numerical experiments were employed to disentangle the causes of the hysteretic [CO2]-Ts and CO2 flux Ts (i.e., F-Ts) relations. Model results show that gas transport alone can introduce both [CO2]-Ts and F-Ts hystereses and also confirm prior findings that heat flow in soils lead to [CO2] and F being out of phase with Ts, thereby providing another reason for the occurrence of both hystereses. The area (Ahys) of the [CO2]-Ts hysteresis near the surface increases, while the Ahys of the Rs-Ts hysteresis decreases as soils become wetter. Moreover, a time-lagged carbon input from photosynthesis deformed the [CO2]-Ts and Rs-Ts patterns, causing a change in the loop direction from counterclockwise to clockwise with decreasing time lag. An asymmetric 8-shaped pattern emerged as the transition state between the two loop directions. Tracing the pattern and direction of the hysteretic [CO2]-Ts and Rs-Ts relations can provide new ways to fingerprint the effects of photosynthesis stimulation on soil microbial activity and detect time lags between rhizospheric respiration and photosynthesis.

  15. Sensitivity of simulated CO2 concentration to sub-annual variations in fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Gurney, K. R.; Rayner, P. J.; Baker, D. F.; Liu, Y.; Asefi-Najafabady, S.

    2014-12-01

    This study presents a sensitivity analysis of the impact of sub-annual fossil fuel CO2 emissions on simulated CO2 concentration using a global tracer transport model. Four sensitivity experiments were conducted to investigate the impact of three cyclic components (diurnal, weekly and monthly) and a complete cyclic component (the combination of the three) by comparing with a temporally "flat" fossil fuel CO2 emissions inventory. A complete exploration of these impacts is quantified at annual, seasonal, weekly and diurnal time scales of the CO2concentration for the surface, vertical profile and column-integral structure. Result shows an annual mean surface concentration difference varying from -1.35 ppm to 0.13 ppm at grid scale for the complete cyclic fossil fuel emissions, which is mainly driven by a large negative diurnal rectification and less positive seasonal rectification. The negative diurnal rectification is up to 1.45 ppm at grid scale and primarily due to the covariation of diurnal fossil fuel CO2 emissions and diurnal variations of vertical mixing. The positive seasonal rectification is up to 0.23 ppm at grid scale which is mainly driven by the monthly fossil fuel CO2emissions coupling with atmospheric transport. Both the diurnal and seasonal rectifier effects are indicated at local-to-regional scales with center at large source regions and extend to neighboring regions in mainly Northern Hemisphere. The diurnal fossil fuel CO2 emissions is found to significantly affect the simulated diurnal CO2 amplitude (up to 9.12 ppm at grid scale), which is primarily contributed by the minima concentration differences around local sunset time. Similarly, large impact on the seasonal CO2 amplitude (up to 6.11 ppm) is found at regional scale for the monthly fossil fuel emissions. An impact of diurnal fossil fuel CO2 emissions on simulated afternoon CO2 concentration is also identified by up to 1.13 ppm at local scales. The study demonstrates a large cyclic fossil fuel

  16. Changes in CO2 concentration and carbon cycle during the last glacial termination

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Lee, H. G.; Shin, J.; Brook, E.

    2015-12-01

    Ice cores from Antarctica have revealed that atmospheric CO2 concentration is strongly linked with climate over the past hundreds of thousands years. During the last glacial termination CO2 concentration increased by ~80 ppm and the increase rate changed with abrupt climate events such as Bølling-Allerød and Younger Dryas. Precise and high-resolution CO2 records during the events may help us better understand climate-carbon cycle feedbacks. However, most of the existing ice core records are severely smoothed by gradual bubble close-off and gas diffusion in the firn layer. Recently, a CO2 record with an unprecedented temporal resolution was obtained from West Antarctic Ice Sheet (WAIS) Divide ice core, where glaciological conditions permit a relatively small gas smoothing effect. The WAIS Divide record shows three abrupt CO2 increases of 10-15 ppm in less than 200 years during the last glacial termination. The ancient air extracted from the WAIS Divide ice core was in a form of air hydrates and the results must yet be confirmed with other ice cores. Here we present a new high-resolution atmospheric CO2 record from the Siple Dome ice core, in which air is preserved only in bubbles. Our data cover 11.0-21.0 ka with an average time resolution of 65 yrs. The Siple Dome records show that abrupt CO2 increases of ~ 10 ppm within 100-200 years at 11.7, 14.7, and 16.3 ka, confirming the rapid CO2 increases observed in the WAIS Divide record. We are analyzing the common and uncommon features during the three rapid CO2 increases in order to decipher the control mechanisms. The updated results will be presented at the meeting.

  17. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    PubMed

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO2 concentrations. Growth under a high concentration of CO2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO2. Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO2. Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO2-enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates.

  18. BOREAS TE-5 CO2 Concentration and Stable Isotope Composition

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This data set contains measurements of the concentration and stable carbon (C-13/C-12 and oxygen (O-18/O-16) isotope ratios of atmospheric CO2 in air samples collected at different heights within forest canopies. The data were collected to determine the influence of photosynthesis and respiration by the forest ecosystems on the concentration and stable isotope ratio of atmospheric CO2 These measurements were collected at the SSA during each 1994 IFC at OJP, OBS, and OA sites. Measurements were also collected at the NSA during each 1994 IFC at the OJP, T6R5S TE UBS, and T2Q6A TE OA sites. The stable isotope ratios are expressed using standard delta notation and in units of per mil. The isotope ratios are expressed relative to the international standard, PDB, for both carbon and oxygen samples. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  19. Increasing shallow groundwater CO2 and limestone weathering, Konza Prairie, USA

    USGS Publications Warehouse

    Macpherson, G.L.; Roberts, J.A.; Blair, J.M.; Townsend, M.A.; Fowle, D.A.; Beisner, K.R.

    2008-01-01

    In a mid-continental North American grassland, solute concentrations in shallow, limestone-hosted groundwater and adjacent surface water cycle annually and have increased steadily over the 15-year study period, 1991-2005, inclusive. Modeled groundwater CO2, verified by measurements of recent samples, increased from 10-2.05 atm to 10-1.94 atm, about a 20% increase, from 1991 to 2005. The measured groundwater alkalinity and alkaline-earth element concentrations also increased over that time period. We propose that carbonate minerals dissolve in response to lowered pH that occurs during an annual carbonate-mineral saturation cycle. The cycle starts with low saturation during late summer and autumn when dissolved CO2 is high. As dissolved CO2 decreases in the spring and early summer, carbonates become oversaturated, but oversaturation does not exceed the threshold for precipitation. We propose that groundwater is a CO2 sink through weathering of limestone: soil-generated CO2 is transformed to alkalinity through dissolution of calcite or dolomite. The annual cycle and long-term increase in shallow groundwater CO2 is similar to, but greater than, atmospheric CO2. ?? 2008 Elsevier Ltd. All rights reserved.

  20. Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Wohlfarth, Barbara; Kylander, Malin E.; Blaauw, Maarten; Reimer, Paula J.

    2013-05-01

    A new stomatal proxy-based record of CO2 concentrations ([CO2]), based on Betula nana (dwarf birch) leaves from the Hässeldala Port sedimentary sequence in south-eastern Sweden, is presented. The record is of high chronological resolution and spans most of Greenland Interstadial 1 (GI-1a to 1c, Allerød pollen zone), Greenland Stadial 1 (GS-1, Younger Dryas pollen zone) and the very beginning of the Holocene (Preboreal pollen zone). The record clearly demonstrates that i) [CO2] were significantly higher than usually reported for the Last Termination and ii) the overall pattern of CO2 evolution through the studied time period is fairly dynamic, with significant abrupt fluctuations in [CO2] when the climate moved from interstadial to stadial state and vice versa. A new loss-on-ignition chemical record (used here as a proxy for temperature) lends independent support to the Hässeldala Port [CO2] record. The large-amplitude fluctuations around the climate change transitions may indicate unstable climates and that “tipping-point” situations were involved in Last Termination climate evolution. The scenario presented here is in contrast to [CO2] records reconstructed from air bubbles trapped in ice, which indicate lower concentrations and a gradual, linear increase of [CO2] through time. The prevalent explanation for the main climate forcer during the Last Termination being ocean circulation patterns needs to re-examined, and a larger role for atmospheric [CO2] considered.

  1. Deep Sea Memory of High Atmospheric CO2 Concentration

    NASA Astrophysics Data System (ADS)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  2. Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L.

    PubMed

    Geissler, Nicole; Hussin, Sayed; Koyro, Hans-Werner

    2010-02-01

    Our study aimed at investigating the influence of elevated atmospheric CO(2) concentration on the salinity tolerance of the cash crop halophyte Aster tripolium L., thereby focussing on protein expression and enzyme activities. The plants were grown in hydroponics using a nutrient solution with or without addition of NaCl (75% seawater salinity), under ambient (380 ppm) and elevated (520 ppm) CO(2). Under ambient CO(2) concentration enhanced expressions and activities of the antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and glutathione-S-transferase in the salt-treatments were recorded as a reaction to oxidative stress. Elevated CO(2) led to significantly higher enzyme expressions and activities in the salt-treatments, so that reactive oxygen species could be detoxified more effectively. Furthermore, the expression of a protective heat shock protein (class 20) increased under salinity and was even further enhanced under elevated CO(2) concentration. Additional energy had to be provided for the mechanisms mentioned above, which was indicated by the increased expression of a beta ATPase subunit and higher v-, p- and f-ATPase activities under salinity. The higher ATPase expression and activities also enable a more efficient ion transport and compartmentation for the maintenance of ion homeostasis. We conclude that elevated CO(2) concentration is able to improve the survival of A. tripolium under salinity because more energy is provided for the synthesis and enhanced activity of enzymes and proteins which enable a more efficient ROS detoxification and ion compartmentation/transport.

  3. Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles

    NASA Astrophysics Data System (ADS)

    Aster, Ellen M.; Wallace, Paul J.; Moore, Lowell R.; Watkins, James; Gazel, Esteban; Bodnar, Robert J.

    2016-09-01

    Melt inclusions record valuable information about pre-eruptive volatile concentrations of melts. However, a vapor bubble commonly forms in inclusions after trapping, and this decreases the dissolved CO2 concentration in the melt (glass) phase in the inclusion. To quantify CO2 loss to vapor bubbles, Raman spectroscopic analysis was used to determine the density of CO2 in bubbles in melt inclusions from two Cascade cinder cones near Mt. Lassen and two Mexican cinder cones (Jorullo, Parícutin). Using analyses of dissolved CO2 and H2O in the glass in the inclusions, the measured CO2 vapor densities were used to reconstruct the original dissolved CO2 contents of the melt inclusions at the time of trapping. Our results show that 30-90% of the CO2 in a melt inclusion is contained in the vapor bubble, values similar to those found in other recent studies. We developed a model for vapor bubble growth to show how post-entrapment bubbles form in melt inclusions as a result of cooling, crystallization, and eruptive quenching. The model allows us to predict the bubble volume fraction as a function of ΔT (the difference between the trapping temperature and eruptive temperature) and the amount of CO2 lost to a bubble. Comparison of the Raman and modeling methods shows highly variable agreement. For 10 of 17 inclusions, the two methods are within ± 550 ppm CO2 (avg. difference 290 ppm), equivalent to ±~300 bars uncertainty in estimated trapping pressure for restored inclusions. Discrepancies between the two methods occur for inclusions that have been strongly affected by post-entrapment diffusive H+ loss, because this process enhances bubble formation. For our dataset, restoring the CO2 lost to vapor bubbles increases inferred trapping pressures of the inclusions by 600 to as much as 4000 bars, highlighting the importance of accounting for vapor bubble formation in melt inclusion studies.

  4. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration.

    PubMed

    Drake, John E; Macdonald, Catriona A; Tjoelker, Mark G; Crous, Kristine Y; Gimeno, Teresa E; Singh, Brajesh K; Reich, Peter B; Anderson, Ian C; Ellsworth, David S

    2016-01-01

    Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2 ) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short-term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil ) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2 ) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light-saturated photosynthesis of canopy leaves (Asat ) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2 . The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research.

  5. Designing an oscillating CO2 concentration experiment for fild chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  6. Designing an oscillating CO2 concentration experiment for field chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Questions have arisen about photosynthetic response to fluctuating carbon dioxide (CO2), which might affect yield in free-air CO2 enrichment (FACE) systems and in open top chambers. A few studies have been conducted based on CO2 controlled to cycles of fixed time-periods and fixed, large amplitude....

  7. CO2 absorption/emission and aerodynamic effects of trees on the concentrations in a street canyon in Guangzhou, China.

    PubMed

    Li, Jian-Feng; Zhan, Jie-Min; Li, Y S; Wai, Onyx W H

    2013-06-01

    In this paper, the effects of trees on CO2 concentrations in a street canyon in Guangzhou, China are examined by Computational Fluid Dynamics (CFD) simulations of the concentration distribution, taking into account both the CO2 absorption/emission and aerodynamic effects of trees. Simulation results show that, under a 2 m/s southerly prevailing wind condition, CO2 absorption by trees will reduce the CO2 concentration by around 2.5% in the daytime and at the same time the trees' resistance will increase the difference of CO2 concentrations in the street and at the inflow by 43%. As the traffic density increases to 50 vehicles/min, the effect of trees on the ambient CO2 concentration will change from positive to negative. At night, trees have a negative effect on the concentration in the street canyon mainly because of their resistance to airflow. When environmental wind changes, the effect of trees will be different.

  8. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2.

    PubMed

    Cheng, Jun; Huang, Yun; Feng, Jia; Sun, Jing; Zhou, Junhu; Cen, Kefa

    2013-05-01

    To improve biomass productivity and CO2 fixation of microalgae under 15% (v/v) CO2 of flue gas, Chlorella species were mutated by nuclear irradiation and domesticated with high concentrations of CO2. The biomass yield of Chlorella pyrenoidosa mutated using 500 Gy of (60)Co γ irradiation increased by 53.1% (to 1.12 g L(-1)) under air bubbling. The mutants were domesticated with gradually increased high concentrations of CO2 [from 0.038% (v/v) to 15% (v/v)], which increased the biomass yield to 2.41 g L(-1). When light transmission and culture mixing in photo-bioreactors were enhanced at 15% (v/v) CO2, the peak growth rate of the domesticated mutant (named Chlorella PY-ZU1) was increased to 0.68 g L(-1) d(-1). When the ratio of gas flow rate (L min(-1)) to 1L of microalgae culture was 0.011, the peak CO2 fixation rate and the efficiency of Chlorella PY-ZU1 were 1.54 g L(-1) d(-1) and 32.7%, respectively.

  9. New constraints on atmospheric CO2 concentration for the Phanerozoic

    NASA Astrophysics Data System (ADS)

    Franks, Peter J.; Royer, Dana L.; Beerling, David J.; Van de Water, Peter K.; Cantrill, David J.; Barbour, Margaret M.; Berry, Joseph A.

    2014-07-01

    Earth's atmospheric CO2 concentration (ca) for the Phanerozoic Eon is estimated from proxies and geochemical carbon cycle models. Most estimates come with large, sometimes unbounded uncertainty. Here, we calculate tightly constrained estimates of ca using a universal equation for leaf gas exchange, with key variables obtained directly from the carbon isotope composition and stomatal anatomy of fossil leaves. Our new estimates, validated against ice cores and direct measurements of ca, are less than 1000 ppm for most of the Phanerozoic, from the Devonian to the present, coincident with the appearance and global proliferation of forests. Uncertainties, obtained from Monte Carlo simulations, are typically less than for ca estimates from other approaches. These results provide critical new empirical support for the emerging view that large (~2000-3000 ppm), long-term swings in ca do not characterize the post-Devonian and that Earth's long-term climate sensitivity to ca is greater than originally thought.

  10. Will Elevated CO2 Increase Forest Productivity? Evidence from an Australian FACE Experiment

    NASA Astrophysics Data System (ADS)

    Collins, L.

    2015-12-01

    Rising atmospheric CO2 may enhance forest productivity via CO2 fertilisation and increased soil moisture associated with water savings. Quantification of the response of forest productivity to rising CO2 concentrations is important, as increased forest productivity may contribute to the mitigation of anthropogenic climate change. Vegetation greenness indices derived from digital photographs have been correlated with a number of measures of ecosystem productivity including total biomass, leaf area index and gross primary productivity. Our study examines the effect of elevated CO2 on patterns in overstorey and understorey vegetation greenness at a Free Air CO2 Enrichment facility (EucFACE) situated within a temperate eucalypt forest in Sydney, Australia. EucFACE consists of six treatment areas, three subjected to ambient CO2 ('ambient') and three with ambient plus 150 ppm CO2 ('elevated'). Each treatment area had one camera monitoring canopy greenness for a 12 month period and four cameras monitoring one understorey vegetation plot (2.25 m2) each for a 15 month period. Vegetation greenness was measured daily using the green chromatic coordinate (GCC). Understorey and overstorey GCC and rates of understorey greening and browning were not affected by elevated CO2. Periodic differences in canopy greening and browning between CO2 treatments were observed, though these probably reflect an insect defoliation event in one treatment area. Increases in canopy and understorey GCC were associated with a combination of extended periods of high soil volumetric water content (VWC) (>0.1) and high maximum temperatures (>25 °C). Browning appeared to be associated with a combination of periods of high maximum temperatures and low VWC or low minimum temperatures. Our short term findings suggest that eucalypt forest productivity will be sensitive to changes in climate, but may be relatively insensitive to changes in CO2 in the near future.

  11. Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance

    PubMed Central

    Satish, Usha; Shekhar, Krishnamurthy; Hotchi, Toshifumi; Sullivan, Douglas; Streufert, Siegfried; Fisk, William J.

    2012-01-01

    Background: Associations of higher indoor carbon dioxide (CO2) concentrations with impaired work performance, increased health symptoms, and poorer perceived air quality have been attributed to correlation of indoor CO2 with concentrations of other indoor air pollutants that are also influenced by rates of outdoor-air ventilation. Objectives: We assessed direct effects of increased CO2, within the range of indoor concentrations, on decision making. Methods: Twenty-two participants were exposed to CO2 at 600, 1,000, and 2,500 ppm in an office-like chamber, in six groups. Each group was exposed to these conditions in three 2.5-hr sessions, all on 1 day, with exposure order balanced across groups. At 600 ppm, CO2 came from outdoor air and participants’ respiration. Higher concentrations were achieved by injecting ultrapure CO2. Ventilation rate and temperature were constant. Under each condition, participants completed a computer-based test of decision-making performance as well as questionnaires on health symptoms and perceived air quality. Participants and the person administering the decision-making test were blinded to CO2 level. Data were analyzed with analysis of variance models. Results: Relative to 600 ppm, at 1,000 ppm CO2, moderate and statistically significant decrements occurred in six of nine scales of decision-making performance. At 2,500 ppm, large and statistically significant reductions occurred in seven scales of decision-making performance (raw score ratios, 0.06–0.56), but performance on the focused activity scale increased. Conclusions: Direct adverse effects of CO2 on human performance may be economically important and may limit energy-saving reductions in outdoor air ventilation per person in buildings. Confirmation of these findings is needed. PMID:23008272

  12. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.

    PubMed

    Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús

    2016-04-01

    Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*].

  13. Concentrating on CO2: the Scandinavian and Arctic measurements.

    PubMed

    Bohn, Maria

    2011-01-01

    This article concerns atmospheric carbon dioxide (CO2) measurements made in Scandinavia and in the Arctic region before measurements started at Mauna Loa, Hawaii, in 1958. The CO2 hypothesis of climate change was one reason to measure atmospheric CO2 in the mid-1950s. The earlier history of CO2 measurements--for instance, the work of the chemist Kurt Buch--was also influential in this period. It is unclear when the CO2 hypothesis of climate change began to provide sufficient motivation for measurements, and the measurements may relate in a nonlinear way to the growth in popularity of the hypothesis. Discussions between meteorologist Carl-Gustaf Rossby at Stockholm Högskola and scientists in America reveal how different kinds of CO2 studies varied with regard to precision.

  14. Coccolithophore community response to increasing pCO2 in Mediterranean oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Oviedo, A. M.; Ziveri, P.; Gazeau, F.

    2017-02-01

    The effects of elevated partial pressure of CO2 (pCO2) on plankton communities in oligotrophic ecosystems were studied during two mesocosm experiments: one during summer 2012 in the Bay of Calvi, France, and another during winter 2013 in the Bay of Villefranche, France. Here we report on the relative abundances of coccolithophores versus siliceous phytoplankton, coccolithophore community structure, Emiliania huxleyi coccolith morphology and calcification degree. A pCO2 mediated succession of phytoplankton groups did not occur. During both experiments, coccolithophore abundance and community structure varied with time independently of pCO2 levels. Changes in the community structure were partly explained by the concentration of phosphate during the winter experiment. During the summer experiment, it was not clearly related to any of the parameters measured but possibly to changes in temperature. Phenological changes in the community and an attenuated response due to the low biomass building during the winter experiment could have masked the response to pCO2. E. huxleyi dominated the coccolithophore community in winter; it was not affected by elevated pCO2 at any time. In contrast, the abundance of Rabdosphaera clavigera, the dominant species in summer, increased with time and this increase was affected at elevated pCO2. Thus, a different coccolithophore community response based on species-specific sensitivities to pCO2 is still likely. Finally, elevated pCO2 had no traceable effect on E. huxleyi (type A) coccolith morphology or on the degree of coccolith calcification. Our results highlight the possibility that, in oligotrophic regions, nutrient availability, temperature or intrinsic phenological changes might exert larger constrains on the coccolithophore community structure than high pCO2 does solely.

  15. Photosynthesis and Carbohydrate Partitioning for the C3 Desert Shrub Encelia farinosa under Current and Doubled CO2 Concentrations.

    PubMed Central

    Zhang, H.; Nobel, P. S.

    1996-01-01

    Changes in photosynthesis (A) and carbohydrate partitioning were studied for Encelia farinosa, a common C3 desert shrub in the southwestern United States, after a 3-month exposure to the current or a doubled CO2 concentration (750 [mu]L L-1). A remained unchanged under the current CO2 concentration but decreased during the day under the doubled CO2 concentration, resulting in a 46% enhancement in the early morning, 26% at midday, and 15% in the late afternoon by the elevated CO2. The decrease during the day under the doubled CO2 concentration may represent end-product inhibition, because the sucrose and the starch contents increased during the day proportionally more than under the current CO2 concentration. The 14CO2 activity in sink leaves was maximal 3 h after labeling under the doubled and at 5 h under the current CO2 concentration, indicating faster movement of photosynthate out of source leaves and into sink tissues under the doubled CO2 concentration, which may have been responsible for the sustained enhancement in A under the doubled CO2 concentration. PMID:12226266

  16. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient.

    PubMed

    Wang, Yingjun; Stessman, Dan J; Spalding, Martin H

    2015-05-01

    The CO2 concentrating mechanism (CCM) represents an effective strategy for carbon acquisition that enables microalgae to survive and proliferate when the CO2 concentration limits photosynthesis. The CCM improves photosynthetic performance by raising the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), simultaneously enhancing carbon fixation and suppressing photorespiration. Active inorganic carbon (Ci) uptake, Rubisco sequestration and interconversion between different Ci species catalyzed by carbonic anhydrases (CAs) are key components in the CCM, and an array of molecular regulatory elements is present to facilitate the sensing of CO2 availability, to regulate the expression of the CCM and to coordinate interplay between photosynthetic carbon metabolism and other metabolic processes in response to limiting CO2 conditions. This review intends to integrate our current understanding of the eukaryotic algal CCM and its interaction with carbon assimilation, based largely on Chlamydomonas as a model, and to illustrate how Chlamydomonas acclimates to limiting CO2 conditions and how its CCM is regulated.

  17. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Bloom, A. J.; Bugbee, B. B.

    1998-01-01

    We examined the hypothesis that elevated CO2 concentration would increase NO3- absorption and assimilation using intact wheat canopies (Triticum aestivum cv. Veery 10). Nitrate consumption, the sum of plant absorption and nitrogen loss, was continuously monitored for 23 d following germination under two CO2 concentrations (360 and 1000 micromol mol-1 CO2) and two root zone NO3- concentrations (100 and 1000 mmol m3 NO3-). The plants were grown at high density (1780 m-2) in a 28 m3 controlled environment chamber using solution culture techniques. Wheat responded to 1000 micromol mol-1 CO2 by increasing carbon allocation to root biomass production. Elevated CO2 also increased root zone NO3- consumption, but most of this increase did not result in higher biomass nitrogen. Rather, nitrogen loss accounted for the greatest part of the difference in NO3- consumption between the elevated and ambient [CO2] treatments. The total amount of NO3(-)-N absorbed by roots or the amount of NO3(-)-N assimilated per unit area did not significantly differ between elevated and ambient [CO2] treatments. Instead, specific leaf organic nitrogen content declined, and NO3- accumulated in canopies growing under 1000 micromol mol-1 CO2. Our results indicated that 1000 micromol mol-1 CO2 diminished NO3- assimilation. If NO3- assimilation were impaired by high [CO2], then this offers an explanation for why organic nitrogen contents are often observed to decline in elevated [CO2] environments.

  18. Radiative and Physiological Effects of Increased CO2: How Does This Interaction Affect Climate?

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari

    2011-01-01

    Several climate models indicate that in a 2xCO2 environment, temperature and precipitation would increase and runoff would increase faster than precipitation. These models, however, did not allow the vegetation to increase its leaf density as a response to the physiological effects of increased CO2 and consequent changes in climate. Other assessments included these interactions but did not account for the vegetation downregulation to reduce plant's photosynthetic activity and as such resulted in a weak vegetation negative response. When we combine these interactions in climate simulations with 2xCO2, the associated increase in precipitation contributes primarily to increase evapotranspiration rather than surface runoff, consistent with observations, and results in an additional cooling effect not fully accounted for in previous 2xCO2 simulations. By accelerating the water cycle, this feedback slows but does not alleviate the projected warming, reducing the land surface warming by 0.6 C. Compared to previous studies, these results imply that long term negative feedback from CO2-induced increases in vegetation density could reduce temperature following a stabilization of CO2 concentration.

  19. Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects

    USGS Publications Warehouse

    Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, J.S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.

    2002-01-01

    An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.

  20. Atmospheric CO2 concentration effects on rice water use and biomass production

    PubMed Central

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C.; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  1. Atmospheric CO2 concentration effects on rice water use and biomass production.

    PubMed

    Kumar, Uttam; Quick, William Paul; Barrios, Marilou; Sta Cruz, Pompe C; Dingkuhn, Michael

    2017-01-01

    Numerous studies have addressed effects of rising atmospheric CO2 concentration on rice biomass production and yield but effects on crop water use are less well understood. Irrigated rice evapotranspiration (ET) is composed of floodwater evaporation and canopy transpiration. Crop coefficient Kc (ET over potential ET, or ETo) is crop specific according to FAO, but may decrease as CO2 concentration rises. A sunlit growth chamber experiment was conducted in the Philippines, exposing 1.44-m2 canopies of IR72 rice to four constant CO2 levels (195, 390, 780 and 1560 ppmv). Crop geometry and management emulated field conditions. In two wet (WS) and two dry (DS) seasons, final aboveground dry weight (agdw) was measured. At 390 ppmv [CO2] (current ambient level), agdw averaged 1744 g m-2, similar to field although solar radiation was only 61% of ambient. Reduction to 195 ppmv [CO2] reduced agdw to 56±5% (SE), increase to 780 ppmv increased agdw to 128±8%, and 1560 ppmv increased agdw to 142±5%. In 2013WS, crop ET was measured by weighing the water extracted daily from the chambers by the air conditioners controlling air humidity. Chamber ETo was calculated according to FAO and empirically corrected via observed pan evaporation in chamber vs. field. For 390 ppmv [CO2], Kc was about 1 during crop establishment but increased to about 3 at flowering. 195 ppmv CO2 reduced Kc, 780 ppmv increased it, but at 1560 ppmv it declined. Whole-season crop water use was 564 mm (195 ppmv), 719 mm (390 ppmv), 928 mm (780 ppmv) and 803 mm (1560 ppmv). With increasing [CO2], crop water use efficiency (WUE) gradually increased from 1.59 g kg-1 (195 ppmv) to 2.88 g kg-1 (1560 ppmv). Transpiration efficiency (TE) measured on flag leaves responded more strongly to [CO2] than WUE. Responses of some morphological traits are also reported. In conclusion, increased CO2 promotes biomass more than water use of irrigated rice, causing increased WUE, but it does not help saving water. Comparability

  2. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Jahren, A. Hope

    2012-11-01

    Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of 13C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the effect of pCO2 on the net isotopic discrimination (Δδ13Cp) between plant tissue (δ13Cp) and atmospheric CO2 (δ13CCO2). Because plant stomata respond sensitively to plant water status and simultaneously alter the concentration of pCO2 inside the plant (ci) relative to outside the plant (ca), any experiment that lacks environmental control over water availability across treatments could result in additional isotopic variation sufficient to mask or cancel the direct influence of pCO2 on Δδ13Cp. We present new data from plant growth chambers featuring enhanced dynamic stabilization of moisture availability and relative humidity, in addition to providing constant light, nutrient, δ13CCO2, and pCO2 level for up to four weeks of plant growth. Within these chambers, we grew a total of 191 C3 plants (128 Raphanus sativus plants and 63 Arabidopsis thaliana) across fifteen levels of pCO2 ranging from 370 to 4200 ppm. Three types of plant tissue were harvested and analyzed for carbon isotope value: above-ground tissues, below-ground tissues, and leaf-extracted nC31-alkanes. We observed strong hyperbolic correlations (R ⩾ 0.94) between the pCO2 level and Δδ13Cp for each type of plant tissue analyzed; furthermore the linear relationships previously suggested by experiments across small (10-350 ppm) changes in pCO2 (e.g., 300-310 ppm or 350-700 ppm) closely agree with the amount of fractionation per ppm increase in pCO2 calculated from our hyperbolic relationship. In this way, our work is consistent with, and provides a unifying relationship for, previous work on carbon isotopes

  3. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration

    NASA Astrophysics Data System (ADS)

    Liu, Min; Pang, Yuanjie; Zhang, Bo; de Luna, Phil; Voznyy, Oleksandr; Xu, Jixian; Zheng, Xueli; Dinh, Cao Thang; Fan, Fengjia; Cao, Changhong; de Arquer, F. Pelayo García; Safaei, Tina Saberi; Mepham, Adam; Klinkova, Anna; Kumacheva, Eugenia; Filleter, Tobin; Sinton, David; Kelley, Shana O.; Sargent, Edward H.

    2016-09-01

    Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.

  4. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  5. Relationship between photosynthesis and leaf nitrogen concentration in ambient and elevated [CO2] in white birch seedlings.

    PubMed

    Cao, Bing; Dang, Qing-Lai; Zhang, Shouren

    2007-06-01

    To study the effects of elevated CO2 concentration ([CO2]) on relationships between nitrogen (N) nutrition and foliar gas exchange parameters, white birch (Betula papyrifera Marsh.) seedlings were exposed to one of five N-supply regimes (10, 80, 150, 220, 290 mg N l(-1)) in either ambient [CO2] (360 micromol mol(-1)) or elevated [CO2] (720 micromol mol(-1)) in environment-controlled greenhouses. Foliar gas exchange and chlorophyll fluorescence were measured after 60 and 80 days of treatment. Photosynthesis showed a substantial down-regulation (up to 57%) in response to elevated [CO2] and the magnitude of the down-regulation generally decreased exponentially with increasing leaf N concentration. When measured at the growth [CO2], elevated [CO2] increased the overall rate of photosynthesis (P(n)) and instantaneous water-use efficiency (IWUE) by up to 69 and 236%, respectively, but decreased transpiration (E) and stomatal conductance (g(s)) in all N treatments. However, the degree of stimulation of photosynthesis by elevated [CO2] decreased as photosynthetic down-regulation increased from 60 days to 80 days of treatment. Elevated [CO2] significantly increased total photosynthetic electron transport in all N treatments at 60 days of treatment, but the effect was insignificant after 80 days of treatment. Both P(n) and IWUE generally increased with increasing leaf N concentration except at very high leaf N concentrations, where both P(n) and IWUE declined. The relationships of P(n) and IWUE with leaf N concentration were modeled with both a linear regression and a second-order polynomial function. Elevated [CO2] significantly and substantially increased the slope of the linear regression for IWUE, but had no significant effect on the slope for P(n). The optimal leaf N concentration for P(n) and IWUE derived from the polynomial function did not differ between the CO2 treatments when leaf N was expressed on a leaf area basis. However, the mass-based optimal leaf N

  6. A direct human influence on atmospheric CO2 seasonality from increased cropland productivity

    NASA Astrophysics Data System (ADS)

    Gray, J. M.; Frolking, S. E.; Kort, E. A.; Ray, D. K.; Kucharik, C. J.; Ramankutty, N.; Friedl, M. A.

    2014-12-01

    Ground- and aircraft-based measurements show that the seasonal amplitude of Northern Hemisphere atmospheric carbon dioxide (CO2) concentrations has increased by as much as 50% over the last 50 years. This increase has been linked to changes in Temperate, Boreal and Arctic ecosystem properties and processes such as enhanced photosynthesis, increased heterotrophic respiration, and expansion of woody vegetation. However, the precise causal mechanisms behind observed changes in atmospheric CO2 seasonality remain unclear. Here we show that increases in agricultural productivity, which have been largely overlooked in previous investigations, explain as much as 25% of observed changes in atmospheric CO2 seasonality, and perhaps more. Specifically, Northern Hemisphere extratropical maize, wheat, rice, and soybean production grew by 240% between 1961-2008, thereby increasing the amount of net carbon uptake by croplands during the Northern Hemisphere growing season by 0.33 Pg. Maize alone accounts for two-thirds of this change, owing mostly to agricultural intensification within concentrated production zones in the Midwestern United States and Northern China. Since a substantial portion of seasonality enhancement results from a process that is roughly neutral in terms of its impact on the terrestrial carbon sink, our results show that care must be taken when making inferences regarding the linkages between CO2 seasonality and terrestrial carbon sink dynamics. More generally, these results demonstrate how intensive management of agricultural ecosystems over the last five decades have imparted a substantial and direct fingerprint of anthropogenic activities on seasonal patterns of Northern Hemisphere atmospheric CO2.

  7. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude.

    PubMed

    Zeng, Ning; Zhao, Fang; Collatz, George J; Kalnay, Eugenia; Salawitch, Ross J; West, Tristram O; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001-2010 than in

  8. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    SciTech Connect

    Zeng, Ning; Zhao, Fang; Collatz, George; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970

  9. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    PubMed

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-03-10

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO2, since the root FW reduction caused by excess B was less marked at the high CO2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO2 concentration, and from 38 to 51% at elevated CO2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO2.

  10. Soil air CO2 concentration as an integrative parameter of soil structure

    NASA Astrophysics Data System (ADS)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian

    2015-04-01

    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  11. Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars.

    PubMed

    Way, Danielle A; Ghirardo, Andrea; Kanawati, Basem; Esperschütz, Jürgen; Monson, Russell K; Jackson, Robert B; Schmitt-Kopplin, Philippe; Schnitzler, Jörg-Peter

    2013-10-01

    Isoprene, a volatile organic compound produced by some plant species, enhances abiotic stress tolerance under current atmospheric CO2 concentrations, but its biosynthesis is negatively correlated with CO2 concentrations. We hypothesized that losing the capacity to produce isoprene would require stronger up-regulation of other stress tolerance mechanisms at low CO2 than at higher CO2 concentrations. We compared metabolite profiles and physiological performance in poplars (Populus × canescens) with either wild-type or RNAi-suppressed isoprene emission capacity grown at pre-industrial low, current atmospheric, and future high CO2 concentrations (190, 390 and 590 ppm CO2 , respectively). Suppression of isoprene biosynthesis led to significant rearrangement of the leaf metabolome, increasing stress tolerance responses such as xanthophyll cycle pigment de-epoxidation and antioxidant levels, as well as altering lipid, carbon and nitrogen metabolism. Metabolic and physiological differences between isoprene-emitting and suppressed lines diminished as growth CO2 concentrations rose. The CO2 dependence of our results indicates that the effects of isoprene biosynthesis are strongest at pre-industrial CO2 concentrations. Rising CO2 may reduce the beneficial effects of biogenic isoprene emission, with implications for species competition. This has potential consequences for future climate warming, as isoprene emitted from vegetation has strong effects on global atmospheric chemistry.

  12. Multi-day, real-time measurements of CO2 concentration, CO2/SO2 ratios, and d13C of CO2 in volcanic plume

    NASA Astrophysics Data System (ADS)

    Jost, H. J. H.; Rizzo, A. L.; Liuzzo, M.; Ancellin, M. A.

    2015-12-01

    New real-time measurements of CO2 /SO2 ratios, the CO2 concentration and δ13C of CO2 were acquired from July 16 to 20, 2014 in the active plume about 1 km away from the source at the Central Craters of Mount Etna volcano, Italy. During this innovative study we measured d13C in plume gases at a frequency of 0.1 Hz over 5 days of measurements. Assuming two member mixing processes, the extrapolated carbon-isotope composition of the volcanic CO2 ranged from -1.3‰ to +1.5‰, with uncertainties in the repeated single measurements (i.e., made over periods from 4 to 20 min) that were generally <0.7‰, and surprisingly larger variations over the 5-day study period. The range of extrapolated d13C values mostly overlaps with that obtained by discrete sampling and using isotope-ratio mass spectrometry technique (-2.5‰ < d13C < -0.5‰). However, the particular conditions of volcanic activity during the campaign lead us to propose that the carbon-isotope composition of CO2 degassed from magma can reach values (up to +1.5‰), higher than previously reported. Simultaneous measurements of the CO2 and SO2 concentrations using the MultiGAS technique were also performed. The volcanic d13C and CO2/SO2 ratios exhibited similar trends over the 5 days of measurements, with the ratios of both tracers peaking on July 16, possibly as a result of the early degassing of CO2 while an eruption was ongoing at Mount Etna. New questions about the variability of this geochemical tracer arise from the observed variations and the highest d13C values measured at Mount Etna during this campaign. The comparisons with the CO2/SO2 ratio also confirm that monitoring d13C in plume gases in real time, coupled to other geochemical tracers, is important for elucidating the magma dynamics at depth.

  13. Milk pH as a function of CO2 concentration, temperature, and pressure in a heat exchanger.

    PubMed

    Ma, Y; Barbano, D M

    2003-12-01

    Raw skim milk, with or without added CO2, was heated, held, and cooled in a small pilot-scale tubular heat exchanger (372 ml/min). The experiment was replicated twice, and, for each replication, milk was first carbonated at 0 to 1 degree C to contain 0 (control), 600, 1200, 1800, and 2400 ppm added CO2 using a continuous carbonation unit. After storage at 0 to 1 degree C, portions of milk at each CO2 concentration were heated to 40, 56, 72, and 80 degrees C, held at the desired temperature for 30 s (except 80 degrees C, holding 20 s) and cooled to 0 to 1 degree C. At each temperature, five pressures were applied: 69, 138, 207, 276, and 345 kPa. Pressure was controlled with a needle valve at the heat exchanger exit. Both the pressure gauge and pH probe were inline at the end of the holding section. Milk pH during heating depended on CO2 concentration, temperature, and pressure. During heating of milk without added CO2, pH decreased linearly as a function of increasing temperature but was independent of pressure. In general, the pH of milk with added CO2 decreased with increasing CO2 concentration and pressure. For milk with added CO2, at a fixed CO2 concentration, the effect of pressure on pH decrease was greater at a higher temperature. At a fixed temperature, the effect of pressure on pH decrease was greater for milk with a higher CO2 concentration. Thermal death of bacteria during pasteurization of milk without added CO2 is probably due not only to temperature but also to the decrease in pH that occurs during the process. Increasing milk CO2 concentration and pressure decreases the milk pH even further during heating and may further enhance the microbial killing power of pasteurization.

  14. Soil-specific C and N responses to changing atmospheric CO2 concentrations in a mesic grassland ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term increases in ecosystem productivity under elevated atmospheric CO2 can be expected only when the increased assimilation of carbon (C) is not limited by soil nutrients, namely nitrogen (N). We examined how changes in atmospheric CO2 concentrations affect C and N dynamics in a mesic grasslan...

  15. Seasonality Affects Macroalgal Community Response to Increases in pCO2

    PubMed Central

    Baggini, Cecilia; Salomidi, Maria; Voutsinas, Emanuela; Bray, Laura; Krasakopoulou, Eva; Hall-Spencer, Jason M.

    2014-01-01

    Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are

  16. Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas.

    PubMed

    Jakobsen, Iver; Smith, Sally E; Smith, F Andrew; Watts-Williams, Stephanie J; Clausen, Signe S; Grønlund, Mette

    2016-11-01

    Capturing the full growth potential in crops under future elevated CO2 (eCO2) concentrations would be facilitated by improved understanding of eCO2 effects on uptake and use of mineral nutrients. This study investigates interactions of eCO2, soil phosphorus (P), and arbuscular mycorrhizal (AM) symbiosis in Medicago truncatula and Brachypodium distachyon grown under the same conditions. The focus was on eCO2 effects on vegetative growth, efficiency in acquisition and use of P, and expression of phosphate transporter (PT) genes. Growth responses to eCO2 were positive at P sufficiency, but under low-P conditions they ranged from non-significant in M. truncatula to highly significant in B. distachyon Growth of M. truncatula was increased by AM at low P conditions at both CO2 levels and eCO2×AM interactions were sparse. Elevated CO2 had small effects on P acquisition, but enhanced conversion of tissue P into biomass. Expression of PT genes was influenced by eCO2, but effects were inconsistent across genes and species. The ability of eCO2 to partly mitigate P limitation-induced growth reductions in B. distachyon was associated with enhanced P use efficiency, and requirements for P fertilizers may not increase in such species in future CO2-rich climates.

  17. Plant growth responses to elevated atmospheric CO2 are increased by phosphorus sufficiency but not by arbuscular mycorrhizas

    PubMed Central

    Jakobsen, Iver; Smith, Sally E.; Smith, F. Andrew; Watts-Williams, Stephanie J.; Clausen, Signe S.; Grønlund, Mette

    2016-01-01

    Capturing the full growth potential in crops under future elevated CO2 (eCO2) concentrations would be facilitated by improved understanding of eCO2 effects on uptake and use of mineral nutrients. This study investigates interactions of eCO2, soil phosphorus (P), and arbuscular mycorrhizal (AM) symbiosis in Medicago truncatula and Brachypodium distachyon grown under the same conditions. The focus was on eCO2 effects on vegetative growth, efficiency in acquisition and use of P, and expression of phosphate transporter (PT) genes. Growth responses to eCO2 were positive at P sufficiency, but under low-P conditions they ranged from non-significant in M. truncatula to highly significant in B. distachyon. Growth of M. truncatula was increased by AM at low P conditions at both CO2 levels and eCO2×AM interactions were sparse. Elevated CO2 had small effects on P acquisition, but enhanced conversion of tissue P into biomass. Expression of PT genes was influenced by eCO2, but effects were inconsistent across genes and species. The ability of eCO2 to partly mitigate P limitation-induced growth reductions in B. distachyon was associated with enhanced P use efficiency, and requirements for P fertilizers may not increase in such species in future CO2-rich climates. PMID:27811084

  18. The behavior and concentration of CO2 in the suboceanic mantle: Inferences from undegassed ocean ridge and ocean island basalts

    NASA Astrophysics Data System (ADS)

    Michael, Peter J.; Graham, David W.

    2015-11-01

    In order to better determine the behavior of CO2 relative to incompatible elements, and improve the accuracy of mantle CO2 concentration and flux estimates, we determined CO2 glass and vesicle concentrations, plus trace element contents for fifty-one ultradepleted mid-ocean ridge basalt (MORB) glasses from the global mid-ocean ridge system. Fifteen contained no vesicles and were volatile undersaturated for their depth of eruption. Thirty-six contained vesicles and/or were slightly oversaturated, and so may not have retained all of their CO2. If this latter group lost some bubbles during emplacement, then CO2/Ba calculated for the undersaturated group alone is the most reliable and uniform ratio at 98 ± 10, and CO2/Nb is 283 ± 32. If the oversaturated MORBs did not lose bubbles, then CO2/Nb is the most uniform ratio within the entire suite of ultradepleted MORBs at 291 ± 132, while CO2/Ba decreases with increasing incompatible element enrichment. Additional constraints on CO2/Ba and CO2/Nb ratios are provided by published estimates of CO2 contents in highly vesicular enriched basalts that may have retained their vesicles e.g., the Mid-Atlantic Ridge "popping rocks", and from olivine-hosted melt inclusions in normal MORBs. As incompatible element enrichment increases, CO2/Nb increases progressively from 283 ± 32 in ultradepleted MORBs to 603 ± 69 in depleted melt inclusions to 936 ± 132 in enriched, vesicular basalts. In contrast, CO2/Ba is nearly uniform in these sample suites at 98 ± 10, 106 ± 24 and 111 ± 11 respectively. This suggests that Ba is the best proxy for estimating CO2 contents of MORBs, with an overall average CO2/Ba = 105 ± 9. Atlantic, Pacific and Indian basalts have similar values. Gakkel Ridge has lower CO2/Ba because of anomalously high Ba, and is not included in our global averages. Using the CO2/Ba ratio and published compilations of trace elements in average MORBs, the CO2 concentration of a primary, average MORB is 2085+ 473/- 427

  19. Effects of elevated CO2 concentration and water deficit on fructan metabolism in Viguiera discolor Baker.

    PubMed

    Oliveira, V F; Silva, E A; Zaidan, L B P; Carvalho, M A M

    2013-05-01

    Elevated [CO2 ] is suggested to mitigate the negative effects of water stress in plants; however responses vary among species. Fructans are recognised as protective compounds against drought and other stresses, as well as having a role as reserve carbohydrates. We analysed the combined effects of elevated [CO2 ] and water deficit on fructan metabolism in the Cerrado species Viguiera discolor Baker. Plants were cultivated for 18 days in open-top chambers (OTC) under ambient (∼380 ppm), and high (∼760 ppm) [CO2 ]. In each OTC, plants were submitted to three treatments: (i) daily watering (control), (ii) withholding water (WS) for 18 days and (iii) re-watering (RW) on day 11. Analyses were performed at time 0 and days 5, 8, 11, 15 and 18. High [CO2 ] increased photosynthesis in control plants and increased water use efficiency in WS plants. The decline in soil water content was more distinct in WS 760 (WS under 760 ppm), although the leaf and tuberous root water status was similar to WS 380 plants (WS under 380 ppm). Regarding fructan active enzymes, 1-SST activity decreased in WS plants in both CO2 concentrations, a result consistent with the decline in photosynthesis and, consequently, in substrate availability. Under WS and both [CO2 ] treatments, 1-FFT and 1-FEH seemed to act in combination to generate osmotically active compounds and thus overcome water deficit. The proportion of hexoses to sucrose, 1-kestose and nystose (SKN) was higher in WS plants. In WS 760, this increase was higher than in WS 380, and was not accompanied by decreases in SKN at the beginning of the treatment, as observed in WS 380 plants. These results suggest that the higher [CO2 ] in the atmosphere contributed to maintain, for a longer period, the pool of hexoses and of low DP fructans, favouring the maintenance of the water status and plant survival under drought.

  20. Analytical solution for the effect of increasing CO2 on global mean temperature

    NASA Astrophysics Data System (ADS)

    Wigley, T. M. L.; Schlesinger, M. E.

    1985-06-01

    The effect on global mean temperature of forcing by a step function change in CO2 concentration and by a steady CO2 increase is analyzed. The former case involves a response time which is strongly dependent on both the effective diffusivity of the ocean below the upper mixed layer, or kappa, and the climate sensitivity, or dT(2x). In the latter case the damped response means that, at any given time, the climate system may be quite far removed from its equilibrium with the prevailing CO2 level. In earlier work this equilibrium was expressed as lag time, but this is shown to be misleading because of the sensitivity of the lag to the history of past CO2 variations. Since both the lag and the degree of disequilibrium are strongly dependent on kappa and dT(2x), and because of uncertainties in the preindustrial CO2 level, the observed global warming over the past 100 years can be shown to be compatible with a wide range of CO2-doubling temperature changes.

  1. Responses of CO2 emission and pore water DOC concentration to soil warming and water table drawdown in Zoige Peatlands

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Wang, Mei; Chen, Huai; Liu, Liangfeng; Wu, Ning; Zhu, Dan; Tian, Jianqing; Peng, Changhui; Zhu, Qiuan; He, Yixin

    2017-03-01

    Peatlands in Zoige Plateau contains more than half of peatland carbon stock in China. This part of carbon is losing with climate change through dissolved organic carbon (DOC) export and carbon dioxide (CO2) emissions, both of which are vulnerable to the environmental changes, especially on the Zoige Plateau with a pace of twice the observed rate of global climate warming. This research aimed to understand how climate change including soil warming, rainfall reduction and water table change affect CO2 emissions and whether the trends of changes in CO2 emission are consistent with those of pore water DOC concentration. A mesocosm experiment was designed to investigate the CO2 emission and pore water DOC during the growing seasons of 2009-2010 under scenarios of passive soil warming, 20% rainfall reduction and changes to the water table levels. The results showed a positive relationship between CO2 emission and DOC concentration. For single factor effect, we found no significant relationship between water table and CO2 emission or DOC concentration. However, temperature at 5 cm depth was found to have positive linear relationship with CO2 emission and DOC concentration. The combined effect of soil warming and rainfall reduction increased CO2 emission by 96.8%. It suggested that the drying and warming could stimulate potential emission of CO2. Extending this result to the entire peatland area in Zoige Plateau translates into 0.45 Tg CO2 emission per year over a growing season. These results suggested that the dryer and warmer Zoige Plateau will increase CO2 emission. We also found the contribution rate of DOC concentration to CO2 emission was increased by 12.1% in the surface layer and decreased by 13.8% in the subsurface layer with combined treatment of soil warming and rainfall reduction, which indicated that the warmer and dryer environmental conditions stimulate surface peat decomposition process.

  2. Phytochemical changes in leaves of subtropical grasses and fynbos shrubs at elevated atmospheric CO 2 concentrations

    NASA Astrophysics Data System (ADS)

    Hattas, D.; Stock, W. D.; Mabusela, W. T.; Green, I. R.

    2005-07-01

    The effects of elevated atmospheric CO 2 concentrations on plant polyphenolic, tannin, nitrogen, phosphorus and total nonstructural carbohydrate concentrations were investigated in leaves of subtropical grass and fynbos shrub species. The hypothesis tested was that carbon-based secondary compounds would increase when carbon gain is in excess of growth requirements. This premise was tested in two ecosystems involving plants with different photosynthetic mechanisms and growth strategies. The first ecosystem comprised grasses from a C 4-dominated, subtropical grassland, where three plots were subjected to three different free air CO 2 enrichment treatments, i.e., elevated (600 to 800 μmol mol -1), intermediate (400 μmol mol -1) and ambient atmospheric CO 2. One of the seven grass species, Alloteropsis semialata, had a C 3 photosynthetic pathway while the other grasses were all C 4. The second ecosystem was simulated in a microcosm experiment where three fynbos species were grown in open-top chambers at ambient and 700 μmol mol -1 atmospheric CO 2 in low nutrient acid sands typical of south western coastal and mountain fynbos ecosystems. Results showed that polyphenolics and tannins did not increase in the grass species under elevated CO 2 and only in Leucadendron laureolum among the fynbos species. Similarly, foliar nitrogen content of grasses was largely unaffected by elevated CO 2, and among the fynbos species, only L. laureolum and Leucadendron xanthoconus showed changes in foliar nitrogen content under elevated CO 2, but these were of different magnitude. The overall decrease in nitrogen and phosphorus and consequent increase in C:N and C:P ratio in both ecosystems, along with the increase in polyphenolics and tannins in L. laureolum in the fynbos ecosystem, may negatively affect forage quality and decomposition rates. It is concluded that fast growing grasses do not experience sink limitation and invest extra carbon into growth rather than polyphenolics and

  3. CO2 increases 14C-primary production in an Arctic plankton community

    NASA Astrophysics Data System (ADS)

    Engel, A.; Borchard, C.; Piontek, J.; Schulz, K.; Riebesell, U.; Bellerby, R.

    2012-08-01

    Responses to ocean acidification in plankton communities were studied during a CO2-enrichment experiment in the Arctic Ocean, accomplished from June to July 2010 in Kongsfjorden, Svalbard (78°56, 2' N, 11°53, 6' E). Enclosed in 9 mesocosms (volume: 43.9-47.6 m3), plankton was exposed to CO2 concentrations, ranging from glacial to projected mid-next-century levels. Fertilization with inorganic nutrients at day 13 of the experiment supported the accumulation of phytoplankton biomass, as indicated by two periods of high Chl a concentration. This study tested for CO2 sensitivities in primary production (PP) of particulate organic carbon (PPPOC) and of dissolved organic carbon (PPDOC). Therefore, 14C-bottle incubations (24 h) of mesocosm samples were performed at 1 m depth receiving about 60% of incoming radiation. PP for all mesocosms averaged 8.06 ± 3.64 μmol C l-1 d-1 and was slightly higher than in the outside fjord system. Comparison between mesocosms revealed significantly higher PPPOC at elevated compared to low pCO2 after nutrient addition. PPDOC was significantly higher in CO2 enriched mesocosms before as well as after nutrient addition, suggesting that CO2 had a direct influence on DOC production. DOC concentrations inside the mesocosms increased before nutrient addition and more in high CO2 mesocosms. After addition of nutrients, however, further DOC accumulation was negligible and not significantly different between treatments, indicating rapid utilization of freshly produced DOC. Bacterial biomass production (BP) was coupled to PP in all treatments, indicating that 3.5 ± 1.9% of PP, or 21.6 ± 12.5% of PPDOC provided sufficient carbon for synthesis of bacterial biomass. The response of 14C-based PP rates to CO2 enrichment was at odds with O2-based net community production (NCP) rates that were also determined during this study, albeit at lower light level. We conclude that the enhanced release of labile DOC during autotrophic production at high CO2

  4. CO2 increases 14C primary production in an Arctic plankton community

    NASA Astrophysics Data System (ADS)

    Engel, A.; Borchard, C.; Piontek, J.; Schulz, K. G.; Riebesell, U.; Bellerby, R.

    2013-03-01

    Responses to ocean acidification in plankton communities were studied during a CO2-enrichment experiment in the Arctic Ocean, accomplished from June to July 2010 in Kongsfjorden, Svalbard (78°56' 2'' N, 11°53' 6'' E). Enclosed in 9 mesocosms (volume: 43.9-47.6 m3), plankton was exposed to CO2 concentrations, ranging from glacial to projected mid-next-century levels. Fertilization with inorganic nutrients at day 13 of the experiment supported the accumulation of phytoplankton biomass, as indicated by two periods of high chl a concentration. This study tested for CO2 sensitivities in primary production (PP) of particulate organic carbon (PPPOC) and of dissolved organic carbon (PPDOC). Therefore, 14C-bottle incubations (24 h) of mesocosm samples were performed at 1 m depth receiving about 60% of incoming radiation. PP for all mesocosms averaged 8.06 ± 3.64 μmol C L-1 d-1 and was slightly higher than in the outside fjord system. Comparison between mesocosms revealed significantly higher PPPOC at elevated compared to low pCO2 after nutrient addition. PPDOC was significantly higher in CO2-enriched mesocosms before as well as after nutrient addition, suggesting that CO2 had a direct influence on DOC production. DOC concentrations inside the mesocosms increased before nutrient addition and more in high CO2 mesocosms. After addition of nutrients, however, further DOC accumulation was negligible and not significantly different between treatments, indicating rapid utilization of freshly produced DOC. Bacterial biomass production (BP) was coupled to PP in all treatments, indicating that 3.5 ± 1.9% of PP or 21.6 ± 12.5% of PPDOC provided on average sufficient carbon for synthesis of bacterial biomass. During the later course of the bloom, the response of 14C-based PP rates to CO2 enrichment differed from net community production (NCP) rates that were also determined during this mesocosm campaign. We conclude that the enhanced release of labile DOC during autotrophic

  5. Future carbon balance of China's forests under climate change and increasing CO2.

    PubMed

    Ju, W M; Chen, J M; Harvey, D; Wang, S

    2007-11-01

    The possible response of the carbon (C) balance of China's forests to an increase in atmospheric CO(2) concentration and climate change was investigated through a series of simulations using the Integrated Terrestrial Ecosystem Carbon (InTEC) model, which explicitly represents the effects of climate, CO(2) concentration, and nitrogen deposition on future C sequestration by forests. Two climate change scenarios (CGCM2-A2 and -B2) were used to drive the model. Simulations showed that China's forests were a C sink in the 1990 s, averaging 189 Tg C yr(-1) (about 13% of the global total). This sink peaks around 2020 and then gradually declines to 33.5 Tg C yr(-1) during 2091-2100 without climate and CO(2) changes. Effects of pure climate change of CGCM2-A2 and -B2 without allowing CO(2) effects on C assimilation in plants might reduce the average net primary productivity (NPP) of China's forests by 29% and 18% during 2091-2100, respectively. Total soil C stocks might decrease by 16% and 11% during this period. China's forests might broadly act as C sources during 2091-2100, with values of about 50 g Cm(-2)yr(-1) under the moderate warming of CGCM2-B2 and 50-200 g Cm(-2)yr(-1) under the warmer scenario of CGCM2-A2. An increase in CO(2) might broadly increase future C sequestration of China's forests. However, this CO(2) fertilization effect might decline with time. The CO(2) fertilization effects on NPP by the end of this century are 349.6 and 241.7 Tg C yr(-1) under CGCM2-A2 and -B2 increase scenarios, respectively. These effects increase by 199.1 and 126.6 Tg C yr(-1) in the first 50 years, and thereafter, by 150.5 and 115.1 Tg C yr(-1) in the second 50 years under CGCM2-A2 and -B2 increase scenarios, respectively. Under a CO(2) increase without climate change, the majority of China's forests would be C sinks during 2091-2100, ranging from 0 to 100 g Cm(-2)yr(-1). The positive effect of CO(2) fertilization on NPP and net ecosystem productivity would be exceeded by the

  6. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass

    PubMed Central

    Volder, Astrid; Gifford, Roger M.; Evans, John R.

    2015-01-01

    Forecasting the effects of climate change on nitrogen (N) cycling in pastures requires an understanding of changes in tissue N. We examined the effects of elevated atmospheric CO2 concentration, atmospheric warming and simulated grazing (clipping frequency) on aboveground and belowground tissue N concentrations and C : N ratios of a C3 pasture grass. Phalaris aquatica L. cv. ‘Holdfast’ was grown in the field in six transparent temperature gradient tunnels (18 × 1.5 × 1.5 m each), three at ambient atmospheric CO2 and three at 759 p.p.m. CO2. Within each tunnel, there were three air temperature treatments: ambient control, +2.2/+4.0 °C above ambient day/night warming and +3.0 °C continuous warming. A frequent and an infrequent clipping treatment were applied to each warming × CO2 combination. Green leaf N concentrations were decreased by elevated CO2 and increased by more frequent clipping. Both warming treatments increased leaf N concentrations under ambient CO2 concentrations, but did not significantly alter leaf N concentrations under elevated CO2 concentrations. Nitrogen resorption from leaves was decreased under elevated CO2 conditions as well as by more frequent clipping. Fine root N concentrations decreased strongly with increasing soil depth and were further decreased at the 10–60 cm soil depths by elevated CO2 concentrations. The interaction between the CO2 and warming treatments showed that leaf N concentration was affected in a non-additive manner. Changes in leaf C : N ratios were driven by changes in N concentration. Overall, the effects of CO2, warming and clipping treatments on aboveground tissue N concentrations were much greater than on belowground tissue. PMID:26272874

  7. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass.

    PubMed

    Volder, Astrid; Gifford, Roger M; Evans, John R

    2015-08-13

    Forecasting the effects of climate change on nitrogen (N) cycling in pastures requires an understanding of changes in tissue N. We examined the effects of elevated atmospheric CO2 concentration, atmospheric warming and simulated grazing (clipping frequency) on aboveground and belowground tissue N concentrations and C : N ratios of a C3 pasture grass. Phalaris aquatica L. cv. 'Holdfast' was grown in the field in six transparent temperature gradient tunnels (18 × 1.5 × 1.5 m each), three at ambient atmospheric CO2 and three at 759 p.p.m. CO2. Within each tunnel, there were three air temperature treatments: ambient control, +2.2/+4.0 °C above ambient day/night warming and +3.0 °C continuous warming. A frequent and an infrequent clipping treatment were applied to each warming × CO2 combination. Green leaf N concentrations were decreased by elevated CO2 and increased by more frequent clipping. Both warming treatments increased leaf N concentrations under ambient CO2 concentrations, but did not significantly alter leaf N concentrations under elevated CO2 concentrations. Nitrogen resorption from leaves was decreased under elevated CO2 conditions as well as by more frequent clipping. Fine root N concentrations decreased strongly with increasing soil depth and were further decreased at the 10-60 cm soil depths by elevated CO2 concentrations. The interaction between the CO2 and warming treatments showed that leaf N concentration was affected in a non-additive manner. Changes in leaf C : N ratios were driven by changes in N concentration. Overall, the effects of CO2, warming and clipping treatments on aboveground tissue N concentrations were much greater than on belowground tissue.

  8. [Dynamic observation, simulation and application of soil CO2 concentration: a review].

    PubMed

    Sheng, Hao; Luo, Sha; Zhou, Ping; Li, Teng-Yi; Wang, Juan; Li, Jie

    2012-10-01

    Soil CO2 concentration is the consequences of biological activities in above- and below-ground, and its fluctuation may significantly affect the future atmospheric CO2 concentration and the projected climate change. This paper reviewed the methodologies for measuring the soil CO2 concentration in situ as well as their advantages and disadvantages, analyzed the variation patterns and controlling factors of soil CO2 concentration across the temporal (diurnal, several days, seasonal and inter-annual) and spatial (soil profile, site and landscape) scales, introduced the primary empirical and mechanical models for estimating and predicting soil CO2 concentration, and summarized the applications and constraints of soil CO2 concentration gradient in determining soil respiration. Four research priorities were proposed, i. e., to develop new techniques for collecting and determining the soil CO2 in severe soil conditions (e. g., flooding, lithoso and others), to approach the responses of soil CO2 concentration to weather change and related regulation mechanisms, to strengthen the researches on the spatial heterogeneity of soil CO2 concentration, and to expand the applications of soil CO2 concentration gradient in the measurement of tropical-subtropical soil respiration.

  9. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivumincrease or decrease of microbial growth rates depending on plant species. The μ-value increase was lower for microorganisms growing on yeast extract then for those growing on glucose, i.e. the effect of elevated CO2 was smoothed on rich vs. simple substrate. So, the r/K strategies ratio can be better revealed by studying growth on simple (glucose) than on rich substrate mixtures (yeast extract). After adding glucose, enzyme activities under elevated CO2 were

  10. Activities of carboxylating enzymes in the CAM species Opuntia ficus-indica grown under current and elevated CO2 concentrations.

    PubMed

    Israel, A A; Nobel, P S

    1994-06-01

    Responses of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase) to an elevated atmospheric CO2 concentration were determined along with net CO2 uptake rates for the Crassulacean acid metabolism species Opuntia ficus-indica growing in open-top chambers. During the spring 13 months after planting, total daily net CO2 uptake of basal and first-order daughter cladodes was 28% higher at 720 than at 360 μl CO2 l(-1). The enhancement, caused mainly by higher CO2 assimilation during the early part of the night, was also observed during late summer (5 months after planting) and the following winter. The activities of Rubisco and PEPCase measured in vitro were both lower at the elevated CO2 concentration, particularly under the more favorable growth conditions in the spring and late summer. Enzyme activity in second-order daughter cladodes increased with cladode age, becoming maximal at 6 to 10 days. The effect ofelevated CO2 on Rubisco and PEPCase activity declined with decreasing irradiance, especially for Rubisco. Throughout the 13-month observation period, O. ficus-indica thus showed increased CO2 uptake when the atmospheric CO2 concentration was doubled despite lower activities of both carboxylating enzymes.

  11. Seasonal Variations in CO2 Efflux, Vadose Zone Gas Concentrations, and Natural Attenuation Rates at a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Trost, J.; Sihota, N.; Delin, G. N.; Warren, E.

    2014-12-01

    Accurate estimates of hydrocarbon source zone natural attenuation (SZNA) rates are important for managing contaminated sites but are difficult to measure. Moreover, SZNA rates may vary seasonally in response to climatic conditions. Previous research at a crude oil spill site near Bemidji, Minnesota, USA showed that SZNA rates in the summer can be estimated by subtracting background soil CO2 efflux from the total soil CO2 efflux above the contaminated source. In this study, seasonal variations in surficial CO2 efflux were evaluated with measurements of gas concentrations (including 14CO2), temperature, and volumetric water content in the vadose zone at the site during a 2-year period. Soil CO2 effluxes in the source zone were consistently greater than background CO2 effluxes, and the magnitude and areal extent of the increased efflux varied seasonally. In the source zone, the 14CO2 and the CO2 efflux data showed a larger proportion of soil CO2 was derived from SZNA in fall and winter (October - February) compared to the summer (June - August). Surficial CO2 effluxes and vadose zone CO2 and CH4 concentrations in the source (2 - 7 meters below land surface) were positively correlated with soil temperature, indicating seasonal variability in SZNA rates. However, peak surficial CO2 effluxes did not correspond with periods of highest CO2 or CH4 concentrations at the 2 - 7 meter depth, demonstrating the effects of physical attributes (such as soil depth, frost, and volumetric water content) on gas transport. Overall, results showed that SZNA rates, background soil respiration rates, and gas transport varied seasonally, and that biological and physical factors are important to consider for accurately estimating SZNA rates.

  12. Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles

    PubMed Central

    Raven, John A.; Giordano, Mario; Beardall, John; Maberly, Stephen C.

    2012-01-01

    Oxygenic photosynthesis evolved at least 2.4 Ga; all oxygenic organisms use the ribulose bisphosphate carboxylase-oxygenase (Rubisco)–photosynthetic carbon reduction cycle (PCRC) rather than one of the five other known pathways of autotrophic CO2 assimilation. The high CO2 and (initially) O2-free conditions permitted the use of a Rubisco with a high maximum specific reaction rate. As CO2 decreased and O2 increased, Rubisco oxygenase activity increased and 2-phosphoglycolate was produced, with the evolution of pathways recycling this inhibitory product to sugar phosphates. Changed atmospheric composition also selected for Rubiscos with higher CO2 affinity and CO2/O2 selectivity correlated with decreased CO2-saturated catalytic capacity and/or for CO2-concentrating mechanisms (CCMs). These changes increase the energy, nitrogen, phosphorus, iron, zinc and manganese cost of producing and operating Rubisco–PCRC, while biosphere oxygenation decreased the availability of nitrogen, phosphorus and iron. The majority of algae today have CCMs; the timing of their origins is unclear. If CCMs evolved in a low-CO2 episode followed by one or more lengthy high-CO2 episodes, CCM retention could involve a combination of environmental factors known to favour CCM retention in extant organisms that also occur in a warmer high-CO2 ocean. More investigations, including studies of genetic adaptation, are needed. PMID:22232762

  13. Regional Effects of Doubled CO2 Concentrations on the Hydrology of California

    NASA Astrophysics Data System (ADS)

    Snyder, M. A.; Bell, J. L.; Sloan, L. C.

    2001-12-01

    The effects of changing atmospheric CO2 concentration have been evaluated primarily using global scale models and statistical downscaling techniques. This study incorporates ensembles of experiments with a high resolution regional climate model (RCM) over a hydrologicaly sensitive region, and tests the effects of 280 ppm CO2 (1x) and 560 ppm CO2 (2x) on the climate of California. The model output was subdivided by hydrologic regions and then analyzed. A control run using modern day CO2 concentrations and climatological sea surface temperatures (SST) was performed and compared with observations. The model performs well in simulating the mean modern day climate, but underestimates the variability. The RCM output for the 1x and 2x cases was analyzed to determine differences, the significance of the results, and the amount of variability. Statistically significant temperature increases of up to 3.8 \\deg C occur on an annual average basis throughout the state. Precipitation increases by 23% over the northern half of the state, while precipitation in the southern half shows no change. Annual average snow accumulation decreases everywhere in the state by up to 120 mm water equivalent.

  14. Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world.

    PubMed

    Burnell, Owen W; Connell, Sean D; Irving, Andrew D; Watling, Jennifer R; Russell, Bayden D

    2014-01-01

    Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 (-). Currently, many marine primary producers use HCO3 (-) for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3 (-) pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3 (-)-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3 (-) acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance.

  15. 12CO2 emission from different metabolic pathways measured in illuminated and darkened C3 and C4 leaves at low, atmospheric and elevated CO2 concentration.

    PubMed

    Pinelli, Paola; Loreto, Francesco

    2003-07-01

    The detection of 12CO2 emission from leaves in air containing 13CO2 allows simple and fast determination of the CO2 emitted by different sources, which are separated on the basis of their labelling velocity. This technique was exploited to investigate the controversial effect of CO2 concentration on mitochondrial respiration. The 12CO2 emission was measured in illuminated and darkened leaves of one C4 plant and three C3 plants maintained at low (30-50 ppm), atmospheric (350-400 ppm) and elevated (700-800 ppm) CO2 concentration. In C3 leaves, the 12CO2 emission in the light (Rd) was low at ambient CO2 and was further quenched in elevated CO2, when it was often only 20-30% of the 12CO2 emission in the dark, interpreted as the mitochondrial respiration in the dark (Rn). Rn was also reduced in elevated CO2. At low CO2, Rd was often 70-80% of Rn, and a burst of 12CO2 was observed on darkening leaves of Mentha sativa and Phragmites australis after exposure for 4 min to 13CO2 in the light. The burst was partially removed at low oxygen and was never observed in C4 leaves, suggesting that it may be caused by incomplete labelling of the photorespiratory pool at low CO2. This pool may be low in sclerophyllous leaves, as in Quercus ilex where no burst was observed. Rd was inversely associated with photosynthesis, suggesting that the Rd/Rn ratio reflects the refixation of respiratory CO2 by photosynthesizing leaves rather than the inhibition of mitochondrial respiration in the light, and that CO2 produced by mitochondrial respiration in the light is mostly emitted at low CO2, and mostly refixed at elevated CO2. In the leaves of the C4 species Zea mays, the 12CO2 emission in the light also remained low at low CO2, suggesting efficient CO2 refixation associated with sustained photosynthesis in non-photorespiratory conditions. However, Rn was inhibited in CO2-free air, and the velocity of 12CO2 emission after darkening was inversely associated with the CO2 concentration. The

  16. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings.

    PubMed

    Kogawara, Satoshi; Norisada, Mariko; Tange, Takeshi; Yagi, Hisayoshi; Kojima, Katsumi

    2006-01-01

    We demonstrated that the inorganic phosphate (P(i)) requirement for growth of Japanese red pine (Pinus densiflora Sieb. & Zucc.) seedlings is increased by elevated CO(2) concentration ([CO(2)]) and that responses of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker & Couch to P(i) supply are also altered. To investigate the growth response of non-mycorrhizal seedlings to P(i) supply in elevated [CO(2)], non-mycorrhizal seedlings were grown for 73 days in ambient or elevated [CO(2)] (350 or 700 micromol mol(-1)) with nutrient solutions containing one of seven phosphate concentrations (0, 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mM). In ambient [CO(2)], the growth response to P(i) was saturated at about 0.1 mM P(i), whereas in elevated [CO(2)], the growth response to P(i) supply did not saturate, even at the highest P(i) supply (0.2 mM), indicating that the P(i) requirement is higher in elevated [CO(2)] than in ambient [CO(2)]. The increased requirement was due mainly to an altered shoot growth response to P(i) supply. The enhanced P(i) requirement in elevated [CO(2)] was not associated with a change in photosynthetic response to P(i) or a change in leaf phosphorus (P) status. We investigated the effect of P(i) supply (0.04, 0.08 and 0.20 mM) on the ectomycorrhizal fungus P. tinctorius in mycorrhizal seedlings grown in ambient or elevated [CO(2)]. Root ergosterol concentration (an indicator of fungal biomass) decreased with increasing P(i) supply in ambient [CO(2)], but the decrease was far less in elevated [CO(2)]. In ambient [CO(2)] the ratio of extramatrical mycelium to root biomass decreased with increasing P(i) supply but did not change in elevated [CO(2)]. We conclude that, because elevated [CO(2)] increased the P(i) requirement for shoot growth, the significance of the ectomycorrhizal association was also increased in elevated [CO(2)].

  17. Genotypic variation in physiological and growth responses of Populus tremuloides to elevated atmospheric CO2 concentration.

    PubMed

    Wang, X; Curtis, P S; Pregitzer, K S; Zak, D R

    2000-09-01

    Physiological and biomass responses of six genotypes of Populus tremuloides Michx., grown in ambient t (357 micromol mol(-1)) or twice ambient (707 micromol mol(-1)) CO2 concentration ([CO2]) and in low-N or high-N soils, were studied in 1995 and 1996 in northern Lower Michigan, USA. There was a significant CO2 x genotype interaction in photosynthetic responses. Net CO2 assimilation (A) was significantly enhanced by elevated [CO2] for five genotypes in high-N soil and for four genotypes in low-N soil. Enhancement of A by elevated [CO2] ranged from 14 to 68%. Genotypes also differed in their biomass responses to elevated [CO2], but biomass responses were poorly correlated with A responses. There was a correlation between magnitude of A enhancement by elevated [CO2] and stomatal sensitivity to CO2. Genotypes with low stomatal sensitivity to CO2 had a significantly higher A at elevated [CO2] than at ambient [CO2], but elevated [CO2] did not affect the ratio of intercellular [CO2] to leaf surface [CO2]. Stomatal conductance and A of different genotypes responded differentially to recovery from drought stress. Photosynthetic quantum yield and light compensation point were unaffected by elevated [CO2]. We conclude that P. tremuloides genotypes will respond differentially to rising atmospheric [CO2], with the degree of response dependent on other abiotic factors, such as soil N and water availability. The observed genotypic variation in growth could result in altered genotypic representation within natural populations and could affect the composition and structure of plant communities in a higher [CO2] environment in the future.

  18. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    PubMed

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  19. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla

    PubMed Central

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition. PMID:28182638

  20. Experimental study on CO and CO2 emissions from spontaneous heating of coals at varying temperatures and O2 concentrations.

    PubMed

    Yuan, Liming; Smith, Alex C

    2013-11-01

    Laboratory experiments were conducted to investigate carbon monoxide (CO) and carbon dioxide (CO2) emissions from spontaneous heating of three U.S. coal samples in an isothermal oven at temperatures between 50 and 110 °C. The oxygen (O2) concentration of an oxygen/nitrogen (N2) mixture flowing through the coal sample was 3, 5, 10, 15, and 21%, respectively. The temperature at the center of the coal sample was continuously monitored, while the CO, CO2, and O2 concentrations of the exit gas were continuously measured. The results indicate that the CO and CO2 concentrations and the CO/CO2 ratio increased when the initial temperature was increased. As the inlet O2 concentration increased, the CO and CO2 concentrations increased, while the CO/CO2 ratios tended to converge to the same value. The ratio of CO/CO2 was found to be independent of coal properties, approaching a constant value of 0.2. The maximum CO production rate correlated well with the maximum coal temperature rise. The apparent order of reaction for coal oxidation was estimated to be between 0.52 and 0.72. The experimental results in this study could be used for early detection and evaluation of a spontaneous heating in underground coal mines.

  1. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    PubMed

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-05-19

    canonical range (1.5 to 4.5 degrees Celsius), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.

  2. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    NASA Astrophysics Data System (ADS)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    canonical range (1.5 to 4.5 degrees Celsius), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.

  3. Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations

    PubMed Central

    Franks, Peter J.; Leitch, Ilia J.; Ruszala, Elizabeth M.; Hetherington, Alistair M.; Beerling, David J.

    2012-01-01

    In response to short-term fluctuations in atmospheric CO2 concentration, ca, plants adjust leaf diffusive conductance to CO2, gc, via feedback regulation of stomatal aperture as part of a mechanism for optimizing CO2 uptake with respect to water loss. The operational range of this elaborate control mechanism is determined by the maximum diffusive conductance to CO2, gc(max), which is set by the size (S) and density (number per unit area, D) of stomata on the leaf surface. Here, we show that, in response to long-term exposure to elevated or subambient ca, plants alter gc(max) in the direction of the short-term feedback response of gc to ca via adjustment of S and D. This adaptive feedback response to ca, consistent with long-term optimization of leaf gas exchange, was observed in four species spanning a diverse taxonomic range (the lycophyte Selaginella uncinata, the fern Osmunda regalis and the angiosperms Commelina communis and Vicia faba). Furthermore, using direct observation as well as flow cytometry, we observed correlated increases in S, guard cell nucleus size and average apparent 1C DNA amount in epidermal cell nuclei with increasing ca, suggesting that stomatal and leaf adaptation to ca is linked to genome scaling. PMID:22232765

  4. Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations.

    PubMed

    Franks, Peter J; Leitch, Ilia J; Ruszala, Elizabeth M; Hetherington, Alistair M; Beerling, David J

    2012-02-19

    In response to short-term fluctuations in atmospheric CO(2) concentration, c(a), plants adjust leaf diffusive conductance to CO(2), g(c), via feedback regulation of stomatal aperture as part of a mechanism for optimizing CO(2) uptake with respect to water loss. The operational range of this elaborate control mechanism is determined by the maximum diffusive conductance to CO(2), g(c(max)), which is set by the size (S) and density (number per unit area, D) of stomata on the leaf surface. Here, we show that, in response to long-term exposure to elevated or subambient c(a), plants alter g(c(max)) in the direction of the short-term feedback response of g(c) to c(a) via adjustment of S and D. This adaptive feedback response to c(a), consistent with long-term optimization of leaf gas exchange, was observed in four species spanning a diverse taxonomic range (the lycophyte Selaginella uncinata, the fern Osmunda regalis and the angiosperms Commelina communis and Vicia faba). Furthermore, using direct observation as well as flow cytometry, we observed correlated increases in S, guard cell nucleus size and average apparent 1C DNA amount in epidermal cell nuclei with increasing c(a), suggesting that stomatal and leaf adaptation to c(a) is linked to genome scaling.

  5. Increased Feeding and Nutrient Excretion of Adult Antarctic Krill, Euphausia superba, Exposed to Enhanced Carbon Dioxide (CO2)

    PubMed Central

    Saba, Grace K.; Schofield, Oscar; Torres, Joseph J.; Ombres, Erica H.; Steinberg, Deborah K.

    2012-01-01

    Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO2 concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill) by conducting a CO2 perturbation experiment at ambient and elevated atmospheric CO2 levels in January 2011 along the West Antarctic Peninsula (WAP). Under elevated CO2 conditions (∼672 ppm), ingestion rates of krill averaged 78 µg C individual−1 d−1 and were 3.5 times higher than krill ingestion rates at ambient, present day CO2 concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC) excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO2 treatment than at ambient CO2 concentrations. Excretion of urea, however, was ∼17% lower in the high CO2 treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), were consistently higher in the high CO2 treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP. PMID:23300621

  6. Diel Variation in Gene Expression of the CO2-Concentrating Mechanism during a Harmful Cyanobacterial Bloom

    PubMed Central

    Sandrini, Giovanni; Tann, Robert P.; Schuurmans, J. Merijn; van Beusekom, Sebastiaan A. M.; Matthijs, Hans C. P.; Huisman, Jef

    2016-01-01

    Dense phytoplankton blooms in eutrophic waters often experience large daily fluctuations in environmental conditions. We investigated how this diel variation affects in situ gene expression of the CO2-concentrating mechanism (CCM) and other selected genes of the harmful cyanobacterium Microcystis aeruginosa. Photosynthetic activity of the cyanobacterial bloom depleted the dissolved CO2 concentration, raised pH to 10, and caused large diel fluctuations in the bicarbonate and O2 concentration. The Microcystis population consisted of three Ci uptake genotypes that differed in the presence of the low-affinity and high-affinity bicarbonate uptake genes bicA and sbtA. Expression of the bicarbonate uptake genes bicA, sbtA, and cmpA (encoding a subunit of the high-affinity bicarbonate uptake system BCT1), the CCM transcriptional regulator gene ccmR and the photoprotection gene flv4 increased at first daylight and was negatively correlated with the bicarbonate concentration. In contrast, genes of the two CO2 uptake systems were constitutively expressed, whereas expression of the RuBisCO chaperone gene rbcX, the carboxysome gene ccmM, and the photoprotection gene isiA was highest at night and down-regulated during daytime. In total, our results show that the harmful cyanobacterium Microcystis is very responsive to the large diel variations in carbon and light availability often encountered in dense cyanobacterial blooms. PMID:27148233

  7. Development of new measuring technique using sound velocity for CO2 concentration in Cameroonian volcanic lakes

    NASA Astrophysics Data System (ADS)

    Sanemasa, M.; Saiki, K.; Kaneko, K.; Ohba, T.; Kusakabe, M.; Tanyileke, G.; Hell, J.

    2012-12-01

    1. Introduction Limnic eruptions at Lakes Monoun and Nyos in Cameroon, which are sudden degassing of magmatic CO2 dissolved in the lake water, occurred in 1984 and 1986, respectively. The disasters killed about 1800 people around the lakes. Because of ongoing CO2 accumulation in the bottom water of the lakes, tragedy of limnic eruptions will possibly occur again. To prevent from further disasters, artificial degassing of CO2 from the lake waters has been undergoing. Additionally, CO2 monitoring of the lake waters is needed. Nevertheless, CO2 measurement is done only once or twice a year because current methods of CO2 measurement, which require chemical analysis of water samples, are not suitable for frequent measurement. In engineering field, on the other hand, a method to measure salt concentration using sound velocity has been proposed (Kleis and Sanchez, 1990). This method allows us to evaluate solute concentration fast. We applied the method to dissolved CO2 and examined the correlation between sound velocity and CO2 concentration in laboratory experiment. Furthermore, using the obtained correlation, we tried to estimate the CO2 concentration of waters in the Cameroonian lakes. 2. Laboratory experiment We examined the correlation between sound velocity and CO2 concentration. A profiler (Minos X, made by AML oceanography) and pure water were packed in cylindrical stainless vessel and high-pressure CO2 gas was injected to produce carbonated water. The profiler recorded temperature, pressure and sound velocity. Change of sound velocity was defined as difference of sound velocity between carbonated water and pure water under the same temperature and pressure conditions. CO2 concentration was calculated by Henry's law. The result indicated that the change of sound velocity [m s-1] is proportional to CO2 concentration [mmol kg-1], and the coefficient is 0.021 [m kg s-1 mmol-1]. 3. Field application Depth profiles of sound velocity, pressure, and temperature of Lakes

  8. Direct human influence on atmospheric CO2 seasonality from increased cropland productivity

    NASA Astrophysics Data System (ADS)

    Gray, Josh M.; Frolking, Steve; Kort, Eric A.; Ray, Deepak K.; Kucharik, Christopher J.; Ramankutty, Navin; Friedl, Mark A.

    2014-11-01

    Ground- and aircraft-based measurements show that the seasonal amplitude of Northern Hemisphere atmospheric carbon dioxide (CO2) concentrations has increased by as much as 50 per cent over the past 50 years. This increase has been linked to changes in temperate, boreal and arctic ecosystem properties and processes such as enhanced photosynthesis, increased heterotrophic respiration, and expansion of woody vegetation. However, the precise causal mechanisms behind the observed changes in atmospheric CO2 seasonality remain unclear. Here we use production statistics and a carbon accounting model to show that increases in agricultural productivity, which have been largely overlooked in previous investigations, explain as much as a quarter of the observed changes in atmospheric CO2 seasonality. Specifically, Northern Hemisphere extratropical maize, wheat, rice, and soybean production grew by 240 per cent between 1961 and 2008, thereby increasing the amount of net carbon uptake by croplands during the Northern Hemisphere growing season by 0.33 petagrams. Maize alone accounts for two-thirds of this change, owing mostly to agricultural intensification within concentrated production zones in the midwestern United States and northern China. Maize, wheat, rice, and soybeans account for about 68 per cent of extratropical dry biomass production, so it is likely that the total impact of increased agricultural production exceeds the amount quantified here.

  9. Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback

    NASA Astrophysics Data System (ADS)

    Ridgwell, A.; Zondervan, I.; Hargreaves, J. C.; Bijma, J.; Lenton, T. M.

    2007-07-01

    Plankton manipulation experiments exhibit a wide range of sensitivities of biogenic calcification to simulated anthropogenic acidification of the ocean, with the "lab rat" of planktic calcifiers, Emiliania huxleyi apparently not representative of calcification generally. We assess the implications of this observational uncertainty by creating an ensemble of realizations of an Earth system model that encapsulates a comparable range of uncertainty in calcification response to ocean acidification. We predict that a substantial reduction in marine carbonate production is possible in the future, with enhanced ocean CO2 sequestration across the model ensemble driving a 4-13% reduction in the year 3000 atmospheric fossil fuel CO2 burden. Concurrent changes in ocean circulation and surface temperatures in the model contribute about one third to the increase in CO2 uptake. We find that uncertainty in the predicted strength of CO2-calcification feedback seems to be dominated by the assumption as to which species of calcifier contribute most to carbonate production in the open ocean.

  10. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    PubMed

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit.

  11. Short-term concentration of CO2 in the ambient air of Nagpur city.

    PubMed

    Manuel, Jovita A; Gajghate, D G; Hasan, M Z; Singh, R N

    2002-07-01

    Carbon dioxide concentration is an index of total amount of combustion and natural ventilation in an urban environment and therefore required more careful attention for assessment of CO2 level in air environment. First time, an attempt was made to monitor CO2 levels in Ambient Air of Nagpur during August 2001-December 2001 at Industrial, Commercial and Residential sites. The largest amount of CO2 occurred at night due to darkness which depresses the photosynthesis to its lowest level. The lowest concentration of CO2 was showed in afternoon hours when photosynthesis is at its maximum. The average concentration of CO2 was found to be 361, 366 and 339 ppm at Industrial, Commercial and Industrial sites respectively. This generation of database of ambient CO2 will help to formulate the strategy for prevention of global warming phenomenon.

  12. CO2 Uptake and Electron Transport Rates in Wild-Type and a Starchless Mutant of Nicotiana sylvestris (The Role and Regulation of Starch Synthesis at Saturating CO2 Concentrations).

    PubMed Central

    Eichelmann, H.; Laisk, A.

    1994-01-01

    CO2 uptake rate, chlorophyll fluorescence, and 830-nm absorbance were measured in wild-type (wt) Nicotiana sylvestris (Speg. et Comes) and starchless mutant NS 458 leaves at different light intensities and CO2 concentrations. Initial slopes of the relationships between CO2 uptake and light and CO2 were similar, but the maximum rate at CO2 and light saturation was only 30% in the mutant compared with the wt. O2 enhancement of photosynthesis at CO2 and light saturation was relatively much greater in the mutant than in the wt. In 21% O2, the electron transport rate (ETR) calculated from fluorescence peaked near the beginning of the CO2 saturation of photosynthesis. With the further increase of CO2 concentration ETR remained nearly constant or declined a little in the wt but drastically declined in the mutant. Absorbance measurements at 830 nm indicated photosystem I acceptor side reduction in both plants at saturating CO2 and light. Assimilatory charge (postillumination CO2 uptake) measurements indicated trapping of chloroplast inorganic phosphate, supposedly in hexose phosphates, in the mutant. It is concluded that starch synthesis gradually substitutes for photorespiration as electron acceptor with increasing CO2 concentration in the wt but not in the mutant. It is suggested that starch synthesis is co-controlled by the activity of the chloroplast fructose bisphosphatase. PMID:12232360

  13. Carbon allocation and element composition in four Chlamydomonas mutants defective in genes related to the CO2 concentrating mechanism.

    PubMed

    Memmola, Francesco; Mukherjee, Bratati; Moroney, James V; Giordano, Mario

    2014-09-01

    Four mutants of Chlamydomonas reinhardtii with defects in different components of the CO2 concentrating mechanism (CCM) or in Rubisco activase were grown autotrophically at high pCO2 and then transferred to low pCO2, in order to study the role of different components of the CCM on carbon allocation and elemental composition. To study carbon allocation, we measured the relative size of the main organic pools by Fourier Transform Infrared spectroscopy. Total reflection X-ray fluorescence was used to analyze the elemental composition of algal cells. Our data show that although the organic pools increased their size at high CO2 in all strains, their stoichiometry was highly homeostatic, i.e., the ratios between carbohydrates and proteins, lipid and proteins, and carbohydrates and lipids, did not change significantly. The only exception was the wild-type 137c, in which proteins decreased relative to carbohydrates and lipids, when the cells were transferred to low CO2. It is noticeable that the two wild types used in this study responded differently to the transition from high to low CO2. Malfunctions of the CCM influenced the concentration of several elements, somewhat altering cell elemental stoichiometry: especially the C/P and N/P ratios changed appreciably in almost all strains as a function of the growth CO2 concentration, except in 137c and the Rubisco activase mutant rca1. In strain cia3, defective in the lumenal carbonic anhydrase (CA), the cell quotas of P, S, Ca, Mn, Fe, and Zn were about 5-fold higher at low CO2 than at high CO2. A Principle Components Analysis showed that, mostly because of its elemental composition, cia3 behaved in a substantially different way from all other strains, at low CO2. The lumenal CA thus plays a crucial role, not only for the correct functioning of the CCM, but also for element utilization. Not surprisingly, growth at high CO2 attenuated differences among strains.

  14. [Effects of simulated elevation of atmospheric CO2 concentration on the physiological features of spring phytoplankton in Taihu Lake].

    PubMed

    Zhao, Xu-Hui; Tang, Long-Sheng; Shi, Xiao-Li; Yang, Zhou; Kong, Fan-Xiang

    2013-06-01

    To disclose the impact of different CO2 concentrations (270 x 10(-6), 380 x 10(-6), 750 x 10(-6)) on physiological features of spring phytoplankton, an in situ simulated experiment was carried out in Meiliang Bay of Taihu Lake from 29 April to 26 May in 2012. The results showed that atmospheric CO2 elevation would significantly alter the pH value and carbonate chemical environments of Taihu Lake, resulting in weakening the advantages of carbon concentrating mechanism (CCM) of phytoplankton. Phytoplankton in Taihu Lake tended to use more dissolved CO2 (CO2, aq) due to the deliberate CO2 sequestration under the high CO2 level treatment. When atmospheric CO2 concentration doubles at the end of century, the maximum growth rate constant of phytoplankton (U(max)), NPP, chlorophyll a (Chl-a)-specific NPP would increase by 63.1%, 69.6% and 33.8%, respectively. Atmospheric CO2 elevation promoted the maximum photosynthetic efficiency of chlorophyta and bacillariophyta in Taihu Lake and its promotion effect on bacillariophyta was more notable than that on chlorophyta. However, it did not change the photosynthetic efficiency of cyanobacteria which was very low in spring. Meanwhile, the stoichiometry value of phytoplankton changed significantly due to the CO2 elevation, as phytoplankton cells assimilated more C and N, but less P under the treatment of high CO2 level. Our results indicated the enhanced CO2 level could dramatically change the physiological features of phytoplankton. This information would help us to understand and predict the response of phytoplankton in Taihu Lake to the future climate change.

  15. The relationship of global green leaf biomass to atmospheric CO2 concentrations

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Fung, Inez Y.; Keeling, C. D.; Gammon, R. H.

    1985-01-01

    Advanced very high resolution radiometer data from NOAA's polar orbiting meteorological satellite have been obtained globally for a 21 month period, processed to produce a green leaf biomass spectral vegetative index for the entire terrestrial surface by month, zonally aggregated by latitude, and compared to atmospheric CO2 concentrations from observing stations. A strong inverse association was found between the monthly Pt. Barrow CO2 concentrations and the vegetation index measurements from 50 deg N to 80 deg N, between the monthly Mauna Loa CO2 concentrations and the vegetation index measurements from 10 deg N to 30 deg N, 10 deg N to 80 deg N, and the global total, and between the globally averaged CO2 concentrations and the globally averaged vegetation index. No relationships between atmospheric CO2 concentrations and the vegetative index measurements from any latitude zone or combinations of zones were found for the South Pole station.

  16. Carbon Balance at Landscape Level inferred fromTower CO2 Concentration Measurements

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, B.; Higuchi, K.; Chan, D.; Shashkov, A.; Lin, H.; Liu, J.

    2003-04-01

    Terrestrial carbon sinks are considerable in the global carbon budget, but the accumulation of carbon in terrestrial ecosystems is very small (~0.2% per year) relative to the total carbon stocks in forests. Currently, eddy-covariance instruments mounted on towers are the only reliable means to measure carbon balance of a land surface, albeit limited to small areas and not free of caveats. In our quest of understanding the collective performance of ecosystems under the changing climate, it is highly desirable to have the ability to acquire carbon cycle information for large areas (landscape) consisting of patches of different ecosystems. For this purpose we explored methodologies of inferring carbon cycle information from tower CO2 concentration measurements affected by large areas (100-10000 km2). An ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS) is coupled with a carbon-specific Vertical Diffusion Scheme (VDS) in order to decipher temporal variations in CO2 for landscape-level photosynthesis and respiration information. The coupled BEPS-VDS is applied to a unique 9-year (1990-2000 with 1997-8 missing data) 5-minute CO2 record measured on a 40-m tower over boreal forests near Fraserdale, Ontario, Canada. Over the period, the mean diurnal amplitude of the measured CO2 at 40 m increased by 5.58 ppmv, or 28% in the growing season. The increase in nighttime ecosystem respiration, causing the increase in the daily maximum CO2 concentration, was responsible for 65% of the increase in the diurnal amplitude, i.e., 3.61 ppmv, corresponding to an increase in the mean daily air temperature by about 2.77 degC and precipitation by 5% over the same period. The rest (35%) is explained by the increase in ecosystem daytime photosynthesis, causing the decrease in the daily minimum CO2 concentration. As the nighttime stable boundary layer (SBL) (270-560 m) was much shallower than the daytime convective boundary layer (CBL) (1000-1600 m), the increase in

  17. Effects of different CO2 concentration on growth and photosynthetic of rain tree plants (Albizia saman jacq.Merr)

    NASA Astrophysics Data System (ADS)

    Fathurrahman, F.; Nizam, M. S.; Wan Juliana, W. A.; Doni, Febri; NorLailatul, W. M.; Che Radziah, C. M. Z.

    2016-11-01

    A preliminary study was conducted to determine the effect of elevated carbon dioxide (CO2) in rain tree growth under controllable growth chamber. The tolerance towards CO2 absorption in the photosynthesis process for the growth of tree rain is still unknown. In this study, rain tree seedlings were incubated for three months in a growth chamber with three different CO2 concentration treatment: GC1 (300 ppm), GC2 (600 ppm) and GC3 (900 ppm) at similar condition of temperature (28°C), humidity (60%) and lighting (1200 lux). The results showed that increased CO2 significantly increase the growth rate and chlorophyll content in rain tree. The results of this study add to the further understanding of how the improvement of the growth and physiological characteristics of rain tree was affected by CO2 enrichment treatment. This research can for used for global warming mitigation in the future.

  18. Increased light-use efficiency in northern terrestrial ecosystems indicated by CO2 and greening observations

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca T.; Prentice, Iain Colin; Graven, Heather; Ciais, Philippe; Fisher, Joshua B.; Hayes, Daniel J.; Huang, Maoyi; Huntzinger, Deborah N.; Ito, Akihiko; Jain, Atul; Mao, Jiafu; Michalak, Anna M.; Peng, Shushi; Poulter, Benjamin; Ricciuto, Daniel M.; Shi, Xiaoying; Schwalm, Christopher; Tian, Hanqin; Zeng, Ning

    2016-11-01

    Observations show an increasing amplitude in the seasonal cycle of CO2 (ASC) north of 45°N of 56 ± 9.8% over the last 50 years and an increase in vegetation greenness of 7.5-15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO2 concentrations. We find that the modeled change in ASC is too small but the mean greening trend is generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE.

  19. Combined effects of elevated temperature and CO2 concentration on Cd and Zn accumulation dynamics in Triticum aestivum L.

    PubMed

    Wang, Xiaoheng; Li, Yu; Lu, Hong; Wang, Shigong

    2016-09-01

    A simulated climate warming experiment was conducted to evaluate the combined effects of elevated temperature and CO2 concentration on the bioaccumulation, translocation and subcellular distributions of Cd and Zn in wheat seedlings (Triticum aestivum L. cv. Xihan 1.) at Dingxi, Gansu Province, China. The objective was to find evidence that global climate change is affecting the bioaccumulation of Cd and Zn in T. aestivum L. cv. Xihan 1. The results showed that compared to control A, elevated temperature and CO2 increased Cd bioaccumulation in the shoots by 1.4-2.5 times, and increased that in the roots by 1.2-1.5 times, but decreased Zn levels in wheat shoots by 1.4-2.0 times, while decreased that in the roots by 1.6-1.9 times. Moreover, temperature and CO2 concentration increase also led to increased Cd concentration, and decreased Zn concentration in subcellular compartments of wheat seedlings. The largest Cd concentration increase (174.4%) was observed in the cell wall and debris fractions of shoots after they were subjected to the highest CO2 and temperature treatment (TC3). The largest Zn concentration decrease (53.1%) was observed in the soluble (F3) fractions of shoots after they were subjected to the medium CO2 and temperature treatment (TC2). The temperature and CO2 increase had no significant effect on the proportional distribution of Cd and Zn in the subcellular fractions. The root-to-shoot translocation of Cd increased with the increasing temperature and CO2 concentration. However, the Zn distributions only fluctuated within a small range.

  20. Measurement of CO2 concentration at high-temperature based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jiuying; Li, Chuanrong; Zhou, Mei; Liu, Jianguo; Kan, Ruifeng; Xu, Zhenyu

    2017-01-01

    A diode laser sensor based on absorption spectroscopy has been developed for sensitive measurement of CO2 concentration at high-temperature. Measurement of CO2 can provide information about the extent of combustion and mix in a combustor that may be used to improve fuel efficiency. Most methods of in-situ combustion measurement of CO2 use the spectroscopic parameters taken from database like HITEMP which is mainly derived from the theoretical calculation and remains a high degree of uncertainty in the spectroscopic parameters. A fiber-coupled diode laser system for measurement of CO2 in combustion environment by use of the high-temperature spectroscopic parameters which are obtained by experiment was proposed. Survey spectra of the R(50) line of CO2 at 5007.787 cm-1 were recorded at high-temperature and various pressures to determine line intensities. The line intensities form the theoretical foundation for future applications of this diode laser sensor system. Survey spectra of four test gas mixtures containing 5.01%CO2, 10.01%CO2, 20.08%CO2, and 49.82%CO2 were measured to verify the accuracy of the diode laser sensor system. The measured results indicate that this sensor can measure CO2 concentration with 2% uncertainty in high temperatures.

  1. Implications of Limiting CO2 Concentrations for Land Use and Energy

    SciTech Connect

    Wise, Marshall A.; Calvin, Katherine V.; Thomson, Allison M.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Sands, Ronald D.; Smith, Steven J.; Janetos, Anthony C.; Edmonds, James A.

    2009-05-29

    This paper is the first to simultaneously examine the implications of extending the concept of placing a value on carbon beyond fossil fuel and industrial emissions to all sources, including those associated with land use and land use change. The paper reports a variety of results that have bearing on recent discussions in the literature regarding the role of bioenergy and the indirect emission of carbon through land-use change as well as the burgeoning literature on interactions between bioenergy and crop prices. This paper goes beyond results currently in the literature by using an integrated assessment model to assess energy use and supply, atmospheric composition, land use, and terrestrial carbon in the context of limiting the concentration of atmospheric CO2. We find that when the concept of valuing carbon emissions is extended to all carbon emissions, regardless of origin, that in contrast to a mitigation scenario where only fossil fuel and industrial carbon emissions are valued, deforestation is replaced by afforestation and expanded unmanaged ecosystems; the cost of limiting CO2 concentrations falls; crop prices rise; and human diets are transformed as people shift away from consumption of beef and other carbon-intensive protein sources. The increase in crop prices flows directly from the consideration of land-use change emissions in a comprehensive emissions mitigation program and occurs even in the absence of the use of purpose-grown bioenergy. Finally, we find that the assumed rate of improvement in food and fiber crop productivity (e.g. wheat, rice, corn) has a strong influence on land-use change emissions, making the technology for growing crops potentially as important for limiting atmospheric CO2 concentrations as energy technologies such as CO2 capture and storage.

  2. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    PubMed Central

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664

  3. Natural high pCO2 increases autotrophy in Anemonia viridis (Anthozoa) as revealed from stable isotope (C, N) analysis

    PubMed Central

    Horwitz, Rael; Borell, Esther M.; Yam, Ruth; Shemesh, Aldo; Fine, Maoz

    2015-01-01

    Contemporary cnidarian-algae symbioses are challenged by increasing CO2 concentrations (ocean warming and acidification) affecting organisms' biological performance. We examined the natural variability of carbon and nitrogen isotopes in the symbiotic sea anemone Anemonia viridis to investigate dietary shifts (autotrophy/heterotrophy) along a natural pCO2 gradient at the island of Vulcano, Italy. δ13C values for both algal symbionts (Symbiodinium) and host tissue of A. viridis became significantly lighter with increasing seawater pCO2. Together with a decrease in the difference between δ13C values of both fractions at the higher pCO2 sites, these results indicate there is a greater net autotrophic input to the A. viridis carbon budget under high pCO2 conditions. δ15N values and C/N ratios did not change in Symbiodinium and host tissue along the pCO2 gradient. Additional physiological parameters revealed anemone protein and Symbiodinium chlorophyll a remained unaltered among sites. Symbiodinium density was similar among sites yet their mitotic index increased in anemones under elevated pCO2. Overall, our findings show that A. viridis is characterized by a higher autotrophic/heterotrophic ratio as pCO2 increases. The unique trophic flexibility of this species may give it a competitive advantage and enable its potential acclimation and ecological success in the future under increased ocean acidification. PMID:25739995

  4. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems.

    PubMed

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-22

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change.

  5. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    NASA Astrophysics Data System (ADS)

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change.

  6. Forsterite Carbonation in Wet-scCO2: Dependence on Adsorbed Water Concentration

    NASA Astrophysics Data System (ADS)

    Loring, J.; Benezeth, P.; Qafoku, O.; Thompson, C.; Schaef, T.; Bonneville, A.; McGrail, P.; Felmy, A.; Rosso, K.

    2013-12-01

    Capturing and storing CO2 in basaltic formations is one of the most promising options for mitigating atmospheric CO2 emissions resulting from the burning of fossil fuels. These geologic reservoirs have high reactive potential for CO2-mineral trapping due to an abundance of divalent-cation containing silicates, such as forsterite (Mg2SiO4). Recent studies have shown that carbonation of these silicates under wet scCO2 conditions, e. g. encountered near a CO2 injection well, proceeds along a different pathway and is more effective than in CO2-saturated aqueous fluids. The presence of an adsorbed water film on the forsterite surface seems to be key to reactivity towards carbonation. In this study, we employed in situ high pressure IR spectroscopy to investigate the dependence of adsorbed water film thickness on forsterite carbonation chemistry. Post reaction ex situ SEM, TEM, TGA, XRD, and NMR measurements will also be discussed. Several IR titrations were performed of forsterite with water at 50 °C and 90 bar scCO2. Aliquots of water were titrated at 4-hour reaction-time increments. Once a desired total water concentration was reached, data were collected for about another 30 hours. One titration involved 10 additions, which corresponds to 6.8 monolayers of adsorbed water. Clearly, a carbonate was precipitating, and its spectral signature matched magnesite. Another titration involved 8 aliquots, or up to 4.4 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 4.4 monolayers showed an increase and then a plateau. We are currently unsure of the identity of the carbonate that precipitated, but it could be an amorphous anhydrous phase or magnesite crystals with dimensions of only several nanometers. A third titration only involved 3 additions, or up to 1.6 monolayers of water. The integrated absorbance under the CO stretching bands of carbonate as a function of time after reaching 1.6 monolayers

  7. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

    1979-01-01

    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

  8. Test strips detect different CO2 concentrations in closed compartments

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Four different test strips, using crystal violet for one pair of strips and basic fuchsin as a dye for the second pair, give unambiguous colorimetric indications of four different concentrations of carbon dioxide in the atmosphere of a closed compartment. Tetraethylene pentamine is used as a dye decoloring agent.

  9. CO2-concentrating mechanisms in Egeria densa, a submersed aquatic plant.

    PubMed

    Lara, María V; Casati, Paula; Andreo, Carlos S

    2002-08-01

    Egeria densa is an aquatic higher plant which has developed different mechanisms to deal with photosynthesis under conditions of low CO2 availability. On the one hand it shows leaf pH-polarity, which has been proposed to be used for bicarbonate utilization. In this way, at high light intensities and low dissolved carbon concentration, this species generates a low pH at the adaxial leaf surface. This acidification shifts the equilibrium HCO3-/CO2 towards CO2, which enters the cell by passive diffusion. By this means, E. densa increases the concentration of CO2 available for photosynthesis inside the cells, when this gas is limiting. On the other hand, under stress conditions resulting from high temperature and high light intensities, it shows a biochemical adaptation with the induction of a C4-like mechanism but without Kranz anatomy. Transfer from low to high temperature and light conditions induces increased levels of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) and NADP-malic enzyme (NADP-ME, EC 1.1.1.40), both key enzymes participating in the Hatch-Slack cycle in plants with C4 metabolism. Moreover, one PEPC isoform, whose synthesis is induced by high temperature and light, is phosphorylated in the light, and changes in kinetic and regulatory properties are correlated with changes in the phosphorylation state of this enzyme. In the present review, we describe these two processes in this submersed angiosperm that appear to help it perform photosynthesis under conditions of extreme temperatures and high light intensities.

  10. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1977-01-01

    A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.

  11. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  12. [Diurnal and seasonal variations of surface atmospheric CO2 concentration in the river estuarine marsh].

    PubMed

    Zhang, Lin-Hai; Tong, Chuan; Zeng, Cong-Sheng

    2014-03-01

    Characteristics of diurnal and seasonal variations of surface atmospheric CO2 concentration were analyzed in the Minjiang River estuarine marsh from December 2011 to November 2012. The results revealed that both the diurnal and seasonal variation of surface atmospheric CO2 concentration showed single-peak patterns, with the valley in the daytime and the peak value at night for the diurnal variations, and the maxima in winter and minima in summer for the seasonal variation. Diurnal amplitude of CO2 concentration varied from 16.96 micromol x mol(-1) to 38.30 micromol x mol(-1). The seasonal averages of CO2 concentration in spring, summer, autumn and winter were (353.74 +/- 18.35), (327.28 +/- 8.58), (354.78 +/- 14.76) and (392.82 +/- 9.71) micromol x mol(-1), respectively, and the annual mean CO2 concentration was (357.16 +/- 26.89) micromol x mol(-1). The diurnal CO2 concentration of surface atmospheric was strongly negatively correlated with temperature, wind speed, photosynthetically active radiation and total solar radiation (P < 0.05). The diurnal concentration of CO2 was negatively related with tidal level in January, but significantly positively related in July.

  13. Simulation of Atmospheric CO2 Concentrations in California’s South Coast Basin

    NASA Astrophysics Data System (ADS)

    Costigan, K. R.; Dubey, M. K.

    2009-12-01

    Verification of green house gas emission control treaties will require the coupling of measurements and models that can account for sources, sinks, and transport of these gasses. This paper presents an application of the Weather Research and Forecasting Chemistry model (WRF-Chem) to study CO2 transport in California’s South Coast Basin. The model is run for the week of 23-29 March 2008 to correspond with the atmospheric CO2 abundances measured with a ground-based Fourier transform spectrometer (FTS) and reported by Wunch et al. (2009). CO2 emissions used as input for the model are estimated from the Vulcan CO2 inventory (Gurney et al., 2009) and CO2 is treated as a passive tracer in the simulation. In particular, this paper addresses details of the simulation and analysis of the simulated meteorological conditions that may explain some of the observed day-to-day variations in CO2 concentrations.

  14. On Using CO2 Concentration Measurements at Mountain top and Valley Locations in Regional Flux Studies.

    NASA Astrophysics Data System (ADS)

    de Wekker, S. F.; Song, G.; Stephens, B. B.

    2007-12-01

    Data from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) are used to investigate atmospheric controls on temporal and spatial variability of CO2 in mountainous terrain and the usefulness of mountain top and valley measurement for the estimation of regional CO2 fluxes. Rocky RACCOON consists of four sites installed in fall of 2005 and spring of 2006: Niwot Ridge, near Ward, Colorado; Storm Peak Laboratory near Steamboat Springs, Colorado; Fraser Experimental Forest, near Fraser Colorado; and Hidden Peak, near Snowbird, Utah. The network uses the NCAR-developed Autonomous Inexpensive Robust CO2 Analyzer. These units measure CO2 concentrations at three levels on a tower, producing individual measurements every 2.5 minutes precise to 0.1 ppm CO2 and closely tied to the WMO CO2 scale. Three of the sites are located on a mountain top while one site is located in a valley. Initial analyses show interesting relationships between CO2 concentration and atmospheric parameters, such as wind speed and direction, temperature, and incoming solar radiation. The nature of these relationships is further investigated with an atmospheric mesoscale model. Idealized and realistic simulations are able to capture the observed behavior of spatial and temporal CO2 variability and reveal the responsible physical processes. The implications of the results and the value of the measurements for providing information on local to regional scale respiration and photosynthesis rates in the Rockies are discussed.

  15. The nature of the CO2 -concentrating mechanisms in a marine diatom, Thalassiosira pseudonana.

    PubMed

    Clement, Romain; Dimnet, Laura; Maberly, Stephen C; Gontero, Brigitte

    2016-03-01

    Diatoms are widespread in aquatic ecosystems where they may be limited by the supply of inorganic carbon. Their carbon dioxide-concentrating mechanisms (CCMs) involving transporters and carbonic anhydrases (CAs) are well known, but the contribution of a biochemical CCM involving C4 metabolism is contentious. The CCM(s) present in the marine-centric diatom, Thalassiosira pseudonana, were studied in cells exposed to high or low concentrations of CO2 , using a range of approaches. At low CO2 , cells possessed a CCM based on active uptake of CO2 (70% contribution) and bicarbonate, while at high CO2 , cells were restricted to CO2 . CA was highly and rapidly activated on transfer to low CO2 and played a key role because inhibition of external CA produced uptake kinetics similar to cells grown at high CO2 . The activities of phosphoenolpyruvate (PEP) carboxylase (PEPC) and the PEP-regenerating enzyme, pyruvate phosphate dikinase (PPDK), were lower in cells grown at low than at high CO2 . The ratios of PEPC and PPDK to ribulose bisphosphate carboxylase were substantially lower than 1, even at low CO2 . Our data suggest that the kinetic properties of this species results from a biophysical CCM and not from C4 type metabolism.

  16. Plant Water Use Efficiency Response to the Atmospheric CO2 Concentration is Greater in High Altitude Environments

    NASA Astrophysics Data System (ADS)

    Feng, X.; Wang, G.

    2009-12-01

    Intrinsic water-use efficiency of plants (A/g ratio, where A is CO2 assimilation rate and g is stomatal conductance of H2O) quantifies the amount of carbon assimilated per unit leaf area per unit time per unit cost of water. There has been a large body of work showing that intrinsic plant water use efficiency (WUE) increases with increasing atmospheric CO2 concentration. This conclusion has strong implications for quantifying the effects of terrestrial carbon sequestration and plant transpiration under the condition of continuously increasing anthropogenic CO2. Less attention has been given to assessing whether the plant response to the atmospheric CO2 increase differs as a function of environmental variables, such as temperature, precipitation and altitude. One would expect interactions between the CO2 concentration and other environmental variables, and the joint effects on the plant WUE might be different from the effect of CO2 concentration alone. However, these interactions can be quite complicated and difficult to predict; even the sign of response remains uncertain. For example, one would expect that plants growing under a dry climate may benefit from the CO2 increase more than those under wet climate, and thus A would increase more in a dry climate. Stomata density of leaves typically decreases with increasing CO2 concentration, causing g to decrease, and A/g to increase. However, it is not known if stomata density decreases more or less under dry or wet climate conditions. Similar uncertainties or lack of knowledge apply to temperature effects. In this work, we adopt an empirical approach using carbon isotopic ratios in tree rings. Over 50 tree-ring δ13C series are compiled from the literature. The response of δ13C to atmospheric conditions (CO2 concentration and δ13C) is obtained, and the rates of change of the WUE are obtained at several different times between AD 1800 and 2000. These rates are then compared statistically with location’s mean annual

  17. Solvation of CO2 in water: effect of RuBP on CO2 concentration in bundle sheath of C4 plants.

    PubMed

    Sadhukhan, Tumpa; Latif, Iqbal A; Datta, Sambhu N

    2014-07-24

    An understanding of the temperature-dependence of solubility of carbon dioxide (CO2) in water is important for many industrial processes. Voluminous work has been done by both quantum chemical methods and molecular dynamics (MD) simulations on the interaction between CO2 and water, but a quantitative evaluation of solubility remains elusive. In this work, we have approached the problem by considering quantum chemically calculated total energies and thermal energies, and incorporating the effects of mixing, hydrogen bonding, and phonon modes. An overall equation relating the calculated free energy and entropy of mixing with the gas-solution equilibrium constant has been derived. This equation has been iteratively solved to obtain the solubility as functions of temperature and dielectric constant. The calculated solubility versus temperature plot excellently matches the observed plot. Solubility has been shown to increase with dielectric constant, for example, by addition of electrolytes. We have also found that at the experimentally reported concentration of enzyme RuBP in bundle sheath cells of chloroplast in C4 green plants, the concentration of CO2 can effectively increase by as much as a factor of 7.1-38.5. This stands in agreement with the observed effective rise in concentration by as much as 10 times.

  18. Time-course of ventilation, arterial and pulmonary CO(2) tension during CO (2) increase in humans.

    PubMed

    Satoh, Toru; Okada, Yasumasa; Hara, Yasushi; Sakamaki, Fumio; Kyotani, Shingo; Tomita, Takeshi; Nagaya, Noritoshi; Nakanishi, Norifumi

    2012-01-01

    A change of ventilation (VE), PaCO( 2 ) (arterial CO( 2 ) tension) and PvCO( 2 ) (pulmonary arterial CO( 2 ) tension) with time was not evaluated precisely during exercise or CO( 2 ) rebreathing in humans. In this study, changes of these variables with time were fitted to exponential curves {y = Exp ( x/ T + A ) + k} and compared. When exercise pulmonary hemodynamics was examined in 15 cardiac patients to decide therapies, we asked the patients to undergo CO( 2 ) rebreathing using air with supplementation of consumed O( 2 ). Arterial and pulmonary blood was drawn every minute. During exercise, T was 28.2 ± 8.4 and 26.8 ± 12.4, and A was 0.80 ± 0.50 and 0.50 ± 0.90 in VE and PvCO( 2 ), respectively, with no statistical differences. During CO( 2 ) rebreathing, T was 18.6 ± 5.8, 41.8 ± 38.0 and 21.6 ± 9.7 and A was 0.39 ± 0.67, 1.64 ± 1.35 and 0.17 ± 0.83 in VE, PaCO( 2 ) and PvCO( 2 ), respectively, with statistical difference of PaCO( 2 ) from other variables, suggesting that VE and PvCO( 2 ) showed same mode of change according to time but PaCO( 2 ) did not.

  19. The Form in Which Nitrogen Is Supplied Affects the Polyamines, Amino Acids, and Mineral Composition of Sweet Pepper Fruit under an Elevated CO2 Concentration.

    PubMed

    Piñero, Maria C; Otálora, Ginés; Porras, Manuel E; Sánchez-Guerrero, Mari C; Lorenzo, Pilar; Medrano, Evangelina; Del Amor, Francisco M

    2017-02-01

    We investigated the effect of supplying nitrogen, as NO3(-) or as NO3(-)/NH4(+), on the composition of fruits of sweet pepper (Capsicum annuum L. cv. Melchor) plants grown with different CO2 concentrations ([CO2]): ambient or elevated (800 μmol mol(-1)). The results show that the application of NH4(+) and high [CO2] affected the chroma related to the concentrations of chlorophylls. The concentrations of Ca, Cu, Mg, P, and Zn were significantly reduced in the fruits of plants nourished with NH4(+), the loss of Fe being more dramatic at increased [CO2], which was also the case with the protein concentration. The concentration of total phenolics was increased by NH4(+), being unaffected by [CO2]. Globally, the NH4(+) was the main factor that affected fruit free amino acid concentrations. Polyamines were affected differently: putrescine was increased by elevated [CO2], while the response of cadaverine depended on the form of N supplied.

  20. [Effects of drought stress, high temperature and elevated CO2 concentration on the growth of winter wheat].

    PubMed

    Si, Fu-Yan; Qiao, Yun-Zhou; Jiang, Jing-Wei; Dong, Bao-Di; Shi, Chang-Hai; Liu, Meng-Yu

    2014-09-01

    The impacts of climate change on the grain yield, photosynthesis, and water conditions of winter wheat were assessed based on an experiment, in which wheat plants were subjected to ambient and elevated CO2 concentrations, ambient and elevated temperatures, and low and high water conditions independently and in combination. The CO2 enrichment alone had no effect on the photosynthesis of winter wheat, whereas higher temperature and drought significantly decreased the photosynthetic rate. Water conditions in flag leaves were not significantly changed at the elevated CO2 concentration or elevated temperature. However, drought stress decreased the relative water content in flag leaves, and the combination of elevated temperature and drought reduced the water potential in flag leaves. The combination of elevated CO2 concentration, elevated temperature, and drought significantly reduced the photosynthetic rate and water conditions, and led to a 41.4% decrease in grain yield. The elevated CO2 concentration alone increased the grain yield by 21.2%, whereas the elevated temperature decreased the grain yield by 12.3%. The grain yield was not affected by the combination of elevated CO2 concentration and temperature, but the grain yield was significantly decreased by the drought stress if combined with any of the climate scenarios applied in this study. These findings suggested that maintaining high soil water content might be a vital means of reducing the potential harm caused by the climate change.

  1. Rainfall distribution is the main driver of runoff under future CO2-concentration in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Leuzinger, S.; Körner, C.

    2009-04-01

    Reduced stomatal conductance under elevated CO2 results in increased soil moisture, provided all other factors remain constant. Whether this results in increased runoff critically depends on the interaction of rainfall patterns, soil water storage capacity and plant responses. To test the sensitivity of runoff to these parameters under elevated CO2, we combine transpiration and soil moisture data from the Swiss Canopy Crane (SCC) FACE experiment with 104 years of daily precipitation data from an adjacent weather station to drive a three-layer bucket model (mean yearly precipitation 794 mm). The model adequately predicts the water budget of a temperate deciduous forest and runoff from a nearby gauging station. A simulation run over all 104 years based on sap flow responses resulted in only 5.5 mm (2.9 %) increased ecosystem runoff under elevated CO2. Out of the 37986 days (1.1.1901 to 31.12.2004), only 576 days produce higher runoff under in the elevated CO2 scenario. Only 1 out of 17 years produces a CO2-signal greater than 20 mma-1, which mostly depends on a few single days when runoff under elevated CO2 exceeds runoff under ambient conditions. The maximum signal for a double pre-industrial CO2-concentration under the past century daily rainfall regime is an additional runoff of 46 mm (year 1938). More than half of all years produce a signal of less than 5 mma-1, because trees consume the 'extra' moisture during prolonged dry weather. Increased runoff under elevated CO2 is 9 times more sensitive to variations in rain pattern than to the applied reduction in transpiration under elevated CO2. Thus the key driver of increased runoff under future CO2-concentration is the day by day rainfall pattern. We argue that increased runoff due to a first-order plant physiological CO2-effect will be very small (<3 %) in the landscape dominated by temperate deciduous forests, and will hardly increase flooding risk in forest catchments. It is likely that these results are equally

  2. Variation in the leaf δ(13)C is correlated with salinity tolerance under elevated CO(2) concentration.

    PubMed

    del Amor, Francisco M

    2013-02-15

    Increasing atmospheric CO(2) concentration is expected to impact agricultural systems through a direct effect on leaf gas exchange and also due to effects on the global availability of good-quality water as a result of climate warming. Thus, the planning of land use for agriculture requires new tools to identify the capability of current cultivars to adapt to growth restrictions under new ambient conditions. We hypothesized that salinity stress may produce a specific pattern of carbon isotopic composition (δ(13)C) in tomato (Solanum lycopersicum L.) at elevated CO(2) concentration ([CO(2)]) that could be used in the breeding of salinity tolerance in a near-future climate scenario. Five commercial tomato cultivars were evaluated at elevated (800 μmol mol(-1)) or standard (400 μmol mol(-1)) [CO(2)], being irrigated with a nutrient solution containing 0, 60 or 120 mM NaCl. The biomass enhanced ratio, leaf net CO(2) assimilation and stomatal conductance, leaf NO(3)(-) and Cl(-) concentrations and leaf free amino acid profile were analyzed in relation to the pattern of δ(13)C, under different saline stress conditions. The results indicate that at high [CO(2)]: (i) salinity tolerance was enhanced, but the response was strongly cultivar dependent, (ii) leaf NO(3)(-) concentration was increased whilst Cl(-) and proline concentrations decreased, and (iii) leaf δ(13)C was highly correlated with plant dry matter accumulation and with leaf proline concentration, leaf gas exchange and ion concentrations. This study shows that δ(13)C is a useful tool for the determination of the salinity tolerance of tomato at high [CO(2)], as an integrative parameter of the stress period, and was validated by traditional physiological plant stress traits.

  3. Responses of the marine diatom Thalassiosira pseudonana to changes in CO2 concentration: a proteomic approach

    PubMed Central

    Clement, Romain; Lignon, Sabrina; Mansuelle, Pascal; Jensen, Erik; Pophillat, Matthieu; Lebrun, Regine; Denis, Yann; Puppo, Carine; Maberly, Stephen C.; Gontero, Brigitte

    2017-01-01

    The concentration of CO2 in many aquatic systems is variable, often lower than the KM of the primary carboxylating enzyme Rubisco, and in order to photosynthesize efficiently, many algae operate a facultative CO2 concentrating mechanism (CCM). Here we measured the responses of a marine diatom, Thalassiosira pseudonana, to high and low concentrations of CO2 at the level of transcripts, proteins and enzyme activity. Low CO2 caused many metabolic pathways to be remodeled. Carbon acquisition enzymes, primarily carbonic anhydrase, stress, degradation and signaling proteins were more abundant while proteins associated with nitrogen metabolism, energy production and chaperones were less abundant. A protein with similarities to the Ca2+/ calmodulin dependent protein kinase II_association domain, having a chloroplast targeting sequence, was only present at low CO2. This protein might be a specific response to CO2 limitation since a previous study showed that other stresses caused its reduction. The protein sequence was found in other marine diatoms and may play an important role in their response to low CO2 concentration. PMID:28181560

  4. Climate science: Ocean circulation drove increase in CO2 uptake

    NASA Astrophysics Data System (ADS)

    Fletcher, Sara E. Mikaloff

    2017-02-01

    The ocean's uptake of carbon dioxide increased during the 2000s. Models reveal that this was driven primarily by weak circulation in the upper ocean, solving a mystery of ocean science. See Letter p.215

  5. [Variation of CO2 concentration in solar greenhouse in Northern China].

    PubMed

    Wei, Min; Xing, Yuxian; Wang, Xiufeng; Ma, Hong

    2003-03-01

    The variation of CO2 concentration in winter-spring cultivated solar greenhouse in northern China was studied. The diurnal change of CO2 concentration showed an irregular 'U' shape in most case, the maximum value appeared prior to unveiling straw mat in the morning, and the minimum between 12:00 and 14:00 PM. Sometimes, an irregular 'W' shape curve with two valleys was also observed, with the first one appeared prior to the ventilation at noon, and the second occurred between 15:00-16:30 PM. During the period of winter-spring cultivation, the daily maximum concentration of CO2 in solar greenhouse decreased gradually, while the daily minimum concentration and daytime average concentration dropped first, then went up. At the same time, the time of CO2 depletion lasted longer and longer. In December, CO2 depletion happened 2.1-3.1 hours after morning unveiling. In the next March, however, it moved up to 0.6-1.1 hours after unveiling in the morning. At daytime, both during and after ventilation, solar greenhouse often showed CO2 depletion. The period of CO2 depletion extended from 4-5.8 hours per day in December to 8-8.5 hours per day in March of next year. The spacial distribution of CO2 concentrations within the greenhouse showed that in the morning and in the evening, the order was the front > the middle > the back, and the ground > the canopy > the upper, and at midday, the order was the front < the middle < the back, and the ground > the upper > the canopy. Photon flux density was the most important environmental factor affecting CO2 concentration in greenhouse. Ventilation did not avoided CO2 depletion. Canopy photosynthetic rate and soil respiratory rate were measured at different growth stages of tomato. At seedling stage, CO2 concentration in greenhouse was higher than that outside, due to the vigorous soil respiration and lower canopy photosynthetic rate. But at fruiting stage, severe CO2 depletion occurred because of stronger canopy photosynthesis and weak

  6. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  7. Quantification and modelling of on-road CO2 emissions and its impacts on ambient CO2 concentrations in an Indian coastal city

    NASA Astrophysics Data System (ADS)

    Madhipatla, K. K.

    2015-12-01

    This paper presents the results of CO2 emission inventory, monitoring of CO2 concentrations and modelling of on road CO2 emissions in an Indian coastal city. Bottom up approach was adopted for quantifying the grid wise on road CO2 emissions of Chennai city at a finer resolution of 1Km x 1Km using the real time traffic data of 56 major roads. In addition, monitoring of ground level CO2 concentrations and vehicular traffic were carried out at a residential site in Chennai to understand the impact of vehicular emissions on the ambient CO2 levels. Further, AERMOD, a US EPA regulatory model, was deployed to find the spatial variation of CO2 concentrations due to the emissions from 38 major corridors of Chennai. Results indicated that a total emission of 0.65 Tg/year of CO2 was emitted by the vehicular traffic from the major roads of Chennai. Cars were identified as the larger emitters of CO2 with a contribution of 25% of the total emissions followed by three wheelers (21%), trucks (16%), buses (15%), two wheelers (13%) and Light Commercial Vehicles (9%). Ground level CO2 concentrations at the study area were in the range 391.52 to 666.37 ppm, with a mean hourly concentration of 448 ± 33.45 ppm. It was observed that the CO2 concentrations were high during the morning and evening peak hours and low during the afternoons and further vehicular emissions were found to have a significant effect on the ambient CO2 concentrations during the morning peak hours (R2=0.78) and afternoons (R2=0.50). But, contrastingly, a weak correlation was observed between the vehicular emissions and CO2 concentrations during the evening peak hours (R2=0.02). In addition, night time CO2 concentrations were observed higher in the weekends corresponding to high vehicular traffic during the late evenings. From the modelling results, it was found that the considered 38 major corridors contribute 0.12 ppm of CO2 per year to the ambient atmosphere.

  8. Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration.

    PubMed

    Xie, Li-Yong; Lin, Er-Da; Zhao, Hong-Liang; Feng, Yong-Xiang

    2016-05-01

    The global atmospheric CO(2) concentration is currently (2012) 393.1 μmol mol(-1), an increase of approximately 42 % over pre-industrial levels. In order to understand the responses of metabolic enzymes to elevated CO(2) concentrations, an experiment was conducted using the Free Air CO(2) Enrichment (FACE )system. Two conventional japonica rice varieties (Oryza sativa L. ssp. japonica) grown in North China, Songjing 9 and Daohuaxiang 2, were used in this study. The activities of ADPG pyrophosphorylase, soluble and granule-bound starch synthases, and soluble and granule-bound starch branching enzymes were measured in rice grains, and the effects of elevated CO(2) on the amylose and protein contents of the grains were analyzed. The results showed that elevated CO(2) levels significantly increased the activity of ADPG pyrophosphorylase at day 8, 24, and 40 after flower, with maximum increases of 56.67 % for Songjing 9 and 21.31 % for Daohuaxiang 2. Similarly, the activities of starch synthesis enzymes increased significantly from the day 24 after flower to the day 40 after flower, with maximum increases of 36.81 % for Songjing 9 and 66.67 % for Daohuaxiang 2 in soluble starch synthase (SSS), and 25.00 % for Songjing 9 and 36.44 % for Daohuaxiang 2 in granule-bound starch synthase (GBSS), respectively. The elevated CO(2) concentration significantly increased the activity of soluble starch branching enzyme (SSBE) at day 16, 32, and 40 after flower, and also significantly increased the activity of granule-bound starch branching enzyme (GBSBE) at day 8, 32, and 40 after flower. The elevated CO(2) concentration increased the peak values of enzyme activity, and the timing of the activity peaks for SSS and GBSBE were earlier in Songjing 9 than in Daohuaxiang 2. There were obvious differences in developmental stages between the two varieties of rice, which indicated that the elevated CO(2) concentration increased enzyme activity expression and starch synthesis, affecting the

  9. Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration

    NASA Astrophysics Data System (ADS)

    Xie, Li-Yong; Lin, Er-Da; Zhao, Hong-Liang; Feng, Yong-Xiang

    2016-05-01

    The global atmospheric CO2 concentration is currently (2012) 393.1 μmol mol-1, an increase of approximately 42 % over pre-industrial levels. In order to understand the responses of metabolic enzymes to elevated CO2 concentrations, an experiment was conducted using the Free Air CO2 Enrichment (FACE )system. Two conventional japonica rice varieties ( Oryza sativa L. ssp. japonica) grown in North China, Songjing 9 and Daohuaxiang 2, were used in this study. The activities of ADPG pyrophosphorylase, soluble and granule-bound starch synthases, and soluble and granule-bound starch branching enzymes were measured in rice grains, and the effects of elevated CO2 on the amylose and protein contents of the grains were analyzed. The results showed that elevated CO2 levels significantly increased the activity of ADPG pyrophosphorylase at day 8, 24, and 40 after flower, with maximum increases of 56.67 % for Songjing 9 and 21.31 % for Daohuaxiang 2. Similarly, the activities of starch synthesis enzymes increased significantly from the day 24 after flower to the day 40 after flower, with maximum increases of 36.81 % for Songjing 9 and 66.67 % for Daohuaxiang 2 in soluble starch synthase (SSS), and 25.00 % for Songjing 9 and 36.44 % for Daohuaxiang 2 in granule-bound starch synthase (GBSS), respectively. The elevated CO2 concentration significantly increased the activity of soluble starch branching enzyme (SSBE) at day 16, 32, and 40 after flower, and also significantly increased the activity of granule-bound starch branching enzyme (GBSBE) at day 8, 32, and 40 after flower. The elevated CO2 concentration increased the peak values of enzyme activity, and the timing of the activity peaks for SSS and GBSBE were earlier in Songjing 9 than in Daohuaxiang 2. There were obvious differences in developmental stages between the two varieties of rice, which indicated that the elevated CO2 concentration increased enzyme activity expression and starch synthesis, affecting the final contents

  10. Estimation of regional CO2 fluxes in northern Wisconsin using the ring of towers concentration measurements

    NASA Astrophysics Data System (ADS)

    Uliasz, M.; Denning, A. S.; Corbin, K.; Miles, N.; Richardson, S.; Davis, K.

    2006-12-01

    The WLEF TV tower in northern Wisconsin is instrumented to take continuous measurements of CO2 mixing ratio at 6 levels from 11 to 396m. During the spring and summer of 2004 additional CO2 measurements were deployed on five 76 m communication towers forming a ring around the WLEF tower with a 100-150 km radius. The data from the ring of towers are being used to estimate regional fluxes of CO2. The modeling framework developed for this purpose is based on SiB-RAMS: Regional Atmospheric Modeling System linked to Simple Biosphere model. The RAMS domain extends over the entire continental US with nested grids centered in northern Wisconsin. The CO2 lateral boundary conditions are provided by a global transport model PCTM (Parameterized Chemistry and Transport Model). This model system is capable to realistically reproduce diurnal cycle of CO2 fluxes as well as their spatial patterns in regional scale related to different vegetation types. However, there is still significant uncertainty in simulating atmospheric transport of CO2 due to synoptic and mesoscale circulations. We are attempting to assimilate available CO2 tower data into our modeling system in order to provide corrections for the fluxes simulated by the SiB-RAMS. These corrections applied separately to respiration and assimilation fluxes have spatial patterns but are assumed constant in time during a period of 10 days. Another correction is estimated for the CO2 inflow concentration entering the regional domain. The CO2 data assimilation is based the Lagrangian Particle Dispersion (LPD) model and the Bayessian inversion technique. The LPD model is driven by meteorological fields from the SiB-RAMS and is used for a regional domain in its adjoint mode to trace particles backward in time to derive influence functions for each concentration sample. The influence functions provide information on potential contributions both from surface sources and inflow fluxes that make their way through the modeling domain

  11. Coupling Between the Changes in CO2 Concentration and Sediment Biogeochemistry in the Salinas De San Pedro Mudflat, California, USA

    NASA Astrophysics Data System (ADS)

    Rezaie Boroon, M.; Diaz, S.; Torres, V.; Lazzaretto, T.; Dehyn, D.

    2013-12-01

    We investigated the effects of elevated carbon dioxide [CO2] on biogeochemistry of marsh sediment including speciation of selected heavy metals in Salinas de San Pedro mudflat in California. The Salinas de San Pedro mudflat has higher carbon (C) content than the vast majority of fully-vegetated salt marshes even with the higher tidal action in the mudflat. Sources for CO2 were identified as atmospheric CO2 as well as due to local fault degassing process. We measured carbon dioxide [CO2], methane [CH4], total organic carbon, dissolved oxygen, salinity, and heavy metal concentration in various salt marsh locations. Overall, our results showed that CO2 concentration ranging from 418.7 to 436.9 [ppm], which are slightly different in various chambers but are in good agreement with some heavy metal concentrations values in mudflat at or around the same location. The selected metal concentration values (ppm) ranging from 0.003 - 0.011(As); 0.001-0.005 (Cd); 0.04-0.02 (Cr); 0.13-0.38 (Cu); 0.11-0.38 (Pb); 0.0009-0.020 (Se); and 0.188-0.321 (Zn). The low dissolved O2 [ppm] in the pore water sediment indicates suboxic environment. Additionally, CO2 [ppm] and loss on ignition (LOI) [%] correlated inversely; the higher CO2 content, the lower was the LOI; that is to say the excess CO2 may caused higher rates of decomposition and therefore it leads to lower soil organic matter (LOI) [%] on the mudflat surface. It appears that the elevated CO2 makes changes in salt marsh pore water chemistry for instance the free ionic metal (Cu2+, Pb2+, etc.) speciation is one of the most reactive form because simply assimilated by the non-decayed or alive organisms in sediment of salt marsh and/or in water. This means that CO2 not only is a sign of improvement in plant productivity, but also activates microbial decomposition through increases in dissolved organic carbon availability. CO2 also increases acidification processes such as anaerobic degradation of microorganism and oxidation of

  12. Effect of urban parks on CO2 concentrations in Toluca, Mexico

    NASA Astrophysics Data System (ADS)

    Vieyra Gómez, J. A.; González Sosa, E.; Mastachi-Loza, C. A.; Cervantes, M.; Martínez Valdéz, H.

    2013-05-01

    Despite green areas are used for amusement, they have several benefits such as: microclimate regulation, groundwater recharge, noise abatement, oxygen production and CO2 capture. The last one has a notable importance, as CO2 is considered to be one of the most pollutant gases of the greenhouse effect. The city of Toluca, has a considerable urban growth. However, there are few studies aimed to assess the importance of the green areas in urban locations. About this, it is estimated than only 4m2/hab of vegetal coverage is found in big cities, which means a 50% deficit according to the international standards.The aim of this study was to assess the urban parks impact in Toluca, as regulators of CO2 means through measurements in autumn-winter seasonal period, 2012-2013.It was performed 20 measurements in 4 local parks (Urawa, Alameda, Municipal and Metropolitano), in order to evaluate the possible effect of urban parks on CO2 concentrations. Transects were made inside and outside the parks and the CO2 concentrations were registered by a portable quantifier (GMP343).The data analysis allowed the separation of the parks based on CO2 concentrations; however, it was perceived a decreasing of CO2 inside the parks (370ppm), between 10 and 40 ppm less than those areas with traffic and pedestrians (399 ppm).

  13. Variability of CO2 concentrations and fluxes in and above an urban street canyon

    NASA Astrophysics Data System (ADS)

    Lietzke, Björn; Vogt, Roland

    2013-08-01

    The variability of CO2 concentrations and fluxes in dense urban environments is high due to the inherent heterogeneity of these complex areas and their spatio-temporally variable anthropogenic sources. With a focus on micro- to local-scale CO2-exchange processes, measurements were conducted in a street canyon in the city of Basel, Switzerland in 2010. CO2 fluxes were sampled at the top of the canyon (19 m) and at 39 m while vertical CO2 concentration profiles were measured in the center and at a wall of the canyon. CO2 concentration distributions in the street canyon and exchange processes with the layers above show, apart from expected general diurnal patterns due mixing layer heights, a strong dependence on wind direction relative to the canyon. As a consequence of the resulting corkscrew-like canyon vortex, accumulation of CO2 inside the canyon is modulated with distinct distribution patterns. The evaluation of diurnal traffic data provides good explanations for the vertical and horizontal differences in CO2-distribution inside the canyon. Diurnal flux characteristics at the top of the canyon can almost solely be explained with traffic density expressed by the strong linear dependence. Even the diurnal course of the flux at 39 m shows a remarkable relationship to traffic density for east wind conditions while, for west wind situations, a change toward source areas with lower emissions leads to a reduced flux.

  14. Different behavior of an Earth system model toward four CO2 concentration scenarios

    NASA Astrophysics Data System (ADS)

    Hajima, T.; Ise, T.; Tachiiri, K.; Kato, E.; Watanabe, S.; Kawamiya, M.

    2012-12-01

    Earth system models (ESMs) have been developed to understand the mechanisms of long-term climate change with carbon cycle feedbacks. In this study, past simulations (1850-2005) and projection experiments (2006 to 2100) were conducted using an ESM named "MIROC-ESM", forced by four representative concentration pathway (RCP) scenarios that describe how anthropogenic forcing such as greenhouse gases (GHGs), aerosols, and land-use will develop in the future. The main purpose of this study is to explore the mechanisms of the Earth system differently responding to the scenarios. We found that climate response to the increase of atmospheric carbon showed large variation among scenarios, strongly affected by ocean heat uptake efficiency as well as anthropogenic forcing. Large variation among scenarios was also found in carbon cycle sensitivity measured by cumulative airborne fraction. The variation of carbon cycle sensitivity can be explained by Land-use change scenarios, and may be attributable to the dependence of concentration-carbon feedback on the rate of atmospheric CO2 increase. The earth system would show a similar response to emitted carbon during the 21st century if the difference of ocean heat uptake efficiency and variation of radiative forcing from non-CO2 anthropogenic agents among scenarios were small.

  15. Elevated atmospheric [CO2 ] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves.

    PubMed

    Fitzgerald, Glenn J; Tausz, Michael; O'Leary, Garry; Mollah, Mahabubur R; Tausz-Posch, Sabine; Seneweera, Saman; Mock, Ivan; Löw, Markus; Partington, Debra L; McNeil, David; Norton, Robert M

    2016-06-01

    Wheat production will be impacted by increasing concentration of atmospheric CO2 [CO2 ], which is expected to rise from about 400 μmol mol(-1) in 2015 to 550 μmol mol(-1) by 2050. Changes to plant physiology and crop responses from elevated [CO2 ] (e[CO2 ]) are well documented for some environments, but field-level responses in dryland Mediterranean environments with terminal drought and heat waves are scarce. The Australian Grains Free Air CO2 Enrichment facility was established to compare wheat (Triticum aestivum) growth and yield under ambient (~370 μmol(-1) in 2007) and e[CO2 ] (550 μmol(-1) ) in semi-arid environments. Experiments were undertaken at two dryland sites (Horsham and Walpeup) across three years with two cultivars, two sowing times and two irrigation treatments. Mean yield stimulation due to e[CO2 ] was 24% at Horsham and 53% at Walpeup, with some treatment responses greater than 70%, depending on environment. Under supplemental irrigation, e[CO2 ] stimulated yields at Horsham by 37% compared to 13% under rainfed conditions, showing that water limited growth and yield response to e[CO2 ]. Heat wave effects were ameliorated under e[CO2 ] as shown by reductions of 31% and 54% in screenings and 10% and 12% larger kernels (Horsham and Walpeup). Greatest yield stimulations occurred in the e[CO2 ] late sowing and heat stressed treatments, when supplied with more water. There were no clear differences in cultivar response due to e[CO2 ]. Multiple regression showed that yield response to e[CO2 ] depended on temperatures and water availability before and after anthesis. Thus, timing of temperature and water and the crop's ability to translocate carbohydrates to the grain postanthesis were all important in determining the e[CO2 ] response. The large responses to e[CO2 ] under dryland conditions have not been previously reported and underscore the need for field level research to provide mechanistic understanding for adapting crops to a changing

  16. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere.

    PubMed

    Sayer, Emma J; Powers, Jennifer S; Tanner, Edmund V J

    2007-12-12

    Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO(2)) concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO(2) production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this 'extra' CO(2) was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests.

  17. The Influence of Atmospheric CO2 Concentration and Climate Variability on Amazon Tropical Forest

    NASA Astrophysics Data System (ADS)

    Castanho, A. D. D. A.; Galbraith, D.; Zhang, K.; Coe, M. T.; Costa, M. H.; Moorcroft, P. R.

    2014-12-01

    Tropical forests are important regulators of atmospheric CO2 concentration and any change in tropical forest C balance will directly affect global climate. Long term studies from undisturbed old-growth forest monitoring sites distributed across Amazonia have presented an overall increase in aboveground biomass in the last decades, and the increase in atmospheric CO2 concentrations is considered the main driver for this observed carbon sink. The main goal of this work was to use simulations from dynamic global vegetation models (DGVM) to explore how much of the observed historical (1970-2008) increase in biomass in undisturbed tropical forest in Amazonia could be attributed to the CO2 fertilization effect or associated to climate change. We compared simulated biomass and productivity from three DGVMs (IBIS, ED2 and JULES) with observations from forest plots (RAINFOR). The analyses helped clarify the variability of historical and potential future simulations.The analyses showed that models shared similar results and deficiencies. The three models represented the two major model types: conventional dynamic global vegetation models that simulate community dynamics and competition between plant functional types (PFTs) using an aggregated 'big-leaf' representation (IBIS and Jules), and a size-and-age structured terrestrial ecosystem model that captures individual scale dynamics and competition (ED2). In general, the ED2 model results were more sensitive to climate, but all models greatly underestimate the impact of extreme climatic events (e.g. drought) compared to field data.All the DGVM's studied tend to simulate the average biomass well and to overestimate productivity of vegetation under current conditions. All the models presented very low spatial variability compared to field observation. The lack of spatial variability of biomass and productivity is attributed to the lack of nutrient and residence time spatial heterogeneity. All of the DGVMs results suggest that

  18. Monitoring CO2 and CH4 concentrations along an urban-rural transect in London, UK

    NASA Astrophysics Data System (ADS)

    Boon, Alex; Broquet, Gregoire; Clifford, Debbie; Chevallier, Frederic; Butterfield, David

    2013-04-01

    Cities are important sources of carbon dioxide (CO2) and methane (CH4). Anthropogenic CO2 is released in the combustion of fossil fuels for heating, electricity and transport. The major sources of CH4 in city environments are natural gas leakage, landfill sites and transport emissions. Monitoring of urban greenhouse gas concentrations is crucial for cities aiming to reduce emissions through measures such as changes to the transport infrastructure and green planning. We present measurements of CO2 and CH4 concentrations using Cavity Ring-Down Spectroscopy (CRDS) at four sites located in and around London, UK. Two sites were located in the inner city, one in the suburban fringe and the fourth in a rural location close to the city. This study was funded by Astrium Services Ltd as part of a pilot scheme to monitor city-scale GHG emissions and presented a unique opportunity to study changes in greenhouse gas concentrations across an urban to rural 'transect'. The CHIMERE chemistry-transport model is used to estimate CO2 and CH4 concentrations throughout the four month measurement period during the summer of 2012. Comparisons are made between the measured and modelled CO2 and CH4 concentrations and the representativity of the study sites for future urban greenhouse gas monitoring is considered. This study also examines the ability of a variety of measurement and modelling techniques to partition anthropogenic and biogenic CO2 sources.

  19. Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?

    PubMed Central

    Šigut, Ladislav; Holišová, Petra; Klem, Karel; Šprtová, Mirka; Calfapietra, Carlo; Marek, Michal V.; Špunda, Vladimír; Urban, Otmar

    2015-01-01

    Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants

  20. Change is in the air: impacts of the historical and predicted increase in atmospheric CO2 on pasture and prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration of carbon dioxide (CO2) gas in the atmosphere has increased by almost 40% since the beginning of the Industrial Revolution and is predicted to reach double the pre-Industrial concentration within 50 years. By stimulating leaf photosynthesis and reducing stomatal conductance to wat...

  1. Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT

    USGS Publications Warehouse

    Wu, Y.; Liu, S.; Abdul-Aziz, O. I.

    2012-01-01

    Increased atmospheric CO2 concentration and climate change may significantly impact the hydrological and meteorological processes of a watershed system. Quantifying and understanding hydrological responses to elevated ambient CO2 and climate change is, therefore, critical for formulating adaptive strategies for an appropriate management of water resources. In this study, the Soil and Water Assessment Tool (SWAT) model was applied to assess the effects of increased CO2 concentration and climate change in the Upper Mississippi River Basin (UMRB). The standard SWAT model was modified to represent more mechanistic vegetation type specific responses of stomatal conductance reduction and leaf area increase to elevated CO2 based on physiological studies. For estimating the historical impacts of increased CO2 in the recent past decades, the incremental (i.e., dynamic) rises of CO2 concentration at a monthly time-scale were also introduced into the model. Our study results indicated that about 1–4% of the streamflow in the UMRB during 1986 through 2008 could be attributed to the elevated CO2 concentration. In addition to evaluating a range of future climate sensitivity scenarios, the climate projections by four General Circulation Models (GCMs) under different greenhouse gas emission scenarios were used to predict the hydrological effects in the late twenty-first century (2071–2100). Our simulations demonstrated that the water yield would increase in spring and substantially decrease in summer, while soil moisture would rise in spring and decline in summer. Such an uneven distribution of water with higher variability compared to the baseline level (1961–1990) may cause an increased risk of both flooding and drought events in the basin.

  2. Effects of Pre-industrial and Future Atmospheric CO2 concentration on Net Ecosystem Exchange on Arid and Semi-Arid Ecosystems

    NASA Astrophysics Data System (ADS)

    Kalhori, A. A. M.; Deutschman, D.; Cheng, Y.; Oechel, W. C.

    2014-12-01

    Ecosystem carbon dioxide flux was studied between 1997 and 2000 under six different CO2 concentrations (250 ppm, 350 ppm, 450 ppm, 550 ppm, 650 ppm, and 750 ppm) using CO2 LT (CO2 controlled, naturally Lit, Temperature controlled) null balance chambers in Southern California chaparral dominated by Adenostoma fasciculatum. The purpose of this study is to evaluate possible effects of altered levels of atmospheric CO2 concentrations on carbon fluxes in a natural chaparral ecosystem. Here we present that the increase of CO2 from near pre-industrial levels of around 250 ppm to recent past CO2 levels of 350 ppm are sufficient to increase NEE. These data indicate that chaparral ecosystems will increase carbon sequestration under elevated CO2 levels and that under elevated atmospheric CO2 there will be greater sink or reduced source of ecosystem CO2 to the atmosphere as a result of improved moisture status. The effect of elevated CO2 on increasing NEE was greatest during the warm and dry season versus the cold and wet season. Further, it appears that increasing atmospheric CO2 will have greater relative effects in areas of increasing water stress as CO2 treatment effects on NEE were greater in modestly dry years and with longer periods of drought. The daily maximum NEE difference between the lowest (250 ppm) and the highest (750 ppm) CO2 concentrations treatments for January was -0.127gC m-2 h-1, but for June was -0.267 gC m-2 h-1 in this study, which was a 210 percent increase. The differences between the lower treatments and higher treatments were greater in the later years indicating there was an accumulative effect. Cumulative of net ecosystem exchange (gC m-2) between 1/1/1997 and 1/1/2001 under six different CO2 concentration is presented in the figure attached.

  3. The ever-increasing CO2 seasonal cycle amplitude: contributions from high latitude warming, CO2 fertilization, and the agricultural Green Revolution

    NASA Astrophysics Data System (ADS)

    Zeng, N.; Martin, C.; Zhao, F.; Collatz, G. J.; Kalnay, E.; Salawitch, R. J.; West, T. O.; Guanter, L.

    2014-12-01

    Human activities has tranformed the Earth's surface in complex ways. Here we show that not only land cover change, but also the management intensity, namely the intensification of agriculture through the Green Revolution has had a profound impact on the carbon cycle. A long-standing puzzle in the global carbon cycle is the increase in the amplitude of the seasonal cycle of atmospheric CO2. This increase likely reflects enhanced biological activity in the Northern Hemisphere (NH). It has been hypothesized that vegetation growth may have been stimulated by higher concentrations of CO2 as well as warming in recent decades, but the role of such specific mechanisms has not been quantified and they have been unable to explain the full range and magnitude of observations. Here we suggest another potential driver of the increased seasonal amplitude: the intensification of agriculture from the Green Revolution to feed a rising population, that led to a 3-fold increase in world crop production over the last 5 decades. Our analysis of CO2 data and atmospheric inversions shows a robust 15% long-term increase in CO2 seasonal amplitude from 1961 to 2010 that is punctuated by large decadal and interannual variations. The three pillars of the Green Revolution, consisting of high yield cultivars, fertilizer use, and irrigation, are represented in a terrestrial carbon cycle model. The results reveal that the long-term increase in CO2 seasonal amplitude arises from two major regions in the NH: the mid-latitude cropland between 25N-60N that encompasses the world's major agriculture zones in Asia, Europe and North America, and the high-latitude natural vegetation between 50N-70N that includes much of the Northern boreal forests, tundra and some deciduous forests. The long-term trend of seasonal amplitude is 0.3% per year, of which sensitivity experiments attribute 43% to land use change, 31% to climate variability and change, and 26% to CO2 fertilization. Our results suggest that human

  4. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.

    PubMed

    Sudo, Emi; Suzuki, Yuji; Makino, Amane

    2014-11-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) strongly limits photosynthesis at lower CO2 concentration [CO2] whereas [corrected] Rubisco limitation is cancelled by elevated [CO2]. Therefore, increase or reduction in Rubisco content by transformation with a sense or an antisense RBCS construct are expected to alter the biomass production under different CO2 levels. RBCS-sense (125% Rubisco of wild-type) and -antisense (35% Rubisco of wild-type) rice (Oryza sativa L.) plants were grown for 63 days at three different CO2 levels: low [CO2] (28 Pa), normal [CO2] (40 Pa) and elevated [CO2] (120 Pa). The biomass of RBCS-sense plants was 32% and 15% greater at low [CO2] and normal [CO2] than that of the wild-type plants, respectively, but did not differ at elevated [CO2]. Conversely, the biomass of RBCS-antisense plants was the smallest at low [CO2]. Thus, overproduction of Rubisco was effective for biomass production at low [CO2]. Greater biomass production at low [CO2] in RBCS-sense plants was caused by an increase in the net assimilation rate, and associated with an increase in the amount of N uptake. Furthermore, Rubisco overproduction in RBCS-sense plants was also promoted at low [CO2]. Although it seems that low [CO2]-growth additionally stimulates the effect of RBCS overexpression, such a phenomenon observed at low [CO2] was mediated through an increase in total leaf N content. Thus, the dependence of the growth improvement in RBCS-sense rice on growth [CO2] was closely related to the degree of Rubisco overproduction which was accompanied not only by leaf N content but also by whole plant N content.

  5. Response of ocean acidification to a gradual increase and decrease of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Cao, Long; Zhang, Han; Zheng, Meidi; Wang, Shuangjing

    2014-01-01

    We perform coupled climate-carbon cycle model simulations to examine changes in ocean acidity in response to idealized change of atmospheric CO2. Atmospheric CO2 increases at a rate of 1% per year to four times its pre-industrial level of 280 ppm and then decreases at the same rate to the pre-industrial level. Our simulations show that changes in surface ocean chemistry largely follow changes in atmospheric CO2. However, changes in deep ocean chemistry in general lag behind the change in atmospheric CO2 because of the long time scale associated with the penetration of excess CO2 into the deep ocean. In our simulations with the effect of climate change, when atmospheric CO2 reaches four times its pre-industrial level, global mean aragonite saturation horizon (ASH) shoals from the pre-industrial value of 1288 to 143 m. When atmospheric CO2 returns from the peak value of 1120 ppm to pre-industrial level, ASH is 630 m, which is approximately the value of ASH when atmospheric CO2 first increases to 719 ppm. At pre-industrial CO2 9% deep-sea cold-water corals are surrounded by seawater that is undersaturated with aragonite. When atmospheric CO2 reaches 1120 ppm, 73% cold-water coral locations are surrounded by seawater with aragonite undersaturation, and when atmospheric CO2 returns to the pre-industrial level, 18% cold-water coral locations are surrounded by seawater with aragonite undersaturation. Our analysis indicates the difficulty for some marine ecosystems to recover to their natural chemical habitats even if atmospheric CO2 content can be lowered in the future.

  6. Simultaneous measurement of CO2 concentration and isotopic ratios in gas samples using IRMS

    NASA Astrophysics Data System (ADS)

    Yu, Eun-Ji; Lee, Dongho; Bong, Yeon-Sik; Lee, Kwang-Sik

    2014-05-01

    Isotopic methods are indispensable tools for studies on atmosphere-biosphere exchanges of CO2 and environmental monitoring such as CO2 leakage detection from subsurface carbon storages. CO2 concentration is an important variable in interpreting isotopic composition of CO2 especially in atmospheric applications (e.g., 'Keeling plot'). Optical methods such as CRDS (Cavity Ring Down Spectroscopy) are gaining attention recently because of its capability to simultaneously measure CO2 concentration and isotopic ratios with a short measurement interval (up to 1 sec.). On the other hand, IRMS (Isotope Ratio Mass Spectrometer) has been used only for isotopic measurements. In this study, we propose a method to measure CO2 concentration from gas samples along with isotopic ratios using conventional IRMS system. The system consists of Delta V Plus IRMS interfaced with GasBench II (Thermo Scientific, Germany). 12-mL vials with open top screw cap and rubber septum were used for both gas sampling and analysis. For isotopic analysis, gases in the vials were transferred into GasBench II by He carrier flow and CO2 was trapped by a single cryotrap (-180 ºC) after passing a water trap (Mg(ClO4)2). Upon release of the cryotrap, liberated CO2 was separated from N2O using gas chromatography column inside the GasBench II and introduced online into the IRMS. Isotopic ratios were measured for the masses of 44, 45 and 46, and the peak intensity (mV of mass 44 and peak area) was recorded for the concentration calculation. For the determination of CO2 concentration, a calibration curve relating the peak intensity with molar concentration of CO2 was constructed. By dissolving NaHCO3 in de-ionized water, solutions containing 0.05, 0.1, 0.25 and 0.5 µmol of inorganic carbon were prepared in 12 mL vials. Phosphoric acid was injected through rubber septum of the vials to acidify the solution and released CO2 was analyzed for the isotopic ratios and the corresponding peak intensity was recorded

  7. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    PubMed Central

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  8. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    NASA Astrophysics Data System (ADS)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago.

  9. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.; Canadell, J. G.; Le Quéré, C.

    2008-11-01

    We quantify the relative roles of natural and anthropogenic influences on the growth rate of atmospheric CO2 and the CO2 airborne fraction, considering both interdecadal trends and interannual variability. A combined ENSO-Volcanic Index (EVI) relates most (~75%) of the interannual variability in CO2 growth rate to the El-Niño-Southern-Oscillation (ENSO) climate mode and volcanic activity. Analysis of several CO2 data sets with removal of the EVI-correlated component confirms a previous finding of a detectable increasing trend in CO2 airborne fraction (defined using total anthropogenic emissions including fossil fuels and land use change) over the period 1959 2006, at a proportional growth rate 0.24% y-1 with probability ~0.9 of a positive trend. This implies that the atmospheric CO2 growth rate increased slightly faster than total anthropogenic CO2 emissions. To assess the combined roles of the biophysical and anthropogenic drivers of atmospheric CO2 growth, the increase in the CO2 growth rate (1.9% y-1 over 1959 2006) is expressed as the sum of the growth rates of four global driving factors: population (contributing +1.7% y-1); per capita income (+1.8% y-1); the total carbon intensity of the global economy (-1.7% y-1); and airborne fraction (averaging +0.2% y-1 with strong interannual variability). The first three of these factors, the anthropogenic drivers, have therefore dominated the last, biophysical driver as contributors to accelerating CO2 growth. Together, the recent (post-2000) increase in growth of per capita income and decline in the negative growth (improvement) in the carbon intensity of the economy will drive a significant further acceleration in the CO2 growth rate over coming decades, unless these recent trends reverse.

  10. The impact of elevated CO2 concentrations on soil microbial community, soil organic matter storage and nutrient cycling at a natural CO2 vent in NW Bohemia

    NASA Astrophysics Data System (ADS)

    Nowak, Martin; Beulig, Felix; von Fischer, Joe; Muhr, Jan; Kuesel, Kirsten; Trumbore, Susan

    2014-05-01

    Natural CO2 vents or 'mofettes' are diffusive or advective exhalations of geogenic CO2 from soils. These structures occur at several places worldwide and in most cases they are linked to volcanic activity. Characteristic for mofette soils are high CO2 concentrations of up to more than 90% as well as a lack of oxygen, low pH values and reducing conditions. Mofette soils usually are considered to be sites of carbon accumulation, which is not only due to the absence of oxygen, but might also result from lower plant litter quality due to CO2 fertilization of CO2 influenced plants and reduced availability of N and P for the decomposer community. Furthermore, fermentation processes and the formation of reduced elements by anoxic decomposition might fuel chemo-lithoautotrophic or mixotrophic microbial CO2 uptake, a process which might have important ecological functions by closing internal element cycles, formation of trace gasses as well as by re-cycling and storing of carbon. Several studies of microbial community structure revealed a shift towards CO2 utilizing prokaryotes in moffete soils compared to a reference site. Here, we use combined stable and radiocarbon isotope data from mofette soils in NW Bohemia to quantify the contribution of geogenic CO2 to soil organic carbon formation within mofette soils, either resulting from plant litter or from microbial CO2 uptake. This is possible because the geogenic CO2 has a distinct isotopic signature (δ13C = -2 o Δ14C = -1000 ) that is very different from the isotopic signature of atmospheric CO2. First results show that mofette soils have a high Corg content (20 to 40 %) compared to a reference site (2 to 20 %) and soil organic matter is enriched in 13C as well as depleted in 14C. This indicates that geogenic CO2 is re-fixed and stored as SOM. In order to quantify microbial contribution to CO2 fixation and SOM storage, microbial CO2 uptake rates were determined by incubating mofette soils with 13CO2 labelled gas. The

  11. CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Heymann, J.; Reuter, M.; Buchwitz, M.; Schneising, O.; Bovensmann, H.; Burrows, J. P.; Massart, S.; Kaiser, J. W.; Crisp, D.

    2017-02-01

    Indonesia experienced an exceptional number of fires in 2015 as a result of droughts related to the recent El Niño event and human activities. These fires released large amounts of carbon dioxide (CO2) into the atmosphere. Emission databases such as the Global Fire Assimilation System version 1.2 and the Global Fire Emission Database version 4s estimated the CO2 emission to be approximately 1100 MtCO2 in the time period from July to November 2015. This emission was indirectly estimated by using parameters like burned area, fire radiative power, and emission factors. In the study presented in this paper, we estimate the Indonesian fire CO2 emission by using the column-averaged dry air mole fraction of CO2, XCO2, derived from measurements of the Orbiting Carbon Observatory-2 satellite mission. The estimated CO2 emission is 748 ± 209 MtCO2, which is about 30% lower than provided by the emission databases.

  12. Increased wintertime CO2 loss as a result of sustained tundra warming

    NASA Astrophysics Data System (ADS)

    Webb, Elizabeth E.; Schuur, Edward A. G.; Natali, Susan M.; Oken, Kiva L.; Bracho, Rosvel; Krapek, John P.; Risk, David; Nickerson, Nick R.

    2016-02-01

    Permafrost soils currently store approximately 1672 Pg of carbon (C), but as high latitudes warm, this temperature-protected C reservoir will become vulnerable to higher rates of decomposition. In recent decades, air temperatures in the high latitudes have warmed more than any other region globally, particularly during the winter. Over the coming century, the arctic winter is also expected to experience the most warming of any region or season, yet it is notably understudied. Here we present nonsummer season (NSS) CO2 flux data from the Carbon in Permafrost Experimental Heating Research project, an ecosystem warming experiment of moist acidic tussock tundra in interior Alaska. Our goals were to quantify the relationship between environmental variables and winter CO2 production, account for subnivean photosynthesis and late fall plant C uptake in our estimate of NSS CO2 exchange, constrain NSS CO2 loss estimates using multiple methods of measuring winter CO2 flux, and quantify the effect of winter soil warming on total NSS CO2 balance. We measured CO2 flux using four methods: two chamber techniques (the snow pit method and one where a chamber is left under the snow for the entire season), eddy covariance, and soda lime adsorption, and found that NSS CO2 loss varied up to fourfold, depending on the method used. CO2 production was dependent on soil temperature and day of season but atmospheric pressure and air temperature were also important in explaining CO2 diffusion out of the soil. Warming stimulated both ecosystem respiration and productivity during the NSS and increased overall CO2 loss during this period by 14% (this effect varied by year, ranging from 7 to 24%). When combined with the summertime CO2 fluxes from the same site, our results suggest that this subarctic tundra ecosystem is shifting away from its historical function as a C sink to a C source.

  13. Classroom conditions and CO2 concentrations and teacher health symptom reporting in 10 New York State Schools.

    PubMed

    Muscatiello, N; McCarthy, A; Kielb, C; Hsu, W-H; Hwang, S-A; Lin, S

    2015-04-01

    This study assessed the relationship between teacher-reported symptoms and classroom carbon dioxide (CO2 ) concentrations. Previous studies have suggested that poor indoor ventilation can result in higher levels of indoor pollutants, which may affect student and teacher health. Ten schools (9 elementary, 1 combined middle/high school) in eight New York State school districts were visited over a 4-month period in 2010. Carbon dioxide concentrations were measured in classrooms over 48-h, and teachers completed surveys assessing demographic information and self-reported symptoms experienced during the current school year. Data from 64 classrooms (ranging from 1 to 9 per school) were linked with 68 teacher surveys (for four classrooms, two surveys were returned). Overall, approximately 20% of the measured classroom CO2 concentrations were above 1000 parts per million (ppm), ranging from 352 to 1591 ppm. In multivariate analyses, the odds of reporting neuro-physiologic (i.e., headache, fatigue, difficulty concentrating) symptoms among teachers significantly increased (OR = 1.30, 95% CI = 1.02-1.64) for every 100 ppm increase in maximum classroom CO2 concentrations and were non-significantly increased in classrooms with above-median proportions of CO2 concentrations greater than 1000 ppm (OR = 2.26, 95% CI = 0.72-7.12).

  14. Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests

    NASA Astrophysics Data System (ADS)

    Yang, Yuting; Donohue, Randall J.; McVicar, Tim R.; Roderick, Michael L.; Beck, Hylke E.

    2016-08-01

    Understanding how tropical rainforests respond to elevated atmospheric CO2 concentration (eCO2) is essential for predicting Earth's carbon, water, and energy budgets under future climate change. Here we use long-term (1982-2010) precipitation (P) and runoff (Q) measurements to infer runoff coefficient (Q/P) and evapotranspiration (E) trends across 18 unimpaired tropical rainforest catchments. We complement that analysis by using satellite observations coupled with ecosystem process modeling (using both "top-down" and "bottom-up" perspectives) to examine trends in carbon uptake and relate that to the observed changes in Q/P and E. Our results show there have been only minor changes in the satellite-observed canopy leaf area over 1982-2010, suggesting that eCO2 has not increased vegetation leaf area in tropical rainforests and therefore any plant response to eCO2 occurs at the leaf level. Meanwhile, observed Q/P and E also remained relatively constant in the 18 catchments, implying an unchanged hydrological partitioning and thus approximately conserved transpiration under eCO2. For the same period, using a top-down model based on gas exchange theory, we predict increases in plant assimilation (A) and light use efficiency (ɛ) at the leaf level under eCO2, the magnitude of which is essentially that of eCO2 (i.e., 12% over 1982-2010). Simulations from 10 state-of-the-art bottom-up ecosystem models over the same catchments also show that the direct effect of eCO2 is to mostly increase A and ɛ with little impact on E. Our findings add to the current limited pool of knowledge regarding the long-term eCO2 impacts in tropical rainforests.

  15. On the temporal increase of anthropogenic CO 2 in the subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Friis, K.; Körtzinger, A.; Pätsch, J.; Wallace, D. W. R.

    2005-05-01

    The subpolar North Atlantic (NA) plays a key role in the oceanic uptake of anthropogenic CO 2. The availability of a historical high quality data set from the Transient Tracers in the Ocean North Atlantic Study (TTO-NAS) in 1981, together with data from recent studies in 1997 and 1999, makes it possible to assess the temporal increase of anthropogenic CO 2 ( CTant) in the region. We introduce an extension of a previous published empirical approach for estimating temporal increases of CTant, which is known as multiple linear regression approach (MLR). The method is based on a multiple linear-regression model employing hydrographic and chemical parameters. The accuracy of the extended MLR calculation (eMLR) proposed here is estimated to be ±3 μmol/kg for a parameterization based on potential temperature, total alkalinity, silicate, and phosphate. Calculated increases of CTant ( ΔCTant)) for the time period 1981-1997 are 1-20 μmol/kg at depths greater than 100 m. The distribution corresponds well to silicate and CFC-12 distributions. Open ocean profiles show a relative minimum between 300 and 1000 m, which is not apparent in profiles of the total CTant concentration. The ΔCTant) inventory calculation for the northern NA region (40-65°N) yields a change in anthropogenic CO 2 storage of 4.2 (±1) pg C over the 16-yr time period 1981-1997. This is equivalent to a mean annual CTant increase of 0.27 (±0.06) pg C/yr or more than 10% of the global ocean uptake for this period.

  16. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish.

    PubMed

    Lee, Changkeun; Hong, Seongjin; Kwon, Bong-Oh; Lee, Jung-Ho; Ryu, Jongseong; Park, Young-Gyu; Kang, Seong-Gil; Khim, Jong Seong

    2016-08-01

    Concern about leakage of carbon dioxide (CO2) from deep-sea storage in geological reservoirs is increasing because of its possible adverse effects on marine organisms locally or at nearby coastal areas both in sediment and water column. In the present study, we examined how elevated CO2 affects various intertidal epibenthic (benthic copepod), intertidal endobenthic (Manila clam and Venus clam), sub-tidal benthic (brittle starfish), and free-living (marine medaka) organisms in areas expected to be impacted by leakage. Acute lethal and sub-lethal effects were detected in the adult stage of all test organisms exposed to varying concentrations of CO2, due to the associated decline in pH (8.3 to 5.2) during 96-h exposure. However, intertidal organisms (such as benthic copepods and clams) showed remarkable resistance to elevated CO2, with the Venus clam being the most tolerant (LpH50 = 5.45). Sub-tidal species (such as brittle starfish [LpH50 = 6.16] and marine medaka [LpH50 = 5.91]) were more sensitive to elevated CO2 compared to intertidal species, possibly because they have fewer defensive capabilities. Of note, the exposure duration might regulate the degree of acute sub-lethal effects, as evidenced by the Venus clam, which showed a time-dependent effect to elevated CO2. Finally, copper was chosen as a model toxic element to find out the synergistic or antagonistic effects between ocean acidification and metal pollution. Combination of CO2 and Cu exposure enhances the adverse effects to organisms, generally supporting a synergistic effect scenario. Overall, the significant variation in the degree to which CO2 adversely affected organisms (viz., working range and strength) was clearly observed, supporting the general concept of species-dependent effects of elevated CO2.

  17. Altered Physiological Function, Not Structure, Drives Increased Radiation-Use Efficiency of Soybean Grown at Elevated CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies of elevated carbon dioxide concentration ([CO2]) on crop canopies have found that radiation-use efficiency is increased more than radiation-interception efficiency. It is assumed that increased radiation-use efficiency is due to changes in leaf-level physiology; however, canopy stru...

  18. Phosphate recovery through struvite precipitation by CO2 removal: effect of magnesium, phosphate and ammonium concentrations.

    PubMed

    Korchef, Atef; Saidou, Hassidou; Ben Amor, Mohamed

    2011-02-15

    In the present study, the precipitation of struvite (MgNH(4)PO(4)·6H(2)O) using the CO(2) degasification technique is investigated. The precipitation of struvite was done from supersaturated solutions in which precipitation was induced by the increase of the solution supersaturation concomitant with the removal of dissolved carbon dioxide. The effect of magnesium, phosphate and ammonium concentrations on the kinetics and the efficiency of struvite precipitation was measured monitoring the respective concentrations in solution. In all cases struvite precipitated exclusively and the solid was characterized by powder XRD and FTIR. The morphology of the precipitated crystals was examined by scanning electronic microscopy and it was found that it exhibited the typical prismatic pattern of the struvite crystals with sizes in the range between 100 and 300 μm. The increase of magnesium concentration in the supersaturated solutions, resulted for all phosphate concentration tested, in significantly higher phosphate removal efficiency. Moreover, it is interesting to note that in this case the adhesion of the suspended struvite crystals to the reactor walls was reduced suggesting changes in the particle characteristics. The increase of phosphate concentration in the supersaturated solutions, for the magnesium concentrations tested resulted to the reduction of struvite suppression which reached complete suppression of the precipitate formation. Excess of ammonium in solution was found favour struvite precipitation. Contrary to the results found with increasing the magnesium concentration in solution, higher ammonium concentrations resulted to higher adhesion of the precipitated crystallites to the reactor walls. The results of the present work showed that it is possible to recover phosphorus in the form of struvite from wastewater reducing water pollution and at the same time saving valuable resources.

  19. Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures.

    PubMed

    Liao, Pei-Qin; Chen, Xun-Wei; Liu, Si-Yang; Li, Xu-Yu; Xu, Yan-Tong; Tang, Minni; Rui, Zebao; Ji, Hongbing; Zhang, Jie-Peng; Chen, Xiao-Ming

    2016-10-19

    Tremendous efforts have been devoted to increasing the CO2 capture performance of porous materials, especially for low CO2 concentration environments. Here, we report that hydrazine can be used as a diamine short enough to functionalize the small-pore metal-organic framework [Mg2(dobdc)] (H4dobdc = 2,5-dihydroxyl-1,4-benzenedicarboxylic acid). By virtue of the ultrahigh concentration of free amine groups (6.01 mmol g(-1) or 7.08 mmol cm(-3)) capable of reversible carbamic acid formation, the new material [Mg2(dobdc)(N2H4)1.8] achieves a series of new records for CO2 capture, such as single-component isotherm uptakes of 3.89 mmol g(-1) or 4.58 mmol cm(-3) at the atmospheric CO2 concentration of 0.4 mbar at 298 K and 1.04 mmol g(-1) or 1.22 mmol cm(-3) at 328 K, as well as more than a 4.2 mmol g(-1) or 4.9 mmol cm(-3) adsorption/desorption working capacity under dynamic mixed-gas conditions with CO2 concentrations similar to those in flue gases and ambient air.

  20. Methods to reduce the CO(2) concentration of educational buildings utilizing internal ventilation by transferred air.

    PubMed

    Kalema, T; Viot, M

    2014-02-01

    The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration.

  1. The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest.

    PubMed

    Drake, Brandon L; Hanson, David T; Lowrey, Timothy K; Sharp, Zachary D

    2017-02-01

    From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO2 concentrations from 270 to 400 mol mol(-1) . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of free-air CO2 enrichment (FACE) experiments. These experiments have found (i) an increase in internal CO2 partial pressure (ci ) alongside acclimation of photosynthetic capacity, (ii) variable decreases in stomatal conductance, and (iii) that increases in yield do not increase commensurate with CO2 concentrations. Our data set, which includes a 115-year-long selection of grasses collected in New Mexico since 1892, is consistent with an increased ci as a response to historical CO2 increase in the atmosphere, with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity Index (PDSI) for New Mexico indicates a moderate correlation with Δ(13) C (r(2)  = 0.32, P < 0.01) before 1950, with no correlation (r(2)  = 0.00, P = 0.91) after 1950. These results indicate that increased ci may have conferred some drought resistance to these grasses through increased availability of CO2 in the event of reduced stomatal conductance in response to short-term water shortage. Comparison with C3 trees from arid environments (Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments (Bromus and Poa grasses in New Mexico) suggests differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO2 while wetter environments see increased ci . This study suggests that (i) the observed increases in ci in FACE experiments are consistent with historical CO2 increases and (ii) the CO2 increase influences plant sensitivity to water shortage, through either increased WUE or ci in arid and wet environments, respectively.

  2. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots.

    PubMed

    Chapman, Jack A; King, John S; Pregitzer, Kurt S; Zak, Donald R

    2005-12-01

    Rising atmospheric carbon dioxide (CO2) concentration ([CO2]) could alter terrestrial carbon (C) cycling by affecting plant growth, litter chemistry and decomposition. How the concurrent increase in tropospheric ozone (O3) concentration ([O3]) will interact with rising atmospheric [CO2] to affect C cycling is unknown. A major component of carbon cycling in forests is fine root production, mortality and decomposition. To better understand the effects of elevated [CO2] and [O3] on the dynamics of fine root C, we conducted a combined field and laboratory incubation experiment to monitor decomposition dynamics and changes in fine root litter chemistry. Free-air CO2 enrichment (FACE) technology at the FACTS-II Aspen FACE project in Rhinelander, Wisconsin, elevated [CO2] (535 microl 1-1) and [O3] (53 nl 1-1) in intact stands of pure trembling aspen (Populus tremuloides Michx.) and in mixed stands of trembling aspen plus paper birch (Betula papyrifera Marsh.) and trembling aspen plus sugar maple (Acer saccharum Marsh.). We hypothesized that the trees would react to increased C availability (elevated [CO2]) by increasing allocation to C-based secondary compounds (CBSCs), thereby decreasing rates of decomposition. Because of its lower growth potential, we reasoned this effect would be greatest in the aspen-maple community relative to the aspen and aspen-birch communities. As a result of decreased C availability, we expected elevated [O3] to counteract shifts in C allocation induced by elevated [CO2]. Concentrations of CBSCs were rarely significantly affected by the CO2 and O3 treatments in decomposing fine roots. Rates of microbial respiration and mass loss from fine roots were unaffected by the treatments, although the production of dissolved organic C differed among communities. We conclude that elevated [CO2] and [O3] induce only small changes in fine root chemistry that are insufficient to significantly influence fine root decomposition. If changes in soil C cycling

  3. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    NASA Astrophysics Data System (ADS)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual

  4. A field and laboratory method for monitoring the concentration and isotopic composition of soil CO2.

    PubMed

    Breecker, Dan; Sharp, Zachary D

    2008-01-01

    The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.

  5. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane.

    PubMed

    De Souza, Amanda Pereira; Gaspar, Marilia; Da Silva, Emerson Alves; Ulian, Eugênio César; Waclawovsky, Alessandro Jaquiel; Nishiyama, Milton Yutaka; Dos Santos, Renato Vicentini; Teixeira, Marcelo Menossi; Souza, Glaucia Mendes; Buckeridge, Marcos Silveira

    2008-08-01

    Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (approximately 370 ppm) and elevated (approximately 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.

  6. Intra-seasonal variability of atmospheric CO2 concentrations over India during summer monsoons

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, K.; Valsala, Vinu; Tiwari, Yogesh K.; Revadekar, J. V.; Pillai, Prasanth; Chakraborty, Supriyo; Murtugudde, Raghu

    2016-10-01

    In a study based on a data assimilation product of the terrestrial biospheric fluxes of CO2 over India, the subcontinent was hypothesized to be an anomalous source (sink) of CO2 during the active (break) spells of rain in the summer monsoon from June to September (Valsala et al., 2013). We test this hypothesis here by investigating intraseasonal variability in the atmospheric CO2 concentrations over India by utilizing a combination of ground-based and satellite observations and model outputs. The results show that the atmospheric CO2 concentration also varies in synchrony with the active and break spells of rainfall with amplitude of ±2 ppm which is above the instrumental uncertainty of the present day techniques of atmospheric CO2 measurements. The result is also consistent with the signs of the Net Ecosystem Exchange (NEE) flux anomalies estimated in our earlier work. The study thus offers the first observational affirmation of the above hypothesis although the data gap in the satellite measurements during monsoon season and the limited ground-based stations over India still leaves some uncertainty in the robust assertion of the hypothesis. The study highlights the need to capture these subtle variabilities and their responses to climate variability and change since it has implications for inverse estimates of terrestrial CO2 fluxes.

  7. Evaporation in relation to CO 2 concentration: Analysis of mass transfer coefficient

    NASA Astrophysics Data System (ADS)

    Ojha, C. S. P.; Yasuda, Hiroshi; Rao, Surampalli; Abd Elbasit, Mohamed A. M.; Kumar, Manoj

    2011-11-01

    In this study, the potential of mass transfer approach in estimating evaporation changes under different CO 2 levels are evaluated using data from controlled chamber experiments in which radiation and wind velocity were kept constant and temperature and relative humidity profiles were varied in different patterns along with CO 2 concentration. Currently, FAO procedure lists three approaches to compute air vapour pressure based on temperature and relative humidity profiles. In this study, the impact of using different procedures of estimating air vapour pressure is examined to assess the use of mass transfer approach for estimating evaporation. To achieve this, a part of the data is used to calibrate mass transfer coefficient which is subsequently used to project evaporation for future states. Accordingly, strategies are ranked for their potential in estimating evaporation. The effect of evaporation rate is compared at 400 ppm and 600 ppm CO 2 level. It has been observed that the evaporation rate is more pronounced at higher CO 2 level.

  8. Desorption of CO2 from low concentration monoethanolamine solutions using calcium chloride and ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kosuke; Okawa, Hirokazu; Fujiwara, Tatsuo; Kato, Takahiro; Sugawara, Katsuyasu

    2015-07-01

    We developed an effective method for desorbing CO2 from low-concentration (0.2 mol/l) monoethanolamine (MEA) solutions using calcium chloride (CaCl2) and ultrasound irradiation at 25 °C. The proportion of CO2 desorbed from the MEA solution was calculated from the amount of CaCO3 generated and the amount of CO2 emitted. The proportion of CO2 desorbed from the MEA solution was much higher when CaCl2 was added than when CaCl2 was not added. We also characterized the CaCO3 that was generated when the solution was treated with ultrasound irradiation and when the solution was stirred. The CaCO3 particles produced were more homogeneous and smaller when ultrasound irradiation was applied than when the solution was stirred.

  9. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    NASA Astrophysics Data System (ADS)

    Ogle, Stephen M.; Davis, Kenneth; Lauvaux, Thomas; Schuh, Andrew; Cooley, Dan; West, Tristram O.; Heath, Linda S.; Miles, Natasha L.; Richardson, Scott; Breidt, F. Jay; Smith, James E.; McCarty, Jessica L.; Gurney, Kevin R.; Tans, Pieter; Denning, A. Scott

    2015-03-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO2 concentrations and inverse modeling to verify nationally-reported biogenic CO2 emissions. The biogenic CO2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of -408 ± 136 Tg CO2 for the entire study region, which was not statistically different from the biogenic flux of -478 ± 146 Tg CO2 that was estimated using the atmospheric CO2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC.

  10. Nonlinear and Threshold Responses of Grassland Productivity and Species Composition to Increased CO2 Vary with Soil Type

    NASA Astrophysics Data System (ADS)

    Fay, P. A.; Jin, V.; Jackson, R. B.; Gill, R. A.; Way, D.; Polley, W.

    2011-12-01

    Climate change is likely to cause nonlinear responses in ecosystem function and threshold changes in species composition. Here we report aboveground net primary productivity (ANPP) responses to a continuous CO2 concentration gradient (250 to 500 μL L-1,) in experimental grassland communities on three soils differing in water holding capacity and other properties. Communities consisting of four C4 grasses, two C3 forbs, and one legume were established on a lowland clay (vertisol, n=32), an upland clay (mollisol, n=32), and an alluvial sand (alfisol, n=16). The communities were positioned in a stratified random design in the CO2 gradient for five growing seasons, and were irrigated to mimic the average growing season rainfall regime for the study site in Central Texas. ANPP increased with CO2 almost two-fold more on the upland clay and alluvial sand than on the lowland clay (p < 0.0001), because of strong linear responses to CO2 on these soils (R2 = 0.50 to 0.59, p < 0.002) compared to a saturating response to CO2 on the lowland clay (R2 = 0.48, p= 0.01). On the two more responsive soils, the mesic tallgrass Sorghastrum nutans replaced the more drought adapted mid-grass Bouteloua curtipendula at elevated CO2, while B. curtipendula largely replaced S. nutans at low CO2, especially on the upland clay. Evidence for a similar composition change was not found on the lowland clay. Thus, two soils displayed a threshold change in community composition that accounted for up to 57% of variation in ANPP for those soils. Variation in ANPP and species composition with CO2 were accompanied by linear increases in soil water content (SWC, 0 - 20 cm, volumetric), most strongly on the alluvial sand (R2 = 0.39, p < 0.009) and by weak decreases with CO2 in soil N. Structural equation models explained 34 to 52% of the variation in ANPP, and indicated that CO2 effects on ANPP on the upland clay were primarily explained by CO2 effects on species composition, and on the alluvial sand by CO

  11. Future Climate CO2 Levels Mitigate Stress Impact on Plants: Increased Defense or Decreased Challenge?

    PubMed

    AbdElgawad, Hamada; Zinta, Gaurav; Beemster, Gerrit T S; Janssens, Ivan A; Asard, Han

    2016-01-01

    Elevated atmospheric CO2 can stimulate plant growth by providing additional C (fertilization effect), and is observed to mitigate abiotic stress impact. Although, the mechanisms underlying the stress mitigating effect are not yet clear, increased antioxidant defenses, have been held primarily responsible (antioxidant hypothesis). A systematic literature analysis, including "all" papers [Web of Science (WoS)-cited], addressing elevated CO2 effects on abiotic stress responses and antioxidants (105 papers), confirms the frequent occurrence of the stress mitigation effect. However, it also demonstrates that, in stress conditions, elevated CO2 is reported to increase antioxidants, only in about 22% of the observations (e.g., for polyphenols, peroxidases, superoxide dismutase, monodehydroascorbate reductase). In most observations, under stress and elevated CO2 the levels of key antioxidants and antioxidant enzymes are reported to remain unchanged (50%, e.g., ascorbate peroxidase, catalase, ascorbate), or even decreased (28%, e.g., glutathione peroxidase). Moreover, increases in antioxidants are not specific for a species group, growth facility, or stress type. It seems therefore unlikely that increased antioxidant defense is the major mechanism underlying CO2-mediated stress impact mitigation. Alternative processes, probably decreasing the oxidative challenge by reducing ROS production (e.g., photorespiration), are therefore likely to play important roles in elevated CO2 (relaxation hypothesis). Such parameters are however rarely investigated in connection with abiotic stress relief. Understanding the effect of elevated CO2 on plant growth and stress responses is imperative to understand the impact of climate changes on plant productivity.

  12. Future Climate CO2 Levels Mitigate Stress Impact on Plants: Increased Defense or Decreased Challenge?

    PubMed Central

    AbdElgawad, Hamada; Zinta, Gaurav; Beemster, Gerrit T. S.; Janssens, Ivan A.; Asard, Han

    2016-01-01

    Elevated atmospheric CO2 can stimulate plant growth by providing additional C (fertilization effect), and is observed to mitigate abiotic stress impact. Although, the mechanisms underlying the stress mitigating effect are not yet clear, increased antioxidant defenses, have been held primarily responsible (antioxidant hypothesis). A systematic literature analysis, including “all” papers [Web of Science (WoS)-cited], addressing elevated CO2 effects on abiotic stress responses and antioxidants (105 papers), confirms the frequent occurrence of the stress mitigation effect. However, it also demonstrates that, in stress conditions, elevated CO2 is reported to increase antioxidants, only in about 22% of the observations (e.g., for polyphenols, peroxidases, superoxide dismutase, monodehydroascorbate reductase). In most observations, under stress and elevated CO2 the levels of key antioxidants and antioxidant enzymes are reported to remain unchanged (50%, e.g., ascorbate peroxidase, catalase, ascorbate), or even decreased (28%, e.g., glutathione peroxidase). Moreover, increases in antioxidants are not specific for a species group, growth facility, or stress type. It seems therefore unlikely that increased antioxidant defense is the major mechanism underlying CO2-mediated stress impact mitigation. Alternative processes, probably decreasing the oxidative challenge by reducing ROS production (e.g., photorespiration), are therefore likely to play important roles in elevated CO2 (relaxation hypothesis). Such parameters are however rarely investigated in connection with abiotic stress relief. Understanding the effect of elevated CO2 on plant growth and stress responses is imperative to understand the impact of climate changes on plant productivity. PMID:27200030

  13. Implications of limiting CO2 concentrations for land use and energy.

    PubMed

    Wise, Marshall; Calvin, Katherine; Thomson, Allison; Clarke, Leon; Bond-Lamberty, Benjamin; Sands, Ronald; Smith, Steven J; Janetos, Anthony; Edmonds, James

    2009-05-29

    Limiting atmospheric carbon dioxide (CO2) concentrations to low levels requires strategies to manage anthropogenic carbon emissions from terrestrial systems as well as fossil fuel and industrial sources. We explore the implications of fully integrating terrestrial systems and the energy system into a comprehensive mitigation regime that limits atmospheric CO2 concentrations. We find that this comprehensive approach lowers the cost of meeting environmental goals but also carries with it profound implications for agriculture: Unmanaged ecosystems and forests expand, and food crop and livestock prices rise. Finally, we find that future improvement in food crop productivity directly affects land-use change emissions, making the technology for growing crops potentially important for limiting atmospheric CO2 concentrations.

  14. Climate sensitivity due to increased CO2: experiments with a coupled atmosphere and ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Washington, Warren M.; Meehl, Gerald A.

    1989-06-01

    A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30° 50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models

  15. Decrease in CO2 efflux from northern hardwater lakes with increasing atmospheric warming.

    PubMed

    Finlay, Kerri; Vogt, Richard J; Bogard, Matthew J; Wissel, Björn; Tutolo, Benjamin M; Simpson, Gavin L; Leavitt, Peter R

    2015-03-12

    Boreal lakes are biogeochemical hotspots that alter carbon fluxes by sequestering particulate organic carbon in sediments and by oxidizing terrestrial dissolved organic matter to carbon dioxide (CO2) or methane through microbial processes. At present, such dilute lakes release ∼1.4 petagrams of carbon annually to the atmosphere, and this carbon efflux may increase in the future in response to elevated temperatures and increased hydrological delivery of mineralizable dissolved organic matter to lakes. Much less is known about the potential effects of climate changes on carbon fluxes from carbonate-rich hardwater and saline lakes that account for about 20 per cent of inland water surface area. Here we show that atmospheric warming may reduce CO2 emissions from hardwater lakes. We analyse decadal records of meteorological variability, CO2 fluxes and water chemistry to investigate the processes affecting variations in pH and carbon exchange in hydrologically diverse lakes of central North America. We find that the lakes have shifted progressively from being substantial CO2 sources in the mid-1990s to sequestering CO2 by 2010, with a steady increase in annual mean pH. We attribute the observed changes in pH and CO2 uptake to an atmospheric-warming-induced decline in ice cover in spring that decreases CO2 accumulation under ice, increases spring and summer pH, and enhances the chemical uptake of CO2 in hardwater lakes. Our study suggests that rising temperatures do not invariably increase CO2 emissions from aquatic ecosystems.

  16. A Model for Interpreting High-Tower CO2 Concentration Records for the Surface Carbon Balance Information

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chen, J. M.; Higuchi, K.; Chan, D.; Shashkov, A.

    2002-05-01

    Atmospheric CO2 concentration measurements have been made by scientists of Meteorological Service of Canada on a 40 m tower for the last 10 years at 15 minute intervals over a mostly intact boreal forest near Fraserdale (50N, 81W), Ontario, Canada. The long time records of CO2 as well as basic meteorological variables provide a unique opportunity to investigate any potential changes in the ecosystem in terms of carbon balance. A model is needed to decipher the carbon cycle signals from the diurnal and seasonal variation patterns in the CO2 record. For this purpose, the Boreal Ecosystem Productivity Simulator (BEPS) is expanded to include a one-dimensional CO2 vertical transfer model involving the interaction between plant canopies and the atmosphere in the surface layer and the diurnal dynamics of the mixed layer. An analytical solution of the scalar transfer equation within the surface layer is found using an assumption that the diurnal oscillation of CO2 concentration at a given height is sinusoidal, which is suitable for the investigation of the changes in diurnal variation pattern over the 10 year period. The complex interactions between the daily cycle of the atmosphere and vegetation CO2 exchange and the daily evolution of mixed layer entrainment of CO2 determines the CO2 variation pattern at a given height. The expanded BEPS can simulate within ñ2 ppm the hourly CO2 records at the 40 m measurement height. The annual totals of gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP), summed up from the hourly results, agree within 5% of previous estimates of BEPS at daily steps, indicating the internal consistency of the hourly model. The model is therefore ready for exploring changes in the CO2 record as affected by changes in the forest ecosystems upwind of the tower. Preliminary results indicate that the diurnal variation amplitude of CO2 has increased by 10-20% over the 10 years period, and this change can

  17. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100.

    PubMed

    Breecker, D O; Sharp, Z D; McFadden, L D

    2010-01-12

    Quantifying atmospheric CO(2) concentrations ([CO(2)](atm)) during Earth's ancient greenhouse episodes is essential for accurately predicting the response of future climate to elevated CO(2) levels. Empirical estimates of [CO(2)](atm) during Paleozoic and Mesozoic greenhouse climates are based primarily on the carbon isotope composition of calcium carbonate in fossil soils. We report that greenhouse [CO(2)](atm) have been significantly overestimated because previously assumed soil CO(2) concentrations during carbonate formation are too high. More accurate [CO(2)](atm), resulting from better constraints on soil CO(2), indicate that large (1,000s of ppmV) fluctuations in [CO(2)](atm) did not characterize ancient climates and that past greenhouse climates were accompanied by concentrations similar to those projected for A.D. 2100.

  18. Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana.

    PubMed

    Sun, Zhilan; Chen, Yi-Feng; Du, Jianchang

    2016-02-01

    Supplying microalgae with extra CO2 is a promising means for improving lipid production. The molecular mechanisms involved in lipid accumulation under conditions of elevated CO2, however, remain to be fully elucidated. To understand how elevated CO2 improves lipid production, we performed sequencing of Chlorella sorokiniana LS-2 cellular transcripts during growth and compared transcriptional dynamics of genes involved in carbon flow from CO2 to triacylglycerol. These analyses identified the majority genes of carbohydrate metabolism and lipid biosynthesis pathways in C. sorokiniana LS-2. Under high doses of CO2 , despite down-regulation of most de novo fatty acid biosynthesis genes, genes involved in carbohydrate metabolic pathways including carbon fixation, chloroplastic glycolysis, components of the pyruvate dehydrogenase complex (PDHC) and chloroplastic membrane transporters were upexpressed at the prolonged lipid accumulation phase. The data indicate that lipid production is largely independent of de novo fatty acid synthesis. Elevated CO2 might push cells to channel photosynthetic carbon precursors into fatty acid synthesis pathways, resulting in an increase of overall triacylglycerol generation. In support of this notion, genes involved in triacylglycerol biosynthesis were substantially up-regulated. Thus, elevated CO2 may influence regulatory dynamics and result in increased carbon flow to triacylglycerol, thereby providing a feasible approach to increase lipid production in microalgae.

  19. [Direct Observation on the Temporal and Spatial Patterns of the CO2 Concentration in the Atmospheric of Nanjing Urban Canyon in Summer].

    PubMed

    Gao, Yun-qiu; Liu, Shou-dong; Hu, Ning; Wang, Shu-min; Deng, Li-chen; Yu, Zhou; Zhang, Zhen; Li, Xu-hui

    2015-07-01

    Direct observation of urban atmospheric CO2 concentration is vital for the research in the contribution of anthropogenic activity to the atmospheric abundance since cities are important CO2 sources. The observations of the atmospheric CO2 concentration at multiple sites/heights can help us learn more about the temporal and spatial patterns and influencing mechanisms. In this study, the CO2 concentration was observed at 5 sites (east, west, south, north and middle) in the main city area of Nanjing from July 18 to 25, 2014, and the vertical profile of atmospheric CO2 concentration was measured in the middle site at 3 heights (30 m, 65 m and 110 m). The results indicated that: (1) An obvious vertical CO2 gradient was found, with higher CO2 concentration [molar fraction of 427. 3 x 10(-6) (±18. 2 x 10(-6))] in the lower layer due to the strong influences of anthropogenic emissions, and lower CO2 concentration in the upper layers [411. 8 x 10(-6) (±15. 0 x 10(-6)) and 410. 9 x 10(-6) (±14. 6 x 10(-6)) at 65 and 110 m respectively] for the well-mixed condition. The CO2 concentration was higher and the vertical gradient was larger when the atmosphere was stable. (2) The spatial distribution pattern of CO2 concentration was dominated by wind and atmospheric stability. During the observation, the CO2 concentration in the southwest was higher than that in the northeast region with the CO2 concentration difference of 7. 8 x 10(-6), because the northwest wind was prevalent. And the CO2 concentration difference reduced with increasing wind speed since stronger wind diluted CO2 more efficiently. The more stable the atmosphere was, the higher the CO2 concentration was. (3) An obvious diurnal variation of CO2 concentration was shown in the 5 sites. A peak value occurred during the morning rush hours, the valley value occurred around 17:00 (Local time) and another high value occurred around 19:00 because of evening rush hour sometimes.

  20. Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export

    NASA Astrophysics Data System (ADS)

    Oschlies, Andreas; Schulz, Kai G.; Riebesell, Ulf; Schmittner, Andreas

    2008-12-01

    The primary impacts of anthropogenic CO2 emissions on marine biogeochemical cycles predicted so far include ocean acidification, global warming induced shifts in biogeographical provinces, and a possible negative feedback on atmospheric CO2 levels by CO2-fertilized biological production. Here we report a new potentially significant impact on the oxygen-minimum zones of the tropical oceans. Using a model of global climate, ocean circulation, and biogeochemical cycling, we extrapolate mesocosm-derived experimental findings of a pCO2-sensitive increase in biotic carbon-to-nitrogen drawdown to the global ocean. For a simulation run from the onset of the industrial revolution until A.D. 2100 under a "business-as-usual" scenario for anthropogenic CO2 emissions, our model predicts a negative feedback on atmospheric CO2 levels, which amounts to 34 Gt C by the end of this century. While this represents a small alteration of the anthropogenic perturbation of the carbon cycle, the model results reveal a dramatic 50% increase in the suboxic water volume by the end of this century in response to the respiration of excess organic carbon formed at higher CO2 levels. This is a significant expansion of the marine "dead zones" with severe implications not only for all higher life forms but also for oxygen-sensitive nutrient recycling and, hence, for oceanic nutrient inventories.

  1. A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase.

    PubMed

    Wagner, F; Below, R; Klerk, P D; Dilcher, D L; Joosten, H; Kürschner, W M; Visscher, H

    1996-10-15

    Carbon dioxide (CO2) has been increasing in atmospheric concentration since the Industrial Revolution. A decreasing number of stomata on leaves of land plants still provides the only morphological evidence that this man-made increase has already affected the biosphere. The current rate of CO2 responsiveness in individual long-lived species cannot be accurately determined from field studies or by controlled-environment experiments. However, the required long-term data sets can be obtained from continuous records of buried leaves from living trees in wetland ecosystems. Fine-resolution analysis of the lifetime leaf record of an individual birch (Betula pendula) indicates a gradual reduction of stomatal frequency as a phenotypic acclimation to CO2 increase. During the past four decades, CO2 increments of 1 part per million by volume resulted in a stomatal density decline of approximately 0.6%. It may be hypothesized that this plastic stomatal frequency response of deciduous tree species has evolved in conjunction with the overall Cenozoic reduction of atmospheric CO2 concentrations.

  2. Proximate Composition of Seed and Biomass from Soybean Plants Grown at Different Carbon Dioxide (CO2) Concentrations

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.

    1990-01-01

    Soybean plants were grown for 90 days at 500, 1000, 2000, and 5000 ubar (ppm) carbon dioxide (CO2) and compared for proximate nutritional value. For both cultivars (MC and PX), seed protein levels were highest at 1000 (39.3 and 41.9 percent for MC and PX) and lowest at 2000 (34.7 and 38.9 percent for MC and PX). Seed fat (oil) levels were highest at 2000 (21.2 and 20.9 percent for MC and PX) and lowest at 5000 (13.6 and 16.6 percent for MC and PX). Seed carbohydrate levels were highest at 500 (31.5 and 28.4 percent for MC and PX) and lowest at 2000 (20.9 and 20.8 percent for MC and PX). When adjusted for total seed yield per unit growing area, the highest production of protein and carbohydrate occurred with MC at 1000, while equally high amounts of fat were produced with MC at 1000 and 2000. Seed set and pod development at 2000 were delayed in comparison to other CO2 treatments; thus the proportionately high fat and low protein at 2000 may have been a result of the delay in plant maturity rather than CO2 concentration. Stem crude fiber and carbohydrate levels for both cultivars increased with increased CO2. Leaf protein and crude fiber levels also tended to rise with increased CO2 but leaf carbohydrate levels decreased as CO2 was increased. The results suggest that CO2 effects on total seed yield out-weighed any potential advantages to changes in seed composition.

  3. CO2 and H2S concentrations in the atmosphere at the Solfatara of Pozzuoli

    NASA Astrophysics Data System (ADS)

    Carapezza, M.; Gurrieri, S.; Nuccio, P. M.; Valenza, M.

    1984-06-01

    The CO2 and H2S concentration in the Solfatara atmosphere has been measured. The concentrations of both gases are higher neraby the more active areas and decrease away from them. A sharp horizontal and vertical gradient of the CO2 content has been recognized. Such gradient is assumed to result from a diffusion of gas from the ground to the atmosphere. The total output of CO2 has been computed based on a turbulent diffusion model. The obtained value is in good agreement with previously abserved values ( Italiano et al., 1984). The feasibility of monitoring the atmosphere of Solfatara for either gas hazard and surveillance of volcanic activity has also been evaluated.

  4. Shortwave and longwave radiative contributions to global warming under increasing CO2.

    PubMed

    Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S

    2014-11-25

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

  5. Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping.

    PubMed

    Naim, R; Ismail, A F

    2013-04-15

    A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor.

  6. Effects of elevated CO2 concentration on growth, photosynthetic characteristics and yield of chufa (Cyperus esculentus L.) in Lunar Palace 1

    NASA Astrophysics Data System (ADS)

    Liu, Guanghui; Liu, Hui; Liu, Hong; Wang, Minjuan; Fu, Yuming; Shao, Lingzhi; Dong, Chen; Yu, Juan

    Elevated CO2 concentration is a common phenomenon in spaceflight environment. Effects of elevated CO2 concentration within short- and long-term on growth, photosynthetic characteristics and yield of chufa (Cyperus esculentus L.) are examined during 90 days in Lunar Palace 1. Elevated CO2 within a short-term induces a large increase in photosynthesis in chufa, long-term expose in elevated CO2 can lead to a smaller increase resulting from the inhibition of photosynthesis. It is indicated that the increased net photosynthesis per unit leaf area at elevated CO2 concentration come from an inhibition of photorespiration and an Increase of photosynthesis substrate. Low stomatal conductance reduced the transpiration. Effects of high CO2 concentration to the growth of whole plants is the main point of this research. The probable CO2 concentration affecting chufa growth is evaluated in Lunar Palace 1, and the mechanisms will be revealed. The proper CO2 concentration for highest production of chufa in spaceflight environment will be figured out, which plays an important role in plant cultivation supporting spaceflight tasks.

  7. Mechanisms underlying the amelioration of O3-induced damage by elevated atmospheric concentrations of CO2.

    PubMed

    Cardoso-Vilhena, João; Balaguer, Luis; Eamus, Derek; Ollerenshaw, John; Barnes, Jeremy

    2004-03-01

    There is growing evidence that rising atmospheric CO2 concentrations will reduce or prevent reductions in the growth and productivity of C3 crops attributable to ozone (O3) pollution. In this study, the role of pollutant exclusion in mediating this response was investigated through growth chamber-based investigations on leaves 4 and 7 of spring wheat (Triticum aestivum cv. Hanno). In the core experiments, plants were raised at two atmospheric CO2 concentrations (ambient [350 micro l l(-1)] or elevated CO2 [700 micro l l(-1)] under two O3 regimes (charcoal/Purafil-filtered air [<5 nl l(-1) O3] or ozone-enriched air [75 nl l(-1) 7 h d(-1)]). A subsequent experiment used an additional O3 treatment where the goal was to achieve equivalent daily O3 uptake over the life-span of leaves 4 and 7 under ambient and CO2-enriched conditions, through daily adjustment of exposures based on measured shifts in stomatal conductance. Plant growth and net CO2 assimilation were stimulated by CO2-enrichment and reduced by exposure to O3. However, the impacts of O3 decreased with plant age (i.e. leaf 7 was more resistant to O3 injury than leaf 4); a finding consistent with ontogenic shifts in the tolerance of plant tissue and/or acclimation to O3-induced oxidative stress. In the combined treatment, elevated CO2 protected against the adverse effects of O3 and reduced cumulative O3 uptake (calculated from measurements of stomatal conductance) by c. 10% and 35% over the life-span of leaves 4 and 7, respectively. Analysis of the relationship between O3 uptake and the decline in the maximum in vivo rate of Rubisco carboxylation (Vcmax) revealed the protection afforded by CO2-enrichment to be due, to a large extent, to the exclusion of the pollutant from the leaf interior (as a consequence of the decline in stomatal conductance triggered by CO2-enrichment), but there was evidence (especially from flux-response relationships constructed for leaf 4) that CO2-enrichment resulted in additional

  8. Fermentation and malate metabolism in response to elevated CO2 concentrations in two strawberry cultivars.

    PubMed

    Ponce-Valadez, Monica; Watkins, Christopher B

    2008-09-01

    Concentrations of acetaldehyde, ethanol, ethyl acetate (EA), organic acids and activities and gene expression of alcohol dehydrogenase (ADH; EC 1.1.1.1), pyruvate decarboxylase (PDC; EC 4.1.1.1), alcohol acyltransferase (AAT; EC 1.4.1.14), malate dehydrogenase (MDH; EC 1.1.1.37), malic enzyme (ME; EC 1.1.1.40) and glutamate dehydrogenase (EC 1.4.1.14) were investigated in two strawberry (Fragaria x ananassa Duch) cultivars with different responses to CO(2) during storage. 'Jewel' fruit treated with CO(2) accumulated acetaldehyde and ethanol but little EA, while 'Cavendish' accumulated little acetaldehyde or ethanol but accumulated EA. In CO(2)-treated fruit, PDC activity was positively correlated with EA accumulation in 'Jewel' but not in 'Cavendish', while no differential effect of atmosphere was observed on its gene expression. ADH activity and gene expression show a correlation with ethanol accumulation in 'Cavendish'. In 'Jewel', there was a positive correlation between ADH gene expression and enzyme activity; however, this correlation does not explain ethanol accumulation in this cultivar. EA accumulation did not show any correlation with AAT activity and gene expression in any of the cultivars. Succinate concentrations were highest and those of malate lowest in CO(2)-treated fruit of both cultivars, but MDH and ME activities were not affected by CO(2). Gene expression of MDH and ME were not affected by atmosphere in 'Cavendish', although in 'Jewel' the MDH expression was slightly lower in CO(2)- than air-treated fruit. The results of this study show that differences in fermentation products and malate accumulation in CO(2)-treated strawberry fruit are not consistently correlated with enzyme activities and gene expression.

  9. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought.

    PubMed

    Leakey, Andrew D B; Uribelarrea, Martin; Ainsworth, Elizabeth A; Naidu, Shawna L; Rogers, Alistair; Ort, Donald R; Long, Stephen P

    2006-02-01

    While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless, some controlled environment studies have reported direct stimulation of C4 photosynthesis and productivity, as well as physiological acclimation, under elevated [CO2]. To test if these effects occur in the open air and within the Corn Belt, maize (Zea mays) was grown in ambient [CO2] (376 micromol mol(-1)) and elevated [CO2] (550 micromol mol(-1)) using Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not experience water stress. In the absence of water stress, growth at elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Nor was there any CO2 effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and nitrogen status. Stomatal conductance was lower (-34%) and soil moisture was higher (up to 31%), consistent with reduced crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by rising [CO2] in the absence of drought. This suggests that rising [CO2] may not provide the full dividend to North American maize production anticipated in projections of future global food supply.

  10. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions

    NASA Astrophysics Data System (ADS)

    Liska, Adam J.; Yang, Haishun; Milner, Maribeth; Goddard, Steve; Blanco-Canqui, Humberto; Pelton, Matthew P.; Fang, Xiao X.; Zhu, Haitao; Suyker, Andrew E.

    2014-05-01

    Removal of corn residue for biofuels can decrease soil organic carbon (SOC; refs , ) and increase CO2 emissions because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil. Net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle assessment (LCA; refs , , ). Here we used a model to estimate CO2 emissions from corn residue removal across the US Corn Belt at 580 million geospatial cells. To test the SOC model, we compared estimated daily CO2 emissions from corn residue and soil with CO2 emissions measured using eddy covariance, with 12% average error over nine years. The model estimated residue removal of 6 Mg per ha-1 yr-1 over five to ten years could decrease regional net SOC by an average of 0.47-0.66 Mg C ha-1 yr-1. These emissions add an average of 50-70 g CO2 per megajoule of biofuel (range 30-90) and are insensitive to the fraction of residue removed. Unless lost C is replaced, life cycle emissions will probably exceed the US legislative mandate of 60% reduction in greenhouse gas (GHG) emissions compared with gasoline.

  11. Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Ramanathan, Anand; Riris, Haris; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Weaver, Clark J.; Browell, Edward V.

    2013-01-01

    We have previously demonstrated a pulsed direct detection IPDA lidar to measure range and the column concentration of atmospheric CO2. The lidar measures the atmospheric backscatter profiles and samples the shape of the 1,572.33 nm CO2 absorption line. We participated in the ASCENDS science flights on the NASA DC-8 aircraft during August 2011 and report here lidar measurements made on four flights over a variety of surface and cloud conditions near the US. These included over a stratus cloud deck over the Pacific Ocean, to a dry lake bed surrounded by mountains in Nevada, to a desert area with a coal-fired power plant, and from the Rocky Mountains to Iowa, with segments with both cumulus and cirrus clouds. Most flights were to altitudes >12 km and had 5-6 altitude steps. Analyses show the retrievals of lidar range, CO2 column absorption, and CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds, between cumulus clouds, and to stratus cloud tops. The retrievals shows the decrease in column CO2 due to growing vegetation when flying over Iowa cropland as well as a sudden increase in CO2 concentration near a coal-fired power plant. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption lineshape (averaged for 50 s) matched the predicted shapes to better than 1% RMS error. For 10 s averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by the received signal photon count. Retrievals were made using atmospheric parameters from both an atmospheric model and from in situ temperature and pressure from the aircraft. The retrievals had no free parameters and did not use empirical adjustments, and >70% of the measurements passed screening and were used in analysis. The differences between the lidar-measured retrievals and in situ measured average CO2 column concentrations were <1.4 ppm for flight measurement altitudes >6 km.

  12. A Possible CO2 Conducting and Concentrating Mechanism in Plant Stomata SLAC1 Channel

    PubMed Central

    Du, Qi-Shi; Fan, Xina-Wei; Wang, Cheng-Hua; Huang, Ri-Bo

    2011-01-01

    Background The plant SLAC1 is a slow anion channel in the membrane of stomatal guard cells, which controls the turgor pressure in the aperture-defining guard cells, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought, high levels of carbon dioxide, and bacterial invasion. Recent study demonstrated that bicarbonate is a small-molecule activator of SLAC1. Higher CO2 and HCO3– concentration activates S-type anion channel currents in wild-type Arabidopsis guard cells. Based on the SLAC1 structure a theoretical model is derived to illustrate the activation of bicarbonate to SLAC1 channel. Meanwhile a possible CO2 conducting and concentrating mechanism of the SLAC1 is proposed. Methodology The homology structure of Arabidopsis thaliana SLAC1 (AtSLAC1) provides the structural basis for study of the conducting and concentrating mechanism of carbon dioxide in SLAC1 channels. The pKa values of ionizable amino acid side chains in AtSLAC1 are calculated using software PROPKA3.0, and the concentration of CO2 and anion HCO3– are computed based on the chemical equilibrium theory. Conclusions The AtSLAC1 is modeled as a five-region channel with different pH values. The top and bottom layers of channel are the alkaline residue-dominated regions, and in the middle of channel there is the acidic region surrounding acidic residues His332. The CO2 concentration is enhanced around 104 times by the pH difference between these regions, and CO2 is stored in the hydrophobic region, which is a CO2 pool. The pH driven CO2 conduction from outside to inside balances the back electromotive force and maintain the influx of anions (e.g. Cl– and NO3–) from inside to outside. SLAC1 may be a pathway providing CO2 for photosynthesis in the guard cells. PMID:21931667

  13. Effects of CO2 Concentration on Leaf Photosynthesis and Stomatal Conductance of Potatoes Grown Under Different Irradiance Levels and Photoperiods

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Fitzpatrick, A. H.; Tibbitts, T. W.

    2012-01-01

    Potato (Solanum tuberosum L.) cvs. Russet Burbank, Denali, and Norland, were grown in environmental rooms controlled at approx 350 micro mol/mol (ambient during years 1987/1988) and 1000 micro mol/mol (enriched) CO2 concentrations. Plants and electric lamps were arranged to provide two irradiance zones, 400 and 800 micro mol/mol/square m/S PPF and studies were repeated using two photoperiods (12-h light / 12-h dark and continuous light). Leaf photosynthetic rates and leaf stomatal conductance were measured using fully expanded, upper canopy leaves at weekly intervals throughout growth (21 through 84 days after transplanting). Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod increased leaf photosynthetic rates by 39% at 400 micro mol/mol/square m/S PPF and 27% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under continuous light decreased leaf photosynthetic rates by 7% at 400 micro mol/mol/square m/S PPF and 13% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod plants decreased stomatal conductance by an average of 26% at 400 micro mol/mol/square m/S PPF and 42% at 800 micro mol/mol/square m/S PPF. Under continuous light, CO2 enrichment resulted in a small increase (2%) of stomatal conductance at 400 micro mol/mol/square m/S PPF, and a small decrease (3%) at 800 micro mol/mol/square m/S PPF. Results indicate that CO2 enrichment under the 12-h photoperiod showed the expected increase in photosynthesis and decrease in stomatal conductance for a C3 species like potato, but the decreases in leaf photosynthetic rates and minimal effect on conductance from CO2 enrichment under continuous light were not expected. The plant leaves under continuous light showed more chlorosis and some rusty flecking versus plants under the 12-h photoperiod, suggesting the continuous light was more stressful on the plants. The increased

  14. Rising atmospheric CO2 lowers food zinc, iron, and protein concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary deficiencies of zinc and iron are a major global public health problem. Most people who experience these deficiencies depend on agricultural crops for zinc and iron. In this context, the influence of rising concentrations of atmospheric CO2 on the availability of these nutrients from crops i...

  15. A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembles of process-based crop models are now commonly used to simulate crop growth and development for climate scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of de...

  16. Emissions of volatile organic compounds from hybrid poplar depend on CO2 concentration and genotype

    NASA Astrophysics Data System (ADS)

    Eller, A. S.; de Gouw, J. A.; Monson, R. K.

    2010-12-01

    Hybrid poplar is a fast-growing tree species that is likely to be an important source of biomass for the production of cellulose-based biofuels and may influence regional atmospheric chemistry through the emission of volatile organic compounds (VOCs). We used proton-transfer reaction mass spectrometry to measure VOC emissions from the leaves of four different hybrid poplar genotypes grown under ambient (400 ppm) and elevated (650 ppm) carbon dioxide concentration (CO2). The purpose of this experiment was to determine whether VOC emissions are different among genotypes and whether these emissions are likely to change as atmospheric CO2 rises. Methanol and isoprene made up over 90% of the VOC emissions and were strongly dependent on leaf age, with young leaves producing primarily methanol and switching to isoprene production as they matured. Monoterpene emissions were small, but tended to be higher in young leaves. Plants grown under elevated CO2 emitted smaller quantities of both methanol and isoprene, but the magnitude of the effect was dependent on genotype. Isoprene emission rates from mature leaves dropped from ~35 to ~28 nmol m-2 s-1 when plants were grown under elevated CO2. Emissions from individuals grown under ambient CO2 varied more based on genotype than those grown under elevated CO2, which means that we might expect smaller differences between genotypes in the future. Genotype and CO2 also affected how much carbon (C) individuals allocated to the production of VOCs. The emission rate of C from VOCs was 0.5 - 2% of the rate at which C was assimilated via net photosynthesis. The % C emitted was strongly related to genotype; clones from crosses between Populus deltoides and P. trichocarpa (T x D) allocated a greater % of their C to VOC emissions than clones from crosses of P. deltoids and P. nigra (D x N). Individuals from all four genotypes allocated a smaller % of their C to the emission of VOCs when they were grown under elevated CO2. These results

  17. Comparison of CO2 fluxes estimated using atmospheric and oceanic inversions, and role of fluxes and their interannual variability in simulating atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Patra, P. K.; Mikaloff Fletcher, S. E.; Ishijima, K.; Maksyutov, S.; Nakazawa, T.

    2006-07-01

    We use a time-dependent inverse (TDI) model to estimate regional sources and sinks of atmospheric CO2 from 64 and then 22 regions based on atmospheric CO2 observations at 87 stations. The air-sea fluxes from the 64-region atmospheric-CO2 inversion are compared with fluxes from an analogous ocean inversion that uses ocean interior observations of dissolved inorganic carbon (DIC) and other tracers and an ocean general circulation model (OGCM). We find that, unlike previous atmospheric inversions, our flux estimates in the southern hemisphere are generally in good agreement with the results from the ocean inversion, which gives us added confidence in our flux estimates. In addition, a forward tracer transport model (TTM) is used to simulate the observed CO2 concentrations using (1) estimates of fossil fuel emissions and a priori estimates of the terrestrial and oceanic fluxes of CO2, and (2) two sets of TDI model corrected fluxes. The TTM simulations of TDI model corrected fluxes show improvements in fitting the observed interannual variability in growth rates and seasonal cycles in atmospheric CO2. Our analysis suggests that the use of interannually varying (IAV) meteorology and a larger observational network have helped to capture the regional representation and interannual variabilities in CO2 fluxes realistically.

  18. Calcium, magnesium, and phosphorus metabolism, and parathyroid-calcitonin function during prolonged exposure to elevated CO2 concentrations on submarines.

    PubMed

    Messier, A A; Heyder, E; Braithwaite, W R; McCluggage, C; Peck, A; Schaefer, K E

    1979-01-01

    Studies of calcium and phosphorus metabolism and acid-base balance were carried out on three Fleet Ballistic Missile (FBM) submarines during prolonged exposure to elevated concentrations of CO2. The average CO2 concentration in the submarine atmosphere during patrols ranged from 0.85% to 1% CO2. In the three studies, in which 9--15 subjects participated, the urinary excretion of calcium and phosphate fell during the first three weeks to a level commensurate with a decrease in plasma calcium and increase in phosphorus. In the fourth week of one patrol, a marked increase was found in urinary calcium excretion, associated with a rise in blood PCO2 and bicarbonate. Urinary calcium excretion decreased again during the 5th to 8th week, with a secondary decrease in blood pH and plasma calcium. During the third patrol, the time course of acid-base changes corresponded well with that found during the second patrol. There was a trend toward an increase in plasma calcium between the fourth and fifth week commensurate with the transient rise in pH and bicarbonate. Plasma parathyroid and calcitonin hormone activities were measured in two patrols and no significant changes were found. Hydroxyproline excretion decreased in the three-week study and remained unchanged in the second patrol, which lasted 57 days. It is suggested that during prolonged exposure to low levels of CO2 (up to 1% CO2), calcium metabolism is controlled by the uptake and release of CO2 in the bones. The resulting phases in bone buffering, rather than renal regulation, determine acid-base balance.

  19. Effects of Increased CO2 Level on the Well-Being, Growth and Renal Function of Rats

    NASA Technical Reports Server (NTRS)

    Lang, C.; Bonner, R.; Vasques, M.; Baer, L.; Fung, P.; Steele, M.; Wade, C.

    1994-01-01

    On the Space Shuttle the mean CO2 levels have been 0.3% which is ten times normal air, while there have been extended periods with mean levels of 0.7% and peak concentrations of 2%. On the Space Station the projected mean concentration of CO2 is 0.7% and not to exceed 1.0%. To ensure that high level of CO2 does not compromise the integrity of the science on the Space Station, the effects of chronic exposure to high levels of CO2 were investigated. Following 7 days of cage adaptation animals exposed to 2% CO2 for 30 days were compared to control (ambient air) animals and the effects on the well-being, growth and renal function analyzed. Ten male rats per group were placed in individual metabolic cages which allowed monitoring of daily food and water consumption, as well as feces and urine to be collected. Cages were placed in a plexiglass chamber with internal environment controlled by a computer in conjunction with gas sensors. The elevated CO2 was held constant at 2.0 +/- 0.03% and the O2 at 20.9 +/- 0.15%. Body weight and food and water intake were measured daily for the first ten days of exposure and then every three to four days for the remaining three weeks. Urine was measured for pH, CO2 (as an indicator for bicarbonate) and ammonia (as an indicator for ammonium). During 2% CO2 exposure, animal growth, weight, food and water consumption were within normal ranges suggesting that their well-being was not affected. Urine pH decreased from 7.12 to 6.77 over the first 6 days of exposure and increased the following 24 days returning to pre-exposure levels. Urine NH4+ increased 68% the first 6 days then dropped to and remained at 29% higher than pre-exposure level. Urine bicarbonate concentration did not change the first 6 days, but significantly increased by day 30. These results of chronic exposure to 2% C02 are consistent with renal compensation for respiratory acidosis which may impact science conducted on the Space Shuttle or the Space Station if CO2 levels

  20. Airborne Lidar Measurements of Atmospheric Column CO2 Concentration to Cloud Tops

    NASA Astrophysics Data System (ADS)

    Mao, J.; Ramanathan, A. K.; Abshire, J. B.; Kawa, S. R.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.

    2015-12-01

    Globally distributed atmospheric CO2 measurements with high precision, low bias and full seasonal sampling are crucial to advance carbon cycle sciences. However, two thirds of the Earth's surface is typically covered by clouds, and passive remote sensing approaches from space, e.g., OCO-2 and GOSAT, are limited to cloud-free scenes. They are unable to provide useful retrievals in cloudy areas where the photon path-length can't be well characterized. Thus, passive approaches have limited global coverage and poor sampling in cloudy regions, even though some cloudy regions have active carbon surface fluxes. NASA Goddard is developing a pulsed integrated-path, differential absorption (IPDA) lidar approach to measure atmospheric column CO2 concentrations from space as a candidate for NASA's ASCENDS mission. Measurements of time-resolved laser backscatter profiles from the atmosphere also allow this technique to estimate column CO2 and range to cloud tops in addition to those to the ground with precise knowledge of the photon path-length. This allows retrievals of column CO2 concentrations to cloud tops, providing much higher spatial coverage and some information about vertical structure of CO2. This is expected to benefit atmospheric transport process studies, carbon data assimilation in models, and global and regional carbon flux estimation. We show some preliminary results of the all-sky retrieval capability using airborne lidar measurements from the 2011, 2013 and 2014 ASCENDS airborne campaigns on the NASA DC-8. These show retrievals of atmospheric CO2 over low-level marine stratus clouds, cumulus clouds at the top of planetary boundary layer, some mid-level clouds and visually thin high-level cirrus clouds. The CO2 retrievals from the lidar are validated against in-situ measurements and compared to Goddard PCTM model simulations. Lidar cloud slicing to derive CO2 abundance in the planetary boundary layer and free troposphere also has been demonstrated. The

  1. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2013-09-01

    To quantitatively estimate CO2 surface fluxes (CFs) from atmospheric observations, a joint data assimilation system ("Tan-Tracker") is developed by incorporating a joint data assimilation framework into the GEOS-Chem atmospheric transport model. In Tan-Tracker, we choose an identity operator as the CF dynamical model to describe the CFs' evolution, which constitutes an augmented dynamical model together with the GEOS-Chem atmospheric transport model. In this case, the large-scale vector made up of CFs and CO2 concentrations is taken as the prognostic variable for the augmented dynamical model. And thus both CO2 concentrations and CFs are jointly assimilated by using the atmospheric observations (e.g., the in-situ observations or satellite measurements). In contrast, in the traditional joint data assimilation frameworks, CFs are usually treated as the model parameters and form a state-parameter augmented vector jointly with CO2 concentrations. The absence of a CF dynamical model will certainly result in a large waste of observed information since any useful information for CFs' improvement achieved by the current data assimilation procedure could not be used in the next assimilation cycle. Observing system simulation experiments (OSSEs) are carefully designed to evaluate the Tan-Tracker system in comparison to its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous assimilation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system.

  2. Understanding the drivers of Amazonian evapotranspiration (ET) change in response to increased CO2.

    NASA Astrophysics Data System (ADS)

    Halladay, Kate; Good, Peter

    2016-04-01

    Earth system models allow us to examine the complex interactions and feedbacks between land surface, vegetation and atmosphere. A more thorough understanding of these interactions is essential in reducing uncertainty surrounding the potential impacts of climate and environmental change on the hydrological cycle and the future state and extent of the Amazon rainforest. With HadGEM2-ES simulations from CMIP5 in which CO2 is increased at 1% per year starting from pre-industrial concentrations and reaching 4 times that after 140 years, we separate the various drivers and processes controlling ET in western Amazonia. The design of these simulations allows for radiative and physiological forcings to be examined separately and in combination, and the degree to which the combination of forcings is additive or non-linear. We consider ET as a product of the moisture gradient between the surface and the boundary layer and a conductance term, which includes terms limiting the evaporation from stomata and from the canopy. We find that aside from the direct effects of radiative and physiological forcing, there are a number of other processes occurring: 1) reductions in ET alter the surface energy budget leading to increases in moisture gradient which drive increases in ET, 2) additional reductions in stomatal conductance when surface temperatures exceed optimum temperature for photosynthesis, leading to greater decreases in ET between 2 and 4 times pre-industrial CO2, 3) negative correlation between moisture gradient and conductance terms leads to additional decreases in ET, 4) decreases in canopy water content increases the importance of stomatal conductance which also drives decreases in ET. A combination of these processes leads to non-linear decreases in ET between 2 and 4 times pre-industrial CO2 when both radiative and physiological forcings are operating. These results indicate a major role physiological forcing in the hydrological cycle of Amazonia, highlight the

  3. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels

    NASA Astrophysics Data System (ADS)

    Woodward, F. I.

    1987-06-01

    Recent measurements of atmospheric CO2 levels in ice cores1 have shown that global CO2 has increased by about 60 µmol mol-1 over the past 200 years. Evidence for the response of plants in the field to this change in CO2 levels is here presented in the form of a significant change in stomatal density-an anatomical response of considerable ecophysiological importance. A 40% decrease in density of stomata was observed in herbarium specimens of leaves of eight temperate arboreal species collected over the last 200 years. This decline was confirmed for some of the species observed as herbarium specimens by experiments under controlled environmental conditions. In these an increase in the mole fraction of CO2 from 280 μmol mol-1 to the current ambient level of 340 µmol mol-1 was found to cause a decrease in stomatal density of 67%. Experiments have shown that the combination of this previously unreported response of stomatal density to the level of CO2, with the known responses of stomatal aperture2, cause water use efficiency to be much lower than expected at low levels of CO2 and over a wide range of humidities.

  4. Effects of increased upward flux of dissolved salts caused by CO2 storage or other factors

    SciTech Connect

    Murdoch, Lawrence C.; Xie, Shuangshuang; Falta, Ronald W.; Ruprecht, Catherine

    2015-08-01

    Injection of CO2 in deep saline aquifers is being considered to reduce greenhouse gases in the atmosphere, and this process is expected to increase the pressure in these deep aquifers. One potential consequence of pressurization is an increase in the upward flux of saline water. Saline groundwater occurs naturally at shallow depths in many sedimentary basins, so an upward flux of solutes could degrade the quality of freshwater aquifers and threaten aquatic ecosystems. One problem could occur where saline water flowed upward along preferential paths, like faults or improperly abandoned wells. Diffuse upward flow through the natural stratigraphy could also occur in response to basin pressurization. This process would be slower, but diffuse upward flow could affect larger areas than flow through preferential paths, and this motivated us to evaluate this process. We analyzed idealized 2D and 3D geometries representing the essential details of a shallow, freshwater aquifer underlain by saline ground water in a sedimentary basin. The analysis was conducted in two stages, one that simulated the development of a freshwater aquifer by flushing out saline water, and another that simulated the effect of a pulse-like increase in the upward flux from the basin. The results showed that increasing the upward flux from a basin increased the salt concentration and mass loading of salt to streams, and decrease the depth to the fresh/salt transition. The magnitude of these effects varied widely, however, from a small, slow process that would be challenging to detect, to a large, rapid response that could be an environmental catastrophe. The magnitude of the increased flux, and the initial depth to the fresh/salt transition in groundwater controlled the severity of the response. We identified risk categories for salt concentration, mass loading, and freshwater aquifer thickness, and we used these categories to characterize the severity of the response. This showed that risks would

  5. Increased iron availability resulting from increased CO2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta).

    PubMed

    Chen, Binbin; Zou, Dinghui; Yang, Yufeng

    2017-04-01

    Ocean acidification caused by rising CO2 is predicted to increase the concentrations of dissolved species of Fe(II) and Fe(III), leading to the enhanced photosynthetic carbon sequestration in some algal species. In this study, the carbon and nitrogen metabolism in responses to increased iron availability under two CO2 levels (390 μL L(-1) and 1000 μL L(-1)), were investigated in the maricultivated macroalga Pyropia haitanensis (Rhodophyta). The results showed that, elevated CO2 increased soluble carbonhydrate (SC) contents, resulting from enhanced photosynthesis and photosynthetic pigment synthesis in this algae, but declined its soluble protein (SP) contents, resulting in increased ratio of SC/SP. This enhanced photosynthesis performance and carbon accumulation was more significant under iron enrichment condition in seawater, with higher iron uptake rate at high CO2 level. As a key essential biogenic element for algae, Fe-replete functionally contributed to P. haitanensis photosynthesis. Increased SC fundamentally provided carbon skeletons for nitrogen assimilation. The significant increase of carbon and nitrogen assimilation finally contributed to enhanced growth in this alga. This was also intuitively reflected by respiration that provided energy for cellular metabolism and algal growth. We propose that, in the predicted scenario of rising atmospheric CO2, P. haitanensis is capable to adjust its physiology by increasing its carbon and nitrogen metabolism to acclimate the acidified seawater, at the background of global climate change and simultaneously increased iron concentration due to decreased pH levels.

  6. Impact of oceanic circulation changes on the CO2 concentration during past interglacials

    NASA Astrophysics Data System (ADS)

    Bouttes, Nathaelle; Swingedouw, Didier; Crosta, Xavier; Fernanda Sanchez Goñi, Maria; Roche, Didier

    2016-04-01

    Interglacials before the Mid-Bruhnes Event (around 430 kyrs BP) were characterized by colder temperature in Antarctica, lower sea level and lower atmospheric CO2 compared to the more recent interglacials. Recent climate simulations have shown that the climate of the interglacials before and after the MBE can only be reproduced when taking into account changes in orbital parameters and atmospheric CO2 concentrations (Yin and Berger, 2010; Yin and Berger, 2012). Indeed, interglacial atmospheric CO2 concentrations were ~250 ppm and ~280 ppm prior and after the MBE, respectively. Yet, the cause for this change in atmospheric CO2 remains mainly unknown. climate simulations suggest that oceanic circulation was different during the interglacials due to the different climate states (Yin, 2013). The changes of oceanic circulation could have modified the carbon cycle: a more sluggish circulation would lead to greater carbon sequestration in the deep ocean and, subsequently, a decrease of atmospheric CO2. However, the impact of oceanic circulation changes on the carbon cycle during the interglacials of the last 800 kyrs has never been tested in coupled carbon-climate models. Here, we evaluate the role of ocean circulation changes on the carbon cycle during interglacials by using the intermediate complexity model iLOVECLIM (Goosse et al., 2010 ; Bouttes et al., 2015). This model includes a carbon cycle module on land and in the ocean and simulates carbon isotopes. The interglacial simulations are forced with orbital parameters, ice sheets and CO2 concentrations from data reconstructions. The model computes carbon fluxes between the reservoirs and an atmospheric CO2 that is distinct from the one used as a forcing. We will present simulations from this climate model for different interglacial periods of the last 800 000 years and use model-data comparison to analyse and evaluate the changes in the carbon cycle, including CO2. References Bouttes, N. et al. (2015), Geosci. Model

  7. Pulsed Lidar Measurements of Atmospheric CO2 Column Concentration in the ASCENDS 2014 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A. K.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W. E.; Chen, J. R.

    2015-12-01

    We report progress in demonstrating a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line by using 30 wavelength samples distributed across the lube. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength 10 times per second. The retrievals solve for the optimum CO2 absorption line shape and the column average CO2 concentrations using radiative transfer calculations based on HITRAN, the aircraft altitude, range to the scattering surface, and the atmospheric conditions. We compare these to CO2 concentrations sampled by in-situ sensors on the aircraft. The number of wavelength samples can be reduced in the retrievals. During the ASCENDS airborne campaign in 2013 two flights were made in February over snow in the Rocky Mountains and the Central Plains allowing measurement of snow-covered surface reflectivity. Several improvements were made to the lidar for the 2014 campaign. These included using a new step-locked laser diode source, and incorporating a new HgCdTe APD detector and analog digitizer into the lidar receiver. Testing showed this detector had higher sensitivity, analog response, and a more linear dynamic range than the PMT detector used previously. In 2014 flights were made in late August and early September over the California Central Valley, the redwood forests along the California coast, two desert areas in Nevada and California, and two flights above growing agriculture in Iowa. Two flights were also made under OCO-2 satellite ground tracks. Analyses show the retrievals of lidar range and CO2 column absorption, and mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, and through thin clouds and aerosol scattering. The lidar measurements clearly

  8. Increasing sugar transport to improve soybean response to elevated [CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated atmospheric [CO2] causes a direct increase in instantaneous photosynthesis and sugar production in C3 plants, leading to a yield increase which is promising to meet future food demand. However, previous studies have shown that soybean yield does not increase as much as predicted under eleva...

  9. Acclimation conditions modify physiological response of the diatom Thalassiosira pseudonana to elevated CO2 concentrations in a nitrate-limited chemostat.

    PubMed

    Hennon, Gwenn M M; Quay, Paul; Morales, Rhonda L; Swanson, Lyndsey M; Virginia Armbrust, E

    2014-04-01

    Diatoms are responsible for a large proportion of global carbon fixation, with the possibility that they may fix more carbon under future levels of high CO2 . To determine how increased CO2 concentrations impact the physiology of the diatom Thalassiosira pseudonana Hasle et Heimdal, nitrate-limited chemostats were used to acclimate cells to a recent past (333 ± 6 μatm) and two projected future concentrations (476 ± 18 μatm, 816 ± 35 μatm) of CO2 . Samples were harvested under steady-state growth conditions after either an abrupt (15-16 generations) or a longer acclimation process (33-57 generations) to increased CO2 concentrations. The use of un-bubbled chemostat cultures allowed us to calculate the uptake ratio of dissolved inorganic carbon relative to dissolved inorganic nitrogen (DIC:DIN), which was strongly correlated with fCO2 in the shorter acclimations but not in the longer acclimations. Both CO2 treatment and acclimation time significantly affected the DIC:DIN uptake ratio. Chlorophyll a per cell decreased under elevated CO2 and the rates of photosynthesis and respiration decreased significantly under higher levels of CO2 . These results suggest that T. pseudonana shifts carbon and energy fluxes in response to high CO2 and that acclimation time has a strong effect on the physiological response.

  10. Serum protein and casein concentration: effect on pH and freezing point of milk with added CO2.

    PubMed

    Ma, Y; Barbano, D M

    2003-05-01

    The objective of this study was to determine the effect of protein concentration and protein type [i.e., casein (CN) and serum protein (SP)] on pH (0 degree C) and freezing point (FP) of skim milk upon CO2 injection at 0 degree C. CN-free skim milks with increasing SP content (0, 3, and 6%) and skim milks with the same SP content (0.6%) but increasing CN content (2.4, 4.8, and 7.2%) were prepared using a combination of microfiltration and ultrafiltration processes. CO2 was injected into milks at 0 degree C using a continuous flow carbonation unit (230 ml/min). Increasing SP or CN increased milk buffering capacity and protein-bound mineral content. At the same CO2 concentration at 0 degree C, a milk with a higher SP or a higher CN concentration had more resistance to pH change and a greater extent of FP decrease. The buffering capacity provided by an increase of CN was contributed by both the CN itself and the colloidal salts solublized into the serum phase from CN upon carbonation. Skim milks with the same true protein content (3%), one with 2.4% CN plus 0.6% SP and one with 3% SP, were compared. At the same true protein content (3%), increasing the proportion of CN increased milk buffering capacity and protein-bound mineral content. Milk with a higher proportion of CN had more resistance to pH change and a greater extent of FP decrease at the same carbonation level at 0 degree C. Once CO2 was dissolved in the skim portion of a milk, the extent of pH reduction and FP depression depended on protein concentration and protein type (i.e., CN and SP).

  11. Inferring the Behavior, Concentration and Flux of CO2 from the Suboceanic Mantle from Undegassed Ocean Ridge and Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Michael, P. J.; Graham, D. W.

    2015-12-01

    We determined glass and vesicle CO2 contents, plus trace element contents for fifty-one ultradepleted mid-ocean ridge basalt (MORB) glasses distributed globally. Sixteen had no vesicles and were volatile undersaturated. Thirty-five had vesicles and were slightly oversaturated. If this latter group lost bubbles during emplacement, then CO2/Ba calculated for the undersaturated group alone is the most reliable and uniform ratio at 98±10, and CO2/Nb is 283±32. If they did not lose bubbles, then CO2/Nb is the most uniform ratio for the entire suite of ultradepleted MORBs at 291±132, while CO2/Ba decreases with incompatible element enrichment. For a wider range of compositions, we used published estimates of CO2 in enriched basalts that retained vesicles e.g., "popping rocks", and from melt inclusions in normal MORBs. As incompatible element enrichment increases, CO2/Nb increases from 283±32 in ultradepleted MORBs to 603±69 in depleted melt inclusions to 936±132 in enriched basalts. In contrast, CO2/Ba is nearly constant at 98±10, 106±24 and 111±11 respectively. This suggests that Ba is the best proxy for estimating CO2 contents of MORBs, with an overall average CO2/Ba = 105±9. Atlantic, Pacific and Indian basalts have similar values. Gakkel ridge has anomalously high Ba and low CO2/Ba. Using the CO2/Ba ratio and an average MORB composition, the CO2 concentration of a primary, average MORB is 2085+473/-427 ppm while primary NMORB has 1840ppm CO2. The annual flux of CO2 from mid-ocean ridges is 1.25±0.16 x 1014 g/yr (0.93 - 1.61 x 1014 g/yr is possible): higher than published estimates that use CO2/3He in MORB and the abyssal ocean 3He flux. This may be accounted for by a CO2/3He ratio that is higher than the commonly accepted MORB ratio of 2x109 due to leverage by more enriched basalts. NMORB mantle has 183 ppm CO2 based on simple melting models. More realistic estimates of depleted mantle composition yield lower estimates of ~60-130ppm, with large

  12. Effects of Increased CO2 on Fish Gill and Plasma Proteome

    PubMed Central

    Bresolin de Souza, Karine; Jutfelt, Fredrik; Kling, Peter; Förlin, Lars; Sturve, Joachim

    2014-01-01

    Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen β chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1γ, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health. PMID:25058324

  13. Partitioning of photosynthetic electron flow between CO2 and O 2 reduction in a C 3 leaf (Phaseolus vulgaris L.) at different CO 2 concentrations and during drought stress.

    PubMed

    Cornic, G; Briantais, J M

    1991-01-01

    Photosystem II chlorophyll fluorescence and leaf net gas exchanges (CO2 and H2O) were measured simultaneously on bean leaves (Phaseolus vulgaris L.) submitted either to different ambient CO2 concentrations or to a drought stress. When leaves are under photorespiratory conditions, a simple fluorescence parameter ΔF/ Fm (B. Genty et al. 1989, Biochem. Biophys. Acta 990, 87-92; ΔF = difference between maximum, Fm, and steady-state fluorescence emissions) allows the calculation of the total rate of photosynthetic electron-transport and the rate of electron transport to O2. These rates are in agreement with the measurements of leaf O2 absorption using (18)O2 and the kinetic properties of ribulose-1,5bisphosphate carboxylase/oxygenase. The fluorescence parameter, ΔF/Fm, showed that the allocation of photosynthetic electrons to O2 was increased during the desiccation of a leaf. Decreasing leaf net CO2 uptake, either by decreasing the ambient CO2 concentration or by dehydrating a leaf, had the same effect on the partitioning of photosynthetic electrons between CO2 and O2 reduction. It is concluded that the decline of net CO2 uptake of a leaf under drought stress is only due, at least for a mild reversible stress (causing at most a leaf water deficit of 35%), to stomatal closure which leads to a decrease in leaf internal CO2 concentration. Since, during the dehydration of a leaf, the calculated internal CO2 concentration remained constant or even increased we conclude that this calculation is misleading under such conditions.

  14. Multi-model trends in East African rainfall associated with increased CO2

    NASA Astrophysics Data System (ADS)

    McHugh, Maurice J.

    2005-01-01

    Nineteen coupled ocean-atmosphere general circulation models participating in the Coupled Model Intercomparison Program (CMIP) were used to analyze future rainfall conditions over East Africa under enhanced CO2 conditions. 80 year control runs of these models indicated that four models produced mean annual rainfall distributions closely resembling climatological means and all four models had normalized root mean square errors well within the bounds of observed variability. East African (10°N-20°S, 25°-50°E) rainfall data from transient 80 year experiments which featured CO2 increases of 1% per year were compared with 80 year control simulations. Results indicate enhanced annual and seasonal rainfall rates, and increased extreme wet period frequency. These results indicate that East Africa may face a future in which mosquito-borne diseases such as malaria and Rift Valley fever proliferate resulting from increased CO2.

  15. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Remy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.

    2015-02-01

    Atmospheric concentration measurements are used to adjust the daily to monthly budget of fossil fuel CO2 emissions of the Paris urban area from the prior estimates established by the Airparif local air quality agency. Five atmospheric monitoring sites are available, including one at the top of the Eiffel Tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion adjusts prior knowledge about the anthropogenic and biogenic CO2 fluxes from the Airparif inventory and an ecosystem model, respectively, with corrections at a temporal resolution of 6 h, while keeping the spatial distribution from the emission inventory. These corrections are based on assumptions regarding the temporal autocorrelation of prior emissions uncertainties within the daily cycle, and from day to day. The comparison of the measurements against the atmospheric transport simulation driven by the a priori CO2 surface fluxes shows significant differences upwind of the Paris urban area, which suggests a large and uncertain contribution from distant sources and sinks to the CO2 concentration variability. This contribution advocates that the inversion should aim at minimising model-data misfits in upwind-downwind gradients rather than misfits in mole fractions at individual sites. Another conclusion of the direct model-measurement comparison is that the CO2 variability at the top of the Eiffel Tower is large and poorly represented by the model for most wind speeds and directions. The model's inability to reproduce the CO2 variability at the heart of the city makes such measurements ill-suited for the inversion. This and the need to constrain the budgets for the whole city suggests the assimilation of upwind-downwind mole fraction gradients between sites at the edge of the urban area only. The inversion significantly improves the agreement

  16. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2

    SciTech Connect

    Finzi, Adrien C; Norby, Richard J; Califapietra, Carlo; Gielen, Birgit; Iversen, Colleen M; Jackson, Robert B; Kubiske, Mark E; Childs, Joanne; Schlesinger, William H; Ceulemans, Reinhart

    2007-01-01

    Forest ecosystems are important sinks for rising concentrations of atmospheric CO2. In a previous data synthesis of four forest FACE experiments (1), forest net primary production (NPP) increased by 23 2% when the forests were grown under atmospheric concentrations of CO2 predicted for the latter half of this century. Because nitrogen (N) availability commonly limits forest productivity, more N must be taken up from the soil and/or the N already assimilated by trees must be used more efficiently to support high rates of forest productivity under elevated CO2. Biogeochemical models predict that increases in forest NPP under elevated CO2 in N-limited ecosystems result in a significant increase in N-use efficiency (NUE), and that additional uptake of N by trees under elevated CO2 is only possible in ecosystems where N is not limiting. Here, experimental evidence demonstrates that patterns of N uptake and NUE under elevated CO2 differed from that predicted by biogeochemical models. The uptake of N increased under elevated CO2 at the Rhinelander, Duke and Oak Ridge National Laboratory (ORNL) FACE sites, yet fertilization studies at the Duke and ORNL FACE sites showed that tree growth and forest NPP were strongly limited by N availability. By contrast, NUE increased under elevated CO2 only at the POP-EUROFACE site where fertilization studies showed that N was not limiting to tree growth. In reviewing data from the forest FACE experiments, we suggest that some combination of increasing fine root production, increased rates of soil organic matter (SOM) decomposition, and increased allocation of carbon (C) to mycorrhizal fungi is likely to account for greater N uptake under elevated CO2 at the forest FACE sites. To accurately forecast the response of forest ecosystems to rising concentrations of atmospheric CO2, biogeochemical models must be reformulated to allow C transfers belowground that result in additional N uptake under elevated CO2.

  17. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.; Canadell, J. G.; Le Quéré, C.

    2008-07-01

    We quantify the relative roles of natural and anthropogenic influences on the growth rate of atmospheric CO2 and the CO2 airborne fraction, considering both interdecadal trends and interannual variability. A combined ENSO-Volcanic Index (EVI) relates most (~75%) of the interannual variability in CO2 growth rate to the El-Niño-Southern-Oscillation (ENSO) climate mode and volcanic activity. Analysis of several CO2 data sets with removal of the EVI-correlated component confirms a previous finding of a detectable increasing trend in CO2 airborne fraction (defined using total anthropogenic emissions including fossil fuels and land use change) over the period 1959 2006, at a proportional growth rate 0.24% y-1 with probability ~0.9 of a positive trend. This implies that the atmospheric CO2 growth rate increased slightly faster than total anthropogenic CO2 emissions. An extended form of the Kaya identity relates the increase in the CO2 growth rate (1.9% y-1 over 1959 2006) to the growth rates of four global driving factors: population (contributing +1.7% y-1); per capita income (+1.8% y-1); the total carbon intensity of the global economy (-1.7% y-1); and airborne fraction (averaging +0.2% y-1 with strong interannual variability). Together, the recent (post-2000) increase in growth of per capita income and decline in the negative growth (improvement) in the carbon intensity of the economy will drive a significant acceleration in the CO2 growth rate over coming decades, unless these recent trends reverse. To achieve an annual reduction rate in total emissions of -2% y-1 (which would halve emissions in 35 years) in the presence of a per-capita income growth rate of 2% y-1 and a population growth rate of 1% y-1, it is necessary to achieve a decline in total carbon intensity of the economy at a rate of around -5% y-1, three times the 1959 2006 average.

  18. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration

    NASA Astrophysics Data System (ADS)

    Archer, D.; Maier-Reimer, E.

    1994-01-01

    DURING the last glaciation, the atmospheric carbon dioxide concentration was about 30% less than the Holocene pre-industrial value1. Although this change is thought to originate in oceanic processes2, the mechanism is still unclear. On timescales of thousands of years, the pH of the ocean (and hence the atmospheric CO2 concentration) is determined by a steady-state balance between the supply rate of calcium carbonate to the ocean from terrestrial weathering, and the alteration and removal of carbonate by burial in sediments2-4. Degradation of organic carbon in sediments promotes the dissolution of calcium carbonate in sedimentary pore water5,6, so that a change in the relative rates at which organic carbon and calcium carbonate are deposited on the sea floor should drive a compensating change in ocean pH. Here we use a model that combines ocean circulation, carbon cycling and other sedimentary processes to explore the relationship between deep-sea-sediment chemistry and atmospheric CO2 concentration. When we include organic-carbon-driven dissolution in our model, a 40% decrease in the calcite deposition rate is enough to decrease the atmospheric CO2 concentration to the glacial value.

  19. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.

    2004-01-01

    We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the

  20. Effect of Relative Humidity and CO2 Concentration on the Properties of Carbonated Reactive MgO Cement Based Materials

    NASA Astrophysics Data System (ADS)

    Bilan, Yaroslav

    Sustainability of modern concrete industry recently has become an important topic of scientific discussion, and consequently there is an effort to study the potential of the emerging new supplementary cementitious materials. This study has a purpose to investigate the effect of reactive magnesia (reactive MgO) as a replacement for general use (GU) Portland Cements and the effect of environmental factors (CO2 concentrations and relative humidity) on accelerated carbonation curing results. The findings of this study revealed that improvement of physical properties is related directly to the increase in CO2 concentrations and inversely to the increase in relative humidity and also depends much on %MgO in the mixture. The conclusions of this study helped to clarify the effect of variable environmental factors and the material replacement range on carbonation of reactive magnesia concrete materials, as well as providing an assessment of the optimal conditions for the effective usage of the material.

  1. Experimental and numerical results for CO2 concentration and temperature profiles in an occupied room

    NASA Astrophysics Data System (ADS)

    Cotel, Aline; Junghans, Lars; Wang, Xiaoxiang

    2014-11-01

    In recent years, a recognition of the scope of the negative environmental impact of existing buildings has spurred academic and industrial interest in transforming existing building design practices and disciplinary knowledge. For example, buildings alone consume 72% of the electricity produced annually in the United States; this share is expected to rise to 75% by 2025 (EPA, 2009). Significant reductions in overall building energy consumption can be achieved using green building methods such as natural ventilation. An office was instrumented on campus to acquire CO2 concentrations and temperature profiles at multiple locations while a single occupant was present. Using openFOAM, numerical calculations were performed to allow for comparisons of the CO2 concentration and temperature profiles for different ventilation strategies. Ultimately, these results will be the inputs into a real time feedback control system that can adjust actuators for indoor ventilation and utilize green design strategies. Funded by UM Office of Vice President for Research.

  2. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    DOE PAGES

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; ...

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore » conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less

  3. Evaluation of Potential pH-Driven Metal Release Due to Elevated Groundwater CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Varadharajan, C.; Zheng, L.; Spycher, N.; Birkholzer, J. T.; Trautz, R. C.; Pugh, J. D.; Esposito, R.; Nico, P. S.

    2012-12-01

    The injection of carbon dioxide (CO2) emissions from industrial sources into deep geologic formations is a potential option for the control of CO2 concentrations in the atmosphere. While the risk of CO2 migration from the storage reservoir into potable groundwater is low considering the safeguards of site characterization and permitting, it is important to understand what type of potential impacts could occur and how to identify these impacts. Elevated CO2 concentrations may potentially lead to a decrease in groundwater pH and the subsequent release of metals and ions from natural sediments into the groundwater solution. In this risk scenario, potential metal release processes, such as enhanced mineral dissolution, metal desorption and/or ion exchange reactions, may be driven by changes in groundwater pH, the presence of carbonate ligands in solution or a combination of the two. However, a detailed understanding and a distinction of pH-driven and carbonate-driven metal release reactions are important for the development of site monitoring plans and remediation strategies, required by regulations in the unlikely event of a release. Hence, in this study we characterized metal release from natural sediments into synthetic groundwater solutions at two pH conditions in order to mimic the native groundwater pH (pH ~8.5) and the low pH conditions expected in the event of elevated CO2 concentrations (pH~5). In addition, results are compared between tests performed in the presence and absence of elevated CO2. Metal release was investigated in lab-scale sequential leaching experiments using two sediment types with different organic carbon contents over a time-frame of 25 days. Supernatant solutions were monitored for pH and characterized in terms of metal concentrations (ICP-MS), total inorganic carbon (TIC) and anion composition. Furthermore, experimental results were compared with data from a field study involving the controlled release of groundwater containing dissolved

  4. A new reference method for the determination of the total CO2 concentration in biological fluids.

    PubMed

    Dijkhuizen, P; Fongers, T M; Rispens, P; Zijlstra, W G

    1978-06-15

    It appeared that a part of a measuring system recently developed for the determination of the oxygen content of blood (Dijkhuizen, P., Kwant, G. and Zijlstra, W.G. (1976) Clin. Chim. Acta 68, 79), was perfectly suitable for measuring the total CO2 content of blood, plasma or other fluids. CO2-free room air is pumped through an extraction vessel in which all the CO2 of the sample is set free by an acid reagent, and swept by the carrier gas to a titration vessel containing a BaCl2 solution. CO2 is bound as BaCO3 and the ensuing H+ titrated with an NaOH solution. The method was tested by measuring a series of Na2CO3 reference solutions. The values measured by titration amounted to 99.4 +/- 0.8% of the concentration of the reference solutions (range 10--50 mmol 1(-1). The coefficient of variation was 1.8% for 5 mmol 1(-1) solutions and 0.2% for 50 mmol 1(-1) solutions. In measuring a series of 60 blood samples the coefficient of variation as calculated from duplicate determinations was 1%.

  5. [Measurements of CO2 Concentration Profile in Troposphere Based on Balloon-Borne TDLAS System].

    PubMed

    Yao, Lu; Liu, Wen-qing; Liu, Jian-guo; Kan, Rui-feng; Xu, Zhen-yu; Ruan, Jun; Yuan, Song

    2015-10-01

    The main source and sink of CO2 in the atmosphere are concentrated in the troposphere. It is of great significance to the study of CO2 flux and global climate change to obtain the accurate tropospheric CO2 concentration profile. For the characteristics of high resolution, high sensitivity and fast response of tunable diode laser absorption spectroscopy (TDLAS), a compact balloon-borne system based on direct absorption was developed to detect the CO2 concentration profiles by use of the 2 004. 02 nm, R(16), v1+v3 line without the interfere of H2O absorption and the CO2 density of the number of molecules below 10 km in the troposphere was obtained. Due to the balloon-borne environment, a compact design of one single board integrated with laser driver, signal conditioning, spectra acquiring and concentration retrieving was developed. Limited by the working capability and hardware resources of embedded micro-processor, the spectra processing algorithm was optimized to reduce the time-cost. Compared with the traditional TDLAS sensors with WMS technique, this system was designed based on the direct absorption technique by means of an open-path Herriott cell with 20 m optical-path, which avoided the process of standardization and enhanced the environmental adaptation. The universal design of hardware and software platform achieved diverse gas measuring by changing the laser and adjusting some key parameters in algorithm. The concept of compact design helped to reduce the system's power and volume and balanced the response speed and measure precision. The power consumes below 1.5 W in room temperature and the volume of the single board is 120 mm x 100 mm x 25 mm, and the measurement accuracy is ± 0.6 x 10(-6) at 1.5 s response time. It has been proved that the system can realize high precision detection of CO2 profile at 15 m vertical resolution in troposphere and TDLAS is an available method for balloon-borne detection.

  6. Effect of soil moisture and temperature on N2O and CO2 concentrations in soil irrigated with purified wastewater

    NASA Astrophysics Data System (ADS)

    Nosalewicz, M.; Stępniewska, Z.; Nosalewicz, A.

    2013-09-01

    Flooded organic soils are potentially important sources of greenhouse gases. The effect of soil temperature and moisture on the concentration of N2O and CO2 at two depths of organic soil flooded with two doses of purified wastewater was studied. Nitrous oxide concentrations at the 10-30 cm depth range were generally increased with an increase in soil moisture, showing dependence on the aeration status of soil. The maximum values of N2O concentrations were higher at the 50-100 than 10-30 cm depth range, but a similar pattern of increasing maximum values of N2O concentration with an increasing input of nitrogen in treatments at both depth ranges was observed. The maximum concentrations of carbon dioxide within the 50-100 cm depth range remained at a similar level in all treatments reaching 7.1-7.7%, which indicated weak relations with the input of water and nitrogen at this depth range. We conclude that the N2O and CO2 concentrations at 10-30 cm depths in the examined organic soil flooded with 600mm year-1 of purified wastewater exhibited a similar level as the concentrations in soil watered only by precipitation.

  7. Effets d'amplification du changement d'usage des terres sur le taux de CO2 atmosphériqueAmplification effect of changes in land use and concentration of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Gitz, Vincent; Ciais, Philippe

    2003-12-01

    A model is presented here, which attempts to determine interactions between change in land use and concentration of atmospheric CO 2 over the 1700-2100 period. The main impact of the conversion of forests to agricultural areas is the increase of atmospheric CO 2 because of the losses of biomass and soil carbon in favour of the atmosphere. This raise will probably increase in the next years, correlated with the proportion of cultivated areas. We show here that this first-order effect is amplified by the correlative decrease of terrestrial sinks of CO 2; in fact, as forests are replaced by cultivated parcels, carbon residence time in biosphere decreases, as well as sequestration ability of these ecosystems. This amplification effect leads to an additional increase in atmospheric CO 2, which could reach 100 ppm in 2100. The uncertainties on the range of such an increase are important since they cumulate both uncertainties on the behaviour (sink or source) of terrestrial ecosystems in the future and inherent uncertainties of the modeling of carbon fluxes linked to changing land uses… Such an additional increase in CO 2 is partially limited by the ocean reservoir and by the existing CO 2 sinks in primary non-anthropologically disturbed ecosystems. The results imply that conservation of primary forests, for which primary productivity and carbon time of residence are high, is an efficient strategy for greenhouse-effect mitigation. To cite this article: V. Gitz, P. Ciais, C. R. Geoscience 335 (2003).

  8. Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests.

    PubMed

    Arneth, A; Schurgers, G; Hickler, T; Miller, P A

    2008-01-01

    Emissions of isoprene from terrestrial vegetation are known to affect atmospheric chemical properties, like its oxidation capacity or the concentration of tropospheric ozone. The latter is of concern, since besides being a potent greenhouse gas, O(3) is toxic for humans, animals, and plants even at relatively low concentrations. Isoprene-emitting forests in the vicinity of NO(x) pollution sources (like cities) can contribute considerably to O(3) formation, and to the peak concentrations observed during hot summer weather. The biogenic contribution to O(3) concentrations is generally thought to increase in a future, warmer climate--pushing values beyond health thresholds possibly even more frequently and over larger areas--given that emissions of isoprene are highly temperature-dependent but also because of the CO(2) fertilisation of forest productivity and leaf growth. Most projections of future emissions, however, do not include the possible CO(2)-inhibition of leaf isoprene metabolism. We explore the regional distribution of emissions from European woody vegetation, using a mechanistic isoprene-dynamic vegetation model framework. We investigate the interactive effects of climate and CO(2) concentration on forest productivity, species composition, and isoprene emissions for the periods 1981-2000 and 2081-2100. Our projection of future emissions includes a direct CO(2)-isoprene inhibition. Across the model domain, we show that this direct effect has the potential to offset the stimulation of emissions that could be expected from warmer temperatures and from the increased productivity and leaf area of emitting vegetation. Changes in forest species composition that may result from climate change can play a substantial additional role in a region's future emissions. Changes in forest area or area planted in woody biofuels in general are not noticeable in the overall European forest isoprene budget, but--as was the case for changes in species composition

  9. Rising CO2 from historical concentrations enhances the physiological performance of Brassica napus seedlings under optimal water supply but not under reduced water availability.

    PubMed

    Faralli, Michele; Grove, Ivan G; Hare, Martin C; Kettlewell, Peter S; Fiorani, Fabio

    2017-02-01

    The productivity of many important crops is significantly threatened by water shortage, and the elevated atmospheric CO2 can significantly interact with physiological processes and crop responses to drought. We examined the effects of three different CO2 concentrations (historical ~300 ppm, ambient ~400 ppm and elevated ~700 ppm) on physiological traits of oilseed rape (Brassica napus L.) seedlings subjected to well-watered and reduced water availability. Our data show (1) that, as expected, increasing CO2 level positively modulates leaf photosynthetic traits, leaf water-use efficiency and growth under non-stressed conditions, although a pronounced acclimation of photosynthesis to elevated CO2 occurred; (2) that the predicted elevated CO2 concentration does not reduce total evapotranspiration under drought when compared with present (400 ppm) and historical (300 ppm) concentrations because of a larger leaf area that does not buffer transpiration; and (3) that accordingly, the physiological traits analysed decreased similarly under stress for all CO2 concentrations. Our data support the hypothesis that increasing CO2 concentrations may not significantly counteract the negative effect of increasing drought intensity on Brassica napus performance.

  10. Active microbial community in gas reservoirs in the North German Plain and the effects of high CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Frerichs, Janin; Gniese, Claudia; Mühling, Martin; Krüger, Martin

    2010-05-01

    From the IPCC report on global warming, it is clear that large-scale solutions are needed immediately to reduce emissions of greenhouse gases. The CO2 capture and storage offers one option for reducing the greenhouse gas emissions. Favourable CO2 storage sites are depleted gas and oil fields and thus, are currently investigated by the BMBF-Geotechnologien RECOBIO-2 project. Our study is focussing on the direct influence of high CO2 concentrations on the autochthonous microbial population and environmental parameters (e.g. availability of nutrients). The gas fields Schneeren in the 'North German Plain' is operated by Gaz de France SUEZ E&V Deutschland GmbH. The conditions in the reservoir formation waters of two bore wells differ in various geochemical parameters (pH, salinity and temperature). In previous studies the community of this gas field was described by Ehinger et al. 2009. Based on these results our study included cultivation and molecular biological approaches. Our results showed significant differences of the community structure in regional distinctions of the gas reservoir. The activity profiles of two wells differed clearly in the inducible activity after substrate addition. The fluids of well A showed a high methane production rate after the addition of methanol or acetate. Well B showed a high sulphide production after the addition of sulphate and hydrogen. The molecular biological analysis of the original fluids supports the activity profile for both sites. The community analysis via real-time PCR showed for the production well head A a higher abundances for Archaea than for B. The community at site B in contrast was dominated by Bacteria. Fluids of both wells were also incubated with high CO2 concentrations in the headspace. These enrichments showed a significant decrease of methane and sulphide production with increasing CO2 levels. Currently, the community composition is analysed to identify changes connected to increased CO2 concentrations. This

  11. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.

    PubMed

    Patil, Lakkanagouda; Kaliwal, Basappa

    2016-11-23

    Photosynthetic mitigation of CO2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO2 fixation rate was observed at 15% CO2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO2 fixation was 0.12 ± 0.002 g/l/day at 15% CO2 concentration. The carbohydrate and lipid content were maximum at 25% CO2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO2 concentration.

  12. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States.

    PubMed

    Schimel, D; Melillo, J; Tian, H; McGuire, A D; Kicklighter, D; Kittel, T; Rosenbloom, N; Running, S; Thornton, P; Ojima, D; Parton, W; Kelly, R; Sykes, M; Neilson, R; Rizzo, B

    2000-03-17

    The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink from CO2 and climate effects of 0.08 gigaton of carbon per year. The best estimates of the total sink from inventory data are about three times larger, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate. The modeled sink varies by about 100% from year to year as a result of climate variability.

  13. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States

    USGS Publications Warehouse

    Schimel, D.; Melillo, J.; Tian, H.; McGuire, A.D.; Kicklighter, D.; Kittel, T.; Rosenbloom, N.; Running, S.; Thornton, P.; Ojima, D.; Parton, W.; Kelly, R.; Sykes, M.; Neilson, R.; Rizzo, B.

    2000-01-01

    The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink from CO2 and climate effects of 0.08 gigaton of carbon per year. The best estimates of the total sink from inventory data are about three times larger, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate. The modeled sink varies by about 100% from year to year as a result of climate variability.

  14. Climate Response to the Increase in Tropospheric Ozone since Preindustrial Times: A Comparison between Ozone and Equivalent CO2 Forcings

    NASA Technical Reports Server (NTRS)

    Mickley L. J.; Jacob, D. J.; Field, B. D.; Rind, D.

    2004-01-01

    We examine the characteristics of the climate response to anthropogenic changes in tropospheric ozone. Using a general circulation model, we have carried out a pair of equilibrium climate simulations with realistic present-day and preindustrial ozone distributions. We find that the instantaneous radiative forcing of 0.49 W m(sup -2) due to the increase in tropospheric ozone since preindustrial times results in an increase in global mean surface temperature of 0.28 C. The increase is nearly 0.4 C in the Northern Hemisphere and about 0.2 C in the Southern Hemisphere. The largest increases (greater than 0.8 C) are downwind of Europe and Asia and over the North American interior in summer. In the lower stratosphere, global mean temperatures decrease by about 0.2 C due to the diminished upward flux of radiation at 9.6 micrometers. The largest stratospheric cooling, up to 1.0 C, occurs over high northern latitudes in winter, with possibly important implications for the formation of polar stratospheric clouds. To identify the characteristics of climate forcing unique to tropospheric ozone, we have conducted two additional climate equilibrium simulations: one in which preindustrial tropospheric ozone concentrations were increased everywhere by 18 ppb, producing the same global radiative forcing as present-day ozone but without the heterogeneity; and one in which CO2 was decreased by 25 ppm relative to present day, with ozone at present-day values, to again produce the same global radiative forcing but with the spectral signature of CO2 rather than ozone. In the first simulation (uniform increase of ozone), the global mean surface temperature increases by 0.25 C, with an interhemispheric difference of only 0.03 C, as compared with nearly 0.2 C for the heterogeneous ozone increase. In the second simulation (equivalent CO2), the global mean surface temperature increases by 0.36 C, 30% higher than the increase from tropospheric ozone. The stronger surface warming from CO2 is

  15. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Kawa, S. Randy; Sun, Xiaoli; Chen, Jeffrey; Stephen, Mark A.; Collatz, G. James; Mao, Jianping; Allan, Graham

    2007-01-01

    Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570

  16. Elevated CO2 and temperature increase soil C losses from a soy-maize ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warming temperatures and increasing CO2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for three years within the 9th-11th ...

  17. Deep ocean carbonate ion increase during mid Miocene CO2 decline

    PubMed Central

    Kender, Sev; Yu, Jimin; Peck, Victoria L.

    2014-01-01

    Characterised by long term cooling and abrupt ice sheet expansion on Antarctica ~14 Ma ago, the mid Miocene marked the beginning of the modern ice-house world, yet there is still little consensus on its causes, in part because carbon cycle dynamics are not well constrained. In particular, changes in carbonate ion concentration ([CO32−]) in the ocean, the largest carbon reservoir of the ocean-land-atmosphere system, are poorly resolved. We use benthic foraminiferal B/Ca ratios to reconstruct relative changes in [CO32−] from the South Atlantic, East Pacific, and Southern Oceans. Our results suggest an increase of perhaps ~40 μmol/kg may have occurred between ~15 and 14 Ma in intermediate to deep waters in each basin. This long-term increase suggests elevated alkalinity input, perhaps from the Himalaya, rather than other shorter-term mechanisms such as ocean circulation or ecological changes, and may account for some of the proposed atmospheric CO2 decline before ~14 Ma. PMID:24569646

  18. Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent.

    PubMed

    Pacciani, R; Torres, J; Solsona, P; Coe, C; Quinn, R; Hufton, J; Golden, T; Vega, L F

    2011-08-15

    A novel, high temperature solid absorbent based on lithium orthosilicate (Li(4)SiO(4)) has shown promise for postcombustion CO(2) capture. Previous studies utilizing a clean, synthetic flue gas have shown that the absorbent has a high CO(2) capacity, >25 wt %, along with high absorption rates, lower heat of absorption and lower regeneration temperature than other solids such as calcium oxide. The current effort was aimed at evaluating the Li(4)SiO(4) based absorbent in the presence of contaminants found in typical flue gas, specifically SO(2), by cyclic exposure to gas mixtures containing CO(2), H(2)O (up to 25 vol. %), and SO(2) (up to 0.95 vol. %). In the absence of SO(2), a stable CO(2) capacity of ∼ 25 wt % over 25 cycles at 550 °C was achieved. The presence of SO(2), even at concentrations as low as 0.002 vol. %, resulted in an irreversible reaction with the absorbent and a decrease in CO(2) capacity. Analysis of SO(2)-exposed samples revealed that the absorbent reacted chemically and irreversibly with SO(2) at 550 °C forming Li(2)SO(4). Thus, industrial application would require desulfurization of flue gas prior to contacting the absorbent. Reactivity with SO(2) is not unique to the lithium orthosilicate material, so similar steps would be required for other absorbents that chemically react with SO(2).

  19. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Kawa, S. Randy; Sun, Xiaoli; Chen, Jeffrey; Stephen, Mark A.; Collatz, G. James; Mao, Jianping; Allan, Graham

    2007-01-01

    Measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution are needed to quantify processes that regulate CO2 storage by the land and oceans. The Orbiting Carbon Observatory (OCO) is the first space mission focused on atmospheric CO2 for measuring total column CO, and O2 by detecting the spectral absorption in reflected sunlight. The OCO mission is an essential step, and will yield important new information about atmospheric CO2 distributions. However there are unavoidable limitations imposed by its measurement approach. These include best accuracy only during daytime at moderate to high sun angles, interference by cloud and aerosol scattering, and limited signal from CO2 variability in the lower tropospheric CO2 column. We have been developing a new laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a space instrument and mission approach for active measurements of the CO2 mixing ratio at the 1-2 ppmv level. Our technique is much less sensitive to cloud and atmospheric scattering conditions and would allow continuous measurements of CO2 mixing ratio in the lower troposphere from orbit over land and ocean surfaces during day and night. Our approach is to use the 1570nm CO2 band and a 3-channel laser absorption spectrometer (i.e. lidar used an altimeter mode), which continuously measures at nadir from a near polar circular orbit. The approach directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses several tunable fiber laser transmitters which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570

  20. Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils.

    PubMed

    Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping; Chang, Yafei

    2016-11-01

    Glomalin-related soil protein (GRSP), which contains glycoproteins produced by arbuscular mycorrhizal fungi (AMF), as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic materials, is generally categorized into two fractions: easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP). GRSP plays an important role in soil carbon (C) sequestration and can stabilize heavy metals such as lead (Pb), cadmium (Cd), and manganese (Mn). Soil contamination by heavy metals is occurring in conjunction with rising atmospheric CO2 in natural ecosystems due to human activities. However, the response of GRSP to elevated CO2 combined with heavy metal contamination has not been widely reported. Here, we investigated the response of GRSP to elevated CO2 in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Elevated CO2 (700 μmol mol(-1)) significantly increased T- and EE- GRSP concentrations in soils contaminated with Cd, Pb or Cd + Pb. GRSP contributed more carbon to the rhizosphere soil organic carbon pool under elevated CO2 + heavy metals than under ambient CO2. The amount of Cd and Pb bound to GRSP was significantly higher under elevated (compared to ambient) CO2; and elevated CO2 increased the ratio of GRSP-bound Cd and Pb to total Cd and Pb. However, available Cd and Pb in rhizosphere soil under increased elevated CO2 compared to ambient CO2. The combination of both metals and elevated CO2 led to a significant increase in available Pb in rhizosphere soil compared to the Pb treatment alone. In conclusion, increased GRSP produced under elevated CO2 could contribute to sequestration of soil pollutants by adsorption of Cd and Pb.

  1. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Rémy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.

    2014-04-01

    Atmospheric concentration measurements are used to adjust the daily to monthly budget of CO2 emissions from the AirParif inventory of the Paris agglomeration. We use 5 atmospheric monitoring sites including one at the top of the Eiffel tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion tool adjusts the CO2 fluxes (anthropogenic and biogenic) with a temporal resolution of 6 h, assuming temporal correlation of emissions uncertainties within the daily cycle and from day to day, while keeping the a priori spatial distribution from the emission inventory. The inversion significantly improves the agreement between measured and modelled concentrations. However, the amplitude of the atmospheric transport errors is often large compared to the CO2 gradients between the sites that are used to estimate the fluxes, in particular for the Eiffel tower station. In addition, we sometime observe large model-measurement differences upwind from the Paris agglomeration, which confirms the large and poorly constrained contribution from distant sources and sinks included in the prescribed CO2 boundary conditions These results suggest that (i) the Eiffel measurements at 300 m above ground cannot be used with the current system and (ii) the inversion shall rely on the measured upwind-downwind gradients rather than the raw mole fraction measurements. With such setup, realistic emissions are retrieved for two 30 day periods. Similar inversions over longer periods are necessary for a proper evaluation of the results.

  2. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2].

  3. The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric CO2 concentration and climate

    NASA Astrophysics Data System (ADS)

    Kruijt, B.; Barton, C.; Rey, A.; Jarvis, P. G.

    The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.

  4. Tracing changes of N2O emission pathways in a permanent grassland under elevated atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Gorenflo, Andre; Moser, Gerald; Brenzinger, Kristof; Elias, Dafydd; McNamara, Neill; Clough, Tim; Maček, Irena; Vodnik, Dominik; Braker, Gesche; Schimmelpfennig, Sonja; Gerstner, Judith; Müller, Christoph

    2015-04-01

    The increase of greenhouse gases (GHG) in the atmosphere is of concern due to its effect on global temperatures. Nitrous oxide (N2O) with a Global Warming Potential of 298 over a 100 year period is of particular concern because strong feedback effects of elevated atmospheric CO2 on N2O emissions have been observed. However, so far the changes in processes which are responsible for such a feedback effect are only poorly understood. Our study was carried out in situ in a long-term Free Air Carbon dioxide Enrichment (FACE) study on permanent grassland at atmospheric CO2 concentrations 20% above ambient which expected at the middle of this century. We performed an in situ 15N tracing with differentially labelled NH4NO3 to trace the main N2O emission pathways. Over a period of more than one year we monitored at least weakly the N2O emissions with the closed chamber technique and analyzed the 15N signature of the N2O. The observed gaseous emissions under ambient and elevated atmospheric CO2 were associated with the observed gross N transformations and the microbial activities to identify the main emission pathways under ambient and elevated CO2.

  5. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer.

    PubMed

    Kroner, Yulia; Way, Danielle A

    2016-08-01

    Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high-latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol(-1) ) or elevated (EC, 750 μmol mol(-1) ) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat ) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat , dark respiration (Rdark ), and light respiration (Rlight ) rates acclimated to temperature, but not CO2 : the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark , so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10-40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm-grown seedlings by 22-56%. When Rlight was modeled as a constant fraction of Rdark , modeled daily respiratory losses were 11-65% greater than when using measured values of Rlight . Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark .

  6. Finlay-Wilkinson's regression coefficient as a pre-screening criterion for yield responsiveness to elevated atmospheric CO2 concentration in crops.

    PubMed

    Kumagai, Etsushi; Homma, Koki; Kuroda, Eiki; Shimono, Hiroyuki

    2016-11-01

    The rising atmospheric CO2 concentration ([CO2 ]) can increase crop productivity, but there are likely to be intraspecific variations in the response. To meet future world food demand, screening for genotypes with high [CO2 ] responsiveness will be a useful option, but there is no criterion for high [CO2 ] responsiveness. We hypothesized that the Finlay-Wilkinson regression coefficient (RC) (for the relationship between a genotype's yield versus the mean yield of all genotypes in a specific environment) could serve as a pre-screening criterion for identifying genotypes that respond strongly to elevated [CO2 ]. We collected datasets on the yield of 6 rice and 10 soybean genotypes along environmental gradients and compared their responsiveness to elevated [CO2 ] based on the regression coefficients (i.e. the increases of yield per 100 µmol mol(-1) [CO2 ]) identified in previous reports. We found significant positive correlations between the RCs and the responsiveness of yield to elevated [CO2 ] in both rice and soybean. This result raises the possibility that the coefficient of the Finlay-Wilkinson relationship could be used as a pre-screening criterion for [CO2 ] responsiveness.

  7. Response of a sedge wetland to sub-ambient atmospheric CO2 concentrations: Comparing field measurements to modeled ecosystem gas exchange.

    NASA Astrophysics Data System (ADS)

    Rasse, D. P.; Unterkoffler, B.; Peresta, G.; Francois, L. M.; Gerard, J.; Drake, B. G.

    2002-05-01

    Low rubisco carboxylation and water use efficiency responses to sub-ambient atmospheric CO2 concentration constrain plant productivity. . How would a present day ecosystem respond to conditions that prevailed between 14000 BC and 7000 BC, as the atmospheric CO2 concentration increased from 190 to 260 ppmv following the last ice age? The objective of our study was to evaluate the response of a natural ecosystem to reduced atmospheric CO2 concentrations by field measurements and by mechanistic simulation modeling. Because of our extensive databases of Scirpus olneyi response to elevated CO2 and a comprehensive mechanistic model developed specifically for this ecosystem, we conducted our study on native stands of this salt marsh plant. In the present study, net CO2 assimilation rates were measured for present ambient(PE)- and 2xPE -CO2-grown Scirpus olneyi exposed to 165, 265, 365, 515, and 715 ppmv CO2 in open top chambers. As compared to ambient conditions, maximum assimilation rates were approximately divided by a factor 2 at the sub ambient level of 265 ppmv and by a factor 3 at 165 ppmv. Plants grown at 2xPE-CO2 displayed lower assimilation rates than PE-CO2 plants irrespective of the CO2 concentration at which measurements were conducted. The simulation model, previously developed with PE-CO2 and 2xPE-CO2 data from our databases was calibrated with the sub-ambient CO2 data from this study. These results raise the possibility that plants grown at sub-ambient levels of atmospheric CO2 would acclimate by increasing the amounts of rubisco and the stomatal density. But could the cost of these adaptations be met by plants growing at cooler temperatures, less water, and shorter growing seasons which would have accompanied low atmospheric CO2 ? Model estimates of plant productivity from 14000 BC to pre-industrial conditions will be presented, together with an analysis of nitrogen availability impacts on this productivity.

  8. Diurnal and phenological variations of O 3 and CO 2 fluxes of rice canopy exposed to different O 3 concentrations

    NASA Astrophysics Data System (ADS)

    Tong, Lei; Wang, Xiaoke; Geng, Chunmei; Wang, Wei; Lu, Fei; Song, Wenzhi; Liu, Hongjie; Yin, Baohui; Sui, Lihua; Wang, Qiong

    2011-10-01

    A dynamic chamber system was designed to measure simultaneously the diurnal and phenological canopy ozone (O 3) and carbon dioxide (CO 2) fluxes in the paddy field under different O 3 concentrations (0, 40, 80 and 120 nmol mol -1). On the diurnal timescale, a decreasing trend of canopy O 3 flux was observed from morning to evening and the O 3 flux increased with increasing O 3 concentration, while canopy CO 2 flux generally followed the track of photosynthetic active radiation, with higher values at noon except at the end of the growing season when rice was senescent. The constant CO 2 flux among different O 3 treatments in this experiment suggested that the photosynthesis of the rice canopy was not affected by short-duration (ca. 10 min) O 3 exposure of elevated concentration. The daily mean O 3 and CO 2 fluxes increased with rice growth until the dough stage and the late jointing stage, respectively, then decreased with rice aging. The peak values of O 3 flux appeared later than those of CO 2 flux because the latter was closely synchronized with the leaf area index of the rice canopy. Diurnal mean canopy O 3 flux varied from 18.7 to 43.3 nmol m -2 s -1, and nocturnal mean canopy O 3 flux varied from 2.7 to 17.8 nmol m -2 s -1 and from 7.0 to 25.4 nmol m -2 s -1 for the 40 and 80 nmol mol -1 O 3 treatments, respectively. The considerable amount of nocturnal O 3 flux indicated a significant contribution of non-stomatal factors to canopy O 3 uptake. The adjusted Jarvis multiplicative models were used and well parameterized to fit the measured O 3 and CO 2 fluxes of our rice cultivar from environmental variables. Although more validation work is needed, the present results suggest that the models can be considered as a tool for canopy flux predictions in the paddy field.

  9. Elevated CO2 increases energetic cost and ion movement in the marine fish intestine

    PubMed Central

    Heuer, Rachael M.; Grosell, Martin

    2016-01-01

    Energetic costs associated with ion and acid-base regulation in response to ocean acidification have been predicted to decrease the energy available to fish for basic life processes. However, the low cost of ion regulation (6–15% of standard metabolic rate) and inherent variation associated with whole-animal metabolic rate measurements have made it difficult to consistently demonstrate such a cost. Here we aimed to gain resolution in assessing the energetic demand associated with acid-base regulation by examining ion movement and O2 consumption rates of isolated intestinal tissue from Gulf toadfish acclimated to control or 1900 μatm CO2 (projected for year 2300). The active marine fish intestine absorbs ions from ingested seawater in exchange for HCO3− to maintain water balance. We demonstrate that CO2 exposure causes a 13% increase of intestinal HCO3− secretion that the animal does not appear to regulate. Isolated tissue from CO2-exposed toadfish also exhibited an 8% higher O2 consumption rate than tissue from controls. These findings show that compensation for CO2 leads to a seemingly maladaptive persistent base (HCO3−) loss that incurs an energetic expense at the tissue level. Sustained increases to baseline metabolic rate could lead to energetic reallocations away from other life processes at the whole-animal level. PMID:27682149

  10. Intermediate water 14C evidence for the mechanism of deglacial CO2 increase

    NASA Astrophysics Data System (ADS)

    Marchitto, T. M.; Lehman, S. J.; Ortiz, J. D.; van Geen, A.

    2006-12-01

    Carbon sequestration in the ocean is widely considered to be the proximate cause of glacial CO2 lowering. The 14C activity of the atmosphere during the last glacial period appears to have been too high to be explained by increased cosmogenic production alone, implying that exchange of CO2 with the deep ocean must have been reduced. In other words, there must have been a relatively isolated deep ocean carbon reservoir. Likewise there was a sharp drop in atmospheric 14C activity coincident with the Termination I atmospheric CO2 increase, suggesting that the deep isolated reservoir, and therefore the carbon released from the ocean, was extremely depleted in 14C. Both the CO2 and 14C changes occurred in step with Antarctic warming, implicating the Southern Ocean as the main locus of carbon release. We therefore hypothesize that 14C-depleted waters should have spread to the intermediate/upper ocean via Antarctic Intermediate Water and Subantarctic Mode Water during the last deglaciation. We show that at ~700 m water depth off of southern Baja California, very 14C-depleted waters appeared in two stages during the last deglaciation, closely coincident with the atmospheric CO2 rise. The spectral reflectance record from our sediment core bears a remarkable resemblance to Greenland ice δ 18O, allowing us to assign calendar ages to our samples. Radiocarbon activity of paleo-waters is then calculated by age-correcting our benthic foraminiferal 14C measurements. During most of the 40,000 year record, intermediate water activity was ~100-200‰ lower than the atmosphere (like today), but during deglaciation this depletion increased to as much as 450‰. We suggest that this transient drop reflects the mixing of `old' carbon to the Southern Ocean surface, with spreading to the North Pacific via Antarctic Intermediate Water.

  11. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity

    PubMed Central

    Koven, Charles D.; Randerson, James T.

    2016-01-01

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment. PMID:27573831

  12. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity

    NASA Astrophysics Data System (ADS)

    Swann, Abigail L. S.; Hoffman, Forrest M.; Koven, Charles D.; Randerson, James T.

    2016-09-01

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.

  13. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity.

    PubMed

    Swann, Abigail L S; Hoffman, Forrest M; Koven, Charles D; Randerson, James T

    2016-09-06

    Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.

  14. Changes in Air CO2 Concentration Differentially Alter Transcript Levels of NtAQP1 and NtPIP2;1 Aquaporin Genes in Tobacco Leaves

    PubMed Central

    Secchi, Francesca; Schubert, Andrea; Lovisolo, Claudio

    2016-01-01

    The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1) and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1) gene expression varies in tobacco leaves subjected to treatments with different CO2 concentrations (ranging from 0 to 800 ppm), inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO2 concentration ([CO2]) affected net photosynthesis (Pn) and leaf substomatal [CO2] (Ci). Pn was slightly negative at 0 ppm air CO2; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO2] showed one-third reduced stomatal conductance (gs) and transpiration (E), and their gs was in turn slightly lower than in 200 ppm– and in 0 ppm–treated leaves. The 800 ppm air [CO2] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO2], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO2 transport, positively responds to CO2 scarcity in the air in the whole range 0–800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO2 transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure. PMID:27089333

  15. An isotopomer strategy to detect plant acclimation to increasing atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Augusti, A.; Betson, T. R.; Schleucher, J.

    2009-04-01

    , but individual D isotopomer abundances are ultimately set by enzyme isotope effects. In tree-ring cellulose, abundance differences between exchanging and non-exchanging isotopomers reflect evaporative enrichment and may be exploited to reconstruct humidity. Finally, we have shown that abundance ratios of non-exchanging D isotopomers are wholly determined by biochemical isotope fractionations, independent of source water. Consequently, isotopomer ratios represent signals of leaf-level metabolic regulation, which are deposited in tree rings. For example, one isotopomer ratio responds to the CO2 concentration during photosynthesis. This effect reflects CO2-induced changes of the metabolic flux ratio of photosynthesis versus photorespiration. Photorespiration reduces the efficiency of photosynthesis, therefore this isotopomer ratio may reveal plant acclimation on time scales of decades, and associated trends in plant productivity. Combining signals reflecting metabolic regulation with climate signals opens the possibility to study acclimation of plants to increasing atmospheric CO2 and concomitant climatic changes, on time scales of decades and centuries.

  16. Dual-Pump Coherent Anti-Stokes Raman Scattering Temperature and CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Lucht, Robert P.; Velur-Natarajan, Viswanathan; Carter, Campbell D.; Grinstead, Keith D., Jr.; Gord, James R.; Danehy, Paul M.; Fiechtner, G. J.; Farrow, Roger L.

    2003-01-01

    Measurements of temperature and CO2 concentration using dual-pump coherent anti-Stokes Raman scattering, (CARS) are described. The measurements were performed in laboratory flames,in a room-temperature gas cell, and on an engine test stand at the U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base. A modeless dye laser, a single-mode Nd:YAG laser, and an unintensified back-illuminated charge-coupled device digital camera were used for these measurements. The CARS measurements were performed on a single-laser-shot basis. The standard deviations of the temperatures and CO2 mole fractions determined from single-shot dual-pump CARS spectra in steady laminar propane/air flames were approximately 2 and 10% of the mean values of approximately 2000 K and 0.10, respectively. The precision and accuracy of single-shot temperature measurements obtained from the nitrogen part of the dual-pump CARS system were investigated in detail in near-adiabatic hydrogen/air/CO2 flames. The precision of the CARS temperature measurements was found to be comparable to the best results reported in the literature for conventional two-laser, single-pump CARS. The application of dual-pump CARS for single-shot measurements in a swirl-stabilized combustor fueled with JP-8 was also demonstrated.

  17. Stability of a NDIR analyser for CO2 at atmospheric concentration.

    PubMed

    Sega, Michela; Amico Di Meane, Elena; Plassa, Margherita

    2002-09-01

    Carbon dioxide monitoring is significant in the environmental field since this gas plays an important role in the greenhouse effect. In order to determine CO2 concentration and to develop simulation models, it is necessary to carry out measurements which are accurate and comparable in time and space, i.e. SI-traceable. Non-dispersive infrared (NDIR) analysers are employed for CO2 measurements, as they are precise and stable. In order to achieve traceability, such instruments have to be characterized and calibrated. At the Istituto di Metrologia "G. Colonnetti"--CNR, a procedure for calibrating NDIR analysers for CO2 at atmospheric level was developed, which enables to calculate a correction for the analyser output. In addition, a complete uncertainty analysis was carried out and a correct traceability chain was established. The goal of the present work is the study of the stability of a NDIR analyser by repeating calibrations during three years and comparing the correction curves obtained to identify a proper re-calibration interval for such analysers. The investigated instrument has good repeatability and reproducibility, hence satisfactory stability during time, as shown by the short-term and long-term compatibility of calibration curves.

  18. Assessment of climate change and increased atmospheric CO2 impacts on water quality in an intensive agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Salmon-Monviola, Jordy; Moreau, Pierre; Benhamou, Cyril; Durand, Patrick; Merot, Philippe; Oehler, François; Gascuel-Odoux, Chantal

    2013-04-01

    Climate change and increasing atmospheric CO2 concentration can lead to disturbances in the global hydrological and nitrogen (N) cycling, and losses in catchment systems. Potential impacts on water and N cycling have been studied in large catchments with a variety of land uses but less attention has focused on agricultural headwater catchments. Despite their relatively small dimensions, headwater catchments of 1-10 km² play a dominant role in N transformations in the landscape, and streams in such catchments may have major impacts on downstream water quantity and quality. This issue is particular important for agricultural catchment which have to reach the WFD targets, where land use changes has to be analysed in combination with climate change. The effects of climate change and rising concentrations of atmospheric CO2 have been studied on (1) changes in hydrological and N balance components on a yearly basis and (2) the seasonal dynamics of water and N fluxes. The spatially distributed agro-hydrological model TNT2 (Topography-based nitrogen Transfers and Transformations) driven by ARPEGE (Action de Recherche Petite Echelle Grande Echelle) climate-model outputs from A1B scenario have been applied on the Kervidy-Naizin headwater catchment (western France), a long term hydrological observatory. Consideration of atmospheric CO2 concentration was implemented at two levels in TNT2: i) to account for the CO2 effect on stomatal conductance TNT2; ii) to consider effect of CO2 on biomass growth. Climate data from ARPEGE model, corrected with the quantile-quantile bias correction method, over 30-year simulation periods were used as TNT2 input (Salmon-Monviola et al., in review). With increased CO2, the main trends in water balance were a significant decrease in annual actual evapotranspiration, a moderate decrease in annual discharge and wetland extent, and a decrease in spring and summer of groundwater recharge and soil water content. Not considering the effects of

  19. Elevated atmospheric CO2 increases water use efficiency in Florida scrub oak

    NASA Astrophysics Data System (ADS)

    Drake, B. G.; Hayek, L. C.; Johnson, D. P.; Li, J.; Powell, T. L.

    2009-12-01

    Plants are expected to have higher rates of photosynthesis and reduced transpiration as atmospheric CO2 (Ca) continues to rise. But will higher Ca reduce water loss, and increase water use efficiency and soil water in native ecosystems? We tested this question using large (3.0m by 2.8m) open top chambers to expose Florida scrub oak on Merritt Island Wildlife Refuge, Kennedy Space Center, FL, from May 1996 to June 2007 to elevated levels of atmospheric CO2, (Ce = Ca + 350ppm) compared to ambient Ca. Although Ce stimulated total shoot biomass 68% by the end of the study, the effect of Ce on annual growth declined each year (Seiler et al. 2009, Global Change Biology15, 356-367). Compared with the effects of Ca, Ce increased net ecosystem CO2 exchange approximately 70% on average for the entire study, increased leaf area index (LAI) seasonally, reduced evapotranspiration except during mid-summer of some years, and, depending on the relative effect of Ce on LAI, increased volumetric soil water content.. These results are consistent with the observation that continental river discharge has increased as Ca has risen throughout the past 50 years (Gedney et al., Nature, Vol. 439, 16 February 2006).

  20. Adjoint-Based Methods for Estimating CO2 Sources and Sinks from Atmospheric Concentration Data

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.

    2003-01-01

    Work to develop adjoint-based methods for estimating CO2 sources and sinks from atmospheric concentration data was initiated in preparation for last year's summer institute on Carbon Data Assimilation (CDAS) at the National Center for Atmospheric Research in Boulder, CO. The workshop exercises used the GSFC Parameterized Chemistry and Transport Model and its adjoint. Since the workshop, a number of simulations have been run to evaluate the performance of the model adjoint. Results from these simulations will be presented, along with an outline of challenges associated with incorporating a variety of disparate data sources, from sparse, but highly precise, surface in situ observations to less accurate, global future satellite observations.

  1. Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases

    USGS Publications Warehouse

    Hinkle, Margaret E.

    1994-01-01

    The measurement of concentrations of volatile species in soil gases has potential for use in geochemical exploration for concealed ore deposits and for monitoring of subsurface contaminants. However, the interpretation of anomalies in surficial gases can be difficult because soil-gas concentrations are dependent on both meteorological and environmental conditions.For this study, concentrations of He, CO2, O2 and N2 and meteorological conditions were monitored for 10–14 months at eight nonmineralized sites in both humid and dry environments. Gases were collected at 0.6–0.7-m depth at seven sites. At one site, gases were collected from 0.3-, 0.6-, 1.2-, and 2.0-m depths; diurnal monitoring studies were conducted at this site also. Rain and snowfall, soil and air temperatures, barometric pressure, and relative humidity were monitored at all the sites. The sand, silt and clay content, and the organic carbon content of surficial soil were measured at each site.Meteorological conditions generally affected He and CO2 concentrations in the same way at all the sites; however, these effects were modified by local environmental conditions. Both seasonal and diurnal concentration changes occurred. The most important seasonal concentration changes were related to rain and snowfall and soil and air temperatures. Seasonal changes tended to be larger then the diurnal changes, but both could be related to the same processes. Local conditions of soil type and organic content affected the amount of pore space and moisture present in the soil and therefore the soil-gas concentrations.

  2. Tunable diode laser absorption spectroscopy on 2.05 μm for the CO2 concentration measurement

    NASA Astrophysics Data System (ADS)

    Pranovich, Alina; Divoky, Martin; Prochazka, Ivan; Mocek, Tomas

    2015-05-01

    An experimental setup for the CO2 concentration measurement operating at 2.05 μm in pulsed mode and its characterization are presented. The system consists of a light source, which is a tunable laser diode operating in pulse mode. The initial radiation from the diode laser is divided into two parts: the first part of the beam is directed to a retro reflector, and the second part is used for diode output power monitoring. The receiving system consists of a focusing optic and a photodiode. The absorption is determined by comparing the intensities of the detected light on wavelengths absorbed and not absorbed by CO2 molecules. The prospects of the system change to a differential absorption lidar (DIAL) with a parametric generator as a light source that increases precision and range of generated wavelengths up to 10 μm are outlined.

  3. Reconstructing CO2 concentrations in basaltic melt inclusions from Cascade cinder cones using Raman analysis of vapor bubbles

    NASA Astrophysics Data System (ADS)

    Aster, E. M.; Wallace, P. J.; Moore, L.; Gazel, E.; Bodnar, R. J.

    2014-12-01

    Because melt inclusions (MIs) trap melt prior to eruptive degassing, they are useful probes of melt volatile concentrations. However, during post-entrapment cooling and crystallization, the melt in the inclusion contracts more than the mineral host, causing depressurization and nucleation of a vapor bubble. This causes pressure-soluble volatiles, particularly CO2, to exsolve from the melt into the bubble. To explore the extent of CO2 loss, CO2 densities in bubbles were estimated using data from Raman analysis of olivine-hosted melt inclusions from two cinder cones in the southern Cascade Arc (Basalt of Round Valley Butte [BRVB]; Basalt of Old Railroad Grade [BORG]). In BRVB, bubble vol. % (bubble vol./MI vol.) and measured CO2 densities ranged from 0.9 - 6.7 vol. % and 0.05- 0.24 g/cm3, respectively. In BORG, bubble vol. % and CO2 densities ranged from 1.4 - 9.2 vol. % and 0.07 - 0.29 g/cm3, respectively. To eliminate MI containing bubbles that were co-entrapped with the melt, we used a model from Riker (2005) to predict bubble vol. % as a function of the difference between eruption and formation temperatures. This suggested that bubbles larger than ~3.3 vol. % should be eliminated from CO2 reconstructions. Using average values of MI H2O and CO2 measured by FTIR, we added CO2 from the bubbles back into the MIs to obtain estimates of dissolved CO2 at the time of trapping. Analyzed concentrations were 933 ppm CO2 and 2.8 wt. % H2O for BORG (2.7 kbar, or ~9 km depth), with a reconstructed CO2 concentration of 1860 ± 612 (2s) ppm. Analyzed concentrations for BRVB were 426 ppm CO2 and 1.6 wt. % H2O (1.1 kbar, or ~3.7 km depth), with a reconstructed CO2 concentration of 2320 ± 1688 (2s) ppm. Using the reconstructed CO2 concentrations, VolatileCalc estimates place both BORG and BRVB MI entrapment at 4.3 kbar, or ~14 km depth. Thus, adding the CO2 in bubbles back to the CO2 in the glass of MIs is essential for determining accurate depths of magma crystallization.

  4. Elevated pCO2 effects on the geochemistry of carbonate aquifers: calcite dissolution as a driver of elevated metal concentrations

    NASA Astrophysics Data System (ADS)

    Wunsch, A.; Navarre-Sitchler, A. K.; Moore, J.; McCray, J. E.

    2012-12-01

    Geological carbon capture, utilization and storage has gained momentum in the last decade as a viable option of reducing anthropogenic emissions of CO2, with several demonstration projects completed, in progress or planned for upcoming years. However, large-scale CO2-injection operations are accompanied by concerns of CO2 leakage from deep geological repositories and subsequent contact with shallower aquifers, such as underground sources of drinking water. Direct toxicity of CO2 is of lesser concern; rather, it is the acidification of aquifers from increased CO2 partial-pressures (pCO2), which may lead to release of metals into groundwater through mineral dissolution and metal desorption. Previous geochemical studies have suggested that the presence of calcite in aquifer material would reduce the hazard of metal release by effectively buffering acidity via calcite dissolution at elevated pCO2, thus placing carbonate aquifers at lesser risk in case of CO2 leakage. Yet calcite is rarely found in pure form, and often contains a wide range of impurities, including metals such as As, Cr, and Pb, in solid-solution. Dissolution of calcite during acidity buffering is accompanied by release of these impurities from the calcite lattice. We show through experimental work that dissolution of calcite is the primary mechanism responsible for elevated concentrations of metals in carbonate aquifers at high pCO2. It is also evident that the mechanism responsible for metal release, i.e. dissolution or desorption, is metal-specific and pCO2-specific. Modeling work based on our experimental results suggests that in reducing aquifers calcite can contribute more to release of metals than sulfides, which are generally viewed as likely sources of metals in aquifers, during a hypothetical 30-year CO2 leak. In addition, modeling work suggests that when sulfide minerals are present in a carbonate aquifer, metals release would be more sensitive to pO2 than to pCO2.

  5. Concentration of soil CO2 as an indicator of the decalcification rate after liming treatment

    NASA Astrophysics Data System (ADS)

    Chmiel, Stanisław; Hałas, Stanisław; Głowacki, Sławomir; Sposób, Joanna; Maciejewska, Ewa; Trembaczowski, Andrzej

    2016-04-01

    This paper presents the results of investigation of decalcification of acid sandy and loamy sand soils by infiltration waters, and potential Ca-leaching after liming treatment. For this purpose, monthly measurements were made of the concentration of CO2 in the soil air, dissolved inorganic carbon in the soil waters, and their ionic composition. The determined dissolved inorganic carbon ranged from 5.9 to 10.6 mg dm-3 and from 9.9 to 16.5 mg dm-3 for the sandy and loamy sand soil, respectively. The Ca concentration in soil waters was determined as 5.9-12.4 mg dm-3 in sandy soil and 14.2-19.8 mg dm-3 in soil loamy sand. The calculated rate of decalcification amounted to 23.0 kg ha-1 year-1 in soil sandy and 19.4 kg ha-1 year-1 in loamy sand soil. The potential Ca-leaching is predicted as 124 kg ha-1 year-1 for S and 87 kg ha-1 year-1 for loamy sand soil. At the treatment level of 3 000 kg ha-1 4 year-1 of CaO, 20% of the Ca-fertilizer can be leached after the liming treatment. The results of the CO2 concentration in the soil air may be useful in estimation of Ca-leaching from soils developed by slightly clayey sands and clayey sands in zones with a moderate climate.

  6. Spatial analysis of CO2 concentration in an unpolluted environment in northern Spain.

    PubMed

    Pérez, Isidro A; Sánchez, M Luisa; García, M Ángeles; Pardo, Nuria

    2012-12-30

    CO(2) transport in the low atmosphere near the surface at night was analysed using spatial procedures applied to back trajectories. Concentration and meteorological data were obtained at a rural site during a seven and a half month campaign. Daily evolution of CO(2) skewness showed positive values during the night and negative values during the day. One concentration and one recirculation factor, an indicator of local recirculation, were associated with each back trajectory calculated during the night to study source and meteorological influences on concentrations recorded. Moreover, four procedures were used to analyse the trajectories, and their strengths and weaknesses were also investigated. (1) The nonparametric trajectory analysis applied with two weight functions successfully marked the most contributing region. (2) Hexagonal cells were used to account for radial distribution of trajectories. The potential source contribution function calculated in these cells highlighted the influence of the source against meteorology, this procedure therefore proving the best to mark the source direction. (3) Trajectory sector analysis revealed the most contributing wind sector and emphasised the role of recirculation in the E-S sectors. (4) Cluster analysis grouped neighbouring trajectories and was the most flexible procedure to classify them, providing a contrast of around 12 ppm between medians obtained in the SE cluster and the least contributing group.

  7. Atmospheric CO2 concentrations and δ13C values across the Antarctic Circumpolar Current between New Zealand and Antarctica

    NASA Astrophysics Data System (ADS)

    Longinelli, Antonio; Giglio, Federico; Langone, Leonardo; Lenaz, Renzo; Ori, Carlo; Selmo, Enricomaria

    2007-02-01

    Measurements of atmospheric CO2 concentrations were repeatedly carried out on the vessel `Italica' of the Italian National Research Program in Antarctica, during cruises from Italy to Antarctica. Discrete air samples were also collected in 4-L Pyrex flasks during these cruises in order to carry out δ13C analyses on atmospheric CO2. The results acquired between New Zealand and Antarctica are reported here. The mean growth rate of the CO2 concentration from 1996 to 2003 in this area of the Southern Oceans is of about 1.8 ppmv yr-1, in good agreement with NOAA/CMDL measurements. The rates of increase from cruise to cruise are rather variable. From 1996-1997 to 1998-1999 cruise the yearly growth rate is 2.75 ppmv yr-1, close to the large growth rates measured in several areas and mainly related to the most severe El Niño event of the last years. The other yearly growth rates are of about 1.3 and 2 ppmv for the periods 1998-1999 to 2001-2002 and 2001-2002 to 2003-2004, respectively. The large difference between these two values is probably related to the uncertainty on the only two 2001-2002 discrete measurements of CO2 concentration in this area. The measured δ13C values show two completely different distributions and a large interannual variability. The 1998-1999, 2002-2003, and 2003-2004 results obtained between about 55°S and 65°S across the Antarctic Polar Front show a marked negativization of up to more than 2‰ when compared to the background values. The results are related to local source regions of CO2, as frequently found in the Southern Ocean by several authors; the negative δ13C values are tentatively related to the possible contribution of different causes. Among them, the southward negative gradient of δ13C of the dissolved inorganic carbon, the contribution from upwelling deep waters and from subsurface processes between the Northern SubAntarctic Front and the Polar Front, and, partly, the contribution of CO2 of biogenic origin, e.g. from

  8. Varying Response of the Concentration and Yield of Soybean Seed Mineral Elements, Carbohydrates, Organic Acids, Amino Acids, Protein, and Oil to Phosphorus Starvation and CO2 Enrichment

    PubMed Central

    Singh, Shardendu K.; Barnaby, Jinyoung Y.; Reddy, Vangimalla R.; Sicher, Richard C.

    2016-01-01

    A detailed investigation of the concentration (e.g., mg g-1 seed) and total yield (e.g., g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at either sufficient (0.50 mM P, control) or deficient (0.10 and 0.01 mM, P-stress) levels of P under aCO2 and eCO2 (400 and 800 μmol mol-1, respectively). Both the concentration and yield of 36 out of 38 seed components responded to P treatment and on average 25 and 11 components increased and decreased, respectively, in response to P starvation. Concentrations of carbohydrates (e.g., glucose, sugar alcohols), organic acids (e.g., succinate, glycerate) and amino acids increased while oil, and several minerals declined under P deficiency. However, the yield of the majority of seed components declined except several amino acids (e.g., phenylalanine, serine) under P deficiency. The concentration-based relationship between seed protein and oil was negative (r2 = 0.96), whereas yield-based relationship was positive (r2 = 0.99) across treatments. The CO2 treatment also altered the concentration of 28 out of 38 seed components, of which 23 showed decreasing (e.g., sucrose, glucose, citrate, aconitate, several minerals, and amino acids) while C, iron, Mn, glycerate, and oil showed increasing trends at eCO2. Despite a decreased concentration, yields of the majority of seed components were increased in response to eCO2, which was attributable to the increased seed production especially near sufficient P nutrition. The P × CO2 interactions for the concentration of amino acids and the yield of several components were due to the lack of their response to eCO2 under control or the severe P starvation, respectively. Thus, P deficiency primarily reduced the concentration of oil and mineral elements but enhanced a majority of other components. However, seed components yield

  9. Varying Response of the Concentration and Yield of Soybean Seed Mineral Elements, Carbohydrates, Organic Acids, Amino Acids, Protein, and Oil to Phosphorus Starvation and CO2 Enrichment.

    PubMed

    Singh, Shardendu K; Barnaby, Jinyoung Y; Reddy, Vangimalla R; Sicher, Richard C

    2016-01-01

    A detailed investigation of the concentration (e.g., mg g(-1) seed) and total yield (e.g., g plant(-1)) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at either sufficient (0.50 mM P, control) or deficient (0.10 and 0.01 mM, P-stress) levels of P under aCO2 and eCO2 (400 and 800 μmol mol(-1), respectively). Both the concentration and yield of 36 out of 38 seed components responded to P treatment and on average 25 and 11 components increased and decreased, respectively, in response to P starvation. Concentrations of carbohydrates (e.g., glucose, sugar alcohols), organic acids (e.g., succinate, glycerate) and amino acids increased while oil, and several minerals declined under P deficiency. However, the yield of the majority of seed components declined except several amino acids (e.g., phenylalanine, serine) under P deficiency. The concentration-based relationship between seed protein and oil was negative (r(2) = 0.96), whereas yield-based relationship was positive (r(2) = 0.99) across treatments. The CO2 treatment also altered the concentration of 28 out of 38 seed components, of which 23 showed decreasing (e.g., sucrose, glucose, citrate, aconitate, several minerals, and amino acids) while C, iron, Mn, glycerate, and oil showed increasing trends at eCO2. Despite a decreased concentration, yields of the majority of seed components were increased in response to eCO2, which was attributable to the increased seed production especially near sufficient P nutrition. The P × CO2 interactions for the concentration of amino acids and the yield of several components were due to the lack of their response to eCO2 under control or the severe P starvation, respectively. Thus, P deficiency primarily reduced the concentration of oil and mineral elements but enhanced a majority of other components. However, seed

  10. [Effects of elevated atmospheric CO2 concentration and nitrogen addition on the growth of Calamagrostis angustifolia in Sanjiang Plain freshwater marsh].

    PubMed

    Zhao, Guang-Ying; Liu, Jing-Shuang; Wang, Yang

    2011-06-01

    By using open top chamber, an experiment with two levels of atmospheric CO2 concentration (350 and 700 micromol x mol(-1)) and three levels of nitrogen supply (0, 5, and 15 g N x m(-2)) was conducted to investigate the effects of elevated atmospheric CO2 and nitrogen supply on the growth of Calamagrostis angustifolia in the freshwater marsh of Sanjiang Plain. Under elevated atmospheric CO2 concentration, the phenophase of C. angustifolia advanced. Jointing stage was advanced by 1-2 d, and maturity stage was advanced by 3 d. Elevated atmospheric CO2 promoted the tillering of C. angustifolia, with the increment of tiller number under 0, 5, and 15 g x m(-2) of nitrogen supply being 8.2% (P < 0.05), 8.4% (P < 0.05), and 5.5% (P > 0.05), respectively. Elevated atmospheric CO2 also promoted the aboveground biomass at jointing and heading stages, the increment being 12.4% and 20.9% (P < 0.05), respectively, and increased the belowground biomass at later growth stages, with the increment at dough stage and maturity stage being 20.5% and 20.9% (P < 0.05), respectively. The responses of C. angustifolia biomass to elevated atmospheric CO2 concentration depended on nitrogen supply level. Under sufficient nitrogen supply, the promotion effect of elevated atmospheric CO2 concentration on the biomass of C. angustifolia was higher.

  11. Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO2 Concentration in the Absence of Drought1[OA

    PubMed Central

    Leakey, Andrew D.B.; Uribelarrea, Martin; Ainsworth, Elizabeth A.; Naidu, Shawna L.; Rogers, Alistair; Ort, Donald R.; Long, Stephen P.

    2006-01-01

    While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless, some controlled environment studies have reported direct stimulation of C4 photosynthesis and productivity, as well as physiological acclimation, under elevated [CO2]. To test if these effects occur in the open air and within the Corn Belt, maize (Zea mays) was grown in ambient [CO2] (376 μmol mol−1) and elevated [CO2] (550 μmol mol−1) using Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not experience water stress. In the absence of water stress, growth at elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Nor was there any CO2 effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and nitrogen status. Stomatal conductance was lower (−34%) and soil moisture was higher (up to 31%), consistent with reduced crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by rising [CO2] in the absence of drought. This suggests that rising [CO2] may not provide the full dividend to North American maize production anticipated in projections of future global food supply. PMID:16407441

  12. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings.

    PubMed

    Rakowski, Andrzej Z; Nakamura, Toshio; Pazdur, Anna

    2008-10-01

    Radiocarbon concentration in the atmosphere is significantly lower in areas where man-made emissions of carbon dioxide occur. This phenomenon is known as Suess effect, and is caused by the contamination of clean air with non-radioactive carbon from fossil fuel combustion. The effect is more strongly observed in industrial and densely populated urban areas. Measurements of carbon isotope concentrations in a study area can be compared to those from areas of clear air in order to estimate the amount of carbon dioxide emission from fossil fuel combustion by using a simple mathematical model. This can be calculated using the simple mathematical model. The result of the mathematical model followed in this study suggests that the use of annual rings of trees to obtain the secular variations of 14C concentration of atmospheric CO2 can be useful and efficient for environmental monitoring and modeling of the carbon distribution in local scale.

  13. Effects of elevated CO2 concentration on growth, photosynthetic characteristics and biomass of wheat (Triticum aestivum L.) in Lunar Palace 1

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Liu, Hui; Liu, Hong; Wang, Minjuan; Fu, Yuming; Shao, Lingzhi; Liu, Guanghui; Yu, Juan

    Short- and long-term effects of elevated CO2 concentration on growth, photosynthetic characteristics and biomass of wheat (Triticum aestivum L.) are examined during 90 days in Lunar Palace 1. While a short-term exposure to elevated CO2 induces a large increase in photosynthesis in wheat plants, long-term growth in elevated CO2 often results in a smaller increase due to reduced photosynthetic capacity. In this study, it was also shown that, net photosynthesis per unit leaf area was raised at an increased CO2 concentration partly due to a decrease in photorespiration, partly due to an increased substrate supply. Transpiration was reduced due to a lower stomatal conductance. The growth response of whole plants to a high CO2 concentration will be the main subject of this paper. Firstly, an estimation is made to what extent a doubling in CO2 concentration affects wheat plant growth in Lunar Palace 1. Secondly, the mechanisms behind this growth stimulation will be assessed. Finally, in those cases where wheat plants are grown over a range of environmental conditions, we select that condition where control plants are growing fastest. Thus, this study may be a matter of interest for researchers in both space and unban agriculture fields.

  14. Emerging Patterns In The Isotopic Composition Of Soil CO2 Concentrations, Soil CO2 Production, And Soil-Atmosphere CO2 Exchange At The Watershed Scale: On The Intersection Between Hydrology And Biology In The Critical Zone

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, D. A.; Liang, L.; Lorenzo, T. M.

    2014-12-01

    Stable isotopes are commonly used to understand how physical and biological processes mediate the exchange of carbon between terrestrial ecosystems and the atmosphere. Numerous studies have described fundamental relationships between environmental variables, the carbon isotopic composition (δ13C) of recently assimilated sugars in plants, litter, soil carbon, or recently respired CO2. However, studies that examine the spatial variability of the 13C content of forest soils at the landscape scale are lacking. We report on measurements of the carbon isotopic composition of soil CO2 concentrations (δ13CC), soil CO2 production (δ13CP), and soil-atmosphere CO2 exchange (δ13CD) across a subalpine forest of the northern Rocky Mountains of Montana over two growing seasons. We evaluate the variability of these measurements across different landscape positions. Our analysis demonstrates that soil moisture and the lateral redistribution of soil water are strong predictors of the spatial variability of δ13CC, δ13CP, and δ13CD at the watershed scale. We suggest that there are concomitant yet independent effects of soil water on physical (i.e., soil gas diffusivity) and biological (i.e., photosynthetic activity) processes that mediate the 13C composition of forest soils. We show systematic spatial variability in the δ13C of forest soils at the landscape scale that can be useful to accurately predict and model land-atmosphere CO2 exchange over complex terrain.

  15. Acclimation to elevated CO2 increases constitutive glucosinolate levels of Brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds.

    PubMed

    Klaiber, J; Dorn, S; Najar-Rodriguez, A J

    2013-05-01

    Plants growing under elevated CO2 concentration may acclimate by modifying chemical traits. Most studies have focused on the effects of environmental change on plant growth and productivity. Potential effects on chemical traits involved in resistance, and the consequences of such effects on plant-insect interactions, have been largely neglected. Here, we evaluated the performance of two Brassica specialist herbivores from contrasting feeding guilds, the leaf-feeding Pieris brassicae and the phloem-feeding Brevicoryne brassicae, in response to potential CO2-mediated changes in primary and major secondary metabolites (glucosinolates) in Brassica oleracea. Plants were exposed to either ambient (400 ppm) or elevated (800 ppm) CO2 concentrations for 2, 6, or 10 weeks. Elevated CO2 did not affect primary metabolites, but significantly increased glucosinolate content. The performance of both herbivores was significantly reduced under elevated CO2 suggesting that CO2-mediated increases in constitutive defense chemistry could benefit plants. However, plants with up-regulated defenses could also be subjected to intensified herbivory by some specialized herbivores, due to a chemically-mediated phagostimulatory effect, as documented here for P. brassicae larvae. Our results highlight the importance of understanding acclimation and responses of plants to the predicted increases in atmospheric CO2 concentrations and the concomitant effects of these responses on the chemically-mediated interactions between plants and specialized herbivores.

  16. Response of the Atlantic Thermohaline Circulation to Increased Atmospheric CO2 in a Coupled Model.

    NASA Astrophysics Data System (ADS)

    Hu, Aixue; Meehl, Gerald A.; Washington, Warren M.; Dai, Aiguo

    2004-11-01

    Changes in the thermohaline circulation (THC) due to increased CO2 are important in future climate regimes. Using a coupled climate model, the Parallel Climate Model (PCM), regional responses of the THC in the North Atlantic to increased CO2 and the underlying physical processes are studied here. The Atlantic THC shows a 20-yr cycle in the control run, qualitatively agreeing with other modeling results. Compared with the control run, the simulated maximum of the Atlantic THC weakens by about 5 Sv (1 Sv 106 m3 s-1) or 14% in an ensemble of transient experiments with a 1% CO2 increase per year at the time of CO2 doubling. The weakening of the THC is accompanied by reduced poleward heat transport in the midlatitude North Atlantic. Analyses show that oceanic deep convective activity strengthens significantly in the Greenland Iceland Norway (GIN) Seas owing to a saltier (denser) upper ocean, but weakens in the Labrador Sea due to a fresher (lighter) upper ocean and in the south of the Denmark Strait region (SDSR) because of surface warming. The saltiness of the GIN Seas are mainly caused by an increased salty North Atlantic inflow, and reduced sea ice volume fluxes from the Arctic into this region. The warmer SDSR is induced by a reduced heat loss to the atmosphere, and a reduced sea ice flux into this region, resulting in less heat being used to melt ice. Thus, sea ice related salinity effects appear to be more important in the GIN Seas, but sea ice melt-related thermal effects seem to be more important in the SDSR region. On the other hand, the fresher Labrador Sea is mainly attributed to increased precipitation. These regional changes produce the overall weakening of the THC in the Labrador Sea and SDSR, and more vigorous ocean overturning in the GIN Seas. The northward heat transport south of 60°N is reduced with increased CO2, but increased north of 60°N due to the increased flow of North Atlantic water across this latitude.


  17. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism

    PubMed Central

    Flamholz, Avi; Hood, Rachel D.; Milo, Ron

    2016-01-01

    Many carbon-fixing bacteria rely on a CO2 concentrating mechanism (CCM) to elevate the CO2 concentration around the carboxylating enzyme ribulose bisphosphate carboxylase/oxygenase (RuBisCO). The CCM is postulated to simultaneously enhance the rate of carboxylation and minimize oxygenation, a competitive reaction with O2 also catalyzed by RuBisCO. To achieve this effect, the CCM combines two features: active transport of inorganic carbon into the cell and colocalization of carbonic anhydrase and RuBisCO inside proteinaceous microcompartments called carboxysomes. Understanding the significance of the various CCM components requires reconciling biochemical intuition with a quantitative description of the system. To this end, we have developed a mathematical model of the CCM to analyze its energetic costs and the inherent intertwining of physiology and pH. We find that intracellular pH greatly affects the cost of inorganic carbon accumulation. At low pH the inorganic carbon pool contains more of the highly cell-permeable H2CO3, necessitating a substantial expenditure of energy on transport to maintain internal inorganic carbon levels. An intracellular pH ≈8 reduces leakage, making the CCM significantly more energetically efficient. This pH prediction coincides well with our measurement of intracellular pH in a model cyanobacterium. We also demonstrate that CO2 retention in the carboxysome is necessary, whereas selective uptake of HCO3− into the carboxysome would not appreciably enhance energetic efficiency. Altogether, integration of pH produces a model that is quantitatively consistent with cyanobacterial physiology, emphasizing that pH cannot be neglected when describing biological systems interacting with inorganic carbon pools. PMID:27551079

  18. Stomatal and pavement cell density linked to leaf internal CO2 concentration

    PubMed Central

    Šantrůček, Jiří; Vráblová, Martina; Šimková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas

    2014-01-01

    Background and Aims Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Methods Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. 13C abundance (δ13C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. Key Results SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. Conclusions It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci–SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. PMID:24825295

  19. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism.

    PubMed

    Mangan, Niall M; Flamholz, Avi; Hood, Rachel D; Milo, Ron; Savage, David F

    2016-09-06

    Many carbon-fixing bacteria rely on a CO2 concentrating mechanism (CCM) to elevate the CO2 concentration around the carboxylating enzyme ribulose bisphosphate carboxylase/oxygenase (RuBisCO). The CCM is postulated to simultaneously enhance the rate of carboxylation and minimize oxygenation, a competitive reaction with O2 also catalyzed by RuBisCO. To achieve this effect, the CCM combines two features: active transport of inorganic carbon into the cell and colocalization of carbonic anhydrase and RuBisCO inside proteinaceous microcompartments called carboxysomes. Understanding the significance of the various CCM components requires reconciling biochemical intuition with a quantitative description of the system. To this end, we have developed a mathematical model of the CCM to analyze its energetic costs and the inherent intertwining of physiology and pH. We find that intracellular pH greatly affects the cost of inorganic carbon accumulation. At low pH the inorganic carbon pool contains more of the highly cell-permeable H2CO3, necessitating a substantial expenditure of energy on transport to maintain internal inorganic carbon levels. An intracellular pH ≈8 reduces leakage, making the CCM significantly more energetically efficient. This pH prediction coincides well with our measurement of intracellular pH in a model cyanobacterium. We also demonstrate that CO2 retention in the carboxysome is necessary, whereas selective uptake of HCO3 (-) into the carboxysome would not appreciably enhance energetic efficiency. Altogether, integration of pH produces a model that is quantitatively consistent with cyanobacterial physiology, emphasizing that pH cannot be neglected when describing biological systems interacting with inorganic carbon pools.

  20. Application of Monitoring Methods for Remote Detection of Atmospheric CO2 - Concentration Levels during a Back-Production Test at the Ketzin Pilot Site

    NASA Astrophysics Data System (ADS)

    Schütze, Claudia; Sauer, Uta; Schossland, Andreas; Möller, Ingo; Seegert, Christian; Schlömer, Stefan; Möller, Fabian; Liebscher, Axel; Martens, Sonja; Dietrich, Peter

    2015-04-01

    . However, the data clearly demonstrate that especially meteorological conditions have to be taken into account for the industrial automation of atmospheric monitoring and the determination of detection thresholds. Increased atmospheric CO2 concentrations could reliably be detected with the applied monitoring methods during calm weather conditions. In contrary, windy situations cause a rapid dilution of the vented CO2 resulting in no increased atmospheric CO2 concentrations levels determined with all these methods even in the vicinity of the CO2 vent-off stack.