Sample records for increasing fe content

  1. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    PubMed

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al-5Mg-Mn alloy with low Fe content (<0.1 wt %), intermetallic Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  2. Microstructural evolution with various Ti contents in Fe-based hardfacing alloys using a GTAW technique

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Chun; Liu, Yi-Chia; Wang, Jia-Siang; Wu, Weite

    2014-07-01

    The aim of this study is to discuss the effect of microstructural development with different Ti contents in Fe-based hardfacing alloys. A series of Fe-Cr-C-Si-Mn-xTi alloy fillers was deposited on SS400 low carbon steel substrate using oscillating gas tungsten arc welding. The microstructure in the Fe-based hardfacing alloy without Ti content addition included: the primary γ, eutectic γ+(Fe,Cr)3C, eutectic γ+(Fe,Cr)2C and martensite. With increasing Ti contents, the microstructures showed the primary TiC carbide, γ phase and eutectic γ+(Fe,Cr,Ti)3C. The amount and size of TiC carbide in the hardfacing layers increased as the Ti content increased. However, the eutectic γ+(Fe,Cr,Ti)3C content decreased as the Ti content increased. According to the results of the hardness test, the lowest hardness value (HRC 54.93) was found with 0% wt% Ti and the highest hardness (HRC 60.29) was observed with 4.87 wt% Ti.

  3. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    PubMed Central

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %), intermetallic Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  4. Effect of arsenic content and quenching temperature on solidification microstructure and arsenic distribution in iron-arsenic alloys

    NASA Astrophysics Data System (ADS)

    Xin, Wen-bin; Song, Bo; Huang, Chuan-gen; Song, Ming-ming; Song, Gao-yang

    2015-07-01

    The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe-As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe-0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe-4wt%As and Fe-10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe-0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe-4wt%As and Fe-10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe-10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2As phase in Fe-4wt%As and Fe-10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.

  5. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags

    NASA Astrophysics Data System (ADS)

    Lü, Jian-fang; Jin, Zhe-nan; Yang, Hong-ying; Tong, Lin-lin; Chen, Guo-bao; Xiao, Fa-xin

    2017-07-01

    An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.

  6. The redox state of the mantle during and just after core formation.

    PubMed

    Frost, D J; Mann, U; Asahara, Y; Rubie, D C

    2008-11-28

    Siderophile elements are depleted in the Earth's mantle, relative to chondritic meteorites, as a result of equilibration with core-forming Fe-rich metal. Measurements of metal-silicate partition coefficients show that mantle depletions of slightly siderophile elements (e.g. Cr, V) must have occurred at more reducing conditions than those inferred from the current mantle FeO content. This implies that the oxidation state (i.e. FeO content) of the mantle increased with time as accretion proceeded. The oxygen fugacity of the present-day upper mantle is several orders of magnitude higher than the level imposed by equilibrium with core-forming Fe metal. This results from an increase in the Fe2O3 content of the mantle that probably occurred in the first 1Ga of the Earth's history. Here we explore fractionation mechanisms that could have caused mantle FeO and Fe2O3 contents to increase while the oxidation state of accreting material remained constant (homogeneous accretion). Using measured metal-silicate partition coefficients for O and Si, we have modelled core-mantle equilibration in a magma ocean that became progressively deeper as accretion proceeded. The model indicates that the mantle would have become gradually oxidized as a result of Si entering the core. However, the increase in mantle FeO content and oxygen fugacity is limited by the fact that O also partitions into the core at high temperatures, which lowers the FeO content of the mantle. (Mg,Fe)(Al,Si)O3 perovskite, the dominant lower mantle mineral, has a strong affinity for Fe2O3 even in the presence of metallic Fe. As the upper mantle would have been poor in Fe2O3 during core formation, FeO would have disproportionated to produce Fe2O3 (in perovskite) and Fe metal. Loss of some disproportionated Fe metal to the core would have enriched the remaining mantle in Fe2O3 and, if the entire mantle was then homogenized, the oxygen fugacity of the upper mantle would have been raised to its present-day level.

  7. The effect of Mn and B on the magnetic and structural properties of nanostructured Fe60Al40 alloys produced by mechanical alloying.

    PubMed

    Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M

    2008-06-01

    The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content. Comparison with previous results on FeAIB alloys shows that Mn promotes the structural stability of the nanostructured powders.

  8. Experimental study of Fe-Mg- and Ca-distribution between coexisting ortho- and clinopyroxenes at P=294 MPa, T=750 and 800° C

    NASA Astrophysics Data System (ADS)

    Fonarev, V. I.; Graphchikov, A. A.

    1982-07-01

    The Fe-Mg-Ca-distribution was investigated in synthesis experiments and with the mineral assemblage orthopyroxene+clinopyroxene+quartz. The phase compositions were identified by X-ray diffraction and, where possible, by electron microprobe. The attainment of equilibrium in the run products was signalled by the compositions from control runs (different solutions) becoming closely similar, by recycling runs, by the attainment of equilibrium from different directions (depending on the composition of starting phases), and by special kinetic experiments. The study produced the following results: (1) the Ca content of the clinopyroxenes decreases with increasing Fe (mol%) from 48.4 at X {Cpx/Fe}=5 to 39.8 at X {Cpx/Fe}=45 (800° C); from 47.6 at X {Cpx/Fe}= 10 to 41.7 at X {Cpx/Fe}=45 (750° C); increasing temperature expands the stability field of the less calcic clinopyroxenes. (2) The Ca content of orthopyroxenes increases slightly with Fe content from 1.8 at X {Opx/Fe}=20.5 to 3.2 at X {Opx/Fe}=75; the temperature effect on the Ca content under the T, P conditions of the experiment was not large. (3) Fe and Mg distribution between the coexisting ortho-and clinopyroxenes is largely temperature-dependent, particularly in the compositional range X {Opx/Fe}=15 75 mol%; as T increases, Fe redistributes from the rhombic to monoclinic mineral. Preliminary estimates of rock formation temperatures using the obtained data show that most of the known two-pyroxene geothermometers overstate the actual values by 50 150° C.

  9. Serrated Flow and Dynamic Strain Aging in Fe-Mn-C TWIP Steel

    NASA Astrophysics Data System (ADS)

    Lan, Peng; Zhang, Jiaquan

    2018-01-01

    The tensile behavior, serrated flow, and dynamic strain aging of Fe-(20 to 24)Mn-(0.4 to 0.6)C twinning-induced plasticity (TWIP) steel have been investigated. A mathematical approach to analyze the DSA and PLC band parameters has been developed. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with a theoretical ordering index (TOI) between 0.1 and 0.3, DSA can occur at the very beginning of plastic deformation and provide serrations during work hardening, while for TOI less than 0.1 the occurrence of DSA is delayed and twinning-dominant work hardening remains relatively smooth. The critical strain for the onset of DSA and PLC bands in Fe-Mn-C TWIP steels decreases as C content increases, while the numbers of serrations and bands increase. As Mn content increases, the critical strain for DSA and PLC band varies irregularly, but the numbers of serrations and bands increase. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with grain size of about 10 to 20 μm, the twinning-induced work hardening rate is about 2.5 to 3.0 GPa, while the DSA-dominant hardening rate is about 2.0 GPa on average. With increasing engineering strain from 0.01 to 0.55 at an applied strain rate of 0.001s-1, the cycle time for PLC bands in Fe-Mn-C TWIP steel increases from 6.5 to 162 seconds, while the band velocity decreases from 4.5 to 0.5 mm s-1, and the band strain increases from 0.005 to 0.08. Increasing applied strain rate leads to a linear increase of band velocity despite composition differences. In addition, the influence of the Mn and C content on the tensile properties of Fe-Mn-C TWIP steel has been also studied. As C content increases, the yield strength and tensile strength of Fe-Mn-C TWIP steel increase, but the total elongation variation against C content is dependent on Mn content. As Mn content increases, the yield strength and tensile strength decrease, while the total elongation increases, despite C content. Taking both tensile properties and serrated flow behavior into consideration, Fe-22Mn-0.4C TWIP steel shows excellent mechanical performance with a high product of tensile strength and total elongation and a slightly serrated stress-strain response. To suppress the negative effect of DSA in Fe-Mn-C TWIP steels on the stability of tensile behavior, a TOI lower than 0.1 is strongly suggested.

  10. Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

    NASA Astrophysics Data System (ADS)

    Liu, Yan-xiang; Zhang, Jian-liang; Wang, Zhi-yu; Jiao, Ke-xin; Zhang, Guo-hua; Chou, Kuo-chih

    2017-02-01

    To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt%. Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron.

  11. Goat milk consumption modulates liver divalent metal transporter 1 (DMT1) expression and serum hepcidin during Fe repletion in Fe-deficiency anemia.

    PubMed

    Díaz-Castro, J; Pulido, M; Alférez, M J M; Ochoa, J J; Rivas, E; Hijano, S; López-Aliaga, I

    2014-01-01

    Iron deficiency is the most prevalent micronutrient deficiency worldwide. In spite of the crucial role of hepatocyte divalent metal transporter 1 (DMT1) and hepcidin in Fe metabolism, to date, no studies have directly tested the role of these proteins in liver Fe metabolism during Fe repletion after induced Fe-deficiency anemia. Therefore, the aim of the current study was to assess the effect of goat or cow milk-based diets on Fe metabolism in one of the main body storage organs, the liver, during the course of Fe repletion with goat or cow milk-based diets in anemic rats. Animals were placed on a preexperimental period of 40 d, a control group receiving a normal-Fe diet and the Fe-deficient group receiving a low-Fe diet (5 mg of Fe/kg of diet). Rats were fed for 30 d with goat or cow milk-based diets with normal Fe content (45 mg of Fe/kg of diet). The hematological parameters, serum hepcidin, hepatosomatic index, liver Fe content, and liver DMT1 expression were determined. During the recovery of the anemia with milk-based diets, the restoration of liver Fe content and hematological parameters, especially with goat milk, increased the red blood cell count, favoring the oxygen supply and weight gain. Moreover, goat milk consumption potentiates liver DMT1 expression, enhancing Fe metabolism and storage. In addition, the increase in serum hepcidin in anemic rats observed in the current study also explains and supports the higher liver Fe content after supplying goat milk, because it blocks the liberation of Fe from hepatocytes, increasing its storage in liver. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Structural, magnetic and Mossbauer studies of TI doped Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (0≤x≤1)

    NASA Astrophysics Data System (ADS)

    Pokharel, G.; Syed Ali, K. S.; Mishra, S. R.

    2015-05-01

    Magnetic compounds of the type Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (x=0.0-1.0) were prepared by arc melting and their structural and magnetic properties were studied by X-ray diffraction (XRD), magnetometery and Mossbauer spectroscopy. The Rietveld analysis of X-ray data shows that these α-Fe free solid-solutions crystallize with Th2Ni17-type structure as main phase along with GdFe2 and TiFe2 as additional phases at higher, x≥0.5 contents. The unit cell volume expands with Ga and Ti content. The Rietveld analysis indicate that both Ti and Ga atoms prefer 12j and 12k sites in both compounds. The effect of Ti and co-substituted Ga-Ti on the bond length are quite different. The saturation magnetization Ms, at 300 K for Gd2Fe17-xTix and Gd2Fe16Ga1-xTix was found to decrease linearly with increasing Ti content. The Ms in both compounds at x=1 reduced by 9% as compared to their parent compounds at x=0. The Curie temperature, Tc, for Gd2Fe17-xTix increased from 513 K (x=0) to 544 K (x=1) while Tc for Gd2Fe16Ga1-xTix reduced from 560 (x=0) to 544 K (x=1) with increase in Ti content. Thus the observed variation in Tc follows Gd2Fe17

  13. Effects of Au content on the structure and magnetic properties of L1{sub 0}-FePt nanoparticles synthesized by the sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang; Institute of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013; Jiang, Yuhong

    2014-07-01

    (FePt){sub 100−x}Au{sub x} (x=0, 5, 10, and 20) nanoparticles were synthesized by the sol–gel method, and effects of Au content on the structural and magnetic properties of samples were investigated. Au doping reduced the phase transition temperature from face-centered cubic (FCC) to face-centered tetragonal (FCT) structure. In addition, additive Au promotes the chemical ordering of L1{sub 0} FePt NPs and increases the grain size of L1{sub 0} FePt NPs. When Au content increased from 0 to 10 at%, the coercivity (H{sub c}) increased due to the increase in degree of ordering S and grain size of L1{sub 0} FePt NPs.more » By increasing the Au content to 20 at%, H{sub c} decreased. - Graphical abstract: (FePt){sub 100}Au{sub 0} NPs are the coexistence of FCT and FCC phases. However, no hints of FCC phase were found for the (FePt){sub 100−x}Au{sub x} NPs (x=5, 10 and 20), which indicates that addition of gold greatly promotes the FCC to FCT phase transition. - Highlights: • (FePt){sub 100−x}Au{sub x} (x=0, 5, 10 and 20) nanoparticles (NPs) were synthesized. • Au addition promotes the chemical ordering of L1{sub 0} FePt NPs. • Au addition reduces ordering temperature of L1{sub 0} FePt NPs from FCC to FCT phase. • (FePt){sub 90}Au{sub 10} NPs show a high coercivity of 9585 Oe at room temperature.« less

  14. Effect of Fe2O3 on the physical and structural properties of bismuth silicate glasses

    NASA Astrophysics Data System (ADS)

    Parmar, Rajesh; Kundu, R. S.; Punia, R.; Aghamkar, P.; Kishore, N.

    2013-06-01

    Iron containing bismuth silicate glasses with compositions 70SiO2ṡ(100-x)Bi2O3ṡxFe2O3 have been prepared using conventional melt-quenching method and their amorphous nature has been investigated using XRD. Density has been measured using Archimedes' principle and molar volume (Vm) have also been estimated. With increase in Fe2O3 content, there is a decrease in density and molar volume of the glass samples. The glass transition temperature (Tg) have been determined using Differential Scanning Calorimetry (DSC) and are observed to increase with increase in Fe2O3 content. In the present glass system bismuth and iron plays the role of network modifier and the symmetry of silicate network goes on increasing with Fe2O3 content and it modifies the physical and structural properties of these glasses.

  15. Surface morphology, optical, and electrochromic properties of nanostructured nickel ferrite (NiFe2O4) prepared by sol-gel method: effects of Ni/Fe molar ratios

    NASA Astrophysics Data System (ADS)

    Bazhan, Z.; Ghodsi, F. E.; Mazloom, J.

    2016-05-01

    Nanostructured nickel ferrite (NF) was prepared by the sol-gel method and calcined at 500 °C for 2 h. The effect of Ni/Fe molar ratios (0, 10, 30, 50 %) on structural, morphological, compositional, optical, and magnetic properties of samples was investigated using analytical tools. XRD patterns indicated the presence of hematite phase in the pure and 10 % NF samples. The samples of 30 and 50 % Ni/Fe molar ratios showed the formation of nickel ferrite structure. Using AFM images, power spectrum density analysis were performed for Ni/Fe with different molar ratio. Also the effect of thickness on morphology of 30 % sample was studied. The fractal dimension increases by increasing the Ni/Fe molar ratio. Optical parameters were evaluated by theoretical approach, and compositional dependence of these parameters was discussed comprehensively. Band gap narrowing was observed in nickel ferrite thin films by increasing the nickel contents from 10 to 50 %. Magnetic analysis revealed that increasing nickel content improved the saturation magnetization. Electrochemical measurements indicated that NF thin films have higher total charge density rather than Fe2O3 thin films and the ion storage capacitance of NF thin films increased by increasing the Ni/Fe content.

  16. Viscosities of Fe Ni, Fe Co and Ni Co binary melts

    NASA Astrophysics Data System (ADS)

    Sato, Yuzuru; Sugisawa, Koji; Aoki, Daisuke; Yamamura, Tsutomu

    2005-02-01

    Viscosities of three binary molten alloys consisting of the iron group elements, Fe, Ni and Co, have been measured by using an oscillating cup viscometer over the entire composition range from liquidus temperatures up to 1600 °C with high precision and excellent reproducibility. The viscosities measured showed good Arrhenius linearity for all the compositions. The viscosities of Fe, Ni and Co as a function of temperature are as follows: \\eqalign{ & \\log \\eta={-}0.6074 + 2493/T\\qquad for\\quad Fe\\\\ & \\log \\eta={-}0.5695 + 2157/T\\qquad for\\quad Ni \\\\ & \\log \\eta={-}0.6620 + 2430/T\\qquad for\\quad Co.} The isothermal viscosities of Fe-Ni and Fe-Co binary melts increase monotonically with increasing Fe content. On the other hand, in Ni-Co binary melt, the isothermal viscosity decreases slightly and then increases with increasing Co. The activation energy of Fe-Co binary melt increased slightly on mixing, and those of Fe-Ni and Ni-Co melts decreased monotonically with increasing Ni content. The above behaviour is discussed based on the thermodynamic properties of the alloys.

  17. Exposure to nitric oxide increases the nitrosyl-iron complexes content in sorghum embryonic axes.

    PubMed

    Simontacchi, Marcela; Buet, Agustina; Lamattina, Lorenzo; Puntarulo, Susana

    2012-02-01

    This work was aimed to investigate nitrosyl-Fe complexes formation by reaction of endogenous ligands and Fe, in sorghum embryonic axes exposed to NO-donors. Electron paramagnetic resonance (EPR) was employed to detect the presence of nitrosyl-Fe complexes in plant embryos, as well as changes in labile iron pool (LIP). Nitrosyl-Fe complexes formation was detected in sorghum embryonic axes homogenates incubated in vitro in the presence of 1 mM of NO donors: diethylenetriamine NONOate (DETA NONOate), S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP). In axes isolated from seeds incubated in vivo in the presence of 1 mM SNP for 24 h, the content of NO was increased by 2-fold, and the EPR spectrum from mononitrosyl-Fe complexes (MNIC) was observed with a concomitant increase in the fresh weight of sorghum axes. The simultaneous exposure to deferoxamine and the NO donor precluded the increase in fresh weight observed in the presence of excess NO. While total Fe content in the axes isolated from seeds exposed to 1mM SNP was not significantly affected as compared to control axes, the LIP was increased by over 2-fold.The data reported suggest a critical role for the generation of complexes between Fe and NO when cells faced a situation leading to a significant increase in NO content. Moreover, demonstrate the presence of MNICs as one of the important components of the LIP, which could actively participate in Fe cellular mobilization. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Variation of magnetic properties with mischmetal content in the resource saving magnets of MM-Fe-B ribbons

    NASA Astrophysics Data System (ADS)

    Li, Zhu-bai; Wang, Li-chen; Geng, Xiao-peng; Hu, Feng-xia; Sun, Ji-rong; Shen, Bao-gen

    2017-03-01

    Magnetic materials of MM-Fe-B (MM=mischmetal) ribbons were prepared using melt spinning method by varying the content of MM. The ribbons contain minor phases besides the main phase of Re2Fe14B. X-ray techniques show that the diffraction peak intensities of the minor phase Fe3B vary with the content of constituent elements, indicating that the amount of minor phase could be tunable. The squareness of hysteresis loop is the best in MM13Fe80.5B6.5 ribbons, which should mainly ascribe to the less amount of minor phase. Henkel plots verify the more uniform magnetization reversals in MM13Fe80.5B6.5 ribbons, and the energy product achieves to the maximum of 12.74 MGOe with the coercivity of 6.50 kOe. With the increase of MM content the coercivity increases monotonically, and reaches to 9.13 kOe in MM15Fe77.5B7.5 ribbons, which should be related with the nature of the defects in the main phase. These investigations show that optimizing the content of constituent elements and phase constitution could improve magnetic properties in the resource-saving magnets of MM-Fe-B ribbons.

  19. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  20. Physical and electrical properties of melt-spun Fe-Si (3–8 wt%) soft magnetic ribbons

    DOE PAGES

    Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.; ...

    2017-12-13

    Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability tomore » manipulate {001} texture development. In conclusion, electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.« less

  1. Physical and electrical properties of melt-spun Fe-Si (3–8 wt.%) soft magnetic ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.

    Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability tomore » manipulate {001} texture development. Electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.« less

  2. Physical and electrical properties of melt-spun Fe-Si (3–8 wt%) soft magnetic ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Jiang, Xiujuan; Kukkadapu, Ravi K.

    Fe-Si alloys ranging from 3 to 8 wt% Si were rapidly solidified using melt spinning. Wheel speeds of 30 m/s and 40 m/s were employed to vary cooling rates. Mössbauer spectroscopic studies indicated the Si content significantly influenced the number of Fe sites, relative abundance of various Fe species, and internal magnetic fields/structural environments. Wheel speed altered Fe speciation only in the 3 wt% sample. Scanning electron microscopy confirmed that increasing the wheel speed refined both the ribbon thickness and grain size. Electron backscatter diffraction results suggest tailoring melt spinning process parameters and alloy chemistry may offer the ability tomore » manipulate {001} texture development. In conclusion, electrical resistivity measurements were observed to increase in response to elevated Si content. Increased hardness was correlated to elevated Si content and wheel speed.« less

  3. Probing the oxidation kinetics of small permalloy particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu

    2017-02-15

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe{sub 2}O{sub 3}/(Ni, Fe){sub 3}O{sub 4} plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method.more » Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature programmed oxidation (TPO) analysis. This work not only give insight knowledge about the oxidation and diffusion processes of small permalloy particles, but also, provides a useful tool for analyzing solid-gas reactions of other materials. - Highlights: • The oxidation kinetics of small NiFe particles were studied by using thermoanalysis. • Grain boundary, lattice, and phase conversion induced diffusions were recognized. • The activation energy of oxidation increases with the Fe content in the alloy. • Each diffusion process corresponds to a characteristic temperature in TPO analysis. • NiFe alloys with ~5–10 wt% Fe content have the lowest oxidation rates.« less

  4. Magnetocaloric effect and corrosion resistance of La(Fe, Si)13 composite plates bonded by different fraction of phenolic resin

    NASA Astrophysics Data System (ADS)

    Zhang, K. S.; Xue, J. N.; Wang, Y. X.; Sun, H.; Long, Y.

    2018-04-01

    La(Fe, Si)13-based composite plates were successfully fabricated using different amount of phenolic resin. The introduction of phenolic resin as binder increased the corrosion resistance and maintained giant magnetocaloric effect for La(Fe, Si)13-based composite plates. It was found that corroded spots were firstly observed on the boundaries between resin and La(Fe, Si)13 particles, rather than in La(Fe, Si)13-based particles, after being immersed in static distilled water. The corrosion rate decreased significantly with the increase of resin content. And the increase of the content of phenolic resin leads to the reduction of corrosion current density. Meanwhile, the volumetric magnetic entropy change ΔSM decreases slightly as the content of phenolic resin increases. The ΔSM of the plates with 3 wt.%, 5 wt.% and 8 wt.% resin are 63.1, 61.2 and 59.8 mJ/cm3 K under a low magnetic field change of 1 T, respectively.

  5. Magnetic cluster expansion simulation and experimental study of high temperature magnetic properties of Fe-Cr alloys.

    PubMed

    Lavrentiev, M Yu; Mergia, K; Gjoka, M; Nguyen-Manh, D; Apostolopoulos, G; Dudarev, S L

    2012-08-15

    We present a combined experimental and computational study of high temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. The magnetic cluster expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as a function of alloy composition. We find that at low (3-6 at.%) Cr content the Curie temperature increases with the increase of Cr concentration. It is maximum at approximately 6 at.% Cr and then decreases for higher Cr content. The same feature is found in thermo-magnetic measurements performed on model Fe-Cr alloys, where a 5 at.% Cr alloy has a higher Curie temperature than pure Fe. The Curie temperatures of 10 and 15 at.% Cr alloys are found to be lower than the Curie temperature of pure Fe.

  6. Viscosity and Structure of CaO-SiO2-P2O5-FetO System with Varying P2O5 and FeO Content

    NASA Astrophysics Data System (ADS)

    Diao, Jiang; Gu, Pan; Liu, De-Man; Jiang, Lu; Wang, Cong; Xie, Bing

    2017-10-01

    A rotary viscosimeter and Raman spectrum were employed to measure the viscosity and structural information of the CaO-SiO2-P2O5-FetO system at 1673 K. The experimental data have been compared with the calculated results using different viscosity models. It shows that the National Physical Laboratory (NPL) and Pal models fit the CaO-SiO2-P2O5-FeOt system better. With the P2O5 content increasing from 5% to 14%, the viscosity increases from 0.12 Pa s to 0.27 Pa s. With the FeO content increasing from 30% to 40%, the viscosity decreases from 0.21 Pa s to 0.12 Pa s. Increasing FeO content makes the complicated molten melts become simple, and increasing P2O5 content will complicate the molten melts. The linear relation between viscosity and structure parameter Q(Si + P) was obtained by regression analysis. The calculated viscosity by using the optimized NPL and Pal model are almost identical with the fitted values.

  7. Magnetic properties of x(Fe2O3).(100-x)[P2O5.Li2O] and x(Fe2O3).(100-x)[P2O5.CaO] glass systems

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin; Racolta, Dania; Ardelean, Gheorghe

    2017-12-01

    Magnetic properties of x(Fe2O3).(100-x)[P2O5 .Li2O] and x(Fe2O3).(100-x)[P2O5 .CaO] with 0 < x ≤ 50 mol % were investigated using magnetic susceptibility measurements. The both glass systems were prepared in the same condition. The valence states and the distribution of iron ions in the glass matrix depend on the Fe2O3 content. For the P2O5.CaO glass matrix with x≤35mol%, the data revealed iron ions as isolated or participating in dipole-dipole interaction. For x > 35 mol% an antiferromagnetic coupling is observed. For the P2O5.Li2O glass matrix, the iron ions behave magnetically similarly as in other oxide glasses, but concentration of Fe2O3 over which magnetic superexchange interactions occur is lower. The absolute magnitude of θp values increases when content of Fe2O3 are increased. If the content of the magnetic ions is increased in the glass, the exchange integral increased and as a result the magnitude of the θP increases.

  8. Microstructures and Mechanical Properties of NiTiFeAlCu High-Entropy Alloys with Exceptional Nano-precipitates

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Wang, Sibing; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2017-01-01

    Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.

  9. Effects of Be, Sr, Fe and Mg interactions on the microstructure and mechanical properties of aluminum based aeronautical alloys

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed Fawzy

    The present work was carried out on a series of heat-treatable aluminum-based aeronautical alloys containing various amounts of magnesium (Mg), iron (Fe), strontium (Sr) and beryllium (Be). Tensile test bars (dendrite arm spacing ~ 24mum) were solutionized for either 5 or 12 hours at 540°C, followed by quenching in warm water (60°C). Subsequently, these quenched samples were aged at 160°C for times up to 12 hours. Microstructural assessment was performed. All heat-treated samples were pulled to fracture at room temperature using a servo-hydraulic tensile testing machine. The results show that Be causes partial modification of the eutectic silicon (Si) particles similar to that reported for Mg addition. Addition of 0.8 wt.% Mg reduced the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, without Sr, a peak corresponding to the formation of a Be-Fe phase (Al8Fe2BeSi) was detected at 611°C. The Be-Fe phase precipitates in a script-like morphology. A new quinary eutectic-like reaction was observed to take place near the end of solidification of high Mg, high Fe, Be-containing alloys. This new reaction is composed mainly of fine particles of Si, Mg2Si, pi-Al 8Mg3FeSi6 and (Be-Fe) phases. The volume fraction of this reaction decreased with the addition of Sr. The addition of Be has a noticeable effect on decreasing the beta-phase length, or volume fraction, this effect may be limited by adding Sr. Beryllium addition also results in the precipitation of the beta-phase in a nodular form, which reduces the harmful effects of these intermetallics on the alloy mechanical properties. Increasing both Mg and Fe levels led to an increase in the amount of the pi-phase; increasing the iron content led to an increase in the volume fraction of the partially soluble beta- and pi-phases, while Mg2Si particles were completely dissolved. The beta-phase platelets were observed to undergo changes in their morphology due to the dissolution, thinning, necking and fragmentation of these platelets upon increasing the solutionizing time. The pi-phase was observed to dissolve and/or transform into a cluster of very fine beta-phase platelets. In the as-cast conditions, increasing the Mg content leads to increased transformation of beta-phase platelets into Chinese-script pi-phase, regardless of the Fe content. This, in turn, decreases the harmful effect of the beta-phase. Increasing the solutionizing time leads to a decomposition of the pi-phase to the beta-phase, fragmentation of the beta-phase and spheroidization of both the eutectic Si and the pi-phase particles, thus improving alloy tensile properties. Two mechanisms of Mg2Si precipitate coarsening were observed to occur: (1) Ostwald ripening in the solution heat-treated samples and (2) clustering. Coarsening increases with increased solution heat treatment time, increased aging time, as well as with greater Mg contents. Increased Fe levels decrease the alloy quality index (Q) values, whereas adding Mg increases them. Introducing Be, in spite of it being a toxic material, Sr, or both, simultaneously improves the alloy quality index values, regardless of solutionizing time or Fe and Mg levels. Quality index values increase with solution heat treatment time from 5 to 12 hours. Higher Mg contents lead to an increase in alloy ductility, ultimate tensile strength (UTS) and yield strength (YS), while higher Fe levels can drastically decrease these properties. For the same levels of Fe and/or Mg, Be and Sr have significant effects in improving alloy mechanical properties; these effects can be readily observed in low levels of Fe and high Mg contents. Beryllium addition is beneficial in the case of high Fe contents as it lowers the harmful effects of Fe-phases in Al-Si alloys. In the case of high Fe contents, it seems that the addition of 500 ppm of Be is not sufficient for all interactions with other alloying elements. During the melting process the formation of Be-Sr phase (probably SrBe3O4 compound) decreases the free Be content and hence the alloy mechanical properties. The role of Be in preventing the oxidation of Mg and in changing the chemistry and morphology of the Fe-intermetallics is observed through improved mechanical properties of Be-containing alloys. The partial modification effect of both Mg and Be appears to improve the alloy tensile properties. Solutionizing and aging times are important parameters affecting the alloy tensile properties. The Mg2Si precipitates were confirmed to be the main hardening components of the 356 and 357 alloys investigated. The yield strength increases with greater Mg levels, reduced Fe levels, addition of Be, Sr-modification, solution heat treatment time and aging time. The present work was extended to include an investigation of the experimental 7073 aluminum alloy. (Abstract shortened by UMI.).

  10. [Effect of atmospheric CO2 concentration and nitrogen application level on absorption and transportation of nutrient elements in oilseed rape].

    PubMed

    Wang, Wen-ming; Zhang, Zhen-hua; Song, Hai-xing; Liu, Qiang; Rong, Xiang-min; Guan, Chun-yun; Zeng, Jing; Yuan, Dan

    2015-07-01

    Effect of elevated atmospheric-CO2 (780 µmol . mol-1) on the absorption and transportation of secondary nutrient elements (calcium, magnesium, sulphur) and micronutrient elements (iron, manganese, zinc, molybdenum and boron) in oilseed rape at the stem elongation stage were studied by greenhouse simulated method. Compared with the ambient CO2 condition, the content of Zn in stem was increased and the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with no nitrogen (N) application; the contents of Ca, S, B and Zn were increased, and the contents of Mg, Mn, Mo and Fe were decreased under the elevated atmospheric CO2 with N application (0.2 g N . kg-1 soil); except the content of Mo in leaf was increased, the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with two levels of N application. Compared with the ambient CO2 condition, the amounts of Ca and S relative to the total amount of secondary nutrient elements in stem and the amounts of B and Zn relative to the total amount of micronutrient elements in stem were increased under the elevated-CO2 treatment with both levels of N application, and the corresponding values of Mg, Fe, Mn and Mo were decreased; no-N application treatment increased the proportion of Ca distributed into the leaves, and the proportion of Mg distributed into leaves was increased by the normal-N application level; the proportions of Mn, Zn and Mo distributed into the leaves were increased at both N application levels. Without N application, the elevation of atmospheric CO2 increased the transport coefficients of SFe, Mo and SS,B, but decreased the transport coefficients of SMg,Fe, SMg, Mn and SS,Fe, indicating the proportions of Mo, S transported into the upper part of plant tissues was higher than that of Fe, and the corresponding value of B was higher than that observed for S, the corresponding value of Mg was higher than that of Fe and Mn. Under normal-N application, the elevation of atmospheric CO2 increased the transport coefficients of SMg,Fe, SMg,Mn and SS,B, but decreased the transport coefficients of SCa, Mg, SFe,Mo and SS,Fe indicating the proportions of Fe, Mn and Ca transported into the upper part of plant tissues was higher than that of Mg; the corresponding value of B was higher than that observed for S, the corresponding value of Fe was higher than that of Mo, and the corresponding value of S was higher than that of Fe.

  11. Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Anh, Trinh Tuan; Thuan, Vu Manh; Thang, Doan Ha; Hang, Bui Thi

    2017-06-01

    In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

  12. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization.

    PubMed

    Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-05-01

    Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa 2 Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa 2 Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa 2 Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa 2 Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa 2 Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization decreased Cd influx and increased Cd efflux in rice roots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fe-doping effects on the structural, vibrational, magnetic, and electronic properties of ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Aragón, Fermin F. H.; Aquino, Juan C. R.; Ramos, Jesus E.; Coaquira, José A. H.; Gonzalez, Ismael; Macedo, Waldemar A. A.; da Silva, Sebastião W.; Morais, Paulo C.

    2017-11-01

    In this work, we report on a single-pot synthesis route based on a polymeric precursor method used for successfully producing undoped and iron-doped CeO2 nanoparticles with iron contents up to 10.0 mol. %. The formation of high-crystalline nanoparticles with a cubic fluorite structure is determined for all the studied samples. Meanwhile, the magnetic measurements of the undoped ceria nanoparticles revealed the occurrence of ferromagnetism of bound magnetic polarons of a fraction of Ce3+ at room temperature, and only a paramagnetic behavior of Fe3+ ions was determined for Fe-doped ceria nanoparticles. A monotonous reduction of the effective magnetic moment of the Fe3+ ions was determined. It suggests a change from a high-spin to low-spin state of Fe ions as the Fe content is increased. The 3+ valence state of the iron ions has been confirmed by the Fe K-edge X-ray absorption near-edge structure (XANES) and Mössbauer spectroscopy measurements. X-ray photoelectron spectroscopy data analysis evidenced a coexistence of Ce3+ and Ce4+ ions and a decreasing tendency of the relative fraction of Ce3+ ions in the surface region of the particles as the iron content is increased. Although the coexistence of Ce3+ and Ce4+ is confirmed by results obtained via Ce L3-edge XANES measurements, any clear dependence of the relative relation of Ce3+ ions on the iron content is determined, suggesting a homogeneous distribution of Ce3+ and Ce4+-ions in the whole volume of the particles. Ce L3-edge extended X-ray absorption fine structure revealed that the Ce-O bond distance shows a monotonous decrease as the Fe content is increased, which is in good agreement with the shrinking of the unit cell volume with the iron content determined from XRD data analysis, reinforcing the substitutional solution of Ce and Fe ions in the CeO2 matrix.

  14. Structural, magnetic and magnetocaloric properties of Fe17‑xMnxPr2 compounds

    NASA Astrophysics Data System (ADS)

    Guo, Yongbin; Ma, Lei; Chen, Tingyi; Zhou, Liang; Wang, Dao; Zhou, Xin; Dong, Peilin

    2018-03-01

    Polycrystalline Fe17‑xMnxPr2 (x = 0–8) compounds were analyzed by x-ray diffraction (XRD) and vibrating sample magnetometer (VSM) measurements. The results show that Fe17‑xMnxPr2 compounds exhibited the rhombohedral Th2Zn17-type crystal structure. The lattice parameter and unit cell volume increase with Mn content. The magnetic transition is a typical second-order transition near the T C. The Curie temperature (T C) of Fe17‑xMnxPr2 compounds decrease sharply in the range of 300–27 K as the Mn content increase. The maximum magnetic entropy change (∣-ΔS M∣) for Fe17‑xMnxPr2 compounds is 6.25 J · kg‑1·K‑1 in a field of 5 T for the compounds with x = 0. The thermal hysteresis for Fe17‑xMnxPr2 are 6.59 K at x = 0 and 1.36 K at x = 8, which reduces with the increase in Mn content.

  15. Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer.

    PubMed

    He, Wanling; Shohag, M J I; Wei, Yanyan; Feng, Ying; Yang, Xiaoe

    2013-12-15

    The present study compared the effects of four different forms of foliar iron (Fe) fertilizers on Fe concentration, bioavailability and nutritional quality of polished rice. The results showed that foliar fertilisation at the anthesis stage was an effective way to promote Fe concentration and bioavailability of polished rice, especially in case of DTPA-Fe. Compared to the control, foliar application of DTPA-Fe increased sulphur concentration and the nutrition promoter cysteine content, whereas decreased phosphorus concentration and the antinutrient phytic acid content of polished rice, as a result increased 67.2% ferrtin formation in Caco-2 cell. Moreover, foliar DTPA-Fe application could maintain amylase, protein and minerals quality of polished rice. According to the current study, DTPA-Fe is recommended as an excellent foliar Fe form for Fe biofortification program. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Electroplated Fe-Co-Ni films prepared in ammonium-chloride-based plating baths

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Koda, K.; Kaji, J.; Aramaki, H.; Eguchi, K.; Takashima, K.; Nakano, M.; Fukunaga, H.

    2018-05-01

    We electroplated Fe-Co-Ni films in ammonium-chloride-based plating baths, and investigated the effect of the Co content on the magnetic properties and the structural ones of the as-plated films. The coercivity increased abruptly when the Co content become more than 60 at.%. As the rough surfaces were observed in the high Co content region, we considered that degradation of the surface is a factor of the abrupt increase in the coercivity. From the XRD analysis, we found that another factor of the abrupt increase is fcc-bcc phase transformation, and concluded that we need to keep the fcc structure to obtain Fe-Co-Ni films with low coercivity.

  17. Interaction between beet vinasse and iron fertilisers in the prevention of iron deficiency in lupins.

    PubMed

    de Santiago, Ana; Delgado, Antonio

    2010-10-01

    Recycling of organic byproducts for use as soil amendments or fertilisers may enhance the productivity of soils. The aim of this study was to investigate the potential of sugar beet vinasse to correct iron chlorosis in crops when applied in conjunction with Fe fertilisers such as vivianite and ferrous sulfate (FS). An experiment involving two factors (Fe source and dialysed sugar beet vinasse (DBV) rate) was performed using white lupin (Lupinus albus L.) and calcareous sand as growing medium. Although vivianite provided lower chlorophyll contents than Fe-chelate, dry matter production was not significantly different between the two Fe sources. Vivianite was more effective than FS in preventing iron chlorosis in white lupin, but not when DBV was applied. DBV significantly increased chlorophyll content in plants treated with FS after 3 weeks of growth. DBV increased the effect of FS in preventing iron deficiency chlorosis in white lupin. This was due, at least in part, to the inhibition of the precipitation of Fe oxides by organic compounds and to the increase in the content of Fe complexed by organic compounds in the growing medium, as revealed by sequential Fe fractionation. Copyright © 2010 Society of Chemical Industry.

  18. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  19. Improvement of the magnetic moment of NiZn ferrites induced by substitution of Nd3+ ions for Fe3+ ions

    NASA Astrophysics Data System (ADS)

    Wu, Xuehang; Chen, Wen; Wu, Wenwei; Wu, Juan; Wang, Qing

    2018-05-01

    Four types of Ni-Zn based ferrites materials having the general formula Ni0.5Zn0.5NdxFe2-xO4 (0.0 ≤ x ≤ 0.12) have been successfully synthesized by calcining oxalates in air and the influence of Nd content on the structure and magnetic properties of Ni0.5Zn0.5NdxFe2-xO4 is studied. X-ray diffraction examination confirms that a high-crystallized Ni0.5Zn0.5NdxFe2-xO4 with cubic spinel structure is obtained when the precursor is calcined at 1000 °C in air for 2 h. The substitutions of Nd3+ ions for partial Fe3+ ions do not change the spinel crystalline structure of MFe2O4. The incorporation of Nd3+ ions in place of Fe3+ ions in Ni-Zn ferrites increases the average crystallite size. Specific saturation magnetization decreases with increase in Nd content. This is because Nd3+ ions with smaller magnetic moment preferentially fill the octahedral sites. In addition, antiferromagnetic FeNdO3 increases with increase in Nd content. In this study, Ni0.5Zn0.5Nd0.08Fe1.92O4, calcined at 1000 °C, exhibits the highest magnetic moment (4.2954 μB) and the lowest coercivity (28.82 Oe).

  20. Impacts of amount of impregnated iron in granular activated carbon on arsenate adsorption capacities and kinetics.

    PubMed

    Chang, Qigang; Lin, Wei; Ying, Wei-Chi

    2012-06-01

    Iron-impregnated granular activated carbons (Fe-GAC) can remove arsenic effectively from water. In this study, Fe-GACs with iron content of 1.64 to 28.90% were synthesized using a new multi-step procedure for the investigation of effects of iron amount on arsenic adsorption capacities and kinetics. Langmuir model satisfactorily fit arsenic adsorption on Fe-GACs. The maximum arsenic adsorption capacity (q(m)) increased significantly with iron impregnation and reached 1,867 to 1,912 microg/g with iron content of 9.96 to 13.59%. Further increase of iron content (> 13.59%) caused gradual decrease of q(m). It was found that the amount of impregnated iron showed little impact on the affinity for arsenate. Kinetic study showed that the amount of impregnated iron affected the arsenic intraparticle diffusion rate greatly. The pseudo-second-order kinetic model fit arsenic adsorption kinetics on Fe-GACs better than the pseudo-first-order model. The arsenic adsorption rate increased with increasing of iron content from 1.64% to 13.59%, and then decreased with more impregnated iron (13.59 to 28.90%).

  1. Structural and magnetic properties of FexNi100-x alloys synthesized using Al as a reducing metal

    NASA Astrophysics Data System (ADS)

    Srakaew, N.; Jantaratana, P.; Nipakul, P.; Sirisathitkul, C.

    2017-08-01

    Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%-30%) Fe content the single face-centered cubic (FCC) FeNi3 phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%-70% with the alloy structure possessing a mixture of FCC FeNi3 and body-centered cubic (BCC) Fe7Ni3. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%-90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  2. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  3. Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of non-magnetic and magnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Kuru, Hilal; Kockar, Hakan; Alper, Mursel

    2017-12-01

    Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.

  4. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite.

    PubMed

    Khairy, M; Gouda, M E

    2015-07-01

    Polyaniline-NiFe2O4 nanocomposites (PANI-NiFe2O4) with different contents of NiFe2O4 (2.5, 5 and 50 wt%) were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol-gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI) and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI-NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg  = 1.0 for PANI-NiFe2O4 nanocomposite.

  5. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite

    PubMed Central

    Khairy, M.; Gouda, M.E.

    2014-01-01

    Polyaniline–NiFe2O4 nanocomposites (PANI–NiFe2O4) with different contents of NiFe2O4 (2.5, 5 and 50 wt%) were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol–gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI) and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI–NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg = 1.0 for PANI–NiFe2O4 nanocomposite. PMID:26199745

  6. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).

    PubMed

    Scheers, Nathalie; Rossander-Hulthen, Lena; Torsdottir, Inga; Sandberg, Ann-Sofie

    2016-02-01

    Lactic fermentation of foods increases the availability of iron as shown in a number of studies throughout the years. Several explanations have been provided such as decreased content of inhibitory phytate, increased solubility of iron, and increased content of lactic acid in the fermented product. However, to our knowledge, there are no data to support that the bioavailability of iron is affected by lactic fermentation. The objective of the present study was to investigate whether the bioavailability of iron from a vegetable mix was affected by lactic fermentation and to propose a mechanism for such an event, by conducting human and cell (Caco-2, HepG2) studies and iron speciation measurements (voltammetry). We also investigated whether the absorption of zinc was affected by the lactic fermentation. In human subjects, we observed that lactic-fermented vegetables served with both a high-phytate and low-phytate meal increased the absorption of iron, but not zinc. In vitro digested fermented vegetables were able to provoke a greater hepcidin response per ng Fe than fresh vegetables, indicating that Fe in the fermented mixes was more bioavailable, independent on the soluble Fe content. We measured that hydrated Fe(3+) species were increased after the lactic fermentation, while there was no significant change in hydrated Fe(2+). Furthermore, lactate addition to Caco-2 cells did not affect ferritin formation in response to Fe nor did lactate affect the hepcidin response in the Caco-2/HepG2 cell system. The mechanism for the increased bioavailability of iron from lactic-fermented vegetables is likely an effect of the increase in ferric iron (Fe(3+)) species caused by the lactic fermentation. No effect on zinc bioavailability was observed.

  7. Variability of phenolic content and antioxidant activity of two lettuce varieties under Fe deficiency.

    PubMed

    Msilini, Najoua; Oueslati, Samia; Amdouni, Thouraya; Chebbi, Mohamed; Ksouri, Riadh; Lachaâl, Mokhtar; Ouerghi, Zeineb

    2013-06-01

    Fe deficiency affects food growth and quality in calcareous soils. In this study, the effect of Fe deficiency on growth parameters, phenolic content and antioxidant capacities of two lettuce shoots varieties (Romaine and Vista) were investigated. Fresh matter production, pigment (chlorophyll and carotenoid) and Fe2+ content were significantly reduced by Fe deficiency in both varieties. However, restriction of these parameters was particularly pronounced in Romaine variety as compared to Vista. Moreover, Fe deficiency caused decreases in the activity of antioxidant enzymes such as catalase and guaiacol peroxidase, whereas ascorbate peroxidase and malondialdehyde concentrations were not significantly affected. On the other hand, Fe deficiency in Vista variety induced an increase in polyphenol and flavonoid content as compared to Romaine variety. In addition, total antioxidant capacity and antiradical test against DPPH radical decreased in leaves of Romaine variety after 15 days of treatment. These results suggest that the higher polyphenol content in Vista variety supports the involvement of these components in the stability of antioxidant capacities and then in its protection against oxidative damage generated by Fe deficiency in lettuce plants. © 2012 Society of Chemical Industry.

  8. Evolution of phase transformation and magnetic properties with Fe content in Ni55-x Fe x Mn20Ga25 Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao

    2018-02-01

    A series of Ni55-x Fe x Mn20Ga25 (0  ⩽  x  ⩽  5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x  =  0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M  →  L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M  →  5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5  ×  105 J m-3) for the alloys with x  >  3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x  =  4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.

  9. The Mn-Fe negative correlation in olivines in ALHA 77257 ureilite

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Furuta, T.; Fujii, N.; Mckay, D. S.; Lofgren, G. E.; Duke, M. B.

    1993-01-01

    An electron probe microanalyzer is used to measure the Mn, Fe, and oxygen zoning profiles of olivines in the ALHA 77257 ureilite. This is done to study the effects of reduction on the Mn-Fe value, as ureilite olivines exhibit thin reduced rims. Since the Mn content gradually increases toward the rim of ureilite olivines, while the Fa (= 100 x Fe/(Mg + Fe), mol percent) component decreases, the Mn-Fe content of olivine is likely related to redox conditions. The results of melting experiments suggest that the Mn-Fe positive correlation is related to temperature and that the negative correlation of Mn-Fe in olivine and low-Ca pyroxene is related to reduction.

  10. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    PubMed

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  11. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  12. Electromagnetic and Microwave-Absorbing Properties of Plate-Like Nd-Ce-Fe Powder

    NASA Astrophysics Data System (ADS)

    Qiao, Ziqiang; Pan, Shunkang; Xiong, Jilei; Cheng, Lichun; Lin, Peihao; Luo, Jialiang

    2017-01-01

    Plate-like Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders have been synthesized by an arc melting and high-energy ball milling method. The structure of the Nd-Ce-Fe powders was investigated by x-ray diffraction analysis. Their morphology and particle size distribution were evaluated by scanning electron microscopy and laser particle analysis. The saturation magnetization and electromagnetic parameters of the powders were characterized using vibrating-sample magnetometry and vector network analysis, respectively. The results reveal that the Ce x Nd2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) powders consisted of Nd2Fe17 single phase with different Ce contents. The particle size and saturation magnetization decreased with increasing Ce content. The resonant frequencies of ɛ″ and μ″ moved towards lower frequency with increasing Ce concentration. The minimum reflection loss value decreased as the Ce content was increased. The minimum reflection loss and absorption peak frequency of Ce0.2Nd1.8Fe17 with coating thickness of 1.8 mm were -22.5 dB and 7 GHz, respectively. Increasing the values of the complex permittivity and permeability could result in materials with good microwave absorption properties.

  13. Frequency and field dependent dynamic properties of CoFe{sub 2−x}Al{sub x}O{sub 4} ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuanr, Bijoy K.; Department of Physics, University of Colorado, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918; Mishra, S.R., E-mail: srmishra@memphis.edu

    2016-04-15

    Highlights: “CoFe{sub 2−x} Al{sub x}O{sub 4} ferrite nanoparticles: Static and dynamic properties” • Grain size reduction with Al{sup 3+} content. • Reduction in Ms, Hc, with increasing Al{sup 3+} content. • Increase in resonance frequency with applied field. • Decrease in resonance field with increase in Al{sup 3+} content. • Decrease in Gilbert parameter with increase in Al{sup 3+} content. - Abstract: Aluminum doped CoFe{sub 2−x}Al{sub x}O{sub 4} (0 ≤ x ≤ 0.9) nanoparticles were synthesized via auto-combustion. Formation of single phase cubic spinel structure was confirmed by X-ray diffraction (XRD) analysis. XRD analysis suggests a linear decrease in latticemore » cell parameters and grain size (90–55 nm) with the increase in Al{sup 3+} content. The saturation magnetization of samples decrease with increasing Al{sup 3+} content due to magnetic dilution effect. A concomitant linear reduction in coercivity was also observed mainly due to decrease in magnetic anisotropy. Frequency and field dependent dynamic properties of nanoparticles were studied by ferromagnetic resonance (FMR) technique. The resonance frequency increases linearly with magnetic field for all nanoparticles. Magnetic field dependent experimental absorption data (S{sub 21} vs. frequency) were compared with effective medium theory considering an effective demagnetization field and was observed to be in good agreement with each other. High Al{sup 3+} content reduces the Gilbert damping parameter thus making CoFe{sub 2−x}Al{sub x}O{sub 4} as an attractive material for high frequency applications.« less

  14. Effect of Initial FeO Content and CaO:SiO2 Ratio on the Reduction Smelting Kinetics of the CaO-SiO2-MgOsatd.-FeO Slag System

    NASA Astrophysics Data System (ADS)

    Kim, Jong Bae; Sohn, Il

    2018-02-01

    The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.

  15. Effects of Pd substitution on the thermoelectric and electronic properties of delafossite Cu{sub 1−x}Pd{sub x}FeO{sub 2} (x=0.01, 0.03 and 0.05)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruttanapun, Chesta, E-mail: chesta.ruttanapun@gmail.com

    Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} (x=0.01, 0.03 and 005) delafossite was prepared by solid state reactions and was calcined/sintered at 1050 °C. The effect of Pd{sup 2+} substitution for the Cu{sup 1+} sites on the thermoelectric and electronic properties of Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} were investigated. The crystal structure, oxygen decomposition, thermoelectric and electronic properties were characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy (XPS), Seebeck coefficient, electrical conductivity and thermal conductivity measurements. The characterization showed that Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} formed a hexagonal delafossite structure with R3−m symmetry. The existence of Pd{sup 2+}, Cu{sup 1+}, Cu{sup 2+}, Fe{sup 3+},more » Fe{sup 4+} and O was revealed from the XPS results. Confirmation of Pd{sup 2+} substitution for the Cu{sup 1+} sites occurred by increasing the c-axis in the lattice parameter with a Pd content. The O content intercalated at the center of the triangular Cu acted as a support to produce Cu{sup 2+} ions and was reduced with an increasing Pd content. The mixed valencies of Cu{sup 1+}/Cu{sup 2+} and Cu{sup 1+}/Pd{sup 2+} in the Cu layer changed the electrical conductivity and the Fe{sup 3+}/Fe{sup 4+} mixed valencies in the FeO{sub 6} layer caused the Seebeck coefficient to increase. Both the electrical conductivity and Seebeck coefficient for Pd contents of x=0.01 and 0.03 were higher than that of non-doped CuFeO{sub 2}. The low thermal conductivity of Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} resulted from the substitution of Pd, which has a large atomic mass, into structure. The Jonker plot indicated that the electronic properties displayed a degenerate density of states and that Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} was a semiconductor. A high ZT value of 0.055 was obtained for a Pd content of 0.03 at 950 K. The Pd{sup 2+} substitution for the Cu{sup 1+} sites influenced the thermoelectric and electronic properties of the delafossite Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} samples. - Graphical abstract: Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} (x=0.01, 0.03 and 005) delafossite was prepared by solid state reactions. The characterization showed that Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} formed a hexagonal delafossite structure with R3−m symmetry. The existence of Pd{sup 2+}, Cu{sup 1+}, Cu{sup 2+}, Fe{sup 3+}, Fe{sup 4+} and O was revealed from the XPS results. The O content intercalated at the center of the triangular Cu acted as a support to produce Cu{sup 2+} ions and was reduced with an increasing Pd content. The mixed valencies of Cu{sup 1+}/Cu{sup 2+} and Cu{sup 1+}/Pd{sup 2+} in the Cu layer changed the electrical conductivity and the Fe{sup 3+}/Fe{sup 4+} mixed valencies in the FeO{sub 6} layer caused the Seebeck coefficient to increase. Both the electrical conductivity and Seebeck coefficient for Pd contents of x=0.01 and 0.03 were higher than that of non-doped CuFeO{sub 2}. The low thermal conductivity of Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} resulted from the substitution of Pd, which has a large atomic mass, into structure. A high ZT value of 0.055 was obtained for a Pd content of 0.03 at 950 K. The Pd{sup 2+} substitution for the Cu{sup 1+} sites influenced the thermoelectric and electronic properties of the delafossite Cu{sub (1−x)}Pd{sub (x)}FeO{sub 2} samples. - Highlights: • New compound of Cu{sub 1−x}Pd{sub x}FeO{sub 2} (x=0.01, 0.03 and 0.05) forms phase of delafossite. • The compound displays p-type thermoelectric materials. • The Pd-substituted for Cu{sup 1+} sites forms Pd{sup 2+}. • Mixed valencies of Cu{sup +}/Cu{sup 2+}, Cu{sup +}/Pd{sup 2+} and Fe{sup 3+}/Fe{sup 4+} appear in the compound. • Large atomic mass of Pd-substituted causes low thermal conductivity.« less

  16. Formation of the Fe-Containing Intermetallic Compounds during Solidification of Al-5Mg-2Si-0.7Mn-1.1Fe Alloy

    NASA Astrophysics Data System (ADS)

    Que, Zhongping; Wang, Yun; Fan, Zhongyun

    2018-06-01

    Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.

  17. New high pressure experiments on sulfide saturation of high-FeO∗ basalts with variable TiO2 contents - Implications for the sulfur inventory of the lunar interior

    NASA Astrophysics Data System (ADS)

    Ding, Shuo; Hough, Taylor; Dasgupta, Rajdeep

    2018-02-01

    In order to constrain sulfur concentration in intermediate to high-Ti mare basalts at sulfide saturation (SCSS), we experimentally equilibrated FeS melt and basaltic melt using a piston cylinder at 1.0-2.5 GPa and 1400-1600 °C, with two silicate compositions similar to high-Ti (Apollo 11: A11, ∼11.1 wt.% TiO2, 19.1 wt.% FeO∗, and 39.6 wt.% SiO2) and intermediate-Ti (Luna 16, ∼5 wt.% TiO2, 18.7 wt.% FeO∗, and 43.8 wt.% SiO2) mare basalts. Our experimental results show that SCSS increases with increasing temperature, and decreases with increasing pressure, which are similar to the results from previous experimental studies. SCSS in the A11 melt is systematically higher than that in the Luna 16 melt, which is likely due to higher FeO∗, and lower SiO2 and Al2O3 concentration in the former. Compared to the previously constructed SCSS models, including those designed for high-FeO∗ basalts, the SCSS values determined in this study are generally lower than the predicted values, with overprediction increasing with increasing melt TiO2 content. We attribute this to the lower SiO2 and Al2O3 concentration of the lunar magmas, which is beyond the calibration range of previous SCSS models, and also more abundant FeTiO3 complexes in our experimental melts that have higher TiO2 contents than previous models' calibration range. The formation of FeTiO3 complexes lowers the activity of FeO∗, a FeO∗silicatemelt , and therefore causes SCSS to decrease. To accommodate the unique lunar compositions, we have fitted a new SCSS model for basaltic melts of >5 wt.% FeO∗ and variable TiO2 contents. Using previous chalcophile element partitioning experiments that contained more complex Fe-Ni-S sulfide melts, we also derived an empirical correction that allows SCSS calculation for basalts where the equilibrium sulfides contain variable Ni contents of 10-50 wt.%. At the pressures and temperatures of multiple saturation points, SCSS of lunar magmas with compositions from picritic glasses, mare basalts, to young lunar meteorites vary from 2600 to 4800 ppm for basalt equilibration with a pure FeS melt and from 1400 to 2600 ppm for basalt equilibration with a Fe-rich sulfide melt containing 30 wt.% Ni. The measured S contents in these proposed near-primary lunar magmas are lower than the predicted SCSS at the conditions of their last equilibration with the lunar mantle, indicating no sulfide retention in the lunar mantle source during partial melting. Sulfide exhaustion during partial melting in the lunar mantle also supports the notion that the bulk silicate moon is depleted in highly siderophile elements. Based on the measured S contents and the estimated degree of melting, the estimated S contents for the mantle source of A15 green glass and A15 mare basalts is 10-23 ppm; for A17 orange glass is 25-62 ppm, for A12 mare basalts is 27-92 ppm, and for A11 basalt is 35-120 ppm. Consideration of SCSS decrease due to the presence of Ni in the sulfide melt does not change these mantle S abundance estimates for <30 wt.% Ni in the sulfide. The inferred S contents suggest that the lunar mantle is heterogeneous in terms of S. Although variable among different groups, the inferred S abundance of up to 120 ppm in the lunar mantle falls near the lower end of the S content of the depleted terrestrial mantle such as the MORB source.

  18. Effects of iron content in Ni-Cr-xFe alloys and immersion time on the oxide films formed in a simulated PWR water environment

    NASA Astrophysics Data System (ADS)

    Ru, Xiangkun; Lu, Zhanpeng; Chen, Junjie; Han, Guangdong; Zhang, Jinlong; Hu, Pengfei; Liang, Xue

    2017-12-01

    The iron content in Ni-Cr-xFe (x = 0-9 at.%) alloys strongly affected the properties of oxide films after 978 h of immersion in the simulated PWR primary water environment at 310 °C. Increasing the iron content in the alloys increased the amount of iron-bearing polyhedral spinel oxide particles in the outer oxide layer and increased the local oxidation penetrations into the alloy matrix from the chromium-rich inner oxide layer. The effects of iron content in the alloys on the oxide film properties after 500 h of immersion were less significant than those after 978 h. Iron content increased, and chromium content decreased, in the outer oxide layer with increasing iron content in the alloys. Increasing the immersion time facilitated the formation of the local oxidation penetrations along the matrix/film interface and the nickel-bearing spinel oxides in the outer oxide layer.

  19. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  20. Atomistic simulation of the influence of Cr on the mobility of the edge dislocation in Fe(Cr) alloys

    NASA Astrophysics Data System (ADS)

    Hafez Haghighat, S. M.; Terentyev, D.; Schäublin, R.

    2011-10-01

    In this work Fe-Cr compounds, as model alloys for the ferritic base steels that are considered as main candidates for the structural materials of the future fusion reactors, are studied using molecular dynamics simulations. The Cr or so-called α' precipitates, which are obstacles to dislocations, affect mechanical properties, leading to hardening and loss of ductility. The flow stress to move an edge dislocation in a Cr solid solution in pure Fe is studied as a function of Cr content. The strength of a nanometric Cr precipitate as obstacle to an edge dislocation in pure Fe is investigated as a function of its Cr content. Results show that with increasing Cr content the precipitate obstacle strength increases, with a strong sensitivity to the local atomic order. Temperature induces a monotonic decrease of the flow stress of the Cr solid solution and of the Cr precipitate obstacle strength.

  1. Fe doped TiO2 nanofibers on the surface of graphene sheets for photovoltaics applications

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Charpentier, Paul A.

    2011-08-01

    Highly ordered, visible light driven TiO2 nanowire arrays doped with Fe photocatalysts were grown on the surface of functionalized graphene sheets (FGSs) using a sol-gel method with titanium isopropoxide (TIP) monomer, acetic acid (HAc) as the polycondensation agent and iron chloride in the green solvent, supercritical carbon dioxide (scCO2). The morphology of the synthesized materials was studied by SEM and TEM, which showed uniform formation of Fe doped TiO2 nanofibers on the surface of graphene sheets, which acted as a template for nanowire growth through surface -COOH functionalities. Increasing Fe content in the nanowires did not change the morphology significantly. Optical properties of the synthesized composites were examined by UV spectroscopy which showed a significant reduction in band gap with increasing Fe content, i.e. 2.25 eV at 0.6% Fe. The enhancement of the optical properties of synthesized materials was confirmed by photocurrent measurement. The optimum sample containing 0.6% Fe doped TiO2 on the graphene sheets increased the power conversation efficiency by 6-fold in comparison to TiO2 alone.

  2. Composition gradient, structure, stress, roughness and magnetic properties of 5-500 nm thin NiFe films obtained by electrodeposition

    NASA Astrophysics Data System (ADS)

    Gong, Jie; Riemer, Steve; Kautzky, Michael; Tabakovic, Ibro

    2016-01-01

    The composition gradients of 5-500 nm thin NiFe films on Cu and NiP substrates obtained by electrodeposition in stirred plating solutions at pH 3.0 on 8 in wafers were studied. It was found that the average elemental composition of the NiFe changes during electrodeposition with steep downturns of Fe-content, from 58 to 50 wt% Fe, in composition gradient zone near the substrate interface in the thickness range 5-250 nm depending on the electrode substrate (Cu and NiP). The increase of Fe-content in the composition gradient zone is accompanied by the increase of coercivity, Hc, magnetic flux saturation, Bs, saturation magnetostriction, λs, increase of dimensionless roughness, ρrms, and change of stress, σ. The coercivity (easy and hard axis) follows the Neel's relation Hc=ct-n (t is thickness and c is a constant). The mechanisms related to the change of coercivity of the NiFe films deposited on different substrates (Cu and NiP) are discussed in terms of material properties of these films.

  3. Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Kong, Ing; Hj Ahmad, Sahrim; Hj Abdullah, Mustaffa; Hui, David; Nazlim Yusoff, Ahmad; Puryanti, Dwi

    2010-11-01

    Magnetic and microwave absorbing properties of thermoplastic natural rubber (TPNR) filled magnetite (Fe 3O 4) nanocomposites were investigated. The TPNR matrix was prepared from polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR) in the ratio of 70:20:10 with the LNR as the compatibilizer. TPNR-Fe 3O 4 nanocomposites with 4-12 wt% Fe 3O 4 as filler were prepared via a Thermo Haake internal mixer using a melt-blending method. XRD reveals the presence of cubic spinel structure of Fe 3O 4 with the lattice parameter of a=8.395 Å. TEM micrograph shows that the Fe 3O 4 nanoparticles are almost spherical with the size ranging 20-50 nm. The values of saturation magnetization ( MS), remanence ( MR), initial magnetic susceptibility ( χi) and initial permeability ( μi) increase, while the coercivity ( HC) decreases with increasing filler content for all compositions. For nanocomposites, the values of the real ( ɛr') and imaginary permittivity ( ɛr'') and imaginary permeability ( μr'') increase, while the value of real permeability ( μr') decreases as the filler content increases. The absorption or minimum reflection loss ( RL) continuously increases and the dip shifts to a lower frequency region with the increasing of both filler content in nanocomposites and the sample thickness. The RL is -25.51 dB at 12.65 GHz and the absorbing bandwidth in which the RL is less than -10 dB is 2.7 GHz when the filler content is 12 wt% at 9 mm sample thickness.

  4. Structural and electromagnetic properties of NiAlxFe2-xO4/SiO2 nanocomposite films deposited using a sol-gel spin-coating method

    NASA Astrophysics Data System (ADS)

    Wang, Li; Li, Xuejian; Li, Ji; Liu, Mei; Xu, Shichong; Li, Haibo

    2017-12-01

    NiAlxFe2-xO4/SiO2 (0 ≤ x ≤ 1.0) nanocomposite films deposited on Si(1 0 0) substrates were prepared by a sol-gel spin-coating method. The influences of Al3+ content and annealing temperature on the structural and electromagnetic properties of the nanocomposite films were investigated. The results indicated that NiAlxFe2-xO4 in the nanocomposite films crystallized after annealing at 1073 K and above. When the doping content x increased from 0 to 1.0, the lattice constants and the average crystallite sizes of the NiAlxFe2-xO4 nanoparticles decreased. The saturation magnetization and coercivity of the films were inversely proportional to the Al3+ content. The maximum value of saturation magnetization (361.6 emu/cm3) and the minimum value of coercivity (18.6 kA/m) were obtained for x of 0.2. When the annealing temperature increased from 1073 to 1473 K, the lattice constant and the average crystallite size of the NiAl0.2Fe1.8O4 nanoparticles increased from 0.8322 to 0.8349 nm and 4 to 28 nm, respectively, and the saturation magnetization and coercivity of the films increased from 214.8 to 464.5 emu/cm3 and 8.2 to 26.9 kA/m, respectively. Moreover, the DC resistivity of the films increased with increasing Al3+ content and annealing temperature.

  5. Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw.

    PubMed

    Zhang, Huayong; Tian, Yonglan; Wang, Lijun; Mi, Xueyue; Chai, Yang

    2016-06-01

    The effect of ferrous (added as FeCl2) on the anaerobic co-digestion of Phragmites straw and cow dung was studied by investigating the biogas properties, pH values, organic matter degradation (COD) and enzyme activities (cellulase, protease and dehydrogenase) at different stages of mesophilic fermentation. The results showed that Fe(2+) addition increased the cumulative biogas yields by 18.1 % by extending the peak period with high daily biogas yields. Meanwhile, the methane (CH4) contents in the Fe(2+) added groups were generally higher than the control group before the 15th day. The pH values were not significantly impacted by Fe(2+) concentrations during the fermentation process. The COD concentrations, cellulase, protease and dehydrogenase activities varied with the added Fe(2+) concentrations and the stages of the fermentation process. At the beginning stage of fermentation (4th day), Fe(2+) addition increased the biogas production by improving the cellulase and dehydrogenase activities which caused a decline in COD. At the peak stage of fermentation (8th day), Fe(2+) addition enhanced the cellulase and protease activities, and resulted in lower COD contents than the control group. When the biogas yields decreased again (13th day), the COD contents varied similar with the protease and dehydrogenase activities, whilst cellulase activities were not sensitive to Fe(2+) concentrations. At the end of fermentation (26th day), Fe(2+) addition decreased the cellulase activities, led to lower COD contents and finally resulted the lower biogas yields than the control group. Taking the whole fermentation process into account, the promoting effect of Fe(2+) addition on biogas yields was mainly attributed to the extension of the gas production peak stage and the improvement of cellulase activities.

  6. Theoretical investigation on the magnetization enhancement of Fe3O4-reduced graphene oxide nanoparticle system

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Wicaksono, Y.; Fauzi, A. D.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We present a theoretical study on the enhancement of magnetization of Fe3O4 nanoparticle system upon addition of reduced graphene oxide (rGO). Experimental data have shown that the magnetization of Fe3O4-rGO nanoparticle system increases with increasing rGO content up to about 5 wt%, but decreases back as the rGO content increases further. We propose that the enhancement is due to spin-flipping of Fe ions at the tetrahedral sites assisted by oxygen vacancies at the Fe3O4 particle boundaries. These oxygen vacancies are induced by the presence of rGO flakes that adsorb oxygen atoms from Fe3O4 particles around them. To understand the enhancement of the magnetization, we construct a tight-binding based model Hamiltonian for the Fe3O4 nanoparticle system with the concentration of oxygen vacancies being controlled by the rGO content. We calculate the magnetization as a function of the applied magnetic field for various values of rGO wt%. We use the method of dynamical mean-field theory and perform the calculations for a room temperature. Our result for rGO wt% dependence of the saturated magnetization shows a very good agreement with the existing experimental data of the Fe3O4-rGO nanoparticle system. This result may confirm that our model already carries the most essential idea needed to explain the above phenomenon of magnetization enhancement.

  7. Martensitic Transformations and Mechanical and Corrosion Properties of Fe-Mn-Si Alloys for Biodegradable Medical Implants

    NASA Astrophysics Data System (ADS)

    Drevet, Richard; Zhukova, Yulia; Malikova, Polina; Dubinskiy, Sergey; Korotitskiy, Andrey; Pustov, Yury; Prokoshkin, Sergey

    2018-03-01

    The Fe-Mn-Si alloys are promising materials for biodegradable metallic implants for temporary healing process in the human body. In this study, three different compositions are considered (Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si, all in wt pct). The phase composition analysis by XRD reveals ɛ-martensite, α-martensite, and γ-austenite in various proportions depending on the manganese amount. The DSC study shows that the starting temperature of the martensitic transformation ( M s) of the alloys decreases when the manganese content increases (416 K, 401 K, and 323 K (143 °C, 128 °C, and 50 °C) for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). Moreover, mechanical compression tests indicate that these alloys have a much lower Young's modulus ( E) than pure iron (220 GPa), i.e., 145, 133, and 118 GPa for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively. The corrosion behavior of the alloys is studied in Hank's solution at 310 K (37 °C) using electrochemical experiments and weight loss measurements. The corrosion kinetics of the Fe-Mn-Si increases with the manganese content (0.48, 0.59, and 0.80 mm/year for the Fe23Mn5Si, Fe26Mn5Si, and Fe30Mn5Si alloys, respectively). The alloy with the highest manganese content shows the most promising properties for biomedical applications as a biodegradable and biomechanically compatible implant material.

  8. Effects of reduction temperature to Ni and Fe content and the morphology of agglomerate of reduced laterite limonitic nickel ore by coal-bed method

    NASA Astrophysics Data System (ADS)

    Abdul, Fakhreza; Pintowantoro, Sungging; Kawigraha, Adji; Nursidiq, Ahlidin

    2018-04-01

    As the current drop of nickel sulfide ore on earth, the attention to nickel laterite ore processing was inscreased in order to fulfill the future nickel demand needs. This research aims to optimized the process of nickel laterite ore extraction using coal bed method. This research was conducted by reducing low grade nickel laterite ore (limonitic) with nickel content of 1.25 %. The reduction process was carried out using CO gas which formed by the reaction of coal and dolomite. The Briquette of nickel ore, coal, Na2SO4 mixtures incorporated in the crucible with bed, then reduced for 6 hours at the temperature of 1200 °C. 1400 °C, and 1400 °C. The result of the research shown that the highest increase of Ni content and Ni recovery value was in the reduction temperature of 1400 °C with the increase of 3.44 %, and the recovery value of Ni equal to 86.75 %. While the highest increase of Fe content and Fe recovery value, respectively, was in the reduction temperature of 1300 °C with the increase of 22.67 % and 1200 °C with Fe recovery value of 89.41 %.

  9. Synthesis of FeCoNi nanoparticles by galvanostatic technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budi, Setia, E-mail: setiabudi@unj.ac.id; Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Negeri Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta 13220; Hafizah, Masayu Elita

    Soft magnetic nanoparticles of FeCoNi have been becoming interesting objects for many researchers due to its potential application in electronic devices. One of the most promising methods for material preparation is the electrodeposition which capable of growing nanoparticles alloy directly onto the substrate. In this paper, we report our electrodeposition studies on nanoparticles synthesis using galvanostatic electrodeposition technique. Chemical composition of the synthesized FeCoNi was successfully controlled through the adjustment of the applied currents. It is revealed that the content of each element, obtained from quantitative analysis using atomic absorption spectrometer (AAS), could be modified by the adjustment of currentmore » in which Fe and Co content decreased at larger applied currents, while Ni content increased. The nanoparticles of Co-rich FeCoNi and Ni-rich FeCoNi were obtained from sulphate electrolyte at the range of applied current investigated in this work. Broad diffracted peaks in the X-ray diffractograms indicated typical nanostructures of the solid solution of FeCoNi.« less

  10. Re-exchange of Fe and Cu at the interface in sintered Nd-Fe-B magnets: A method to eliminate Fe precipitation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Yang, YuQi; Si, HengGang; Yang, Hao; Zhang, Lan; Huang, DongFang; Chen, BaiYi; Xu, Fang; Hu, YongMei; Han, BaoJun

    2018-01-01

    According to the decoupling hypothesis for magnetic grains, the coercivity in sintered Nd-Fe-B magnets is increased after Cu doping, which is due to the formation of non-magnetic grain boundaries. However, this method partially fails, and ferromagnetic Fe-segregation occurs at the grain boundary. We discovered both experimentally and through calculation that the Fe content at the grain boundaries can be tuned across a wide range by introducing another element of Ag. Segregated Fe at high temperature at the grain boundary re-dissolves into Nd2Fe14B grains during annealing at low temperature. Both configurable and magnetic entropies contribute a large driving force for the formation of nonmagnetic grain boundaries. Almost zero Fe content could be achieved at the grain boundaries of sintered Nd-Fe-B magnet.

  11. CR chondrites: Shock, aqueous alteration and terrestrial weathering

    NASA Astrophysics Data System (ADS)

    Abreu, N. M.

    2012-12-01

    CR chondrite are a group asteroidal meteorites, whose importance lies in the exotic organic and presolar material [1] found in its most pristine members and in the broad range of alteration features represented in the remaining specimens in this group [2]. This FE-SEM, EMPA, FIB/TEM study takes advantage of the CR's mineralogical diversity to define different trends of secondary alteration, by comparing the CR3s to the Antarctic CRs: MIL 07525, MIL 07513, GRA 06100, LAP 04516, GRO 03116, GRO 95577, and EET 96259. Collisions and subsequent annealing have affected MIL 07513, GRA 06100, and GRO 03116. Shock stages are often assigned based on progressive changes in the textures of olivines and feldspars. However, the large olivines in shocked CRs do not appear to record these process. Opaques, on the other hand, preserve hallmark signatures of impacts, such as crystalline metal/sulfide veins. Opaque nodules in MIL 07513, GRA 06100, GRO 03116 consist of intergrowths of μm-sub μm FeNi-rich metal, kamacite, Fe-sulfides, Fe-oxides, nm-sized metallic Cu and CuFe (~85 wt.% Cu, 14 wt.% Fe ± < 1wt.% Co, Ni, S) alloys. MIL 07525, GRO 03116, EET 96259, LAP 04516, and GRO 95577 show increasing signs of aqueous alteration, such as increasing amounts of ordered phyllosilicates. Although most phyllosilicates are intergrowths of Fe-rich serpentine and saponite, LAP 04516 also contains large (μm-sized), interpenetrating, Fe-rich (cronstedtite-like) phyllosilicates packages with 14Å basal spacings, similar to those observed in CI chondrites by [3]. Heterogeneously interspersed within phyllosilicates are amorphous Fe-rich silicates and small grains (<50nm) of Fe-rich sulfides, partly oxidized sulfides, and in LAP 04516, tochilinite. Tochilinite shows consistent enrichments in Si (~5 wt.%), suggesting that this meteorite has undergone similar pathways of aqueous alteration as CM chondrites [e.g., 4-5]. Despite the myriad of mineralogical changes triggered by secondary and tertiary process affecting the CRs, the relationship between the average S and Fe contents of matrices are good indicators of the alteration histories of these chondrites. The average S versus Fe contents of CR matrices follow a roughly linear trend. The most aqueously altered CRs (e.g., LAP 04516) have the lowest Fe and the highest S content. The matrices in shocked CRs, MIL 07513, GRA 06100, GRO 03116, have the lowest S content of the studied CRs. They are also the most Fe-rich. The CR3 chondrites fall somewhere in the middle of the S vs. Fe plot. Terrestrial weathering creates some scattering due to its contribution to the Fe-content of the matrix. If the precursor materials of the shocked CRs composi-tionally resemble CR3 chondrites, low S content of shocked CR matrices probably resulted from volatile losses driven by shock and annealing. Whereas increasing Fe-contents are probably linked to impact-driven hydrothermal mobilization of Fe from kamacite nodules. References: [1] Floss et al. 2009. Ap. J. 697: 1242-1255. [2] Abreu N. M. 2007. [3] Tomeoka K. & Buseck P. R. 1988. GCA 52: 1627-1640. [4] Tomeoka K. & Buseck P. R. 1985. GCA 49: 21-49-2163. [5] Rubin A. et al. 2007. GCA 71: 2361-2382. Acknowledgements: Funded by NNX11AH10G grant and conducted at Penn State and ARES-JSC. Meteorite kindly pro-vided by the JSC Antarctic meteorite curators.

  12. Temperature-dependence of current-perpendicular-to-the-plane giant magnetoresistance spin-valves using Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, M. R.; Nakatani, T. M., E-mail: nakatani.tomoya@nims.go.jp; Stewart, D. A.

    2016-04-21

    The properties of Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge (CMFG) (x = 0–0.4) Heusler alloy magnetic layers within polycrystalline current-perpendicular-to-the plane giant magnetoresistance (CPP-GMR) spin-valves are investigated. CMFG films annealed at 220–320 °C exhibit partly ordered B2 structure with an order parameter S{sub B2} = 0.3–0.4, and a lower S{sub B2} was found for a higher Fe content. Nevertheless, CPP-GMR spin-valve devices exhibit a relatively high magnetoresistance ratio of ∼13% and a magnetoresistance-area product (ΔRA) of ∼6 mΩ μm{sup 2} at room temperature, which is almost independent of the Fe content in the CMFG films. By contrast, at low temperatures, ΔRA clearly increases with higher Fe content,more » despite the lower B2 ordering for increasing the Fe content. Indeed, first-principles calculations reveal that the CMFG alloy with a partially disordered B2 structure has a greater density of d-state at the Fermi level in the minority band compared to the Fe-free (Co{sub 2}MnGe) alloy. This could explain the larger ΔRA measured on CMFG at low temperatures by assuming that s-d scattering mainly determines the spin asymmetry of resistivity as described in Mott's theory.« less

  13. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens

    PubMed Central

    2014-01-01

    Background Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). Methods In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. Results The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. Conclusions In this study we showed that prebiotics naturally found in wheat grains/bread products significantly increased intestinal beneficial bacterial population in Fe deficient broiler chickens. With this short-term feeding trial we were not able to show differences in the Fe-status of broilers. Nevertheless, the increase in relative amounts of bifidobacteria and lactobacilli in the presence of wheat prebiotics is an important finding as these bacterial populations may affect Fe bioavailability in long-term studies. PMID:24924421

  14. The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens.

    PubMed

    Tako, Elad; Glahn, Raymond P; Knez, Marija; Stangoulis, James Cr

    2014-06-13

    Currently, there is a lot of interest in improving gut health, and consequently increasing Fe absorption, by managing the colonic microbial population. This is traditionally done by the consumption of probiotics, live microbial food supplements. However, an alternative, and often very effective approach, is the consumption of food ingredients known as prebiotics. Fructans and arabinoxylans are naturally occurring non-digestible oligosaccharides in wheat that exhibit prebiotic properties and may enhance intestinal iron (Fe) absorption. The aim of this study was to assess the effect of prebiotics from wheat on Fe bioavailability in vitro (Caco-2 cells) and in vivo (broiler chickens, Gallus gallus). In the current study, the effect of intra-amniotic administration of wheat samples extracts at 17 d of embryonic incubation on the Fe status and possible changes in the bacterial population in intestinal content of broiler hatchlings were investigated. A group of 144 eggs were injected with the specified solution (1 ml per egg) into the amniotic fluid. Immediately after hatch (21 d) and from each treatment group, 10 chicks were euthanized and their small intestine, liver and cecum were removed for relative mRNA abundance of intestinal Fe related transporters, relative liver ferritin amounts and bacterial analysis of cecal content, respectively. The in vivo results are in agreement with the in vitro observations, showing no differences in the hatchling Fe status between the treatment groups, as Fe bioavailability was not increased in vitro and no significant differences were measured in the intestinal expression of DMT1, Ferroportin and DcytB in vivo. However, there was significant variation in relative amounts of bifidobacteria and lactobacilli in the intestinal content between the treatments groups, with generally more bifidobacteria being produced with increased prebiotic content. In this study we showed that prebiotics naturally found in wheat grains/bread products significantly increased intestinal beneficial bacterial population in Fe deficient broiler chickens. With this short-term feeding trial we were not able to show differences in the Fe-status of broilers. Nevertheless, the increase in relative amounts of bifidobacteria and lactobacilli in the presence of wheat prebiotics is an important finding as these bacterial populations may affect Fe bioavailability in long-term studies.

  15. Influence of Fe3O4/Fe-phthalocyanine decorated graphene oxide on the microwave absorbing performance

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Wei, Junji; Pu, Zejun; Xu, Mingzhen; Jia, Kun; Liu, Xiaobo

    2016-02-01

    Novel graphene oxide@Fe3O4/iron phthalocyanine (GO@Fe3O4/FePc) hybrid materials were prepared through a facile one-step solvothermal method with graphene oxide (GO) sheets as template in ethylene glycol. The morphology and structure of the hybrid materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD), respectively. The results indicated that the monodispersed Fe3O4/FePc hybrid microspheres were uniformly self-assembled along the surface of GO sheets through electrostatic attraction and the morphology can be tuned by controlling the amount of 4,4‧-bis(3,4-dicyanophenoxy)biphenyl (BPH). As the BPH content increases, magnetization measurement of the GO@Fe3O4/FePc hybrid materials showed that the coercivity increased, while saturation magnetizations decreased. Electromagnetic properties of the hybrid materials were measured in the range of 0.5-18.0 GHz. The microwave absorbing performance enhanced with the increase of BPH content and a maximum reflection loss of -27.92 dB was obtained at 10.8 GHz when the matching thickness was 2.5 mm. Therefore, the novel electromagnetic hybrid materials can be considered as potential materials in the microwave absorbing field.

  16. Magnetic properties and heavy metal contents of automobile emission particulates*

    PubMed Central

    Lu, Sheng-gao; Bai, Shi-qiang; Cai, Jing-bo; Xu, Chang

    2005-01-01

    Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (χ fd) showed the absence of superparamagnetic (SP) grains in the samples. The IRM20 mT (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R 2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution. PMID:16052705

  17. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean.

    PubMed

    Bin, Levi M; Weng, Liping; Bugter, Marcel H J

    2016-11-09

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD), plant dry matter yield, and the mass fractions of important mineral elements in the plant were quantified in a greenhouse pot experiment. All three Fe chelates increased SPAD index and dry matter yield compared to the control. The effect of FeHBED on chlorophyll production was visible over a longer time span than that of FeEDDHA and FeEDDHMA. Additionally, FeHBED did not suppress Mn uptake as much as the other Fe chelates. Compared to the other Fe chelates, total Fe content in the young leaves was lower in the FeHBED treatment; however, total Fe content was not directly related to chlorophyll production and biomass yield. For each chelate, the ortho-ortho isomer was found to be more effective than the other isomers evaluated.

  18. Lanthanides in soils of the Cherepovets steel mill impact zone

    NASA Astrophysics Data System (ADS)

    Ladonin, D. V.

    2017-06-01

    Contents of different lanthanide forms in soddy-calcareous soils at different distances from the Cherepovets steel mill (Vologda oblast) have been studied. Increased contents of Pr and Tb are found in soils near the pollution source. Less manifested increases in the contents of other lanthanides (from La to Gd) are also observed. Along with the increase in total content, technogenic pollution increases the content of acid-soluble lanthanides and affects their degree of extraction. The residual fraction strongly bound to aluminosilicates contains 80 to 95% of lanthanides. Soil processes result in the partial binding of lanthanides with organic matter (5-18% of their total content) and Fe and Mn (hydr)oxides (0.1-5% of the total content). The individual properties of lanthanides are clearly manifested in their interaction with these soil components. The highest share of the fraction bound to organic matter contains medium lanthanides, and the highest share of the fraction bound to Fe and Mn (hydr)oxides contains heavy lanthanides.

  19. Effects of salicylic acid, Fe(II) and plant growth-promoting bacteria on Cd accumulation and toxicity alleviation of Cd tolerant and sensitive tomato genotypes.

    PubMed

    Wei, Ting; Lv, Xin; Jia, HongLei; Hua, Li; Xu, HuiHui; Zhou, Ran; Zhao, Jin; Ren, XinHao; Guo, JunKang

    2018-05-15

    In this study, we investigated the ameliorative effects of salicylic acid (SA), metal ion (Fe(II)), and plant growth-promoting bacteria Burkholderia sp. D54 (B) on two tomato genotypes with different Cd tolerances under Cd stress, viz. Liger (Cd tolerant) and Tabd (Cd sensitive). The plant biomass, Cd accumulation, antioxidative response, pigment content and photosynthetic performance were determined. According to the results, exogenous application of SA, Fe(II) and Burkholderia sp. D54 or their complex effectively reduced Cd accumulation and increased biomass of root, stem and leaves in both Cd sensitive and Cd tolerant genotypes. Among all treatments, SA+Fe+B exerted the best performance. Burkholderia sp. D54 effectively alleviated Cd-induced oxidative toxicity in both tomato genotypes, while SA ameliorated oxidative stress in Cd sensitive genotype. Photosynthetic pigment content and photosynthetic rate of Cd tolerant genotype was increased by all treatments, but only SA and Burkholderia sp. D54 treatment increased pigment contents and photosynthetic performance in Cd sensitive genotypes. All treatments significantly decreased Cd accumulation in both tomato genotypes. The effect of Cd reduction was Fe+SA+B>SA>Fe>B. Taken together, our results indicated that exogenous application of SA, Fe(II) and Burkholderia sp. D54 could alleviate the Cd toxicity in both Cd sensitive and Cd tolerant genotypes, although the extent varies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effect of Initial Iron Content in a Zinc Bath on the Dissolution Rate of Iron During a Hot Dip Galvanizing Process

    NASA Astrophysics Data System (ADS)

    Lee, Sang Myung; Lee, Suk Kyu; Paik, Doo-Jin; Park, Joo Hyun

    2017-04-01

    The mechanism of iron dissolution and the effect of initial Fe content in a Zn bath on the dissolution rate of iron were investigated using a finger rotating method (FRM). When the initial iron content, [Fe]°, in the zinc bath was less than the solubility limit, the iron content in the zinc bath showed a rapid increase, whereas a moderate increase was observed when [Fe]° was close to the solubility limit. Based on Eisenberg's kinetic model, the mass transfer coefficient of iron in the present experimental condition was calculated to be k M = 1.2 × 10-5 m/s, which was similar to the results derived by Giorgi et al. under industrial practice conditions. A dissolution of iron occurred even when the initial iron content in the zinc bath was greater than the solubility limit, which was explained by the interfacial thermodynamics in conjunction with the morphology of the surface coating layer. By analyzing the diffraction patterns using TEM, the outermost dendritic-structured coating layer was confirmed as FeZn13 ( ζ). In order to satisfy the local equilibrium based on the Gibbs-Thomson equation, iron in the dendrite-structured phase spontaneously dissolved into the zinc bath, resulting in the enrichment of iron in front of the dendrite tip. Through the diffusion boundary layer in front of the dendritic-structured layer, dissolved Fe atoms diffused out and reacted with Zn and small amounts of Al, resulting in the formation of dross particles such as FeZn10Al x ( δ). It was experimentally confirmed that the smaller the difference between the initial iron content in the zinc bath and the iron solubility limit at a given temperature, the lower the number of formed dross particles.

  1. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].

    PubMed

    Chang, Tong-Ju; Cui, Xiao-Qiang; Ruan, Zhen; Zhao, Xiu-Lan

    2014-06-01

    A long-term experiment, conducted at Southwest University since 1990, was used to evaluate the effect of tillage methods on the total and available contents of heavy metals (Fe, Mn, Cu, Zn, Pb, Cd) in the profile of purple paddy soil and the contents of those metals in root, stem leaf and brown rice. The experiment included five tillage methods: conventional tillage, paddy-upland rotation, no-tillage and fallow in winter, ridge-no-tillage and compartments-no-tillage. The results showed that the total concentrations of Fe, Cu, Zn, Pb and Cd in the soil profile had no significant differences among five treatments, but it was found that total Mn has a significant decline in 0-20 cm under conventional tillage, paddy-upland rotation and no-tillage and fallow in winter compared with ridge-no-tillage and compartments-no-tillage. The availability of Fe, Cu, Zn, Pb and Cd decreased with the increase of soil depth in all treatments, but the availability of Mn was found to be the highest in the 20-40 cm layers except those in the paddy-upland rotation. In the ploughed layer, the contents of available Fe, Mn was the highest in paddy-upland rotation, while the contents of available Zn and Pb was the highest in conventional tillage, but tillage treatments had not significant influence to the contents of available Cu. Correlation analysis showed that available Fe was significantly negatively related to the pH values and significantly negatively related to the organic matter of soils, available Mn was significantly negatively related to the pH values and organic matter of soils, whereas the available Zn was significantly positively related to total Zn. The contents of Fe, Mn in rice root, the contents of Fe, Mn, Cu and Cd in rice straw and Cu in brown rice were higher under paddy-upland rotation, ridge-no-tillage and compartments-no-tillage than those in conventional tillage and no-tillage and fellow in winter. Paddy-upland rotation can significantly lower the migration coefficient value of Cd in brown rice, and the Pb, Cd concentration in brown rice in the treatment of paddy-upland rotation was lower than the upper limit (< 0.2 mg x kg(-1)) of the National Standard for Food Hygiene for Cd concentration. The content of Fe in root was significantly and negatively related with soil pH and significantly and positively related with soil available Fe, the content of Mn in root was significantly negatively related with soil pH and significantly positively related with soil available Mn, the content of Mn in straw was significantly negatively related with soil pH, significantly positively related with soil total Mn and significantly positively related with soil available Mn, the content of Cu in straw and brown rice was significantly negatively related with soil pH, the content of Zn was significant related with soil pH and significant related with soil CEC. The content of Fe in root, Mn in root and straw and Cd in straw was positively related with soil available Fe, Mn and Cd, respectively, but was negatively related with pH in plough layer soil, Zn in straw was also negatively related with plough layer soil pH. From the results as above, it is concluded that different tillage methods can change the values of soil pH, alter the availability of heavy metal in soils, consequently affect uptake of heavy metal by rice. Of the tillage methods, paddy-upland rotation could increase the availability of Fe and Mn, but decrease the availability of Zn, Pb and Cd in purple paddy soils. Paddy-upland rotation can also increase the contents of Fe, Mn in rice root and straw, but decrease Cd content in brown rice, and could reduce the Pb, Cd contents in brown rice in a certain extent, however, attention should be given to long-term paddy-upland rotation cause of leaching of soil surface Mn.

  2. Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders

    NASA Astrophysics Data System (ADS)

    Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.

    2018-03-01

    In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.

  3. a Novel Catalyst for Reductive Dechlorination of Chlorobenzene in Subcritical Water:. Bifunctional Fe/ZrO2

    NASA Astrophysics Data System (ADS)

    Wei, Guang-Tao; Wei, Chao-Hai; He, Feng-Mei; Wu, Chao-Fei

    Bifunctional Fe/ZrO2 was prepared by mechanical mixing method, and its bifunctional effect on reductive dechlorination of chlorobenzene in subcritical water was studied. Dechlorination efficiency increased with increasing iron content in catalyst and catalyst amount. Dechlorination efficiency slowed when the iron content in catalyst reached 30%; bifunctional catalyst of Fe/ZrO2 was more efficient in dechlorination of chlorobenzene than Fe alone. Catalyst of Fe (30%)/ZrO2 was characterized by means of X-ray diffraction (XRD), H2 temperature programmed desorption (H2-TPD), and N2 adsorption. The possible mechanism of dechlorination in subcritical water by this bifunctional catalyst was proposed. H+ produced in the water dissociation formed the highly reactive spillover hydrogen on the surface of catalyst, and then reacted with chlorobenzene adsorbed on the catalyst surface by ZrO2 to form benzene and chloride ions.

  4. Magnetic studies on Apollo 15 and 16 lunar samples

    NASA Technical Reports Server (NTRS)

    Pearce, G. W.; Gose, W. A.; Strangway, D. W.

    1973-01-01

    The magnetic properties of lunar samples are almost exclusively due to rather pure metallic iron. The mare basalt contains about 0.06 wt.% Fe, the soils 0.5-0.6 wt.%, and the breccias 0.3-1.0 wt.%. Most of the additional iron in the soils and breccias is believed to be the result of reduction processes operating on the lunar surface. Whereas the total metallic iron content of the soils from all landing sites is rather constant, the Fe(0)/Fe(++) ratio and the average iron grain size increase with the age of the landing site, reflecting increasing maturity. The crystalline rocks studied from Apollo 16 have highly variable, but generally, very high metallic Fe content (up to 1.7 wt.% Fe). It is suggested that these rocks are either breccias or igneous samples which have been severely thermally metamorphosed in a highly reducing environment.

  5. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    NASA Astrophysics Data System (ADS)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  6. Structural characterization of Co100-xFex nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Endo, Hiroaki; Doi, Masaaki; Hasegawa, Naoya; Sahashi, Masashi

    2006-04-01

    For the structural characterization of a Co100-xFex nano-oxide layer (NOL), the exchange bias properties of the Co100-xFex-natural oxidized NOL in the specular spin-valve (SPSV) system were investigated. The exchange bias energy (Jex) increased monotonically with the increasing Fe content for the Co100-xFex-NOL. The enhancement of both the magnetoresistance ratio and the exchange bias field (Hex) was realized by increasing the Fe content in the Co100-xFex-NOL. It should be mentioned that Hex more than 800 Oe is obtained by the insertion of Co30Fe70-NOL, even in NOL-SPSV, which is a remarkably higher pinning field than that ever reported on IrMn-SV. This high exchange bias field is considered to be realized by the formation of an Fe-rich fcc phase at the interface of IrMn.

  7. H+ -pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.].

    PubMed

    Fan, Weijuan; Wang, Hongxia; Wu, Yinliang; Yang, Nan; Yang, Jun; Zhang, Peng

    2017-06-01

    Iron (Fe) deficiency is one of the most common micronutrient deficiencies limiting crop production globally, especially in arid regions because of decreased availability of iron in alkaline soils. Sweet potato [Ipomoea batatas (L.) Lam.] grows well in arid regions and is tolerant to Fe deficiency. Here, we report that the transcription of type I H + -pyrophosphatase (H + -PPase) gene IbVP1 in sweet potato plants was strongly induced by Fe deficiency and auxin in hydroponics, improving Fe acquisition via increased rhizosphere acidification and auxin regulation. When overexpressed, transgenic plants show higher pyrophosphate hydrolysis and plasma membrane H + -ATPase activity compared with the wild type, leading to increased rhizosphere acidification. The IbVP1-overexpressing plants showed better growth, including enlarged root systems, under Fe-sufficient or Fe-deficient conditions. Increased ferric precipitation and ferric chelate reductase activity in the roots of transgenic lines indicate improved iron uptake, which is also confirmed by increased Fe content and up-regulation of Fe uptake genes, e.g. FRO2, IRT1 and FIT. Carbohydrate metabolism is significantly affected in the transgenic lines, showing increased sugar and starch content associated with the increased expression of AGPase and SUT1 genes and the decrease in β-amylase gene expression. Improved antioxidant capacities were also detected in the transgenic plants, which showed reduced H 2 O 2 accumulation associated with up-regulated ROS-scavenging activity. Therefore, H + -PPase plays a key role in the response to Fe deficiency by sweet potato and effectively improves the Fe acquisition by overexpressing IbVP1 in crops cultivated in micronutrient-deficient soils. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Effect of Y addition on crystallization behavior and soft-magnetic properties of Fe78Si9B13 ribbons

    NASA Astrophysics Data System (ADS)

    Zhanwei, Liu; Dunbo, Yu; Kuoshe, Li; Yang, Luo; Chao, Yuan; Zilong, Wang; Liang, Sun; Kuo, Men

    2017-08-01

    A series of amorphous Fe-Si-B ribbons with various Y addition were prepared by melt-spinning. The effect of Y addition on crystallization behavior, thermal and magnetic properties was systematically investigated. With the increase of Y content, the initial crystallization temperature shifted to a higher temperature, indicating that the thermal stability of amorphous state in Fe-Si-B-Y ribbon is enhanced compared to that of Fe-Si-B alloy. Meanwhile, compared to the two exothermic peaks in the samples with lower Y content, a new exothermic peak was found in the ribbons with Y content higher than 1 at%, which corresponded to the decomposition of metastable Fe3B phase. Among all the alloys, Fe76.5Si9B13Y1.5 alloy exhibits optimized magnetic properties, with high saturation magnetization Ms of 187 emu/g and low coercivity HcJ of 7.6 A/m.

  9. Effects of FeCl3 additives on optical parameters of PVA

    NASA Astrophysics Data System (ADS)

    Latif, Duha M. A.; Chiad, Sami S.; Erhayief, Muhssen S.; Abass, Khalid H.; Habubi, Nadir F.; Hussin, Hadi A.

    2018-05-01

    PVA doped FeCl3 have been deposited utilizing casting technique. Absorption spectrum was registered in the wavelengths (300-900 nm) utilizing UV-Visible spectrophotometer. Optical constants behavior such as, absorbance, absorption coefficient, and skin depth were studied. It was found these parameters were increased as Fe content increase. While the extinction coefficient and optical conductivity was decreased. The energy gap of PVA-Fe films were decreased from 4 eV for the PVA film to 3.5 eV for the PVA: 4 % Fe film.

  10. Chalcophile element partitioning in highly oxidised and highly reduced bodies.

    NASA Astrophysics Data System (ADS)

    Kiseeva, K.; Wood, B. J.

    2015-12-01

    In our recent studies [1-3] we showed that partitioning of many chalcophile elements could be described by a simple relationship as a function of the FeO content of the silicate liquid. LogDi ~= A-0.5nlog[FeO] where A is a constant, n is the constant related to the valency of element i and [FeO] is the concentration of FeO in the silicate melt. For many chalcophile and moderately chalcophile elements (e.g., Zn, Cr, Pb, Sb, In), the fitted slope n depends only on the valency of the element. More lithophile elements (e.g., Ti, Nb, Ce, Ga) exhibit concave upwards behavior on a plot of logD versus log[FeO] due to their strong interaction with oxygen in sulphide, which increases with the increasing FeO content of the silicate liquid. Strongly chalcophile elements, like Cu, Ag and Ni have the opposite trend (concave downwards) and their D decreases both at high (> 10-12wt %) and very low (< 1wt%) FeO contents of the silicate melt. These changes correlate with increasing S content of the silicate melt (up to 11 wt%) as the FeO content of the silicate melt declines to ~0.3wt%. An experiment at 1.5 GPa/1420oC having 4 wt% S and 0.28 wt% FeO in the silicate melt has DCu (sulf/sil) ~ 84, which is about 6 times lower than the DCu(sulf/sil) at identical p-T conditions but at 8 wt% FeO in the silicate melt. Our new experimental data on Re partitioning between sulphide and silicate melt in the CMAS+FeO system show that Re behaves similarly to the highly chalcophile elements and exhibits concave downwards behaviour on the LogD/LogFeO diagram. With the highest DRe (sulf/sil) at around 1.5-2.0x104 at 1.5-6.0 wt% FeO in the silicate melt, DRe (sulf/sil) declines to the values of 50-150 at ~0.5 wt% and > ~15 wt% FeO in the silicate melt, respectively. This means that at highly reducing conditions Re is similarly or less chalcophile than some of the highly lithophile elements, like Ta (D ≈ 9), Nb (D ≈ 600), Ti (D ≈ 6) [3]. The results mean that in oxidised bodies like Mars and reduced bodies like Mercury, most "lithophile" elements partition more strongly into sulphide than Re and Cu. [1] Kiseeva E. S., Wood B. J. (2013). EPSL 383, p. 68-81. [2] Kiseeva E. S., Wood B. J. (2015). EPSL 424, p. 280-294. [3] Wood B. J., Kiseeva E. S. (2015). AmMin (in press).

  11. Contrasting intra- and extracellular distribution of catalytic ferrous iron in ovalbumin-induced peritonitis.

    PubMed

    Ito, Fumiya; Nishiyama, Takahiro; Shi, Lei; Mori, Masahiko; Hirayama, Tasuku; Nagasawa, Hideko; Yasui, Hiroyuki; Toyokuni, Shinya

    2016-08-05

    Iron is an essential nutrient for every type of life on earth. However, excess iron is cytotoxic and can lead to an increased cancer risk in humans. Catalytic ferrous iron [Fe(II)] is an initiator of the Fenton reaction, which causes oxidative stress by generating hydroxyl radicals. Recently, it became possible to localize catalytic Fe(II) in situ with a turn-on fluorescent probe, RhoNox-1. Here, we screened each organ/cell of rats to globally evaluate the distribution of catalytic Fe(II) and found that eosinophils showed the highest abundance. In various cells, lysosomes were the major organelle, sharing ∼40-80% of RhoNox-1 fluorescence. We then used an ovalbumin-induced allergic peritonitis model to study the dynamics of catalytic Fe(II). Peritoneal lavage revealed that the total iron contents per cell were significantly decreased, whereas an increase in the number of inflammatory cells (macrophages, neutrophils, eosinophils and lymphocytes) resulted in an increased total iron content of the peritoneal inflammatory cells. Notably, macrophages, eosinophils and neutrophils exhibited significantly increased catalytic Fe(II) with increased DMT1 expression and decreased ferritin expression, though catalytic Fe(II) was significantly decreased in the peritoneal lavage fluid. In conclusion, catalytic Fe(II) in situ more directly reflects cellular activity and the accompanying pathology than total iron does. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.).

    PubMed

    Izquierdo, Paulo; Astudillo, Carolina; Blair, Matthew W; Iqbal, Asif M; Raatz, Bodo; Cichy, Karen A

    2018-05-11

    Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.

  13. The combination of activated natural zeolite-bentonite to reduce Fe and Cu in refined bleached palm oil (RBPO) by using atomic absorption spectrophotometer method

    NASA Astrophysics Data System (ADS)

    Zakwan; Raja, PM; Giyanto

    2018-02-01

    Indonesia is one of the crude palm oil (CPO) production country in the world. As many products are derivated from the CPO, the quality must be increased continuously. One of the things that influence the quality of palm oil is the Fe and Cu content. The objective of this research was to reduce Fe and Cu content in Refined Bleached Palm Oil (RBPO). In processing CPO or Refined Bleachead Palm Oil (RBPO) may be contaminated by Fe and Cu from metal tank and pipe in the factory. The zeolite and bentonite was activated by maceration method using hydrochloric acid (0,1 N). Four batch reactions consisting of refined palm oil (RPO), activated natural zeolite-bentonite (ANZB) was bleached by heating and stirring them at about 105°C and 1200 rpm for 30 minutes. The results showed that all combinations of ANZB can reduce the Fe content. Thereafter, the optimal combination of ANZB was obtained in K1, K2 and K4 with Cu content 0.02 ppm. In the future, it is needed to study on the reduction of the Fe and Cu content in palm oil with the other adsorbent.

  14. The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn O.

    2006-05-01

    Iron-57 resonant absorption Mössbauer spectroscopy was used to describe the redox relations and structural roles of Fe 3+ and Fe 2+ in meta-aluminosilicate glasses. Melts were formed at 1500 °C in equilibrium with air and quenched to glass in liquid H 2O with quenching rates exceeding 200 °C/s. The aluminosilicate compositions were NaAlSi 2O 6, Ca 0.5AlSi 2O 6, and Mg 0.5AlSi 2O 6. Iron oxide was added in the form of Fe 2O 3, NaFeO 2, CaFe 2O 4, and MgFe 2O 4 with total iron oxide content in the range ˜0.9 to ˜5.6 mol% as Fe 2O 3. The Mössbauer spectra, which were deconvoluted by assuming Gaussian distributions of the hyperfine field, are consistent with one absorption doublet of Fe 2+ and one of Fe 3+. From the area ratios of the Fe 2+ and Fe 3+ absorption doublets, with corrections for differences in recoil-fractions of Fe 3+ and Fe 2+, the Fe 3+/ΣFe is positively correlated with increasing total iron content and with decreasing ionization potential of the alkali and alkaline earth cation. There is a distribution of hyperfine parameters from the Mössbauer spectra of these glasses. The maximum in the isomer shift distribution function of Fe 3+, δFe 3+, ranges from about 0.25 to 0.49 mm/s (at 298 K relative to Fe metal) with the quadrupole splitting maximum, ΔFe 3+, ranging from ˜1.2 to ˜1.6 mm/s. Both δFe 3+ and δFe 2+ are negatively correlated with total iron oxide content and Fe 3+/ΣFe. The dominant oxygen coordination number Fe 3+ changes from 4 to 6 with decreasing Fe 3+/ΣFe. The distortion of the Fe 3+-O polyhedra of the quenched melts (glasses) decreases as the Fe 3+/ΣFe increases. These polyhedra do, however, coexist with lesser proportions of polyhedra with different oxygen coordination numbers. The δFe 2+ and ΔFe 2+ distribution maxima at 298 K range from ˜0.95 to 1.15 mm/s and 1.9 to 2.0 mm/s, respectively, and decrease with increasing Fe 3+/ΣFe. We suggest that these hyperfine parameter values for the most part are more consistent with Fe 2+ in a range of coordination states from 4- to 6-fold. The lower δFe 2+-values for the most oxidized melts are consistent with a larger proportion of Fe 2+ in 4-fold coordination compared with more reduced glasses and melts.

  15. High Dietary Iron and Radiation Exposure Increase Biomarkers of Oxidative Stress in Blood and Liver of Rats

    NASA Technical Reports Server (NTRS)

    Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.

  16. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    NASA Astrophysics Data System (ADS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  17. Uranium, thorium and REE partitioning into sulfide liquids at high pressure and high temperature: Implications for reduced, S-rich planetary bodies

    NASA Astrophysics Data System (ADS)

    Wohlers, A.; Wood, B. J.

    2017-12-01

    Based on models of the young solar nebula it is likely that the inner planets went through an early reduced phase of accretion with high metal/silicate ratio and low volatile element contents. Mercury is an existing example of a large planetary embryo with these characteristics but also with a very high S content. In order to investigate the geochemical evolution of Mercury-like bodies we experimentally determined the partitioning of lithophile elements (U, Th, Eu, Sm, Nd, Zr, La, Ce, Yb) between sulfide liquid, low-S metals and silicate melt at 1.5 GPa and 1400-2100˚C. Our results, when combined with those of Wohlers and Wood (2015) show that under highly reducing conditions (FeOsilicate<1wt%) U, Sm, Nd and other lithophile elements partition strongly into FeS liquids relative to silicate melts. The dependences of D's on the FeS contents of the metal and FeO contents of the silicate may be understood in terms of exchange reactions: UO2 + 2FeS = 2FeO + US2silicate sulfide silicate sulfideHigh concentrations of FeSmetal and low FeO contents of the silicate melts drive the reaction to the right, yielding high US2 in the sulfide and high DU. A second effect which raises DU (and other lithophile D's) is the S content of the silicate melt. The latter increases rapidly at low FeO contents and reaches 11wt %. This greatly reduces the activity coefficient of FeO, displacing the reaction further to the right. At 1.5GPa and 1400˚C we obtain sulfide-silicate partitioning with DNd/DSm 1.4 and DTh 0.1DU. As temperature increases to 2100˚C, DNd/DSm declines to 1.0 and DTh/DU increases to 0.3. We estimated the effects of accreting a reduced sulfur-rich component (with FeS core) added to early Earth. The results at 1400˚C imply the possibility of a significant ( 11ppm) 142Nd anomaly in silicate Earth and the addition of >8 ppb U to the core, but require an unreasonably high Th/U of silicate Earth (4.54). Results at 2100˚C lead to a 142Nd anomaly of 0 but addition of such a reduced sulfur-rich body could add up to 10 ppb of U to the core, together with 21 ppb Th. This combination would generate 3 TW of the energy required for the geodynamo. In this case, the Th/U ratio of silicate Earth would be 4.3, within the range of some estimates. Wohlers A. & Wood B.J. (2015) A Mercury-like component of early Earth yield uranium in the core and high mantle Nd142. Nature 520, 337-340

  18. The role of tree uprooting dynamics on the dynamics of Fe (Mn, Al and Si) forms in different forest soils

    NASA Astrophysics Data System (ADS)

    Tejnecký, V.; Samonil, P.; Boruvka, L.; Nikodem, A.; Drabek, O.; Valtera, M.

    2013-12-01

    Tree uprooting dynamics plays an important role in the development of forest ecosystems. This process causes bioturbation of soils and creates new microenvironments which consist of pits and mounds. These microtopographical forms could persist for some thousands of years. Pits and mounds undergo different pedogenesis in comparison to adjacent undisturbed soils. The stage of pedogenesis can be assessed according to the results of fractionation of Fe and also partially Mn, Al and Si. The main aim of this contribution is to assess the fractionation of Fe, Mn, Al and Si for three different soil regions. Soil samples were collected at three localities occurred along hypothetical gradient of soil weathering and leaching processes: The first was a (spruce)-fir-beech natural forest in the Razula region. The second location is the same type of natural forest in Zofin; however it has contrasting lithology. Both these natural forests are located in the Czech Republic (CZ). The third forest was a northern hardwood forest in Upper Peninsula, Michigan, USA. The prevailing soil types - Haplic Cambisols have formed on flysch parent materials in the Razula reserve; Entic Podzols have developed on granite residuum at the Zofin reserve, and Albic Podzols occurred in outwash parent materials at the Michigan sites (Šamonil et al., in press). In total 790 soil samples were analysed. These samples were collected from 5 depths (0-10, 15, 30, 50 and 100 cm) within the pit, mound and control, currently undisturbed position. For each sample, content of Fe (and Mn, Al, Si) forms: exchangeable, crystalline, and amorphous together with organically complexed Fe were determined. We generally observed an increased content of Fe soil forms in the pits of studied treethrows. The content of Fe forms increased along depth gradient at the disturbed sites. However, exchangeable Fe was most abundant in the 0-10cm layer which corresponds to the A horizon. Naturally, if present, the E horizon exhibited the lowest content of exchangeable Fe forms. The content of crystalline Fe forms also increased with the age of the windthrow. Differences in the amounts of Fe, Mn, Al and Si forms were observed between all studied localities. Research was supported by the Czech Science Foundation (project No. P504/11/2135). Šamonil P., Schaetzl R. J., Valtera M., Goliáš V., Baldrian P., Vašíčková I., Adam D., Janík D., Hort L. (in press). Crossdating of disturbances by tree uprooting: Can treethrow microtopography persist for 6,000 years? Forest Ecology and Management.

  19. Influence of V2O5 Content on the Gas-Based Direct Reduction of Hongge Vanadium Titanomagnetite Pellets with Simulated Shaft Furnace Gases

    NASA Astrophysics Data System (ADS)

    Li, Wei; Fu, Guiqin; Chu, Mansheng; Zhu, Miaoyong

    2018-01-01

    The influence of V2O5 content on the gas-based direct reduction of Hongge vanadium titanomagnetite pellets (HVTMP) was investigated with simulated shaft furnace gases, and the content levels were selected as 0 wt.%, 2 wt.%, 4 wt.%, and 6 wt.%, respectively. The results indicated that, with the increase of V2O5 content, the reduction was accelerated at an early stage due to the increase of the original porosity of the HVTMP. However, as the reduction proceeded, a slowing down in the reduction rate was observed, which was attributed to the formation of hardly reducible Fe2VO4. Major phases of reduced HVTMP were Fe2VO4, FeTiO3, and metallic iron. The morphology showed that the size of metallic iron particles of reduced HVTMP decreased with the increase of V2O5 content, V-bearing oxides embedded into the Ti-rich phases, and further reduction was restricted. This study not only established a relationship between the V2O5 content of HVTMP and its reduction behavior but could also contribute greatly to the effective utilization of Hongge vanadium titanomagnetite in shaft furnace.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.H.; Song, B.

    The reoxidation behavior of steels by slag in the secondary steelmaking process was addressed by investigating the thermodynamic equilibria between the liquid iron containing Mn and P and CaO-MgO-SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-MnO-Fe{sub t}O ladle slag at 1873 K. The activity coefficient of Fe{sub t}O shows a maximum value in the vicinity of the basicity ((X{sub CaO} + X{sub MgO} + X{sub MnO})/(X{sub SiO{sub 2}} + X{sub Al{sub 2}O{sub 3}} + XP{sub 2}O{sub 5})) = 2.5 at the specific mole fraction range of Fe{sub t}O, while that of MnO seems to increase gradually with increasing the basicity. However, themore » values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} showed minima with respect to P{sub 2}O{sub 5} content of slag. In addition, the values of {gamma}{sub Fe{sub t}O} and {gamma}{sub MnO} increased as (pct CaO)/(pct Al{sub 2}O{sub 3}) ratio increased at given SiO{sub 2}, MgO, and P{sub 2}O{sub 5} contents. The conversion equations between the Fe{sub t}O and MnO activities and their calculated activities via regular solution model were derived by the correlation between the measured and calculated activities over the limited ranges of Fe{sub t}O and MnO contents. The regular solution model was used to estimate the oxygen potential in the slag. For MgO saturated slags, a{sub Fe{sub t}O{sub (l)}} = 0.864a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 6.38a{sub MnO{sub (R.S.)}}. For Al{sub 2}O{sub 3} saturated slags, a{sub Fe{sub t}O{sub (l)}} = 2.086a{sub FeO{sub (R.S.)}}, a{sub MnO{sub (l)}} = 14.39a{sub MnO{sub (R.S.)}}.« less

  1. The effect of Fe-Rh alloying on CO hydrogenation to C 2+ oxygenates

    DOE PAGES

    Palomino, Robert; Magee, Joseph W.; Llorca, Jordi; ...

    2015-05-20

    A combination of reactivity and structural studies using X-ray diffraction (XRD), pair distribution function (PDF), and transmission electron microscopy (TEM) was used to identify the active phases of Fe-modified Rh/TiO 2 catalysts for the synthesis of ethanol and other C 2+ oxygenates from CO hydrogenation. XRD and TEM confirm the existence of Fe–Rh alloys for catalyst with 1–7 wt% Fe and ~2 wt% Rh. Rietveld refinements show that FeRh alloy content increases with Fe loading up to ~4 wt%, beyond which segregation to metallic Fe becomes favored over alloy formation. Catalysts that contain Fe metal after reduction exhibit some carburizationmore » as evidenced by the formation of small amounts of Fe 3C during CO hydrogenation. Analysis of the total Fe content of the catalysts also suggests the presence of FeO x also increased under reaction conditions. Reactivity studies show that enhancement of ethanol selectivity with Fe loading is accompanied by a significant drop in CO conversion. Comparison of the XRD phase analyses with selectivity suggests that higher ethanol selectivity is correlated with the presence of Fe–Rh alloy phases. As a result, the interface between Fe and Rh serves to enhance the selectivity of ethanol, but suppresses the activity of the catalyst which is attributed to the blocking or modifying of Rh active sites.« less

  2. Silicon doped hafnium oxide (HSO) and hafnium zirconium oxide (HZO) based FeFET: A material relation to device physics

    NASA Astrophysics Data System (ADS)

    Ali, T.; Polakowski, P.; Riedel, S.; Büttner, T.; Kämpfe, T.; Rudolph, M.; Pätzold, B.; Seidel, K.; Löhr, D.; Hoffmann, R.; Czernohorsky, M.; Kühnel, K.; Thrun, X.; Hanisch, N.; Steinke, P.; Calvo, J.; Müller, J.

    2018-05-01

    The recent discovery of ferroelectricity in thin film HfO2 materials renewed the interest in ferroelectric FET (FeFET) as an emerging nonvolatile memory providing a potential high speed and low power Flash alternative. Here, we report more insight into FeFET performance by integrating two types of ferroelectric (FE) materials and varying their properties. By varying the material type [HfO2 (HSO) versus hafnium zirconium oxide (HZO)], optimum content (Si doping/mixture ratio), and film thickness, a material relation to FeFET device physics is concluded. As for the material type, an improved FeFET performance is observed for HZO integration with memory window (MW) comparable to theoretical values. For different Si contents, the HSO based FeFET exhibited a MW trend with different stabilized phases. Similarly, the HZO FeFET shows MW dependence on the Hf:Zr mixture ratio. A maximized MW is obtained with cycle ratios of 16:1 (HfO2:Si) and 1:1 (Hf:Zr) as measured on HSO and HZO based FeFETs, respectively. The thickness variation shows a trend of increasing MW with the increased FE layer thickness confirming early theoretical predictions. The FeFET material aspects and stack physics are discussed with insight into the interplay factors, while optimum FE material parameters are outlined in relation to performance.

  3. Silicon and Manganese Partition Between Slag and Metal Phases and Their Activities Pertinent to Ferromanganese and Silicomanganese Production

    NASA Astrophysics Data System (ADS)

    Cengizler, Hakan; Eric, R. Hurman

    Equilibrium between MnO-CaO-MgO-SiO2-Al2O3 slags and carbon saturated Mn-Si-Fe-C alloys was investigated under CO at 1500oC. Manganese and silicon activities were obtained by using the present data and the previously determined MnO and SiO2 activities of the slag. Quadratic multi-coefficient regression equations were developed for activity coefficients of manganese and silicon. The conclusions of this work are:(i)increase in the basicity and the CaO/Al2O3 ratios decreases the Mn distribution ratio,(ii)increase in the silica concentration and the MgO/CaO ratio increases the Mn distribution ratio, iii)carbon and manganese as well as carbon and silicon of the metal phase are inversely proportional,(iv)as Mn/Fe and Mn/Si ratio increases in the metal the carbon solubility increases,(v)decrease in the basicity increases the silicon content of the metal and (vi)increase in the silica content of the slag increases the silicon content of the metal and this effect is more pronounced at the higher Mn/Fe and Mn/Si ratios.

  4. Responses of mixed methanotrophic consortia to variable Cu2+/Fe2+ ratios.

    PubMed

    Chidambarampadmavathy, Karthigeyan; Karthikeyan, Obulisamy Parthiba; Huerlimann, Roger; Maes, Gregory E; Heimann, Kirsten

    2017-07-15

    Methane mitigation in landfill top cover soils is mediated by methanotrophs whose optimal methane (CH 4 ) oxidation capacity is governed by environmental and complex microbial community interactions. Optimization of CH 4 remediating bio-filters need to take microbial responses into account. Divalent copper (Cu 2+ ) and iron (Fe 2+ ) are present in landfills at variable ratios and play a vital role in methane oxidation capacity and growth of methanotrophs. This study, as a first of its kind, therefore quantified effects of variable Cu 2+ and Fe 2+ (5:5, 5:25 and 5:50 μM) ratios on mixed methanotrophic communities enriched from landfill top cover (LB) and compost soils (CB). CH 4 oxidation capacity, CH 4 removal efficiencies, fatty acids content/profiles and polyhydroxybutyrate (PHB; a biopolymer) contents were also analysed to quantify performance and potential co-product development. Mixed methanotroph cultures were raised in 10 L continuous stirred tank reactors (CSTRs, Bioflo ® & Celligen ® 310 Fermentor/Bioreactor; John Morris Scientific, Chatswood, NSW, Australia). Community structure was determined by amplifying the V3-V4 region of 16s rRNA gene. Community structure and, consequently, fatty acid-profiles changed significantly with increasing Cu 2+ /Fe 2+ ratios, and responses were different for LB and CB. Effects on methane oxidation capacities and PHB content were similar in the LB- and CB-CSTR, decreasing with increasing Cu 2+ /Fe 2+ ratios, while biomass growth was unaffected. In general, high Fe 2+ concentration favored growth of the type -II methanotroph Methylosinus in the CB-CSTR, but methanotroph abundances decreased in the LB-CSTR. Increase in Cu 2+ /Fe 2+ ratio increased the growth of Sphingopyxis in both systems, while Azospirllum was co-dominant in the LB- but absent in the CB-CSTR. After 13 days, methane oxidation capacities and PHB content decreased by ∼50% and more in response to increasing Fe 2+ concentrations. Although methanotroph abundance was ∼2% in the LB- (compared to >50% in CB-CSTR), methane oxidation capacities were comparable in the two systems, suggesting that methane oxidation capacity was maintained by the dominant Azospirllum and Sphingopyxis in the LB-CSTR. Despite similar methanotroph inoculum community composition and controlled environmental variables, increasing Cu 2+ /Fe 2+ ratios resulted in significantly different microbial community structures in the LB- and CB-CSTR, indicative of complex microbial interactions. In summary, our results suggest that a detailed understanding of allelopathic interactions in mixed methanotrophic consortia is vital for constructing robust bio-filters for CH 4 emission abatement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Size-dependent structural evolution of the biomineralized iron-core nanoparticles in ferritins

    NASA Astrophysics Data System (ADS)

    Lee, Eunsook; Kim, D. H.; Hwang, Jihoon; Lee, Kiho; Yoon, Sungwon; Suh, B. J.; Hyun Kim, Kyung; Kim, J.-Y.; Jang, Z. H.; Kim, Bongjae; Min, B. I.; Kang, J.-S.

    2013-04-01

    The structural identity of the biomineralized iron core nanoparticles in Helicobacter pylori ferritins (Hpf's) has been determined by employing soft x-ray absorption spectroscopy and soft x-ray magnetic circular dichroism. Valence states of Fe ions are nearly trivalent in all Hpf's, indicating that the amount of magnetite (Fe3O4) is negligible. With increasing filling of Fe ions, the local configurations of Fe3+ ions change from the mixture of the tetrahedral and octahedral symmetries to the octahedral symmetry. These results demonstrate that the biomineralization of the ferritin core changes from maghemite-like (γ-Fe2O3) formation to hematite-like (α-Fe2O3) formation with increasing Fe content.

  6. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam

    NASA Astrophysics Data System (ADS)

    Postma, Dieke; Pham, Thi Kim Trang; Sø, Helle Ugilt; Hoang, Van Hoan; , Mai Lan, Vi; Nguyen, Thi Thai; Larsen, Flemming; Pham, Hung Viet; Jakobsen, Rasmus

    2016-12-01

    Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content.

  7. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam

    PubMed Central

    Trang, Pham Thi Kim; Sø, Helle Ugilt; Van Hoan, Hoang; Lan, Vi Mai; Thai, Nguyen Thi; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus

    2016-01-01

    Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content. PMID:27867210

  8. Repeated exposure to iron oxide nanoparticles causes testicular toxicity in mice.

    PubMed

    Sundarraj, Kiruthika; Manickam, Vijayprakash; Raghunath, Azhwar; Periyasamy, Madhivadhani; Viswanathan, Mangala Priya; Perumal, Ekambaram

    2017-02-01

    The aim of this study was to determine whether repeated exposure to iron oxide nanoparticles (Fe 2 O 3 -NPs) could be toxic to mice testis. Fe 2 O 3 -NPs (25 and 50 mg/kg) were intraperitoneally administered into mice once a week for 4 weeks. Our study showed that Fe 2 O 3 -NPs have the ability to cross the blood-testis barrier to get into the testis. The findings showed that exposure resulted in the accumulation of Fe 2 O 3 -NPs which was evidenced from the iron content and accumulation in the testis. Furthermore, 25 and 50 mg/kg Fe 2 O 3 -NPs administration increased the reactive oxygen species, lipid peroxidation, protein carbonyl content, glutathione peroxidase activity, and nitric oxide levels with a concomitant decrease in the levels of antioxidants-superoxide dismutase, catalase, glutathione, and vitamin C. Increased expression of Bax, cleaved-caspase-3, and cleaved-PARP confirms apoptosis. Serum testosterone levels increased with increased concentration of Fe 2 O 3 -NPs exposure. In addition, the histopathological lesions like vacuolization, detachment, and sloughing of germ cells were also observed in response to Fe 2 O 3 -NPs treatment. The data from our study entailed that testicular toxicity caused by Fe 2 O 3 -NPs exposure may be associated with Fe 2 O 3 -NPs accumulation leading to oxidative stress and apoptosis. Therefore, precautions should be taken in the safe use of Fe 2 O 3 -NPs to avoid complications in the fertility of males. Further research will unravel the possible molecular mechanisms on testicular toxicity of Fe 2 O 3 -NPs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 594-608, 2017. © 2016 Wiley Periodicals, Inc.

  9. Relationship between the specific surface area of rust and the electrochemical behavior of rusted steel in a wet-dry acid corrosion environment

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhao, Qing-he; Li, Shuan-zhu

    2017-01-01

    The relationship between the specific surface area (SSA) of rust and the electrochemical behavior of rusted steel under wet-dry acid corrosion conditions was investigated. The results showed that the corrosion current density first increased and then decreased with increasing SSA of the rust during the corrosion process. The structure of the rust changed from single-layer to double-layer, and the γ-FeOOH content decreased in the inner layer of the rust with increasing corrosion time; by contrast, the γ-FeOOH content in the outer layer was constant. When the SSA of the rust was lower than the critical SSA corresponding to the relative humidity during the drying period, condensed water in the micropores of the rust could evaporate, which prompted the diffusion of O2 into the rust and the following formation process of γ-FeOOH, leading to an increase of corrosion current density with increasing corrosion time. However, when the SSA of the rust reached or exceeded the critical SSA, condensate water in the micro-pores of the inner layer of the rust could not evaporate which inhibited the diffusion of O2 and decreased the γ-FeOOH content in the inner rust, leading to a decrease of corrosion current density with increasing corrosion time.

  10. The Effect of Nickel on Iron Isotope Fractionation and Implications for the Earth's Core

    NASA Astrophysics Data System (ADS)

    Reagan, M. M.; Shahar, A.; Elardo, S. M.; Liu, J.; Xiao, Y.; Mao, W. L.

    2017-12-01

    The Earth's core is thought to be composed mainly of an iron-rich iron nickel (FeNi) alloy. Therefore, determining the behavior of these alloys at core conditions is crucial for interpreting and constraining geophysical and geochemical models. Understanding the effect of nickel on iron isotope fractionation can shed light on planetary core formation. We collected a series of phonon excitation spectra using nuclear resonant inelastic x-ray scattering (NRIXS) on 57Fe-enriched FeNi alloys with varying (Fe0.9Ni0.1, Fe0.8Ni0.2, Fe0.7Ni0.3) nickel content in a diamond anvil cell at pressures up to 50 GPa. All three alloys studied exhibited differences from pure Fe, indicating that increasing nickel content could have an effect on iron isotope fractionation which would have implications for planetary core formation and provide constraints the bulk composition for terrestrial planets.

  11. Synthesis, structures and magnetic properties of Pr-lean Pr2Fe14B/Fe3B nanocomposite alloys

    NASA Astrophysics Data System (ADS)

    Mingxiang, Pan; Pengyue, Zhang; Hongliang, Ge; Hangfu, Yang; Qiong, Wu

    2012-09-01

    The lean rare-earth Pr4.5Fe77-xTixB18.5 (x=0, 1, 4, 5) nanocomposite alloys were prepared by melt spinning method and subsequent thermal annealing. The effect of Ti content and annealing temperature on the magnetic properties and the microstructure of these magnets were investigated. The enhancing coercivity Hc from 211.4 to 338.2 kA/m has been observed at the optimal annealing temperature of 700 °C by the addition of 5 at% Ti in Pr2Fe14B/Fe3B alloys. It was also found that increasing Ti content leads to marked grain refinement in the annealed alloys, resulting in strong exchange-coupling interaction between the hard and the soft phases in these ribbons. In addition, the magnetization reversal behaviors of Pr2Fe14B/Fe3B nanocomposites were discussed in detail.

  12. [Effects of straw returning combined with medium and microelements application on soil organic carbon sequestration in cropland.

    PubMed

    Jiang, Zhen Hui; Shi, Jiang Lan; Jia, Zhou; Ding, Ting Ting; Tian, Xiao Hong

    2016-04-22

    A 52-day incubation experiment was conducted to investigate the effects of maize straw decomposition with combined medium element (S) and microelements (Fe and Zn) application on arable soil organic carbon sequestration. During the straw decomposition, the soil microbial biomass carbon (MBC) content and CO 2 -C mineralization rate increased with the addition of S, Fe and Zn, respectively. Also, the cumulative CO 2 -C efflux after 52-day laboratory incubation significantly increased in the treatments with S, or Fe, or Zn addition, while there was no significant reduction of soil organic carbon content in the treatments. In addition, Fe or Zn application increased the inert C pools and their proportion, and apparent balance of soil organic carbon, indicating a promoting effect of Fe or Zn addition on soil organic carbon sequestration. In contrast, S addition decreased the proportion of inert C pools and apparent balance of soil organic carbon, indicating an adverse effect of S addition on soil organic carbon sequestration. The results suggested that when nitrogen and phosphorus fertilizers were applied, inclusion of S, or Fe, or Zn in straw incorporation could promote soil organic carbon mineralization process, while organic carbon sequestration was favored by Fe or Zn addition, but not by S addition.

  13. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin

    2018-05-01

    In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.

  14. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-06-01

    This paper is dedicated to investigate the effect of Co2+ ions in magnetite Fe3O4 nano-particles with stoichiometric formula CoxFe3-xO4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV-Vis Spectrometer (UV-Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of CoxFe3-xO4 nanoparticles with the major band at 887 cm-1, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co2+ content. The decrease in enthalpy with increase in Co2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co2+ content in B-site of Fe3O4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of CoxFe3-xO4 nanoparticles are significantly increased. From UV-Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  15. High relative air humidity influences mineral accumulation and growth in iron deficient soybean plants

    PubMed Central

    Roriz, Mariana; Carvalho, Susana M. P.; Vasconcelos, Marta W.

    2014-01-01

    Iron (Fe) deficiency chlorosis (IDC) in soybean results in severe yield losses. Cultivar selection is the most commonly used strategy to avoid IDC but there is a clear interaction between genotype and the environment; therefore, the search for quick and reliable tools to control this nutrient deficiency is essential. Several studies showed that relative humidity (RH) may influence the long distance transport of mineral elements and the nutrient status of plants. Thus, we decided to analyze the response of an “Fe-efficient” (EF) and an “Fe-inefficient” (INF) soybean accession grown under Fe-sufficient and deficient conditions under low (60%) and high (90%) RH, evaluating morphological, and physiological parameters. Furthermore, the mineral content of different plant organs was analyzed. Our results showed beneficial effects of high RH in alleviating IDC symptoms as seen by increased SPAD values, higher plant dry weight (DW), increased plant height, root length, and leaf area. This positive effect of RH in reducing IDC symptoms was more pronounced in the EF accession. Also, Fe content in the different plant organs of the EF accession grown under deficient conditions increased with RH. The lower partitioning of Fe to roots and stems of the EF accessions relative to dry matter also supported our hypothesis, suggesting a greater capacity of this accession in Fe translocation to the aerial parts under Fe deficient conditions, when grown under high RH. PMID:25566297

  16. Fabrication and Properties of Novel NiWFeB Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Jiajia; Liu, Wensheng; Ma, Yunzhu; Ye, Xiaoshan; Wu, Yayu

    2017-09-01

    In this work, we reported the successful synthesis of four quaternary NiWFeB amorphous alloys (Ni53.9W4.3Fe24.2B17.6, Ni49.7W9.7Fe22.3B18.3, Ni46.2W14.1Fe20.8B18.9 and Ni42.2W19.2Fe18.9B19.7 in at.%) via melt spinning method. The synthesized amorphous alloys are characterized by x-ray diffraction, transmission electron microscopy, differential scanning calorimeter, scanning electron microscopy and Vickers indenters. The results showed that the crystallization temperatures T x1 of four amorphous alloys with increased W contents, derived from the exothermic peaks in DSC, were 705, 715, 851, and 965 K, respectively. The Vickers hardness ( H v) of the corresponding four amorphous alloys at room temperature was 8.5, 9.8, 10.3, and 11.4 GPa, respectively. The much finer shear bands in the deformation region underneath the Vickers indenter were observed as the tungsten content increases. All the results showed a tendency that the higher the tungsten content, the greater the thermal stability and hardness. The results indicated the NiWFeB amorphous alloys could be easier fabricated by continuing to increase the tungsten content, and those NiWFeB amorphous alloys would have a promising application in nuclear energies and military defenses.

  17. Strontium hexaferrite (SrFe12O19) based composites for hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Rashid, Amin Ur; Southern, Paul; Darr, Jawwad A.; Awan, Saifullah; Manzoor, Sadia

    2013-10-01

    Mixed phase composites of SrFe12O19/MgFe2O4/ZrO2 were prepared via the citrate gel technique as potential candidate materials for magnetic hyperthermia. Structural and magnetic properties of the samples were studied using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer. XRD and FE-SEM data confirm that magnesium ferrite and zirconium oxide phases increased with increasing Mg and Zr content in the precursors. Magnetization loops for the composites were measured at room temperature and showed significant variation of saturation magnetization, coercivity and remanence depending on the amount of the highly anisotropic Sr-hexaferrite phase. The sample with the highest Mg and Zr content had the lowest coercivity (80 Oe) and saturation magnetization (41 emu/g). The composite samples each were exposed to a 214 kHz alternating magnetic field of amplitude 22 Oe and a significant heating effect was observed in selected samples, which suggests potential for use in magnetic hyperthermia.

  18. Epitaxial growth and magnetic properties of Fe4-xMnxN thin films grown on MgO(0 0 1) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Anzai, Akihito; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    Epitaxial Fe4-xMnxN (x = 0, 1, 2, 3, and 4) thin films were successfully grown on MgO(0 0 1) single-crystal substrates by molecular beam epitaxy, and their crystalline qualities and magnetic properties were investigated. It was found that the lattice constants of Fe4-xMnxN obtained from X-ray diffraction measurement increased with the Mn content. The ratio of the perpendicular lattice constant c to the in-plane lattice constant a of Fe4-xMnxN was found to be about 0.99 at x ⩾ 2. The magnetic properties evaluated using a vibrating sample magnetometer at room temperature revealed that all of the Fe4-xMnxN films exhibited ferromagnetic behavior regardless of the value of x. In addition, the saturation magnetization decreased non-linearly as the Mn content increased. Finally, FeMn3N and Mn4N exhibited perpendicular anisotropy and their uniaxial magnetic anisotropy energies were 2.2 × 105 and 7.5 × 105 erg/cm3, respectively.

  19. Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji.

    PubMed

    Singh, Poonam; Prasad, Surendra; Aalbersberg, William

    2016-09-15

    The present study reports contents and the bioavailability of Fe and Zn from 25 selected raw and cooked food samples. The results showed highest variation of Fe content in raw food samples ranging from 2.19 ± 0.04 to 0.93 ± 0.03 mg/100g in legumes. The raw black eye bean, cheese and fish showed high Zn content up to 8.85 ± 0.01, 12.93 ± 0.26 and 172.03 ± 5.09 mg/100g, respectively. Pulses and cereals showed high level of ionizable Fe. Zn bioavailability was quite low in cereals as compared to pulses; 4.02% in yellow split to 17.40% in Bengal gram. Zn bioavailability of 17.40% is in cheese. Fe bioavailability is high in cooked rice 160.60%, white bread 428.30% and milk powder 241.67% showing that Fe bioavailability increased after cooking whereas the lowest in fish 0.84%. The multivariate and cluster analysis categorized studied foods into two main groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3−δ} (Me = Fe, Mn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwa, Eiki, E-mail: e-niwa@phys.chs.nihon-u.ac.jp; Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550; Maeda, Hiroki

    Graphical abstract: Compositional dependence of (a) electrical conductivity and (b) E{sub a} for hopping conduction of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn). - Highlights: • Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn) was investigated. • Hopping conduction model could be applied for conductivity of both specimens. • The difference of E{sub a} due to that of energy level of Fe and Mn was observed. • Hole concentration estimated by iodimetry increases with increasing Ni content. - Abstract: Electrical conduction mechanism of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} expected as Sr-freemore » new cathode material for solid oxide fuel cells was analyzed. Electrical conduction behaviors of both specimens could be well fitted by small polaron hopping conduction model. The electrical conductivity of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} increased with increasing Ni content, showing agreement with decrease of activation energy for hopping conduction. The decrease of electrical conductivity and increase of activation energy of LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} were observed with increasing Ni content for 0.0 ≤ x ≤ 0.4. Further Ni substitution increased electrical conductivity and decreased activation energy for 0.4 ≤ x ≤ 0.6. It was revealed using iodometry that the difference of hole carrier density between LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} was small. It was suspected that the origin of the difference of electrical conduction behavior of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1-x}O{sub 3+δ} was difference of energy level of e{sub g} band composed of Fe 3d or Mn 3d orbitals and their overlapping quantity with O 2p and Ni 3d band.« less

  1. Polystyrene/Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization.

    PubMed

    Qiu, Guihua; Wang, Qi; Wang, Chao; Lau, Willie; Guo, Yili

    2007-01-01

    Ultrasonically initiated miniemulsion polymerization of styrene in the presence of Fe3O4 nanoparticles was successfully employed to prepare polystyrene (PS)/Fe3O4 magnetic emulsion and nanocomposite. The effects of Fe3O4 nanoparticles on miniemulsion polymerization process, the structure, morphology and properties of PS/Fe3O4 nanocomposite were investigated. The increase in the amount of Fe3O4 nanoparticles drastically increases the polymerization rate due to that Fe3O4 nanoparticles increase the number of radicals and the cavitation bubbles. Polymerization kinetics of ultrasonically initiated miniemulsion polymerization is similar to that of conventional miniemulsion polymerization. PS/Fe3O4 magnetic emulsion consists of two types of particles: latex particles with Fe3O4 nanoparticles and latex particles with no encapsulated Fe3O4 nanoparticles. Fe3O4 nanoparticles lower the molecular weight of PS and broaden the molecular weight and particle size distribution. Thermal stability of PS/Fe3O4 nanocomposite increases with the increase in Fe3O4 content. PS/Fe3O4 emulsion and nanocomposite exhibit magnetic properties. PS/Fe3O4 magnetic particles can be separated from the magnetic emulsion by an external magnetic field and redispersed into the emulsion with agitation.

  2. Exposure to nitric oxide protects against oxidative damage but increases the labile iron pool in sorghum embryonic axes

    PubMed Central

    Jasid, Sebastián; Simontacchi, Marcela; Puntarulo, Susana

    2008-01-01

    Sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA NONOate), were used as the source of exogenous NO to study the effect of NO upon germination of sorghum (Sorghum bicolor (L.) Moench) seeds through its possible interaction with iron. Modulation of cellular Fe status could be an important factor for the establishment of oxidative stress and the regulation of plant physiology. Fresh and dry weights of the embryonic axes were significantly increased in the presence of 0.1 mM SNP, as compared to control. Spin trapping EPR was used to assess the NO content in axes from control seeds after 24 h of imbibition (2.4±0.2 nmol NO g−1 FW) and seeds exposed to 0.01, 0.1, and 1 mM SNP (3.1±0.3, 4.6±0.2, and 6.0±0.9 nmol NO g−1 FW, respectively) and 1 mM DETA NONOate (6.2±0.6 nmol NO g−1 FW). Incubation of seeds with 1 mM SNP protected against oxidative damage to lipids and maintained membrane integrity. The content of the deferoxamine–Fe (III) complex significantly increased in homogenates of axes excised from seeds incubated in the presence of 1 mM SNP or 1 mM DETA NONOate as compared to the control (19±2 nmol Fe g−1 FW, 15.2±0.5 nmol Fe g−1 FW, and 8±1 nmol Fe g−1 FW, respectively), whereas total Fe content in the axes was not affected by the NO donor exposure. Data presented here provide experimental evidence to support the hypothesis that increased availability of NO drives not only protective effects to biomacromolecules, but to increasing the Fe availability for promoting cellular development as well. PMID:18832188

  3. Magnetic anisotropy of Fe{sub 1−y}X{sub y}Pt-L1{sub 0} [X = Cr, Mn, Co, Ni, Cu] bulk alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuadrado, R.; Chantrell, R. W.; Klemmer, Timothy J.

    2014-10-13

    We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni, or Cu in FePt-L1{sub 0} bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content while those of Pt and Xmore » are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L1{sub 0} alloys.« less

  4. Surfactant assisted synthesis of aluminum doped SrFe{sub 10}Al{sub 2}O{sub 19} hexagonal ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, D., E-mail: dneupane@memphis.edu; Wang, L.; Mishra, S. R.

    2015-05-07

    M-type aluminum doped SrFe{sub 10}Al{sub 2}O{sub 19} were synthesized via co-precipitation method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB content (x = 0, 1, 3, and 9 wt. %) on the formation, structure, morphology, magnetic, and dielectric properties of the SrFe{sub 10}Al{sub 2}O{sub 19} nanoparticles were investigated. X-ray diffraction results show elimination of α-Fe{sub 2}O{sub 3} phase from samples prepared using CTAB. Morphological changes including grain and crystallite size was noticed with the increase in the CTAB content. With the increase in CTAB, powder particles grew in hexagonal plates. A linear increase in saturation magnetization, Ms, with CTABmore » content was observed from 56.5 emu/g at 0% CTAB to 66.4 emu/g at 9% CTAB. This is a net increase of 17.5% in Ms. The coercivity (Hc ∼ 5700 Oe) of sample reached maximum at 1% CTAB and reduced with further CTAB content reaching to a minimum value of 4488 Oe at 9% CTAB. A slight increase in Curie temperature (735 K) was also observed for samples synthesized using CTAB as compared to that of sample prepared in the absence of CTAB (729 K). Samples synthesized with CTAB show higher dielectric constants as compared to samples prepared without CTAB, while dielectric constant for all samples show decrease in value with the increase in frequency. These results imply that CTAB may act as a crystallization master, controlling the nucleation and growth of SrFe{sub 10}Al{sub 2}O{sub 19} crystal. The study delineates the scope of improving magnetic properties of ferrites without substitution of metal ions.« less

  5. Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch

    NASA Astrophysics Data System (ADS)

    Son, S.; Taheri, M.; Carpenter, E.; Harris, V. G.; McHenry, M. E.

    2002-05-01

    Nanocrystalline (NC) ferrite powders have been synthesized using a 50 kW-3 MHz rf thermal plasma torch for high-frequency soft magnet applications. A mixed powder of Ni and Fe (Ni:Fe=1:2), a NiFe permalloy powder with additional Fe powder (Ni:Fe=1:2), and a NiFe permalloy powder (Ni:Fe=1:1) were used as precursors for synthesis. Airflow into the reactor chamber was the source of oxygen for oxide formation. XRD patterns clearly show that the precursor powders were transformed into NC ferrite particles with an average particle size of 20-30 nm. SEM and TEM studies indicated that NC ferrite particles had well-defined polygonal growth forms with some exhibiting (111) faceting and many with truncated octahedral and truncated cubic shapes. The Ni content in the ferrite particles was observed to increase in going from mixed Ni and Fe to mixed permalloy and iron and finally to only permalloy starting precursor. The plasma-torch synthesized ferrite materials using exclusively the NiFe permalloy precursor had 40%-48% Ni content in the Ni-ferrite particle, differing from the NiFe2O4 ideal stoichiometry. EXAFS was used to probe the cation coordination in low Ni magnetite species. The coercivity and Neel temperature of the high Ni content ferrite sample were 58 Oe and ˜590 °C, respectively.

  6. Recycling coffee grounds and tea leaf wastes to improve the yield and mineral content of grains of paddy rice.

    PubMed

    Morikawa, Claudio K; Saigusa, M

    2011-08-30

    Coffee grounds and tea leaf wastes exhibit strong affinity for metals such as Fe and Zn. The objective of this experiment was to evaluate the effect of top-dressing application of Fe- and Zn-enriched coffee grounds and tea leaf wastes at the panicle initiation stage on the mineral content of rice grains and the yield of paddy rice. The Fe and Zn contents of brown rice grains increased significantly on application of both coffee and tea waste materials. The concentration of Mn was increased by top-dressing application of coffee waste material only. For Cu, no significant (P < 0.05) differences were found between the control and ferrous sulfate/zinc sulfate treatment. The application of coffee and tea waste materials led to a significant (P < 0.05) increase in the number of grains per panicle, which was reflected in increases in the total number of grains per hill and in grain yield. The top-dressing application of these materials is an excellent method to recycle coffee grounds and tea wastes from coffee shops. Use of these novel materials would not only reduce the waste going to landfill but would also benefit the mineral nutrition of rice consumers at low cost by increasing Fe and Zn levels of rice grains as well as grain yield. Copyright © 2011 Society of Chemical Industry.

  7. Crystalline and Electronic Structures and Magnetic and Electrical Properties of La-Doped Ca2Fe2O5 Compounds

    NASA Astrophysics Data System (ADS)

    Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.

    2018-01-01

    Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.

  8. Electrodeposition of nickel-iridium alloy films from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Jiang, Jinjin; Jiang, Peng; Wang, Zhizhi; Yuan, Ningyi; Ding, Jianning

    2018-03-01

    Nickel-iridium (Ni-Ir) alloy films were electrodeposited from aqueous solutions on copper substrates under galvanostatic conditions. The effects of bath composition and deposition time on the faradaic efficiency (FE), partial current densities, chemical composition, morphology and crystallographic structure of the films were studied. The results show that the Ni-Ir alloys with Ir content as high as 37 at% and FE as high as 44% were obtained. Increase in concentration of citric acid had little or no effect on the composition of the alloys, but resulted in a significant decrease in FE and partial current densities of Ni and Ir. The FE and the partial current density of Ni slightly decreased with increasing Ir3+ concentration, however, Ir content increased while partial current density of Ir remained stable. The increase of Ni2+ concentration could result in the increase of the FE and the rate of Ni-Ir deposition, and even no cracks formed on the surface. The surface average roughness and root mean square roughness of the film were 6.8 ± 0.3 nm and 5.4 ± 0.3 nm, respectively. The mixture phases contained significant amounts of Ni oxides and a small amount of metallic Ni, Ir and Ir oxides on the surface. After argon ion sputter cleaning, the film was mainly composed of metallic Ni and Ir. The film consisted of the amorphous and nanocrystalline phases. The Ni content in the deposits was higher than that in the electrolyte, the co-deposition of Ni-Ir alloy was a normal deposition.

  9. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron.

    PubMed

    Sebastian, A; Prasad, M N V

    2016-11-01

    Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study. Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd-spiked soil containing ferrous sulphates, which is expected to reduce Cd accumulation in rice. Responses in rhizosphere pH, root surface, metal accumulation in plant and molecular physiological processes were monitored. Iron plaque was induced on root surfaces after FeSO4 application and the amount of Fe in plaque reduced with increases in Cd in the soil. Rhizosphere pH decreased during plaque formation and became more acidic due to secretion of organic acids from the roots under Cd treatment. Moreover, iron chelate reductase activity increased with Cd treatment, but in the absence of Cd, activity of this enzyme increased in plaque-induced plants. Cd treatment caused expression of OsYSL18, whereas OsYSL15 was expressed only in roots without iron plaque. Fe content of plants increased during plaque formation, which protected plants from Cd-induced Fe deficiency and metal toxicity. This was corroborated with increased biomass, chlorophyll content and quantum efficiency of photo-synthesis among plaque-induced plants. We conclude that ferrous sulphate-induced iron plaque prevents Cd accumulation and Fe deficiency in rice. Iron released from plaque via organic acid mediated dissolution during Cd stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Fe{sub 2}O{sub 3}-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses as lithium-free nonsilicate pH responsive glasses – Compatibility between pH responsivity and hydrophobicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Tadanori, E-mail: hasimoto@chem.mie-u.ac.jp; Hamajima, Mitsuaki; Ohta, Honami

    Highlights: • Fe{sub 2}O{sub 3}-rich FeBiB glasses show high pH sensitivity and short pH response time. • Bi{sub 2}O{sub 3}-rich FeBiB glasses show relatively high contact angle for water. • FeBiB glasses are lithium-free nonsilicate pH responsive ones. • pH responsivity and hydrophobicity are obtained for optimum glass compositions. - Abstract: Lithium silicate-based glasses have widely been used as commercially available pH glass electrodes. It was revealed that Ti{sup 3+}-containing titanophosphate (TiO{sub 2}-P{sub 2}O{sub 5}, TP) glasses are pH responsive as lithium-free nonsilicate glasses for the first time. TP glasses with the compatibility between pH responsivity and self-cleaning property weremore » obtained by the sequential post-annealing (oxidation and reduction) of as-prepared glasses. Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} (BiB) glasses are relatively hydrophobic and are expected to show anti-fouling effect. They are unsuitable for pH responsive glasses, because they have high electrical resistivity. In the present study, xFe{sub 2}O{sub 3}·yBi{sub 2}O{sub 3}·(100 − x − y)B{sub 2}O{sub 3} glasses (xFeyBiB, x = 0–20 mol%, y = 20–80 mol%) glasses were selected as new pH responsive glasses with hydrophobicity, because Fe{sub 2}O{sub 3} is a representative component for causing hopping conduction to the glasses. BiB glass did not show pH responsivity, whereas xFeyBiB glasses showed good pH responsivity. xFeyBiB glasses are lithium-free nonsilicate pH responsive ones as well as TP glasses. The electrical resistivity and pH response time decreased with increasing Fe{sub 2}O{sub 3} content. The pH repeatability for standard solutions increased with increasing Bi{sub 2}O{sub 3} content. Silicate glass (20Fe70BiSi) showed better pH responsivity but lower contact angle than those of borate glass (20Fe70BiB). pH sensitivity increased in order of TP glasses (about 80%), xFeyBiB glasses (about 90%) and commercial pH responsive glass (about 100%). xFeyBiB glasses showed short pH response time compared to commercial pH responsive glass. The contact angle for water of xFeyBiB glasses was relatively high (about 90°) as well as BiB glasses, and increased slightly with increasing Bi{sub 2}O{sub 3} content regardless Fe{sub 2}O{sub 3} content. The high contact angle was related to low OH content determined by FT-IR measurement. Thus, 20Fe{sub 2}O{sub 3}·70Bi{sub 2}O{sub 3}·10B{sub 2}O{sub 3} glass was the most suitable one as pH responsive glasses with hydrophobicity. TP glasses are pH responsive ones with self-cleaning property, whereas xFeyBiB glasses are expected as pH responsive ones with anti-fouling property based on hydrophobicity.« less

  11. Investigation on the relationship between NbC and wear-resistance of Fe matrix composite coatings with different C contents

    NASA Astrophysics Data System (ADS)

    Zhao, Changchun; Zhou, Yefei; Xing, Xiaolei; Liu, Sha; Ren, Xuejun; Yang, Qingxiang

    2018-05-01

    The wear resistance of Fe-based composite coating is significantly related with the character of carbides and matrix, which could be strongly affected by C content in it. In this work, the Fe-based composite coatings with different C contents were prepared. The microstructure and phase structure of the coatings were analyzed by scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and X-ray diffractometer (XRD). The hardness and wear resistance of the coatings were determined. Then the hardness and brittleness of carbon poor niobium carbides were calculated by first principles calculation. The results show that, the phase structures of the coatings are mainly composed of NbC, γ phase (retained austenite) and α phase (martensite). With the increase of C content, the retained austenite appears and C content of martensite is increased. The hardness of the coatings are increased from HRC 22 to HRC 59. The distribution and morphology of NbC are changed with the increase of C content. The NbC precipitated in reticular grain boundary can be observed when C content is 0.4 wt.% C (C-1). NbC turn into granular and small rod morphology when C content increases to 0.8 wt.% C (C-2). The cracks and defects cannot been found on the surface of the coating when C content is 1.2 wt.% C(C-3), whose hardness is HRC 58 and wear loss is 0.27 g/N cm2 in 8 h. The flaky M7C3 carbide precipitates on the coating when C content is 1.4 wt.% C(C-4), which weaken the wear resistance of the matrix. Compared with the hardfacing coatings with different C contents, the C-3 coating processes higher hardness and wear resistance.

  12. Chemical synthesis of L10 Fe-Pt-Ni alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Deepchand, Vimal; Abel, Frank M.; Tzitzios, Vasileios; Hadjipanayis, George C.

    2018-05-01

    This work focuses on the study of the magnetic and structural properties of chemically synthesized FePt1-xNix nanoparticles, with Ni content x in the range 0.2-0.4. We report the effect of Ni substitution on the L10 structure, on both the as-synthesized and annealed nanoparticles. A decrease in nanoparticle size as well as in chemical order is observed with an increase in Ni content, for both the as-made and annealed nanoparticles. The results also show that the post annealing procedure at 700oC significantly enhanced the L10 ordering of the nanoparticles. Substitution of nickel leads to a decrease in coercivity from 14.9 kOe in FePt to 0.8 kOe for FePt0.6Ni0.4 alloy, while the magnetization at 3 T is increased from 48 emu/g to 88 emu/g.

  13. Nd-Fe-B/Sm-M/Nd-M (M = Fe, Co, Ti, Cu, Zr) hybrid magnets with improved thermal stability

    NASA Astrophysics Data System (ADS)

    Grigoras, M.; Lostun, M.; Urse, M.; Borza, F.; Chiriac, H.; Lupu, N.

    2018-02-01

    Hybrid magnets of Nd12Fe82B6(2:14:1-phase)/Nd9.4Fe59Co25.3Ti6.3(3:29-phase) and Nd12Fe82B6/Sm11.1Co65.8Fe8.9Cu10.7Zr3.5(2:17-phase) with different weight ratio have been prepared by spark plasma sintering pressing technique from ball-milled powders obtained from melt-spun ribbons. Influence of the ratio between the two phases on the magnetic properties and thermal stability of the hybrid magnets was studied. It has been found that the ratio has a remarkable influence, especially on the thermal stability of the bulk magnets. However, the magnetic properties of such type of hybrid magnets result not only from the type and ratio of components but also from the interaction between them. It was found that in NdFeB/3:29 hybrid magnets with 15% content of 3:29-phase, the temperature coefficients of remanence (α) and of coercivity (β) are improved from -0.095 to -0.082 (%/°C) and from -0.57 to -0.47 (%/°C), respectively, as compared to the Nd2Fe14B single-phase counterpart. While for the NdFeB/2:17 hybrid magnets the content of 2:17-phase is not significantly influencing the temperature coefficient of induction (α), the temperature coefficient of °C (β) increases up to -0.41 (%/°C) for 10% content of 2:17-phase. The increase in the reversible temperature coefficients of hybrid magnets indicate a remarkable improvement of their thermal stability.

  14. Structural properties of Fe-doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Shibata, Koji; Iwase, Kenji; Harjo, Stefanus; Hoshikawa, Akinori; Itoh, Keiji; Kamiyama, Takashi; Ishigaki, Toru

    2004-10-01

    Structural characteristics of Fe-doped LaGaO3-δ were studied by differential scanning calorimeter, neutron and high-temperature X-ray powder diffraction measurements. It was found that a phase transition temperature increases in proportion to an amount of Fe. The crystal structure could be described as a low-temperature orthorhombic phase (Pnma) and a high-temperature rhombohedral one (R 3 bar c), respectively. Lattice parameters and bond lengths between M (=Ga/Fe) and O are monotonically expand with increasing Fe-content on both orthorhombic and rhombohedral phases. This means that a substitution of Ga3+ with Fe3+ leads to an electronic configuration of t2g3eg2 (high-spin state, HS).

  15. Tensile Flow Behavior of Tungsten Heavy Alloys Produced by CIPing and Gelcasting Routes

    NASA Astrophysics Data System (ADS)

    Panchal, Ashutosh; Ravi Kiran, U.; Nandy, T. K.; Singh, A. K.

    2018-04-01

    Present work describes the flow behavior of tungsten heavy alloys with nominal compositions 90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe, and 95W-3.5Ni-1.5Fe (wt pct) produced by CIPing and gelcasting routes. The overall microstructural features of gelcasting are finer than those of CIPing alloys. Both the grain size of W and corresponding contiguity values increase with increase in W content in the present alloys. The volume fraction of matrix phase decreases with increase in W content in both the alloys. The lattice parameter values of the matrix phase also increase with increase in W content. The yield strength (σ YS) continuously increases with increase in W content in both the alloys. The σ YS values of CIPing alloys are marginally higher than those of gelcasting at constant W. The ultimate tensile strength (σ UTS) and elongation values are maximum at intermediate W content. Present alloys exhibit two slopes in true stress-true plastic strain curves in low and high strain regimes and follow a characteristic Ludwigson relation. The two slopes are associated with two deformation mechanisms that are occurring during tensile deformation. The overall nature of differential curves of all the alloys is different and these curves contain three distinctive stages of work hardening (I, II, and III). This suggests varying deformation mechanisms during tensile testing due to different volume fractions of constituent phases. The slip is the predominant deformation mechanism of the present alloys during tensile testing.

  16. Tensile Flow Behavior of Tungsten Heavy Alloys Produced by CIPing and Gelcasting Routes

    NASA Astrophysics Data System (ADS)

    Panchal, Ashutosh; Ravi Kiran, U.; Nandy, T. K.; Singh, A. K.

    2018-06-01

    Present work describes the flow behavior of tungsten heavy alloys with nominal compositions 90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe, and 95W-3.5Ni-1.5Fe (wt pct) produced by CIPing and gelcasting routes. The overall microstructural features of gelcasting are finer than those of CIPing alloys. Both the grain size of W and corresponding contiguity values increase with increase in W content in the present alloys. The volume fraction of matrix phase decreases with increase in W content in both the alloys. The lattice parameter values of the matrix phase also increase with increase in W content. The yield strength ( σ YS) continuously increases with increase in W content in both the alloys. The σ YS values of CIPing alloys are marginally higher than those of gelcasting at constant W. The ultimate tensile strength ( σ UTS) and elongation values are maximum at intermediate W content. Present alloys exhibit two slopes in true stress-true plastic strain curves in low and high strain regimes and follow a characteristic Ludwigson relation. The two slopes are associated with two deformation mechanisms that are occurring during tensile deformation. The overall nature of differential curves of all the alloys is different and these curves contain three distinctive stages of work hardening (I, II, and III). This suggests varying deformation mechanisms during tensile testing due to different volume fractions of constituent phases. The slip is the predominant deformation mechanism of the present alloys during tensile testing.

  17. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-01

    In this study, the effects of grain size and the addition of CaCO3 on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO3 densified the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics at 1075 °C. In the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO3 content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe2CaO4 was observed, together with the disappearance of the second phase CuO. The grain size of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO3 content increased from 0 to 5 wt%. Initially rising to 807 after CaCO3 addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO3 content increased. The bending strength grew linearly with the CaCO3 content and reached twice the value for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with an addition of 5.0 wt% CaCO3. The initial permeability of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic decreased substantially from 402 to 103 as the addition of CaCO3 in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic was maximized at 95 for 1.0 wt% CaCO3 addition.

  18. Response of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii to iron limitation.

    PubMed

    Jacq, Violaine; Ridame, Céline; L'Helguen, Stéphane; Kaczmar, Fanny; Saliot, Alain

    2014-01-01

    Iron (Fe) is widely suspected as a key controlling factor of N2 fixation due to the high Fe content of nitrogenase and photosynthetic enzymes complex, and to its low concentrations in oceanic surface seawaters. The influence of Fe limitation on the recently discovered unicellular diazotrophic cyanobacteria (UCYN) is poorly understood despite their biogeochemical importance in the carbon and nitrogen cycles. To address this knowledge gap, we conducted culture experiments on Crocosphaera watsonii WH8501 growing under a range of dissolved Fe concentrations (from 3.3 to 403 nM). Overall, severe Fe limitation led to significant decreases in growth rate (2.6-fold), C, N and chlorophyll a contents per cell (up to 4.1-fold), N2 and CO2 fixation rates per cell (17- and 7-fold) as well as biovolume (2.2-fold). We highlighted a two phased response depending on the degree of limitation: (i) under a moderate Fe limitation, the biovolume of C. watsonii was strongly reduced, allowing the cells to keep sufficient energy to maintain an optimal growth, volume-normalized contents and N2 and CO2 fixation rates; (ii) with increasing Fe deprivation, biovolume remained unchanged but the entire cell metabolism was affected, as shown by a strong decrease in the growth rate, volume-normalized contents and N2 and CO2 fixation rates. The half-saturation constant for growth of C. watsonii with respect to Fe is twice as low as that of the filamentous Trichodesmium indicating a better adaptation of C. watsonii to poor Fe environments than filamentous diazotrophs. The physiological response of C. watsonii to Fe limitation was different from that previously shown on the UCYN Cyanothece sp, suggesting potential differences in Fe requirements and/or Fe acquisition within the UCYN community. These results contribute to a better understanding of how Fe bioavailability can control the activity of UCYN and explain the biogeography of diverse N2 fixers in ocean.

  19. Magnetization reversal in orthorhombic Sr-doped LaFe0.5Cr0.5O3–δ

    NASA Astrophysics Data System (ADS)

    Coutinho, P. V.; Moreno, N. O.; Ochoa, E. A.; da Costa, M. E. H. Maia; Barrozo, Petrucio

    2018-06-01

    In this paper we studied the reversal magnetization of La1‑x Sr x Fe0.5Cr0.5O3‑δ (x  =  0, 0.1 and 0.2) samples produced by combustion synthesis. The structural analysis was carried out by x-ray diffraction with Rietveld analysis. These analyses revealed that all samples have an orthorhombic structure with space group Pbnm (62) and that the Sr-doping induces a decrease of the lattice parameter. The x-ray photoelectron spectroscopy analysis indicates that the Sr-doping favor the change of the valence states of the Fe3+ to Fe4+. The magnetization as a function of the temperature reveals an unusual magnetic behavior with a reversal of magnetization. The increase of the Sr content induces a decrease of the temperature where occurs an inversion of the magnetization and do the value of the magnetization at 5 K more negative. This effect is attributed to the increase of the concentration of Fe4+ with increasing of the Sr content. The Fe and Cr with a valence of 4+  act as paramagnetic impurities in the antiferromagnetic lattice and are responsible for the changes in the magnetic behavior.

  20. Structure and magnetic behaviors of melt-spun SmFeSiB ribbons and their nitrides

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zhang, K.; Li, K. S.; Yu, D. B.; Ling, J. J.; Men, K.; Dou, Q. Y.; Yan, W. L.; Xie, J. J.; Yang, Y. F.

    2016-05-01

    SmFe9.3+xSi0.2B0.1 (x=0, 0.5, 1.0) ribbons and their nitrides were prepared by melt-spinning, followed by annealing and subsequent nitriding. The structure and magnetic properties have been investigated by means of powder X-ray diffraction, vibrating sample magnetometer and Mossbauer spectroscopy. Rietveld analysis shows that the augment of Fe content gives rise to an increase of the c/a ratio and cell volume. The increasing amount of Fe atoms occupying the 2e sites results in the change of initial structure. It is indicated that the isomer shift of 3g and 6l atom remains quasi-constant while the 2e atom shows a noticeable increase with the increase of iron content, which further conforms the preferential occupation of excessive Fe atoms at this site. Consistent with Tc, the mean hyperfine field 〈Bhf〉 has the highest value of 25.7 T when x=0.5. The hyperfine fields at different Fe sites follow the order H2e>H3g>H6l. The highest curie temperature of 477.68 K and the hyperfine field of 25.7 T in the as-quenched ribbons were obtained when x=0.5. Meanwhile, the highest magnetic properties of Hcj=4.31 kOe, (BH)m=3.5 MGOe in the nitride powders were found.

  1. Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea.

    PubMed

    Wang, Lu; Luo, You; Wu, Yanan; Liu, Yan; Wu, Zhenqiang

    2018-10-30

    There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Influence of transition metal doping on the structural, optical, and magnetic properties of TiO2 films deposited on Si substrates by a sol–gel process

    PubMed Central

    2013-01-01

    Transition metal (TM)-doped TiO2 films (TM = Co, Ni, and Fe) were deposited on Si(100) substrates by a sol–gel method. With the same dopant content, Co dopants catalyze the anatase-to-rutile transformation (ART) more obviously than Ni and Fe doping. This is attributed to the different strain energy induced by the different dopants. The optical properties of TM-doped TiO2 films were studied with spectroscopic ellipsometry data. With increasing dopant content, the optical band gap (EOBG) shifts to lower energy. With the same dopant content, the EOBG of Co-doped TiO2 film is the smallest and that of Fe-doped TiO2 film is the largest. The results are related to electric disorder due to the ART. Ferromagnetic behaviors were clearly observed for TM-doped TiO2 films except the undoped TiO2 film which is weakly magnetic. Additionally, it is found that the magnetizations of the TM-doped TiO2 films decrease with increasing dopant content. PMID:24350904

  3. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less

  4. Increased magnetic moment induced by lattice expansion from α-Fe to α′-Fe{sub 8}N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirba, Imants, E-mail: dirba@fm.tu-darmstadt.de; Komissinskiy, Philipp; Alff, Lambert, E-mail: alff@oxide.tu-darmstadt.de

    2015-05-07

    Buffer-free and epitaxial α-Fe and α′-Fe{sub 8}N{sub x} thin films have been grown by RF magnetron sputtering onto MgO (100) substrates. The film thicknesses were determined with high accuracy by evaluating the Kiessig fringes of X-ray reflectometry measurements allowing a precise volume estimation. A gradual increase of the nitrogen content in the plasma led to an expansion of the iron bcc unit cell along the [001] direction resulting finally in a tetragonal distortion of about 10% corresponding to the formation of α′-Fe{sub 8}N. The α-Fe lattice expansion was accompanied by an increase in magnetic moment to 2.61 ± 0.06μ{sub B} per Femore » atom and a considerable increase in anisotropy. These experiments show that—without requiring any additional ordering of the nitrogen atoms—the lattice expansion of α-Fe itself is the origin of the increased magnetic moment in α′-Fe{sub 8}N.« less

  5. Investigation of magnetic and structural properties of Ni-Zr co-doped M-type Sr-La hexaferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Shao, Juxiang; Huang, Duohui; Tang, Jin; Rehman, Khalid Mehmood Ur

    2018-02-01

    In this research, Ni2+ and Zr4+ co-doped Sr-La hexaferrites Sr0.7La0.3Fe12.0-2 x (NiZr) x O19 (0.0 ≤ x ≤ 0.5) were synthesized by the standard ceramic method. The phase identification of the hexaferrites was confirmed by X-ray diffraction analysis. X-ray diffraction analysis showed that all the samples were in single phase M-type hexagonal structure and no impurity phase was observed. Lattice parameters ( c and a) increased with increasing NiZr content ( x) from 0.0 to 0.5. The morphology of the hexaferrites was analyzed by a field emission scanning electron microscopy (FE-SEM). FE-SEM micrographs showed that the grains exhibited hexagonal shape in a plate-like structure with clear grain boundaries. Magnetization properties of the hexaferrites were carried out at room temperature using a physical property measurement system-vibrating sample magnetometer. The values of saturation magnetization ( M s), remanent magnetization ( M r) and coercivity ( H c) were calculated from magnetic hysteresis ( M- H) loops. M s and H c decreased with increasing NiZr content ( x) from 0.0 to 0.5. M r and M r/ M s ratio first increased with increasing NiZr content ( x) from 0.0 to 0.1, and then decreased when NiZr content ( x) ≥ 0.1.

  6. Structural and magnetic properties of La–Co substituted Sr–Ca hexaferrites synthesized by the solid state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yujie; Liu, Xiansong, E-mail: xiansongliu@ahu.edu.cn; Jin, Dali

    2014-11-15

    Graphical abstract: The change of the remanence (B{sub r}) and intrinsic coercivity (H{sub cj}) with La content (x) and Co content (y) of hexagonal ferrite Sr{sub 0.7−x}Ca{sub 0.3}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} magnets. - Highlights: • Sr{sub 0.7−x}Ca{sub 0.3}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} hexaferrites were synthesized by the solid state reaction method. • B{sub r} continuously increases with increasing dopant contents. • H{sub cb}, H{sub cj} and (BH){sub max} for the magnets first increases and then decreases with an increase in the La–Co contents. - Abstract: Hexagonal ferrite Sr{sub 0.7−x}Ca{sub 0.3}La{sub x}Fe{sub 12−y}Co{sub y}O{sub 19} (x = 0.05–0.50; y =more » 0.04–0.40) magnetic powders and magnets were synthesized by the solid state reaction method. X-ray diffraction was employed to determine the phase compositions of the magnetic powders. There is a single magnetoplumbite phase in the magnetic powders with the substitution of La (0.05 ≤ x ≤ 0.15) and Co (0.04 ≤ y ≤ 0.12) contents. For the magnetic powders containing La (x ≥ 0.20) and Co (y ≥ 0.16), magnetic impurities begin to appear in the structure. A field emission scanning electron microscope was used to characterize the micrographs of the magnets. The magnets have formed hexagonal structures. Magnetic properties of the magnets were measured by a magnetic properties test instrument. The remanence continuously increases with increasing dopant contents. Whereas, the magnetic induction coercivity, intrinsic coercivity and maximum energy product for the magnets first increases and then decreases with an increase in the La–Co contents.« less

  7. Electrodeposited Fe-Co films prepared from a citric-acid-based plating bath

    NASA Astrophysics Data System (ADS)

    Yanai, T.; Uto, H.; Shimokawa, T.; Nakano, M.; Fukunaga, H.; Suzuki, K.

    2013-06-01

    Electrodeposited Fe-Co films are commonly prepared in a boric-acid-based bath. In this research, we applied citric acid instead of boric acid for the plating of Fe-Co films because boron in the waste bath is restricted by environmental-protection regulations in Japan. We evaluated the effect of citric acid on the magnetic and structural properties of the films. The saturation magnetization of the Fe-Co films slightly increased while the Fe content in the Fe-Co films decreased with increasing citric acid concentration. The lowest coercivity value of 240 A/m was obtained at a citric acid concentration of 100 g/L. The plating bath with this citric acid concentration enabled us to obtain Fe-Co films with high saturation magnetizations and smooth surface morphologies.

  8. The effects of nickel and sulphur on the core-mantle partitioning of oxygen in Earth and Mars

    NASA Astrophysics Data System (ADS)

    Tsuno, Kyusei; Frost, Daniel J.; Rubie, David C.

    2011-03-01

    Constraints on the partitioning of oxygen between silicates, oxides, and metallic liquids are important for determining the amount of oxygen that may have entered the cores of terrestrial planets and to identify likely reactions at the core-mantle boundary. Several previous studies have examined oxygen partitioning between liquid Fe metal and ferropericlase, however, the cores of terrestrial planets also contain nickel and most likely sulphur. We have performed experiments to examine the effects of both nickel and sulphur on the partitioning of oxygen between ferropericlase and liquid Fe alloy up to pressures of 24.5 GPa in the temperature range 2430-2750 K using a multianvil press. The results show that at a fixed oxygen fugacity the proportion of oxygen that partitions into liquid metal will decrease by approximately 1-2 mol% on the addition of 10-20 mol% nickel to the liquid. The addition of around 30 mol% sulphur will, on the other hand, increase the metal oxygen content by approximately 10 mol%. Experiments to examine the combined effects of both nickel and sulphur, show a decrease in the effect of nickel on oxygen partitioning as the sulphur content of the metal increases. We expand an existing thermodynamic model for the partitioning of oxygen at high pressures and temperatures to include the effects of nickel and sulphur by fitting these experimental data, with further constraints provided by existing phase equilibria studies at similar conditions in the Fe-S and Fe-O-S systems. Plausible terrestrial core sulphur contents have little effect on oxygen partitioning. When our model is extrapolated to conditions of the present day terrestrial core-mantle boundary, the presence of nickel is found to lower the oxygen content of the outer core that is in equilibrium with the expected mantle ferropericlase FeO content, by approximately 1 weight %, in comparison to nickel free calculations. In agreement with nickel-free experiments, this implies that the Earth's outer core is undersaturated in oxygen with respect to plausible mantle FeO contents, which will result in either the depletion of FeO from the base of the mantle or cause the development of an outer core layer that is enriched in oxygen. The oxygen content of the more sulphur-rich Martian core would be in the range 2-4 wt.% if it is in equilibrium with the FeO-rich Martian mantle.

  9. Magnetic phase diagrams of amorphous (Ni100-xFex)-metalloid alloys: The key role of the electronic density of states at the Fermi level for the onset of magnetic order

    NASA Astrophysics Data System (ADS)

    Kiss, L. F.; Bakonyi, I.

    2017-11-01

    There have been extended studies on the appearance of ferromagnetism in transition-metal-metalloid (MD) glasses. In particular, the paramagnetic (PM) to ferromagnetic (FM) transition has been investigated on numerous (Ni100-xFex)-MD alloys upon the introduction of Fe where MD can represent a combination of various metalloid elements, while keeping the metal/metalloid ratio constant. It has been reported that adding a sufficient amount of Fe to a Pauli PM Ni-MD alloy matrix first induces a spin-glass (SG) state at low temperatures which goes over to a PM state at higher temperatures. Beyond a certain Fe content, xc, the SG state transforms to a FM state upon increasing the temperature. By plotting the characteristic transition temperatures as a function of the Fe content, a magnetic phase diagram can be constructed for each Ni-Fe-MD system which has a multicritical point (MCP) at xc. By using the reported magnetic phase diagrams of various Ni-Fe-MD alloy systems, it is shown that the critical Fe content, xc scales inversely with the density of states at the Fermi level, N(EF), of the parent Ni-MD matrix. This means that the higher the N(EF), the lower the critical Fe content to induce ferromagnetism in the Ni-MD matrix. This is then discussed in terms of the Stoner enhancement factor, S, which characterizes the tendency of the matrix to become ferromagnetic.

  10. Chemical quenching of positronium in Fe 2O 3/Al 2O 3 catalysts

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhang, H. J.; Chen, Z. Q.

    2010-09-01

    Fe 2O 3/Al 2O 3 catalysts were prepared by solid state reaction method using α-Fe 2O 3 and γ-Al 2O 3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al 2O 3 grain and between the grains, respectively. With increasing Fe 2O 3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe 2O 3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.

  11. Improvement of the Coercivity of Cobalt Ferrites Induced by Substitution of Sr2+ Ions for Co2+ Ions

    NASA Astrophysics Data System (ADS)

    Zhou, Kaiwen; Chen, Wen; Wu, Xuehang; Wu, Wenwei; Lin, Cuiwu; Wu, Juan

    2017-07-01

    Spinel Co1- x Sr x Fe2O4 ( x = 0.0, 0.1, 0.2, and 0.3) ferrites have been successfully synthesized by calcining a mixture of oxalates in air. X-ray diffraction study shows that the sample with the concentration of x = 0 has a single spinel phase CoFe2O4 structure and the samples with concentrations of x = 0.1-0.3 have a small amount of foreign phase SrFe12O19 and/or Sr7Fe10O22 along the spinel phase. The lattice parameter of the ferrites at first increases with increasing Sr2+ content, then decreases to x = 0.3 due to the large ionic radius of Sr2+ (0.144 nm) as compared to Co2+ (0.072 nm); for higher doping levels, part of the Sr2+ ions could not enter the tetrahedral (A) and/or octahedral (B) sites but forms a second phase Sr7Fe10O22. The addition of Sr2+ ions decreases the average crystallite size of Co1- x Sr x Fe2O4, which is attributed to the foreign phase Sr7Fe10O22 and/or SrFe12O19 restraining the growth of the Co1- x Sr x Fe2O4 crystallite. The trend of specific saturation magnetization ( Ms), remanence ( Mr), and anisotropy constant ( K eff) decreases with the increase in Sr2+ content, whereas that of coercivity is increased. In this study, Co0.8Sr0.2Fe2O4 obtained at 800°C exhibits the highest coercivity (1699.25 ± 40.78 Oe), and Co0.7Sr0.3Fe2O4 obtained at 900°C exhibits the highest squareness (0.470 ± 0.008).

  12. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mena, Natalia P.; Millennium Institute of Cell Dynamics and Biotechnology, Santiago; Bulteau, Anne Laure

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters aremore » involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease.« less

  13. Carbon-coated CoFe-CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties.

    PubMed

    Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang

    2018-07-27

    SiO 2 and TiO 2 , as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe-CoFe 2 O 4 @C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe 2 O 4 matrix via an in situ reduction transformation from CoFe 2 O 4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max ) of -71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5 ) and high RL max are observed in both S-C and X-K u bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.

  14. Influence of Drought and Sowing Time on Protein Composition, Antinutrients, and Mineral Contents of Wheat

    PubMed Central

    Singh, Sondeep; Gupta, Anil K.; Kaur, Narinder

    2012-01-01

    The present study in a two-year experiment investigated the influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat whole meal of two genotypes differing in their water requirements. Different thermal conditions prevailing during the grain filling period under different sowing time generated a large effect on the amount of total soluble proteins. Late sown conditions offered higher protein content accompanied by increased albumin-globulin but decreased glutenin content. Fe content was increased to 20–23%; however, tannin decreased to 18–35% under early sown rain-fed conditions as compared to irrigated timely sown conditions in both the genotypes. Activity of trypsin inhibitor was decreased under rain-fed conditions in both genotypes. This study inferred that variable sowing times and irrigation practices can be used for inducing variation in different wheat whole meal quality characteristics. Lower temperature prevailing under early sown rain-fed conditions; resulted in higher protein content. Higher Fe and lower tannin contents were reported under early sown rain-fed conditions however, late sown conditions offered an increase in phytic acid accompanied by decreased micronutrients and glutenin contents. PMID:22629143

  15. Effects of processing on the proximate and metal contents in three fish species from Nigerian coastal waters

    PubMed Central

    Bassey, Francisca I; Oguntunde, Fehintola C; Iwegbue, Chukwujindu M A; Osabor, Vincent N; Edem, Christopher A

    2014-01-01

    The effects of culinary practices such as boiling, frying, and grilling on the proximate compositions and concentrations of metals (Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg) in commonly consumed fish species from the Nigerian coastal waters were investigated. The selected fish species were Polydactylus quadratifilis, Chrysicthys nigrodigitatus and Cynoglossus senegalensis. The culinary practices lead to increased protein, fat, and ash contents and decreased moisture contents of these fish species. The culinary practices resulted significant increase in the concentrations of most of the studied metals and decrease in the concentrations of Fe, Cr, and Pb in some fish types. The concentrations and estimated dietary intakes of Cd, Pb, Cr, Zn, Fe, Cu, Mn, Ni, and Hg from consumption of the processed fish were within their statutory safe limits. The individual metal target hazard quotient (THQ) values and the total THQs were less than 1 which indicates that no health risks would arise from the long-term consumption of these fish species. PMID:24936297

  16. Exchange interactions and magnetocaloric effects of the Heusler alloys Ni-Mn-In-R (R = Fe, Co)

    NASA Astrophysics Data System (ADS)

    Li, Yan-Ru; Su, Hui-Ling; Sun, Ji-Bing; Li, Ying

    2018-05-01

    The magnetic interactions and magnetocaloric effects in Ni2Mn1.4In0.6‑xRx (x = 0-0.2) (R = Fe, Co) Heusler alloys are investigated by the first-principles and Monte Carlo method. The ab initio calculations provide a basic understanding of the competition of ferromagnetic and antiferromagnetic interactions due to the chemical disorder of the alloy compositions. The thermodynamic properties including magnetization, specific heat and magnetic entropy change are calculated by the finite-temperature Monte Carlo simulations using the exchange couplings and magnetic moments from ab initio calculation as input parameters. The results show that the Fe or Co doping in Ni2Mn1.4In0.6 leads to an increase of magnetic moment and magnetic entropy change but a decrease of magnetic transition temperature with the increase in the Fe or Co contents. This indicates that the transition temperature and magnetocaloric properties of Ni2Mn1.4In0.6 alloy can be tuned by substituting In atom by Fe or Co with different contents.

  17. Intrinsic evolution of novel (Nd, MM)2Fe14B-system magnetic flakes

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoqiang; Zhu, Minggang; Liu, Weiqiang; Li, Yanfeng; Zhang, Jiuxing; Yue, Ming; Li, Wei

    2018-01-01

    The Nd-substituted (Nd x MM1- x )-Fe-B strip-casting flakes were prepared by induction melting in the vacuum furnace and then subsequently by strip-casting technology. The microstructure and magnetic properties of (Nd x MM1- x )-Fe-B alloys are related to the Nd substitution. 2:14:1 main phases and minor impure phases coexist in the MM-Fe-B flake. For example, La2O3 and CeFe2 impure phases are obviously detected in the x = 0 specimen. As an increase of the Ce concentration is inversely accompanied with the decrease of the Nd content ( x) in (Nd x MM1- x )2Fe14B main phases (0 ≤ x ≤ 1), XRD analysis shows that the overall diffraction peaks of the main phases shift to right domestically because of smaller radius Ce4+. The melting point, spin reorientation phase transition temperature, Curie temperature, magneto-crystalline anisotropy field (at 300 K), and the magnetization ( M 9T) for MM-Fe-B/(Nd0.4MM0.6)-Fe-B/(Nd0.7MM0.3)-Fe-B/Nd-Fe-B strip-casting alloys are 1376.15/1414.15/1439.15/1458.15 K, 74/113/124/135 K, 493.2/538.4/559.7/582.3 K, 48/55.2/64.4/70.1 kOe and 136.5/143.7/151.5/153.7 emu/g, respectively. Due to the varied composition of hard magnetic main phases, M 9T increases gradually with the increase of Nd content ( x). SEM observation and EDX results demonstrate that more Nd and Pr elements aggregate into the 2:14:1 ferromagnetic phase, while less La and Ce elements are prone to the RE-rich region compared with the nominal ratio. As a result, the growth of M 9T becomes extraordinary under maximum external field 9 T, indicating that the (Nd0.7MM0.3)-Fe-B flake may display relatively good magnetic properties and those with higher Nd content have evident effect on magnetization, compositions, and microstructures of hard magnetic main phases. Therefore, practical application of (Nd x MM1- x )-Fe-B-sintered magnets will be very prospective.

  18. PPARα, PPARγ and SREBP-1 pathways mediated waterborne iron (Fe)-induced reduction in hepatic lipid deposition of javelin goby Synechogobius hasta.

    PubMed

    Chen, Guang-Hui; Luo, Zhi; Chen, Feng; Shi, Xi; Song, Yu-Feng; You, Wen-Jing; Liu, Xu

    2017-07-01

    The 42-day experiment was conducted to investigate the effects and mechanism of waterborne Fe exposure influencing hepatic lipid deposition in Synechogobius hasta. For that purpose, S. hasta were exposed to four Fe concentrations (0 (control), 0.36, 0.72 and 1.07μM Fe) for 42days. On days 21 and 42, morphological parameters, hepatic lipid deposition and Fe contents, and activities and mRNA levels of enzymes and genes related to lipid metabolism, including lipogenic enzymes (6PGD, G6PD, ME, ICDH, FAS and ACC) and lipolytic enzymes (CPTI, HSL), were analyzed. With the increase of Fe concentration, hepatic Fe content tended to increase but HSI and lipid content tended to decrease. On day 21, Fe exposure down-regulated the lipogenic activities of 6PGD, G6PD, ICDH and FAS as well as the mRNA levels of G6PD, ACCa, FAS, SREBP-1 and PPARγ, but up-regulated CPT I, HSLa and PPARα mRNA levels. On day 42, Fe exposure down-regulated the lipogenic activities of 6PGD, G6PD, ICDH and FAS as well as the mRNA levels of 6PGD, ACCa, FAS and SREBP-1, but up-regulated CPT I, HSLa, PPARα and PPARγ mRNA levels. Using primary S. hasta hepatocytes, specific pathway inhibitors (GW6471 for PPARα and fatostatin for SREBP-1) and activator (troglitazone for PPARγ) were used to explore the signaling pathways of Fe reducing lipid deposition. The GW6471 attenuated the Fe-induced down-regulation of mRNA levels of 6PGD, G6PD, ME, FAS and ACCa, and attenuated the Fe-induced up-regulation of mRNA levels of CPT I, HSLa and PPARα. Compared with single Fe-incubated group, the mRNA levels of G6PD, ME, FAS, ACCa, ACCb and PPARγ were up-regulated while the CPT I mRNA levels were down-regulated after troglitazone pre-treatment; fatostatin pre-treatment down-regulated the mRNA levels of 6PGD, ME, FAS, ACCa, ACCb and SREBP-1, and increased the CPT I and HSLa mRNA levels. Based on these results above, our study indicated that Fe exposure reduced hepatic lipid deposition by down-regulating lipogenesis and up-regulating lipolysis, and PPARα, PPARγ and SREBP-1 pathways mediated the Fe-induced reduction of hepatic lipid deposition in S. hasta. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The effect of Bi substitution on the microstructure and magnetic properties of the Sr0.4Ba0.3La0.3Fe12-xBixO19 hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Liu, Xiansong; Shao, Juxiang; Feng, Shuangjiu; Huang, Duohui; Li, Mingling

    2017-01-01

    Bi3+ ions doped M-type hexaferrites, Sr0.4Ba0.3La0.3Fe12-xBixO19 (0≤x≤0.7), were prepared by the ceramic process. The phase components of the magnetic powders were investigated by X-ray diffraction. The results show that a single magnetoplumbite phase is obtained for the magnetic powders with x from 0 to 0.2, and BiFeO3 as a second phase appears when Bi content (x)≥0.3. The micrographs of the sintered magnets were observed by a field emission scanning electron microscopy. The sintered magnets are formed of hexagonal-shaped crystals. The magnetic properties of the sintered magnets were measured at room temperature by a permanent magnetic measuring system. The remanence (Br) first increases with x from 0 to 0.2, and then decreases when Bi content (x)≥0.2. The intrinsic coercivity (Hcj) and magnetic induction coercivity (Hcb) firstly decrease quickly with x from 0 to 0.1, and then increase linearly when Bi content (x)≥0.1. The maximum energy product [(BH)max] increases with x from 0 to 0.3, and then decreases when Bi content (x)≥0.3. The ratio Hk/Hcj ratio first increases with Bi content (x) from 0 to 0.4. And the Hk/Hcj ratio decreases when x≥0.4.

  20. Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange

    NASA Astrophysics Data System (ADS)

    Mohapatra, Jeotikanta; Xing, Meiying; Liu, J. Ping

    2018-05-01

    We demonstrate magnetic and hyperthermia properties of CoxFe3-xO4 (x = 0, 0.1, 0.3 and 0.5) nanoparticles synthesized via a simple cation exchange reaction of ˜12 nm Fe3O4 nanoparticles. The substitution of Fe cations with Co2+ ions leads to enhanced magnetocrystalline anisotropy and coercivity of the pristine superparamagnetic Fe3O4 nanoparticles. Hyperthermia measurement shows that by controlling the Co content (x = 0 to 0.5) in CoxFe3-xO4 nanoparticles, their specific absorption rate (SAR) can be greatly improved from 132 to 534 W/g. The strong enhancement in SAR value is attributed to the increased anisotropy and coercivity. Moreover, with the increase of ac magnetic field from 184 to 491 Oe, the SAR values of Fe3O4 and Co0.5Fe2.5O4 nanoparticles increase from 81 to 132 W/g and 220 to 534 W/g, respectively.

  1. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates.

    PubMed

    Raya-Díaz, Silvia; Sánchez-Rodríguez, Antonio Rafael; Segura-Fernández, José Manuel; Del Campillo, María Del Carmen; Quesada-Moraga, Enrique

    2017-01-01

    Although entomopathogenic fungi (EPF) are best known for their ability to protect crops against insect pests, they may have other beneficial effects on their host plants. These effects, which include promoting plant growth and conferring resistance against abiotic stresses, have been examined in recent years to acquire a better understanding of them. The primary purposes of the present study were (i) to ascertain in vitro whether three different strains of EPF (viz., Metarhizium, Beauveria and Isaria) would increase the Fe bioavailability in calcareous or non-calcareous media containing various Fe sources (ferrihydrite, hematite and goethite) and (ii) to assess the influence of the EPF inoculation method (seed dressing, soil treatment or leaf spraying) on the extent of the endophytic colonization of sorghum and the improvement in the Fe nutrition of pot-grown sorghum plants on an artificial calcareous substrate. All the EPFs studied were found to increase the Fe availability during the in vitro assay. The most efficient EPF was M. brunneum EAMa 01/58-Su, which lowered the pH of the calcareous medium, suggesting that it used a different strategy (organic acid release) than the other two fungi that raised the pH of the non-calcareous medium. The three methods used to inoculate sorghum plants with B. bassiana and M. brunneum in the pot experiment led to differences in re-isolation from plant tissues and in the plant height. These three inoculation methods increased the leaf chlorophyll content of young leaves when the Fe deficiency symptoms were most apparent in the control plants (without fungal inoculation) as well as the Fe content of the above-ground biomass in the plants at the end of the experiment. The total root lengths and fine roots were also increased in response to fungal applications with the three inoculation methods. However, the soil treatment was the most efficient method; thus, its effect on the leaf chlorophyll content was the most persistent, and the effects on the total root length and fine roots were the most apparent. In conclusion, EPF improved the Fe nutrition of the sorghum plants, but their effects depended on the inoculation method.

  2. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates

    PubMed Central

    Raya-Díaz, Silvia; Segura-Fernández, José Manuel; del Campillo, María del Carmen; Quesada-Moraga, Enrique

    2017-01-01

    Although entomopathogenic fungi (EPF) are best known for their ability to protect crops against insect pests, they may have other beneficial effects on their host plants. These effects, which include promoting plant growth and conferring resistance against abiotic stresses, have been examined in recent years to acquire a better understanding of them. The primary purposes of the present study were (i) to ascertain in vitro whether three different strains of EPF (viz., Metarhizium, Beauveria and Isaria) would increase the Fe bioavailability in calcareous or non-calcareous media containing various Fe sources (ferrihydrite, hematite and goethite) and (ii) to assess the influence of the EPF inoculation method (seed dressing, soil treatment or leaf spraying) on the extent of the endophytic colonization of sorghum and the improvement in the Fe nutrition of pot-grown sorghum plants on an artificial calcareous substrate. All the EPFs studied were found to increase the Fe availability during the in vitro assay. The most efficient EPF was M. brunneum EAMa 01/58–Su, which lowered the pH of the calcareous medium, suggesting that it used a different strategy (organic acid release) than the other two fungi that raised the pH of the non-calcareous medium. The three methods used to inoculate sorghum plants with B. bassiana and M. brunneum in the pot experiment led to differences in re-isolation from plant tissues and in the plant height. These three inoculation methods increased the leaf chlorophyll content of young leaves when the Fe deficiency symptoms were most apparent in the control plants (without fungal inoculation) as well as the Fe content of the above-ground biomass in the plants at the end of the experiment. The total root lengths and fine roots were also increased in response to fungal applications with the three inoculation methods. However, the soil treatment was the most efficient method; thus, its effect on the leaf chlorophyll content was the most persistent, and the effects on the total root length and fine roots were the most apparent. In conclusion, EPF improved the Fe nutrition of the sorghum plants, but their effects depended on the inoculation method. PMID:28982140

  3. Iron deficiency chlorosis in plants as related to Fe sources in soil

    NASA Astrophysics Data System (ADS)

    Díaz, I.; Delgado, A.; de Santiago, A.; del Campillo, M. C.; Torrent, J.

    2012-04-01

    Iron deficiency chlorosis (IDC) is a relevant agricultural problem in many areas of the World where calcareous soils are dominant. Although this problem has been traditionally ascribed to the pH-buffering effect of soil carbonates, the content and type of Fe oxides in soil contribute to explain Fe uptake by plants and the incidence of this problem. During the last two decades, it has been demonstrated Fe extraction with oxalate, related to the content of poorly crystalline Fe oxides, was well-correlated with the chlorophyll content of plants and thus with the incidence of IDC. This reveals the contribution of poorly crystalline Fe oxides in soil to Fe availability to plants in calcareous soils, previously shown in microcosm experiments using ferrihydrite as Fe source in the growing media. In order to supply additional information about the contribution of Fe sources in soil to explain the incidence of IDC and to perform accurate methods to predict it, a set of experiments involving different methods to extract soil Fe and plant cultivation in pots to correlate amounts of extracted Fe with the chlorophyll content of plants (measured using the SPAD chlorophyll meter) were performed. The first experiment involved 21 soils and white lupin cultivation, sequential Fe extraction in soil to study Fe forms, and single extractions (DTPA, rapid oxalate and non-buffered hydroxylamine). After that, a set of experiments in pot involving growing of grapevine rootstocks, chickpea, and sunflower were performed, although in this case only single extractions in soil were done. The Fe fraction more closely related to chlorophyll content in plants (r = 0.5, p < 0.05) was the citrate + ascorbate (CA) extraction, which was the fraction that releases most of the Fe related to poorly crystalline Fe oxides, thus revealing the key role of these compounds in Fe supply to plants. Fe extracted with CA was more correlated with chlorophyll content in plants that oxalate extractable Fe, probably due to a more selective dissolution of poorly crystalline oxides by the former extractant. In general terms, the best correlation between extractable Fe and chlorophyll content in plants was observed with hydroxylamine, which explained from 21 to 72 % of the variance observed in chlorophyll content in plants, greater than the variance explained by the rapid oxalate (11 to 60 %, not always significant) or the classical active calcium carbonate content determination (6 to 56 %, not always significant). Extraction with DTPA provided the worse results, explaining from 18 to 36 % of the variance in chlorophyll content in plants. The good predictive value of the hydroxylamine extraction was explained by its correlation with Fe in poorly crystalline Fe oxides (estimated as CA-extractable Fe) and by its negative correlation with the active calcium carbonate content of soils.

  4. Magnetic properties of CeFe11-xCoxTi with ThMn12 structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C; Pinkerton, FE; Herbst, JF

    2014-05-07

    A series of novel alloys CeFe11-xCoxTi (0 <= x <= 11) with ThMn12 structure has been successfully prepared by melt-spinning. The Curie temperature T-c increases with Co content x, reaching a maximum of 689 degrees C at x = 9 and declining to 664 degrees C at complete Co filling (x = 11). The room temperature saturation magnetization 4 pi M-s and magnetocrystalline anisotropy H-a have been estimated by fitting the first quadrant demagnetization curve with the Stoner-Wohlfarth model. 4 pi M-s first increases with increasing Co up to x = 3, then decrease. H-a has a complex dependence onmore » Co content, which is indicative of a change in the easy magnetization direction from axis to plane and back as the Co content increases. (C) 2014 AIP Publishing LLC.« less

  5. From solid solution to cluster formation of Fe and Cr in α-Zr

    NASA Astrophysics Data System (ADS)

    Burr, P. A.; Wenman, M. R.; Gault, B.; Moody, M. P.; Ivermark, M.; Rushton, M. J. D.; Preuss, M.; Edwards, L.; Grimes, R. W.

    2015-12-01

    To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques - atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.

  6. Structure and composition of Fe-OM co-precipitates that form in soil-derived solutions

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Schröder, Christian; Wieczorek, Arkadiusz K.; Händel, Matthias; Ritschel, Thomas; Totsche, Kai U.

    2015-11-01

    Iron oxides represent a substantial fraction of secondary minerals and particularly affect the reactive properties of natural systems in which they formed, e.g. in soils and sediments. Yet, it is still obscure how transient conditions in the solution will affect the properties of in situ precipitated Fe oxides. Transient compositions, i.e. compositions that change with time, arise due to predominant non-equilibrium states in natural systems, e.g. between liquid and solid phases in soils. In this study, we characterize Fe-OM co-precipitates that formed in pH-neutral exfiltrates from anoxic topsoils under transient conditions. We applied soil column outflow experiments, in which Fe2+ was discharged with the effluent from anoxic soil and subsequently oxidized in the effluent due to contact with air. Our study features three novel aspects being unconsidered so far: (i) the transient composition of soil-derived solutions, (ii) that pedogenic Fe oxides instead of Fe salts serve as major source for Fe2+ in soil solution and (iii) the presence of exclusively soil-derived organic and inorganic compounds during precipitation. The experiments were carried out with two topsoil materials that differed in composition, texture and land use. Derived from Mössbauer spectroscopy, broad distributions in quadrupole splittings (0-2 mm s-1) and magnetic hyperfine fields (35-53 T) indicated the presence of low-crystalline ferrihydrite and even lower crystalline Fe phases in all Fe-OM co-precipitates. There was no unequivocal evidence for other Fe oxides, i.e. lepidocrocite and (nano)goethite. The Fe-OM co-precipitates contained inorganic (P, sulfate, silicate, Al, As) and organic compounds (proteins, polysaccharides), which were concurrently discharged from the soils. Their content in the Fe-OM co-precipitates was controlled by their respective concentration in the soil-derived solution. On a molar basis, OC and Fe were the main components in the Fe-OM co-precipitates (OC/Fe ratio = 0.5-2). The elemental composition of the Fe-OM co-precipitates was in accordance with the sequential precipitation of Fe(III)phosphates/arsenates prior to the formation of ferrihydrite. This explains decreasing Si contents in the Fe-OM co-precipitates with increasing availability of P. With respect to constant mean quadrupole splittings and slightly decreasing mean magnetic hyperfine fields, increasing contents of OC, P and Al in the Fe-OM co-precipitates did not further increase the structural disorder of the Fe polyhedra, while the crystallite interactions slightly decreased. Scanning electron microscopy and dynamic light scattering revealed the coincidental presence of variably sized aggregates and a considerable amount of Fe-OM co-precipitates, which remained dispersed in solution for months. Thus, variably composed Fe-OM co-precipitates with highly diverse aggregate sizes and comparably constant poor crystallinity can be expected after the oxidation of Fe2+ in transient, soil-derived solutions.

  7. Electromagnetic and Microwave Absorption Properties of the Flake-Shaped Pr-Ho-Fe Alloys in the C-Band

    NASA Astrophysics Data System (ADS)

    Luo, Jialiang; Pan, Shunkang; Qiao, Ziqiang; Cheng, Lichun; Wang, Zhenzhong; Lin, Peihao; Chang, Junqing

    2018-01-01

    The polycrystalline samples Pr x Ho2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) were prepared by arc melting and high-energy ball milling method. The influences of Pr substitution on phase structure, morphology, saturation magnetization and electromagnetic parameters were investigated by x-ray diffraction, scanning electron microscopy, vibrating-sample magnetometry and vector network analyzer, respectively. The results show that the particle size increased and the saturation magnetization decreased with increasing Pr content. The minimum absorption peak frequency shifted towards a lower-frequency region with increasing Pr concentration. The minimum RL of Pr0.3Ho1.7Fe17 powder was -41.03 dB at 6.88 GHz with a coating thickness of 2.0 mm. With different thickness of 1.8-2.8 mm, the minimum reflection loss (RL) of Pr0.3Ho1.7Fe17 powder was less than -20 dB in the whole C-band (4-8 GHz). The microwave-absorbing properties of the composite with different weight ratios of Pr0.3Ho1.7Fe17/Co were researched. The microwave-absorbing peaks of the composites shifted to a lower frequency with increasing Co content. The minimum RL of Pr0.3Ho1.7Fe17/Co(10%) was -42.51 dB at 4.72 GHz with a coating thickness of 2.6 mm. This suggests that the Pr-Ho-Fe will be a promising microwave absorption material in higher-gigahertz frequency, especially in the C-band.

  8. Solubility of oxygen in liquid Fe at high pressure and consequences for the early differentiation of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Rubie, D. C.; Gessmann, C. K.; Frost, D. J.

    2003-04-01

    Knowledge of the solubility of oxygen in liquid iron enables the partitioning of oxygen between metal and silicates and the oxidation state of residual silicates to be constrained during core formation in planetary bodies. We have determined oxygen solubility experimentally at 5--23 GPa, 2100--2700 K and oxygen fugacities 1--4 log units below the iron-wüstite buffer in samples of liquid Ni-Fe alloy contained in magnesiowüstite capsules using a multianvil apparatus. Results show that oxygen solubility increases with increasing temperature but decreases slightly with increasing pressure over the range of experimental conditions, at constant oxygen fugacity. Using an extrapolation of the results to higher pressures and temperatures, we have modeled the geochemical consequences of metal-silicate separation in magma oceans in order to explain the contrasting FeO contents of the mantles of Earth and Mars. We assume that both Earth and Mars accreted originally from material with a chondritic composition; because the initial oxidation state is uncertain, we vary this parameter by defining the initial oxygen content. Two metal-silicate fractionation models are considered: (1) Metal and silicate are allowed to equilibrate at fictive conditions that approximate the pressure and temperature at the base of a magma ocean. (2) The effect of settling Fe droplets in a magma ocean is determined using a simple polybaric metal-silicate fractionation model. We assume that the temperature at the base of a magma ocean is close to the peridotite liquidus. In the case of Earth, high temperatures in a magma ocean with a depth >1200 km would have resulted in significant quantities of oxygen dissolving in the liquid metal with the consequent extraction of FeO from the residual silicate. In contrast, on Mars, even if the magma ocean extended to the depth of the current core-mantle boundary, temperatures would not have been sufficiently high for oxygen solubility in liquid metal to be significant. The results show that Earth and Mars could have accreted from similar material, with an initial FeO content around 18 wt%. On Earth, oxygen was extracted from silicates by the segregating metal during core formation, leaving the mantle with its present FeO content of ˜8 wt%. On Mars, in contrast, the segregating metal extracted little or no oxygen and left the FeO content unaltered at ˜18 wt%. A consequence of this model is that oxygen should be an important light element in the Earth's core but not in the Martian core.

  9. High Curie temperature and coercivity performance of Fe3-xCrxSe4 nanostructures.

    PubMed

    Li, Shao-jie; Li, Da; Liu, Wei; Zhang, Zhidong

    2015-03-12

    Monoclinic Fe3-xCrxSe4 nanostructures (0≤x≤2.5) were synthesized using a high-temperature solution chemical method. With increasing the Cr doping, the peak positions in the X-ray diffraction (XRD) patterns of Fe3-xCrxSe4 nanostructures slightly shifted to lower 2θ values due to the changes in lattice parameters. Expansions in the unit cell volumes of Fe3-xCrxSe4 nanostructures (x>0.3) may have been responsible for enhancing the ferromagnetic (FM) interaction between magnetic ions, which resulted in a significant increase in the Curie temperature (TC) from 331 K for Fe3Se4 to 429 K for FeCr2Se4, distinctly differing from the magnetic properties of the corresponding bulk materials. A room-temperature coercivity (HC) analysis showed an obvious increase from 3.2 kOe for Fe3Se4 to 12 kOe for Fe2.3Cr0.7Se4 nanostructure, but gradually decreased upon further increasing the Cr content.

  10. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE PAGES

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; ...

    2018-01-09

    Here we investigated the ambient temperature structural properties (thickness, width, microstructure, and lattice parameter), and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties—saturation magnetization (M S) and intrinsic coercivity (H CI)—of rapidly-solidified (melt-spun) Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbonsmore » ranged between ~15 and 60 μm and 500–800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). The wheel surface speed showed an insignificant effect on M S while increased silicon content resulted in a decreasing trend in M S. Elevated temperature evaluation of the magnetization (M-T curves at ~7.96 kA/m) in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from that of the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The M S for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 to 900 K). While H CI increased with the increase in temperature for all the wheel surface speed and composition combination, its nature of increase is distinct for Fe-8 wt.% Si alloy ribbons compared to Fe-3 & 5 wt.% Si alloys ribbons. Finally, it appears that rapidly-solidified Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) while the Fe-8 wt.% Si alloy ribbons are comprised primarily of disordered phase along with minor constituents of an ordered phase.« less

  11. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.

    Here we investigated the ambient temperature structural properties (thickness, width, microstructure, and lattice parameter), and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties—saturation magnetization (M S) and intrinsic coercivity (H CI)—of rapidly-solidified (melt-spun) Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbonsmore » ranged between ~15 and 60 μm and 500–800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). The wheel surface speed showed an insignificant effect on M S while increased silicon content resulted in a decreasing trend in M S. Elevated temperature evaluation of the magnetization (M-T curves at ~7.96 kA/m) in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from that of the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The M S for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 to 900 K). While H CI increased with the increase in temperature for all the wheel surface speed and composition combination, its nature of increase is distinct for Fe-8 wt.% Si alloy ribbons compared to Fe-3 & 5 wt.% Si alloys ribbons. Finally, it appears that rapidly-solidified Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) while the Fe-8 wt.% Si alloy ribbons are comprised primarily of disordered phase along with minor constituents of an ordered phase.« less

  12. Effect of Alloying Additions on Oxidation Behaviors of Ni-Fe Based Superalloy for Ultra-Supercritical Boiler Applications

    NASA Astrophysics Data System (ADS)

    Lu, Jintao; Yang, Zhen; Zhao, Xinbao; Yan, Jingbo; Gu, Y.

    A new kind of Ni-Fe-based superalloy is designed recently for 750 °C-class A-USC boiler tube. The oxidation behavior of the designed alloys with various combinations of anti-oxidation additions, Cr, Al and Si, was investigated at 750 °C and 850 °C, respectively. The results indicated that the oxidation rate of tested alloys decreased with the increase of the sum of additions. Cr addition may drop the relative constant of parabolic rate greatly when temperature is raised. But the oxide scale, mainly consisted of NiCr spinel at 750 °C and NiCrMn spinel at 850 °C, was similar while the Cr content is in a range of 20-25 wt.% at tested temperatures. Al addition, however, showed the best effective to reduce the oxidation rates. Internal Al-rich oxide was observed at the scale/metal interface for alloys added with high content of Al and was increased with Al content increase. Very tiny difference between the oxide scales of the Si-added alloys was identified when Si content varies among 0.02-0.05 wt.%. Basing on these results, this presentation discussed the optimum combination of anti-oxidation additions as well as oxidation mechanisms in the designed Ni-Fe-base superalloy.

  13. Evidence of a miscibility gap in the FeTe1-xSex polycrystalline samples prepared with a melting process

    NASA Astrophysics Data System (ADS)

    Sala, A.; Palenzona, A.; Bernini, C.; Caglieris, F.; Cimberle, M. R.; Ferdeghini, C.; Lamura, G.; Martinelli, A.; Pani, M.; Hecher, J.; Eisterer, M.; Putti, M.

    2014-05-01

    The study of overdoped FeTe1-xSex (0.5 < x < 1) polycrystalline superconductor samples is reported. The samples were prepared using a melting technique previously developed by our group. Increasing the Se content a phase separation related to the formation of FeSe inside the Fe(Se,Te) phase happens, as demonstrated by structural analysis and magnetic characterization. The proposed phase separation picture is likely the fingerprint of a miscibility gap in the Fe(Se,Te) system.

  14. Synthesis and Magnetic Properties of Fe-Co-Ni/C Nanocomposites

    NASA Astrophysics Data System (ADS)

    Muratov, D. G.; Kozhitov, L. V.; Karpenkov, D. Yu.; Yakushko, E. V.; Korovin, E. Yu.; Vasil'ev, A. V.; Popkova, A. V.; Kazaryan, T. M.; Shadrinov, A. V.

    2018-03-01

    Nanoparticles of the Fe-Co-Ni ternary alloy, encapsulated in the carbon matrix of nanocomposites, have been synthesized, The structure, phase composition, and magnetic properties of the obtained materials have been determined with the help of diffractometry and magnetometry. It has been established that nanoparticles of the ternary alloy are formed due to solution of cobalt in the Fe-Ni alloy. The composition of the nanoparticles of the alloy depends on the mass percent ratio of the metas in the precursor. With growth of the iron content, nanoparticles of the ternary alloy with various composition are formed with FCC and BCC crystal lattice structure. As the synthesis temperature and relative iron content are increased, the magnetization of the Fe-Co-Ni/C nanocomposites increases from 26 to 157 A·m2/kg. The coercive force is determined by the synthesis temperature, the size of the nanoparticles, and the composition of the alloy, and its value varies from 330 to 43 Oe.

  15. Enhancing effect of Fe2+ on the formaldehyde production from trimethylamine N-oxide decomposition catalyzed by the extract of Harpadon nehereus kidney

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Zhou, Deqing; Zhao, Feng

    2011-03-01

    The effects of Fe2+ on the trimethylamine N-oxide (TMAO) demethylating activity of the Harpadon nehereus kidney extract were studied in this research. The activity of the kidney extract was presumably inhibited by ethylene diamine tetra-acetic acid (EDTA), which indicates that the kidney extract contains an enzyme or enzyme system with metal cations as activator. Activity of the kidney extract was enhanced significantly when Fe2+ was added into the model system in vitro. As the concentration of Fe2+ increased, the decomposing rate of TMAO increased rapidly until TMAO decomposed completely. The activity of the kidney extract was also enhanced by reductant such as ascorbic acid. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) was employed to determine the content of total iron in a number of fishery products. Significant positive correlation between the contents of total iron and endogenous formaldehyde (FA) was found, especially in marine products.

  16. Influence of Al substitution on magnetism and adsorption properties of hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shanshan; Kang, Feifei; Yang, Xin

    2015-08-15

    A series of Al-substituted hematite was prepared. The structures and properties of as-prepared samples were characterized by various techniques. The magnetic property of the samples was determined and the adsorption of three dyes Acid Blue 74, Methylene Blue and Phenol Red onto the samples was investigated. The results showed that Al incorporation into the crystal structure of hematite occurs via isomorphous ionic substitution of Al for Fe. With increasing Al content, the particle size of samples decreases, the magnetization increases and the remanent magnetization remains unchanged. The coercivity of the samples increases with Al substitution up to n{sub Al}/n{sub Fe}more » 0.03, and then decreases as Al content further increases. Compared with Al-free hematite, Al-substituted samples exhibit better adsorption ability to all of the three dyes. The adsorption rates of the three dyes on the surface of Al substituted samples depend on the structure of dye, pH and Al content in hematite. - Graphical abstract: Effect of Al on the structure, magnetic properties and adsorption performance of hematite was investigated. - Highlights: • A series of Al-substituted α-Fe{sub 2}O{sub 3} was prepared. • Effect of Al content on the crystal structure and magnetic property of hematite was investigated. • Al-substituted hematite exhibits better adsorption ability than hematite.« less

  17. The abnormal electrical and optical properties in Na and Ni codoped BiFeO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xunling; Liu, Weifang, E-mail: wfliu@tju.edu.cn, E-mail: shouyu.wang@yahoo.com; Zhang, Hong

    2015-05-07

    Bi{sub 0.97}Na{sub 0.03}Fe{sub 1−x}Ni{sub x}O{sub 3} (x = 0, 0.005, 0.01, 0.015) nanoparticles are prepared via a sol-gel method. Weak ferromagnetism and exchange bias phenomenon without field cooling are observed in the samples. The oxygen vacancy concentration and leakage current density are increased with increasing the Ni content. However, with the increase of Ni content, the band gap of Bi{sub 0.97}Na{sub 0.03}Fe{sub 1−x}Ni{sub x}O{sub 3} nanoparticles first decreases and then increases. To explain the abnormal phenomenon, the interplay of oxygen vacancy donor and hole acceptor is analyzed and a phenomenological qualitative model based on the electronic energy band is proposed. Additionally, themore » threshold switching behavior appears in Bi{sub 0.97}Na{sub 0.03}Fe{sub 1−x}Ni{sub x}O{sub 3} samples with x = 0.01, 0.015 and the effect is qualitatively explained by introducing a conducting channel model based on the high-density mobile charges.« less

  18. A Raman scattering study of the structural ordering in Bi1- x La x FeO3 ceramic ferroelectromagnetics

    NASA Astrophysics Data System (ADS)

    Teplyakova, N. A.; Titov, S. V.; Verbenko, I. A.; Sidorov, N. V.; Reznichenko, L. A.

    2015-09-01

    Based on Raman spectra, we have studied structural ordering processes in ceramics of ferroelectromagnetics Bi1- x La x FeO3 ( x = 0.075-0.20). It has been found that the structure of Bi1- x La x FeO3 is close to the structure of the crystal BiFeO3. However, lines in Raman spectra of Bi1- x La x FeO3 are considerably broadened compared to lines in the Raman spectrum of the BiFeO3 single crystal, which indicates that the structure of solid solutions is much more disordered. In Raman spectra of Bi1- x La x FeO3, in the range of librational vibrations of octahedra as a whole (50-90 cm-1), several groups of lines are observed in frequency ranges 59-69, 72-77, and 86-92 cm-1 (depending on the composition of solid solution). This confirms X-ray data that examined solid solutions are not single-phase. At a La content x = 0.120, Raman lines in the low-frequency spectral range narrow, which indicates that the ordering of structural units in cationic sublattices somewhat increases. Upon an increase in the content of La in the Bi1- x La x FeO3 structure, no unambiguous dependence of parameters of spectral lines is observed. It is likely that this is explained by the fact that, as the value of x increases, the character of the incorporation of La into the structure of the solid solution changes.

  19. Moessbauer Spectroscopy for Lunar Resource Assessment: Measurement of Mineralogy and Soil Maturity

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Agresti, D. G.; Shelfer, T. D.; Pimperl, M. M.; Shen, M.-H.; Gibson, M. A.; Wills, E. L.

    1992-01-01

    First-order assessment of lunar soil as a resource includes measurement of its mineralogy and maturity. Soils in which the mineral ilmenite is present in high concentrations are desirable feedstock for the production of oxygen at a lunar base. The maturity of lunar soils is a measure of their relative residence time in the upper 1 mm of the lunar surface. Increasing maturity implies increasing load of solar wind species (e.g., N, H, and He-3), decreasing mean grain size, and increasing glass content. All these physicochemical properties that vary in a regular way with maturity are important parameters for assessing lunar soil as a resource. For example, He-3 can be extracted and potentially used for nuclear fusion. A commonly used index for lunar soil maturity is I(sub s)/FeO, which is the concentration of fine-grained metal determined by ferromagnetic resonance (I(sub s)) normalized to the total iron content (as FeO). I(sub s)/FeO has been measured for virtually every soil returned by the Apollo and Luna missions to the Moon. Because the technique is sensitive to both oxidation state and mineralogy, iron Moessbauer spectroscopy (FeMS) is a viable technique for in situ lunar resource assessment. Its utility for mineralogy is apparent from examination of published FeMS data for lunar samples. From the data published, it can be inferred that FeMS data can also be used to determine soil maturity. The use of FeMS to determine mineralogy and maturity and progress on development of a FeMS instrument for lunar surface use are discussed.

  20. Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji

    Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.

  1. Antioxidant status of faeces of captive black rhinoceros (Diceros bicornis) in relation to dietary tannin supplementation.

    PubMed

    Clauss, M; Pellegrini, N; Castell, J C; Kienzle, E; Dierenfeld, E S; Hummel, J; Flach, E J; Streich, W J; Hatt, J-M

    2006-08-01

    In context with the frequent observations of excessive iron (Fe) storage in captive black rhinoceroses (Diceros bicornis), it has been suggested that both an excessive dietary Fe content and a lack of dietary Fe-chelating substances, such as tannins, is the underlying cause. Therefore, studies on the effects of tannin supplementation to captive diet are warranted. Six captive rhinoceroses were fed their normal zoo diet (N), and a similar diet supplemented with either tannic acid (T, hydrolysable tannin) or quebracho (Q, condensed tannins), and the total antioxidant capacity (TAC) was measured as mmol Trolox equivalents per kg fresh faeces. The TAC values on diets N (1.24 +/- 0.39 mmol/kg fresh faeces) and T (1.34 +/- 0.33 mmol/kg fresh faeces) were similar, but significantly higher on diet Q (2.32 +/- 0.61 mmol/kg fresh faeces). In contrast to expectations, faecal TAC increased with increasing faecal Fe, possibly as a result of the fact that the faecal Fe content was positively correlated to the proportion of concentrate feeds in the diet, which also contain antioxidants, such as vitamin E, in addition to Fe. Increased antioxidant status caused by the use of tannin substances could have a beneficial effect on animal health, but if tannins should be incorporated in designed diets, other tannin sources, such as grape pomace should be tested.

  2. Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Zhang, Kaichuang; Gao, Xinbao; Zhang, Qian; Chen, Hao; Chen, Xuefang

    2018-04-01

    Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites were synthesized using a co-precipitation method and a calcination process. As one kind absorbing material, we researched the electromagnetic absorption properties of the composites that were mixed with a filler loading of 80 wt% paraffin. In addition, we studied the influence of the magnetic nanoparticle content on the absorbing properties. The results showed that the frequency corresponding to the maximum absorptions shifted to lower frequency when the magnetic nanoparticles content increased. The Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites with approximately 60% Fe3O4 nanoparticles showed the best electromagnetic absorption properties. The maximum reflection loss was -52.47 dB with a thickness of 2.0 mm at 10.4 GHz.

  3. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity.

    PubMed

    Mena, Natalia P; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C; Núñez, Marco T

    2011-06-03

    Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Influence of Sn-Mg co-substitution on the microstructural and magnetic characteristics of M-type SrCaLa hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Yang, Yujie; Wang, Fanhou; Huang, Duohui; Shao, Juxiang; Tang, Jin; Ur Rehman, Khalid Mehmood; Wu, Zhen

    2018-04-01

    Sn-Mg co-substituted M-type SrCaLa hexaferrites Sr0.5Ca0.2La0.3Fe12.0-2x(SnMg)xO19 (0.0 ≤ x ≤ 0.5) have been synthesized by ball milling and calcining. The results of X-ray diffraction show that a single magnetoplumbite phase is exhibited in all the samples and no impurity phase is observed in the structure. Lattice constants (c and a) increase with increasing Sn-Mg content (x) from 0.0 to 0.5. Platelet like structure exhibited by FE-SEM micrographs confirms the hexagonal structure of the synthesized samples. The saturation magnetization (Ms) first increases with increasing SnMg content (x) from 0.0 to 0.1, and then decreases when Sn-Mg content (x) ≥ 0.1. The remanent magnetization (Mr), Mr/Ms ratio, coercivity (Hc), magnetic anisotropy field (Ha) and first anisotropy constant (K1) decrease with increasing Sn-Mg content (x) from 0.0 to 0.5.

  5. Experimental determination of carbon solubility in Fe-Ni-S melts

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Hastings, Patrick; Von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    To investigate the effect of metal/sulfide and Ni/Fe ratio on the C storage capacity of sulfide melts, we determine carbon solubility in Fe-Ni-S melts with various (Fe + Ni)/S and Ni/Fe via graphite-saturated high-pressure experiments from 2-7 GPa and 1200-1600 °C. Consistent with previous results, C solubility is high (4-6 wt.%) in metal-rich sulfide melts and diminishes with increasing S content. Melts with near M/S = 1 (XS > 0.4) have <0.5 wt.% C in equilibrium with graphite. C solubility is diminished modestly with increased Ni/Fe ratio, but the effect is most pronounced for S-poor melts, and becomes negligible in near-monosulfide compositions. Immiscibility between S-rich and C-rich melts is observed in Ni-poor compositions, but above ∼18 wt.% Ni there is complete miscibility. Because mantle sulfide compositions are expected to have high Ni concentrations, sulfide-carbide immiscibility is unlikely in natural mantle melts. An empirical parameterization of C solubility in Ni-Fe-S melts as a function of S and Ni contents allows estimation of the C storage capacity of sulfide in the mantle. Importantly, as the metal/sulfide (M/S) ratio of the melt increases, C storage increases both because C solubility increases and because the mass fraction of melt is enhanced by addition of metal from surrounding silicates. Under comparatively oxidized conditions where melts are near M/S = 1, as prevails at <250 km depth, bulk C storage is <3 ppm. In the deeper, more reduced mantle where M/S increases, up to 200 ppm C in typical mantle with 200 ± 100 ppm S can be stored in Fe-Ni-S melts. Thus, metal-rich sulfide melts are the principal host of carbon in the deep upper mantle and below. Residual carbon is present either as diamond or, if conditions are highly reduced and total C concentrations are low, solid alloy.

  6. Insight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups.

    PubMed

    Zhang, Ziyang; Li, Haiyan; Liu, Huijuan

    2018-03-01

    In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe 3+ complex mesoporous silica adsorbents with diverse content of amino and Fe 3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and N 2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe 3+ groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe 3+ increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe 3+ content increased from 3.93% to 8.26%, the Q max of the adsorbents increased from 102 to 188mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. Copyright © 2017. Published by Elsevier B.V.

  7. Effect of fulvic and humic acids on iron and manganese homeostasis in rats.

    PubMed

    Szabó, József; Vucskits, András Valentin; Berta, Erzsébet; Andrásofszky, Emese; Bersényi, András; Hullár, István

    2017-03-01

    The objective of this study was to investigate the effects of fulvic acid (FA) and humic acid (HA) as the two main compounds of humic substances, separately on Fe and Mn homeostasis. Seventy-two male Wistar rats were randomly divided into 9 experimental groups. The control diet (AIN-93G formula) and diets supplemented with 0.1%, 0.2%, 0.4% and 0.8% HA or FA were fed for 26 days. Fe and Mn concentrations of the large intestinal content, liver, kidney, femur and hair were determined. No significant differences were observed in the production parameters. The effects of FA and HA on iron homeostasis were significantly different. FA proved to be a good iron source, and slightly increased the iron content of liver and kidney, but - up to a dietary iron level of 52.7 mg/kg - it did not influence the efficiency of iron absorption. Above a dietary iron level of 52.7 mg/kg down-regulation of Fe absorption can be assumed. HA significantly stimulated the iron uptake and there was no down-regulation of Fe absorption up to 0.8% dietary HA supplementation level (61.5 mg Fe/kg diet). In the HA groups the iron content of the liver and kidney decreased significantly, suggesting that in spite of the better Fe absorption, the HA-Fe complex does not provide iron to the investigated organs. Neither FA nor HA supplementation influenced the Fe content of the femur and hair and slightly decreased the Mn concentration in the large intestinal content. This effect was significant (with a 22.7% Mn concentration decrease) only at the HA supplementation rate of 0.8%. Neither FA nor HA influenced significantly the Mn concentrations of the liver, kidney and femur. The Mn concentration of the hair in rats receiving FA- or HA-supplemented diets was higher than in the control rats; however, this result needs further confirmation.

  8. Effects of Al(3+) doping on the structure and properties of goethite and its adsorption behavior towards phosphate.

    PubMed

    Li, Wei; Wang, Longjun; Liu, Fan; Liang, Xiaoliang; Feng, Xionghan; Tan, Wenfeng; Zheng, Lirong; Yin, Hui

    2016-07-01

    Al substitution in goethite is common in soils, and has strong influence on the structure and physicochemical properties of goethite. In this research, a series of Al-doped goethites were synthesized, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The adsorption behavior of these samples towards PO4(3-) was also investigated. Characterization results demonstrated that increasing Al content in goethite led to a reduction in crystallinity, increase in specific surface area (SSA), and morphology change from needle-like to granular. Rietveld structure refinement revealed that the lattice parameter a remained almost constant and b slightly decreased, but c was significantly reduced, and the calculated crystal density increased. EXAFS analysis demonstrated that the Fe(Al)-O distance in the structure of the doped goethites was almost the same, but the Fe-Fe(Al) distance decreased with increasing Al content. Surface analysis showed that, with increasing Al content, the content of OH groups on the mineral surface increased. The adsorption of phosphate per unit mass of Al-doped goethite increased, while adsorption per unit area decreased owing to the decrease of the relative proportion of (110) facets in the total surface area of the minerals. The results of this research facilitate better understanding of the effect of Al substitution on the structure and properties of goethite and the cycling of phosphate in the environment. Copyright © 2016. Published by Elsevier B.V.

  9. Increasing the cooking temperature of meat does not affect nonheme iron absorption from a phytate-rich meal in women.

    PubMed

    Baech, Sussi B; Hansen, Marianne; Bukhave, Klaus; Kristensen, Lars; Jensen, Mikael; Sørensen, Sven S; Purslow, Peter P; Skibsted, Leif H; Sandström, Brittmarie

    2003-01-01

    The effect of increasing cooking temperatures of meat on nonheme iron absorption from a composite meal was investigated. Cysteine-containing peptides may have a role in the iron absorption enhancing effect of muscle proteins. Heat treatment can change the content of sulfhydryl groups produced from cysteine and thereby affect iron absorption. Twenty-one women (25 +/- 3 y) were served a basic meal without meat and two other meals consisting of the basic meal plus 75 g of pork meat cooked at 70, 95 or 120 degrees C. The meals were extrinsically labeled with (55)Fe or (59)Fe. Iron absorption was determined from measurements of whole-body (59)Fe retention and the activity of (55)Fe and (59)Fe in blood samples. Nonheme iron absorptions were 0.9 (0.5-4.0)% (P = 0.06), 0.7 (0.4-3.9)% (P = 0.1) and 2.0 (1.3-3.1)% (P < 0.001) greater when meat cooked at 70, 95 or 120 degrees C, respectively, was added to the basic meal. Increasing the cooking temperature of meat did not impair nonheme iron absorption compared with cooking at 70 degrees C. Because the cysteine content of meat decreased with increasing cooking temperature, this argues against a specific contribution of sulfhydryl groups from cysteine residues in the promotion of nonheme iron absorption by meat proteins.

  10. The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells

    DOE PAGES

    Nenning, Andreas; Volgger, Lukas; Miller, Elizabeth; ...

    2017-02-18

    Reduction-stable mixed ionic and electronic conductors such as Sr(Ti,Fe)O 3-δ (STF) are promising materials for application in anodes of solid oxide fuel cells. The defect chemistry of STF and its properties as solid oxide fuel cell (SOFC) cathode have been studied thoroughly, while mechanistic investigations of its electrochemical properties as SOFC anode material are still scarce. In this study, thin film model electrodes of STF with 30% and 70% Fe content were investigated in H 2+H 2O atmosphere by electrochemical impedance spectroscopy. Lithographically patterned thin film Pt current collectors were applied on top or beneath the STF thin films tomore » compensate for the low electronic conductivity under reducing conditions. Oxygen exchange resistances, electronic and ionic conductivities and chemical capacitances were quantified and discussed in a defect chemical model. Increasing Fe content increases the electro-catalytic activity of the STF surface as well as the electronic and ionic conductivity. Current collectors on top also increase the electrochemical activity due to a highly active Pt-atmosphere-STF triple phase boundary. Furthermore, the electrochemical activity depends decisively on the H 2:H 2O mixing ratio and the polarization. Lastly, Fe 0 nanoparticles may evolve on the surface in hydrogen rich atmospheres and increase the hydrogen adsorption rate.« less

  11. Morphology-controlled synthesis and novel microwave electromagnetic properties of hollow urchin-like chain Fe-doped MnO 2 under 10 T high magnetic field

    NASA Astrophysics Data System (ADS)

    Yuping, Duan; Jia, Zhang; Hui, Jing; Shunhua, Liu

    2011-05-01

    Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO 2 with Fe, the relative complex permittivity of MnO 2 and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO 2 exhibits good microwave absorption capability.

  12. Effect of Si Content on Oxide Formation on Surface of Molten Fe-Cr-C Alloy Bath During Oxygen Top Blowing

    NASA Astrophysics Data System (ADS)

    Mihara, Ryosuke; Gao, Xu; Kim, Sun-joong; Ueda, Shigeru; Shibata, Hiroyuki; Seok, Min Oh; Kitamura, Shin-ya

    2018-02-01

    Using a direct observation experimental method, the oxide formation behavior on the surface of Fe-Cr-5 mass pct C-Si alloy baths during decarburization by a top-blown Ar-O2 mixture was studied. The effects of the initial Si and Cr content of the alloy, temperature, and oxygen feed ratio on oxide formation were investigated. The results showed that, for alloys without Si, oxide particles, unstable oxide films, and stable oxide films formed sequentially. The presence of Si in the alloy changed the formation behavior of stable oxide film, and increased the crucial C content when stable oxide film started to form. Increasing the temperature, decreasing the initial Cr content, and increasing the ratio of the diluting gas decreased the critical C content at which a stable oxide film started to form. In addition, the P CO and a_{{{Cr}2 {O}3 }} values at which oxides started to form were estimated using Hilty's equation and the equilibrium relation to understand the formation conditions and the role of each parameter in oxide formation.

  13. Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses?

    PubMed

    Vigani, Gianpiero; Pii, Youry; Celletti, Silvia; Maver, Mauro; Mimmo, Tanja; Cesco, Stefano; Astolfi, Stefania

    2018-05-01

    Within the last years, extensive information has been accumulated on the reciprocal influence between S and Fe nutrition at both physiological and molecular level in several plant species, but the mechanisms regulating S and Fe sensing and signaling are not fully understood. Fe and S interact for the building of Fe-S clusters, and mitochondria is one of the cellular compartments where Fe-S cluster assembly takes place. Therefore, it would be expected that mitochondria might play a central role in the regulation of Fe and S interaction. The Fe deficiency-induced alteration in the synthesis of mitochondria-derived carboxylic acids, such as citric acid, and the evidence that such molecules have already been identified as important players of metabolite signaling in several organisms, further support this hypothesis. Tomato plants were grown under single or combined Fe and S deficiency with the aim of verifying whether mitochondria activities played a role in Fe/S interaction. Both Fe and S deficiencies determined similar alteration of respiratory chain activity: a general decrease of Fe-S containing complexes as well as an increase of alternative NAD(P)H activities was observed in both Fe and S deficient-plants. However, the content of Krebs cycle-related organic acids in roots was substantially different in response to treatments, being the accumulation of citric acid always increased, while the others (i.e. succinic, malic, fumaric acids) always decreased. Interestingly, citric acid levels significantly correlated with the expression of some Fe and S deficiency induced genes. Our results contribute to existing knowledge on the complexity of the S/Fe interaction, suggesting a model in which endogenous alteration of citric acid content in plant tissues might act as signal molecule for the regulation of some nuclear-encoded and nutrient-responsive genes and also provide a basis for further study of the mechanism underlying S and Fe sensing and signalling. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Effects of Oral Administration of CrCl3 on the Contents of Ca, Mg, Mn, Fe, Cu, and Zn in the Liver, Kidney, and Heart of Chicken.

    PubMed

    Liu, Yanhan; Zhao, Xiaona; Zhang, Xiao; Zhao, Xuejun; Liu, Yongxia; Liu, Jianzhu

    2016-06-01

    This study aimed to investigate the effects of oral administration of trivalent chromium on the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney. Different levels of 1/8, 1/4, and 1/2 LD50 (LD50 = 5000 mg/kg body mass) CrCl3 milligrams per kilogram body mass daily were added into the water to establish the chronic poisoning model. Ca, Mg, Mn, Fe, Cu, and Zn were detected with the flame atomic absorption spectrometry in the organs exposed 14, 28, and 42 days to CrCl3, respectively. Results showed that Cr was accumulated in the heart, liver, and kidney significantly (P < 0.05) with extended time and dose. The contents of Ca and Fe increased, whereas those of Mg, Mn, Cu, and Zn decreased in the heart, liver, and kidney of each treated group, which had a dose- and time-dependent relationship, but the contents of Mg and Zn in the heart took on a fluctuated change. These particular observations were different from those in the control group. In conclusion, the oral administration of CrCl3 could change the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney, which may cause disorders in the absorption and metabolism of the metal elements of chickens.

  15. Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys

    NASA Astrophysics Data System (ADS)

    Gungunes, H.

    2016-12-01

    Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.

  16. Phase relationships of the system Fe-Ni-S and structure of the high-pressure phase of (Fe1-xNix)3S2

    NASA Astrophysics Data System (ADS)

    Urakawa, Satoru; Kamuro, Ryota; Suzuki, Akio; Kikegawa, Takumi

    2018-04-01

    The phase relationships of the Fe-Ni-S system at 15 GPa were studied by high pressure quench experiments. The stability fields of (Fe,Ni)3S and (Fe,Ni)3S2 and the melting relationships of the Fe-Ni-S system were determined as a function of Ni content. The (Fe,Ni)3S solid solution is stable in the composition of Ni/(Fe + Ni) > 0.7 and melts incongruently into an Fe-Ni alloy + liquid. The (Fe,Ni)3S2 makes a complete solid solution and melts incongruently into (Fe,Ni)S + liquid, whose structure was determined to show Cmcm-orthorhombic symmetry by in situ synchrotron X-ray diffraction experiments. The eutectic contains about 30 at.% of S, and its temperature decreases with increasing Ni content with a rate of ∼5 K/at.% from 1175 K. The density of the Fe-FeS eutectic composition (Fe70S30) liquid is evaluated to be 6.93 ± 0.08 g/cm3 at 15 GPa and 1200 K based on the Clausius-Clapeyron relations and densities of subsolidus phases. The Fe-Ni-S liquids are a primary sulfur-bearing phase in the deep mantle with a reducing condition (250-660 km depth), and they would play a significant role in the carbon cycle as a carbon host as well as in the generation of diamond.

  17. Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

    NASA Astrophysics Data System (ADS)

    Antonov, Stoichko; Detrois, Martin; Tin, Sammy

    2018-01-01

    A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.

  18. Long annealing effect on spin Seebeck devices fabricated using Ce x Y3- x Fe5O12 deposited by metal-organic decomposition

    NASA Astrophysics Data System (ADS)

    Ono, Tatsuyoshi; Hirata, Satoshi; Amemiya, Yoshiteru; Tabei, Tetsuo; Yokoyama, Shin

    2018-04-01

    The effects of Ce content and annealing temperature on the electromotive force produced by spin Seebeck devices fabricated using Ce x Y3- x Fe5O12 deposited by metal-organic decomposition was investigated. The Ce content was first varied (x = 0,1,2,3) for a fixed annealing condition of 3 h at 900 °C. It was found that increasing the Ce content led to a decrease in electromotive force, which meant that x = 0 was the optimum Ce content. Next, the effect of annealing temperature was investigated for a Ce1Y2Fe5O12 film for an annealing time of 14 h. The highest electromotive force of 24.0 µV/50 °C was obtained for a sample annealed for 14 h at 800 °C, although the X-ray diffraction peaks were weaker than those for a sample annealed for 14 h at 950 °C.

  19. Reduction of FeO contents in sinter under high bed operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, K.; Hazama, K.; Hoshikuma, Y.

    1996-12-31

    High-bed operation (bed height more than 700 mm) is currently being carried out at the Kure No. 1 sintering plant. Before initiating this high-bed operation, the authors conducted sinter pot tests at various bed heights to investigate the effect of bed height on sintering. The following results were obtained from these pot tests: Heightening of the sinter bed increased yield at the upper layer, but at the lower layer, the yield reached a maximum value at a certain bed height. From observation of the sinter cakes, the reduction in yield is attributed to uneven burn caused by surplus heat atmore » the lower layers. Therefore, when high-bed operation is carried out, reduction of the burning energy (reduction of the FeO content in the sinter) is required. This high-bed operation with lower FeO content has enabled the company to reduce fuel consumption and SiO{sub 2} content, while maintaining high yield and high sinter quality.« less

  20. Carbon-coated CoFe–CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties

    NASA Astrophysics Data System (ADS)

    Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang

    2018-07-01

    SiO2 and TiO2, as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe–CoFe2O4@C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe2O4 matrix via an in situ reduction transformation from CoFe2O4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max) of –71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5) and high RL max are observed in both S-C and X-Ku bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.

  1. Effects of spin entropy and lattice strain from mixed-trivalent Fe3+/Cr3+ on the electronic, thermoelectric and optical properties of delafossite CuFe1-x Cr x O2 (x  =  0.25, 0.5, 0.75)

    NASA Astrophysics Data System (ADS)

    Ruttanapun, Chesta; Maensiri, Santi

    2015-12-01

    Mixed-trivalent Fe3+/Cr3+ content CuFe1-x Cr x O2 (x  =  0.25, 0.5, and 0.75) compounds were synthesized to investigate the effects of spin entropy, and lattice strain on their electronic, thermoelectric and optical properties. The XPS results showed the existence of mixed Cu1+/Cu2+, Fe3+/Fe4+ and Cr2+/Cr3+ ion states in the structures. The mixed Fe3+/Cr3+ions caused a strong correlation to occur between the spin and the orbitals of the carriers in the octahedral layer of the sample, affecting the carrier degeneracy Seebeck coefficient behaviour, and the Cu2+ and Fe4+ ions caused an effect of enhancing the electric conductivity. These effects meant that CuFe0.75Cr0.25O2 had the highest electrical conductivity, an enhanced Seebeck coefficient compared to that of CuFeO2-based compounds, and the highest thermopower value. The lowest thermal conductivity was that of CuFe0.5Cr0.5O2, which was a result of the mismatched atomic radii of the mixed trivalent Fe3+(0.645 Å)/Cr3+(0.615 Å), which caused the lattice strain to occur in the structure and thus affected the point defect scattering of the phonon thermal conductivity. The lowest total thermal conductivity was that of CuFe0.5Cr0.5O2, because it had the maximum lattice strain. Overall, the effect of the mixed trivalent elements caused CuFe0.75Cr0.25O2 to have the highest value of the dimensionless figure of merit ZT, with a value that was four times that of CuFeO2-based compounds and six times that of CuCrO2-based compounds. With regard to optical properties, the lattice strain causes the indirect optical gap to increase with increasing x content, but has no effect on the direct optical gap. These results verified that the mixed-trivalent Fe3+/Cr3+ content of CuFe1-x Cr x O2 (x  =  0.25, 0.5, and 0.75) affected the electronic, thermoelectric and optical properties of the structure by causing spin entropy and lattice strain to occur.

  2. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations.

    PubMed

    Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones.

  3. Magnetic Properties of Hematite-Titania Nanocomposites from Ilmenite Leachant Solutions

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Rashad, M. M.

    2017-07-01

    Different Fe2O3/TiO2 nanocomposite ratios have been auto-synthesized from the leaching solution of Egyptian ilmenite ore with and without solvent extraction of soluble iron ions. Hydrolysis-hydrothermal strategy was then implemented for preparation of Fe2O3-TiO2 nanocomposites. The x-ray diffraction results indicated that rutile and hematite were only found at high iron oxide content. Meanwhile, anatase and hematite were the predominant phases at low iron oxide content. High-resolution transmission electron microscopy investigations exhibited nano-rods like morphology and the space lattice distances of TiO2 and Fe2O3 were clearly estimated. Moreover, the chemical composition of different Fe2O3-TiO2 nanocomposites was also elucidated using energy dispersive spectroscopy and Fourier transform infrared analyses techniques. The values of saturation magnetization ( M s) and remanent magnetization ( M r) were noticeably increased by 17.5% and 18.4% with increasing the Fe2O3/TiO2 molar ratio from 1.0 to 3.0, respectively. Field cooling-warming magnetization studies showed that the Morin transition temperature ( T M = 200 K) was consistent with the previously published values.

  4. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations

    PubMed Central

    Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones. PMID:27284692

  5. Beyond clay - using selective extractions to improve predictions of soil carbon content

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.; Berhe, A. A.; Blankinship, J. C.; Crow, S. E.; Druhan, J. L.; Heckman, K. A.; Keiluweit, M.; Lawrence, C. R.; Marin-Spiotta, E.; Plante, A. F.; Schaedel, C.; Schimel, J.; Sierra, C. A.; Thompson, A.; Wagai, R.; Wieder, W. R.

    2016-12-01

    A central component of modern soil carbon (C) models is the use of clay content to scale the relative partitioning of decomposing plant material to respiration and mineral stabilized soil C. However, numerous pedon to plot scale studies indicate that other soil mineral parameters, such as Fe- or Al-oxyhydroxide content and specific surface area, may be more effective than clay alone for predicting soil C content and stabilization. Here we directly address the following question: Are there soil physicochemical parameters that represent mineral C association and soil C content that can replace or be used in conjunction with clay content as scalars in soil C models. We explored the relationship of soil C content to a number of soil physicochemical and physiographic parameters using the National Cooperative Soil Survey database that contains horizon level data for > 62,000 pedons spanning global ecoregions and geographic areas. The data indicated significant variation in the degree of correlation among soil C, clay and Fe-/Al-oxyhydroxides with increasing moisture variability. Specifically, dry, water-limited systems (PET/MAP > 1) presented strong positive correlations between clay and soil C, that decreased significantly to little or no correlation in wet, energy-limited systems (PET/MAP < 1). In contrast, the correlation of soil C to oxalate extractable Al+Fe increased significantly with increasing moisture availability. This pattern was particularly well expressed for subsurface B horizons. Multivariate analyses indicated similar patterns, with clear climate and ecosystem level variation in the degree of correlation among soil C and soil physicochemical properties. The results indicate a need to modify current soil C models to incorporate additional C partitioning parameters that better account for climate and ecoregion variability in C stabilization mechanisms.

  6. Composition anisotropy compensation and magnetostriction of Co-doped Laves compounds Tb0.2Dy0.8-xPrxFe1.93 (0 ≤ x ≤ 0.40)

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, J. J.; Zhu, X. Y.; Shen, W. C.; Lin, L. L.; Du, J.; Si, P. Z.

    2018-07-01

    Alloys of Tb0.2Dy0.8-xPrx(Fe0.8Co0.2)1.93 (0 ≤ x ≤ 0.40) are arc melted and investigated for structural, magnetic and magnetoelastic properties by means of X-ray diffraction (XRD), a vibrating sample magnetometer and a standard strain technique. The 20 at.% Co substitution for Fe is shown to enable the formation of the single Laves phase with a high Pr content up to x = 0.25. Experimental evidence for magnetocrystalline-anisotropy compensation between Pr3+ and Dy3+ ions is obtained in the Laves phase system. The easy magnetization direction (EMD) at room temperature rotates from <100> to <110> axis when x increases from 0 to 0.40. The linear anisotropic magnetostriction λa (=λ||-λ⊥) increases with increasing Pr content when x ≤ 0.25 ascribed to both the larger magnetostriction of PrFe2 than that of DyFe2 and the decrease of the resulted anisotropy due to compensation. The composition anisotropy compensation is found to be around x = 0.25, shifting to the Pr-rich side at room temperature as compared to the Co-free counterpart Tb0.2Dy0.8-xPrxFe1.93 system. The Tb0.2Dy0.55Pr0.25(Fe0.8Co0.2)1.93 alloy has good magnetoelastic properties at room temperature, that is, a low anisotropy and a high low-field magnetostriction λa ∼140 ppm at 1 kOe.

  7. Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast

    NASA Astrophysics Data System (ADS)

    Gharehaghaji, Nahideh; Divband, Baharak; Zareei, Loghman

    2018-06-01

    In the current study, Fe3O4/NaA nanocomposites with various amounts of Fe3O4 (3.4, 6.8 & 10.2 wt%) were synthesized and characterized to study the effect of nano iron oxide content on the magnetic resonance (MR) image contrast. The cell viability of the nanocomposites was investigated by MTT assay method. T2 values as well as r2 relaxivities were determined with a 1.5 T MRI scanner. The results of the MTT assay confirmed the nanocomposites cytocompatibility up to 6.8% of the iron oxide content. Although the magnetization saturations and susceptibility values of the nanocomposites were increased as a function of the iron oxide content, their relaxivity was decreased from 921.78 mM-1 s-1 for the nanocomposite with the lowest iron oxide content to 380.16 mM-1 s-1 for the highest one. Therefore, Fe3O4/NaA nanocomposite with 3.4% iron oxide content led to the best MR image contrast. Nano iron oxide content and dispersion in the nanocomposites structure have important role in the nanocomposite r2 relaxivity and the MR image contrast. Aggregation of the iron oxide nanoparticles is a limiting factor in using of the high iron oxide content nanocomposites.

  8. Tribo-Mechanical Properties of HVOF Deposited Fe3Al Coatings Reinforced with TiB2 Particles for Wear-Resistant Applications

    PubMed Central

    Amiriyan, Mahdi; Blais, Carl; Savoie, Sylvio; Schulz, Robert; Gariépy, Mario; Alamdari, Houshang

    2016-01-01

    This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. PMID:28787917

  9. Microstructure and characterization of W-type hexaferrite Ba1-xLaxFe22+Fe163+O27 prepared by solid state method

    NASA Astrophysics Data System (ADS)

    Tang, Jin; Liu, Xiansong; Mehmood Ur Rehman, Khalid; Li, Dan; Li, Mingling; Yang, Yujie

    2018-04-01

    We report a successful preparation of Ba1-xLaxFe22+Fe163+O27 (x = 0.00-0.10) W-type hexagonal ferrites by standard ceramic method in a reduced oxygen atmosphere. In this work, the effect of the substitution La3+ rare-earth ions for Ba2+ ions on the structural and magnetic properties of the prepared samples have been studied. The phase identification of magnetic powders was performed by X-ray diffraction. The results of XRD show that the single phase was observed in the W-type ferrites with different La content. The SEM micrographs showed that the ferrites have formed the hexagonal structure. The magnetic properties of the samples were metric by a vibrating sample magnetometer. The coercivity (Hc) of the particles decreases with the increase of La content(x), while the saturation magnetization (Ms) of the particles first increases with x from 0 to 0.05, and then begins to decrease when x continues to increase. The monotonic dependence of the magnetic anisotropy field Ha and coercivity Hc on the La3+ doping amount is found to be mainly dominated by the competition between Ms and Keff.

  10. Atmospheres

    NASA Astrophysics Data System (ADS)

    Bott, June; Yin, Hongbin; Sridhar, Seetharaman

    2014-12-01

    When high Al containing Fe alloys such as TRIP steels are exposed to atmospheres that contain N2 during re-heating, sub-surface nitrides form and these can be detrimental to mechanical properties. Nitride precipitation can be controlled by minimizing the access of the gaseous atmosphere to the metal surface, which can be achieved by a rapid growth of a continuous and adherent surface scale. This investigation utilizes a Au-image furnace attached to a confocal scanning microscope to simulate the annealing temperature vs time while Fe-Al alloys (with Al contents varying from 1 to 8 wt pct) are exposed to a O2-N2 atm with 10-6 atm O2. The heating times of 1, 10, and 100 minutes to the isothermal temperature of 1558 K (1285 °C) were used. It was found that fewer sub-surface nitride precipitates formed when the heating time was lowered and when Al content in the samples was increased. In the 8 wt pct samples, no internal nitride precipitates were present regardless of heating time. In the 3 and 5 wt pct samples, internal nitride precipitates were nearly more or less absent at heating times less than 10 minutes. The decrease in internal precipitates was governed by the evolving structure of the external oxide-scale. At low heating rates and/or low Al contents, significant Fe-oxide patches formed and these appeared to allow for ingress of gaseous N2. For the slow heating rates, ingress could have happened during the longer time spent in lower temperatures where non-protective alumina was present. As Al content in the alloy was increased, the external scale was Al2O3 and/or FeAl2O4 and more continuous and consequently hindered the N2 from accessing the metal surface. Increasing the Al content in the alloy had the effect of promoting the outward diffusion of Al in the alloy and thereby assisting the formation of the continuous external layer of Al2O3 and/or FeAl2O4.

  11. CoxFe1-x oxide coatings on metallic interconnects for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Shen, Fengyu; Lu, Kathy

    2016-10-01

    In order to improve the performance of Cr-containing steel as an interconnect material for solid oxide fuel cells, CoFe alloy coatings with Co:Fe ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 are deposited by electrodeposition and then oxidized to CoxFe1-x oxide coatings with a thickness of ∼6 μm as protective layers on the interconnect. The area specific resistance of the coated interconnect increases with the Fe content. Higher Co content oxide coatings are more effective in limiting the growth of the chromia scale while all coatings are effective in inhibiting Cr diffusion and evaporation. With the Co0.8Fe0.2 oxide coated interconnect, the electrochemical performance of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode is improved. Only 1.54 atomic percentage of Cr is detected on the surface of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode while no Cr is detected 0.66 μm or more into the cathode. CoxFe1-x oxide coatings are promising candidates for solid oxide fuel cell interconnects with the advantage of using existing cathode species for compatibility and performance enhancement.

  12. Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5-xSrxFe2O4 ferrites

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. D.; Nusrat, Tania; Maleque, Rumana; Hossain, A. K. M. Akther

    2018-04-01

    Polycrystalline Mg0.25Mn0.25Zn0.5-xSrxFe2O4 (0 ≤ x ≤ 0.20) ferrites were synthesized using the solid state reaction sintering at 1373 K and 1473 K for 4 h. The XRD patterns revealed the formation of single phase cubic spinel with Sr2FeO4 and SrFe12O19 as impurity phases. The decrement in the lattice parameter for Sr2+ substituted samples is attributed to the difference in ionic radii of cations. The crystallite size decreases with increase in Sr2+ content. Low frequency dielectric dispersion is attributed due to the Maxwell-Wagner interfacial polarization. The appearance of the peak in dielectric loss spectrum for x = 0.15 and 0.20 at 1373 K and x = 0.20 at 1473 K suggests the presence of relaxing dipoles. The loss peak shifts towards lower frequency side with Sr2+ content at 1373 K which is due to the strengthening of dipole-dipole interactions. The complex impedance spectra clearly revealed that the both grain and grain boundary effects on the electrical properties. A complex electric modulus spectrum indicates that a non-Debye type of conductivity relaxation exists. The saturation magnetization and remanence gradually decreases with Sr2+ substitution which may be due to the existence of non-magnetic phase in the space between the magnetic particles and the substitution of Zn2+ cation in Mg0.25Mn0.25Zn0.5Fe2O4 ferrite lattice by Sr2+ content. The permeability decreases significantly while the cut-off frequency increases with the Sr2+ content at 1373 K and decreases at 1473 K, obeying the Snoek's law. The decrease in permeability with Sr2+ content is attributed due to the decrease in magnetization because non-magnetic ions weaken the inter-site exchange interaction.

  13. Iron nutrition, biomass production, and plant product quality.

    PubMed

    Briat, Jean-François; Dubos, Christian; Gaymard, Frédéric

    2015-01-01

    One of the grand challenges in modern agriculture is increasing biomass production, while improving plant product quality, in a sustainable way. Of the minerals, iron (Fe) plays a major role in this process because it is essential both for plant productivity and for the quality of their products. Fe homeostasis is an important determinant of photosynthetic efficiency in algae and higher plants, and we review here the impact of Fe limitation or excess on the structure and function of the photosynthetic apparatus. We also discuss the agronomic, plant breeding, and transgenic approaches that are used to remediate Fe deficiency of plants on calcareous soils, and suggest ways to increase the Fe content and bioavailability of the edible parts of crops to improve human diet. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Tuning the surface anisotropy in Fe-doped NiO nanoparticles.

    PubMed

    Moura, K O; Lima, R J S; Coelho, A A; Souza-Junior, E A; Duque, J G S; Meneses, C T

    2014-01-07

    Ni(1-x)FexO nanoparticles have been obtained by the co-precipitation chemical route. X-ray diffraction analyses using Rietveld refinement have shown a slight decrease in the microstrain and mean particle size as a function of the Fe content. The zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves show superparamagnetic behavior at high temperatures and a low temperature peak (at T = 11 K), which is enhanced with increasing Fe concentration. Unusual behavior of the coercive field in the low temperature region and an exchange bias behavior were also observed. A decrease in the Fe concentration induces an increase in the exchange bias field. We argue that these behaviors can be linked with the strengthening of surface anisotropy caused by the incorporation of Fe ions.

  15. Development and characterization of (Ti, Mo)C carbides reinforced Fe-based surface composite coating produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Wang, Xinhong; Zhang, Min; Qu, Shiyao

    2010-09-01

    In this study, in situ multiple carbides reinforced Fe-based surface composite coatings were fabricated successfully by laser cladding a precursor mixture of graphite, ferrotitanium (Fe-Ti) and ferromolybdenum (Fe-Mo) powders. The results showed that (Ti, Mo)C particles with flower-like and cuboidal shapes were in situ formed during the solidification and most shapes of (Ti, Mo)C particles were diversiform according to different contents of Fe-Mo powder in the Fe-Ti-Mo-C system. The growth morphology of the reinforcing (Ti, Mo)C carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid solidification conditions. Increasing the amount of Fe-Mo in the reactants led to a decrease of carbide size and an increase of volume fraction of carbides. The coatings had good cracking resistance when the amounts of Fe-Mo were controlled within a range of 15 wt%.

  16. Aluminum alloy anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Chen, Z. F.; Fu, Q. W.; Jiang, X. Y.

    2017-03-01

    Aluminum has larger theoretical capacity of 2235 mAh/g than that of graphite (372 mAh/g), but it has big disadvantages including shorter cycle life and higher irreversible capacity loss. Improving cycle performance can be obtained via alloying of aluminum. In this paper, two ternary aluminum alloy, Al7Cu2Fe and Al73Cu5Fe22 were prepared. The main phase of Al7Cu2Fe alloy was Al7Cu2Fe. The heat treatment increased the proportion of Al7Cu2Fe. The main phase of Al73Cu5Fe22 alloy was Al60Cu30Fe10. The heat treatment reduced the proportion of Al60Cu30Fe10. For two alloys, the heat treatment could increase discharge capacity compared with cast alloy. The discharge capacity was improved by 50%. The content of aluminum in alloys has little effect on improving cycle performance, and it has obvious influence on the phase structure of alloy with heat treatment.

  17. Nitric oxide signaling is involved in the response to iron deficiency in the woody plant Malus xiaojinensis.

    PubMed

    Zhai, Longmei; Xiao, Dashuang; Sun, Chaohua; Wu, Ting; Han, Zhenhai; Zhang, Xinzhong; Xu, Xuefeng; Wang, Yi

    2016-12-01

    To cope with iron (Fe) deficiency, plants have evolved a wide range of adaptive responses from changes in morphology to altered physiological responses. Recent studies have demonstrated that nitric oxide (NO) is involved in the Fe-deficiency response through hormonal signaling pathways. Here, we report that NO plays a significant role in Malus xiaojinensis, an Fe-efficient woody plant. Fe deficiency triggered significant accumulation of NO in the root system, predominantly in the outer cortical and epidermal cells of the elongation zone. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) completely arrested Fe deficiency-induced root hair formation, blocked the increase in root ferric-chelate reductase activity and in root H + excretion, further reduced the active iron content in young leaves and roots, and prevented the upregulation of the critical Fe-related genes, FIT, MxFRO2-like, and MxIRT1. These conditions were restored under Fe deficiency by treatment with the NO donor, sodium nitroprusside (SNP). Additionally, chlorophyll content and relative expression levels of the genes chlorophyll a deoxygenase (MxCAO) and polyamine oxidase (MxPAO) were not changed significantly following Fe deficiency for 6 d; however, SNP treatment increased MxHEMA gene expression. Interestingly, the Fv/Fm ratio, the maximum quantum yield of photosystem II (PSII), decreased significantly following cPTIO treatment. We observed more severe chlorosis under Fe deficiency with cPTIO treatment for 9 d. These results strongly suggest that NO mediates a range of responses to Fe deficiency in M. xiaojinensis, from morphological changes to the regulation of physiological processes and gene expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Impact of inflammation on iron stores in involved and non-involved psoriatic skin

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Ynsa, M. D.; Alves, L. C.; Teixeira, P.; Ferreira, J.; Filipe, P.

    2015-04-01

    Accumulating evidence supports a role for cellular Fe in cell proliferation, inflammation, and disease tolerance. Psoriasis is a severe inflammatory and hyper proliferative condition of human skin whose aetiology remains poorly understood. Herein, we performed nuclear microscopy techniques to quantify with cellular resolution and high sensitivity the concentration of Fe in lesional (psoriatic plaques) and non-lesional adjacent skin of psoriatic patients. Fe contents were measured across skin depth and along epidermal strata either by quantitatively imaging Fe distribution in regions of interest, or by determining Fe profiles through analysis of sequential points along selected transepts. Both procedures require deconvolution of spectra to project quantitative elemental data through the application of different software codes. Using these approaches a detailed quantitative distribution of Fe was resolved. We show that in both lesional and non-lesional skin, the epidermal profiles of Fe contents showed a peak at the basal layer and that Fe concentration along the basal layer was not uniformly distributed. Typically, Fe levels were significantly higher in epidermal ridges relative to regions above dermal papillae. Lesional skin displayed excess Fe over extended regions above basal layer. In conclusion, we found significantly increased Fe deposits in the epidermis of psoriatic patients, particularly in areas of epidermal hyper proliferation. These findings suggest an important role for Fe in the pathogenesis of psoriasis. They also raise the possibility that manipulation of Fe levels in the skin may become relevant for the clinical management of psoriasis.

  19. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  20. Neutron irradiation effects in Fe and Fe-Cr at 300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Ying; Miao, Yinbin; Gan, Jian

    2016-06-01

    Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size ofmore » irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α' precipitates.« less

  1. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    PubMed

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  2. Water and the oxidation state of subduction zone magmas.

    PubMed

    Kelley, Katherine A; Cottrell, Elizabeth

    2009-07-31

    Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe3+/SigmaFe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H2O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe3+/SigmaFe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H2O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.

  3. Preparation and characterization of biocompatible magnetic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shan, Yan; Chen, Kezheng; Yu, Xuegang; Gao, Lian

    2010-11-01

    Magnetic carbon nanotubes consisting of multi-wall carbon nanotubes (MWNTs) core and Fe3O4 shell were successfully prepared by in situ thermal decomposition of Fe(acac)3 or FeCl3 or Fe(CO)5 in 2-pyrrolidone containing acid treated MWNTs at 240 °C with the protection of nitrogen gas. The samples were characterized by TEM, XRD, SEAD, XPS and superconducting quantum interference device. Also, their biocompatibility was compared with naked carbon nanotubes. The results showed that after coated with Fe3O4 nanoparticles, the obtained magnetic carbon nanotubes show superparamagnetic characteristic at room temperature, and their blocking temperature is about 80 K. The magnetic properties of the nanotubes are relevant to the content of magnetic particles, increasing content of magnetic nanoparticles leads to higher blocking temperature and saturation magnetization. The results of antimicrobial activities to bacterial cells (Escherichia coli) showed that the MWNTs have antimicrobial activity, while the magnetic nanotubes are biocompatible even with a higher concentration than that of MWNTs.

  4. [Development of Sediment Micro-Interface Under Physical and Chironomus plumosus Combination Disturbance].

    PubMed

    Wang, Ren; Li, Da-peng; Huang, Yong; Liu, Yan-jian; Chen, Jun

    2015-11-01

    Synergistic effect of physical and Chironomus plumosus combination disturbance on the characteristics of the micro-environment and micro-interface was investigated by the Rhizon samplers and Unisense micro sensor system. The results showed that the oxygen penetration depth (OPD), total oxygen exchange (TOE), water content and total microbial activity increased under the combination disturbance and bioturbation and were kept at the higher level, compared with the control. These parameters increased with the physical intensity under combination disturbance. However, the content of Fe2+ decreased under the combination disturbance and bioturbation and the decrease was more obvious than that in the control. The changes of the Fe2+, the water content and the total microbial activity were large at 0-4 cm depth in the sediments. Therefore, the area might be the active area for the transformation of internal sedimentary phosphorus forms. The curve fitting was used for the OPD, TOE, the content of Fe2+, the water content and the total microbial activity with the physical intensity under combination disturbance. It was observed that the second-order polynomial equation was suitable for the curve fitting. In addition, jump type synergistic effect was presented in the above mentioned parameters under combination disturbance when the physical intensity was higher than 34 r x min(-1). The remodeling on the sediment micro-interface and micro-environment might be the main inducing mechanism for the transformation of internal phosphorus.

  5. Effect of Annealing on Mechanical Properties and Formability of Cold Rolled Thin Sheets of Fe-P P/M Alloys

    NASA Astrophysics Data System (ADS)

    Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.

    2016-10-01

    Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.

  6. Complex permeability and permittivity spectra of percolated Fe50Co50/Cu granular composites

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2017-11-01

    Complex permeability and permittivity spectra of Fe50Co50/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. At low Cu particle content, the Fe50Co50/Cu hybrid sample shows a metallic percolative property with the electrical conductivity value about 0.1 S/cm. However, the low frequency plasmonic (LFP) state with negative permittivity (ENG) spectrum was not observed. An abrupt increase of electrical conductivity takes place at 14 to 16 vol% Cu content where the conductivity becomes above 1.0 S/cm; the Fe50Co50/Cu composite possesses the LFP state with negative permittivity spectrum below a characteristic frequency. The complex permittivity spectra in the LFP state can be described by the Drude model. Magnetic permeability spectrum in the LFP state showed a broad frequency dispersion above 10 MHz; a small negative permeability (MNG) dispersion was observed from 2 to 10 GHz. Consequently, the double negative (DNG) electromagnetic property with MNG and ENG was realized in the microwave range for the Cu content of 26 and 30 vol%.

  7. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima.

    PubMed

    Hu, Jing; Guo, Huiyuan; Li, Junli; Gan, Qiuliang; Wang, Yunqiang; Xing, Baoshan

    2017-02-01

    The impacts of iron oxide nanoparticles (γ-Fe 2 O 3 NPs) and ferric ions (Fe 3+ ) on plant growth and molecular responses associated with the transformation and transport of Fe 2+ were poorly understood. This study comprehensively compared and evaluated the physiological and molecular changes of Citrus maxima plants as affected by different levels of γ-Fe 2 O 3 NPs and Fe 3+ . We found that γ-Fe 2 O 3 NPs could enter plant roots but no translocation from roots to shoots was observed. 20 mg/L γ-Fe 2 O 3 NPs had no impact on plant growth. 50 mg/L γ-Fe 2 O 3 NPs significantly enhanced chlorophyll content by 23.2% and root activity by 23.8% as compared with control. However, 100 mg/L γ-Fe 2 O 3 NPs notably increased MDA formation, decreased chlorophyll content and root activity. Although Fe 3+ ions could be used by plants and promoted the synthesis of chlorophyll, they appeared to be more toxic than γ-Fe 2 O 3 NPs, especially for 100 mg/L Fe 3+ . The impacts caused by γ-Fe 2 O 3 NPs and Fe 3+ were concentration-dependent. Physiological results showed that γ-Fe 2 O 3 NPs at proper concentrations had the potential to be an effective iron nanofertilizer for plant growth. RT-PCR analysis showed that γ-Fe 2 O 3 NPs had no impact on AHA gene expression. 50 mg/L γ-Fe 2 O 3 NPs and Fe 3+ significantly increased expression levels of FRO2 gene and correspondingly had a higher ferric reductase activity compared to both control and Fe(II)-EDTA exposure, thus promoting the iron transformation and enhancing the tolerance of plants to iron deficiency. Relative levels of Nramp3 gene expression exposed to γ-Fe 2 O 3 NPs and Fe 3+ were significantly lower than control, indicating that all γ-Fe 2 O 3 NPs and Fe 3+ treatments could supply iron to C. maxima seedlings. Overall, plants can modify the speciation and transport of γ-Fe 2 O 3 NPs or Fe 3+ for self-protection and development by activating many physiological and molecular processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Iron-impregnated granular activated carbon for arsenic removal from drinking water

    NASA Astrophysics Data System (ADS)

    Chang, Qigang

    A new multi-step iron impregnation method was developed in this study to impregnate GAC with a high amount of iron that possesses desired characteristics: stable, even distribution, and high arsenic adsorption capacity. Research was carried out to investigate the impact of the amount of impregnated iron on arsenic adsorption properties: capacity, affinity, and kinetics. Fe-GACs were characterized in terms of the amount, stability, distribution, morphology, and species of impregnated iron. It was found that a high amount of iron was stably impregnated in GAC. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was evenly distributed on the internal surface of GAC. Impregnated iron formed nano-size particles and existed in both crystalline (akaganeite) and amorphous iron. Arsenic adsorption tests were conducted using Fe-GACs with iron content of 1.64--28.90% in a low arsenic concentration that is typical for drinking water treatment. The amount of impregnated iron affects arsenic maximum adsorption capacity (qm) but has little impact on the Langmuir constant h (the affinity of adsorbent for adsorbate). The qm for both As(V) and As(III) adsorptions increased significantly with increase of the amount of impregnated iron up to 13.59%. Further increase of iron amounts caused a gradual decrease of qm for As(V). BET analysis indicated impregnated iron possesses the highest surface area at iron content of 13.59%. A new second-order kinetic model was developed to investigate the impact of the amounts of impregnated iron on arsenic adsorption kinetics. With iron content increased from 1.64% to 28.90%, the intrinsic adsorption rate constants reduced from 4.6x10-2 1/hr to 1.18x10 -3 1/hr, which indicates that impregnated iron slows arsenic intraparticle diffusion rate in Fe-GAC. The decreased arsenic intraparticle diffusion rate was most likely caused by reduced pore size of Fe-GACs. Column tests were conducted to investigate the performance of Fe-GACs in real implementations using groundwater taken from a former superfund site in North Dakota. Fe-GACs can remove arsenic below 10 microg/L and the performance of Fe-GACs was significantly enhanced with increasing empty bed contact time.

  9. Effect of H2O on metal-silicate partitioning of Ni, Co, V, Cr, Mn and Fe: Implications for the oxidation state of the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Clesi, V.; Bouhifd, M. A.; Bolfan-Casanova, N.; Manthilake, G.; Fabbrizio, A.; Andrault, D.

    2016-11-01

    This study investigates the metal-silicate partitioning of Ni, Co, V, Cr, Mn and Fe during core mantle differentiation of terrestrial planets under hydrous conditions. For this, we equilibrated a molten hydrous CI chondrite model composition with various Fe-rich alloys in the system Fe-C-Ni-Co-Si-S in a multi-anvil over a range of P, T, fO2 and water content (5-20 GPa, 2073-2500 K, from 1 to 5 log units below the iron-wüstite (IW) buffer and for XH2O varying from 500 ppm to 1.5 wt%). By comparing the present experiments with the available data sets on dry systems, we observes that the effect of water on the partition coefficients of moderately siderophile elements is only moderate. For example, for iron we observed a decrease in the partition coefficient of Fe (Dmet/silFe) from 9.5 to 4.3, with increasing water content of the silicate melt, from 0 to 1.44 wt%, respectively. The evolution of metal-silicate partition coefficients of Ni, Co, V, Cr, Mn and Fe are modelled based on sets of empirical parameters. These empirical models are then used to refine the process of core segregation during accretion of Mars and the Earth. It appears that the likely presence of 3.5 wt% water on Mars during the core-mantle segregation could account for ∼74% of the FeO content of the Martian mantle. In contrast, water does not play such an important role for the Earth; only 4-6% of the FeO content of its mantle could be due to the water-induced Fe-oxidation, for a likely initial water concentration of 1.8 wt%. Thus, in order to reproduce the present-day FeO content of 8 wt% in the mantle, the Earth could initially have been accreted from a large fraction (between 85% and 90%) of reducing bodies (similar to EH chondrites), with 10-15% of the Earth's mass likely made of more oxidized components that introduced the major part of water and FeO to the Earth. This high proportion of enstatite chondrites in the original constitution of the Earth is consistent with the 17O,48Ca,50Ti,62Ni and 90Mo isotopic study by Dauphas et al. (2014). If we assume that the CI-chondrite was oxidized during accretion, its intrinsically high water content suggests a maximum initial water concentration in the range of 1.2-1.8 wt% for the Earth, and 2.5-3.5 wt% for Mars.

  10. Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.)

    PubMed Central

    2014-01-01

    Background Our objective was to determine if a biofortified variety of black bean can provide more bioavailable-iron (Fe) than a standard variety. Two lines of black beans (Phaseolus-vulgaris L.), a standard (DOR500; 59μg Fe/g) and biofortified (MIB465; 88μg Fe/g) were used. The DOR500 is a common commercial variety, and the MIB465 is a line developed for higher-Fe content. Given the high prevalence of Fe-deficiency anemia worldwide, it is important to determine if Fe-biofortified black beans can provide more absorbable-Fe. Methods Black bean based diets were formulated to meet the nutrient requirements for the broiler (Gallus-gallus) except for Fe (dietary Fe-concentrations were 39.4±0.2 and 52.9±0.9 mg/kg diet, standard vs. biofortified, respectively). Birds (n=14) were fed the diets for 6-weeks. Hemoglobin-(Hb), liver-ferritin and Fe-related transporter/enzyme gene-expression were measured. Hemoglobin-maintenance-efficiency and total-body-Hb-Fe values were used to estimate Fe-bioavailability. Results Hemoglobin-maintenance-efficiency values were higher (P<0.05) in the group consuming the standard-Fe beans on days 14, 21 and 28; indicating a compensatory response to lower dietary-Fe. Final total-Hb-Fe body content was higher in the biofortified vs. the standard group (26.6±0.9 and 24.4±0.8 mg, respectively; P<0.05). There were no differences in liver-ferritin or in expression of DMT-1, Dcyt-B, and ferroportin. In-vitro Fe-bioavailability assessment indicated very low Fe-bioavailability from both diets and between the two bean varieties (P>0.05). Such extremely-low in-vitro Fe-bioavailability measurement is indicative of the presence of high levels of polyphenolic-compounds that may inhibit Fe-absorption. High levels of these compounds would be expected in the black bean seed-coats. Conclusions The parameters of Fe-status measured in this study indicate that only a minor increase in absorbable-Fe was achieved with the higher-Fe beans. The results also raise the possibility that breeding for increased Fe-concentration elevated the levels of polyphenolic-compounds that can reduce bean Fe-bioavailability, although the higher levels of polyphenolics in the higher-Fe beans may simply be coincidental or an environmental effect. Regardless, Fe-biofortified beans remain a promising vehicle for increasing intakes of bioavailable-Fe in human populations that consume high levels of these beans as a dietary staple, and the bean polyphenol profile must be further evaluated and modified if possible in order to improve the nutritional quality of higher-Fe beans. PMID:24669764

  11. Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage.

    PubMed

    Skrivan, M; Skrivanová, V; Marounek, M

    2005-10-01

    An experiment was conducted to evaluate the effect of dietary content and combinations of Zn, Fe, and Cu on deposition of these elements in egg components, liver, and excreta. Excreta were applied as a manure to a lawn, and 3 mo later soil and herbage samples were taken and analyzed. The experiment comprised 144 hens in 8 groups. The basal diet contained Zn, Fe, and Cu at 63.4, 92.8, and 9.0 mg/kg, respectively. It was supplemented with 1, 2, or 3 trace elements (inorganic forms) at 80 mg of Zn/kg, 120 mg of Fe/kg, and 25 mg of Cu/kg. Recovery of Zn, Fe, and Cu in eggs of hens fed the basal diet was 10.7, 9.8, and 4.4% of the alimentary intake, respectively. A Zn-Cu antagonism was observed; deposition of Zn in the yolk was significantly decreased by Cu addition and vice versa (P < 0.01). Supplementation of the basal diet with Fe increased Fe concentration in egg yolk and white by 6.3 and 2.2%, respectively. The combination of Fe with Zn and Cu, however, increased Fe concentration in the yolk and white by 36.7 and 34.9%, respectively (P < 0.01). The enrichment of eggs with the other elements was marginal (Cu) or absent (Zn). Effects of Zn, Fe, and Cu of the basal diet on liver concentrations of these elements were relatively small, and no antagonism between Zn and Cu was apparent. Supplementation of the basal diet with the combination of Zn and Fe, however, significantly decreased hepatic concentration of Cu. On the other hand, Cu supplementation significantly increased Fe concentration in livers of hens fed the Fe-supplemented diet (P < 0.01). Concentrations of Zn, Fe, and Cu in excreta were related to their dietary content. High concentrations of Zn, Fe, and Cu in excreta corresponded with limited deposition of the 3 elements in eggs and liver. Concentrations of Zn, Fe, and Cu in herbage correlated significantly with the supply of these elements by hen excreta into soil. The Zn supplied by hen excreta was more stable than Fe and Cu; thus Zn could accumulate in the soil.

  12. FABRICATION OF IN SITUFe-Ti-B COMPOSITE COATING BY LASER CLADDING

    NASA Astrophysics Data System (ADS)

    Du, Baoshuai

    2013-06-01

    Laser cladding was applied to deposit in situFe-Ti-B composite coatings on mild carbon steel with precursor of ferrotitanium, ferroboron and pure Fe alloy powders. The composite coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). Wear resistance of the laser-cladded Fe-Ti-B coatings was evaluated under dry sliding condition at room temperature using block-on-ring wear tester. Results indicate that in situ reinforcements of TiB2 and Fe2B can be synthesized in the Fe-Ti-B coatings. The amount of TiB2 increases with the increase of content of ferrotitanium and ferroboron in the precursor. Reinforcements are formed through the liquid-precipitation route following the solidification path of the Fe-Ti-B system. Hardness and wear properties of the coatings improved significantly in comparison to the as-received substrate due to the presence of hard reinforcements.

  13. Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe2O3

    NASA Astrophysics Data System (ADS)

    Sivkov, Alexander; Naiden, Evgenii; Ivashutenko, Alexander; Shanenkov, Ivan

    2016-05-01

    The ultrafine iron oxide powders were successfully synthesized using the plasma dynamic synthesis method, based on the use of a coaxial magnetoplasma accelerator with the iron electrode system. The synthesis was implemented in the high-speed iron-containing plasma jet, flowing into the space of the sealed chamber, filled with the gaseous mixture of oxygen and argon at different ratios. The XRD investigations showed that the synthesized products were heterophase and consisted of three main phases such as magnetite Fe3O4, hematite α-Fe2O3 and ε-Fe2O3. The SEM data confirmed the presence of three particle types: the hollow spheroids with sizes about hundreds of micrometers (magnetite), the particles with sizes up to 100 μm from the porous material of sintered submicron particles (hematite), and nanoscale particles (ε-phase). We found that at the higher oxygen concentration the content of ε-Fe2O3 is increased up to 50% at the same time with decreasing the Fe3O4 phase. The magnetic properties of the products are mainly determined by magnetite characteristics and are significantly reduced with decreasing its content in the powder. In order to investigate the synthesized ε-Fe2O3 on the ability to absorb the electromagnetic radiation in the millimeter wavelength range, we separated the product with the higher ε-phase concentration. The fraction mainly, consisting of ε-Fe2O3, showed the occurrence of the natural resonance at frequencies of 8.3 GHz and 130 GHz.

  14. Influence of Feedstock Materials and Spray Parameters on Thermal Conductivity of Wire-Arc-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Yao, H. H.; Zhou, Z.; Wang, G. H.; He, D. Y.; Bobzin, K.; Zhao, L.; Öte, M.; Königstein, T.

    2017-03-01

    To manufacture a protective coating with high thermal conductivity on drying cylinders in paper production machines, a FeCrB-cored wire was developed, and the spraying parameters for wire-arc spraying were optimized in this study. The conventional engineering materials FeCrAl and FeCrMo coatings were produced as the reference coatings under the same experimental condition. It has been shown that the oxide content in coating influences the thermal conductivity of coating significantly. The FeCrB coating exhibits a relative higher thermal conductivity due to the lower oxide content in comparison with conventional FeCrAl and FeCrMo coatings. Moreover, the oxidation of in-flight particles can be reduced by decreasing the standoff distance contributing to the increase in the thermal conductivity of coating. Total energy consumption of a papermaking machine can be significantly reduced if the coatings applied to dryer section exhibit high thermal conductivity. Therefore, the FeCrB coating developed in this study is a highly promising coating system for drying cylinders regarding the improved thermal conductivity and low operation costs in paper production industry.

  15. Effect of Carbon Type on Arsenic and Trichloroethylene Removal Capacity of Iron (Hydr)oxide Nanoparticle Impregnated Granulated Activated Carbon

    NASA Astrophysics Data System (ADS)

    Cooper, Anne Marie

    This study investigates the effect of the virgin granular activated carbon (GAC) on the properties of synthesized iron (hydr)oxide nanoparticles impregnated GAC (Fe-GAC) media and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Fe-GAC media were synthesized from bituminous and lignite-based virgin GAC via three variations of a permanganate/Fe(II) synthesis method. Data obtained from an array of characterization techniques indicated that differences in pore size distribution and surface chemistry of the virgin GAC favor different reaction paths for the iron (hydr)oxide nanoparticles formation. Batch equilibrium isotherm testing (120 microg-As/L; 6 mg-TCE/L, 10 mM NaHCO3 at pH = 7.2 +/- 0.1 and pH = 8.2 +/- 0.1) showed arsenic removal capability was increased as a result of iron (nanoparticles) impregnation, while TCE removal properties were decreased in Fe-GAC media. This tradeoff was displayed by both lignite and bituminous Fe-GAC but was most pronounced in lignite-based Fe-GAC having the highest Fe content (13.4% Fe) which showed the most favorable Freundlich adsorption and intensity parameters for arsenic of Ka = 72.6 (microg-As/g-FeGAC)(L/microg-As)1/n, 1/n = 0.6; and least favorable adsorption for TCE of Ka = 0.8 (mg-TCE/g-FeGAC)(L/mg-TCE)1/n, 1/n = 4.47. It was concluded that iron content was the main factor contributing to enhanced arsenic removal and that this was affected by base GAC properties such as pore size distribution and surface functional groups. However high Fe content can result in pore blockage; reduction in available adsorption sites for organic co-contaminants; and have a significant effect on the Fe-GACs overall adsorption capacity.

  16. Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process

    NASA Astrophysics Data System (ADS)

    Hu, Kai; Lv, Xuewei; Li, Shengping; Lv, Wei; Song, Bing; Han, Kexi

    2018-05-01

    The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg) x Ti y O5 (x + y = 3, pseudobrookite) and rutile.

  17. Bioavailability of minerals in legumes.

    PubMed

    Sandberg, Ann-Sofie

    2002-12-01

    The mineral content of legumes is generally high, but the bioavailability is poor due to the presence of phytate, which is a main inhibitor of Fe and Zn absorption. Some legumes also contain considerable amounts of Fe-binding polyphenols inhibiting Fe absorption. Furthermore, soya protein per se has an inhibiting effect on Fe absorption. Efficient removal of phytate, and probably also polyphenols, can be obtained by enzymatic degradation during food processing, either by increasing the activity of the naturally occurring plant phytases and polyphenol degrading enzymes, or by addition of enzyme preparations. Biological food processing techniques that increase the activity of the native enzymes are soaking, germination, hydrothermal treatment and fermentation. Food processing can be optimized towards highest phytate degradation provided that the optimal conditions for phytase activity in the plant is known. In contrast to cereals, some legumes have highest phytate degradation at neutral or alkaline pH. Addition of microbial enzyme preparations seems to be the most efficient for complete degradation during processing. Fe and Zn absorption have been shown to be low from legume-based diets. It has also been demonstrated that nutritional Fe deficiency reaches its greatest prevalence in populations subsisting on cereal- and legume-based diets. However, in a balanced diet containing animal protein a high intake of legumes is not considered a risk in terms of mineral supply. Furthermore, once phytate, and in certain legumes polyphenols, is degraded, legumes would become good sources of Fe and Zn as the content of these minerals is high.

  18. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.

    PubMed

    Zhou, Cheng; Liu, Zhi; Zhu, Lin; Ma, Zhongyou; Wang, Jianfei; Zhu, Jian

    2016-10-25

    Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana . In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous melatonin significantly increased the soluble Fe content of shoots and roots, and decreased the levels of root cell wall Fe bound to pectin and hemicellulose, thus alleviating Fe deficiency-induced chlorosis. Intriguingly, melatonin treatments induced a significant increase of nitric oxide (NO) accumulation in roots of Fe-deficient plants, but not in those of polyamine-deficient ( adc2-1 and d-arginine-treated) plants. Moreover, the melatonin-alleviated leaf chlorosis was blocked in the polyamine- and NO-deficient ( nia1nia2noa1 and c-PTIO-treated) plants, and the melatonin-induced Fe remobilization was largely inhibited. In addition, the expression of some Fe acquisition-related genes, including FIT1 , FRO2 , and IRT1 were significantly up-regulated by melatonin treatments, whereas the enhanced expression of these genes was obviously suppressed in the polyamine- and NO-deficient plants. Collectively, our results provide evidence to support the view that melatonin can increase the tolerance of plants to Fe deficiency in a process dependent on the polyamine-induced NO production under Fe-deficient conditions.

  19. Dissolution of man-made vitreous fibers in rat alveolar macrophage culture and Gamble's saline solution: influence of different media and chemical composition of the fibers.

    PubMed Central

    Luoto, K; Holopainen, M; Karppinen, K; Perander, M; Savolainen, K

    1994-01-01

    The effect of different chemical compositions of man-made vitreous fibers (MMVF) on their dissolution by alveolar macrophages (AM) in culture and in Gamble's solution was studied. The fibers were exposed to cultured rat AMs, culture medium alone; or Gamble's saline solution for 2, 4, or 8 days. The dissolution of the fibers was studied by measuring the amount of silicon (Si), iron (Fe), and aluminum (Al) in each medium. The AMs in culture dissolved Fe and Al from the fibers but the dissolution of Si was more marked in the cell culture medium without cells and in the Gamble's solution. The dissolution of Si, Fe, and Al was different for different fibers, and increased as a function of time. The Fe and Al content of the fibers correlated negatively with the dissolution of Si by AMs from the MMVF, i.e., when the content of Fe and Al of the fibers increased the dissolution of Si decreased. These results suggest that the chemical composition of MMVFs has a marked effect on their dissolution. AMs seem to affect the dissolution of Fe and Al from the fibers. This suggests that in vitro models with cells in the media rather than only culture media or saline solutions would be preferable in dissolution studies of MMVFs. PMID:7882911

  20. Age-related differences in hair trace elements: a cross-sectional study in Orenburg, Russia.

    PubMed

    Skalnaya, Margarita G; Tinkov, Alexey A; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V

    2016-09-01

    Age-related differences in the trace element content of hair have been reported. However, some discrepancies in the data exist. The primary objective of this study was to estimate the change in hair trace elements content in relation to age. Six hundred and eighteen women and 438 men aged from 10-59 years took part in the current cross-sectional study. Hair Cr, Mn, Ni, Si, Al, As, Be, Cd and Pb tended to decrease with age in the female sample, whereas hair Cu, Fe, I, Se, Li and Sn were characterised by an age-associated increase. Hair levels of Cr, Cu, I, Mn, Ni, Si and Al in men decreased with age, whereas hair Co, Fe, Se, Cd, Li and Pb content tended to increase. Hair mercury increased in association with age in men and in women, whereas hair vanadium was characterised by a significant decrease in both sexes. The difference in hair trace element content between men and women decreased with age. These data suggest that age-related differences in trace element status may have a direct implication in the ageing process.

  1. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration.

    PubMed

    Haase, S; Rothe, A; Kania, A; Wasaki, J; Römheld, V; Engels, C; Kandeler, E; Neumann, G

    2008-01-01

    Elevated atmospheric CO2 treatments stimulated biomass production in Fe-sufficient and Fe-deficient barley plants, both in hydroponics and in soil culture. Root/shoot biomass ratio was increased in severely Fe-deficient plants grown in hydroponics but not under moderate Fe limitation in soil culture. Significantly increased biomass production in high CO2 treatments, even under severe Fe deficiency in hydroponic culture, indicates an improved internal Fe utilization. Iron deficiency-induced secretion of PS in 0.5 to 2.5 cm sub-apical root zones was increased by 74% in response to elevated CO2 treatments of barley plants in hydroponics but no PS were detectable in root exudates collected from soil-grown plants. This may be attributed to suppression of PS release by internal Fe concentrations above the critical level for Fe deficiency, determined at final harvest for soil-grown barley plants, even without additional Fe supply. However, extremely low concentrations of easily plant-available Fe in the investigated soil and low Fe seed reserves suggest a contribution of PS-mediated Fe mobilization from sparingly soluble Fe sources to Fe acquisition of the soil-grown barley plants during the preceding culture period. Higher Fe contents in shoots (+52%) of plants grown in soil culture without Fe supply under elevated atmospheric CO2 concentrations may indicate an increased efficiency for Fe acquisition. No significant influence on diversity and function of rhizosphere-bacterial communities was detectable in the outer rhizosphere soil (0-3 mm distance from the root surface) by DGGE of 16S rRNA gene fragments and analysis of marker enzyme activities for C-, N-, and P-cycles.

  2. Reduction of mare basalts by sulfur loss

    USGS Publications Warehouse

    Brett, R.

    1976-01-01

    Metallic Fe content and S abundance are inversely correlated in mare basalts. Either S volatilization from the melt results in reduction of Fe2+ to Fe0 or else high S content decreases Fe0 activity in the melt, thus explaining the correlation. All considerations favor the model that metallic iron in mare basalts is due to sulfur loss. The Apollo 11 and 17 mare basalt melts were probably saturated with S at the time of eruption; the Apollo 12 and 15 basalts were probably not saturated. Non-mare rocks show a positive correlation of S abundance with metallic Fe content; it is proposed that this is due to the addition of meteoritic material having a fairly constant Fe0/S ratio. If true, metallic Fe content or S abundance in non-mare rocks provides a measure of degree of meteoritic contamination. ?? 1976.

  3. An X-ray absorption spectroscopic study of the metal site preference in Al1-xGaxFeO3

    NASA Astrophysics Data System (ADS)

    Walker, James D. S.; Grosvenor, Andrew P.

    2013-01-01

    Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO3 (Pna21; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al1-xGaxFeO3 was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L2,3-, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al1-xGaxFeO3 indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO3 than in GaFeO3, implying more anti-site disorder is present in AlFeO3.

  4. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    NASA Astrophysics Data System (ADS)

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron donor under Fe(III)-reducing conditions. In summary, this study shows that increasing concentrations of OM in OM-mineral complexes determines microbial Fe(III) reduction rates and shapes the microbial community structure involved in the reductive dissolution of ferrihydrite. Similarities observed between the complex Fe(III)-reducing microbial consortia and the model Fe(III)-reducer S. oneidensis MR-1 suggest electron-shuttling mechanisms dominate in OM-rich environments, including soils, sediments, and fens, where natural OM interacts with Fe(III) oxides during mineral formation.

  5. Simultaneous X-ray and neutron diffraction Rietveld refinements of nanophase iron substituted hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kyriacou, Andreas

    The effect of Fe substitution on the crystal structure of hydroxyapatite (HAp) is studied by applying simultaneous Rietveld refinements of powder x-ray and neutron diffraction patterns. Fe is one of the trace elements replacing Ca in HAp, which is the major mineral phase in bones and teeth. The morphology and magnetic properties of the Fe-HAp system are also studied by transmission electron microscopy and magnetization measurements. Samples of Ca(5-x)Fex(PO4)3OH with 0 ≤ x ≤ 0.3 were prepared. Single phase HAp was identified in x-ray diffraction patterns (XRD) of samples with x < 0.1 inferring that the solubility limits are less than 0.1. Hematite (alpha-Fe2O3) is identified as a secondary phase for higher Fe content. The refined parameters show that Fe is incorporated in the HAp structure by replacing Ca in the two crystallographic sites with a preference at the Ca2 site. This preference explains the small effect of the Fe substitution on the lattice constants of HAp. The overall decrease of the lattice constants is explained by the ionic size difference of Ca and Fe. The increasing trend of the a-lattice constant with x in the Fe substituted samples is attributed to a lattice relaxation caused by the substitution of the 4- and 6-fold Fe at the 7- and 9-fold Ca1 and Ca2 sites. This Ca local geometry reduction is indicated by a slight increase of the Ca1-O3 and Ca2-O1 bond lengths. Above the solubility limit x = 0.05, the Fe is partitioned in and out of the HAp structure with increasing nominal Fe content x. The excess Fe is oxidized to hematite. The TEM analysis and magnetic measurements support the results of the simultaneous Rietveld refinements. The TEM images show no significant effect on the morphology and size of the HAp particles upon Fe incorporation. The particles are either spheres or short rods of dimensions 20--60 nm. Hematite particles are imaged in the samples with x exceeding the solubility limit. These particles are spheres, about 15 nm in diameter and are more resistant to electron beam damage. Magnetic measurements reveal a transition of the diamagnetic pure HAp to paramagnetic Fe substituted HAp.

  6. Thermodynamic Stability of Transition Metal Substituted LiMn 2-xMxO 4 (M=Cr, Fe, Co, and Ni) Spinels

    NASA Astrophysics Data System (ADS)

    Lai, Chenying

    The formation enthalpies from binary oxides of LiMn2O 4, LiMn2-xCrxO4 (x = 0.25, 0.5, 0.75 and 1), LiMn2-xFexO4 (x = 0.25 and 0.5), LiMn2-xCoxO4 (x = 0.25, 0.5, and 0.75) and LiMn1.75Ni 0.25O4 at 25 °C have been measured by high-temperature oxide-melt-solution calorimetry and were found to be strongly exothermic. Increasing Cr, Co and Ni content leads to more thermodynamically stable spinels, but increasing Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO 4 (M = Cr, Fe and Co) become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2O4 - LiMnMO 4 solid solutions. These data confirm that transition metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries.

  7. Charge Transport and Thermoelectric Properties of (Nd1- z Yb z ) y Fe4- x Co x Sb12 Skutterudites

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Kil; Jang, Kyung-Wook; Choi, Soon-Mok; Lee, Soonil; Seo, Won-Seon; Kim, Il-Ho

    2018-06-01

    Partially double-filled (Nd1- z Yb z ) y Fe4- x Co x Sb12 ( z = 0.25, 0.75, y = 0.8, and x = 0, 0.5, 1.0) skutterudites were prepared by encapsulated melting, annealing, and hot pressing, and the effects of Nd/Yb partial double filling and Co charge compensation on the microstructure, charge transport, and thermoelectric properties were investigated. All the specimens were transformed to the skutterudite phase together with a few secondary phases such as FeSb2, but FeSb2 formation was suppressed on increasing Co content. Nd and Yb were successfully double-filled in the voids of the skutterudite lattice and Co was well substituted at Fe sites, as indicated by changes in the lattice constant with Nd/Yb filling and Fe/Co substitution. All the specimens showed p-type conduction and exhibited degenerate semiconductor characteristics at temperatures from 323 K to 823 K, and the charge transport properties depended on the filling ratio of Nd and Yb because of the difference between the valencies of Nd and Yb. The electrical conductivity decreased and the Seebeck coefficient increased owing to a decrease in the carrier concentration with increasing Co content. The lattice thermal conductivity decreased because phonon scattering was enhanced by Nd and Yb partial double filling, but partially double-filled specimens did not exhibit a further significant reduction in the lattice thermal conductivity compared with the completely double-filled specimens. A maximum ZT of 0.83 was obtained for (Nd0.75Yb0.25)0.8Fe3CoSb12 at 723 K.

  8. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE PAGES

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...

    2018-02-04

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  9. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  10. Physiological characteristics of Plantago major under SO2 exposure as affected by foliar iron spray.

    PubMed

    Mohasseli, Vahid; Khoshgoftarmanesh, Amir Hossein; Shariatmadari, Hossein

    2017-08-01

    Sulfur dioxide (SO 2 ) is considered as a main air pollutant in industrialized areas that can damage vegetation. In the present study, we investigated how exposure to SO 2 and foliar application of iron (Fe) would affect certain physiological characteristics of Plantago major. The plant seedlings exposed or unexposed to SO 2 (3900 μg m -3 ) were non-supplemented or supplemented with Fe (3 g L -1 ) as foliar spray. Plants were exposed to SO 2 for 6 weeks in 100 × 70 × 70 cm chambers. Fumigation of plants with SO 2 was performed for 3 h daily for 3 days per week (alternate day). Lower leaf Fe concentration in the plants exposed to SO 2 at no added Fe treatment was accompanied with incidence of chlorosis symptoms and reduced chlorophyll concentration. No visible chlorotic symptoms were observed on the SO 2 -exposed plants supplied with Fe that accumulated higher Fe in their leaves. Both at with and without added Fe treatments, catalase (CAT) and peroxidase (POD) activity was higher in the plants fumigated with SO 2 in comparison with those non-fumigated with SO 2 . Foliar application of Fe was also effective in increasing activity of antioxidant enzymes CAT and POD. Exposure to SO 2 led to reduced cellulose but enhanced lignin content of plant leaf cell wall. The results obtained showed that foliar application of Fe was effective in reducing the effects of exposure to SO 2 on cell wall composition. In contrast to SO 2 , application of Fe increased cellulose while decreased lignin content of the leaf cell wall. This might be due to reduced oxidative stress induced by SO 2 in plants supplied with Fe compared with those unsupplied with Fe.

  11. Stabilization of the high coercivity {epsilon}-Fe{sub 2}O{sub 3} phase in the CeO{sub 2}-Fe{sub 2}O{sub 3}/SiO{sub 2} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantlikova, A., E-mail: mantlikova@fzu.cz; Poltierova Vejpravova, J.; Bittova, B.

    2012-07-15

    We have investigated the processes leading to the formation of the Fe{sub 2}O{sub 3} and CeO{sub 2} nanoparticles in the SiO{sub 2} matrix in order to stabilize the {epsilon}-Fe{sub 2}O{sub 3} as the major phase. The samples with two different concentrations of the Fe were prepared by sol-gel method, subsequently annealed at different temperatures up to 1100 Degree-Sign C, and characterized by the Moessbauer spectroscopy, Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (PXRD), Energy Dispersive X-ray analysis (EDX) and magnetic measurements. The evolution of the different Fe{sub 2}O{sub 3} phases under various conditions of preparation was investigated, starting with themore » preferential appearance of the {gamma}-Fe{sub 2}O{sub 3} phase for the sample with low Fe concentration and low annealing temperature and stabilization of the major {epsilon}-Fe{sub 2}O{sub 3} phase for high Fe concentration and high annealing temperature, coexisting with the most stable {alpha}-Fe{sub 2}O{sub 3} phase. A continuous increase of the particle size of the CeO{sub 2} nanocrystals with increasing annealing temperature was also observed. - Graphical abstract: The graphical abstract displays the most important results of our work. The significant change of the phase composition due to the variation of preparation conditions is demonstrated. As a result, significant change of the magnetic properties from superparamagnetic {gamma}-Fe{sub 2}O{sub 3} phase with negligible coercivity to the high coercivity {epsilon}-Fe{sub 2}O{sub 3} phase has been observed. Highlights: Black-Right-Pointing-Pointer Research of the stabilization of the high coercivity {epsilon}-Fe{sub 2}O{sub 3} in CeO{sub 2}-Fe{sub 2}O{sub 3}/SiO{sub 2}. Black-Right-Pointing-Pointer Samples with two different concentrations of Fe and three annealing temperatures. Black-Right-Pointing-Pointer Phase transition {gamma}{yields}{epsilon}{yields}({beta}){yields}{alpha} with increasing annealing temperature and particle size. Black-Right-Pointing-Pointer Elimination of the superparamagnetic phases in samples with higher content of Fe. Black-Right-Pointing-Pointer Best conditions for high coercivity {epsilon}-Fe{sub 2}O{sub 3}-higher Fe content and T{sub A}=1100 Degree-Sign C.« less

  12. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys

    NASA Astrophysics Data System (ADS)

    Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi

    2018-04-01

    The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.

  13. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    NASA Astrophysics Data System (ADS)

    Hazarika, Ankita; Deka, Biplab K.; Kim, Doyoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  14. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol.

    PubMed

    Xu, Fuyuan; Deng, Shubo; Xu, Jie; Zhang, Wang; Wu, Min; Wang, Bin; Huang, Jun; Yu, Gang

    2012-04-17

    A novel Ni-Fe bimetal with high dechlorination activity for 4-chlorophenol (4-CP) was prepared by ball milling (BM) in this study. Increasing Ni content and milling time greatly enhanced the dechlorination activity, which was mainly attributed to the homogeneous distribution of Ni nanoparticles (50-100 nm) in bulk Fe visualized by scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) with image mapping. In comparison with the Ni-Fe bimetal prepared by a chemical solution deposition (CSD) process, the ball milled Ni-Fe bimetal possessed high dechlorination activity and stability before being used up. Dechlorination kinetics indicated that the dechlorination rates of 4-CP increased with increasing Ni-Fe dose but decreased with increasing solution pH. Solution pH had a significant effect on the dechlorination of 4-CP and the passivation of the Ni-Fe bimetal. The enhanced pH during the dechlorination process significantly accelerated the formation of passivating film on the bimetallic surface. The Ni-Fe bimetal at the dose of 60 g/L was reused 10 times without losing dechlorination activity for 4-CP at initial pH less than 6.0, but the gradual passivation was observed at initial pH above 7.0.

  15. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene.

    PubMed

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-11

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  16. Engineering of air-stable Fe/C/Pd composite nanoparticles for environmental remediation applications

    NASA Astrophysics Data System (ADS)

    Haham, Hai; Grinblat, Judith; Sougrati, Moulay-Tahar; Stievano, Lorenzo; Margel, Shlomo

    2015-09-01

    The present manuscript presents a convenient method for the synthesis of iron/carbon (Fe/C) nanoparticles (NPs) coated with much smaller Pd NPs for the removal of halogenated organic pollutants. For this purpose, iron oxide/polyvinylpyrrolidone (IO/PVP) NPs were first prepared by the thermal decomposition of ferrocene mixed with PVP at 350 °C under an inert atmosphere. IO,Fe/C and Fe/C NPs coated with graphitic and amorphous carbon layers were then produced by annealing the IO/PVP NPs at 500 and 600 °C, respectively, under an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area and magnetic properties of the IO/PVP, IO,Fe/C and Fe/C NPs has been elucidated. Air-stable Fe/C/Pd NPs were produced by mixing the precursor palladium acetate with the air-stable Fe/C NPs in ethanol. The obtained Fe/C/Pd NPs demonstrated significantly higher environmental activity than the Fe/C NPs on eosin Y, a model halogenated organic pollutant. The environmental activity of the Fe/C/Pd NPs also increased with their increasing Pd content.

  17. Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content

    USDA-ARS?s Scientific Manuscript database

    Background: Our objective was to compare the capacity of iron (Fe) biofortified and standard pearl millet (Pennisetum glaucum L.) to deliver Fe for hemoglobin (Hb) synthesis. Pearl millet is the most widely grown type of millet. It is common primarily in West Africa and the Indian subcontinent, and ...

  18. Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: Structural, optical and magnetization studies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, A.; Pati, S. P.; Mishra, A. K.; Kumar, S.; Das, D.

    2013-06-01

    Fe3O4/ZnO nanocomposites (NCs) are prepared by a wet chemical route. X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy studies confirm the coexistence of Fe3O4 and ZnO phases in the NCs. The UV-vis absorption spectra show a red shift of the absorption peak with increase in Fe3O4 content indicating a modification of the band structure of ZnO in the NCs. Photoluminescence emission spectra of the NCs display strong excitonic emission in the UV region along with weak emission bands in the visible range caused by electronic transitions involving defect-related energy levels in the band gap of ZnO. Positron annihilation lifetimes indicate that cation vacancies in the ZnO structure are the strong traps for positrons and the overall defect concentration in the NCs decreases with increase in Fe3O4 content. Dc magnetization measurements reveal an anomalous temperature dependence of the coercivity of the NCs that is argued to be due to the anomalous variation of magnetocrystalline anisotropy at lower temperature. The irreversibility observed in the temperature dependent ZFC-FC magnetization points to the presence of a spin-glass phase in the NCs.

  19. Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms

    NASA Astrophysics Data System (ADS)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Mažeika, Kęstutis; Jagminas, Arūnas

    2018-03-01

    The present study is focused on the determination the influence of cobalt content in the magnetic cobalt ferrite nanoparticles (Nps) on their antibacterial efficiency against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria and several Candida species, in particular C. parapsilosis and C. albicans. For the synthesis of Fe(II) substituted cobalt ferrite Nps by co-precipitation way, the L-lysine was used as the capping biocompatible agent and the particle size was successfully controlled to be in the range of 5-6.4 nm. The antimicrobial efficiencies of the CoxFe1-xFe2O4@Lys Nps, where x varies from 0.2 to 1.0, were evaluated through the quantitative analysis by comparing with that of Fe3O4@Lys Nps and L-lysine. In this way, it was evidenced that increase in the Co2+ content in the similar sized cobalt ferrite Nps resulted in an increase in their antimicrobial potency into 93.1-86.3 % for eukaryotic and into 96.4-42.7 % for prokaryotic strains. For characterization the composition, structure, and morphology of the tested herein Nps inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer, and FTIR spectroscopy techniques were conferred.

  20. Phosphate stresses affect ionome and metabolome in tea plants.

    PubMed

    Ding, Zhaotang; Jia, Sisi; Wang, Yu; Xiao, Jun; Zhang, Yinfei

    2017-11-01

    In order to study the response of tea plants to P stress, we conducted the ionomic and metabolomic analysis by ICP-OES, GC-MS and LC-MS. The results demonstrated that P was antagonistic with S, and was cooperative with Cu, Zn, Mn and Fe under P-deficiency. However, P was antagonistic with Mn, Fe and S, and was cooperative with Cu and Zn under P-excess. Moreover, P-deficiency or excess reduced the syntheses of flavonoids and phosphorylated metabolites. P-deficiency decreased the amount of glutamate and increased the content of glutamine, while P-excess decreased the content of glutamine. Besides, P-deficiency increased three organic acids and decreased three organic acids. P-excess increased the contents of malic acid, oxalic acid, ribonic acid and etc. involved in primary metabolism, but decreased the contents of p-coumaric acid, indoleacrylic acid, related to secondary metabolism. Furthermore, the contents of Mn and Zn were found to be positively related to the amounts of myricetin and quercetin, and the content of Mn to be positively related to the amount of arabinose. The results implied that the P stresses severely disturbed the metabolism of minerals and metabolites in tea plants, which influenced the yield and quality of tea. Copyright © 2017. Published by Elsevier Masson SAS.

  1. Trace elements in human alveolar macrophages studied by PIXE

    NASA Astrophysics Data System (ADS)

    Weber, G.; Roelandts, I.; Corhay, J. L.; Radermecker, M.; Delavignette, J. P.

    1990-04-01

    The purpose of this study is to determine the metal content of alveolar macrophages by PIXE from 94 subjects divided into two groups as follows: group (1) — subjects with non-occupational exposure to industrial dust: 30 healthy volunteers (controls), 16 patients suffering from lung cancer; group (2) — 48 healthy steel workers from the Liège area (blast-furnace [ n=29] and coke oven [ n=19]). We hope to define more precisely the influence of carcinoma, smoking habit, pathology and occupational exposure in the steel industry on the macrophage metal content. This study has shown: (a) an Fe and Sr increase and a Br decrease in the macrophages of smokers (especially in heavy smokers): (b) a significant Fe, Ti, Br and Cu increase and a trend to Pb, Cr, As and Sr increase in macrophages of healthy steel workers (especially blast-furnace workers) in comparison with non-exposed controls; (c) a significant Fe, Br, Cu and Zn increase and a trend to Pb, As and Ni increase in macrophages of non-exposed patients with lung cancer by comparison with non-exposed controls. The mechanism of metal change could be explained by professional exposure and endogenous changes (protein synthesis, inflammation, bronchial bleeding, …)

  2. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure.

    PubMed

    Wang, Yunqiang; Hu, Jing; Dai, Zhaoyi; Li, Junli; Huang, Jin

    2016-11-01

    With the rapid development of nanotechnology, developing nano iron fertilizer is an important strategy to alleviate Fe deficiency and elevate Fe fertilization effect in agricultural applications. In this study, watermelon seedlings were grown in soil amended with iron oxide nanoparticles (γ-Fe 2 O 3 NPs) at different concentrations (0, 20, 50, 100 mg/L). The content of soluble sugar and protein, content of chlorophyll and malondialdehyde (MDA), and activity of antioxidant enzymes of watermelon leaves were determined in five successive weeks to evaluate the physiological changes of watermelon plants after γ-Fe 2 O 3 NPs exposure. Transmission electron microscope (TEM) observations indicated that γ-Fe 2 O 3 NPs could enter root cell of watermelon. Results showed that 20 mg/L γ-Fe 2 O 3 NPs didn't cause any oxidative stress on watermelon and 50 mg/L γ-Fe 2 O 3 NPs could increase soluble sugar, soluble protein and chlorophyll content in the growth of plants. In addition, 50 and 100 mg/L γ-Fe 2 O 3 NPs caused oxidative stress on watermelon leaves, but this NP-induced stress was removed with the growth of watermelon. It is noteworthy that we found γ-Fe 2 O 3 NPs might possess an intrinsic peroxidase-like activity. The variation trend of physiological parameters was correlated with the nutritional requirements of plants. It can be concluded that γ-Fe 2 O 3 NPs at proper concentrations have the ability to improve iron deficiency chlorosis and promote the growth of watermelon plants. To the best of the author's knowledge, this is the first holistic study focusing on the impact of γ-Fe 2 O 3 NPs in long-term experiment of watermelon plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Growth, electrical, structural, and magnetic properties of half-Heusler CoT i1 -xF exSb

    NASA Astrophysics Data System (ADS)

    Harrington, S. D.; Rice, A. D.; Brown-Heft, T. L.; Bonef, B.; Sharan, A.; McFadden, A. P.; Logan, J. A.; Pendharkar, M.; Feldman, M. M.; Mercan, O.; Petukhov, A. G.; Janotti, A.; Colakerol Arslan, L.; Palmstrøm, C. J.

    2018-01-01

    Epitaxial thin films of the substitutionally alloyed half-Heusler series CoT i1 -xF exSb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0 ≤x ≤1.0 . The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and x-ray diffraction. Using in situ x-ray photoelectron spectroscopy, only small changes in the valence band are detected for x ≤0.5 . For films with x ≥0.05 , ferromagnetism is observed in SQUID magnetometry with a saturation magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x ≤0.5 . Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x =0.3 ) are observed for higher Fe content films. Evidence of superparamagnetism for x =0.3 and 0.2 suggests, for moderate levels of Fe, that demixing of the CoT i1 -xF exSb films into Fe-rich and Fe-deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in an x =0.3 film. Statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.

  4. Oxidation of Cr(III)-Fe(III) Mixed-phase Hydroxides by Chlorine: Implications on the Control of Hexavalent Chromium in Drinking Water.

    PubMed

    Chebeir, Michelle; Liu, Haizhou

    2018-05-17

    The occurrence of chromium (Cr) as an inorganic contaminant in drinking water is widely reported. One source of Cr is its accumulation in iron-containing corrosion scales of drinking water distribution systems as Cr(III)-Fe(III) hydroxide, i.e., FexCr(1-x)(OH)3(s), where x represents the Fe(III) molar content and typically varies between 0.25 and 0.75. This study investigated the kinetics of inadvertent hexavalent chromium Cr(VI) formation via the oxidation of FexCr(1-x)(OH)3(s) by chlorine as a residual disinfectant in drinking water, and examined the impacts of Fe(III) content and drinking water chemical parameters including pH, bromide and bicarbonate on the rate of Cr(VI) formation. Data showed that an increase in Fe(III) molar content resulted in a significant decrease in the stoichiometric Cr(VI) yield and the rate of Cr(VI) formation, mainly due to chlorine decay induced by Fe(III) surface sites. An increase in bicarbonate enhanced the rate of Cr(VI) formation, likely due to the formation of Fe(III)-carbonato surface complexes that slowed down the scavenging reaction with chlorine. The presence of bromide significantly accelerated the oxidation of FexCr(1-x)(OH)3(s) by chlorine, resulting from the catalytic effect of bromide acting as an electron shuttle. A higher solution pH between 6 and 8.5 slowed down the oxidation of Cr(III) by chlorine. These findings suggested that the oxidative conversion of chromium-containing iron corrosion products in drinking water distribution systems can lead to the occurrence of Cr(VI) at the tap, and the abundance of iron, and a careful control of pH, bicarbonate and bromide levels can assist the control of Cr(VI) formation.

  5. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  6. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value.

    PubMed

    Yu, Huan-Yun; Liu, Chuanping; Zhu, Jishu; Li, Fangbai; Deng, Dong-Mei; Wang, Qi; Liu, Chengshuai

    2016-02-01

    Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Apollo 17 Soil Characterization for Reflectance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Taylor, L. A.; Pieters, C.; Patchen, A.; Morris, R. V.; Keller, L. P.; Wentworth, S.; McKay, D. S.

    1999-01-01

    It is the fine fractions that dominate the observed spectral signatures of bulk lunar soil, and the next to the smallest size fractions are the most similar to the overall properties of the bulk soil. Thus, our Lunar Soil Characterization Consortium has concentrated on understanding the inter-relations of compositional, mineralogical, and optical properties of the <45-micron size fraction and its component sizes (20-44 micron, 10-20 micron, and <10 micron size fractions). To be able to generalize our results beyond the particular sample set studied, it is necessary to quantitatively identify the observed effects of space weathering and evaluate the processes involved. For this, it is necessary to know the chemistry of each size fraction, modal abundances of each phase, average compositions of the minerals and glasses, I(sub s)/FeO values, reflectance spectra, and the physical makeup of the individual particles and their patinas. This characterization includes the important dissection of the pyroxene minerals into four separate populations, with data on both modes and average chemical compositions. Armed with such data, it should be possible to effectively isolate spectral effects of space weathering from spectral properties related to mineral and glass chemistry. Four mare soils from the Apollo 17 site were selected for characterization based upon similarities in bulk composition and their contrasting maturities, ranging from immature to submature to mature. The methodology of our characterization has been discussed previously. Results of the Apollo 17 mare soils, outlined herein, are being prepared for publication in MAPS. As shown, with decreasing grain size, the agglutinitic (impact) glass content profoundly increases. This is the most impressive change for the mare soils. In several soils we have examined, there is an over two-fold increase in the agglutinitic glass contents between the 90-150- micron and the 10-20-micron size fractions. Accompanying this increase in agglutinitic glass is a definite decrease in pyroxenes and to lesser extents, the oxides (ilmenite), volcanic glass, and olivine. Unexpectedly, however, the absolute plagioclase abundances stay relatively constant throughout the different grain sizes, although the abundance of plagioclase relative to the mafic minerals increases with decreasing particle size. These soils were chosen for study based upon their similarities in FeO and Ti02 content, allowing for direct comparisons between evolutions of chemistry between size fractions and among different maturities of soils. The bulk chemistry of these fractions was determined by EMP analyses of fused glass beads. In contrast to the systematic variations in bulk chemistry discussed below, the relatively uniform composition of agglutinitic glass with grain size and soil maturity is illustrated. The composition of the bulk fraction of each size fraction becomes more feldspathic with increasing maturity, with the effect being most pronounced for the finest fractions. The composition of the agglutinitic glass, however, is relatively invariant and more feldspathic (i.e., rich in Al2O3) than even the <10-micron fraction. This relation not only strengthens the "fusion of the finest fraction" (F(sup 3)) hypothesis, but also highlights the important role of plagioclase in the formation of agglutinitic glass. With decreasing grain size, FeO, MgO, and TiO2 contents decrease, whereas CaO, Na2O, and Al2O3 (plag components) increase for all soils. These chemical variations would appear to be coupled with the significant increase in agglutinitic glass and decrease in oxide (ilmenite),pyroxene, and volcanic glass. These changes in chemistry do not appear to be due to distinct changes in the compositions of individual phases but to their abundances. Values of I(sub s)/FeO increase with decreasing grain size, even though the bulk FeO contents decrease. That is, the percentage of the total Fe that is present as nanophase Fe(sup O) has increased substantially in the smaller size fraction. Note that the increase in nanophase FeO in smaller size fractions is significantly greater than the increase in agglutinitic glass content, with its single-domain FeO component. This would seem to indicate that at least some of the FeO is surface correlated. To illustrate this effect, if it is assumed that the nanophase FeO is entirely surface correlated, then equal masses of 15-micron and 6-micron spheres should have about 3x as much FeO in the finer fraction. The recent findings of Kelleret al. of the major role of vapor-deposited, nanophase FeO-containing patinas on most soil particles is a major breakthrough in our understanding of the distribution of FeO within agglutinitic glass and upon grain surfaces. Bidirectional reflectance spectra for a representative Apollo 17 soil (70181) are shown. The size separates all have similar albedo in the blue and follow a regular sequence in which the continuum slope increases, ferrous bands weaken, and albedo, increases with decreasing particle size. The bulk <45-micron soil is typically close to the 10-20 micron spectrum. It is important to note that although the finest fraction (<10 micron) is close in composition to the abundant agglutinitic glass in each size fraction, this size fraction is relatively featureless and does not dominate the spectrum of the bulk <45-micron soil. It has long been suspected that agglutinitic glass, to a large extent, is the product of melting of the finest fraction of the soils, with a dominance of plagioclase. Given the low abundance of pyroxene in the finest fractions of each soil the source of the FeO in these Apollo 17 agglutinitic glasses is not fully identified. We suspect the abundant volcanic glass in these samples may be a significant contributor and this hypothesis will be tested with the suite under study from other Apollo sites.

  8. Effect of Cr2O3 Pickup on Dissolution of Lime in Converter Slag

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Chen, Weiqing; Zhao, Xiaobo; Yang, Yindong; McLean, Alex

    2017-09-01

    Application of low-nickel laterite ore containing chromium as charging material for ironmaking can reduce raw material costs, but result in an increase of chromium content in the hot metal and hence, Cr2O3 content in the steelmaking slag, which subsequently causes many problems related to lime dissolution for the steelmaking operation. In this work, a rotating cylinder method was employed to study the effect of Cr2O3 on lime dissolution in steelmaking slag. The lime dissolution mechanism, rate control step and affecting factors, including slag basicity, FeOx and B2O3 content, and the formation of phases at reacted layer, were discussed. It was found that mass transfer was the rate control step in slag phase, increase of Cr2O3 and slag basicity delayed lime dissolution due to the formation of high-melting temperature phases of FeO · Cr2O3 spinel and 2CaO · SiO2 at the slag/lime reacted interface. Addition of B2O3 promoted lime dissolution and suppressed formation of FeO · Cr2O3 spinel.

  9. Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru

    2014-10-27

    Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to entermore » the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)« less

  10. Raman effect, structural and dielectric properties of sol-gel synthesized polycrystalline GaFe{sub 1-x}Zr{sub x}O{sub 3} (0≤x≤0.15)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev, E-mail: rajeevgiitk@gmail.com; Mall, Ashish Kumar; Gupta, Rajeev

    2016-05-23

    Polycrystalline ceramic samples of Zirconium (Zr)-doped GaFeO{sub 3} (GaFe{sub 1-x}Zr{sub x}O{sub 3}) were studied using powder X-ray diffraction, complex impedance spectroscopy and Raman spectroscopic measurements to understand the effect of Zr doping on the structural and dielectric properties. The samples with varying Zr content were prepared by Sol-Gel method. X-ray data analysis confirmed the formation of single phase material without formation of any secondary phases and all are crystallized in Pc2{sub 1}n orthorhombic symmetry. Rietveld refinement of the X-ray data suggested an increase in the lattice constants due to size effect and decreases on x = 0.15 due to themore » effect of change in interplanner spacing. Impedance studies on the samples showed that the dielectric constant increases while loss tangent decrease as the Zr content increases. Raman scattering on GaFe{sub 1-x}Zr{sub x}O{sub 3} (x = 0, 0.05, 0.10, & 0.15) used to understand the composition dependence on phonon modes at room temperature. On Zr doping, Raman modes frequencies shifts to lower energies consistent with the X-ray data.« less

  11. Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils

    DOE PAGES

    Porras, Rachel C.; Hicks Pries, Caitlin E.; McFarlane, Karis J.; ...

    2017-05-13

    Soil organic carbon (SOC) can be stabilized via association with iron (Fe) and aluminum (Al) minerals. Fe and Al can be strong predictors of SOC storage and turnover in soils with relatively high extractable metals content and moderately acidic to circumneutral pH. Here we test whether pedogenic Fe and Al influence SOC content and turnover in soils with low Fe and Al content and acidic pH. In soils from four sites spanning three soil orders, we quantified the amount of Fe and Al in operationally-defined poorly crystalline and organically-complexed phases using selective chemical dissolution applied to the soil fraction containingmore » mineral-associated carbon. We evaluated the correlations of Fe and Al concentrations, mean annual precipitation (MAP), mean annual temperature (MAT), and pH with SOC content and 14C-based turnover times. We found that poorly crystalline Fe and Al content predicted SOC turnover times (p < 0.0001) consistent with findings of previous studies, while organically-complexed Fe and Al content was a better predictor of SOC concentration (p < 0.0001). Greater site-level MAP (p < 0.0001) and colder site-level MAT (p < 0.0001) were correlated with longer SOC turnover times but were not correlated with SOC content. Our results suggest that poorly crystalline Fe and Al effectively slow the turnover of SOC in these acidic soils, even when their combined content in the soil is less than 2% by mass. However, in the strongly acidic Spodosol, organo-metal complexes tended to be less stable resulting in a more actively cycling mineral-associated SOC pool.« less

  12. Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porras, Rachel C.; Hicks Pries, Caitlin E.; McFarlane, Karis J.

    Soil organic carbon (SOC) can be stabilized via association with iron (Fe) and aluminum (Al) minerals. Fe and Al can be strong predictors of SOC storage and turnover in soils with relatively high extractable metals content and moderately acidic to circumneutral pH. Here we test whether pedogenic Fe and Al influence SOC content and turnover in soils with low Fe and Al content and acidic pH. In soils from four sites spanning three soil orders, we quantified the amount of Fe and Al in operationally-defined poorly crystalline and organically-complexed phases using selective chemical dissolution applied to the soil fraction containingmore » mineral-associated carbon. We evaluated the correlations of Fe and Al concentrations, mean annual precipitation (MAP), mean annual temperature (MAT), and pH with SOC content and 14C-based turnover times. We found that poorly crystalline Fe and Al content predicted SOC turnover times (p < 0.0001) consistent with findings of previous studies, while organically-complexed Fe and Al content was a better predictor of SOC concentration (p < 0.0001). Greater site-level MAP (p < 0.0001) and colder site-level MAT (p < 0.0001) were correlated with longer SOC turnover times but were not correlated with SOC content. Our results suggest that poorly crystalline Fe and Al effectively slow the turnover of SOC in these acidic soils, even when their combined content in the soil is less than 2% by mass. However, in the strongly acidic Spodosol, organo-metal complexes tended to be less stable resulting in a more actively cycling mineral-associated SOC pool.« less

  13. Coercivity enhancement mechanism in Dy-substituted Nd-Fe-B nanoparticles synthesized by sol-gel base method followed by a reduction-diffusion process

    NASA Astrophysics Data System (ADS)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-05-01

    In current work, Nd15-xDyxFe77.5B7.5 (at%) nanoparticles with different Dy-content (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) were synthesized by sol-gel method followed by a reduction-diffusion process. The effects of Dy on the magnetic properties and the relations between the microstructure and the coercivity of Dy-substituted Nd-Fe-B nanoparticles have been studied. The coercivity of Nd-Fe-B nanoparticles with the addition of Dy first increase, reaches a maximum, and then starts to decrease. The coercivity of Dy-substituted Nd-Fe-B nanoparticle synthesized by sol-gel method increased from 938.9 to 1663.9 kA/m while the remanence decreased slightly from 1.16 to 1.06 T. The results show that with an increase in Dy content the variation of maximum energy product ((BH)max), lowest-order uniaxial magnetocrystalline anisotropy constant (Ku1), and Curie temperature (Tc) had a trend as same as the coercivity. The Henkel plot showed that the existence of exchange coupling interaction between grains, and the exchange coupling interactions increased with increasing x from 0.0 to 2.0 and then decrease with further increasing x≥2.5. The optimum magnetic properties of Nd-Fe-B nanoparticles with (BH)max =40.38 MGOe, Hc=1663.9 kA/m, Br=1.08 T were obtained by substituted 2.0 at% Dy. The effects of increasing temperature on magnetic properties of Dy-substituted Nd-Fe-B nanoparticle magnets with 2.0 at% Dy was investigated. The reduced spin-reorientation temperature was obtained for Dy-substituted Nd-Fe-B nanoparticles with 2.0 at% Dy. Below 100 K a spin-reorientation transition was takes place. The temperature coefficient of coercivity (β) was -0.36, -0.46, -0.41, -0.34, -0.29, -0.24, -0.25%/°C at different temperature 50, 100, 150, 200, 250, 300, 350 °C, respectively. Mössbauer spectroscopy was applied to study the composition and properties of Dy-substituted Nd-Fe-B magnet. Microstructure analysis showed a homogeneous distribution of Dy in produced samples. The possible reason for observed magnetic behavior is improving the intrinsic material parameter and optimizing the microstructure by a uniform enhancement of magnetocrystalline anisotropy by formation the nanocrystalline compound (Nd,Dy)2Fe14B.

  14. Structure and magnetic/electrochemical properties of Cu-doped BiFeO3 nanoparticles prepared by a simple solution method

    NASA Astrophysics Data System (ADS)

    Khajonrit, Jessada; Phumying, Santi; Maensiri, Santi

    2016-06-01

    BiFe1- x Cu x O3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles were prepared by a simple solution method. The prepared nanoparticles were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method analysis using the Barret-Joyner-Halenda (BJH) model, and X-ray absorption spectroscopy (XAS). Magnetization properties were obtained using a vibrating sample magnetometer (VSM) at room temperature. Magnetization was clearly enhanced by increasing Cu content and decreasing particle size. Zero-field-cooled (ZFC) and field-cooled (FC) temperature-dependent magnetization measurements showed that blocking temperature increased with increasing Cu content. Electrochemical properties were investigated by cyclic voltammetry (CV) and the galvanostatic charge-discharge (GCD) method. The performance of the fabricated supercapacitor was improved for the BiFe0.95Cu0.05O3 electrode. The highest specific capacitance was 568.13 F g-1 at 1 A g-1 and the capacity retention was 77.13% after 500 cycles.

  15. [Effects of micronutrient fertilizer application on yield and quality of Aconitum carmichaeli].

    PubMed

    Luo, Yi; Chen, Xingfu; Liu, Sha; Xiang, Dabing; Li, Jia; Shu, Guangming; Xia, Yanli

    2011-01-01

    To study the effects of Fe, Zn, B and Mn fertilizer with different ratio on the yield and quality of Aconitum carmichaeli. Field experiment with the uniform design was applied, the yield and the contents of the total alkaloids and diester-alkaloids were measured. Fe, Zn, B and Mn fertilizer of appropriate ratio could promote the growth of vegetative organs, increase the biomass, the content of alkaloids and the yield of Aconite significantly. Fe, Zn fertilizer of highly concentrated ratio increased the proportion of first sub-roots, but inhibited the growth of other vegetative organs, the number of roots was less than that with other treatments, so it was not conducive to the formation of production. High concentration of Mn was not conducive to the growth of underground of Aconite, its number of sub-roots was fewer, but the number of third sub-roots was more than that with other treatments, the yield was low. The yield treated with low concentration of B was 10% higher than that with high concentration, and the high concentration of B was not conducive to increase the content of the alkaloids. Among these treatments, The fourth treatment was the optimal combination, of which the volume of sub-roots was the largest and the most homogeneous, the growth of the vegetative organs was better and the accumulation of dry matters was more, the yield of this treatment was 10,754.7 kg x hm(-2), which was increased by 14.9%, and the content of alkaloid was increased by 13.9%. The ratio of 4 is the best treatment for high yield and quality cultivation of Aconite.

  16. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.

    PubMed

    Wang, Shihua; Wang, Fayuan; Gao, Shuangcheng

    2015-02-01

    Nanofertilizers may be more effective than regular fertilizers in improving plant nutrition, enhancing nutrition use efficiency, and protecting plants from environmental stress. A hydroponic pot experiment was conducted to study the role of foliar application with 2.5 mM nano-silicon in alleviating Cd stress in rice seedlings (Oryza sativa L. cv Youyou 128) grown in solution added with or without 20 μM CdCl2. The results showed that Cd treatment decreased the growth and the contents of Mg, Fe, Zn, chlorophyll a, and glutathione (GSH), accompanied by a significant increase in Cd accumulation. However, foliar application with nano-Si improved the growth, Mg, Fe, and Zn nutrition, and the contents of chlorophyll a of the rice seedlings under Cd stress and decreased Cd accumulation and translocation of Cd from root to shoot. Cd treatment produced oxidative stress to rice seedlings indicated by a higher lipid peroxidation level (as malondialdehyde (MDA)) and higher activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a lower GSH content. However, those nano-Si-treated plants had lower MDA but higher GSH content and different antioxidant enzyme activities, indicating a higher Cd tolerance in them. The results suggested that nano-Si application alleviated Cd toxicity in rice by decreasing Cd accumulation, Cd partitioning in shoot and MDA level and by increasing content of some mineral elements (Mg, Fe, and Zn) and antioxidant capacity.

  17. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    NASA Astrophysics Data System (ADS)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu; Yao, Ke-Fu

    2015-07-01

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe81P8.5C5.5B2Si3 BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe82Mo1P6.5C5.5B2Si3 BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications.

  18. Structure and magnetic properties of Sm1-xZrx Fe10Si2 (x=0.2-0.6) alloys

    NASA Astrophysics Data System (ADS)

    Gjoka, M.; Sarafidis, C.; Psycharis, V.; Devlin, E.; Niarchos, D.; Hadjipanayis, G.

    2017-10-01

    Structure and magnetic properties of Sm1-xZrxFe10Si2 (0.1 ≤ x ≤ 0.6) alloys have been characterized using X-ray diffraction, thermomagnetic analysis and Mössbauer spectroscopy. The formation of the tetragonal ThMn12 -type structure was been observed in all alloys, without further annealing. The Curie temperature decreases linearly with Zr substitution from 322 °C for x=0.1 to 395 °C for x=0.6. Mössbauer spectroscopy showed the iron hyperfine field values decrease with increasing Zr content, and also confirmed changes to the magnetic anisotropy with increasing Zr content observed by XRD on oriented samples.

  19. Mössbauer, EPR, and Modeling Study of Iron Trafficking and Regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae

    PubMed Central

    2015-01-01

    Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) FeII present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS FeIII, and more NHHS FeII than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS FeIII in Δccc1 cells increased to just 60% of WT levels, while NHHS FeII increased to twice WT levels, suggesting that the NHHS FeII was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS FeII promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS FeII and FeIII and as FeIII oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS FeII suggesting that some of the NHHS FeII that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS FeII in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS FeIII species. PMID:24785783

  20. Mössbauer, EPR, and modeling study of iron trafficking and regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae.

    PubMed

    Cockrell, Allison; McCormick, Sean P; Moore, Michael J; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2014-05-13

    Strains lacking and overexpressing the vacuolar iron (Fe) importer CCC1 were characterized using Mössbauer and EPR spectroscopies. Vacuolar Fe import is impeded in Δccc1 cells and enhanced in CCC1-up cells, causing vacuolar Fe in these strains to decline and accumulate, respectively, relative to WT cells. Cytosolic Fe levels should behave oppositely. The Fe content of Δccc1 cells grown under low-Fe conditions was similar to that in WT cells. Most Fe was mitochondrial with some nonheme high spin (NHHS) Fe(II) present. Δccc1 cells grown with increasing Fe concentration in the medium contained less total Fe, less vacuolar HS Fe(III), and more NHHS Fe(II) than in comparable WT cells. As the Fe concentration in the growth medium increased, the concentration of HS Fe(III) in Δccc1 cells increased to just 60% of WT levels, while NHHS Fe(II) increased to twice WT levels, suggesting that the NHHS Fe(II) was cytosolic. Δccc1 cells suffered more oxidative damage than WT cells, suggesting that the accumulated NHHS Fe(II) promoted Fenton chemistry. The Fe concentration in CCC1-up cells was higher than in WT cells; the extra Fe was present as NHHS Fe(II) and Fe(III) and as Fe(III) oxyhydroxide nanoparticles. These cells contained less mitochondrial Fe and exhibited less ROS damage than Δccc1 cells. CCC1-up cells were adenine-deficient on minimal medium; supplementing with adenine caused a decline of NHHS Fe(II) suggesting that some of the NHHS Fe(II) that accumulated in these cells was associated with adenine deficiency rather than the overexpression of CCC1. A mathematical model was developed that simulated changes in Fe distributions. Simulations suggested that only a modest proportion of the observed NHHS Fe(II) in both strains was the cytosolic form of Fe that is sensed by the Fe import regulatory system. The remainder is probably generated by the reduction of the vacuolar NHHS Fe(III) species.

  1. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil.

    PubMed

    Shi, Pengbao; Song, Changzheng; Chen, Haiju; Duan, Bingbing; Zhang, Zhenwen; Meng, Jiangfei

    2018-07-01

    Flavonoids are important compounds for grape and wine quality. Foliar fertilization with iron compounds has been reported to have a substantial impact on grape composition in the grapevines growing in calcareous soil. However, much less is known about its real impact on flavonoid composition. In the present study, Ferric ethylenediamine di (O-hydroxyphenylacetic) acid (Fe-EDDHA) was foliar applied to Merlot (Vitis vinifera L.) grapevines growing in calcareous soil over two consecutive vintages in order to study its effect on grape flavonoid composition. Fe-EDDHA foliar supply tended to increase grape sugar, anthocyanin and flavonol content, decrease acid content and enhance the juice pH when compared to the control. Principal component analysis showed that the vintage also had influence on grape quality. The results suggested that Fe-EDDHA foliar application had an enhancement effect on grape secondary metabolism, and the effect increased the nutritional value of the consequent grapes and wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Oxygen nonstoichiometry and thermodynamic quantities in solid solution SrFe1-xSnxO3-δ

    NASA Astrophysics Data System (ADS)

    Merkulov, O. V.; Markov, A. A.; Leonidov, I. A.; Patrakeev, M. V.; Kozhevnikov, V. L.

    2018-06-01

    The oxygen content (3-δ) variations in tin substituted derivatives SrFe1-xSnxO3-δ, where x = 0.05, 0.1, 0.17 and 0.25, of perovskite-like strontium ferrite, have been studied by coulometric titration measurements within oxygen partial pressure (pO2) range 10-19-10-2 atm at 800-950 °С. The obtained dependencies of (3-δ) from pO2 and temperature are used for calculations of partial molar thermodynamic functions of oxygen in the oxide structure. It is found that a satisfactory explanation of the experimental results can be attained within frameworks of the ideal solution model with ion and electron defects appearing in the result of oxidation and disproportionation of iron cations. The increase of the oxidation reaction enthalpy with tin content is consistent with the increase of the unit cell parameter, i.e., the stretch and relaxation of Fe-O chemical bonds.

  3. Effect of trivalent iron substitution on structure and properties of PLZT ceramics

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Choudhary, R. N. P.

    2008-02-01

    Polycrystalline samples of Fe-modified PLZT (lead lanthanum zirconate titanate) are prepared by a mixed-oxide reaction technique. The formation of the compound has been confirmed by X-ray powder diffraction studies. The unit cell structure of the material has been found to be rhombohedral. Fourier-transform infrared reflection (FTIR) spectra have been recorded to correspond the structural changes associated with the phase formation. The effects of Fe concentration on the microstructure and dielectric constant of PLZT materials have been investigated. The ferroelectric phase transition of PLFZT materials is studied using dielectric measurements, which shows a shift in the transition temperature towards the higher-temperature side with increased Fe ion concentration. The piezoelectric constants of this system are investigated by the same way of changed contents of Fe ion in the main PLZT compound. The optimum values of Qm, kp, and d33 are 73, 0.32 and 406. The electrical conductivity increases with the increase in Fe ion concentration.

  4. Magnetically separable mesoporous Fe{sub 3}O{sub 4}/silica catalysts with very low Fe{sub 3}O{sub 4} content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grau-Atienza, A.; Serrano, E.; Linares, N.

    2016-05-15

    Two magnetically separable Fe{sub 3}O{sub 4}/SiO{sub 2} (aerogel and MSU-X) composites with very low Fe{sub 3}O{sub 4} content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe{sub 3}O{sub 4} nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe{sub 3}O{sub 4} NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe{sub 3}O{sub 4} NPs content (ca. 1 wt%). These novel hybrid Fe{sub 3}O{sub 4}/SiO{sub 2} materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) withmore » hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe{sub 3}O{sub 4}/silica aerogel as compared to the Fe{sub 3}O{sub 4} NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe{sub 3}O{sub 4}/SiO{sub 2} systems. - Graphical abstract: Novel magnetically separable mesoporous silica-based composites with very low magnetite content. - Highlights: • An innovative way to prepare magnetically separable composites with <1 wt% NPs. • The Fe{sub 3}O{sub 4}/silica composites are readily magnetized/demagnetized. • The Fe{sub 3}O{sub 4}/silica composites can be easily recovered using an external magnetic field. • Excellent catalytic performance and recyclability despite the low Fe{sub 3}O{sub 4} NPs content.« less

  5. Structural γ-ε phase transition in Fe-Mn alloys from a CPA  +  DMFT approach.

    PubMed

    Belozerov, A S; Poteryaev, A I; Skornyakov, S L; Anisimov, V I

    2015-11-25

    We present a computational scheme for total energy calculations of disordered alloys with strong electronic correlations. It employs the coherent potential approximation combined with the dynamical mean-field theory and allows one to study the structural transformations. The material-specific Hamiltonians in the Wannier function basis are obtained by density functional theory. The proposed computational scheme is applied to study the γ-ε structural transition in paramagnetic Fe-Mn alloys for Mn content from 10 to 20 at.%. The electronic correlations are found to play a crucial role in this transition. The calculated transition temperature decreases with increasing Mn content and is in good agreement with experiment. We demonstrate that in contrast to the α-γ transition in pure iron, the γ-ε transition in Fe-Mn alloys is driven by a combination of kinetic and Coulomb energies. The latter is found to be responsible for the decrease of the γ-ε transition temperature with Mn content.

  6. Growth, electrical, structural, and magnetic properties of half-Heusler CoT i 1 - x F e x Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, S. D.; Rice, A. D.; Brown-Heft, T. L.

    Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi 1-xFe xSb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0 ≤ x ≤ 1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and X-ray diffraction. Using in-situ X-ray photoelectron spectroscopy, only small changes in the valence band are detected for x ≤ 0.5. For films with x ≥ 0.05, ferromagnetism is observed in SQUID magnetometry with a saturationmore » magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x ≤ 0.5. Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x=0.3) are observed for higher Fe content films. Evidence of superparamagnetism for x=0.3 and x=0.2 suggests for moderate levels of Fe, demixing of the CoTi 1-xFe xSb films into Fe rich and Fe deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in a x=0.3 film. Finally, statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.« less

  7. Growth, electrical, structural, and magnetic properties of half-Heusler CoT i 1 - x F e x Sb

    DOE PAGES

    Harrington, S. D.; Rice, A. D.; Brown-Heft, T. L.; ...

    2018-01-12

    Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi 1-xFe xSb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0 ≤ x ≤ 1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and X-ray diffraction. Using in-situ X-ray photoelectron spectroscopy, only small changes in the valence band are detected for x ≤ 0.5. For films with x ≥ 0.05, ferromagnetism is observed in SQUID magnetometry with a saturationmore » magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x ≤ 0.5. Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x=0.3) are observed for higher Fe content films. Evidence of superparamagnetism for x=0.3 and x=0.2 suggests for moderate levels of Fe, demixing of the CoTi 1-xFe xSb films into Fe rich and Fe deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in a x=0.3 film. Finally, statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.« less

  8. Evaluation of the effect of sulfate, alkalinity and disinfector on iron release of iron pipe and iron corrosion scale characteristics under water quality changing condition using response surface methodology

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shi, Baoyou; Zhang, Weiyu; Guo, Jianbo; Wu, Nana; Liu, Xinyuan

    2018-02-01

    The response surface methodology (RSM), particularly Box-Behnken design model, was used in this study to evaluate the sulfate, alkalinity and free chlorine on iron release of pipe with groundwater supply history and its iron corrosion scale characteristics under water quality changing experiment. The RSM results together with response surface contour plots indicated that the iron release of pipe section reactors was positively related with Larson Ratio and free chlorine. The thin Corrosion scales with groundwater supply history upon collection site contained Fe3O4 (18%), α-FeOOH (64%), FeCO3 (9%), β-FeOOH (8%) and γ-FeOOH (5%), besides their averaged amorphous iron oxide content was 13.6%. After the RSM water quality changing experiment, Fe3O4, amorphous iron oxide and intermediate iron products (FeCO3, Green Rust (GR)) content on scale of Cl2Rs increased, while their α-FeOOH contents decreased and β-FeOOH disappeared. The high iron released Cl2Rs receiving higher LR water (1.40-2.04) contained highest FeCO3 (20%) and amorphous iron oxide (42%), while the low iron release Cl2Rs receiving lower LR water (0.52-0.73) had higher GR(6.5%) and the amorphous iron oxide (23.7%). In high LR water (>0.73), the thin and non-protective corrosion scale containing higher amorphous iron oxide, Fe(II) derived from new produced Fe3O4 or FeCO3 or GR was easy for oxidants and sulfate ions penetration, and had higher iron release. However the same unstable corrosion scale didn’t have much iron release in low LR water (≤0.73). RSM experiment indicated that iron release of these unstable corrosion scales had close relationship with water quality (Larson Ratio and disinfectant). Optimizing the water quality of new source water and using reasonable water purification measures can help to eliminate the red water case.

  9. Iron overload prevents oxidative damage to rat brain after chlorpromazine administration.

    PubMed

    Piloni, Natacha E; Caro, Andres A; Puntarulo, Susana

    2018-05-15

    The hypothesis tested is that Fe administration leads to a response in rat brain modulating the effects of later oxidative challenges such as chlorpromazine (CPZ) administration. Either a single dose (acute Fe overload) or 6 doses every second day (sub-chronic Fe overload) of 500 or 50 mg Fe-dextran/kg, respectively, were injected intraperitoneally (ip) to rats. A single dose of 10 mg CPZ/kg was injected ip 8 h after Fe treatment. DNA integrity was evaluated by quantitative PCR, lipid radical (LR · ) generation rate by electron paramagnetic resonance (EPR), and catalase (CAT) activity by UV spectrophotometry in isolated brains. The maximum increase in total Fe brain was detected after 6 or 2 h in the acute and sub-chronic Fe overload model, respectively. Mitochondrial and nuclear DNA integrity decreased after acute Fe overload at the time of maximal Fe content; the decrease in DNA integrity was lower after sub-chronic than after acute Fe overload. CPZ administration increased LR · generation rate in control rat brain after 1 and 2 h; however, CPZ administration after acute or sub-chronic Fe overload did not affect LR · generation rate. CPZ treatment did not affect CAT activity after 1-4 h neither in control rats nor in acute Fe-overloaded rats. However, CPZ administration to rats treated sub-chronically with Fe showed increased brain CAT activity after 2 or 4 h, as compared to control values. Fe supplementation prevented brain damage in both acute and sub-chronic models of Fe overload by selectively activating antioxidant pathways.

  10. Si-rich Fe-Ni grains in highly unequilibrated chondrites

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Sears, D. W.; Wasson, J. T.

    1980-01-01

    Consideration is given to the Si contents of Fe-Ni grains in highly unequilibrated chondrites, which have undergone little metamorphosis and thus best preserve the record of processes in the solar nebula. Electron microprobe determinations of silicon content in grains of the Bishunpur chondrite are presented for the six Si-bearing Fe-Ni grains for which data could be obtained, five of which were found to be embedded in olivine chondrules. In addition, all grains are found to be Cr-rich, with Cr increased in concentration towards the grain edge, and to be encased in FeS shells which evidently preserved the Si that entered the FeNi at higher temperatures. A mechanism for the production of Si-bearing metal during the condensation of the cooling solar nebula is proposed which considers the metal to have condensed heterogeneously while the mafic silicates condensed homogeneously with amounts of required undercooling in the low-pressure regions where ordinary and carbonaceous chondrites formed, resulting in Si mole fractions of 0.003 at nebular pressures less than 0.000001 atm.

  11. Influence of Cobalt Substitution on the Magnetic Properties of Fe5PB2.

    PubMed

    Cedervall, Johan; Nonnet, Elise; Hedlund, Daniel; Häggström, Lennart; Ericsson, Tore; Werwiński, Mirosław; Edström, Alexander; Rusz, Ján; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-01-16

    The substitutional effects of cobalt in (Fe 1-x Co x ) 5 PB 2 have been studied with respect to crystalline structure and chemical order with X-ray diffraction and Mössbauer spectroscopy. The magnetic properties have been determined from magnetic measurements, and density functional theory calculations have been performed for the magnetic properties of both the end compounds, as well as the chemically disordered intermediate compounds. The crystal structure of (Fe 1-x Co x ) 5 PB 2 is tetragonal (space group I4/mcm) with two different metal sites, with a preference for cobalt atoms in the M(2) position (4c) at higher cobalt contents. The substitution also affects the magnetic properties with a decrease of the Curie temperature (T C ) with increasing cobalt content, from 622 to 152 K for Fe 5 PB 2 and (Fe 0.3 Co 0.7 ) 5 PB 2 , respectively. Thus, the Curie temperature is dependent on composition, and it is possible to tune T C to a temperature near room temperature, which is one prerequisite for magnetic cooling materials.

  12. Response of Phytoplankton Iron Contents to Gradients in Iron Availability in the California Current System

    NASA Astrophysics Data System (ADS)

    Twining, B. S.; Jacquot, J. E.; Rauschenberg, S.; Enright, J.; Marchetti, A.; Cohen, N.; Brown, M.; Parker, C.; Bruland, K. W.

    2016-02-01

    Iron is a critical micronutrient that controls primary production in large swaths of the global ocean. Experiments with laboratory cultures indicate that phytoplankton differ in their ability to compete for and store Fe in response to varying ambient Fe concentrations. However there are very few measurements of the physiological responses of natural phytoplankton populations to gradients in Fe availability. Incubation experiments were conducted off the coast of California and Oregon at two sites characterized by a 10-fold difference in dissolved Fe (0.3 and 3 nM). In each experiment, incubation water was amended with either dissolved Fe (5-10 nM), the model siderophore desferrioxamine B (DFB; 200 nM), or left unamended. Iron contents of three abundant diatom groups (Chaetoceros sp. and large and small pennate diatoms) were monitored by synchrotron X-ray fluorescence, along with dissolved and bulk particulate trace metals and macronutrients over the course of 3 days. Transcriptomic samples were also collected at daily timepoints to assess molecular responses. Added dissolved Fe was drawn down in both experiments, while DFB appeared to solubilize a fraction of ambient particulate Fe in the high-Fe experiment. Iron quotas of unamended diatoms were nearly 10-fold higher under high-Fe conditions. Quotas increased in response to added Fe in both experiments, but the magnitude of changes varied between diatom taxa. DFB additions resulted in reduced Fe quotas in the low-Fe incubation, since cells were presumably forced to use internal Fe stores to support growth. These data demonstrate significant plasticity in the abilities of phytoplankton to take advantage of changing micronutrient inputs. Quota data will be compared to transcript abundance data to ascertain mechanisms of Fe quota maintenance.

  13. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.).

    PubMed

    Li, Junli; Hu, Jing; Ma, Chuanxin; Wang, Yunqiang; Wu, Chan; Huang, Jin; Xing, Baoshan

    2016-09-01

    Iron oxide nanoparticles (γ-Fe2O3 NPs) have emerged as an innovative and promising method of iron application in agricultural systems. However, the possible toxicity of γ-Fe2O3 NPs and its uptake and translocation require further study prior to large-scale field application. In this study, we investigated uptake and distribution of γ-Fe2O3 NPs in corn (Zea mays L.) and its impacts on seed germination, antioxidant enzyme activity, malondialdehyde (MDA) content, and chlorophyll content were determined. 20 mg/L of γ-Fe2O3 NPs significantly promoted root elongation by 11.5%, and increased germination index and vigor index by 27.2% and 39.6%, respectively. However, 50 and 100 mg/L γ-Fe2O3 NPs remarkably decreased root length by 13.5% and 12.5%, respectively. Additionally, evidence for γ-Fe2O3 NPs induced oxidative stress was exclusively found in the root. Exposures of different concentrations of NPs induced notably high levels of MDA in corn roots, and the MDA levels of corn roots treated by γ-Fe2O3 NPs (20-100 mg/L) were 5-7-fold higher than that observed in the control plants. Meanwhile, the chlorophyll contents were decreased by 11.6%, 39.9% and 19.6%, respectively, upon NPs treatment relative to the control group. Images from fluorescence and transmission electron microscopy (TEM) indicated that γ-Fe2O3 NPs could enter plant roots and migrate apoplastically from the epidermis to the endodermis and accumulate the vacuole. Furthermore, we found that NPs mostly existed around the epidermis of root and no translocation of NPs from roots to shoots was observed. Our results will be highly meaningful on understanding the fate and physiological effects of γ-Fe2O3 NPs in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Fe removal in pyrophyllite by physical method

    NASA Astrophysics Data System (ADS)

    Cho, Kanghee; Jo, Jiyu; Bak, GeonYeong; Choi, NagChoul; Park*, CheonYoung

    2015-04-01

    The presence of Fe in ingredient material such as limestone, borax and pyrophyllite can prevent their use mainly in the glass fiber manufacturing industry. The red to yellow pigmentation in pyrophyllite is mainly due to the associated oxides and sulfides of Fe such as hematite, pyrite, etc. The removal of Fe in the pyrophyllite was investigated using high frequency treatment and magnetic separation under various alumina grades in pyrophyllite. The hematite and pyrite were observed in the pyrophyllite from photomicrograph and XRD analysis results. On the decrease of Al2O3 content in pyrophyllite was showed that SiO2, Fe2O3 and TiO2 content were increased by XRF analysis. The high frequency treatment experiment for the pyrophyllite showed that the (1) pyrite phase was transformed hematite and magnetite, (2) mass loss of the sample by volatilization of included sulfur(S) in pyrite. The results of magnetic separation for treated sample by high frequency were identified that Fe removal percent were in the range of 97.6~98.8%. This study demonstrated that physical method (high frequency treatment and magnetic separation) was effective for the removal of Fe in pyrophyllite. This subject is supported by Korea Ministry of Environment(MOE) as "Advanced Technology Program for Environmental Industry".

  15. Synthesis and characterization of structural and magnetic properties of polyaniline-cobalt ferrite (PA-CoFe) nanocomposites

    NASA Astrophysics Data System (ADS)

    Thakur, Sonika; Kaur, Parminder; Singh, Lakhwant

    2018-05-01

    The growing interest in the investigation of the properties of modified conducting polymers stems from their potential applications in various fields such as in sensing and catalytic devices. The present work reports the modification of conducting polymer polyaniline with cobalt ferrite (CoFe) nanoparticles, where CoFe nanoparticles are added in different successive weight percents. The composite samples were synthesized by in-situ chemical oxidative polymerization technique. The density of the samples has been found to increase with an increase in the CoFe content. Structural analysis of the synthesized sample has been done using X-ray diffraction studies. Perusal of the hysteresis curves of the prepared samples depicts that the introduction of CoFe into the polymer matrix leads to enhancement in the ferromagnetic behavior of the synthesized samples, suggesting that these nanocomposites have excellent microwave absorbing capacity.

  16. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.

    PubMed

    Görlin, Mikaela; Ferreira de Araújo, Jorge; Schmies, Henrike; Bernsmeier, Denis; Dresp, Sören; Gliech, Manuel; Jusys, Zenonas; Chernev, Petko; Kraehnert, Ralph; Dau, Holger; Strasser, Peter

    2017-02-08

    Ni-Fe oxyhydroxides are the most active known electrocatalysts for the oxygen evolution reaction (OER) in alkaline electrolytes and are therefore of great scientific and technological importance in the context of electrochemical energy conversion. Here we uncover, investigate, and discuss previously unaddressed effects of conductive supports and the electrolyte pH on the Ni-Fe(OOH) catalyst redox behavior and catalytic OER activity, combining in situ UV-vis spectro-electrochemistry, operando electrochemical mass spectrometry (DEMS), and in situ cryo X-ray absorption spectroscopy (XAS). Supports and pH > 13 strongly enhanced the precatalytic voltammetric charge of the Ni-Fe oxyhydroxide redox peak couple, shifted them more cathodically, and caused a 2-3-fold increase in the catalytic OER activity. Analysis of DEMS-based faradaic oxygen efficiency and electrochemical UV-vis traces consistently confirmed our voltammetric observations, evidencing both a more cathodic O 2 release and a more cathodic onset of Ni oxidation at higher pH. Using UV-vis, which can monitor the amount of oxidized Ni +3/+4 in situ, confirmed an earlier onset of the redox process at high electrolyte pH and further provided evidence of a smaller fraction of Ni +3/+4 in mixed Ni-Fe centers, confirming the unresolved paradox of a reduced metal redox activity with increasing Fe content. A nonmonotonic super-Nernstian pH dependence of the redox peaks with increasing Fe content-displaying Pourbaix slopes as steep as -120 mV/pH-suggested a two proton-one electron transfer. We explain and discuss the experimental pH effects using refined coupled (PCET) and decoupled proton transfer-electron transfer (PT/ET) schemes involving negatively charged oxygenate ligands generated at Fe centers. Together, we offer new insight into the catalytic reaction dynamics and associated catalyst redox chemistry of the most important class of alkaline OER catalysts.

  17. Regimes of association of arsenic and selenium during pulverized coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne S. Seames; Jost O.L. Wendt

    2007-07-01

    A suite of six coals, of widely differing As, Se, Ca, Fe, and sulfur contents, was burned under self-sustaining conditions in a 17 kW downflow laboratory combustor. Size segregated ash-laden aerosol samples were isokinetically withdrawn and collected on a Berner low pressure impactor. Correlations between trace element concentration (As or Se) and that of major elements (as functions of particle size) were then used to infer chemical associations between trace metals and Ca and/or Fe, and how these depended on sulfur. These baseline data led to formation of the following hypotheses, namely: (1) dominant As and Se partitioning mechanisms dependmore » on the availability of Ca and/or Fe active sites for surface reaction; (2) increasing combustion temperature increases the availability of active cation sites, and increases partitioning of As and Se to fly ash by surface reaction; (3) sulfur competes with these surface reactions, decreasing As and Se partitioning to fly ash surfaces. These hypotheses were tested by manipulating the As, Se, Ca, Fe, and S contents for various coals by doping. Temperature was adjusted in order to achieve comparisons of different coals and different coal constituents at similar thermal conditions, through O{sub 2} and CO{sub 2} addition, as required. These results confirmed the hypotheses above, and allowed an association regime map to be constructed. This map shows that both As and Se associate with Fe and Ca, provided active sites are available. Se reacts preferentially with Fe over Ca when both are available while As reactions with both Fe and Ca are comparable. Sulfur can prevent association of both As and Se, by preferentially reacting with active sites, especially those on Fe. When sufficient sites are not available, the release of vapor-phase As and Se species is promoted. 23 refs., 4 figs., 4 tabs.« less

  18. A sulfide-saturated lunar mantle?

    NASA Astrophysics Data System (ADS)

    Brenan, James M.; Mungall, James E.

    2017-04-01

    Although much work has been done to understand the controls on the sulfur content at sulfide saturation (SCSS) for terrestrial melt compositions, little information exists to evaluate the SCSS for the high FeO compositions typical of lunar magmas, and at the reduced conditions of the Moon's interior. Experiments were done to measure the SCSS for a model low Ti mare basalt with 20 wt% FeO at 1400oC as a function of fO2 and pressure. Synthetic lunar basalt was encapsulated along with stoichiometric FeS in capsules made from Fe-Ir alloy. The fO2 of the experiment can be estimated by the heterogeneous equilibrium: Femetal + 1 /2 O2 = FeOsilicate Variation in the metal composition, by addition of Ir, serves to change the fO2 of the experiment. Capsule compositions spanning the range Fe25Ir75 to Fe96Ir4 (at%) were synthesized by sintering of pressed powders under reducing conditions. Fe100 capsules were fabricated from pure Fe rod. For a melt with 20 wt% FeO, this range in capsule composition spans the fO2 interval of ˜IW-1 (Fe100, Fe96Ir4) to IW+2.2 (Fe25Ir75). Experiments were done over the pressure interval of 0.1 MPa to 2 GPa. Results for experiments involving Fe100capsules indicate that the SCSS decreases from ˜2000 ppm (0.1 MPa) to 700 ppm (2 GPa). Experiments done thus far at 1 GPa, involving the range of capsule compositions indicated, show a marked decrease in SCSS as the Fe content of the capsule increases (fO2 decreases). Complementary to the decrease in SCSS is a drop in the sulfur content of the coexisting sulfide melt, from ˜50 at% at ΔIW = +2.2 to ˜20 at% at ΔIW-1. In fact, both the composition of the sulfide melt and the SCSS are essentially indistinguishable for Fe96Ir4 and Fe100 compositions. Results thus far indicate that at reduced conditions and high pressure, the SCSS for high FeO lunar compositions is low, and overlaps with Apollo 11 melt inclusion data. Importantly, such low SCSS does not require Fe metal saturation, and suggests that some lunar source regions could be saturated in a low sulfur, sulfide melt. Additional sulfide-silicate partitioning experiments for the PGE and Re have also been done at Fe-metal saturation at 1400oC, 0.1 MPa using chromite capsules sealed in silica ampoules. Results confirm that the highly siderophile elements (HSE) will be strongly sequestered by residual sulfide, and that the concentrations of these elements will be strongly depleted in lunar basalts. Hence, estimates of the HSE content of the lunar mantle from basalt compositions must take into account the fractionation imposed by sulfide-silicate partitioning at reduced conditions.

  19. Cooking and Fe fortification have different effects on Fe bioavailability of bread and tortillas.

    PubMed

    Hernández, Miguel; Sousa, Virginia; Villalpando, Salvador; Moreno, Ambar; Montalvo, Irene; López-Alarcón, Mardya

    2006-02-01

    To identify iron sources for wheat- (WF) and corn-flour (CF) fortification taking into account the effect of cooking. Sixty-six Fe-depleted rats were replete with various Fe sources. Fe bioavailability and utilization in wheat bread (WB) and corn tortillas (CT) fortified with various Fe sources was assessed after the depletion and repletion periods. Baking decreased the phytates content of WF by 97%. Improvements in Hb and FeHb were greater in rats fed unfortified WB than in those fed unfortified WF. Fe fortification had no benefit. In contrast, phytates content was unchanged by tortilla preparation, but fortification improved iron availability. Iron bioavailability indicators were best in rats fed CT fortified with ferrous sulfate and NaFe(III)EDTA than in those fed unfortified CT or CT plus reduced Fe. We concluded that baking WF bread improved the bioavailability of native Fe with no further effect of fortification. Pan-cooking of lime-treated CF did not improve Fe bioavailability, but addition of Ferrous sulfate or NaFe(III)EDTA did it, despite the high phytate and calcium content of tortillas.

  20. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  1. Influence of trough versus pasture feeding on average daily gain and carcass characteristics in ruminants: a meta-analysis.

    PubMed

    Agastin, A; Sauvant, D; Naves, M; Boval, M

    2014-03-01

    Quantitative meta-analysis was run on 108 publications featuring 116 experiments and 399 treatments dealing with the effect of trough or pasture feeding environment (FE) on ruminant performances. The objective was to compare the effect of trough or pasture FE on ADG, diet OM digestibility (OMD), various carcass characteristics, and the interaction between FE and complementation modalities. Live weight was adjusted to compare results between species. Results showed that trough-fed animals had higher ADG (+17.89%; P < 0.001), hot carcass yield (HYield; + 2.47%; P < 0.001) and carcass fat content (+ 24.87%; P < 0.001) than pasture-fed animals but lower carcass muscle and bone percentages (-1.60% [P = 0.010] and -7.63% [P = 0.003], respectively). Feeding environment had no effect on diet OMD (P = 0.818), but the number of observations was low. After considering the addition or not of concentrate in the diet (addiCO), FE effect persisted on ADG (P = 0.024) and carcass fat content (P = 0.027) but not on HYield (P = 0.078) or muscle and bone percentages (P = 0.119 and P = 0.581, respectively). After considering the nature of the concentrate (natCO), FE effect persisted on ADG (P < 0.001) and HYield (P = 0.004). Considering the percentage of concentrate in the diet (PCO) erased FE effect on ADG (P = 0.891) and HYield (P = 0.128). In contrast, considering the quantity of concentrate(QCO) erased FE effect on ADG (P = 0.084) but not on HYield (P = 0.006) or on carcass fat and muscle contents (P = 0.040 and P = 0.040, respectively) although the FE effect on carcass bone content persisted (P = 0.550). Animal species and physiological stage had no effect on any of the variables studied (P > 0.05) but experiment did (P ≤ 0.001). The increase in ADG was positively correlated to HYield in cattle (P = 0.002) and small ruminants (P = 0.003) and positively linked to carcass fat content (P = 0.007) but not carcass muscle content, which actually decreased (P = 0.001). Overall, this meta-analysis confirmed previous reports of FE effects and revealed how the differences generally reported result from a confounding effect of FE and nature of the diet. Indeed, in most of the studies used, trough-fed animals were supplemented with concentrate whereas pasture-fed animals were not. This research also highlighted the fact that pasture-fed animals have the potential to achieve the same performances as trough-fed animals when fed a similar diet.

  2. Preliminary CFA measurements of Al and Fe "available" fraction in EPICA-Dome C ice core (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Udisti, R.; Barbante, C.; Cozzi, G.; Fattori, I.; Largiuni, O.; Magaldi, L.; Traversi, R.

    2003-04-01

    Aerosol load of Al and Fe allows estimating the crustal contribution to the primary aerosol sources. While continental dust is the only significant source for Al, Fe takes part also to metabolic processes of living species as an essential oligo-element. For this reason, it has been assumed that atmospheric deposition of desert dust on the oceanic surface can constitute a phytoplanktonic growth factor. Besides, Fe content in aerosol during glacial/interglacial transitions is believed to play a relevant role in controlling oceanic phytoplanktonic uptake of atmospheric CO2. A detailed stratigraphy of Al and Fe in ice cores is basic in understanding the correlation between environmental and climatic changes. Here we report preliminary results of CFA methods able to determine, in field, the "available" (free form and labile complexes) fraction of Al and Fe in ice cores with high sensitivity (D.L. of 10 ppt for Al and 300 ppt for Fe) and reproducibility (around 2 % at ppb level). The two methods were applied to 32 selected sections coming from the EPICA-Dome C ice core (EDC96): 10 sections belonging to Holocene, 10 to the transition and 12 to the LGM. Though Al and Fe determined by CFA is representative of the only soluble fraction (or "available" in the measurement conditions after filtration on 5.0 um), a comparison with the Al and Fe "total" content, as measured by ICP-MS, was made. "Available" fractions represent a minor contribution to the ICP-MS Fe and Al content in the LGM, but this contribution increases during the transition. In the Holocene, the two different analytical methods give similar values. Anyway, also CFA Fe and Al profiles show a sharp concentration decrease in the glacial/interglacial transition, reflecting the lowering dust aerosol load. Fe, especially, shows a very high sensitivity for the ACR climatic change. Whereas CFA-Fe in the LGM is more than 10 times lower than ICP-MS-Fe, ACR values are similar. This evidence could be explained considering that during the LGM the insoluble continental dust is the main Fe source, while a sort of oceanic-recycled Fe, mainly distributed in the fine particles and as more soluble species, becomes more important during the ACR and in the Holocene. Further measurements, with a very higher temporal resolution, are necessary to confirm the observed behaviour.

  3. Effect of Ag addition to L1{sub 0} FePt and L1{sub 0} FePd films grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokuoka, Y.; Seto, Y.; Kato, T., E-mail: takeshik@nuee.nagoya-u.ac.jp

    2014-05-07

    L1{sub 0} ordered FePt-Ag (5 nm) and FePd-Ag (5 nm) films were grown on MgO (001) substrate at temperatures of 250–400 °C by using molecular beam epitaxy method, and their crystal and surface structures, perpendicular magnetic anisotropies and Curie temperatures were investigated. In the case of FePt-Ag, Ag addition with the amount of 10–20 at. % was effective to promote L1{sub 0} ordering and granular growth, resulting in the increase of the perpendicular magnetic anisotropy and coercivity of the FePt-Ag films. On the other hand, in the case of FePd-Ag, Ag addition changed the surface morphology from island to continuous film associated with themore » reductions of its coercivity and perpendicular anisotropy. The variations of lattice constants and Curie temperature with Ag addition were significantly different between FePt-Ag and FePd-Ag. For FePd-Ag, the c and a axes lattice spacings and Curie temperature gradually changed with increasing Ag content, while they unchanged for FePt-Ag. These results suggest the possibility of the formation of FePdAg alloy in FePd-Ag, while Ag segregation in FePt-Ag.« less

  4. Formation of nickel-doped magnetite hollow nanospheres with high specific surface area and superior removal capability for organic molecules

    NASA Astrophysics Data System (ADS)

    Li, Zhenhu; Ma, Yurong; Qi, Limin

    2016-12-01

    A strategy for the formation of magnetic Ni x Fe3-x O4 hollow nanospheres with very high specific surface areas was designed through a facile solvothermal method in mixed solvents of ethylene glycol and water in this work. The Ni/Fe ratios and the crystal phases of the Ni x Fe3-x O4 hollow nanocrystals can be readily tuned by changing the molar ratios of Ni to Fe in the precursors. An inside-out Ostwald ripening mechanism was proposed for the formation of uniform Ni x Fe3-x O4 hollow nanospheres. Moreover, the obtained Ni x Fe3-x O4 hollow nanospheres exhibited excellent adsorption capacity towards organic molecules such as Congo red in water. The maximum adsorption capacities of Ni x Fe3-x O4 hollow nanospheres for Congo red increase dramatically from 263 to 500 mg g-1 with the increase of the Ni contents (x) in Ni x Fe3-x O4 hollow nanospheres from 0.2 to 0.85. The synthesized Ni x Fe3-x O4 nanoparticles can be potentially applied for waste water treatment.

  5. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    PubMed Central

    Hazarika, Ankita; Deka, Biplab K.; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90–100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene. PMID:28074877

  6. Evolution of Fe redox state in serpentine during subduction

    NASA Astrophysics Data System (ADS)

    Debret, Baptiste; Andreani, Muriel; Muñoz, Manuel; Bolfan-Casanova, Nathalie; Carlut, Julie; Nicollet, Christian; Schwartz, Stéphane; Trcera, Nicolas

    2014-08-01

    Serpentinites are an important component of the oceanic lithosphere that formed at slow to ultra-slow spreading centers. Serpentine could thus be one of the most abundant hydrous minerals recycled into the mantle in subduction zones. Prograde metamorphism in subducted serpentinites is characterized by the destabilization of lizardite into antigorite, and then into secondary olivine. The nature of the fluid released during these phase transitions is controlled by redox reactions and can be inferred from oxidation state of Fe in serpentine minerals. We used bulk rock analyses, magnetic measurements, SEM observations and μXANES spectroscopy to establish the evolution of Fe2O3Tot(BR) and magnetite content in serpentinite and Fe oxidation state in serpentine minerals from ridge to subduction settings. At mid-ocean ridges, during the alteration of peridotite into serpentinite, iron is mainly redistributed between magnetite and oceanic serpentine (usually lizardite). The Fe3+/FeTotal ratio in lizardite and the modal percentage of magnetite progressively increase with the degree of local serpentinization to maxima of about 0.8 and 7 wt%, respectively, in fully serpentinized peridotites. During subduction, the Fe2O3Tot(BR) of serpentinite remains constant (∼7-10 wt%, depending on the initial Fe content of the peridotite) while the modal percentage of magnetite decreases to less than 2% in eclogite facies rocks. The Fe3+/FeTotal ratio in serpentine also decreases down to 0.2-0.4 in antigorite at eclogite facies. Our results show that, in the first 70 km of subduction, the transition from lizardite to antigorite is accompanied by a reduction of Fe in bulk rock samples and in serpentine minerals. This redox reaction might be coupled with the oxidation of reduced oceanic phases such as sulfides, and the formation of oxidized fluids (e.g. SOX, H2O, COX). At greater depths, the beginning of antigorite dehydration leads to an increase of Fe3+/FeTotal in relict antigorite, in agreement with the preferential partitioning of ferric iron into serpentine rather than into olivine.

  7. Strawberries from integrated and organic production: mineral contents and antioxidant activity.

    PubMed

    Kristl, Janja; Krajnc, Andreja Urbanek; Kramberger, Branko; Mlakar, Silva Grobelnik

    2013-01-01

    As the nutritional quality of food is becoming increasingly more important for consumers, significant attention needs to be devoted to agricultural practices and their influences on the nutrient contents in food. The presented investigation studied the mineral contents and antioxidant activities in the fruits of four organically-grown strawberry cultivars 'St. Pierre', 'Elsanta', 'Sugar Lia' and 'Thuchampion' when compared to those of integrated-grown plants. The strawberries were digested and analyzed for K, Mg, Fe, Zn, Cu, and Mn using an atomic absorption spectrometer, whilst P was analyzed using a vanadate-molybdate method. In addition, antioxidant activity was estimated by using the ABTS assay. The results showed that the mineral contents and antioxidant activities in strawberries depends on the cultivar, and its production system. Organically-grown fruits showed higher antioxidant activities and Cu content than the integrated fruits, whilst the integrated fruits were superior in their contents of P, K, Mg, Fe and Mn. All the cultivars showed similar Zn content, probably reflecting the fact that the Zn content in strawberries does not depend on the cultivar.

  8. Soft Chemical Fabrication of Iron-Based Thin Film Electrocatalyst for Water Oxidation under Neutral pH and Structure-Activity Tuning by Cerium Incorporation.

    PubMed

    Saha, Jony; Radhakrishnan, T P

    2017-08-29

    Design of electrocatalysts for the fundamentally important oxygen evolution reaction can be greatly aided by systematic structure-activity tuning via composition variation. We have explored the iron-cerium system as they are the most abundant transition and rare earth metals, and also due to the mutualistic impact of their size and electronic attributes that can induce critical changes in the structure and electrochemical activity. Submicrometer thick films of a series of Fe(III)-Ce(III) phosphate(oxyhydroxide) (FeCePH) are fabricated using a soft chemical strategy involving surfactant-aided assembly, spin-coating, and mild thermal annealing. FT-IR, Raman, and X-ray photoelectron spectroscopies, chemical analysis, X-ray diffraction, and electron microscopy reveal the systematic structural, electronic, and morphological variation, on tuning the iron-cerium composition. Nitrogen adsorption-desorption studies show the surface area increasing and pore size distribution shrinking with the cerium content, indicating its structure-directing role. The electrocatalysis of water oxidation by FeCePH films on FTO-coated glass is studied in neutral pH conditions. The overpotential and Tafel slope decrease with increasing cerium content, reaching minima at the optimal Fe:Ce ratio of 1:0.5; the turnover frequency shows a corresponding increase and maximum. The trends are explained on the basis of the structural changes in the films, and the coupling of Ce 3+ /Ce 4+ with Fe 3+ /Fe 4+ that leads to active state regeneration. This study presents a rational strategy to tune the efficiency of easily fabricated transition metal-based electrocatalyst thin films through rare earth metal incorporation; it should prove useful in the design of cost-effective catalysts for water oxidation.

  9. Preparation of the Iron Oxide Red from the Converter Dust by the Magnetic Separation and Roasting Process

    NASA Astrophysics Data System (ADS)

    Guo, Z. J.; Li, S. Q.; Yang, C. Q.

    2017-05-01

    Preparation of iron oxide red (α-Fe2O3) from the converter dust by the superconductivity high gradient magnetic separation (S-HGMS) and roasting process was investigated in the paper. The basic properties of the dust were studied by the X Ray Fluorescence, the chemical analysis and the X Ray Diffraction methods. The results showed that the raw dust mainly contained elements of Fe‵O‵Si‵Ca, the iron content of the raw dust was 61.80%, and there were ferrous phases of Fe3O4, α-Fe2O3, Fe2(SiO4) and CaFe(Si2O6) in the raw dust. Under the optimum conditions of magnetic field intensity of 1.8T, the dispersion agent of 30mg/L and velocity of 500mL/min, the powders absorbed by the magnetic medium mainly contained Fe3O4 and α-Fe2O3, and the iron content of powders absorbed was up to 65.90%. The Fe2+ content of the powders absorbed under the optimum magnetic conditions dropped to 0.25% from 19.10% after roasting of fifty minutes, and the iron content of powders absorbed under the optimum magnetic conditions fell to 64% due to oxidation, and the Fe3O4 was removed. Finally the α-Fe2O3 content was up to 91.07% in the iron oxide red.

  10. Three-Dimensional Mathematical Model of Oxygen Transport Behavior in Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Huang, Xuechi; Li, Baokuan; Liu, Zhongqiu

    2018-04-01

    A transient three-dimensional model has been proposed to investigate the oxygen transport behavior in electroslag remelting process. The electromagnetism, heat transfer, multiphase flow, and species transport were calculated simultaneously by finite volume method. The volume of fluid approach was adopted to trace the metal-slag-air three-phase flow. Based on the necessary thermodynamics of oxygen transport behavior, a kinetic model was established to predict the mass source terms in species transport equation. The kinetic correction factor was proposed to account for the effect of the oxide scale formed on the electrode on the FeO content in slag. Finally, the effect of applied current on the oxygen transfer was studied. The predicted result agrees well with the measured data when the kinetic correction factor is set to be 0.5. The temperature distribution that affects the thermodynamics differs at the interfaces. The oxygen in air is absorbed into slag due to the oxidation at the slag/air interface. The Fe2O3 in slag and the oxide scale contribute to the increase of FeO content in slag, and the latter one plays the leading role. The oxygen transfer from slag to metal mainly occurs during the formation of the droplet at the slag/metal droplet interface. With the current increasing from 1200 to 1800 A, the oxygen content increases from 76.4 to 89.8 ppm, and then slightly declines to 89.2 ppm when the current increases to 2100 A.

  11. Protective effects of fucoxanthin against ferric nitrilotriacetate-induced oxidative stress in murine hepatic BNL CL.2 cells.

    PubMed

    Liu, Cheng-Ling; Liang, Ai-Ling; Hu, Miao-Lin

    2011-10-01

    Fucoxanthin is a carotenoid that is rich in some seaweed. Although fucoxanthin has been reported to possess radical-scavenging activities in vitro, little is known whether it may protect against iron-induced oxidative stress in cultured cells. In this study, we examined the protection of fucoxanthin against oxidative damage in BNL CL.2 cells induced by ferric nitrilotriacetate (Fe-NTA). The data show that incubation of BNL CL.2 cells with Fe-NTA for 30 min significantly decreased cell proliferation, whereas pretreatment with fucoxanthin (1-20 μΜ) for 24h significantly recovered cell proliferation in a dose-dependent manner. In addition, fucoxanthin pretreatment significantly decreased intracellular reactive oxygen species (ROS) and DNA damage in BNL CL.2 cells incubated with Fe-NTA for 30 min. Moreover, fucoxanthin markedly decreased the level of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl contents in BNL CL.2 cells induced by Fe-NTA. By contrast, fucoxanthin significantly increased the levels of GSH in a concentration-dependent manner. These results demonstrate that fucoxanthin at 1-20μΜ effectively prevents cytotoxicity in BNL CL.2 cells treated with Fe-NTA, and that the protective effect is likely associated with decreased intracellular ROS, TBARS, protein carbonyl contents and increased GSH levels. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. The CaGeO3 Ca3Fe2Ge3O12 garnet join: an experimental study

    NASA Astrophysics Data System (ADS)

    Iezzi, Gianluca; Boffa-Ballaran, Tiziana; McCammon, Catherine; Langenhorst, Falko

    2005-06-01

    Germanate garnets are often used as isostructural analogues of silicate garnets to provide insight into the crystal chemistry and symmetry of the less accessible natural garnet solid solutions. We synthesised two series of germanate garnets at 3 GPa along the joinVIIICa3VI(CaGe)IVGe3O12 VIIICa3VIFe2IVGe3O12 at 900 °C and 1,100 °C. Samples with compositions close to the CaGeO3 end-member consist of tetragonal garnet with a small amount of triclinic CaGe2O5. Samples with nominal compositions between XFe=0.4 and 1.0 consist of a mixture of tetragonal and cubic garnets; whereas, single-phase cubic garnets were obtained for compositions with XFe>1.2 (XFe gives the iron content expressed in atoms per formula unit, and varies between 0 and 2 along the join). Run products which were primarily single-phase garnet were investigated using Mössbauer spectroscopy. Spectra from samples synthesised at 1,100°C consist of one well-resolved doublet that can be assigned to Fe3+ in the octahedral site of the garnet structure. A second doublet, present primarily in samples synthesised at 900°C, can be assigned to Fe2+ at the octahedral sites of the garnet structure. The relative abundance of Fe2+ decreases with increasing iron content. Transmission electron microscopy analyses confirm this tendency and show that the garnets are essentially defect-free. The unit-cell parameters of tetragonal VIIICa3VI(CaGe)IVGe3O3 garnet decrease with increasing synthesis temperature, and the deviation from cubic symmetry becomes smaller. Cubic garnets show a linear decrease of unit-cell parameter with increasing iron content. The results are discussed in the context of iron incorporation into VIIIMg3VI(MgSi)IVSi3O3 majorite.

  13. Porous Ni-Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Kai; Jia, Lichao; Zhang, Qian; Jiang, San Ping; Chi, Bo; Pu, Jian; Jian, Li; Yan, Dong

    2015-03-01

    Porous Ni-Fe anode supports for intermediate solid oxide fuel cells are prepared by reducing the sintered NiO-(0-50 wt. %) Fe2O3 composites in H2, their microstructure, redox and thermal expansion/cycling characteristics are systematically investigated. The sintered NiO-Fe2O3 composites are consisted of NiO and NiFe2O4, and are fully reducible to porous metallic Ni-Fe alloys in H2 at temperatures between 600 and 750 °C. The porous structure contains pores in bimodal distribution with larger pores between the sintered particles and smaller ones inside the particles. The oxidation resistance of the Ni-Fe alloy anode supports at 600 and 750 °C is increased by the addition of Fe, their oxidation kinetics obeys a multistage parabolic law in the form of (Percentageweightgain /Specificsurfacearea) 2 =kp · t , where kp is the rate constant and t the oxidation time. The dimension of the Ni-Fe anode supports is slightly changed without disintegrating their structure, and Fe addition is beneficial to the redox stability. The TEC of the Ni-Fe alloy anode supports decreases with the increase of Fe content. The anode supports containing Fe is less stable in dimension during thermal cycles due to the continuous sintering, but the dimension change after thermal cycles is within 1%.

  14. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis.

    PubMed

    Lei, Gui Jie; Zhu, Xiao Fang; Wang, Zhi Wei; Dong, Fang; Dong, Ning Yu; Zheng, Shao Jian

    2014-04-01

    Abscisic acid (ABA) has been demonstrated to be involved in iron (Fe) homeostasis, but the underlying mechanism is largely unknown. Here, we found that Fe deficiency induced ABA accumulation rapidly (within 6 h) in the roots of Arabidopsis. Exogenous ABA at 0.5 μM decreased the amount of root apoplastic Fe bound to pectin and hemicellulose, and increased the shoot Fe content significantly, thus alleviating Fe deficiency-induced chlorosis. Exogenous ABA promoted the secretion of phenolics to release apoplastic Fe and up-regulated the expression of AtNRAMP3 to enhance reutilization of Fe stored in the vacuoles, leading to a higher level of soluble Fe and lower ferric-chelate reductase (FCR) activity in roots. Treatment with ABA also led to increased Fe concentrations in the xylem sap, partially because of the up-regulation of AtFRD3, AtYSL2 and AtNAS1, genes related to long-distance transport of Fe. Exogenous ABA could not alleviate the chlorosis of abi5 mutant resulting from the significantly low expression of AtYSL2 and low transport of Fe from root to shoot. Taken together, our data support the conclusion that ABA is involved in the reutilization and transport of Fe from root to shoot under Fe deficiency conditions in Arabidopsis. © 2013 John Wiley & Sons Ltd.

  15. Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L.

    PubMed

    Sinha, Sarita; Saxena, Rohit

    2006-03-01

    The effect of Fe was investigated in medicinally important plant, Bacopa monnieri L. and the response on malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) was found different in roots and leaves of the metal treated plants. Iron induced stress was observed as indicated by high level of lipid peroxidation, being more steep increase in leaves than roots. In roots, SOD activity was found to increase in metal treated plants except 80 and 160 microM at 72 h, whereas, it decreased in leaves except 10 and 40 microM after 48 h as compared to their respective controls. Among H2O2 eliminating enzymes, POD activity increased in roots, however, it decreased in leaves except at 10 and 40 microM Fe after 48 h as compared to control. At 24 and 48 h, APX activity and ascorbic acid content followed the similar trend and were found to increase in both parts of the metal treated plants as compared to their respective controls. The level of cysteine content in the roots increased at initial period of exposure; however, no marked change in its content was noticed in leaves. In both roots and leaves, non-protein thiol content was found to increase except at higher metal concentrations at 72 h. The data of proline content have shown significant (p<0.01) increase at 40 microM onwards in both part of the plants after 48 and 72 h. Correlation coefficient was evaluated between metal accumulations with various parameters and also between different antioxidant parameters with MDA. Since the level of bacoside-A (active constituent) content in metal treated plants increases, therefore, it is advisable to assess the biological activity of the plants before using for medicinal purposes, particularly in developing countries.

  16. SOME CHANGES IN THE CARBOHYDRATE METABOLISM AND THE ALBUMIN FRACTION OF THE BLOOD SERUM OF RABBITS IN CASE OF CHRONIC TREATMENT WITH IRON-59 (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlyanskaya, R.L.

    1962-01-01

    A study was undertaken to determine the effect of chronic daily poisoning of rabbits with Fe/sup 59/on the sugar content of the blood, the albumin fraction, and the total albumin content after treatment with glucose. The results indicated that daily administration of 1 and 10 mu C/kg of body weight of Fe/sup 59/ for a total of 16 months causes only a slight change in the level of the blood sugar; only a chronic exposure to the higher dose resulted in a slight reduction in the sugar level. These animals also exhibited a tendency toward hypoglycemia. No changes were notedmore » in the total albumin content of the serum. Exposure to the higher dose for 6 months caused a reduction of the albumin fraction and a corresponding increase of the globulin content. The A/G ratio was found to decrease first, followed by an increase after a few months. (TTT)« less

  17. Effect of oxygen content of Nd-Fe-B sintered magnet on grain boundary diffusion process of DyH2 dip-coating

    NASA Astrophysics Data System (ADS)

    Bae, Kyoung-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk

    2015-11-01

    We investigated the effect of oxygen content on the microstructural and magnetic properties of a DyH2 dip-coated Nd-Fe-B sintered magnet. When the magnet had a low oxygen content (1500 ppm), the volume and size of the rare-earth-rich oxide (Nd-Dy-O) phase was reduced, and a uniform and continuous thin Nd-rich grain boundary phase (GBP) was well developed. The grain boundary diffusion depth of Dy increased from 200 to 350 μm with decreasing oxygen content from ˜3000 to 1500 ppm. The coercivity of the low-oxygen magnet increased from 19.98 to 23.59 kOe after grain boundary diffusion process (GBDP) while the remanence reduction was minimized. The formation of an fcc-NdOx Nd-rich phase in the high-oxygen magnet hindered the formation of a Nd-rich triple-junction phase and GBP. In contrast, a metallic dhcp-Nd phase, which was closely related to coercivity enhancement after GBDP, was formed in the low-oxygen magnet.

  18. [Interaction among the trace elements zinc, copper and iron after depletion and repletion of dairy cows with zinc].

    PubMed

    Kirchgessner, M; Schwarz, F J; Roth, H P; Schwarz, W A

    1978-12-01

    Imbalances in the supply with trace elements may be caused by the excessive administration of one or several elements or the insufficient administration in relation to other trace elements. This article deals with the interactions between the trace elements zinc and copper resp. zinc and iron under the conditions of the insufficient supply with Zn (6 mg per kg dry matter of the fodder) and the supply according to the demand with other trace elements (14 mg copper resp. 83 mg iron per dry matter of the fodder). For this purpose we investigated the copper, iron and zinc content of the milk and the serum of cows that were first depleted of zinc through a semi-synthetic zinc deficiency diet and then repleted with extra allowances of zinc. The closest connections exist between the copper and zinc content of the milk. Thus extreme Zn-deficiency feeding conditions the decreased Zn-content on the one hand and increased Cu-content on the other. In contrast to this, the cows' Zn-excretion in the milk increases after Zn-repletion whereas the Cu-content decreases. This shows a distinctly negative correlation. A loose connection could only be detected for the Cu- and Zn-content of the serum. Though the Zn-content changed considerably in dependence on the Zn-supply, the Cu-content remained largely uninfluenced. The Fe-content of both milk and serum shows no interaction with the nutritive Zn-supply. Only after 19 test weeks of extreme Zn-deficiency could a slight increase of the Fe-concentration be indicated.

  19. Solid state amorphization in the Al-Fe binary system during high energy milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.

    2013-12-16

    In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{submore » 2}.« less

  20. Assessment of Dephosphorization During Vanadium Extraction Process in Converter

    NASA Astrophysics Data System (ADS)

    Chen, Lian; Diao, Jiang; Wang, Guang; Xie, Bing

    2018-06-01

    Dephosphorization during the vanadium extraction process in the converter was studied. The effects of the slag basicity and FeO content on the dephosphorization and the mineral phases in the phosphorus-containing vanadium slag are discussed. The results show that removal of phosphorus from the hot metal during the vanadium extraction process can be achieved by adding lime into the vanadium extraction converter. The highest dephosphorization rate was obtained at slag basicity of 1.93. The phosphorus distribution ratio increased with increasing FeO content up to 16-18% but decreased thereafter. Vanadium was present in the slag only as spinels rather than calcium vanadate. Phosphorus was still present in the form of calcium phosphate eutectic in calcium silicate. The present work proves that the vanadium extraction and dephosphorization processes are nonconflicting reactions.

  1. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe(2+) induced lipid peroxidation in rat brain in vitro.

    PubMed

    Oboh, Ganiyu; Akinyemi, Ayodele J; Ademiluyi, Adedayo O

    2012-01-01

    Neurodegerative diseases have been linked to oxidative stress arising from peroxidation of membrane biomolecules and high levels of Fe have been reported to play an important role in neurodegenerative diseases and other brain disorder. Malondialdehyde (MDA) is the end-product of lipid peroxidation and the production of this aldehyde is used as a biomarker to measure the level of oxidative stress in an organism. The present study compares the protective properties of two varieties of ginger [red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe)] on Fe(2+) induced lipid peroxidation in rat brain in vitro. Incubation of the brain tissue homogenate in the presence of Fe caused a significant increase in the malondialdehyde (MDA) contents of the brain. However, the aqueous extract from both varieties of ginger caused a significant decrease in the MDA contents of the brain in a dose-dependent manner. However, the aqueous extract of red ginger had a significantly higher inhibitory effect on both Fe(2+)-induced lipid peroxidation in the rat brain homogenates than that of white ginger. This higher inhibitory effect of red ginger could be attributed to its significantly higher phytochemical content, Fe(2+) chelating ability, OH scavenging ability and reducing power. However, part of the mechanisms through which the extractable phytochemicals in ginger (red and white) protect the brain may be through their antioxidant activity, Fe(2+) chelating and OH scavenging ability. Therefore, oxidative stress in the brain could be potentially managed/prevented by dietary intake of ginger varieties (red ginger and white ginger rhizomes). Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet.

    PubMed

    Reed, Spenser; Neuman, Hadar; Glahn, Raymond P; Koren, Omry; Tako, Elad

    2017-01-01

    Biofortification is a plant breeding method that introduces increased concentrations of minerals in staple food crops (e.g., legumes, cereal grains), and has shown success in alleviating insufficient Fe intake in various human populations. Unlike other strategies utilized to alleviate Fe deficiency, studies of the gut microbiota in the context of Fe biofortification have not yet been reported, although the consumption of Fe biofortified staple food crops has increased significantly over time. Hence, in this study, we performed a 6-week feeding trial in Gallus gallus (n = 14), aimed to investigate the alterations in the gut microbiome following administration of an Fe biofortified bean-based diet (biofortified, BFe) versus a bean based diet with poorly-bioavailable Fe (standard, SFe). Cream seeded carioca bean based diets were designed in an identical fashion to those used in a recent human clinical trial of Fe biofortified beans in Rwanda. We hypothesized that the different dietary Fe contents in the beans based diets will alter the composition and function of the intestinal microbiome. The primary outcomes were changes in the gut microbiome composition and function analyzed by 16S rRNA gene sequencing. We observed no significant changes in phylogenetic diversity between groups. There were significant differences in the composition of the microbiota between groups, with the BFe group harboring fewer taxa participating in bacterial Fe uptake, increased abundance of bacteria involved in phenolic catabolism, and increased abundance of beneficial butyrate-producing bacteria. Additionally, depletion of key bacterial pathways responsible for bacterial viability and Fe uptake suggest that improvements in Fe bioavailability, in addition to increases in Fe-polyphenol and Fe-phytate complexes due to biofortification, led to decreased concentrations of cecal Fe available for bacterial utilization. Our findings demonstrate that Fe biofortification may improve Fe status without negatively altering the structure and function of the gut microbiota, as is observed with other nutritional methods of Fe supplementation. These results may be used to further improve the efficacy and safety of future biofortification efforts in eradicating global Fe deficiency.

  3. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively.

    PubMed

    Dimkpa, C O; Merten, D; Svatos, A; Büchel, G; Kothe, E

    2009-11-01

    As a toxic metal, cadmium (Cd) affects microbial and plant metabolic processes, thereby potentially reducing the efficiency of microbe or plant-mediated remediation of Cd-polluted soil. The role of siderophores produced by Streptomyces tendae F4 in the uptake of Cd by bacteria and plant was investigated to gain insight into the influence of siderophores on Cd availability to micro-organisms and plants. The bacterium was cultured under siderophore-inducing conditions in the presence of Cd. The kinetics of siderophore production and identification of the siderophores and their metal-bound forms were performed using electrospray ionization mass spectrometry. Inductively coupled plasma spectroscopy was used to measure iron (Fe) and Cd contents in the bacterium and in sunflower plant grown in Cd-amended soil. Siderophores significantly reduced the Cd uptake by the bacterium, while supplying it with iron. Bacterial culture filtrates containing three hydroxamate siderophores secreted by S. tendae F4 significantly promoted plant growth and enhanced uptake of Cd and Fe by the plant, relative to the control. Furthermore, application of siderophores caused slightly more Cd, but similar Fe uptake, compared with EDTA. Bioinoculation with Streptomyces caused a dramatic increase in plant Fe content, but resulted only in slight increase in plant Cd content. It is concluded that siderophores can help reduce toxic metal uptake in bacteria, while simultaneously facilitating the uptake of such metals by plants. Also, EDTA is not superior to hydroxamate siderophores in terms of metal solubilization for plant uptake. The study showed that microbial processes could indirectly influence the availability and amount of toxic metals taken up from the rhizosphere of plants. Furthermore, although EDTA is used for chelator-enhanced phytoremediation, microbial siderophores would be ideal for this purpose.

  4. Influence of Fe-substitution on structural, magnetic and magnetocaloric properties of Nd2Fe17-xCox solid solutions

    NASA Astrophysics Data System (ADS)

    Bouchaala, N.; Jemmali, M.; Bartoli, T.; Nouri, K.; Hentech, I.; Walha, S.; Bessais, L.; Salah, A. Ben

    2018-02-01

    Nd2Fe17-xCox (x = 0 , 1 , 2 , 3 , 4) intermetallic compounds, obtained under arc-melting conditions, have been investigated by means of X-ray diffraction analysis (XRD), Mössbauer spectrometry and magnetic measurements. The Rietveld refinement revealed that the sample is a pure compound with rhombohedral Th2Zn17-type structure (R 3 bar m space group) with the following lattice parameters: a = 8.5792 (2) Å, c = 12.4615 (2) Å. Using Mössbauer spectrometry analysis coupled with structural consideration we have unambiguously determined the cobalt atoms preferred inequivalent crystallographic site. Nd2Fe17 show an increase of 3.5 T in their weighted average hyperfine fields upon cobalt substitution. Whatever the cobalt content, the hyperfine field of these compounds follow this sequence Hhf { 6 c } >Hhf { 9 d } >Hhf { 18 f } >Hhf { 18 h }. The magnetic measurements showed that the Curie temperature increases with the Co content. The magnetic entropy change (ΔSM) was estimated from isothermal magnetization curves and it increases from 3.35 J/Kg K for x = 0 to 5.83 J/Kg K for x = 2 at μ0 H = 1.6 T . The relative cooling power (RCP) is in the range of 11.6 J/kg (x = 0) and 16 J/kg (x = 2).

  5. Optimization of multicore-shell Fe3O4-SiO2 magnetic nanocomposites synthesis and retention in cellulose pulp

    NASA Astrophysics Data System (ADS)

    Buteica, Dan; Borbath, Istvan; Nicolae, Ionel Valentin; Turcu, Rodica; Marinica, Oana; Socoliuc, Vlad

    2017-12-01

    The use of magnetite nanoparticles to produce magnetic paper has a severe effect on the color of the paper, which is worth searching means to alleviate. Multicore-shell Fe3O4-SiO2 magnetic nanocomposites were synthesized. The nanocomposite powder was dispersed in cellulose pulp and paper was produced by dehydration on a Rapid Kothen machine. The nanocomposite retention efficiency was investigated in correlation with nanocomposite shell thickness, the resinous vs. deciduous fiber content of the cellulose pulp, the long and short fibers' grinding degree, the cationic starch and polymeric retention agent content of the pulp. The whiteness and magnetization was measured for all paper samples. It was proved that the use of multi-core shell magnetic nanocomposites leads to weaker paper coloring. This effect is enhanced by increasing the polymeric retention agent content of the pulp, in spite of higher composite content.

  6. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbonsmore » produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same temperature range for Fe-8 wt.% Si alloy was ~26-30 %. It appears that Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α phase (disordered phase) with any minor constituents being beyond the detection limits of the studies performed, while the Fe-8 wt.% Si alloy ribbons are comprised of disordered and regions of short-range ordering.« less

  7. Influence of substrate rocks on Fe Mn crust composition

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Morgan, Charles L.

    1999-05-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  8. Influence of substrate rocks on Fe-Mn crust composition

    USGS Publications Warehouse

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  9. Experiments of eliminating the destructive effects of excessive Fe inclusions for Al secondary products

    NASA Astrophysics Data System (ADS)

    Sun, D. Q.; Dai, G. H.; Geng, F.; Yang, K.

    2017-02-01

    Excessive Fe content in Al alloys caused the serious decline of mechanical properties, such as the ductility and impact toughness. Carried out the experiments of eliminating the destructive effects of excessive Fe content by flux-adding technology, which including removing a part of Fe content from Al scrap melt and modifying the morphology of Fe rich precipitates. The experimental results showed that, the ratio of removing Fe element was above 20%, and the morphology of Fe rich precipitates changed from Lamellar to bulk or lath precipitations under the process parameters: the fluxing-agents composed of borax, and MnCl2 (mixed by mass ratio of 1:1), and the adding amount of fluxing-agents was about 1.5%; thrown the fluxing-agents into the Al scrap melt by powder injection process and kept for 30 min.

  10. Seasonal trends in the elemental content of sweet cherry leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Alonso, F.; Lachica, M.

    1987-01-01

    Seasonal variation of N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, B were determined in leaves of Prunus avium L., cv Napoleon. An equation for each element relating sampling date and content is given. Nitrogen, P, K, and Zn concentrations decreased during the vegetative cycle, while Ca, Mg, Fe and B increased. There was no seasonal change for S and Cu. The most suitable sampling period for a nutritional diagnosis is from mid-July to mid-August. There are significant interevolutive correlations among all the pairs of elements except those in which S and/or Cu take part. Certain soil parameters,more » such as an alkaline pH, a coarse texture and low content of k and organic matter could be responsible for the nutritive observed.« less

  11. Controlled cobalt doping in biogenic magnetite nanoparticles

    PubMed Central

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  12. Controlled cobalt doping in biogenic magnetite nanoparticles.

    PubMed

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-06

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuping, Duan, E-mail: duanyp@dlut.edu.c; Jia, Zhang; Hui, Jing

    Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO{sub 2} with Fe, the relative complex permittivity of MnO{sub 2} and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO{sub 2} exhibits good microwavemore » absorption capability. -- Graphical Abstract: Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized in a high magnetic field of 10 T via a simple chemical process. Display Omitted Highlights: {yields} Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized. {yields} We investigated formation mechanism and electromagnetic properties of the Fe-doped MnO{sub 2}. {yields} By doping MnO{sub 2} with Fe, the electromagnetic properties are improved obviously.« less

  14. FTIR, Raman, and UV-Vis spectroscopic and DFT investigations of the structure of iron-lead-tellurate glasses.

    PubMed

    Rada, Simona; Dehelean, Adriana; Culea, Eugen

    2011-08-01

    In this work, the effects of iron ion intercalations on lead-tellurate glasses were investigated via FTIR, Raman and UV-Vis spectroscopies. This homogeneous glass system has compositions xFe(2)O(3)·(100-x)[4TeO(2)·PbO(2)], where x = 0-60 mol%. The presented observations in these mechanisms show that the lead ions have a pronounced affinity towards [TeO(3)] structural units, resulting in the deformation of the Te-O-Te linkages, and leading to the intercalation of [PbO( n )] (n = 3, 4) and [FeO( n )] (n = 4, 6) entities in the [TeO(4)] chain network. The formation of negatively charged [FeO(4)](1-) structural units implies the attraction of Pb(2+) ions in order to compensate for this electrical charge. Upon increasing the Fe(2)O(3) content to 60 mol%, the network can accommodate an excess of oxygen through the formation of [FeO(6)] structural units and the conversion of [TeO(4)] into [TeO(3)] structural units. For even higher Fe(2)O(3) contents, Raman spectra indicate a greater degree of depolymerization of the vitreous network than FTIR spectra do. The bands due to the Pb-O bond vibrations are very strongly polarized and the [TeO(4)] structural units convert into [TeO(3)] units via an intermediate coordination stage termed "[TeO(3+1)]" structural units. Our UV-Vis spectroscopic data show two mechanisms: (i) the conversion of the Fe(3+) to Fe(2+) at the same time as the oxidation of Pb(2+) to Pb(+4) ions for samples with low Fe(2)O(3) contents; (ii) when the Fe(2)O(3) content is high (x ≥ 50 mol%), the Fe(2+) ions capture positive holes and are transferred to Fe(3+) ions through a photochemical reaction, while the Pb(2+) ions are formed by the reduction of Pb(4+) ions. DFT calculations show that the addition of Fe(2)O(3) to lead-tellurate glasses seems to break the axial Te-O bonds, and the [TeO(4)] structural units are gradually transformed into [TeO(3+1)]- and [TeO(3)]-type polyhedra. Analyzing these data further indicates a gradual conversion of the lead ions from covalent to ionic environment. There is then a charge transfer between the tri- and tetracoordinated tellurium atoms due to the capacity of the lead-tellurate network to form the appropriate coordination environments containing structural units of opposite charge, such as iron ions, [FeO(4)](1-).

  15. Spatially controlled Fe and Si isotope variations: an alternative view on the formation of the Torres del Paine pluton

    NASA Astrophysics Data System (ADS)

    Gajos, Norbert A.; Lundstrom, Craig C.; Taylor, Alexander H.

    2016-11-01

    We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = -0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.

  16. Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes.

    PubMed

    Gomez, Mauricio; Pérez-Gallardo, Rocío V; Sánchez, Luis A; Díaz-Pérez, Alma L; Cortés-Rojo, Christian; Meza Carmen, Victor; Saavedra-Molina, Alfredo; Lara-Romero, Javier; Jiménez-Sandoval, Sergio; Rodríguez, Francisco; Rodríguez-Zavala, José S; Campos-García, Jesús

    2014-01-01

    Biogenesis and recycling of iron-sulfur (Fe-S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe-S clusters are assembled into apoproteins by the iron-sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe-S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe-S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe-S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.

  17. Electrodepositing behaviors and properties of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths containing compound carboxylate-urea system.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Li, Chen; Jiang, Yumei; Wu, Luye

    2013-06-01

    The nano Fe-Ni-Cr/SiC composite coatings were prepared using pulse electrodeposition method from trivalent chromium baths containing compound carboxylate-urea system and nano SiC in ultrasonic field. The effects of the carboxylate-urea system on the nano Fe-Ni-Cr/SiC composite coatings have been investigated. These results indicated that the SiC and Cr contents and the thickness of the Fe-Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that the cathodic polarization of the matrix metal ions could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Fe-Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Fe-Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction (XRD). XRD data showed that the as-posited coating was Fe-Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the functional Fe-Ni-Cr/SiC composite coatings with 4.1 wt.% SiC and 25.1 wt.% Cr, and 23.9 microm thickness were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Fe-Ni-Cr/SiC composite coatings.

  18. Comprehensive structural and chemical (CO2, Fe/Fe Mg, H2O) investigations of Mg-Fe cordierite with micro Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Haefeker, U.; Kaindl, R.; Tropper, P.

    2012-04-01

    The Mg-Fe silicate cordierite with the idealized formula (Fe, Mg)2Al4Si5O18 occurs as a hexagonal and an orthorhombic polymorph with disordered/ordered Al-Si distribution on the tetrahedral sites. Most of the natural cordierites are fully ordered. Six-membered rings of (Si,Al)O4 are piled in the direction of the crystallographic c-axis and form channels, laterally and vertically linked by additional (Al, Si) tetrahedrons. Mg and Fe in varying fractions occupy the octahedrally coordinated M-sites. CO2 and H2O (and other volatiles) can be incorporated into the structural channels, thus cordierite can be used for paleofluid reconstruction. The vibration energies of incorporated volatiles, their interaction with the lattice and variations of certain lattice-vibration energies caused by the Mg-Fe exchange can be determined with Raman spectroscopy, allowing chemical quantifications and structural investigations. A method for the semi-quantitative determination of CO2-contents of natural cordierites by Kaindl et al. (2006) was optimized and enhanced by Haefeker et al. (2007). CO2 contents can be measured in single crystals and thin sections with an error of ± 0.05 - 0.09 wt.-%. Based on the Mg-Fe exchange with garnet, cordierite can be used as a geothermobarometer. Recent investigations of synthetic Mg-Fe cordierites with XFe = 0 - 1 have shown a linear downshift of six selected lattice peaks between 100 and 1250 cm-1 with the Mg-Fe contents. Correlation diagrams allow an estimation of the Mg-Fe contents in synthetic and natural samples. The experimental data are in good agreement with the results of quantum-mechanical calculations of the Raman spectra of Mg- and Fe cordierite (Kaindl et al., 2011) allowing the assignment of the peaks to specific vibrations of tetrahedral and octahedral sites. Natural Mg-Fe cordierites are mainly orthorhombic with a fully ordered Al/Si distribution on the tetrahedral sites. However, the disordered hexagonal polymorph is observed in many experiments. Raman spectroscopy allows easy distinguishing between the two polymorphs by the splitting of a characteristic peak at ~569 cm-1. Crystallographic and Raman spectroscopic data of the Fe endmember polymorphs are rare in literature, therefore, Raman and single-crystal x-ray data of synthetic samples were collected and compared with the well-known Mg and Mg-Fe cordierites. First compositional Raman maps show a relation between the degree of ordering of Fe cordierite and the amount of water incorporated into the channels. The effects of water incorporation on the Raman spectra of Mg cordierites is currently being evaluated. Preliminary investigations indicate a downshift of the peak at ~1186 cm-1with increasing water contents. Literature: Kaindl, R., Tropper P., Deibl, I. (2006) A semi-quantitative technique for determination of CO2in cordierite by Raman spectroscopy in thin sections. Eur. J. Mineral, 18, 331-335 Haefeker, U. (2007) Verbesserte semiquantitative Analyse von CO2 in natürlichem Cordierit mit Hilfe der Mikro-Raman-Spektroskopie. Unpublished master thesis. University of Innsbruck, 86p Kaindl, R., Többens, D. M., Haefeker, U. (2011) Quantum-mechanical calculations of the Raman spectra of Mg- and Fe-cordierite. American Mineralogist, 96, 1568-1574

  19. Bioaccessible nutrients and bioactive components from fortified products prepared using finger millet (Eleusine coracana).

    PubMed

    Oghbaei, Morteza; Prakash, Jamuna

    2012-08-30

    Finger millet (Eleusine coracana), a staple food in semi-arid parts of the world, is a rich source of nutrients and bioactive components comparable to rice and wheat but with higher fibre content. Unprocessed and processed finger millet (whole flour (WFM), sieved flour (SFM), wafers and vermicelli with altered matrices (added Fe or Zn or reduced fibre)) were analysed for chemical composition, bioaccessible Fe, Zn and Ca, in vitro digestible starch (IVSD) and protein (IVPD) and bioactive components (polyphenols and flavonoids). WFM and SFM flours differed significantly in their composition. Sieving decreased the content of both nutrients and antinutrients in WFM but increased their digestibility/bioaccessibility. WFM products with Zn and Fe showed highest IVPD, whereas SFM products with Fe showed highest IVSD. Products with externally added Fe and Zn showed maximum bioaccessibility of Fe and Zn respectively. WFM had the highest levels of total polyphenols and flavonoids, 4.18 and 15.85 g kg⁻¹ respectively; however, bioaccessibility was highest in SFM vermicelli. The availability of nutrients and bioactive components was influenced by both processing methods and compositional alterations of the food matrix in finger millet products, and bioaccessibility of all constituents was higher in vermicelli (wet matrix) than in wafers (dry matrix). Copyright © 2012 Society of Chemical Industry.

  20. Changes in iron, zinc and chelating agents during traditional African processing of maize: Effect of iron contamination on bioaccessibility.

    PubMed

    Greffeuille, Valérie; Polycarpe Kayodé, A P; Icard-Vernière, Christèle; Gnimadi, Muriel; Rochette, Isabelle; Mouquet-Rivier, Claire

    2011-06-15

    The effect of the different unit operations of processing traditionally used to produce four maize foods commonly consumed in Africa on the nutritional composition of the products was investigated, using Benin as a study context. The impact of the processes on lipid, fibre, phytate, iron and zinc contents varied with the process. The lowest IP6/Fe and IP6/Zn molar ratios, the indices used to assess Fe and Zn bioavailability were obtained in mawè, a fermented dough. Analysis of maize products highlighted a significant increase in iron content after milling, as a result of contamination by the equipment used. Evaluation of iron bioaccessibility by in vitro enzymatic digestion followed by dialysis revealed that the iron contamination, followed by lactic acid fermentation, led to a considerable increase in bioaccessible iron content. Extrinsic iron supplied to food products by the milling equipment could play a role in iron intake in developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Density-Pressure Profiles of Fe-Bearing MgSiO3 Liquid: Effects of Valence and Spin States, and Implications for the Chemical Evolution of the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Karki, Bijaya B.; Ghosh, Dipta B.; Maharjan, Charitra; Karato, Shun-ichiro; Park, Jeffrey

    2018-05-01

    Density is a key property controlling the chemical state of Earth's interior. Our knowledge about the density of relevant melt compositions is currently poor at deep-mantle conditions. Here we report results from first-principles molecular-dynamics simulations of Fe-bearing MgSiO3 liquids considering different valence and spin states of iron over the whole mantle pressure conditions. Our simulations predict the high-spin to low-spin transition in both ferrous and ferric iron in the silicate liquid to occur gradually at pressures around 100 GPa. The calculated iron-induced changes in the melt density (about 8% increase for 25% iron content) are primarily due to the difference in atomic mass between Mg and Fe, with smaller contributions (<2%) from the valence and spin states. A comparison of the predicted density of mixtures of (Mg,Fe)(Si,Fe)O3 and (Mg,Fe)O liquids with the mantle density indicates that the density contrast between the melt and residual-solid depends strongly on pressure (depth): in the shallow lower mantle (depths < 1,000 km), the melt is lighter than the solids, whereas in the deep lower mantle (e.g., the D″ layer), the melt density exceeds the mantle density when iron content is relatively high and/or melt is enriched with Fe-rich ferropericlase.

  2. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.

  3. Perpendicular magnetic anisotropy and spin reorientation transition in L1{sub 0} FePt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jae Young; Lee, Nyun Jong; Kim, Tae Hee

    2011-04-01

    We investigated the thickness and composition dependence of perpendicular magnetic anisotropy (PMA) in L1{sub 0} Fe{sub 1-x}Pt{sub x} (x = 0.4, 0.5, and 0.55) films. The FePt films with different thicknesses of 35 and 70 A were grown at the substrate temperature T{sub s} = 300 deg. C by molecular beam epitaxy coevaporation technique. A (001)-oriented epitaxial L1{sub 0} FePt film was grown on the thin (001)-oriented fcc Pt layer, while a poorly crystallized FePt film was formed on the (111)-textured Pt layer. Our results showed that, at a fixed thickness of 70 A, the PMA of FePt alloy filmsmore » is enhanced as Pt content increases from 40% to 55%.« less

  4. Simple and Precise Quantification of Iron Catalyst Content in Carbon Nanotubes Using UV/Visible Spectroscopy.

    PubMed

    Agustina, Elsye; Goak, Jeungchoon; Lee, Suntae; Seo, Youngho; Park, Jun-Young; Lee, Naesung

    2015-10-01

    Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red-orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.

  5. Preparation and properties of Ba xSr 1- xCo yFe 1- yO 3- δ cathode material for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Hailei; Shen, Wei; Zhu, Zhiming; Li, Xue; Wang, Zhifeng

    Ba xSr 1- xCo yFe 1- yO 3- δ (BSCF) materials with perovskite structure were synthesized via solid-state reaction. Their structural characteristics, electrical-conduction behavior and cathode performance were investigated. Compared to A-site elements, B-site elements show a wide solid-solution range in BSCF. The electrical-conduction behavior of BSCF obeys the small polaron-hopping mechanism. An increase of Ba or Co content in the BSCF samples results in a decrease of electrical conductivity, which is mainly attributable to the preferential existence of B 3+ rather than B 4+ in Ba- or Co-rich samples. At the same time, this leads to increases in the lattice parameter a and the number of oxygen vacancies. BSCF samples with high Ba content show a high structural stability (high oxygen-loss temperature). Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ and Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ materials present good thermal-cycling stability of the electrical conductivity. Compared with Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ, Ba 0.6Sr 0.4Co 0.8Fe 0.2O 3- δ exhibits a better cathode performance in a Ce 0.8Gd 0.2O 2- δ (GDC)-supported half cell. The cell performance can be improved by introducing a certain amount of GDC electrolyte into the BSCF cathode material.

  6. Influence of Coprecipitated Organic Matter on Fe2+(aq) -Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chunmei; Kukkadapu, Ravi K.; Sparks, Donald L.

    2015-08-10

    The poorly crystalline Fe(III) hydroxide ferrihydrite is an important sink for organic matter (OM), nutrients and contaminants in soils and sediments. Aqueous Fe(II) is known to catalyze the transformation of ferrihydrite to more crystalline and thus less reactive phases. While coprecipitation of OM with ferrihydrite could be a common process in many environments due to changes in pH, redox potential or ionic strength, little is known about the impacts of coprecipitated OM on Fe(II)-catalyzed ferrihydrite transformation and its consequences for C dynamics. Accordingly, we explored the extent and pathways of Fe(II)-induced transformation of OM-ferrihydrite coprecipitates and subsequent C mobility. Mössbauermore » spectroscopic results indicated that the coprecipitated OM within ferrihydrite weakened the inter-particle magnetic interactions and decreased average particle size. The coprecipitated OM resulted in diminished Fe(II)-induced ferrihydrite transformation and thus preservation of ferrihydrite. The secondary mineral profiles upon Fe(II) reaction with ferrihydrite were a function of OM content and Fe(II) concentration. At low Fe(II) levels, OM completely inhibited goethite formation and stimulated lepidocrocite formation. At high Fe(II) levels, whereas goethite was formed in the presence of OM, OM reduced the amount of goethite and magnetite formation and increased the formation of lepidocrcocite. The solid-phase C content remained unchanged after reaction, while OM desorpability by H2PO4- was enhanced following reaction of OM-ferrihydrites with aqueous Fe(II). These findings provide insights into the reactivity of natural ferrihydrite containing OM in soils and sediments and the subsequent impact on mineral evolution and C dynamics.« less

  7. Structural transitions and multiferroic properties of high Ni-doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Betancourt-Cantera, L. G.; Bolarín-Miró, A. M.; Cortés-Escobedo, C. A.; Hernández-Cruz, L. E.; Sánchez-De Jesús, F.

    2018-06-01

    Nickel doped bismuth ferrite powders, BiFe1-x NixO3 (0 ≤ x ≤ 0.5), were synthesized by high-energy ball milling followed by an annealing at 700 °C. A detailed study about the substitution of Fe3+ by Ni2+ on the crystal structure and multiferroic properties is presented. The X-ray diffraction patterns reveal the formation of rhombohedral structure with small amounts of Bi2Fe4O9 as a secondary phase for x < 0.1. Also it is inferred the stabilization of a Bi25FeO40, sillenite phase, as the amount of Ni2+ substitution increases, reaching up 95.23% of sillenite for x = 0.5. The magnetic behavior indicates the frustration of the G-antiferromagnetic order typical of the un-doped BiFeO3, caused by the presence of small amounts of Ni2+ (x < 0.1) on the structure. The DC conductivity exhibited a little increment with increasing Ni content (up to x = 0.1). Although the conductivity increases, for nickel concentrations of 0.2-0.5, the bismuth ferrites doped with nickel retain their property of being an electrical insulating material. Behavior modifications of electrical conductivity, permittivity and dielectric loss versus frequency are related with crystal structure transformations, when nickel concentration is increased.

  8. Origin of the emergence of higher T c than bulk in iron chalcogenide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Sehun; Kang, Jong-Hoon; Oh, Myeong Jun

    Fabrication of epitaxial FeSe xTe 1-x thin films using pulsed laser deposition (PLD) enables improving their superconducting transition temperature (T c) by more than ~40% than their bulk T c. Intriguingly, T c enhancement in FeSe xTe 1-x thin films has been observed on various substrates and with different Se content, x. To date, various mechanisms for T c enhancement have been reported, but they remain controversial in universally explaining the T c improvement in the FeSe xTe 1-x films. In this report, we demonstrate that the controversies over the mechanism of T c enhancement are due to the abnormalmore » changes in the chalcogen ratio (Se:Te) during the film growth and that the previously reported T c enhancement in FeSe 0.5Te 0.5 thin films is caused by a remarkable increase of Se content. Although our FeSe xTe 1-x thin films were fabricated via PLD using a Fe 0.94Se 0.45Te 0.55 target, the precisely measured composition indicates a Se-rich FeSe xTe 1-x (0.6 < x < 0.8) as ascertained through accurate compositional analysis by both wavelength dispersive spectroscopy (WDS) and Rutherford backscattering spectrometry (RBS). We suggest that the origin of the abnormal composition change is the difference in the thermodynamic properties of ternary FeSe xTe 1-x, based on first principle calculations.« less

  9. Origin of the emergence of higher T c than bulk in iron chalcogenide thin films

    DOE PAGES

    Seo, Sehun; Kang, Jong-Hoon; Oh, Myeong Jun; ...

    2017-08-30

    Fabrication of epitaxial FeSe xTe 1-x thin films using pulsed laser deposition (PLD) enables improving their superconducting transition temperature (T c) by more than ~40% than their bulk T c. Intriguingly, T c enhancement in FeSe xTe 1-x thin films has been observed on various substrates and with different Se content, x. To date, various mechanisms for T c enhancement have been reported, but they remain controversial in universally explaining the T c improvement in the FeSe xTe 1-x films. In this report, we demonstrate that the controversies over the mechanism of T c enhancement are due to the abnormalmore » changes in the chalcogen ratio (Se:Te) during the film growth and that the previously reported T c enhancement in FeSe 0.5Te 0.5 thin films is caused by a remarkable increase of Se content. Although our FeSe xTe 1-x thin films were fabricated via PLD using a Fe 0.94Se 0.45Te 0.55 target, the precisely measured composition indicates a Se-rich FeSe xTe 1-x (0.6 < x < 0.8) as ascertained through accurate compositional analysis by both wavelength dispersive spectroscopy (WDS) and Rutherford backscattering spectrometry (RBS). We suggest that the origin of the abnormal composition change is the difference in the thermodynamic properties of ternary FeSe xTe 1-x, based on first principle calculations.« less

  10. 2Flux growth and characterization of Ce-substituted Nd 2 Fe 14 B single crystals

    DOE PAGES

    Susner, Michael A.; Conner, Benjamin S.; Saparov, Bayrammurad I.; ...

    2016-10-27

    Single crystals of (Nd 1-xCe x) 2Fe 14B are grown out of Fe-(Nd,Ce) flux. Chemical and structural analysis of the crystals indicate that (Nd 1-xCe x) 2Fe 14B forms a solid solution until at least x = 0.38 with a Vegard-like variation of the lattice constants with x. Refinements of single crystal neutron diffraction data indicate that Ce has a slight site preference (7:3) for the 4g rare earth site over the 4f site. Magnetization measurements at 300 K show only small decreases with increasing Ce content in saturation magnetization (M s) and anisotropy field (H A), and Curie temperaturemore » (T C). First principles calculations are carried out to understand the effect of Ce substitution on the electronic and magnetic properties. For a multitude of applications, it is expected that the advantage of incorporating lower-cost and more abundant Ce will outweigh the small adverse effects on magnetic properties. In conclusion, Ce-substituted Nd 2Fe 14B is therefore a potential high-performance permanent magnet material with substantially reduced Nd content.« less

  11. Sound velocity of Fe-S liquids at high pressure: Implications for the Moon's molten outer core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Zhicheng; Wang, Yanbin; Kono, Yoshio

    2014-07-21

    Sound velocities of Fe and Fe–S liquids were determined by combining the ultrasonic measurements and synchrotron X-ray techniques under high pressure–temperature conditions from 1 to 8 GPa and 1573 K to 1973 K. Four different liquid compositions were studied including Fe, Fe–10 wt% S, Fe–20 wt% S, and Fe–27 wt% S. Our data show that the velocity of Fe-rich liquids increases upon compression and decreases with increasing sulfur content, whereas temperature has negligible effect on the velocity of Fe–S liquids. The sound velocity data were combined with ambient-pressure densities to fit the Murnaghan equation of state (EOS). Compared to themore » lunar seismic model, our velocity data constrain the sulfur content at 4±3 wt%, indicating a significantly denser (6.5±0.5 g/cm 3) and hotter (1870-70+100 K) outer core than previously estimated. A new lunar structure model incorporating available geophysical observations points to a smaller core radius. Our model suggests a top–down solidification scenario for the evolution of the lunar core. Such “iron snow” process may have been an important mechanism for the growth of the inner core.« less

  12. Bulk composition of the Moon in the context of models for condensation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Goettel, K. A.

    1984-01-01

    The FeO content of the Moon is substantially higher than the present FeO content of the Earth's mantle. If the Moon formed by fission from the Earth's mantle, then the conclusion that the Earth's mantle must have been much richer in FeO at the time of fission appears firm. If the Moon formed independently in geocentric orbit, then the FeO contents of the two bodies should be similar, because both would be accreting from the same source of silicate material. Therefore, Earth's mantle at the time of lunar formation probably had an FeO content quite similar to the present FeO content of the Moon. This conclusion, if valid, has profound implications in two areas: (1) the differentiation history of the Earth's mantle and core; and (2) the processes responsible for governing the bulk compositions of the terrestrial planets. If Earth had more FeO than previously thought, then the composition differences between Earth and Mars are less than previously believed. This suggests that condensation temperature and heliocentric distance may have been less important in governing planetary compositions and other mechanisms, including iron/silicate fractionation may have been more important. The implication of this model for the compositions of the Moon and the other terrestrial planets are discussed.

  13. Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment

    NASA Astrophysics Data System (ADS)

    Tuzi, Silvia; Lai, Haiping; Göransson, Kenneth; Thuvander, Mattias; Stiller, Krystyna

    2017-04-01

    Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe2O4 crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.

  14. ThMn12-type phases for magnets with low rare-earth content: Crystal-field analysis of the full magnetization process.

    PubMed

    Tereshina, I S; Kostyuchenko, N V; Tereshina-Chitrova, E A; Skourski, Y; Doerr, M; Pelevin, I A; Zvezdin, A K; Paukov, M; Havela, L; Drulis, H

    2018-02-26

    Rare-earth (R)-iron alloys are a backbone of permanent magnets. Recent increase in price of rare earths has pushed the industry to seek ways to reduce the R-content in the hard magnetic materials. For this reason strong magnets with the ThMn 12  type of structure came into focus. Functional properties of R(Fe,T) 12 (T-element stabilizes the structure) compounds or their interstitially modified derivatives, R(Fe,T) 12 -X (X is an atom of hydrogen or nitrogen) are determined by the crystal-electric-field (CEF) and exchange interaction (EI) parameters. We have calculated the parameters using high-field magnetization data. We choose the ferrimagnetic Tm-containing compounds, which are most sensitive to magnetic field and demonstrate that TmFe 11 Ti-H reaches the ferromagnetic state in the magnetic field of 52 T. Knowledge of exact CEF and EI parameters and their variation in the compounds modified by the interstitial atoms is a cornerstone of the quest for hard magnetic materials with low rare-earth content.

  15. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    NASA Astrophysics Data System (ADS)

    Jin, C.; Li, Y.; Li, Y. L.; Zou, Y.; Zhang, G. L.; Normura, M.; Zhu, G. Y.

    2008-08-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 Å and the Fe-Np bond length slightly increases, but the Fe-N ɛ bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases.

  16. Enriching rice with Zn and Fe while minimizing Cd risk

    PubMed Central

    Slamet-Loedin, Inez H.; Johnson-Beebout, Sarah E.; Impa, Somayanda; Tsakirpaloglou, Nikolaos

    2015-01-01

    Enriching iron (Fe) and zinc (Zn) content in rice grains, while minimizing cadmium (Cd) levels, is important for human health and nutrition. Natural genetic variation in rice grain Zn enables Zn-biofortification through conventional breeding, but limited natural Fe variation has led to a need for genetic modification approaches, including over-expressing genes responsible for Fe storage, chelators, and transporters. Generally, Cd uptake and allocation is associated with divalent metal cations (including Fe and Zn) transporters, but the details of this process are still unknown in rice. In addition to genetic variation, metal uptake is sometimes limited by its bioavailability in the soil. The availability of Fe, Zn, and Cd for plant uptake varies widely depending on soil redox potential. The typical practice of flooding rice increases Fe while decreasing Zn and Cd availability. On the other hand, moderate soil drying improves Zn uptake but also increases Cd and decreases Fe uptake. Use of Zn- or Fe-containing fertilizers complements breeding efforts by providing sufficient metals for plant uptake. In addition, the timing of nitrogen fertilization has also been shown to affect metal accumulation in grains. The purpose of this mini-review is to identify knowledge gaps and prioritize strategies for improving the nutritional value and safety of rice. PMID:25814994

  17. Synthesis, characterization and magnetic properties of MWCNTs decorated with Zn-substituted MnFe2O4 nanoparticles using waste batteries extract

    NASA Astrophysics Data System (ADS)

    Gabal, M. A.; Al-Harthy, E. A.; Al Angari, Y. M.; Abdel Salam, M.; Asiri, A. M.

    2016-06-01

    Mn1-xZnxFe2O4 (x=0.2-0.8) nano-crystals, synthesized from recycling of Zn-C batteries, were successfully self-assembled alongside multi-walled carbon nanotubes (MWCNTs) via an environmentally friend sucrose auto-combustion method. The effect of Zn-content on structural and magnetic properties were investigated and discussed. XRD revealed the formation of single-phase ferrites. DTA-TG experiment showed that the auto-combustion reaction finished at about 350 °C. TEM exhibited that the MWCNTs are well decorated with ferrite particles. Hysteresis loop measurements revealed ferromagnetic behavior, with saturation magnetization decrease by the addition of MWCNTs or increasing Zn-Content. The kinetics of methylene blue dye (MB) removal using MWCNTs/Mn0.8Zn0.2Fe2O nano-composite was investigated and discussed.

  18. The BCC/B2 morphologies in Al xNiCoFeCr high-entropy alloys

    DOE PAGES

    Ma, Yue; Jiang, Beibei; Li, Chunling; ...

    2017-02-15

    Here, the present work primarily investigates the morphological evolution of the body-centered-cubic (BCC)/B2 phases in Al xNiCoFeCr high-entropy alloys (HEAs) with increasing Al content. It is found that the BCC/B2 coherent morphology is closely related to the lattice misfit between these two phases, which is sensitive to Al. There are two types of microscopic BCC/B2 morphologies in this HEA series: one is the weave-like morphology induced by the spinodal decomposition, and the other is the microstructure of a spherical disordered BCC precipitation on the ordered B2 matrix that appears in HEAs with a much higher Al content. The mechanical properties,more » including the compressive yielding strength and microhardness of the Al xNiCoFeCr HEAs, are also discussed in light of the concept of the valence electron concentration (VEC).« less

  19. Low temperature preparation of highly fluorinated multiwalled carbon nanotubes activated by Fe3O4 towards enhanced microwave absorbing property.

    PubMed

    Liu, Yang; Zhang, Yichun; Zhang, Cheng; Huang, Benyuan; Li, Yulong; Lai, Wenchuan; Wang, Xu; Liu, Xiangyang

    2018-06-11

    Conventional approach to preparation highly fluorinated multiwalled carbon nanotubes (MWCNTs) always need high temperature. This paper presents a catalytic tactic realizing effective fluorination of MWNCTs at room temperature (RT). Fe3O4@MWCNTs composites with Fe3O4 loaded on MWCNTs were firstly prepared through solvothermal method, which is followed by fluorination treatment at RT. The attachment of Fe3O4 changes the charge distribution and dramatically improves the fluorination activity of MWCNTs. Consequently, the fluorine content of fluorinated Fe3O4@MWCNTs (F-Fe3O4@MWCNTs) can reach up to 17.13 at% (almost 6 times that of the unloaded sample) only after room temperature of fluorination, which lead to obvious decrease of permittivity. Besides, the partial fluorination of Fe3O4 brings about abnormal enhanced permeability due to strengthened exchange resonance. Benefiting from the lower permittivity and higher permeability, F-Fe3O4@CNTs composite exhibit increased impedance matching. As a result, F-Fe3O4@CNTs behave good microwave absorption property with minimal reflection loss -45 dB at 2.61 mm when filler content is 13 wt%. The efficient absorption bandwidth (<-10 dB) reaches 4.1 GHz when the thickness is 2.5 mm. This work illustrates a novel catalytic approach to prepare highly fluorinated MWCNTs as promising microwave absorbers, and the design concept can also be extended to the fluorination of other carbon materials. © 2018 IOP Publishing Ltd.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. %more » of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.« less

  1. Iron phosphate glasses: Bulk properties and atomic scale structure

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  2. Electric modulation of conduction in multiferroic Ni-doped GaFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Ghani, Awais; Yang, Sen; Rajput, S. S.; Ahmed, S.; Murtaza, Adil; Zhou, Chao; Yu, Zhonghai; Zhang, Yin; Song, Xiaoping; Ren, Xiaobing

    2018-06-01

    In this work, the effects of Ni substitution on the electrical leakage and multiferroic properties of GaFeO3 were examined. Structural analysis of grown ceramics using x-ray diffraction and Raman shows that all ceramics have pure phases with an orthorhombic structure and space group. Ni substitutions slightly modify lattice parameters and induce lattice distortion within the same crystalline structure. It is observed that with increasing Ni-content up to 0.10, the magnetic transition temperature () increases from 196 K to 407 K. Ni-doped samples showed better ferroelectric properties and a drastic reduction in leakage current (~three orders of magnitude) at room temperature. Enhanced characteristics behavior is observed for 10% Ni substitution (GaFe0.9Ni0.1O3) and higher substitution leads to deterioration of properties with a larger leakage current. It is proposed that the role of Ni substitution can reduce hopping between Fe+3 and Fe+2 as well as suppressing the oxygen vacancies. This work would open new possibilities for integrating polycrystalline GaFeO3 at room temperature for magnetoelectric applications.

  3. Density of Fe-3.5 wt% C liquid at high pressure and temperature and the effect of carbon on the density of the molten iron

    NASA Astrophysics Data System (ADS)

    Shimoyama, Yuta; Terasaki, Hidenori; Ohtani, Eiji; Urakawa, Satoru; Takubo, Yusaku; Nishida, Keisuke; Suzuki, Akio; Katayama, Yoshinori

    2013-11-01

    Carbon is a plausible light element candidate in the Earth’s outer core. We measured the density of liquid Fe-3.5 wt% C up to 6.8 GPa and 2200 K using an X-ray absorption method. The compression curve of liquid Fe-C was fitted using the third-order Birch-Murnaghan equation of state. The bulk modulus and its pressure derivative are K0,1500K = 55.3 ± 2.5 GPa and (dK0/dP)T = 5.2 ± 1.5, and the thermal expansion coefficient is α = 0.86 ± 0.04 × 10-4 K-1. The Fe-C density abruptly increases at pressures between 4.3 and 5.5 GPa in the range of present temperatures. Compared with the results of previous density measurements of liquid Fe-C, the effect of carbon on the density of liquid Fe shows a nonideal mixing behavior. The abrupt density increase and nonideal mixing behavior are important factors in determining the light element content in the Earth’s core.

  4. Sulfide Melts and Chalcophile Element Behavior in High Temperature Systems

    NASA Astrophysics Data System (ADS)

    Wood, B. J.; Kiseeva, K.

    2016-12-01

    We recently found that partition coefficients (Di) of many weakly and moderately chalcophile elements (e.g., Cd, Zn, Co, Cr, Pb, Sb, In) between sulfide and silicate melts are simple functions of the FeO content of the silicate liquid: logDi A-Blog[FeO] where [FeO] is the FeO concentration in the silicate, A and B are constants and the latter is related to the valency of the element of interest. In contrast, some strongly chalcophile (e.g Cu, Ni, Ag) and lithophile elements (e.g Mn) show marked deviations from linearity on a plot of logDi vs log[FeO]. More recent experiments show that linear behavior is confined to elements whose affinities for S and O are similar to those of Fe. In the case of elements more strongly lithophile than Fe (Ti, U, REE, Zr, Nb, Ta, Mn) a plot of logDi versus log[FeO] describes a U-shape with the element partitioning strongly into the sulfide at very low FeO and again at very high FeO content of the silicate melt. In contrast, strongly chalcophile elements (Cu, Ni, Ag) describe an n-shape on the plot of logD vs log[FeO]. The result is that lithophile elements such as Nb become more "chalcophile" than Cu at very low and very high FeO contents of the silicate melt. The reasons for this surprising behavior are firstly that, at very low FeO contents the silicate melt dissolves substantial amounts of sulfur, which drives down the activity of FeO and, from mass-action "pulls" the lihophile element into the sulfide. At high FeO contents of the silicate the sulfide itself starts to dissolve substantial amounts of oxygen and lithophile elements follow the oxygen into the sulfide. Given the principles which we have established, we are able to describe the patterns of chalcophile element behavior during partial melting and fractional crystallisation on Earth and also on bodies such as Mercury and Mars which are, respectively, strongly reduced relative to Earth and more oxidised than Earth.

  5. Preliminary study of heavy metal pollution from Fe-Al oxides in Peihuang Creek, North Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, B.

    2012-12-01

    Tatun Volcano Group (TVG) is not active since late Pleistocene but the post-volcanic activities, such as hot spring and sulfur gas, still widespread around the volcano province. Peihuang Creek is the main watershed system in TVG. The creek water is characterized by higher temperature, low pH values (3.0-4.5) and high SO4 content (60-400 ppm) due to the mixing of hotspring. This would promote the geochemical interaction between water and andesitic rocks and results in waters with highly enriched iron, aluminum and silica. These elements prefer to form suspended colloidal particles in water and adsorb heavy metals. Once the pH of water increases under oxidation condition, the colloid would precipitate in the form of ochre colored powder on the riverbed. The previous study reports that the arsenic content can reach as high as hundreds ppm. It is very important to evaluate the desorption behavior of heavy metals, especially for the study area with highly developed agriculture. For the preliminary analysis, five samples of ochre colored powder were sampled along the creek. The results of XRF demonstrate that the powder is mainly composed of iron, aluminum and silica, which is Fe-Al hydroxide. The iron content of Fe-Al hydroxide decreases from 63% to 25% while the aluminum and silica contents gradually increase from 5% to 20% and from 9% to 30%, respectively. To evaluate the desorption of heavy metals, the sequential extraction procedure was conducted. In the first step for determining leachable metals, the Fe-Al oxides were extracted with deionized water in the room temperature for one week. All of the metals are in ppb level except copper. For determining reducible phase, Step 2 used reagent solution of 0.5 mol/L hydroxylamine hydrochloride, which was adjusted to pH=2 with ultrapure nitric acid, for one week. The extracted chromium, arsenic, lead and copper are in the dangerous level of tens to hundreds ppm. It is believed that only very small amounts of heavy metals were extracted due to extraordinary high content of Fe oxide in the powder. These metals would be expected to be released under reducing conditions. And, more extraction methods simulating different natural and anthropogenic environment will be performed in the future research. Rare earth elements (REE) are an excellent indicator of adsorption/desorption geochemistry and were also determined in this study. The results demonstrate a light REE enriched pattern, which reveals that the Fe-Al oxides prefer to bind metals with low ionic potential. In addition, a positive cerium anomaly indicates an oxidation condition during the precipitation of Fe-Al oxides.

  6. Fe2O3-loaded activated carbon fiber/polymer materials and their photocatalytic activity for methylene blue mineralization by combined heterogeneous-homogeneous photocatalytic processes

    NASA Astrophysics Data System (ADS)

    Kadirova, Zukhra C.; Hojamberdiev, Mirabbos; Katsumata, Ken-Ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Okada, Kiyoshi

    2017-04-01

    Fe2O3-supported activated carbon felts (Fe-ACFTs) were prepared by impregnating the felts consisted of activated carbon fibers (ACFs) with either polyester fibers (PS-A20) or polyethylene pulp (PE-W15) in Fe(III) nitrate solution and calcination at 250 °C for 1 h. The prepared Fe-ACFTs with 31-35 wt% Fe were characterized by N2-adsorption, scanning electron microscopy, and X-ray diffraction. The Fe-ACFT(PS-A20) samples with 5-31 wt% Fe were microporous with specific surface areas (SBET) ranging from 750 to 150 m2/g, whereas the Fe-ACFT(PE-W15) samples with 2-35 wt% Fe were mesoporous with SBET ranging from 830 to 320 m2/g. The deposition of iron oxide resulted in a decrease in the SBET and methylene blue (MB) adsorption capacity while increasing the photodegradation of MB. The optimum MB degradation conditions included 0.98 mM oxalic acid, pH = 3, 0.02-0.05 mM MB, and 100 mg/L photocatalyst. The negative impact of MB desorption during the photodegradation reaction was more pronounced for mesoporous PE-W15 samples and can be neglected by adding oxalic acid in cyclic experiments. Almost complete and simultaneous mineralization of oxalate and MB was achieved by the combined heterogeneous-homogeneous photocatalytic processes. The leached Fe ions in aqueous solution [Fe3+]f were measured after 60 min for every cycle and found to be about 2 ppm in all four successive cycles. The developed photocatalytic materials have shown good performance even at low content of iron oxide (2-5 wt% Fe-ACFT). Moreover, it is easy to re-impregnate the ACF when the content of iron oxide is reduced during the cyclic process. Thus, low leaching of Fe ions and possibility of cyclic usage are the advantages of the photocatalytic materials developed in this study.

  7. Unraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterability.

    PubMed

    Zhen, Guangyin; Lu, Xueqin; Su, Lianghu; Kobayashi, Takuro; Kumar, Gopalakrishnan; Zhou, Tao; Xu, Kaiqin; Li, Yu-You; Zhu, Xuefeng; Zhao, Youcai

    2018-05-01

    Dewatering of waste activated sludge (WAS) is of major interest in its volume reduction, transportation and ultimate disposal. Persulfate-based oxidation process is a newly developed option for enhancing WAS dewaterability through the generation of powerful sulfate radicals (SO 4 - ·). However, the enhancement in WAS dewaterability by persulfate differs with the species of iron catalysts used. In this study, two types of iron catalysts (i.e. Fe 2+ vs. Fe 0 ) were employed to initiate the persulfate (S 2 O 8 2- ), and the catalyzing behaviors and the underlying principles in enhancing WAS dewaterability were investigated and compared. The Fe 2+ exhibited the high effectiveness in catalyzing the decomposition of persulfate to sulfate radicals (SO 4 - ·), inducing the greater improvement in WAS dewatering. The WAS dewaterability (indicated by dry solids content after filtration) increased with the added S 2 O 8 2- /Fe 2+ dosages, with the dry solids content reaching up to 5.1 ± 0.8 wt% at S 2 O 8 2- /Fe 2+ dosages of 1.2/1.5 mmol/g-VS after only 30 s' filtration, roughly 1.8-fold increase than raw WAS (1.8 ± 0.1 wt%). In contrast, the influence of the persulfate oxidation when activated with Fe 0 on WAS dewaterability was statistically insignificant. The WAS dewaterability remained nearly unchanged (i.e. dry solids content of 2.0 ± 0.0 wt%), irrespective of the employed S 2 O 8 2- /Fe 0 dosages. Further analysis demonstrated that the WAS dewaterability negatively corresponded to loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS). The abundant SO 4 - · from S 2 O 8 2- /Fe 2+ system could effectively disrupt the gel-like EPS matrix, break apart the cells and subsequently arouse the release of the water inside EPS and cells, facilitating water-solid separation. In the case of S 2 O 8 2- /Fe 0 , the dissolution of Fe 0 particles was the rate-limiting step, due to the formation of oxide iron layer near Fe 0 metallic surface, which resulted in the slow SO 4 - · production and thus hardly promoted WAS dewaterability. The pH adjustment could accelerate Fe 0 dissolution and enhance the dewatering performance of S 2 O 8 2- /Fe 0 process to a certain degree, but the effect was unsatisfactory. Additionally, the observations regarding the dissolved organic matters and ammonium collectively revealed that except for enhancing WAS dewatering, S 2 O 8 2- /Fe 2+ oxidation could concurrently degrade COD and ammonia from WAS filtrate, lighten the burden of the subsequent sewage treatment facilities and reduce operational expense. Hence, from an environmental and economic perspective, the S 2 O 8 2- /Fe 2+ system possesses much greater promise for WAS dewatering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effect of mo Content on Microstructure and Properties of Laser Cladding Fe-BASED Alloy Coatings

    NASA Astrophysics Data System (ADS)

    Xiaoli, Ma; Kaiming, Wang; Hanguang, Fu; Jiang, Ju; Yongping, Lei; Dawei, Yi

    Mo alloying Fe-based coating was fabricated on the surface of Q235 steel by using 6 kW fiber laser. The effects of Mo additions on the microstructure, microhardness and wear resistance of the cladding layer were studied by means of optical microscopy (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), Vickers hardness tester and M-200 ring block wear tester. Research results showed that the microstructure of Mo-free cladding layer mainly consisted of matrix and eutectic structure. The matrix was martensite and retained austenite. The eutectic structure mainly consisted of M2(B,C) and M7(C,B)3 type of eutectic borocarbides. With the increase of Mo content, there was no significant change in the matrix. However, the eutectic structure was transformed from M2(B,C)- and M7(C,B)3-type borocarbides into M2(B,C)-, M7(C,B)3- and M23(C,B)6-type borocarbides. When the content of Mo is 4.0wt.%, the Mo2C-type carbide appear on the matrix, and parts of the borocarbide networks are broken. The change of microhardness of the cladding layer was not obvious with the increase of Mo content. But the increase of Mo content increases the wear resistance of the cladding layer. The wear resistance of cladding layer with 4.0wt.% Mo is 2.4 times as much as the cladding layer which is Mo-free.

  9. Phase formation and magnetic hardening mechanism of TbCu7 type Sm-Fe-N powders

    NASA Astrophysics Data System (ADS)

    Lu, Cifu; Hong, Xiufeng; Ding, Zhiyi; Shi, Jiaxing; Bao, Xiaoqian; Gao, Xuexu; Zhu, Jie

    2018-06-01

    (Sm0.7Zr0.3)x(Fe0.9Co0.1)100-x (x = 9.1,10.7,10.9,12.6,13.4) alloys almost consist of TbCu7 type phase were prepared by rapid quenching technique and annealing. A series of TbCu7 type Sm-Zr-Fe-Co-N magnetically hard powders were prepared through nitrogenization of the alloys. With (Sm0.7Zr0.3) content increases, the coercivity increased but magnetization decreases. TbCu7-type nitride powder with coercivity of 10.8 kOe can be obtained when x = 13.6. The initial magnetization curves of the powders indicate that the coercivity should be controlled by pinning mechanism.

  10. Effects of iron electrovalence and species on growth and astaxanthin production of Haematococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Cai, Minggang; Li, Zhe; Qi, Anxiang

    2009-05-01

    To increase the cell concentration and the accumulation of astaxanthin in the cultivation of Haematococcus pluvialis, effects of different iron electrovalencies (Fe2+-EDTA and Fe3+-EDTA) and species (Fe-EDTA, Fe(OH){x/32x} and FeC6H5O7) addition on cell growth and accumulation of astaxanthin were studied. Results show that different iron electrovalencies have various effects on cell growth and astaxanthin accumulation of H. pluvialis. Compared with Fe3+-EDTA, Fe2+-EDTA stimulate more effectively the formation of astaxanthin. The maximum astaxanthin content (30.70 mg/g biomass cell) was obtained under conditions of 18 μmol/L Fe2+-EDTA, despite the lower cell density (2.3×105 cell/ml) in such condition. Fe3+-EDTA is more effective than Fe2+-EDTA in improving the cell growth. Especially, the maximal steady-state cell density, 2.9×105 cell/ml was obtained at 18 μmol/L Fe3+-EDTA addition. On the other hand, all the various species of iron (EDTA-Fe, Fe(OH){x/32x}, FeC6H5O7) are capable to improve the growth of the algae and astaxanthin production. Among the three iron species, FeC6H5O7 performed the best. Under the condition of a higher concentration (36 μmol/L) of FeC6H5O7, the cell density and astaxanthin production is 2 and 7 times higher than those of iron-limited group, respectively. The present study demonstrates that the effects of the stimulation with different iron species increased in the order of FeC6H5O7, Fe(OH){x/32x} and EDTA-Fe.

  11. Effects of Bi doping on structural and magnetic properties of double perovskite oxides Sr2FeMoO6

    NASA Astrophysics Data System (ADS)

    Lan, Yaohai; Feng, Xiaomei; Zhang, Xin; Shen, Yifu; Wang, Ding

    2016-08-01

    A new series of double perovskite compounds Sr2 - δBixFeMoO6 have been synthesized by solid-state reaction. δ refers to the nominal doping content of Bi (δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5), while the Bi content obtained by the Rietveld refinement is x = 0, 0.01, 0.05, 0.08, 0.10 and 0.12. Their crystal structure and magnetic properties are investigated. Rietveld analysis of the room temperature XRD data shows all the samples crystallize in the cubic crystal structure with the space group Fm 3 ‾ m and have no phase transition. SEM images show that substituted samples present a denser microstructure and bigger grains than Sr2FeMoO6, which is caused by a liquid sintering process due to the effumability of Bi. The unit cell volume increases with augment of Bi3+ concentration despite the smaller ionic radius Bi3+ compared with the Sr2+, which is attributed to the electronic effect. The degree of Fe/Mo order (η) increases first and then decreases to almost disappearance with augment of Bi doping, which is the result of contribution from electronic effect. Calculated saturation magnetization Ms(3) according to our phase separation likeness model matches well with the experimental ones. The observed variations of magnetoresistance (MR) are consistent with the Fe/Mo order (η) due to the internal connection with anti-site defect (ASD).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkulov, O.V., E-mail: merkulov@ihim.uran.ru; Samigullin, R.R.; Markov, A.A.

    The electrical conductivity of SrFe{sub 1–x}Sn{sub x}O{sub 3–δ} (x=0.05, 0.10, 017) was measured by a four-probe dc technique in the partial oxygen pressure range of 10{sup –18}–0.5 atm at temperatures between 800 °Ð ÐŽ and 950 °Ð ÐŽ. The oxygen content in these oxides was measured under the same ambient conditions by means of coulometric titration. The thermodynamic analysis of oxygen nonstoichiometry data was carried out to determine the equilibrium constants for defect-formation reactions and to calculate the concentrations of ion and electron charge carriers. The partial contributions of oxygen ions, electrons and holes to charge transport were assessed, and the mobilitymore » of respective carriers was evaluated by an integral examination of the electrical conductivity and oxygen nonstoichiometry data. It has been found that the mobility of holes in SrFe{sub 1−x}Sn{sub x}O{sub 3−δ} varies in the range of ~0.005–0.04 cm{sup 2} V{sup −1} s{sup −1}, linearly increasing with the oxygen content and decreasing with increased tin concentration. The mobility of electron carriers was shown to be independent of the oxygen content. The average migration energy of an electron was estimated to be ~0.45 eV, with that of a hole being ~0.3 eV. - Highlights: • The conductivity and oxygen nonstoichiometry in SrFe{sub 1−x}Sn{sub x}O{sub 3−δ} were measured. • Tin substitution was found to affect insignificantly defect formation reactions. • The hole mobility was found to increase linearly with the oxygen content. • The hole mobility was found to be much higher than the electron mobility.« less

  13. The effect of grain boundary chemistry on Intergranular stress corrosion cracking of Ni-Cr-Fe alloys in 50 Pct NaOH at 140 °C

    NASA Astrophysics Data System (ADS)

    Sung, J. K.; Koch, J.; Angeliu, T.; Was, G. S.

    1992-10-01

    The role of chromium, carbon, chromium carbides, and phosphorus on the intergranular stress corrosion cracking (IGSCC) resistance of Ni-Cr-Fe alloys in 50 pct NaOH at 140 °C is studied using controlled-purity alloys. The effect of carbon is studied using heats in which the carbon level is varied between 0.002 and 0.063 wt pct while the Cr level is fixed at 16.8 wt pct. The effect of Cr is studied using alloys with Cr concentrations between 5 and 30 wt pct. The effect of grain boundary Cr and C together is studied by heat-treating the nominal alloy composition of Ni-16Cr-9Fe-0.035C, and the effect of P is studied using a high-purity, P-doped alloy and a carbon-containing, P-doped alloy. Constant extension rate tensile (CERT) results show that the crack depth increases with decreasing alloy Cr content and increasing alloy C content. Crack- ing severity also correlates inversely with thermal treatment time at 700 °C, during which the grain boundary Cr content rises and the grain boundary C content falls. Phosphorus is found to have a slightly beneficial effect on IG cracking susceptibility. Potentiodynamic polarization and potentiostatic current decay experiments confirm that Cr depletion or grain boundary C enhances the dissolution at the grain boundary. Results support a film rupture-anodic dissolution model in which Cr depletion or grain boundary C (independently or additively) enhances dissolution of nickel from the grain boundary region and leads to increased IG cracking.

  14. The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties.

    PubMed

    Lin, Qing; Xu, Jianmei; Yang, Fang; Yang, Xingxing; He, Yun

    2018-01-01

    The nanocrystalline structure of La 1 -x Ca x FeO 3 was prepared by a sol-gel method involving an auto-combustion process. The incorporation of rare-earths in LaFeO 3 induces strain in magnetic properties, especially in terms of the following parameters: replacement amount, oxygen partial pressure, and calcination temperature. To determine the effects of the amount of Ca 2+ ion doping agent and the calcination temperature on the microstructure, particle morphology, and magnetic properties of LaFeO 3 crystal, we performed the following respective analytical methods: X-ray powder diffraction, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy, and vibrating sample magnetometer tests. The orthorhombic structure of LaFeO 3 perovskite did not change even when it was doped with Ca 2+ ions, and its space group continued to be Pnma (No.62). FT-IR spectra confirmed that the main band appearing at 568 cm -1 is due to the antisymmetric stretching vibration of Fe-O-Fe bonds in FeO 6 . The introduction of Ca inhibits the growth of grains but the morphology of particles is improved. With an increasing concentration of Ca 2+ ions, magnetic behavior of the samples also witnessed an increasing trend in a proportionate manner. With an increase in calcination temperature, the enclosed area of the magnetic hysteresis curve of the sample reduced remarkably. The growth of nanoparticles can be restrained with an increase of Ca content that is used as doping agent. The magnetic behavior of La 1 -x Ca x FeO 3 tilts towards G-type antiferromagnetism; the magnetic orientation is achieved from the super exchange interaction of Fe 3+ ions with oxygen ions.

  15. Magnetic properties of mixed spinel BaTiO{sub 3}-NiFe{sub 2}O{sub 4} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-03-28

    Solid solution of nickel ferrite (NiFe{sub 2}O{sub 4}) and barium titanate (BaTiO{sub 3}), (100-x)BaTiO{sub 3}–(x) NiFe{sub 2}O{sub 4} has been prepared by solid state reaction. Compressive strain is developed in NiFe{sub 2}O{sub 4} due to mutual structural interaction across the interface of NiFe{sub 2}O{sub 4} and BaTiO{sub 3} phases. Quantitative analysis of X-ray diffraction and X-ray photo electron spectrum suggest mixed spinel structure of NiFe{sub 2}O{sub 4}. A systematic study of composition dependence of composite indicates BaTiO{sub 3} causes a random distribution of Fe and Ni cations among octahedral and tetrahedral sites during non-equilibrium growth of NiFe{sub 2}O{sub 4}. Themore » degree of inversion decreases monotonically from 0.97 to 0.75 with increase of BaTiO{sub 3} content. Temperature dependence of magnetization has been analyzed by four sublattice model to describe complex magnetic exchange interactions in mixed spinel phase. Curie temperature and saturation magnetization decrease with increase of BaTiO{sub 3} concentration. Enhancement of strain and larger occupancy of Ni{sup 2+} at tetrahedral site increase coercivity up to 200 Oe. Magnetostructual coupling induced by BaTiO{sub 3} improves coercivity in NiFe{sub 2}O{sub 4}. An increase in the demagnetization and homogeneity in magnetization process in NiFe{sub 2}O{sub 4} is observed due to the interaction with diamagnetic BaTiO{sub 3}.« less

  16. Increased iron level in phytase-supplemented diets reduces performance and nutrient utilisation in broiler chickens.

    PubMed

    Akter, Marjina; Iji, P A; Graham, H

    2017-08-01

    1. The effect of different levels of dietary iron on phytase activity and its subsequent effect on broiler performance were investigated in a 3 × 2 factorial arrangement. A total of 360 day-old Ross 308 male broiler chicks were distributed to 6 experimental diets, formulated with three levels of Fe (60, 80 and 100 mg/kg) and two levels of phytase (0 and 500 FTU/kg). 2. Phytase supplemented to mid-Fe diets increased feed consumption more than the non-supplemented diet at d 24. From hatch to d 35, Fe × phytase interaction significantly influenced the feed intake (FI), body weight gain (BWG) and feed conversion ratio (FCR). The high-Fe diet supplemented with phytase significantly reduced FI and BWG of broilers than those supplemented with low- or mid-Fe diets. The overall FCR was significantly better in birds fed on the mid-Fe diets with phytase supplementation. 3. A significant improvement in ileal digestibility of N, P, Mg and Fe was observed in birds feed diets containing 60 mg Fe/kg, with significant interaction between Fe and phytase. 4. Phytase improved the bone breaking strength when supplemented to low- or mid-Fe diets, compared to the non-supplemented diets. There was a significant Fe × phytase interaction effect. Tibia Fe content was higher in birds fed on phytase-free diets with high Fe but the reverse was the case when phytase was added and their interaction was significant. High dietary Fe significantly increased the accumulation of Fe in liver. 5. Phytase improved Ca-Mg-ATPase, Ca-ATPase and Mg-ATPase activities in jejunum when supplemented to the diet containing 80 mg Fe/kg. 6. This study indicates that high (100 mg/kg) dietary Fe inhibited phytase efficacy and subsequently reduced the overall performance and nutrient utilisation of broilers.

  17. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network.

    PubMed

    Shakiba, Mohammad; Parson, Nick; Chen, X-Grant

    2016-06-30

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s -1 ). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.

  18. Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field.

    PubMed

    Rajabbeigi, Elham; Ghanati, Faezeh; Abdolmaleki, Parviz; Payez, Atefeh

    2013-12-01

    This study was aimed to evaluate antioxidant response of parsley cells to 21 ppm iron and static magnetic field (SMF; 30 mT). The activity of catalase (CAT) and ascorbate peroxidase (APX) and the contents of malonyldialdehyde, iron and ferritin were measured at 6 and 12 h after treatments. Exposure to SMF increased the activity of CAT in treated cells, while combination of iron and SMF treatments as well as iron supply alone decreased CAT activity, compared to that of control cells. Combination of SMF with iron treatment reduced iron content of the cells and ameliorated mal effect of iron on CAT activity. All treatments reduced APX activity; however, the content of total ascorbate increased in response to iron and SMF+iron. The results showed that among the components of antioxidant system of parsley cells, enhanced activity of CAT in SMF-treated cells and increase of ascorbate in SMF+Fe-treated ones were responsible for the maintenance of membranes integrity. Ferritin contents of SMF- and SMF+Fe-treated cells also decreased significantly 12 h after treatments, compared to those of the control cells. These results cast doubt on the proposed functions of ferritin as a putative reactive oxygen species detoxifying molecule.

  19. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network

    PubMed Central

    Shakiba, Mohammad; Parson, Nick; Chen, X.-Grant

    2016-01-01

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002–0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C–550 °C) and strain rates (0.01–10 s−1). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress. PMID:28773658

  20. Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice?

    PubMed

    Haro-Vicente, Juan Francisco; Pérez-Conesa, Darío; Rincón, Francisco; Ros, Gaspar; Martínez-Graciá, Carmen; Vidal, Maria Luisa

    2008-12-01

    Food iron (Fe) fortification is an adequate approach for preventing Fe-deficiency anemia. Poorly water-soluble Fe compounds have good sensory attributes but low bioavailability. The reduction of the particle size of Fe fortificants and the addition of ascorbic acid might increase the bioavailability of low-soluble compounds. The present work aims to compare the Fe absorption and bioavailability of micronized dispersible ferric pyrophosphate (MDFP) (poorly soluble) to ferrous sufate (FS) (highly soluble) added to a fruit juice in presence or absence of ascorbic acid (AA) by using the hemoglobin repletion assay in rats. After a hemoglobin depletion period, four fruit juices comprised of (1) FS, (2) MDFP, (3) FS + AA, (4) MDFP + AA were produced and administered to a different group of rats (n = 18) over 21 days. During the repletion period, Fe balance, hemoglobin regeneration efficiency (HRE), relative bioavailability (RBV) and Fe tissue content were determined in the short, medium and long term. Fe absorption and bioavailability showed no significant differences between fortifying the fruit juice with FS or MDFP. The addition of AA to the juice enhanced Fe absorption during the long-term balance study within the same Fe source. HRE and Fe utilization increased after AA addition in both FS and MDFP groups in every period. Fe absorption and bioavailability from MDFP were comparable to FS added to a fruit juice in rats. Further, the addition of AA enhanced Fe absorption in the long term, as well as Fe bioavailability throughout the repletion period regardless of the Fe source employed.

  1. The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination?

    PubMed

    Queiroz, Hermano M; Nóbrega, Gabriel N; Ferreira, Tiago O; Almeida, Leandro S; Romero, Thais B; Santaella, Sandra T; Bernardino, Angelo F; Otero, Xosé L

    2018-05-10

    In November 2015, the largest socio-environmental disaster in the history of Brazil occurred when approximately 50 million m 3 of mine tailings were released into the Doce River (SE Brazil), during the greatest failure of a tailings dam worldwide. The mine tailings passed through the Doce River basin, reaching the ecologically important estuary 17 days later. On the arrival of the mine wastes to the coastal area, contamination levels in the estuarine soils were measured to determine the baseline level of contamination and to enable an environmental risk assessment. Soil and tailings samples were collected and analyzed to determine the redox potential (Eh), pH, grain size and mineralogical composition, total metal contents (Fe, Mn, Cr, Zn, Ni, Cu, Pb and Co) and organic matter content. The metals were fractionated to elucidate the mechanisms governing the trace metal dynamics. The mine tailings are mostly composed of Fe (mean values for Fe: 45,200 ± 2850; Mn: 433 ± 110; Cr: 63.9 ± 15.1; Zn: 62.4 ± 28.4; Ni: 24.7 ± 10.4; Cu: 21.3 ± 4.6; Pb: 20.2 ± 4.6 and Co: 10.7 ± 4.8 mg kg -1 ), consisting of Fe-oxyhydroxides (goethite, hematite); kaolinite and quartz. The metal contents of the estuarine soils, especially the surface layers, indicate trace metal enrichment caused by the tailings. However, the metal contents were below threshold levels reported in Brazilian environmental legislation. Despite the fact that only a small fraction (<2%) of the metals identified are readily bioavailable (i.e. soluble and exchangeable fraction), trace metals associated with Fe oxyhydroxides contributed between 69.8 and 87.6% of the total contents. Control of the trace metal dynamics by Fe oxyhydroxides can be ephemeral, especially in wetland soils in which the redox conditions oscillate widely. Indeed, the physicochemical conditions (Eh < 100 mV and circumneutral pH) of estuarine soils favor Fe reduction microbial pathways, which will probably increase the trace metal bioavailability and contamination risk. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Magmatic sulphides in Quaternary Ecuadorian arc magmas

    NASA Astrophysics Data System (ADS)

    Georgatou, Ariadni; Chiaradia, Massimo; Rezeau, Hervé; Wälle, Markus

    2018-01-01

    New petrographic and geochemical data on magmatic sulphide inclusions (MSIs) are presented and discussed for 15 Quaternary volcanic centers of the Ecuadorian frontal, main and back volcanic arc. MSIs occur mostly in Fe-Ti oxides (magnetite and/or magnetite-ilmenite pair) and to a lesser extent in silicate minerals (amphibole, plagioclase, and pyroxene). MSIs are present in all volcanic centers ranging in composition from basalt to dacite (SiO2 = 50-67 wt.%), indicating that sulphide saturation occurs at various stages of magmatic evolution and independently from the volcano location along the volcanic arc. MSIs also occur in dioritic, gabbroic and hornblenditic magmatic enclaves of the volcanic rocks. MSIs display variable sizes (1-30 μm) and shapes (globular, ellipsoidal, angular, irregular) and occur mostly as polymineralic inclusions composed of Fe-rich and Cu-poor (pyrrhotite) and Cu-rich (mostly chalcopyrite) phases. Aerial sulphide relative abundances range from 0.3 to 7 ppm in volcanic host rocks and from 13 to 24 ppm in magmatic enclaves. Electron microprobe analyses of MSIs indicate maximum metal contents of Cu = 65.7 wt.%, Fe = 65.2 wt.%, Ni = 10.1 wt.% for those hosted in the volcanic rocks and of Cu = 57.7 wt.%, Fe = 60.9 wt.%, Ni = 5.1 wt.%, for those hosted in magmatic enclaves. Relationships of the sulphide chemistry to the host whole rock chemistry show that with magmatic differentiation (e.g., increasing SiO2) the Cu and Ni content of sulphides decrease whereas the Fe and S contents increase. The opposite behavior is observed with the increase of Cu in the whole rock, because the latter is anti-correlated with the SiO2 whole rock content. Laser ablation ICP-MS analyses of MSIs returned maximum values of PGEs and noble metals of Pd = 30 ppm, Rh = 8.1 ppm, Ag = 92.8 ppm and Au = 0.6 ppm and Pd = 43 ppm, Rh = 22.6 ppm, Ag = 89 ppm and Au = 1 ppm for those hosted in volcanic rocks and magmatic enclaves, respectively. These PGE contents display a different range of values with respect to those in previously investigated magmatic sulphides. MSIs that are Cu- and PGE/Cu-rich are found in less evolved rocks (i.e., lower SiO2 contents) that also display a lower amount of sulphide inclusions. Cu-rich sulphide phases (chalcopyrite ± bornite) are mostly hosted by magnetite, whereas PGE-rich ones consist of a Cu-poor phase (pyrrhotite) hosted by plagioclase. However, no systematic changes in the chemistry of the host silicate mineral are observed in coincidence with the occurrence of MSIs. We use the results of our study to draw some implications on Cu (and other chalcophile elements) behavior during arc magmatic processes potentially associated with the formation of porphyry-type deposits.

  3. On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective

    NASA Astrophysics Data System (ADS)

    Chin, Emily J.; Shimizu, Kei; Bybee, Grant M.; Erdman, Monica E.

    2018-01-01

    Two distinct igneous differentiation trends - the tholeiitic and calc-alkaline - give rise to Earth's oceanic and continental crust, respectively. Mantle melting at mid-ocean ridges produces dry magmas that differentiate at low-pressure conditions, resulting in early plagioclase saturation, late oxide precipitation, and Fe-enrichment in mid-ocean ridge basalts (MORBs). In contrast, magmas formed above subduction zones are Fe-depleted, have elevated water contents and are more oxidized relative to MORBs. It is widely thought that subduction of hydrothermally altered, oxidized oceanic crust at convergent margins oxidizes the mantle source of arc magmas, resulting in erupted lavas that inherit this oxidized signature. Yet, because our understanding of the calc-alkaline and tholeiitic trends largely comes from studies of erupted melts, the signals from shallow crustal contamination by potentially oxidized, Si-rich, Fe-poor materials, which may also generate calc-alkaline rocks, are obscured. Here, we use deep crustal cumulates to "see through" the effects of shallow crustal processes. We find that the tholeiitic and calc-alkaline trends are indeed reflected in Fe-poor mid-ocean ridge cumulates and Fe-rich arc cumulates, respectively. A key finding is that with increasing crustal thickness, arc cumulates become more Fe-enriched. We propose that the thickness of the overlying crustal column modulates the melting degree of the mantle wedge (lower F beneath thick arcs and vice versa) and thus water and Fe3+ contents in primary melts, which subsequently controls the onset and extent of oxide fractionation. Deep crustal cumulates beneath thick, mature continental arcs are the most Fe-enriched, and therefore may be the "missing" Fe-rich reservoir required to balance the Fe-depleted upper continental crust.

  4. Iron, zinc and calcium dialyzability from extruded product based on whole grain amaranth (Amaranthus caudatus and Amaranthus cruentus) and amaranth/Zea mays blends.

    PubMed

    Galan, María Gimena; Drago, Silvina Rosa; Armada, Margarita; José, Rolando González

    2013-06-01

    Amaranth is a Native American grain appreciated for its high nutritional properties including high mineral content. The aim of this study was to evaluate the availability of Fe, Zn and Ca from extruded products made with two varieties of amaranth and their mixtures with maize at two levels of replacement. Mineral availability was estimated using dialyzability method. The contents of Fe (64.0-84.0 mg/kg), Ca (1977.5-2348.8 mg/kg) and Zn (30.0-32.1 mg/kg) were higher in amaranth than in maize products (6.2, 19.1, 9.7 mg/kg, respectively). Mineral availability was in the range of (2.0-3.6%), (3.3-11.1%) and (1.6-11.4%) for Fe, Ca and Zn, respectively. Extruded amaranth and amaranth/maize products provide higher amount of Fe and Ca than extruded maize. Extruded amaranth products and amaranth addition to maize could be an interesting way to increase nutritional value of extruded products.

  5. Metasomatic oxidation of upper mantle periodotite

    USGS Publications Warehouse

    McGuire, A.V.; Dyar, M.D.; Nielson, J.E.

    1991-01-01

    Examination of Fe3+ in metasomatized spinel peridotite xenoliths reveals new information about metasomatic redox processes. Composite xenoliths from Dish Hill, California possess remnants of magmatic dikes which were the sources of the silicate fluids responsible for metasomatism of the peridotite part of the same xenoliths. Mo??ssbauer spectra of mineral separates taken at several distances from the dike remnants provide data on Fe3+ contents of minerals in the metasomatized peridotite. Clinopyroxenes contain 33% of total iron (FeT) as Fe3+ (Fe3+/FeT=0.33); orthopyroxenes contain 0.06-0.09 Fe3+/FeT; spinels contain 0.30-0.40 Fe3+/FeT; olivines contain 0.01-0.06 Fe3+/FeT; and metasomatic amphibole in the peridotite contains 0.85-0.90 Fe3+/FeT. In each mineral, Fe3+ and Fe2+ cations per formula unit (p.f.u.) decrease with distance from the dike, but the Fe3+/FeT ratios of each mineral do not vary. Clinopyroxene, spinel, and olivine Fe3+/FeT ratios are significantly higher than in unmetasomatized spinel peridotites. Metasomatic changes in Fe3+/FeT ratios in each mineral are controlled by the oxygen fugacity of the system, but the mechanism by which each phase accommodates this ratio is affected by crystal chemistry, kinetics, rock mode, fluid composition, fluid/rock ratio, and fluid-mineral partition coefficients. Ratio increases in pyroxene and spinel occur by exchange reactions involving diffusion of Fe3+ into existing mineral grains rather than by oxidation of existing Fe2+ in peridotite mineral grains. The very high Fe3+/FeT ratio in the metasomatic amphibole may be a function of the high Fe3+/FeT of the metasomatic fluid, crystal chemical limitations on the amount of Fe3+ that could be accommodated by the pyroxene, spinel, and olivine of the peridotite, and the ability of the amphibole structure to accommodate large amounts of 3 + valence cations. In the samples studied, metasomatic amphibole accounts for half of the bulk-rock Fe2O3. This suggests that patent metasomatism may produce a greater change in the redox state of mantle peridotite than cryptic metasomatism. Comparison of the metasomatized samples with unmetasomatized peridotites reveals that both Fe2+ and Fe3+ cations p.f.u. were increased during metasomatism and 50% or more of iron added was Fe3+. With increasing distance from the dike, the ratio of added Fe3+ to added Fe2+ increases. The high Fe3+/FeT of amphibole and phlogopite in the dikes and in the peridotite, and the high ratios of added Fe3+/added Fe2+ in pyroxenes and spinel suggest that the Fe3+/FeT ratio of the metasomatic silicate fluid was high. As the fluid perolated through and reacted with the peridotite, Fe3+ and C-O-H volatile species were concentrated in the fluid, increasing the fluid Fe3+/FeT. ?? 1991 Springer-Verlag.

  6. DC conductivity and magnetic properties of piezoelectric-piezomagnetic composite system

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; Tawfik, A.; A-Al-Sharif; Amer, M. A.; Kamal, B. M.; El Refaay, D. E.; Bououdina, M.

    2012-11-01

    A series of composites (1-x) (Ni0.8Zn0.2Fe2O4)+x (BaTiO3), where x=0%, 20%, 40%, 60%, 80% and 100% BT content, have been prepared by the standard ceramic technique, then sintered at 1200 °C for 8 h. X-ray diffraction analysis shows that the prepared composites consist of two phases, ferrimagnetic and ferroelectric. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been studied at different temperatures. It was found that the DC electrical conductivity increases with increasing BT content. The values of the thermoelectric power were positive and negative for the composites indicating that there are two conduction mechanisms, hopping and band conduction, respectively. Using the values of DC electrical conductivity and thermoelectric power, the values of charge carrier mobility and the charge carrier concentration were calculated. Magnetic measurements (hysteresis loop and magnetic permeability) show that the magnetization decreases by increasing BT content. M-H loop of pure Ni0.6 Zn0.4 Fe2O4 composite indicates that it is paramagnetic at room temperature and that the magnetization is diluted by increasing the BT content in the composite system. The value of magnetoelectric coefficient for the composites decreases by increasing BT content for all the compositions except for 40% BT content, which may be due to the low resistivity of magnetic phase compared with the BT phase that causes a leakage of induced charges on the piezoelectric phase. Since both ferroelectric and magnetic phases preserve their basic properties in the bulk composite, the present BT-NZF composite are potential candidates for applications as pollution sensors and electromagnetic waves.

  7. Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles.

    PubMed

    Long, Jie; Zhang, Bao; Li, Xingfei; Zhan, Xiaobei; Xu, Xueming; Xie, Zhengjun; Jin, Zhengyu

    2018-01-15

    In this study, pullulanase was firstly immobilized by covalent bonding onto chitosan/Fe 3 O 4 nanoparticles or encapsulation in sol-gel after bonding onto chitosan/Fe 3 O 4 nanoparticles, and then the immobilized pullulanase was used for the effective production of resistant starch (RS). The highest RS content (35.1%) was obtained under the optimized condition of pH 4.4, enzyme concentration of 10ASPU/g and hydrolysis time of 12h when debranched by free pullulsanase, indicating that RS content was significantly (p<0.05) increased when compared to native starch (4.3%) and autoclaved starch (12.5%). Under these conditions, the immobilized pullulanase (10ASPU/g dry starch) yielded higher RS content compared to free enzyme (10ASPU/g dry starch), especially, the pullulanse immobilized by sol-gel encapsulation yielded the highest RS content (43.4%). Moreover, compared to starches hydrolyzed by free pullulanase, starches hydrolyzed by immobilized pullulanase showed a different saccharide profile of starch hydrolysate, including a stronger peak C (MW=5.0×10 3 ), as well as exhibited an additional absorption peak around 140°C. Reusability results demonstrated that pullulanase immobilized by sol-gel encapsulation had the advantages of producing higher RS content as well as better operational stability compared to pullulanase immobilized by cross-linking. The resulting enhanced RS content generated by the process described in this work could be used as an adjunct in food processing industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Density functional theory computational study of ferroelectricity and piezoelectricity in BaTiO3/PbTiO3 (0 1 1) superlattices

    NASA Astrophysics Data System (ADS)

    Lou, Yaoding; Deng, Junkai; Zhe Liu, Jefferson

    2018-04-01

    The structure, ferroelectricity (FE), and piezoelectricity of epitaxial BaTiO3/PbTiO3 (BTO/PTO) (0 1 1) superlattices are studied using density functional theory calculations. Our results show that compressive strain arising from the SrTiO3 (0 1 1) substrate stabilizes the (BTO) m /(PTO) n (0 1 1) superlattices in orthorhombic phase with the FE polarization along [0 1 1] direction. Tuning the BTO contents significantly changes the structural, ferroelectric and piezoelectric properties. The FE polarization of superlattices significantly drops with increasing BTO contents, which can be attributed to depolarization of the PTO layers. The averaged c/a ratio of the whole superlattices exhibits anomalous non-monotonic relation with respect to BTO contents. Interestingly, our results predict the (0 1 1) superlattices can enhance the piezoelectric coefficient e 33 with a maximum value at ~67% BTO concentration. This result suggests a potential avenue to design high performance piezoelectric materials with less Pb contents. In-depth analysis reveals the B-site Ti cation as the origin for the enhanced e 33 value, which implies the potential of B-site cation engineering in perovskite heterostructure designs.

  9. The Effect of Composition on Diffusion of Au in Fe and Fe-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Johanesen, K. E.; Watson, H. C.; Fei, Y.

    2005-12-01

    Understanding siderophile element diffusion in Fe-Ni alloys will lead to tighter constraints on processes such as meteoritic body cooling rates, and inner core-outer core communication. Recent studies have determined the effect of temperature and pressure on diffusion in this system, but the effect of composition has not yet been explored adequately. The effect of Ni content on Au diffusion in an Fe-Ni system was explored for Fe-Ni alloys with concentrations of 0, 20, and 30 wt. % Ni. Diffusion couple experiments were conducted using a piston cylinder press at 1 GPa and temperatures ranging from 1150°C to 1400°C. Concentration profiles were measured by electron microprobe and were fitted to the linear diffusion solution for an semi-infinite diffusion couple to extract diffusion coefficients (D) using a non-linear least squares fit routine. As predicted, D increases with Ni content and also with temperature. The diffusivities ranged from 2.06×10-9 at 1150°C to 5.76×10-8 at 1350°C for 0 wt. % Ni; 5.17×10-9 at 1150° C to 1.93×10-7 at 1400°C for 20 wt. % Ni; and 2.41×10-8 at 1150°C to 2.13×10-7 at 1400°C for 30 wt. % Ni. As temperature increases, the effect of Ni on diffusion rates increases, implying a possible change in diffusion mechanism between 1250°C and 1300°C. Ni appears to have a negligible effect at lower temperatures, which would indicate that Ni may not need to be considered when modeling siderophile trace element diffusion rates in iron meteorites.

  10. Reduction of Chromite in Liquid Fe-Cr-C-Si Alloys

    NASA Astrophysics Data System (ADS)

    Demir, Orhan; Eric, R. Hurman

    1994-08-01

    The kinetics and the mechanism of the reduction of chromite in Fe-Cr-C-Si alloys were studied in the temperature range of 1534 °C to 1702 °C under an inert argon atmosphere. The rotating cylinder technique was used. The melt consisted of 10 and 20 wt Pct chromium, the carbon content varied from 2.8 wt Pct to saturation, and the silicon content varied from 0 to 2 wt Pct. The rotational speed of the chromite cylinder ranged from 100 to 1000 rpm. The initial chromium to iron ratios of the melts varied between 0.11 and 0.26. In Fe-C melts, the effect of rotational speed on the reduction of chromite was very limited. Carbon saturation (5.4 wt Pct) of the alloy caused the reduction to increase 1.5 times over the reduction observed in the unsaturated (4.87 wt Pct) alloy at a given rotational speed. The addition of chromium to the carbon-saturated Fe-C alloy increased the reduction rate. The addition of silicon to the liquid phase increased the reduction rate drastically. The reduction of chromite in Fe-Cr-C melts is hindered because of the formation of, approximately, a 1.5-mm-thick M7C3-type carbide layer around the chromite cylinders. This carbide layer did not form when silicon was present in the melt. It was found that the reduction rate is controlled by the liquid-state mass transfer of oxygen. The calculated apparent activation energies for diffusion were 102.9 and 92.9 kJ/mol of oxygen in the Si-O and C-O systems, respectively.

  11. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach.

    PubMed

    Verma, Shailender Kumar; Kumar, Satish; Sheikh, Imran; Malik, Sachin; Mathpal, Priyanka; Chugh, Vishal; Kumar, Sundip; Prasad, Ramasare; Dhaliwal, Harcharan Singh

    2016-01-01

    To transfer the 2S chromosomal fragment(s) of Aegilops kotschyi (2S(k)) into the bread wheat genome which could lead to the biofortification of wheat with high grain iron and zinc content. Wheat-Ae. kotschyi 2A/2S(k) substitution lines with high grain iron and zinc content were used to transfer the gene/loci for high grain Fe and Zn content into wheat using seed irradiation approach. Bread wheat plants derived from 40 krad-irradiated seeds showed the presence of univalents and multivalents during meiotic metaphase-I. Genomic in situ hybridization analysis of seed irradiation hybrid F2 seedlings showed several terminal and interstitial signals indicated the introgression of Ae. kotschyi chromosome segments. This proves the efficacy of seed radiation hybrid approach in gene transfer experiments. All the radiation-treated hybrid plants with high grain Fe and Zn content were analyzed with wheat group 2 chromosome-specific polymorphic simple sequence repeat markers to identify the introgression of small alien chromosome fragment(s). Radiation-induced hybrids showed more than 65% increase in grain iron and 54% increase in Zn contents with better harvest index than the elite wheat cultivar WL711 indicating effective and compensating translocations of 2S(k) fragments into wheat genome.

  12. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology.

    PubMed

    Shao, GuoSheng; Chen, MingXue; Wang, DanYing; Xu, ChunMei; Mou, RenXiang; Cao, ZhaoYun; Zhang, XiuFu

    2008-03-01

    Effects of two kinds of iron fertilizer, FeSO4 and EDTA.Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA.Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA.Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA.Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA.Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.

  13. Microstructural and Mechanical-Property Manipulation through Rapid Dendrite Growth and Undercooling in an Fe-based Multinary Alloy

    PubMed Central

    Ruan, Ying; Mohajerani, Amirhossein; Dao, Ming

    2016-01-01

    Rapid dendrite growth in single- or dual-phase multicomponent alloys can be manipulated to improve the mechanical properties of such metallic materials. Rapid growth of (αFe) dendrites was realized in an undercooled Fe-5Ni-5Mo-5Ge-5Co (wt.%) multinary alloy using the glass fluxing method. The relationship between rapid dendrite growth and the micro-/nano-mechanical properties of the alloy was investigated by analyzing the grain refinement and microstructural evolution resulting from the rapid dendrite growth. It was found that (αFe) dendrites grow sluggishly within a low but wide undercooling range. Once the undercooling exceeds 250 K, the dendritic growth velocity increases steeply until reaching a plateau of 31.8 ms−1. The increase in the alloy Vickers microhardness with increasing dendritic growth velocity results from the hardening effects of increased grain/phase boundaries due to the grain refinement, the more homogeneous distribution of the second phase along the boundaries, and the more uniform distribution of solutes with increased contents inside the grain, as verified also by nanohardness maps. Once the dendritic growth velocity exceeds ~8 ms−1, the rate of Vickers microhardness increase slows down significantly with a further increase in dendritic growth velocity, owing to the microstructural transition of the (αFe) phase from a trunk-dendrite to an equiaxed-grain microstructure. PMID:27539749

  14. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    NASA Astrophysics Data System (ADS)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  15. Wheat flour confectionery products as a source of inorganic nutrients: iron and manganese contents in hard biscuits.

    PubMed

    Sebecić, Blazenka; Dragojević, I Vedrina; Horvatić, M

    2002-06-01

    To evaluate some wheat flour based hard biscuits produced in Croatia with regard to their Fe and Mn contents and thereby their functionality, Fe and Mn are determined by cold-vapor atomic absorption spectrometry (CVAAS) in seven biscuits: classic white wheat flour biscuits and in dietetic biscuits enriched with whole wheat grain flour or whole wheat grain grits, soya flour and milk. Presented data show that Fe contents in seven analyzed biscuits range from 9.32 up to 24.80 mg/kg while Mn contents range from 3.76-16.37 mg/kg depending on type and share of cereal milling products and mineral content of other raw materials used. Thus, enriched biscuits produced from wheat flour type 850 and whole wheat grain flour, having the highest concentrations of Fe and Mn, were about 150% and 250%, respectively, richer in those elements in comparison with classic white flour biscuits of Petit Beurre type. Data show that wheat flour based hard biscuits, particularly enriched biscuits, can be considered as a good additional source of Fe and Mn in diets.

  16. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    PubMed

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.

    PubMed

    Louie, Mary W; Bell, Alexis T

    2013-08-21

    A detailed investigation has been carried out of the structure and electrochemical activity of electrodeposited Ni-Fe films for the oxygen evolution reaction (OER) in alkaline electrolytes. Ni-Fe films with a bulk and surface composition of 40% Fe exhibit OER activities that are roughly 2 orders of magnitude higher than that of a freshly deposited Ni film and about 3 orders of magnitude higher than that of an Fe film. The freshly deposited Ni film increases in activity by as much as 20-fold during exposure to the electrolyte (KOH); however, all films containing Fe are stable as deposited. The oxidation of Ni(OH)2 to NiOOH in Ni films occurs at potentials below the onset of the OER. Incorporation of Fe into the film increases the potential at which Ni(OH)2/NiOOH redox occurs and decreases the average oxidation state of Ni in NiOOH. The Tafel slope (40 mV dec(-1)) and reaction order in OH(-) (1) for the mixed Ni-Fe films (containing up to 95% Fe) are the same as those for aged Ni films. In situ Raman spectra acquired in 0.1 M KOH at OER potentials show two bands characteristic of NiOOH. The relative intensities of these bands vary with Fe content, indicating a change in the local environment of Ni-O. Similar changes in the relative intensities of the bands and an increase in OER activity are observed when pure Ni films are aged. These observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)2/NiOOH redox occurs, a decrease in the average oxidation state of the Ni sites, and a concurrent increase in the activity of Ni cations for the OER.

  18. Fe-Mg substitution in aluminate spinels: effects on elastic properties investigated by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Bruschini, Enrico; Speziale, Sergio; Bosi, Ferdinando; Andreozzi, Giovanni B.

    2018-03-01

    We investigated by a multi-analytical approach (Brillouin scattering, X-ray diffraction and electron microprobe) the dependence of the elastic properties on the chemical composition of six spinels in the series (Mg1-x ,Fe x )Al2O4 (0 ≤ x ≤ 0.5). With the exception of C 12, all the elastic moduli (C 11, C 44, K S0 and G) are insensitive to chemical composition for low iron concentration, while they decrease linearly for higher Fe2+ content. Only C 12 shows a continuous linear increase with increasing Fe2+ across the whole compositional range under investigation. The high cation disorder showed by the sample with x = 0.202 has little or no influence on the elastic parameters. The range 0.202 < x < 0.388 bounds the percolation threshold (p c) for nearest neighbor interaction of Fe in the cation sublattices of the spinel structure. Below x = 0.202, the iron atoms are diluted in the system and far from each other, and the elastic moduli are nearly constant. Above x = 0.388, Fe atoms form extended interconnected clusters and show a cooperative behavior thus affecting the single-crystal elastic moduli. The elastic anisotropy largely increases with the introduction of Fe2+ in substitution of magnesium in spinel. This behavior is different with respect to other spinels containing transition metals such as Mn2+ and Co2+.

  19. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride.

    PubMed

    Wu, Yan; Zhang, Panyue; Zhang, Haibo; Zeng, Guangming; Liu, Jianbo; Ye, Jie; Fang, Wei; Gou, Xiying

    2016-04-01

    Rice husk biochar modified by FeCl3 (MRB-Fe) was used to enhance sludge dewaterability in this study. MRB-Fe preparation conditions and dosage were optimized. Mechanisms of MRB-Fe improving sludge dewaterability were investigated. The optimal modification conditions were: FeCl3 concentration, 3mol/L; ultrasound time, 1h. The optimal MRB-Fe dosage was 60% DS. Compared with raw sludge, the sludge specific resistance to filtration (SRF) decreased by 97.9%, the moisture content of sludge cake decreased from 96.7% to 77.9% for 6min dewatering through vacuum filtration under 0.03MPa, the SV30% decreased from 96% to 60%, and the net sludge solids yield (YN) increased by 28 times. Positive charge from iron species on MRB-Fe surface counteracted negative charge of sludge flocs to promote sludge settleability and dewaterability. Meanwhile, MRB-Fe kept a certain skeleton structure in sludge cake, making the moisture pass through easily. Using MRB-Fe, therefore, for sludge conditioning and dewatering is promising. Copyright © 2016. Published by Elsevier Ltd.

  20. Increased iron availability resulting from increased CO2 enhances carbon and nitrogen metabolism in the economical marine red macroalga Pyropia haitanensis (Rhodophyta).

    PubMed

    Chen, Binbin; Zou, Dinghui; Yang, Yufeng

    2017-04-01

    Ocean acidification caused by rising CO 2 is predicted to increase the concentrations of dissolved species of Fe(II) and Fe(III), leading to the enhanced photosynthetic carbon sequestration in some algal species. In this study, the carbon and nitrogen metabolism in responses to increased iron availability under two CO 2 levels (390 μL L -1 and 1000 μL L -1 ), were investigated in the maricultivated macroalga Pyropia haitanensis (Rhodophyta). The results showed that, elevated CO 2 increased soluble carbonhydrate (SC) contents, resulting from enhanced photosynthesis and photosynthetic pigment synthesis in this algae, but declined its soluble protein (SP) contents, resulting in increased ratio of SC/SP. This enhanced photosynthesis performance and carbon accumulation was more significant under iron enrichment condition in seawater, with higher iron uptake rate at high CO 2 level. As a key essential biogenic element for algae, Fe-replete functionally contributed to P. haitanensis photosynthesis. Increased SC fundamentally provided carbon skeletons for nitrogen assimilation. The significant increase of carbon and nitrogen assimilation finally contributed to enhanced growth in this alga. This was also intuitively reflected by respiration that provided energy for cellular metabolism and algal growth. We propose that, in the predicted scenario of rising atmospheric CO 2 , P. haitanensis is capable to adjust its physiology by increasing its carbon and nitrogen metabolism to acclimate the acidified seawater, at the background of global climate change and simultaneously increased iron concentration due to decreased pH levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Enhanced magnetoelectric properties of BiFeO{sub 3} on formation of BiFeO{sub 3}/SrFe{sub 12}O{sub 19} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Anusree; Chatterjee, Souvik; Das, Dipankar, E-mail: ddas@alpha.iuc.res.in

    2016-06-21

    Nanocomposites (NCs) comprising (1−x) BiFeO{sub 3} (BFO) and x SrFe{sub 12}O{sub 19} (SRF) (x = 0.1, 0.2, 0.3, and 0.4) have been prepared by a sol-gel route. Presence of pure phases of both BiFeO{sub 3} (BFO) and SrFe{sub 12}O{sub 19} (SRF) in the NCs for x = 0.3 and 0.4 has been confirmed by Rietveld analysis of XRD data though a minor impurity phase is observed in the case of x = 0.1 and 0.2 NCs. Transmission electron micrographs of the NCs show that particles are mostly spherical with average size of 30 nm. M-H measurements at 300 and 10 K indicate predominantly ferrimagnetic behavior of all themore » NCs with an increasing trend of saturation magnetization values with increasing content of SRF. Dielectric constant (ε{sub r}) of the NCs at room temperature shows a dispersive behavior with frequency and attains a constant value at higher frequency. ε{sub r} − T measurements reveal an increasing trend of dielectric constant of the NCs with increasing temperature and show an anomaly around the antiferromagnetic transition temperature of BFO, which indicates magnetoelectric coupling in the NCs. The variation of capacitance in the presence of magnetic field confirms the enhancement of magnetoelectric effect in the NCs. {sup 57}Fe Mössbauer spectroscopy results indicate the presence of only Fe{sup 3+} ions in usual crystallographic sites of BFO and SRF.« less

  2. Novel process and catalytic materials for converting CO2 and H2 containing mixtures to liquid fuels and chemicals.

    PubMed

    Meiri, Nora; Dinburg, Yakov; Amoyal, Meital; Koukouliev, Viatcheslav; Nehemya, Roxana Vidruk; Landau, Miron V; Herskowitz, Moti

    2015-01-01

    Carbon dioxide and water are renewable and the most abundant feedstocks for the production of chemicals and fungible fuels. However, the current technologies for production of hydrogen from water are not competitive. Therefore, reacting carbon dioxide with hydrogen is not economically viable in the near future. Other alternatives include natural gas, biogas or biomass for the production of carbon dioxide, hydrogen and carbon monoxide mixtures that react to yield chemicals and fungible fuels. The latter process requires a high performance catalyst that enhances the reverse water-gas-shift (RWGS) reaction and Fischer-Tropsch synthesis (FTS) to higher hydrocarbons combined with an optimal reactor system. Important aspects of a novel catalyst, based on a Fe spinel and three-reactor system developed for this purpose published in our recent paper and patent, were investigated in this study. Potassium was found to be a key promoter that improves the reaction rates of the RWGS and FTS and increases the selectivity of higher hydrocarbons while producing mostly olefins. It changed the texture of the catalyst, stabilized the Fe-Al-O spinel, thus preventing decomposition into Fe3O4 and Al2O3. Potassium also increased the content of Fe5C2 while shifting Fe in the oxide and carbide phases to a more reduced state. In addition, it increased the relative exposure of carbide iron on the catalysts surface, the CO2 adsorption and the adsorption strength. A detailed kinetic model of the RWGS, FTS and methanation reactions was developed for the Fe spinel catalyst based on extensive experimental data measured over a range of operating conditions. Significant oligomerization activity of the catalyst was found. Testing the pelletized catalyst with CO2, CO and H2 mixtures over a range of operating conditions demonstrated its high productivity to higher hydrocarbons. The composition of the liquid (C5+) was found to be a function of the potassium content and the composition of the feedstock.

  3. The Effect of MnO2 Content and Sintering Atmosphere on The Electrical Properties of Iron Titanium Oxide NTC Thermistors using Yarosite

    NASA Astrophysics Data System (ADS)

    Wiendartun; Gustaman Syarif, Dani

    2017-02-01

    The effect of MnO2 content and sintering atmosphere on the characteristics of Fe2TiO5 ceramics for Negative Thermal Coefficient (NTC) thermistors by using Fe2O3 derived from yarosite has been studied. The ceramics were produced by pressing a homogeneous mixture of Fe2O3, TiO2 and MnO2 (0-2.0 w/o) powders in appropriate proportions to produce Fe2TiO5 based ceramics and sintering the pressed powder at 1100-1200°C for 3 hours in air, O2 and N2 gas. Electrical characterization was done by measuring electrical resistivity of the sintered ceramics at various temperatures from 30°C to 200°C. Microstructure and structural analyses were also carried out by using an scanning electron microscope (SEM) and x-ray diffraction (XRD). The XRD data showed that the pellets crystallize in orthorhombic. The presence of second phase could not be identified from the XRD analyses. The SEM images showed that the grain size of pellet ceramics increase with increasing of MnO2 addition, and the grains size of the ceramic sintered in oxygen gas is smaller than sintered in nitrogen gas. Electrical data showed that the value of room temperature resistance (RRT) tend to decrease with respect to the increasing of MnO2 addition and the pellet ceramics sintered in oxygen gas had the largest thermistor constant (B), activation energy (Ea), sensitivity (α) and room temperature resistance (RRT), compared to the sintered in nitrogen gas. From the electrical characteristics data, it was known that the electrical characteristics of the Fe2TiO5 pellet ceramics followed the NTC characteristic. The fabricated Fe2TiO5 ceramics have thermistor constants (B = 2207-7145K). This can be applied as temperature sensor, and will fulfill the market requirement.

  4. Saturated and trans fatty acids content in unpackaged traditional bakery products in Santa Fe city, Argentina: nutrition labeling relevance.

    PubMed

    Negro, Emilse; González, Marcela Aída; Bernal, Claudio Adrián; Williner, María Rosa

    2017-08-01

    Studies have reported the relationship between the excessive intake of saturated fatty acids (SFA) and trans fatty acids (t-FA) and an increased risk of cardiovascular disease. Since 2006, the MERCOSUR countries require that the mandatory nutrition labeling should include information not only about the content of SFA but also about the content of t-FA. This does not apply to fractionated products at the point of retail, such as bakery products. This paper aimed to determine the total fat content and the fatty acid profile in unpackaged traditional bakery products (breads, biscuits and pastries) in Santa Fe, Argentina. Except for French bread, the contribution of t-FA and SFA to the total FA consumption from baked products was high. On the other hand, due to the high variability detected in the FA composition of bakery products between bakeries, it would be necessary to implement regulations making nutrition labeling mandatory in these products.

  5. Mineral Content and Biochemical Variables of Aloe vera L. under Salt Stress

    PubMed Central

    Murillo-Amador, Bernardo; Córdoba-Matson, Miguel Víctor; Villegas-Espinoza, Jorge Arnoldo; Hernández-Montiel, Luis Guillermo; Troyo-Diéguez, Enrique; García-Hernández, José Luis

    2014-01-01

    Despite the proven economic importance of Aloe vera, studies of saline stress and its effects on the biochemistry and mineral content in tissues of this plant are scarce. The objective of this study was to grow Aloe under NaCl stress of 0, 30, 60, 90 and 120 mM and compare: (1) proline, total protein, and enzyme phosphoenolpyruvate carboxylase (PEP-case) in chlorenchyma and parenchyma tissues, and (2) ion content (Na, K, Ca, Mg, Cl, Fe, P. N, Zn, B, Mn, and Cu) in roots, stems, leaves and sprouts. Proline and PEP-case increased as salinity increased in both parenchyma and chlorenchyma, while total protein increased in parenchyma and decreased in chlorenchyma, although at similar salt concentrations total protein was always higher in chlorenchyma. As salinity increased Na and Cl ions increased in roots, stems, leaves, while K decreased only significantly in sprouts. Salinity increases typically caused mineral content in tissue to decrease, or not change significantly. In roots, as salinity increased Mg decreased, while all other minerals failed to show a specific trend. In stems, the mineral concentrations that changed were Fe and P which increased with salinity while Cu decreased. In leaves, Mg, Mn, N, and B decreased with salinity, while Cu increased. In sprouts, the minerals that decreased with increasing salinity were Mg, Mn, and Cu. Zinc did not exhibit a trend in any of the tissues. The increase in protein, proline and PEP-case activity, as well as the absorption and accumulation of cations under moderate NaCl stress caused osmotic adjustment which kept the plant healthy. These results suggest that Aloe may be a viable crop for soil irrigated with hard water or affected by salinity at least at concentrations used in the present study. PMID:24736276

  6. Effect of Nano-Y2O3 on Microstructure and Crack Formation in Laser Direct-Deposited In Situ Particle-Reinforced Fe-Based Coatings

    NASA Astrophysics Data System (ADS)

    Yin, Guili; Chen, Suiyuan; Liu, Yuanyuan; Liang, Jing; Liu, Changsheng; Kuang, Zheng

    2018-03-01

    In situ hard-particle-reinforced Fe-based composite coatings were prepared on Q235 steel substrates by direct laser deposition using Fe-based alloy powders containing 2 wt.% B, 3 wt.% Si and 1-3 wt.% nano-Y2O3. The microstructures, phase compositions, hardnesses and wear resistances of the deposited coatings with different nano-Y2O3 contents were studied using metallographic microscopy, scanning electron microscopy, x-ray diffraction, transmission electron microscopy, microhardness tests and pin-on-disk abrasion tests (MMW-1A), respectively. The results showed that the appropriate addition of Y2O3 played a role in grain refinement and in decreasing the number of brittle phases and impurity elements in the grain boundaries. Consequently, the number of cracks in the laser-deposited coating also decreased. The Fe-based composite coatings were mainly composed of α-Fe, γ-Fe and in situ-produced reinforced particle phases, such as Cr23C6, Cr7C3, (Cr, Fe)7C3, Fe2B, and CrFeB. When the content of nano-Y2O3 was 2 wt.%, a Fe-based composite coating with a thickness of 4 mm that was free of cracks was obtained, and its surface hardness reached 650HV. Moreover, the wear resistance of the coating with 2 wt.% nano-Y2O3 was the best among the samples studied. The presence of nano-Y2O3 increased the solubility of Cr and Si in the solid solution, which eliminated the residual austenite region, and as a result, the phase transformation from γ-Fe to α-Fe was restrained and the transformation stress was also limited, thereby decreasing the probability of cracks in the coatings.

  7. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys

    DOE PAGES

    Sun, Zhiqian; Edmondson, Philip D.; Yamamoto, Yukinori

    2017-11-15

    The microstructures and mechanical properties of deformed and annealed Nb-containing FeCrAl alloys were investigated. Fine dispersion of Fe 2Nb-type Laves phase particles was observed in the bcc-Fe matrix after applying a thermomechanical treatment, especially along grain/subgrain boundaries, which effectively stabilized the recovered and recrystallized microstructures compared with the Nb-free FeCrAl alloy. The stability of recovered areas increased with Nb content up to 1 wt%. The recrystallized grain structure in Nb-containing FeCrAl alloys consisted of elongated grains along the rolling direction with a weak texture when annealed below 1100 °C. An abnormal relationship between recrystallized grain size and annealing temperature wasmore » found. Microstructural inhomogeneity in the deformed and annealed states was explained based on the Taylor factor. Annealed Nb-containing FeCrAl alloys showed a good combination of strength and ductility, which is desirable for their application as fuel cladding in light-water reactors.« less

  8. Graphene and temperature controlled butterfly shape in permittivity-field loops of ferroelectric polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Adohi, B. J. P.; Brosseau, C.; Laur, V.; Haidar, B.

    2017-01-01

    We report on the field-dependent polarization of graphene (GE) filled poly[vinylidene fluoride-co-trifluoroethylene] P(VDF-TrFE) nanostructures fabricated by mechanical melt mixing. This study shows an increase in effective permittivity of these nanomaterials on increasing the GE loading in a manner that is consistent with standard mixing law. Detailed characterization of the unsaturated ferroelectric hysteresis, as well as the butterfly shape of the effective permittivity versus electric bias, of the samples are presented. For GE content set to 9.1 wt. % in the samples containing 50/50 wt. % (VDF/TrFE), the maximum polarization increases by 260% with respect to that of the neat polymer matrix. With a higher VDF content, 73 wt. %, the coercive field remains constant over the range of GE content explored. Additionally, our results highlight the strong impact of the GE loading and temperature on the butterfly shape in permittivity-field loops of these nanocomposites. The experimental findings are consistent with theoretical predictions of the modified Johnson's model [Narayanan et al., Appl. Phys. Lett. 100, 022907 (2012)]. Our findings can open avenues for interplay between conductive nanofillers and ferroelectricity in soft nanomaterials with controlled phase transitions.

  9. Study on Composition, Microstructure and Wear Behavior of Fe-B-C Wear-Resistant Surfacing Alloys

    NASA Astrophysics Data System (ADS)

    Zhuang, Minghui; Li, Muqin; Wang, Jun; Ma, Zhen; Yuan, Shidan

    2017-12-01

    Fe-B-C alloy layers with various microstructures were welded on Q235 steel plates using welding powders/H08Mn2Si and welding wires composite surfacing technology. The relationship existing between the chemical composition, microstructure and wear resistance of the surfacing alloy layers was investigated by scanning electron microscopy, x-ray diffraction, electron backscatter diffraction and wear tests. The results demonstrated that the volume fractions and morphologies of the microstructures in the surfacing alloy layers could be controlled by adjusting the boron and carbon contents in the welding powders, which could further regulate the wear resistance of the surfacing alloy layers. The typical microstructures of the Fe-B-C surfacing alloy layers included dendritic Fe, rod-like Fe2B, fishbone-like Fe2B and daisy-like Fe3(C, B). The wear resistance of the alloy layers with various morphologies differed. The wear resistance order of the different microstructures was: rod-like Fe2B > fishbone-like Fe2B > daisy-like Fe3(C, B) > dendritic Fe. A large number of rod-like Fe2B with high microhardness could be obtained at the boron content of 5.70 5.90 wt.% and the carbon content of 0.50 0.60wt.%. The highest wear resistance of the Fe-B-C alloy layers reached the value of 24.1 g-1, which demonstrates the main microscopic cutting wear mechanism of the Fe-B-C alloy layers.

  10. Analysis of holding time variations to Ni and Fe content and morphology in nickel laterite limonitic reduction process by using coal-dolomite bed

    NASA Astrophysics Data System (ADS)

    Abdul, Fakhreza; Pintowantoro, Sungging; Yuwandono, Ridwan Bagus

    2018-04-01

    With the depletion of nickel sulfide ore resources, the nickel laterit processing become an attention to fulfill nickel world demans. Reducing laterite nickel by using a low cost carbonaceous reductan has proved produces high grade ferronickel alloy. In this research, reduction was carried out to low grade laterite nickel (limonite) with 1.25% nikel content by using CO gas reductant formed by reaction between coal and dolomite. Reduction process preceded by forming brickets mixture from limonit ore, coal, and Na2SO4, then the brickets placed inside crucible bed together with dolomit and reduced at temperature 1400 °C with holding time variations 4, 6, and 8 hours. EDX, XRD, and SEM test were carried out to find out the Ni and nickel grade after reduced, the phases that formed, and the morphology brickets after reduced. The reduction results shows that the highest increase on nickel grade was obtained by 8 hours holding time increasing 5.84 % from initial grade, and the highest recovery was obtained by 6 hours holding time with recovery 88.51 %. While the higest increase on Fe grade was obtained by 4 hours holding time, and the highest recovery Fe was obtained by 4 hours holding time with recovery 85.41%.

  11. Tradeoffs in Chemical and Thermal Variations in the Post-perovskite Phase Transition: Mixed Phase Regions in the Deep Lower Mantle?

    NASA Astrophysics Data System (ADS)

    Giles, G. F.; Spera, F. J.; Yuen, D. A.

    2005-12-01

    The recent discovery of a phase-transition in Mg-rich perovskite (Pv) to a post-perovskite (pPv) phase at lower mantle depths and its relationship to D", lower mantle heterogeneity and iron content prompted an investigation of the relative importance of lower mantle (LM) compositional and temperature fluctuations in creating topographic undulations on mixed phase regions. Above the transition, Mg-rich Pv makes up ~70 percent by mass of the LM. Using results from experimental phase equilibria, first-principles computations and thermodynamic relations for Fe2+-Mg mixing in silicates, a preliminary thermodynamic model for the perovskite to post-perovskite phase transition in the divariant system MgSiO3-FeSiO3 is developed. Complexities associated with components Fe2O3 and Al2O3 and other phases (Ca-Pv, magnesiowustite) are neglected. The model predicts phase transition pressures are sensitive to the FeSiO3 content of perovskite (~-1.5 GPa per one mole percent FeSiO3). This leads to considerable topography along the top boundary of the mixed phase region. The Clapeyron slope for the Pv to pPv transition at XFeSiO3=0.1 is +11 MPa/K about 20% higher than for pure Mg-Pv. Increasing bulk concentration of iron elevates the mixed (two-phase) layer above the core-mantle boundary (CMB); increasing temperature acts to push the mixed layer deeper into the LM into the D" thermal boundary layer resting upon the (CMB). For various LM geotherms and CMB temperatures, a single mixed layer of thickness ~300 km lies within the bottom 40% of the lower mantle. For low iron contents (XFeSiO3 ~5 mole percent or less), two perched layers are found. This is the divariant analog to the univariant double-crosser. The hotter the mantle, the deeper the mixed phase layer; the more iron-rich the LM, the higher the mixed phase layer. In a hotter Hadean Earth with interior temperatures everywhere 200-500 K warmer pPv is not stable unless the LM bulk composition is Fe-enriched compared to the present upper mantle.

  12. Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spemann, D., E-mail: spemann@uni-leipzig.de; Esquinazi, P., E-mail: esquin@physik.uni-leipzig.de; Setzer, A.

    In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearlymore » exceeds the maximum contribution from pure Fe or Fe{sub 3}C. For most samples the temperature dependence of the remanence decreases linearly with T – a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.« less

  13. Bioaccumulation of metals in reeds collected from an acid mine drainage contaminated site in winter and spring.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2016-01-01

    Wetland plants such as Phragmites australis has been used to treat acid mine drainage (AMD) contaminated soil which is a serious environmental issue worldwide. This project investigated metal plaque content(s) and metal uptake in reeds grown in an AMD field in winter and spring. The results indicated that the level of Fe plaque was much higher than Mn and Al plaque as the soil contained more Fe than Al and Mn. The amounts of Mn and Al plaque formed on reeds in spring were not significantly different from that in winter (p > .05). However, more Fe plaque was formed on reeds collected in spring. The concentrations of metals in underground organs were positively related to the metal levels in soils. More Mn and Al transferred to the aboveground tissues of reeds during the spring while the Fe levels in reeds did not significantly vary with seasons. Roots and rhizomes were the main organs for Fe sequestration (16.3 ± 4.15 mg/g in roots in spring) while most Al was sequestered in the shoots of reeds (2.05 ± 0.09 mg/g in shoots in spring). Further research may be needed to enhance the translocation of metals in reeds and increase the phytoremediation efficiency.

  14. The role of carbon dioxide in the transport and fractionation of metals by geological fluids

    NASA Astrophysics Data System (ADS)

    Kokh, Maria A.; Akinfiev, Nikolay N.; Pokrovski, Gleb S.; Salvi, Stefano; Guillaume, Damien

    2017-01-01

    Although carbon dioxide is one of the major components of crustal fluids responsible for ore deposit formation, its effect on transport and precipitation of metals remains unknown, due to a lack of direct experimental data and physical-chemical models for CO2-rich fluids. To fill this gap, we combined laboratory experiments and thermodynamic modeling to systematically quantify the role played by CO2 for the solubility of economically important metals such as Fe, Cu, Zn, Au, Mo, Pt, Sn under hydrothermal conditions. Solubility measurements of common ore minerals of these metals (FeS2, CuFeS2, ZnS, Au, MoS2, PtS, SnO2) were performed, using a flexible-cell reactor equipped with a rapid sampling device, in a single-phase fluid (CO2-H2O-KCl) at 350-450 °C and 600-750 bar, buffered with iron sulfide and oxide and alkali-aluminosilicate mineral assemblages. In addition, another type of experiments was conducted to measure gold solubility in more sulfur-rich supercritical CO2-H2O-S-NaOH fluids at 450 °C and 700 bar using a batch reactor that allows fluid quenching. Our results show that the solubilities of Si, Au, Mo, Pt and Cu either decrease (within <1 log unit) or remain constant upon CO2 increase, whereas those of Fe, Zn and Sn increase significantly (>1 log unit) with CO2 contents in the fluid increasing from 0 to 50 wt%. These data were interpreted using a simple model that does not require any new adjustable parameters, and is based on the dielectric constant of the H2O-CO2 solvent and on the Born solvation parameter for the dominant metal-bearing species in an aqueous fluid. Our predictions using this model suggest that in a supercritical CO2-H2O-S-salt fluid typical of metamorphic Au deposits, in equilibrium with pyrite and chalcopyrite, the Cu/Fe ratio decreases by up to 2 orders of magnitude with an increase of CO2 content from 0 to 70 wt%. This effect is due to the decrease of the fluid dielectric constant in the presence of CO2, which favors the stability of neutral species (FeCl20) compared to charged ones (CuCl2-). Our results explain the Fe enrichment and Cu depletion in metamorphic gold deposits formed by CO2-rich fluids. The transport of gold is unfavorable in the presence of CO2 only in S-rich (>0.5 wt% S) fluids in which Au forms the negatively charged Au(HS)2- and Au(HS)S3- complexes. By contrast, it is only weakly affected in S-poor (<0.1 wt% S) acidic-to-neutral fluids in which the uncharged Au(HS)0 complex predominates. Thus, even at very high CO2 contents (>50 wt% CO2), the capacity of such fluids to transport gold (up to 100s ppb Au) remains comparable to that of aqueous fluids. These findings are in agreement with analyses of natural fluid inclusions in metamorphic deposits. In more saline oxidizing and S-rich fluids such as those in magmatic porphyry Cu-Au deposits, the Fe, Cu, and Au solubilities in the presence of CO2 decrease by ∼1 order of magnitude with CO2 increasing to 20-30 wt%, following the decrease in the stability of their dominant charged species (FeCl42-, CuCl2-, Au(HS)2- and Au(HS)S3-), but stay almost constant at higher CO2 contents (30-70 wt%) as controlled by the neutral species (FeCl20, Cu(HS)0 and Au(HS)0). Such solubility trends suggest a new potential trigger of ore precipitation in porphyry systems by CO2 pulses from the magmatic chamber, which may operate along with commonly admitted depositional mechanisms such as cooling, vapor-brine immiscibility, and water-rock interaction. The direct effect of CO2 on the mobility of Pt and Mo, metals that likely form hydrogen sulfide and oxy-hydroxide complexes, respectively, is expected to be weak in most settings. Among the studied elements, Sn is the only one whose solubility may be favored at high CO2 content (>20 wt%) due to carbonate complexing. This study demonstrates, for the first time, that, contrary to common belief, the presence of CO2 in a supercritical fluid may lead to enhanced mobility or, on contrary, to massive precipitation of some metals, depending on salinity and sulfur content, and, more generally, to significant fractionations between different metals.

  15. Influence of Aluminum on the Formation Behavior of Zn-Al-Fe Intermetallic Particles in a Zinc Bath

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun; Park, Geun-Ho; Paik, Doo-Jin; Huh, Yoon; Hong, Moon-Hi

    2012-01-01

    The shape, size, and composition of dross particles as a function of aluminum content at a fixed temperature were investigated for aluminum added to the premelted Zn-Fe melt simulating the hot-dip galvanizing bath by a sampling methodology. In the early stage, less than 30 minutes after Al addition, local supersaturation and depletion of the aluminum concentration occurred simultaneously in the bath, resulting in the nucleation and growth of both Fe2Al5Zn x and FeZn13. However, the aluminum was homogenized continuously as the reaction proceeded, and fine and stable FeZn10Al x formed after 30 minutes. An Al-depleted zone (ADZ) mechanism was newly proposed for the "η→η+ζ→δ" phase transformations. The ζ phase bottom dross partly survived for a relatively long period, i.e., 2 hours in this work, whereas the η phase disappeared after 30 minutes. In the early stage of dross formation, both Al-free large particles as well as high-Al tiny particles were formed. The dross particle size decreased slightly with increased reaction time before reaching a plateau. The opposite tendency was observed when the Al content was 0.130 mass pct; with a relatively high Al content, the nucleation of tiny η phase dross was significantly enhanced because of the high degree of supersaturation. This unstable η phase dissolved continuously and underwent simple transformation to the stable δ phase. The relationship between nucleation potential and supersaturation ratio of species is discussed based on the thermodynamics of classical nucleation theory.

  16. An experimental study of ^{{{{Fe}}^{2 + } {-}{{Mg}}}} K_{{D}} between orthopyroxene and rhyolite: a strong dependence on H2O in the melt

    NASA Astrophysics Data System (ADS)

    Waters, Laura E.; Lange, Rebecca A.

    2017-06-01

    The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+-Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785-850 °C and 80-185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni-NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that ^{{{{Fe}}^{2 + } {-}{{Mg}}}} K_{{D}} between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+-Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Richa; Tandon, R. P., E-mail: ram-tandon@hotmail.com

    In the present work, (1-x)Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3}-(x)CoFe{sub 1.8}Mn{sub 0.2}O{sub 4} composites are prepared by standard solid state reaction method. The X-ray diffraction measurement of the composites shows that both the phases coexist in the composite, individually. The morphology of the composites were examined by field emission scanning electron microscopy and reveals homogeneous microstructure with two types of grains, smaller grains of the Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} (BST) and bigger grains of the CoFe{sub 1.8}Mn{sub 0.2}O{sub 4} (CFM). The dielectric studies show that all the composites exhibit dispersion in the lower frequency region attributable to the interfacial polarization. In addition,more » at lower frequencies, the dielectric constant (ε´) is found to increase with increase in CFM content in the composites. The ferromagnetic properties of the composites improve with the increase in the CFM content.« less

  18. Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer.

    PubMed

    Sevilla-Perea, A; Mingorance, M D

    2015-08-01

    An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (<50%) whereas 70-100% of the pistachio, rosemary and caper survived for at least 27 months. In unamended soil, plant growth was severely hampered by P, N, K and Zn deficiencies as well as Fe and Mn excess. Overall, the treatments affected the soil and plant indicators as follows: biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hydroxyl Impurities Enhance Radiative Transfer in the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.

    2002-12-01

    Modelling radiative heat transfer is essential to geodynamics because the increase of the diffusive radiative thermal conductivity (krdf) with temperature promotes stability through feedback (Dubuffet et al., 2002, Nonlinear Proc. Geophys., 9: 1-13). Measuring krdf is virtually impossible, and therefore krdf is calculated from spectroscopic measurements. Previous efforts show that Fe2+ impurities in olivine engender radiative transfer when luminous emissions of "hot" grains are absorbed by slightly cooler nearest-neighbor grains. Hydroxyl impurities provide a similar mechanism of emission/absorption. Hydroxyl is important to radiative transfer because (1) OH absorptions are located in the transparent gap between the lattice modes and the Fe2+ transitions (2) small amounts of OH produce intense absorptions, (3) the specific frequencies enable transfer at lower temperatures than is possible with Fe transitions, i.e. even in the cold interiors of slabs, and (4) OH is preferentially located in mineral phases such as garnet and wadsleyite, whereas Fe contents are distributed more or less uniformly. The effect of changing OH concentration on krdf is explored using forsteritic olivine to represent mantle material. Polarized (absorption and reflection) spectroscopic measurements from 77 to 623 K show that the changes in frequency, width, and intensity of the OH bands are small, and that peak area is constant. This allows the effect of OH to be treated independently of temperature. However, OH content and grain size (d) cannot be separated, because the strength of the emissions within a self-emitting medium depends on d. For d = 3 mm, concentrations below 200 H/10{6) Si atoms contribute negligibly to radiative transfer. With low OH contents krdf increases, whereas above ca 1000 H /106 Si, krdf is inverse with concentration. The maxima for krdf depends on d and OH content. Kimberlite samples suggest that the upper mantle has evolved to towards conditions which maximize krdf. For the lower mantle with its small grain size, OH contents are irrelevant to radiative heat transfer. Chemical stratification is inferred with Earth's H inventory being stored above 670 km.

  20. Iron deposits in post-mortem brains of patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T magnetic resonance imaging study.

    PubMed

    De Reuck, J L; Deramecourt, V; Auger, F; Durieux, N; Cordonnier, C; Devos, D; Defebvre, L; Moreau, C; Caparros-Lefebvre, D; Leys, D; Maurage, C A; Pasquier, F; Bordet, R

    2014-07-01

    Accumulation of iron (Fe) is often detected in brains of people suffering from neurodegenerative diseases. However, no studies have compared the Fe load between these disease entities. The present study investigates by T2*-weighted gradient-echo 7.0 T magnetic resonance imaging (MRI) the Fe content in post-mortem brains with different neurodegenerative and cerebrovascular diseases. One hundred and fifty-two post-mortem brains, composed of 46 with Alzheimer's disease (AD), 37 with frontotemporal lobar degeneration (FTLD), 11 with amyotrophic lateral sclerosis, 13 with Lewy body disease, 14 with progressive supranuclear palsy, 16 with vascular dementia (VaD) and 15 controls without a brain disease, were examined. The Fe load was determined semi-quantitatively on T2*-weighted MRI serial brain sections in the claustrum, caudate nucleus, putamen, globus pallidus, thalamus, subthalamic nucleus, hippocampus, mamillary body, lateral geniculate body, red nucleus, substantia nigra and dentate nucleus. The disease diagnosis was made on subsequent neuropathological examination. The Fe load was significantly increased in the claustrum, caudate nucleus and putamen of FTLD brains and to a lesser degree in the globus pallidus, thalamus and subthalamic nucleus. In the other neurodegenerative diseases no Fe accumulation was observed, except for a mild increase in the caudate nucleus of AD brains. In VaD brains no Fe increase was detected. Only FTLD displays a significant Fe load, suggesting that impaired Fe homeostasis plays an important role in the pathogenesis of this heterogeneous disease entity. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.

  1. [Contents of different soil fluorine forms in North Anhui and their affecting factors].

    PubMed

    Yu, Qun-ying; Ci, En; Yang, Lin-zhang

    2007-06-01

    By the method of consecutive extraction, this paper studied the contents and vertical distribution of soil fluorine (F) forms in North Anhui, with their relations to the soil physical and chemical properties analyzed. The results showed that the soil total F (T-F) content in North Anhui was ranged from 265.8 mg . kg(-1) to 612.8 mg . kg(-1), with an average of 423.7 mg . kg(-1), and decreased in the sequence of vegetable soil > fluvo-aquic soil > paddy soil > shajiang black soil > yellow brown soil. Among the T-F, residual F (Res-F) was the main form, occupying > 95% of total F, followed by water soluble F (Ws-F), being about 1.5% of the total, and organic-F (Or-F), Fe and Mn oxide-F (Fe/Mn-F) and exchangeable-F (Ex-F) only had very small amount. The Ws-F content in test soils ranged from 1.35 mg . kg(-1) to 17.98 mg . kg(-1), with a mean value of 6.62 mg . kg(-1). Vegetable soil, fluvo-aquic soil and shajiang black soil had a relatively higher content of Ws-F, while yellow brown soil was in adverse. Soil pH and the contents of soil organic matter, total and available phosphorus, and physical clay were the main factors affecting the contents of various F forms. Soil Ws-F was significantly positively correlated with soil pH and soil total and available phosphorus, soil Ex-F was significantly positively correlated with soil clay ( < 0.01 mm and <0.001 mm), soil Fe/Mn-F was significantly positively correlated with soil total phosphorus, and soil Or-F had a significant positive correlation with soil organic matter. Soil Ws-F content also had a close connection to the parent material. The soil developed from shallow lacustrine and marsh sediments usually had the highest Ws-F content, followed by those developed from Huang River alluvial deposit, Q3 loess, Huaihe River alluvial deposit, and light-texture yellow brown soil, with the mean Ws-F content being 9.05, 8.12, 2.97, 2.05 and 1.91 mg . kg(-1), respectively. The contents of soil Or-F and Fe/Mn-F decreased with increasing soil depth, and those of T-F and Ws-F in vegetable soil were higher in upper than in deeper soil layers.

  2. Mechanisms of arsenic-containing pyrite oxidation by aqueous arsenate under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Qiu, Guohong; Gao, Tianyu; Hong, Jun; Tan, Wenfeng; Liu, Fan; Zheng, Lirong

    2017-11-01

    Adsorption and redox reactions occur between arsenic-containing pyrite and arsenate, which affect the migration and conversion of arsenic in soils and waters. However, the influence of arsenic incorporated in pyrite on the interaction processes is still enigmatic. In this work, arsenic-containing pyrites were hydrothermally synthesized with composition similar to naturally surface-oxidized pyrites in supergene environments. The effects of arsenic incorporation on the chemical composition and physicochemical properties were analyzed, and the interaction mechanism between arsenic-containing pyrites and aqueous arsenate was also studied within pH 3.0-11.0. Arsenic-containing pyrites with the arsenic contents of 0 (Apy0), 4.4 (Apy5) and 9.9 wt.% (Apy10) were produced in hydrothermal systems. As(III) and As(-I) respectively substituted Fe(II) and S2(-II) in the pyrite, and their relative contents respectively reached 76.6% and 17.2% in Apy5, and 91.0% and 8.0% in Apy10. Arsenic substitution resulted in a high content of Fe(III) in the form of Fe(III)sbnd S and a decrease in pyrite crystallinity. During the redox processes of arsenic-containing pyrites and arsenate, elemental S0, SO42- and goethite were formed as the main products with the adsorption of As(III,V), and As(III) was released due to the collapse of the crystal structure of pyrite and the oxidation of As(-I). Different redox mechanisms were achieved with pH increasing from 3.0 to 11.0 in the reaction system. At pH 3.0-6.0, Fe(III) contributed much to the oxidation of arsenic-containing pyrites, and arsenate and released As(III) were adsorbed on the surface of solid products. At pH 7.0-11.0, aqueous arsenate worked as the major oxidant, and its oxidation capacity increased with increasing pH. When the pH was increased from 3.0 to 7.0 and 11.0, the release ratio of incorporated arsenic from Apy10 particles increased from 34.1% to 45.0% and 56.8%, respectively. The present study facilitates a better understanding about the interaction mechanisms between arsenic-containing pyrite and arsenate in supergene environments.

  3. Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements

    NASA Astrophysics Data System (ADS)

    Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki

    2018-04-01

    Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.

  4. The effects of Tb substitution for La on the magnetic properties of LaFe11.5Si1.5 compound

    NASA Astrophysics Data System (ADS)

    Imam, H.; Zhang, H. G.; Xu, L.; Zhao, J. L.; Gao, X. X.; Yue, M.

    2018-05-01

    The structural and magnetic properties of La1-yTbyFe11.5Si1.5 compounds have been investigated. The substituted 5 percent of Tb has remarkably increased the maximum entropy change (-ΔSM) to a value of 25.2 J/kg·K. However, a further increase of Tb leads to a monotonous decrease in the entropy change, mainly due to phase separation. The Tb substitution also can lower the thermal and magnetic hysteresis loss of the system. Another feature of this replacement is that, with Tb content higher than 10 percent, the Curie temperature (TC) starts to increase and reaches 197 K when 30 percent of La is substituted. These results indicate that La1-yTbyFe11.5Si1.5 may be a promising candidate for magnetic refrigeration material in certain temperature range.

  5. Shape matters: Cr(VI) removal using iron nanoparticle impregnated 1-D vs 2-D carbon nanohybrids prepared by ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Masud, Arvid; Cui, Yanbin; Atkinson, John D.; Aich, Nirupam

    2018-03-01

    Iron nanoparticles (Fe NPs) are used for treating water contaminated with metals or organic compounds. One-dimensional (1-D) carbon nanotubes (CNTs) and two-dimensional (2-D) graphenes act as useful nanocarbon (NC) supports for Fe NPs by resisting aggregation and enhancing adsorption and redox activity. However, no study showed how shape difference between tubular CNT and planar graphene structures dictates the physicochemical properties and pollutant removal potential of their iron-based nanohybrids. In this work, ultrasonic spray pyrolysis was used to continuously prepare Fe-CNT and Fe-rGO nanohybrids. Both NC shape and Fe/NC ratio influenced Fe NP size, loading, and oxidation states. High Fe content (precursor Fe/NC mass ratio = 2) resulted Fe NPs with diameters of 30.97 ± 7.00 and 24.11 ± 4.42 nm for Fe-CNT and Fe-rGO, respectively; however, low Fe content (Fe/NC = 0.2) provided more uniformly dispersed Fe NPs of 15.65 ± 3.06 and 9.67 ± 1.49 nm, respectively, while unsupported Fe NPs were 285.71 ± 132.42 nm. The USP-derived nanohybrids, for the first time, were used for removal of pollutant, i.e., chromium (Cr(VI)) from aqueous media. Both CNT and rGO provided synergistic effects to significantly enhance Fe NPs' ability to remove Cr(VI); the effect was more pronounced in Fe-rGO than Fe-CNT and also for low Fe content in both cases. Fe-rGO with low Fe/NC ratio and smallest Fe NPs provided the highest Cr(VI) removal capacity (25 mg/g), which was a multifold improvement over bare Fe NPs and other synthesized nanohybrids (range 7-14 mg/g). Overall, 2-D rGO improved contaminant removal capacity of the nanohybrids more than 1-D CNT indicating towards shape effect of NC supports. [Figure not available: see fulltext.

  6. Magnetic properties and tunable magneto-caloric effect in La0.8Ce0.2Fe11.5-xCoxSi1.5C0.2 (x = 0.3, 0.5, and 0.7) compounds

    NASA Astrophysics Data System (ADS)

    Wu, Qiming; Wang, Xiangjie; Ding, Zan; Li, Lingwei

    2018-05-01

    The magnetic and magneto-caloric properties in the ternary elementals doped La0.8Ce0.2Fe11.5-xCoxSi1.5C0.2 (x = 0.3, 0.5, and 0.7) compounds were studied. With the increases of Co content x, the Curie temperature TC increases and the thermal hysteresis decreases. All the compounds undergo a second-order magnetic phase transition and exhibit a considerable reversible tunable magneto-caloric effect. The values of maximum magnetic entropy change (-ΔSMmax) and the Relative Cooling Power (RCP) are kept at same high level with different Co content. Under a magnetic field change of 0-5 T, the values of -ΔSMmax for La0.8Ce0.2Fe11.5-xCoxSi1.5C0.2 are 10.5, 10.7, and 9.8 J/kg K for x = 0.3, 0.5, and 0.7, respectively. The corresponding values of RCP are 267.1, 289.9, and 290.2 J/kg.

  7. Biogeochemical effects of seawater restoration to diked salt marshes

    USGS Publications Warehouse

    Portnoy, J.W.; Giblin, A.E.

    1997-01-01

    We conducted greenhouse microcosm experiments to examine the biogeochemical effects of restoring seawater to historically diked Cape Cod salt marshes. Peat cores from both seasonally flooded and drained diked marshes were waterlogged with seawater, and porewater chemistry was subsequently monitored for 21 mo. The addition of seawater to highly organic, seasonally flooded peat caused the death of freshwater wetland plants, 6-8 cm of sediment subsidence, and increased N and P mineralization. Also, sulfides and alkalinity increased 10-fold, suggesting accelerated decomposition by sulfate reduction. Addition of seawater to the low-organic-content acidic peat from the drained marsh increased porewater pH, alkalinity, PO4-P, and Fe(II), which we attribute to the reestablishment of SO4 and Fe(III) mineral reduction. Increased cation exchange contributed to 6-fold increases in dissolved Fe(II) and Al and 60-fold increases in NH4-N within 6 mo of sail-nation. Seawater reintroductions to seasonally flooded diked marshes will cause porewater sulfides to increase, likely reducing the success of revegetation efforts. Sulfide toxicity is of less concern in resalinated drained peats because of the abundance of Fe(II) to precipitate sulfides, and of NH4-N to offset sulfide inhibition of N uptake. Restoration of either seasonally flooded or drained diked marshes could stimulate potentially large nutrient and Fe(II) releases, which could in turn increase primary production and lower oxygen in receiving waters. These findings suggest that tidal restoration be gradual and carefully monitored.

  8. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, S.; Shimakura, H.; Tahara, S.

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquidmore » Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.« less

  9. Studies of structure of calcium-iron phosphate glasses by infrared, Raman and UV-Vis spectroscopies

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Liang, X. F.; Yu, H. J.; Yang, D. Q.; Yang, S. Y.

    2016-06-01

    Glasses in the ternary CaO-Fe2O3-P2O5 system were prepared and studied by means of density, differential scanning calorimetry, infrared, Raman and UV-Vis spectroscopies. The results showed that density and molar volume in the glass system decreased with increasing substitution of CaO for Fe2O3. The variation of glass transition temperature and thermal stability was strictly related to the nature of bonding in the vitreous network. Spectroscopic analysis showed that substitution of CaO for Fe2O3 induced an evolution of structural units from pyrophosphate to metaphosphate species indicating the polymerization of phosphate chains and the decrease of non-bridging oxygen concentrations. With increasing substitution of CaO for Fe2O3 The P-O-Ca linkage and (P-O- Ca2+ -O-P) chains participated in the glass network by replacing P-O-Fe bonds. The absorption band of the P-O-Ca stretching mode in the glasses with high CaO content (≥32 mol%) was assigned at around 1084 cm-1. The absorption edge would fall in the region between 332 and 420 nm which are the absorption bands of Fe3+ ions.

  10. Photooxidation and its effects on the carboxyl content of dissolved organic matter in two coastal rivers in the southeastern United States.

    PubMed

    Xie, Huixiang; Zafiriou, Oliver C; Cai, Wei-Jun; Zepp, Richard G; Wang, Yongchen

    2004-08-01

    Photodecarboxylation (often stoichiometrically expressed as RCOOH + (1/2)O2 --> ROH + CO2) has long been postulated to be principally responsible for generating CO2 from photooxidation of dissolved organic matter (DOM). In this study, the quantitative relationships were investigated among O2 consumption, CO2 production, and variation of carboxyl content resulting from photooxidation of DOM in natural water samples obtained from the freshwater reaches of the Satilla River and Altamaha River in the southeastern United States. In terms of loss of dissolved organic carbon (DOC), loss of optical absorbance, and production of CO2, the rate of photooxidation of DOM was increased in the presence of Fe redox chemistry and with increasing O2 content. The ratio of photochemical O2 consumption to CO2 photoproduction ranged from approximately 0.8 to 2.5, depending on the O2 content, the extent of involvement of Fe, and probably the initial oxidation state of DOM as well. The absolute concentration of carboxyl groups ([-COOH]) on DOM only slightly decreased or increased over the course of irradiation, possibly depending on the stages of photooxidation, while the DOC-normalized carboxyl content substantially increased in the presence of Fe redox chemistry and sufficient O2. Both the initial [-COOH] and the apparent loss of this quantity over the course of irradiation was too small to account for the much larger production of CO2, suggesting that carboxyl groups were photochemically regenerated or that the major production pathway for CO2 did not involve photodecarboxylation. The results from this study can be chemically rationalized by a reaction scheme of (a) photodecarboxylation/ regeneration of carboxyl: CxHyOz(COOH)m + aO2 + (metals, hv) --> bCO2 + cH2O2 + Cx-bHy'Oz'(COOH)m-b(COOH)b or of (b) nondecarboxylation photooxidation: CxHyOz(COOH)m + aO2 + (metals, hv) --> bCO2 + cH2O2 + Cx-bHy'Oz'(COOH)m.

  11. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice].

    PubMed

    Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han

    2015-02-01

    Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biendicho, J.J.; The ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX Oxfordshire; Shafeie, S.

    Oxygen-deficient ferrates with the cubic perovskite structure Sr{sub x}Y{sub 1−x}FeO{sub 3−δ} were prepared in air (0.71≤x≤0.91) as well as in N{sub 2} (x=0.75 and 0.79) at 1573 K. The oxygen content of the compounds prepared in air increases with increasing strontium content from 3−δ=2.79(2) for x=0.75 to 3−δ=2.83(2) for x=0.91. Refinement of the crystal structure of Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79} using TOF neutron powder diffraction (NPD) data shows high anisotropic atomic displacement parameter (ADP) for the oxygen atom resulting from a substantial cation and anion disorder. Electron diffraction (ED) and high-resolution electron microscopy (HREM) studies of Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79}more » reveal a modulation along 〈1 0 0〉{sub p} with G± ∼0.4〈1 0 0〉{sub p} indicating a local ordering of oxygen vacancies. Magnetic susceptibility measurements at 5–390 K show spin-glass behaviour with dominating antiferromagnetic coupling between the magnetic moments of Fe cations. Among the studied compositions, Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79} shows the lowest thermal expansion coefficient (TEC) of 10.5 ppm/K in air at 298–673 K. At 773–1173 K TEC increases up to 17.2 ppm/K due to substantial reduction of oxygen content. The latter also results in a dramatic decrease of the electrical conductivity in air above 673 K. Partial substitution of Fe by Cr, Mn and Ni according to the formula Sr{sub 0.75}Y{sub 0.25}Fe{sub 1−y}M{sub y}O{sub 3−δ} (y=0.2, 0.33, 0.5) leads to cubic perovskites for all substituents with y=0.2. Their TECs are higher in comparison with un-doped Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79}. Only M=Ni has increased electrical conductivity compared to un-doped Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79}. - Graphical abstract: Oxygen-deficient ferrates with the cubic perovskite structure Sr{sub x}Y{sub 1−x}FeO{sub 3−δ} were prepared both in air (0.71≤x≤0.91) and N{sub 2} (x=0.75 and 0.79) at 1573 K. Refinement of the crystal structure of Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79} using TOF neutron powder diffraction (NPD) data (S.G. Pm-3m, a=3.86455(3) Å; χ{sup 2}=6.71, R{sub p}=0.03; R{sub wp}=0.04) confirmed the cubic perovskite structure. The observed high anisotropic atomic displacement parameter for the oxygen atom indicates a substantial anion sublattice disorder. Electron diffraction (ED) and high-resolution electron microscopy (HREM) studies of Sr{sub 0.75}Y{sub 0.25}FeO{sub 2.79} show compositional modulation along 〈1 0 0〉{sub p} with G± ∼0.4〈1 0 0〉{sub p} indicating ordering of oxygen vacancies at the local scale. Highlights: ► Cubic perovskites Sr{sub x}Y{sub 1−x}FeO{sub 3−δ} (0.71≤x<0.91) were synthesized. ► Sr{sub 0.75}Y{sub 0.25}Fe{sub 1−y}M{sub y}O{sub 3−δ}, M=Cr, Mn, Ni were prepared. ► High-temperature conductivity properties and crystal structure were studied. ► High-temperature thermal expansion behavior was investigated.« less

  13. Geochemical and mineralogical composition of bog iron ore as a resource for prehistoric iron production - A case study of the Widawa catchment area in Eastern Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Thelemann, Michael; Bebermeier, Wiebke; Hoelzmann, Philipp

    2016-04-01

    Spreading from the Near East in the declining Bronze Age from the 2nd millennium BCE onwards, the technique of iron smelting reached Eastern Silesia, Poland, in approximately the 2nd century BCE (pre-Roman Iron Age). At this time the region of the Widawa catchment area was inhabited by the Przeworsk culture. While the older moraine landscape of the study area lacks ores from geological rock formations, bog iron ores were relatively widespread and, due to their comparatively easy accessibility, were commonly exploited for early iron production. In this poster the mineralogical and elemental composition of local bog iron ore deposits and iron slag finds, as a by-product of the smelting process, are investigated. The crystalline mineralogical composition of local bog iron ores is dominated by quartz (SiO2) and goethite (α FeO(OH)), in contrast to slag samples in which fayalite (Fe2SiO4), wüstite (FeO) and quartz, with traces of goethite, represent the main minerals. Ores and slags are both characterized by notable hematite (Fe2O3), magnetite (Fe3O4) and maghemite (γ-Fe2O3) contents. Analyzed bog iron ore samples show iron contents of up to 64.9 mass% Fe2O3 (45.4 mass% Fe), whereas the iron contents of bloomery slags vary between 48.7 and 72.0 mass% FeO (37.9 and 56.0 mass% Fe). A principal component analysis of the element contents, which were quantified by portable energy-dispersive X-ray fluorescence spectrometry (p-ED-XRF), indicates local variations in the elemental composition. Our results show that bog iron ores are relatively widely distributed with spatially varying iron contents along the Widawa floodplain but present-day formation conditions (e.g. different ground-water levels) are negatively affected by modern land-use practices, such as agriculture and melioration measures.

  14. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    PubMed Central

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  15. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    NASA Astrophysics Data System (ADS)

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-04-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.

  16. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.

    Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less

  17. Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys

    DOE PAGES

    Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.; ...

    2017-07-06

    Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less

  18. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE PAGES

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun; ...

    2017-04-27

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  19. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  20. Potentially toxic elements (PTEs) in soils from the surroundings of the Trans-Amazonian Highway, Brazil.

    PubMed

    de Souza, Edna Santos; Fernandes, Antonio Rodrigues; de Souza Braz, Anderson Martins; Sabino, Lorena Lira Leite; Alleoni, Luís Reynaldo Ferracciú

    2015-01-01

    The Trans-Amazonian Highway (TAH) is located in the northern region of Brazil, comprising a border region where agricultural, mining, and logging activities are the main activities responsible for fostering economic development, in addition to large hydroelectric plants. Such activities lead to environmental contamination by potentially toxic elements (PTEs). Environmental monitoring is only possible through the determination of element contents under natural conditions. Many extraction methods have been proposed to determine PTEs' bioavailability in the soil; however, there is no consensus about which extractor is most suitable. In this study, we determined the contents of PTEs in soils in the surroundings of TAH after mineral extraction with diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), Mehlich I, and Mehlich III solutions. Soil samples were collected in areas of natural vegetation in the vicinity of TAH in the state of Pará, Brazil. Chemical attributes and particle size were determined, besides concentrations of Fe, Al, Mn, and Ti by sulfuric acid digestion, Si after alkaline solution attack, and poorly crystalline Fe, Al, and "free" Fe oxides. Mehlich III solution extracted greater contents from Fe, Al, and Pb as compared to Mehlich I and DTPA-TEA and similar contents from Cd, Mn, Zn, and Cu. Significant correlations were found between concentrations of PTEs and the contents of Fe and Mn oxides as well as organic carbon and soil cation exchange capacity. Contents of Cu, Mn, Fe, and Zn by the three methods were positively correlated.

  1. Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones

    PubMed Central

    Glass, Jennifer B.; Kretz, Cecilia B.; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L.; Buck, Kristen N.; Landing, William M.; Morton, Peter L.; Moffett, James W.; Giovannoni, Stephen J.; Vergin, Kevin L.; Stewart, Frank J.

    2015-01-01

    Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3−, NO2−, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu. PMID:26441925

  2. Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol-gel and hydrothermal methods.

    PubMed

    Santos, Reginaldo da S; Faria, Guilherme A; Giles, Carlos; Leite, Carlos A P; Barbosa, Herbert de S; Arruda, Marco A Z; Longo, Claudia

    2012-10-24

    Iron-doped TiO(2) (Fe:TiO(2)) nanoparticles were synthesized by the sol-gel method (with Fe/Ti molar ratio corresponding to 1, 3, and 5%), followed by hydrothermal treatment, drying, and annealing. A similar methodology was used to synthesize TiO(2) and α-Fe(2)O(3) nanoparticles. For comparison, a mixture hematite/titania, with Fe/Ti = 4% was also investigated. Characterization of the samples using Rietveld refinement of X-ray diffraction data revealed that TiO(2) consisted of 82% anatase and 18% brookite; for Fe:TiO(2), brookite increased to 30% and hematite was also identified (0.5, 1.0, and 1.2 wt % for samples prepared with 1, 3, and 5% of Fe/Ti). For hematite/titania mixture, Fe/Ti was estimated as 4.4%, indicating the Rietveld method reliability for estimation of phase composition. Because the band gap energy, estimated as 3.2 eV for TiO(2), gradually ranged from 3.0 to 2.7 eV with increasing Fe content at Fe:TiO(2), it can be assumed that a Fe fraction was also inserted as dopant in the TiO(2) lattice. Extended X-ray absorption fine structure spectra obtained for the Ti K-edge and Fe K-edge indicated that absorbing Fe occupied a Ti site in the TiO(2) lattice, but hematite features were not observed. Hematite particles also could not be identified in the images obtained by transmission electron microscopy, in spite of iron identification by elemental mapping, suggesting that hematite can be segregated at the grain boundaries of Fe:TiO(2).

  3. Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones.

    PubMed

    Glass, Jennifer B; Kretz, Cecilia B; Ganesh, Sangita; Ranjan, Piyush; Seston, Sherry L; Buck, Kristen N; Landing, William M; Morton, Peter L; Moffett, James W; Giovannoni, Stephen J; Vergin, Kevin L; Stewart, Frank J

    2015-01-01

    Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO[Formula: see text], NO[Formula: see text], Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.

  4. [Synthesis and spectral characteristic of Ga-Fe3O4 at room temperature].

    PubMed

    Wang, Jing; Deng, Tong; Yang, Cai-Qin; Lin, Yu-Long; Wang, Wei; Wu, Hai-Yan

    2008-03-01

    Gallium bearing ferrites with different gallium content were synthesized by oxidation of ferrous and gallium ions under alkaline condition and room temperature. The samples were subjected to IR, XRD, Mossbauer spectral analysis and magnetization characterization. The results indicated that the green-rust intermediate phase would be produced during the procedure of Ga-Fe3O4 formation, and the green-rust intermediate phase was converted to ferrites with spinel structure during the drying under hot-N2 atmosphere. With the introduction of gallium into the spinel structure, the interplanar crystal spacing of the spinel structure decreased, as indicated from XRD spectra, and the lattice vibration of M(T)-O-M(o) moved to the high-frequency resulting from IR spectra. A small amount gallium introduction entered the tetrahedral sites preferentially rather than the octahedral sites, and increasing gallium introduction would enhance the occupation of octahedral sites. Furthermore, a small content of gallium in the initial solution could prevent the formation of non-magnetic Fe2O3.

  5. Improved thermal stability of TbF3-coated sintered Nd-Fe-B magnets by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Cao, X. J.; Chen, L.; Guo, S.; Di, J. H.; Ding, G. F.; Chen, R. J.; Yan, A. R.; Chen, K. Z.

    2018-05-01

    Using electrophoretic deposition (EPD) method, the impact of TbF3 diffusion on the coercivity, microstructure and thermal stability of sintered Nd-Fe-B magnets with different rare earth (RE) content was investigated. In the diffused magnets with the RE content of 34 wt.%, the maximum coercivity about 28.12 kOe with less than 1.44 wt.% Tb was achieved, the coercivity temperature coefficient (β) was improved to -0.50 %/°C from -0.58 %/°C within the temperature interval 25-160 °C, and the maximum operating temperature further increased to about 160 °C. It suggested that TbF3 diffused magnets had much superior thermal stability than the annealed samples. This was attributed to the formation of the Tb-rich (Nd, Tb)2Fe14B phase in the outer region of the matrix grains and the improved Nd-rich grain boundary phase after TbF3 diffusion.

  6. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    NASA Astrophysics Data System (ADS)

    El Moussaoui, H.; Mahfoud, T.; Habouti, S.; El Maalam, K.; Ben Ali, M.; Hamedoun, M.; Mounkachi, O.; Masrour, R.; Hlil, E. K.; Benyoussef, A.

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn1-xMnxFe2O4 with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn0.5Mn0.5Fe2O4 has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn0.5Mn0.5Fe2O4 with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn1-xMnxFe2O4; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases.

  7. Quality monitoring methods of initial and terminal manufacture of LiFePO4 based lithium ion batteries by capillary electrophoresis.

    PubMed

    Xie, Xia; Yang, Yang; Zhou, Henghui; Li, Meixian; Zhu, Zhiwei

    2018-03-01

    Magnetic impurities of lithium ion battery degrade both the capacity and cycling rates, even jeopardize the safety of the battery. During the material manufacture of LiFePO 4 , two opposite and extreme cases (trace impurity Fe(II) with high content of Fe(III) background in FePO 4 of initial end and trace Fe(III) with high content of Fe(II) background in LiFePO 4 of terminal end) can result in the generation of magnetic impurities. Accurate determination of impurities and precise evaluation of raw material or product are necessary to ensure reliability, efficiency and economy in lithium ion battery manufacture. Herein, two kinds of rapid, simple, and sensitive capillary electrophoresis (CE) methods are proposed for quality monitoring of initial and terminal manufacture of LiFePO 4 based lithium ion batteries. The key to success includes the smart use of three common agents 1,10-phenanthroline (phen), EDTA and cetyltrimethyl ammonium bromide (CTAB) in sample solution or background electrolyte (BGE), as well as sample stacking technique of CE feature. Owing to the combination of field-enhanced sample injection (FESI) technique with high stacking efficiency, detection limits of 2.5nM for Fe(II) and 0.1μM for Fe(III) were obtained corresponding to high content of Fe(III) and Fe(II), respectively. The good recoveries and reliability demonstrate that the developed methods are accurate approaches for quality monitoring of LiFePO 4 manufacture. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structural and magnetic properties of sol-gel Co2xNi0.5-x Zn0.5-xFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Rebrov, Evgeny V.; Gao, Pengzhao; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Turgut, Zafer; Kozlowski, Gregory

    2011-03-01

    Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x=0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.

  9. Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes

    NASA Astrophysics Data System (ADS)

    Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.

    2016-10-01

    We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.

  10. The hybrid lattice of K(x)Fe(2-y)Se2: where superconductivity and magnetism coexist.

    PubMed

    Louca, Despina; Park, Keeseong; Li, Bing; Neuefeind, Joerg; Yan, Jiaqiang

    2013-01-01

    Much remains unknown of the microscopic origin of superconductivity in atomically disordered systems of amorphous alloys or in crystals riddled with defects. A manifestation of this conundrum is envisaged in the highly defective superconductor of K(x)Fe(2-y)Se2. How can superconductivity survive under such crude conditions that call for strong electron localization? Here, we show that the Fe sublattice is locally distorted and accommodates two kinds of Fe valence environments giving rise to a bimodal bond-distribution, with short and long Fe bonds. The bimodal bonds are present even as the system becomes superconducting in the presence of antiferromagnetism, with the weight continuously shifting from the short to the long with increasing K content. Such a hybrid state is most likely found in cuprates as well while our results point to the importance of the local atomic symmetry by which exchange interactions between local moments materialize.

  11. Postnatal iron-induced motor behaviour alterations following chronic neuroleptic administration in mice.

    PubMed

    Fredriksson, A; Eriksson, P; Archer, T

    2006-02-01

    C57/BL6 mice were administered either 7.5 mg Fe(2+)/kg or vehicle (saline) postnatally on days 10-12 after birth. From 61 days of age onwards for 21 days, groups of mice were administered either clozapine (1 or 5 mg/kg, s.c.) or haloperidol (1 mg/kg, s.c.) or vehicle (Tween-80). Twenty-four hours after the final injection of either neuroleptic compound or vehicle, spontaneous motor activity was measured over a 60-min interval. Following this, each animal was removed, injected apomorphine (1 mg/kg, s.c.) and replaced in the same test chamber. It was found that postnatal administration of Fe(2+) at the 7.5 mg/kg dose level reduced activity during the initial 20-min periods (0-20 and 20-40 min) and then induced hyperactivity during the final 20-min period over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hypoactivity in by postnatal Fe(2+) during the 1(st) two 20-min periods over all three parameters of activity. Subchronic treatment with the higher, 5 mg/kg, dose of clozapine abolished or attenuated the hyperactivity in by postnatal Fe(2+) during the 3(rd) and final 20-min period. Subchronic administration of haloperidol, without postnatal iron, increased the level of both locomotion (1(st) 20 min) and rearing (2(nd) 20 min) activity. Postnatal administration of Fe(2+) at the 7.5 mg/kg dose increased the levels of both locomotion and rearing, but not total activity, following administration of apomorphine (1 mg/kg). Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, reduced the increased locomotor activity caused by postnatal Fe(2+), whereas clozapine, 5 mg/kg, elevated further the postnatal Fe(2+)-induced increased in rearing. Subchronic administration of clozapine, at both the 1 and 5 mg/kg doses, and haloperidol, 1 mg/kg, increased the level of locomotor following administration of apomorphine (1 mg/kg) in mice treated postnatally with vehicle, whereas only clozapine increased the level of rearing. Correlational analyses indicated that both apomorphine-induced locomotion and rearing were highly correlated with the total iron content in the basal ganglia, thereby offering direct evidence of the linear relationship between iron content in the basal ganglia and the behavioural expression of DA D(2)-receptor supersensitivity in mice.

  12. High-pressure phase transitions of Fe 3-xTi xO 4 solid solution up to 60 GPa correlated with electronic spin transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki

    2013-06-12

    The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius of VIFe 2+ becomes 20% shortened by the spin transition. At 53 GPa, the structure transforms to another high-pressure polymorph with Pmma symmetry with the ordered structure of Ti and Fe atoms in the octahedral site. This structure change results from the order-disorder transition.« less

  13. Sulphursoil - Delano Development Corporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1985-06-01

    A sizable amount of technical information has been accumulated on the effects of agricultural applications of the natural mineral product called Sul-Fe. This technical information supports the field observations of farmers, landscapers and gardeners who have used the product. Sul-Fe is often evaluated in terms of its sulphur content alone. When compared to elemental sulphur (100% sulphur), the 18 to 21% sulphur content of Sul-Fe seems relatively low. However, as the following technical data indicates, when judged on actual effects, Sul-Fe's complex mixture of minerals has several advantages over elemental sulphur. When judged on the basis of soil acidulation, Sul-Femore » has more immediate effects than elemental sulphur. The rapid acidifying effect is due to Sul-Fe's content of crystalline sulphuric acid. Sul-Fe also has long-term effects on soil pH due to its content of sulphur and sulfides and the time required to oxidize these materials. Elemental sulphur contains sulphur in only one chemical form which must be microbially oxidized before it becomes reactive in the soil solution, a reaction that takes quite some time in some soils. Sul-Fe is thus better than elemental sulphur in terms of immediate effects and comparable in terms of long term effects. Applied blends of Sul-Fe supplemented with elemental sulphur may provide for a maximization of both short and long term effects. An additional benefit derived from the use of Sul-Fe is the addition to the soil of a variety of trace nutrients including iron, calcium, zinc, copper, manganese, magnesium, and molybdenum.« less

  14. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains.

    PubMed

    Su, Da; Zhou, Lujian; Zhao, Qian; Pan, Gang; Cheng, Fangmin

    2018-02-21

    Development of rice cultivars with low phytic acid (lpa) is considered as a primary strategy for biofortification of zinc (Zn) and iron (Fe). Here, two rice genotypes (XS110 and its lpa mutant) were used to investigate the effect of P supplies on accumulations and distributions of PA, Zn, and Fe in rice grains by using hydroponics and detached panicle culture system. Results showed that higher P level increased grain PA concentration on dry matter basis (g/kg), but it markedly decreased PA accumulation on per grain basis (mg/grain). Meanwhile, more P supply reduced the amounts and bioavailabilities of Zn and Fe both in milled grains and in brown grains. Comparatively, lpa mutant was more susceptive to exogenous P supply than its wild type. Hence, the appropriate P fertilizer application should be highlighted in order to increase grain microelement (Zn and Fe) contents and improve nutritional quality in rice grains.

  15. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Jyoti; Yadav, K.L., E-mail: klyadav35@yahoo.com; Prakash, Satya

    Highlights: • Spinel–perovskite xCoFe{sub 2}O{sub 4}–(1 − x)(0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}) composites have been synthesized by solid state reaction method. • Two anomalies in dielectric constant have been identified, and the composites show relaxor behaviour. • The magnetic properties of the composites improve with increasing concentration of CoFe{sub 2}O{sub 4}. • Enhanced magnetodielectric effect is found, and magnetoelectric coupling has been confirmed by Δϵ ∼ γM{sup 2} relation. • Optical band gap energy of these composites has been reported for the first time. - Abstract: xCoFe{sub 2}O{sub 4}–(1 − x)(0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3}) compositesmore » with x = 0.1, 0.2, 0.3 and 0.4 have been synthesized by solid state reaction method. X-ray diffraction analysis and field emission secondary electron microscopy have been used for structural and morphological analysis, respectively. The spinel CoFe{sub 2}O{sub 4} and perovskite 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} phase could be identified in the composites. Two anomalies in dielectric constant have been identified: first one is close to ferroelectric to paraelectric phase transition of 0.5Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–0.5(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} ceramic and the other lies near the magnetic transition temperature of CoFe{sub 2}O{sub 4}. There is an increase in magnetocapacitance and saturation magnetization of the composites at room temperature with increase in CoFe{sub 2}O{sub 4} content. The magnetoelectric coupling coefficient (γ) was approximated by Δϵ ∼ γM{sup 2} relation. The optical band gap energy of the composites decreases with increase in CoFe{sub 2}O{sub 4} content.« less

  17. Theoretical exploration of optical response of Fe3O4-reduced graphene oxide nanoparticle system within dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Kusumaatmadja, R.; Fauzi, A. D.; Phan, W. Y.; Taufik, A.; Saleh, R.; Rusydi, A.

    2017-04-01

    We theoretically investigate the optical conductivity and its related optical response of Fe3O4-reduced graphene oxide (rGO) nanoparticle system. Experimental data of magnetization of the Fe3O4-rGO nanoparticle system have shown that the saturation magnetization can be enhanced by controlling the rGO content with the maximum enhancement reached at the optimal rGO content of about 5 weight percentage. We hypothesize that the magnetization enhancement is due to spin-flipping of Fe ions at tetrahedral sites induced by oxygen vacancies at the Fe3O4 nanoparticle boundaries. These oxygen vacancies are formed due to adsorption of oxygen atoms by rGO flakes around the Fe3O4 nanoparticle. In this study, we aim to explore the implications of this effect to the optical response of the system as a function of the rGO content. Our model incorporates Hubbard-repulsive interactions between electrons occupying the e g orbitals of Fe3+ and Heisenberg-like interactions between electron spins and spins of Fe3+ ions. We treat the relevant interactions within mean-field and dynamical mean-field approximations. Our results are to be compared with the existing experimental reflectance data of Fe3O4 nanoparticle system.

  18. MAGNETIC BEHAVIOR OF IRON IONS IN THE P2O5·CaO GLASS MATRIX

    NASA Astrophysics Data System (ADS)

    ARDELEAN, I.; ANDRONACHE, C.; PǍŞCUŢǍ, P.

    The temperature dependence of the magnetic susceptibility of xFe2O3·(100-x)-[P2O5·CaO] glasses with 035 mol%, the evaluated values of the μeff indicate either the presence of Fe+ ions or the coordination influence on the magnetic moment of iron ions, but the presence of small quantities of the antiferromagnetic or ferrimagnetic interactions between iron ions in studied temperature range cannot be excluded. The high temperature susceptibility results indicate that the iron ions are isolated or participate in dipole-dipole interactions for glasses with x≤35 mol% and are antiferromagnetically coupled for higher contents of Fe2O3.

  19. Dopaminergic Neurons Respond to Iron-Induced Oxidative Stress by Modulating Lipid Acylation and Deacylation Cycles

    PubMed Central

    Sánchez Campos, Sofía; Rodríguez Diez, Guadalupe; Oresti, Gerardo Martín; Salvador, Gabriela Alejandra

    2015-01-01

    Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation. N27 dopaminergic neurons incubated with Fe (1mM) for 24 hs displayed increased levels of reactive oxygen species (ROS), lipid peroxidation and elevated plasma membrane permeability. Cu-supplemented neurons (10, 50 μM) showed no evidence of oxidative stress markers. A different lipid acylation profile was observed in N27 neurons pre-labeled with [3H] arachidonic acid (AA) or [3H] oleic acid (OA). In Fe-exposed neurons, AA uptake was increased in triacylglycerols (TAG) whereas its incorporation into the phospholipid (PL) fraction was diminished. TAG content was 40% higher in Fe-exposed neurons than in controls. This increase was accompanied by the appearance of Nile red positive lipid bodies. Contrariwise, OA incorporation increased in the PL fractions and showed no changes in TAG. Lipid acylation profile in Cu-supplemented neurons showed AA accumulation into phosphatidylserine and no changes in TAG. The inhibition of deacylation/acylation reactions prompted an increase in oxidative stress markers and mitochondrial dysfunction in Fe-overloaded neurons. These findings provide evidence about the participation of lipid acylation mechanisms against Fe-induced oxidative injury and postulate that dopaminergic neurons cleverly preserve AA in TAG in response to oxidative stress. PMID:26076361

  20. Effect of Nb doping on the microstructure and magnetic properties of Nd-Ce-Fe-B alloy

    NASA Astrophysics Data System (ADS)

    Quan, Qichen; Zhang, Lili; Jiang, Qingzheng; Lei, Weikai; Zeng, Qingwen; Hu, Xianjun; Wang, Lei; Yu, Xi; Du, Junfeng; Fu, Gang; Liu, Renhui; Zhong, Minglong; Zhong, Zhenchen

    2017-11-01

    With the intention to reduce the Nd content in Nd2Fe14B-type alloys, 20 at.% Ce and 0.5 at.% Nb substituting Nd and Fe in the Nd13Fe82B5 alloys were previously employed to improve successfully the coercivity and the thermal stability without the energy product reduction. In this study, a light increase of the remnant polarization Jr was observed in (Nd0.8Ce0.2)13Fe82-xNbxB5 alloy at x = 0.5 and x = 1.0, resulting from the increasing amount of α-Fe phase. The optimum magnetic properties obtained with 0.5 at.% Nb doping are Hcj = 13.1 kOe, Jr = 0.79 T, (BH)max = 13.3 MGOe, respectively. Besides, the coercivity Hcj and maximum energy product (BH)max for the melt-spun ribbons with 0.5 at.% Nb addition are higher than those of the Nb-free ribbons in the temperature range of 300-450 K. Both the variations of Curie temperature Tc and a increase of lattice constants a and c of the hard magnetic phase with Nb addition imply that some of Nb atoms may directly enter into the hard magnetic phase, occupying the Fe sites. With the analysis on the demagnetization curve, Henkel curve and the observation of transmission electron microscope (TEM), the results indicate that a small amount of Nb can enhance the coercivity and exchange coupling though improving the microstructure of alloys.

  1. Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet

    PubMed Central

    Kumar, Sushil; Hash, Charles Tom; Nepolean, Thirunavukkarasu; Mahendrakar, Mahesh D.; Satyavathi, Chellapilla Tara; Singh, Govind; Rathore, Abhishek; Gupta, Rajeev; Srivastava, Rakesh K.

    2018-01-01

    Pearl millet is a climate-resilient nutritious crop requiring low inputs and is capable of giving economic returns in marginal agro-ecologies. In this study, we report large-effect iron (Fe) and zinc (Zn) content quantitative trait loci (QTLs) using diversity array technology (DArT) and simple sequence repeats (SSRs) markers to generate a genetic linkage map using 317 recombinant inbred line (RIL) population derived from the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08) cross. The base map [seven linkage groups (LGs)] of 196 loci was 964.2 cM in length (Haldane). AIMP 92901-S1-183-2-2-B-08 is an Iniadi line with high grain Fe and Zn, tracing its origin to the Togolese Republic, West Africa. The content of grain Fe in the RIL population ranged between 20 and 131 ppm (parts per million), and that of Zn from 18 to 110 ppm. QTL analysis revealed a large number of QTLs for high grain iron (Fe) and zinc (Zn) content. A total of 19 QTLs for Fe and Zn were detected, of which 11 were for Fe and eight were for Zn. The portion of the observed phenotypic variance explained by different QTLs for grain Fe and Zn content varied from 9.0 to 31.9% (cumulative 74%) and from 9.4 to 30.4% (cumulative 65%), respectively. Three large-effect QTLs for both minerals were co-mapped in this population, one on LG1 and two on LG7. The favorable QTL alleles of both mineral micronutrients were contributed by the male parent (AIMP 92901-deriv-08). Three putative epistasis interactions were observed for Fe content, while a single digenic interaction was found for Zn content. The reported QTLs may be useful in marker-assisted selection (MAS) programs, in genomic selection (GS) breeding pipelines for seed and restorer parents, and in population improvement programs for pearl millet. PMID:29751669

  2. Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet.

    PubMed

    Kumar, Sushil; Hash, Charles Tom; Nepolean, Thirunavukkarasu; Mahendrakar, Mahesh D; Satyavathi, Chellapilla Tara; Singh, Govind; Rathore, Abhishek; Yadav, Rattan S; Gupta, Rajeev; Srivastava, Rakesh K

    2018-05-11

    Pearl millet is a climate-resilient nutritious crop requiring low inputs and is capable of giving economic returns in marginal agro-ecologies. In this study, we report large-effect iron (Fe) and zinc (Zn) content quantitative trait loci ( QTLs) using diversity array technology (DArT) and simple sequence repeats (SSRs) markers to generate a genetic linkage map using 317 recombinant inbred line (RIL) population derived from the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08) cross. The base map [seven linkage groups (LGs)] of 196 loci was 964.2 cM in length (Haldane). AIMP 92901-S1-183-2-2-B-08 is an Iniadi line with high grain Fe and Zn, tracing its origin to the Togolese Republic, West Africa. The content of grain Fe in the RIL population ranged between 20 and 131 ppm (parts per million), and that of Zn from 18 to 110 ppm. QTL analysis revealed a large number of QTLs for high grain iron (Fe) and zinc (Zn) content. A total of 19 QTLs for Fe and Zn were detected, of which 11 were for Fe and eight were for Zn. The portion of the observed phenotypic variance explained by different QTLs for grain Fe and Zn content varied from 9.0 to 31.9% (cumulative 74%) and from 9.4 to 30.4% (cumulative 65%), respectively. Three large-effect QTLs for both minerals were co-mapped in this population, one on LG1 and two on LG7. The favorable QTL alleles of both mineral micronutrients were contributed by the male parent (AIMP 92901-deriv-08). Three putative epistasis interactions were observed for Fe content, while a single digenic interaction was found for Zn content. The reported QTLs may be useful in marker-assisted selection (MAS) programs, in genomic selection (GS) breeding pipelines for seed and restorer parents, and in population improvement programs for pearl millet.

  3. Revisiting the Si Isotope Record of Precambrian Cherts and Banded Iron Formations Using New Experimental Results

    NASA Astrophysics Data System (ADS)

    Zheng, X. Y.; Satkoski, A.; Beard, B. L.; Reddy, T. R.; Beukes, N. J.; Johnson, C.

    2017-12-01

    Precambrian Banded iron formations (BIFs) and cherts provide a record of Fe and Si biogeochemical cycling in early Earth marine environments. Much of the focus on BIFs has been the origin and pathways for Fe, but Si is intimately tied to BIF genesis through its connection to Fe minerals, either through direct structural bonding or through sorption. In the Precambrian ocean, aqueous Si contents were high, and it is increasingly recognized that Fe(III)-Si gels were the most likely precursor to BIFs [1]. It is known that Fe-Si bonding affects stable Fe isotope fractionations [2], and our recent experimental work shows this to be true for stable Si isotope fractionations [3, 4]. Silicon isotope fractionations in the Fe-Si system vary from 0‰ to nearly 4‰ in 30Si/28Si ratios with the solid phase being isotopically light depending on Fe:Si ratio [3, 4, and this study], a range far larger than that of 56Fe/54Fe ratios, highlighting the fact that Si isotopes are a highly sensitive tracer of the Fe-Si cycle. This range in Si isotope fractionation factors for the Fe-Si system can explain the full range of δ30Si values measured in Precambrian BIFs, providing a new framework to interpret Precambrian δ30Si records. Our results provide strong support for a model where Fe(III)-Si gels are the precursor phase for BIFs, which in turn affects estimates for the aqueous Fe and Si contents of the Precambrian oceans through changes in Fe-Si gel solubility. Our experiments also showed that microbial dissimilatory iron reduction (DIR) of Fe(III)-Si gel can easily produce a solid with Fe(II)-Fe(III) stoichiometry equal to magnetite, in marked contrast to abiotic incorporation of Fe(II) into Fe(III)-Si gel that resulted in a solid with Fe(II)-Fe(III) stoichiometry much lower than magnetite. Moreover, this DIR process produces a unique, negative δ30Si signature that should be eventually preserved in quartz closely associated with magnetite upon phase transformation of Fe-Si gel, and serve as a bio-signature. This experimental finding well explains the tendency of magnetite-rich BIFs to have lower δ30Si values than hematite-rich BIFs. [1] Konhauser et al., Earth-Science Rev, 2017 [2] Wu et al., GCA, 2012 [3] Zheng et al., GCA, 2016 [4] Reddy et al., GCA, 2016

  4. Amyloid Plaques in PSAPP Mice Bind Less Metal than Plaques in Human Alzheimer's Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leskovjan, A.; Lanzirotti, A; Miller, L

    2009-01-01

    Amyloid beta (A{Beta}) is the primary component of Alzheimer's disease (AD) plaques, a key pathological feature of the disease. Metal ions of zinc (Zn), copper (Cu), iron (Fe), and calcium (Ca) are elevated in human amyloid plaques and are thought to be involved in neurodegeneration. Transgenic mouse models of AD also exhibit amyloid plaques, but fail to exhibit the high degree of neurodegeneration observed in humans. In this study, we imaged the Zn, Cu, Fe, and Ca ion distribution in the PSAPP transgenic mouse model representing end-stage AD (N = 6) using synchrotron X-ray fluorescence (XRF) microprobe. In order tomore » account for differences in density in the plaques, the relative protein content was imaged with synchrotron Fourier transform infrared microspectroscopy (FTIRM) on the same samples. FTIRM results revealed a 61% increase in protein content in the plaques compared to the surrounding tissue. After normalizing to protein density, we found that the PSAPP plaques contained only a 29% increase in Zn and there was actually less Cu, Fe, and Ca in the plaque compared to the surrounding tissue. Since metal binding to A{beta} is thought to induce redox chemistry that is toxic to neurons, the reduced metal binding in PSAPP mice is consistent with the lack of neurodegeneration in these animals. These findings were in stark contrast to the high metal ion content observed in human AD plaques, further implicating the role of metal ions in human AD pathology.« less

  5. Degradation of atenolol via heterogeneous activation of persulfate by using BiOCl@Fe3O4 catalyst under simulated solar light irradiation.

    PubMed

    Shi, Yahong; Chen, Hongche; Wu, Yanlin; Dong, Wenbo

    2018-01-01

    Efficient oxidative degradation of pharmaceutical pollutants in aquatic environments is of great importance. This study used magnetic BiOCl@Fe 3 O 4 catalyst to activate persulfate (PS) under simulated solar light irradiation. This degradation system was evaluated using atenolol (ATL) as target pollutant. Four reactive species were identified in the sunlight/BiOCl@Fe 3 O 4 /PS system. The decreasing order of the contribution of each reactive species on ATL degradation was as follows: h +  ≈ HO ·  > O 2 ·-  > SO 4 ·- . pH significantly influenced ATL degradation, and an acidic condition favored the reaction. High degradation efficiencies were obtained at pH 2.3-5.5. ATL degradation rate increased with increased catalyst and PS contents. Moreover, ATL mineralization was higher in the sunlight/BiOCl@Fe 3 O 4 /PS system than in the sunlight/BiOCl@Fe 3 O 4 or sunlight/PS system. Nine possible intermediate products were identified through LC-MS analysis, and a degradation pathway for ATL was proposed. The BiOCl@Fe 3 O 4 nanomagnetic composite catalyst was synthesized in this work. This catalyst was easily separated and recovered from a treated solution by using a magnet, and it demonstrated a high catalytic activity. Increased amount of the BiOCl@Fe 3 O 4 catalyst obviously accelerated the efficiency of ATL degradation, and the reusability of the catalyst allowed the addition of a large dosage of BiOCl@Fe 3 O 4 to improve the degradation efficiency.

  6. OPTICAL AND SPECTROSCOPIC STUDIES OF Fe2O3-Bi2O3-B2O3:V2O5 GLASSES

    NASA Astrophysics Data System (ADS)

    Sanjay; Kishore, N.; Agarwal, A.; Dahiya, S.; Pal, Inder; Kumar, Navin

    2013-11-01

    The glasses of compositions xFe2O3ṡ (40 - x)Bi2O3ṡ60B2O3ṡ2V2O5 have been prepared by the standard melt-quenching technique. Amorphous nature of these samples is ascertained by XRD patterns. The presence of BO3 and BO4 units is identified by IR spectra of glass samples. The absorption edge (λcut-off) shifts toward longer wavelengths with an increase in Fe2O3 content in the glass matrix. The values of optical band gap energy for indirect allowed and forbidden transitions have been determined and it is found to decrease with increase in transition metal ions. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  7. Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment

    NASA Astrophysics Data System (ADS)

    Sanderson, P.; Su, S. S.; Chang, I. T. H.; Delgado Saborit, J. M.; Kepaptsoglou, D. M.; Weber, R. J. M.; Harrison, Roy M.

    2016-09-01

    Human exposure to ambient metallic nanoparticles is an area of great interest owing to their potential health impacts. Ambient metallic nanoparticles found in the roadside environment are contributed by combustion engines and wear of brakes, tyres and road surfaces. Submicrometre atmospheric particles collected at two UK urban sites have been subject to detailed characterisation. It is found that many metallic nanoparticles collected from roadside sampling sites are rich in iron. The Fe-rich nanoparticles can be classified into (1) high Fe content (ca 90 wt%) with each alloying element less than 1 wt%; and (2) moderate Fe content (<75 wt%) with high manganese and silicon content. Both clusters contain a variable mix of minor constituents, Mn, S and Si being most important in the high-Fe group. The moderate Fe group also contains Zn, Cu, Ba, Al and Ca. The Fe-rich nanoparticles exhibit primary particle sizes ranging between 20 and 30 nm, although some much larger particles up to around 100 nm can also be observed, along with some very small particles of 10 nm or less. These tend to agglomerate forming clusters ranging from ∼200 nm to 1 μm in diameter. The iron-rich particles observed are oxides, taking the form of spheres or multifaceted regular polyhedra. Analysis by EELS shows that both high- and moderate-Fe groups include particles of FeO, Fe3O4, α-Fe2O3 and γ-Fe2O3 of which γ-Fe2O3 is the most prominent. Internal mixing of different Fe-oxides is not observed.

  8. Fe atom exchange between aqueous Fe2+ and magnetite.

    PubMed

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  9. [Analysis of mineral elements in different organs at different harvesting times of Schizonepeta tenuifolia on ICP-AES].

    PubMed

    Shan, Ming-Qiu; Yu, Sheng; Yu, Li-Xia; Ding, An-Wei

    2014-02-01

    To study the main storage organ of each mineral element in Schizonepeta tenuifolia, and explain its reasonable harvesting time and medicinal parts in view of mineral elements. The mineral elements of Schizonepeta tenuifolia in different organs at different harvesting times were determined by ICP-AES technique. The mineral elements, K, Ca, Na, P, Mg, Mn, Zn, Cu, Fe, Mo, were determined in the study. The results showed that at different harvesting times, (1) the contents of K, P, Cu in fringe and the contents of Mg, Ca, Na, Fe, Mn, Zn in leaf were highest among different organs. (2) among the macroelements, the contents of K and Ca were highest while the content of Na was lowest; among the microelements, the content of Fe was highest while the content of Mo was lowest. (3) in item, the proportion of K:P was highest while the proportion of Zn: Cu was lowest; in fringe, the proportions of Ca:Mg and Fe:Mn were lowest. (4) within the harvest period, variations of the mineral elements were not obvious. In the stem of Schizonepeta tenuifolia, the contents of every mineral elements were lower than other organs, including leaves and spikes. Considering the mineral elements, the correlations of harvesting time and content change were not remarkable.

  10. Manganese-induced effects on cerebral trace element and nitric oxide of Hyline cocks.

    PubMed

    Liu, Xiaofei; Zuo, Nan; Guan, Huanan; Han, Chunran; Xu, Shi Wen

    2013-08-01

    Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg(-1). After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.

  11. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Bo; School of Mechanical Engineering, Gui Zhou University, Guiyang 550000; Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Displaymore » Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.« less

  12. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon.

    PubMed

    Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen

    2017-02-14

    Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines ( Vitis vinifera ) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di ( o -hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3- O -glucoside, delphinidin-3- O -glucoside, and cyanidin-3- O -(6- O -coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O -methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  13. Sintering of (Ni,Mg)(Al,Fe)2O4 Materials and their Corrosion Process in Na3AlF6-AlF3-K3AlF6 Electrolyte

    NASA Astrophysics Data System (ADS)

    Xu, Yibiao; Li, Yawei; Yang, Jianhong; Sang, Shaobai; Wang, Qinghu

    2017-06-01

    The application of ledge-free sidewalls in the Hall-Héroult cells can potentially reduce the energy requirement of aluminum production by about 30 pct (Nightingale et al. in J Eur Ceram, 33:2761-2765, 2013). However, this approach poses great material challenges since such sidewalls are in direct contact with corrosive electrolyte. In the present paper, (Ni,Mg)(Al,Fe)2O4 materials were prepared using fused magnesia, reactive alumina, nickel oxide, and iron oxide powders as the starting materials. The sintering behaviors of specimens as well as their corrosion resistance to molten electrolyte have been investigated by means of X-ray diffraction and scanning electron microscope. The results show that after firing at temperature ranging from 1673 K (1400 °C) up to 1873 K (1600 °C), all the specimens prepared are composed of single-phase (Ni,Mg)(Al,Fe)2O4 composite spinel, the lattice parameter of which increases with increasing Fe3+ ion concentration. Increasing the iron oxide content enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed smaller pores in the matrix. The corrosion tests show that corrosion layers consist of fluoride and Ni(Al,Fe)2O4 composite spinel grains are produced in specimens with Fe/Al mole ratio no more than 1, whereas dense Ni(Al,Fe)2O4 composite spinel layers are formed on the surface of the specimens with Fe/Al mole ratio more than 1. The dense Ni(Al,Fe)2O4 composite spinel layers formed improve the corrosion resistance of the specimens by inhibiting the infiltration of electrolyte and hindering the chemical reaction between the specimen and electrolyte.

  14. Microstructure and mechanical properties of aluminium matrix composites reinforced by Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} melt spun ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lityńska-Dobrzyńska, Lidia, E-mail: l.litynska@imim.pl; Mitka, Mikołaj; Góral, Anna

    Aluminium matrix composites containing 15, 30 and 50 vol.% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} (in at.%) melt spun ribbons have been prepared by a vacuum hot pressing (T = 673 K, P = 600 MPa). The microstructure of the initial ribbon and the composites was investigated using X-ray, scanning and transmission electron microscopy. In the as-spun ribbon the quasicrystalline icosahedral phase (i-phase) coexisted with the cubic copper rich β-Al(Cu, Fe) intermetallic compound. The phase composition of Al-Cu-Fe particles changed after consolidation process and the i-phase transformed partially to the ω-Al{sub 70}Cu{sub 20}Fe{sub 10} phase. Additionally, the Θ-Al{sub 2}Cu phasemore » formed at the α(Al)/Al-Cu-Fe particle interfaces. With an increase in volume fraction of the reinforcement the hardness of the composites increased up to HV = 180 for the highest amount of added particles. The ultimate compression strength of the same sample reached the value of 545 MPa. - Highlights: • Al and 15, 30, 50% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} melt spun ribbon were consolidated. • The initial ribbon consisted of the icosahedral i-phase and copper rich β-Al(Cu, Fe). • The i-phase partially transforms to ω-Al{sub 7}Cu{sub 2}Fe phase in all composites. • Increase of microhardness and compressive strength with content of reinforcement • Ultimate compression strength 545 MPa for 50% of added particles.« less

  15. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Liu, Yongsheng; Wang, Xiaohong; Zong, Keqing; Hu, Zhaochu; Chen, Haihong; Zhou, Lian

    2017-03-01

    It has been advocated that the stagnant Pacific slab within the mantle transition zone played a critical role in the genesis of the Cenozoic basalts in the eastern part of the North China Craton (NCC); however, it is not clear whether this recycled oceanic crust contributed to the chemical makeup of the Cenozoic basalts in the Trans-North China Orogen (TNCO, the central zone of the NCC). Here, we show that Cenozoic basalts from the TNCO are featured by low CaO contents, high TiO2 and FeOT contents and high Fe/Mn and Zn/Fe ratios, indicating a mantle source of pyroxenite. Temporally, these basalts evolved from alkali basalts of Late Eocene-Oligocene age to coexisting alkali and tholeiitic basalts of Late Miocene-Quaternary age. Spatially, their isotopic and chemical compositions vary symmetrically from the center to both the north and the south sides along the TNCO, i.e., SiO2 contents and 87Sr/86Sr ratios increase, FeOT contents and 143Nd/144Nd, Sm/Yb and Ce/Pb ratios decrease. The estimated average melting pressure of the TNCO tholeiitic basalts ( 3 GPa) agrees well with the present lithosphere thickness beneath the north region of the TNCO ( 90-120 km). The temporal and spatial chemical variations of Cenozoic basalts in the TNCO suggest that the recycled oceanic crust in the mantle of the TNCO is mainly related to the southward subduction of the Paleo-Asian oceanic plate and the northward subduction of the Tethyan ocean plate. The westward subduction of Pacific slab may not have contributed much than previously thought.

  16. Nd2Fe14C-based magnet with better permanent magnetic properties prepared by a simple mechanochemical method

    NASA Astrophysics Data System (ADS)

    Geng, Hongmin; Ji, Yuan; Zhang, Jingjing; Gao, Yuchao; Yan, Yu; Wang, Wenquan; Su, Feng; Du, Xiaobo

    2017-11-01

    Nd2Fe14C-based magnet is prepared by a mechanochemical method, namely high-energy ball-milling Nd2Fe11Bx (x = 0-0.15) alloy in heptane (C7H16), followed by annealing to 850 °C in vacuum. Under the action of high-energy ball-milling, Nd2Fe11Bx react with heptane to form NdH2+δ, Fe-(CB), C, etc. H2 is released and Nd2Fe17, Nd2Fe17Cx (x = 0-3), Nd2Fe14C, Nd carbides and α-Fe are formed in the subsequent annealing. C amount depends on ball-milling time t. Long time ball milling or high C content suppresses the formation of 2:17 phase and favors the formation of 2:14:1 phase in the final products. Excessive ball-milling results in the quick increase of α-Fe. The maximum of magnetically hard Nd2Fe14C is obtained at t = 4 h. For Nd2Fe11 samples, there exists considerable quantity of Nd carbides and α-Fe phase appears earlier and increases rapidly with extending the ball-milling time t. The addition of B element shortens the ball-milling time of the formation of maximum Nd2Fe14C and prominently suppresses the formation of Nd carbide and α-Fe. The optimum magnetic properties, coercivity iHc of 1193.7 kA/m, remanence Mr of 580.9 kA/m, maximum magnetic energy product (BH)max of 91.7 kJ/m3 is approaching to its theoretic value of 99.2 kJ/m3 for isotropic Nd2Fe14C magnet, are obtained in Nd2Fe11B0.06 alloy ball milled for 3.5 h.

  17. Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors.

    PubMed

    Lange, Bastien; Pourret, Olivier; Meerts, Pierre; Jitaru, Petru; Cancès, Benjamin; Grison, Claude; Faucon, Michel-Pierre

    2016-03-01

    The influence of Fe oxides, Mn oxides and organic matter (OM) on the Cu and Co mobility in soil and accumulation in the metallophyte Anisopappus chinensis (Ac), as compared with Helianthus annuus (Ha), was experimentally investigated. Growth and accumulation response when increasing the exchangeable Cu and Co concentrations in soil were also investigated. Plants were cultivated on soil where concentrations of Cu, Co, Fe oxides, Mn oxides and OM content were varied according to 36 treatments. The OM supply decreased the Cu mobility and increased the Co mobility, resulting in decreasing the foliar Cu of Ac and increasing the foliar Co of Ha. The Fe oxides supply could increase the Cu accumulation for Ac, but was not verified for Ha. Compared with Ha, Ac increasingly accumulated Cu and Co without negative effect on plant growth while increasing Cu and Co mobility to phytotoxic concentrations. The results revealed promising perspectives for the use of Ac in Cu-contaminated environment phytoremediation applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of boron on the structural and magnetic properties of Co{sub 2}FeSi{sub 1-x}B{sub x} Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramudu, M., E-mail: macrams2@gmail.com; Raja, M. Manivel; Kamat, S. V.

    2016-05-23

    The partial substitution of Si with B on the structural and magnetic properties of Co{sub 2}FeSi{sub 1-x}Bx (x = 0-0.5) alloys was systematically investigated. X-ray and microstructural investigations show the presence of second phase at the grain boundaries which increases with increasing boron content. From thermal analysis studies, it was observed that L2{sub 1}-B2 ordering temperature remain constant whereas the melting point decreases with increase in boron addition and merges with ordering temperature at x = 0.5. The increase in T{sub C} for the alloys x ≥ 0.25 was attributed to the increase in second phase due to boron.

  19. Some magnetic and magnetoresistive properties of RF-sputtered thin NiFe-Si films.

    NASA Astrophysics Data System (ADS)

    Vatskicheva, M.; Vatskichev, Ly.; Dimitrov, I.; Kunev, B.

    The galvanomagnetic properties and some structural peculiarities of rf-sputtered alloy films (NI80Fe20)100-xSix at 0 < x < 30 at. % were studied and compared with the corresponding properties of evaporated films of the same thickness and composition. The content of silicon increased with the increasing of the velocity of deposition and led to the amorphousation of the films. Coercivity decreased with the velocity of growth but it did not depend on the thickness and on the velocity of film deposition. The magnetoresistance ratio Dr/r of the sputtered films was about three times higher then that of the evaporated films.

  20. Inhibitory Effect of Phragmanthera Incana (Schum.) Harvested from Cocoa (Theobroma Cacao) and Kolanut (Cola Nitida) Trees on Fe2+ induced Lipid Oxidative Stress in Some Rat Tissues - In Vitro

    PubMed Central

    Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Akinyemi, A. J.

    2015-01-01

    Evidence in both experimental and clinical studies has shown the participation of oxidative stress in the development and progression of diabetes mellitus. This study therefore, sought to investigate the inhibitory effect of methanolic extract of Phragmanthera incana leaves, a mistletoe species harvested from Cocoa (Theobroma cacao) and Kolanut (Cola nitida) on FeSO4 induced lipid peroxidation in rat pancreas, liver, kidney, heart and brain in vitro. The methanolic extract was prepared with 90% methanol (v/v); subsequently, the antioxidant properties and inhibitory effect of the extract on Fe2+ induced lipid peroxidation in some rat tissues were determined in vitro. Incubation of the different rat tissues homogenate in the presence of Fe caused a significant increase in the malondialdehyde (MDA) contents of the tissues. However, the methanolic extracts of Phragmanthera incana leaves harvested from both Cocoa and Kolanut trees caused a significant decrease in the MDA contents of all the tissues tested in a dose-dependent manner. However, the extract of Phragmanthera incana leaves harvested from kolanut trees had a better inhibitory effect on Fe2+- induced lipid peroxidation in the rat tissues homogenates than that of Phragmanthera incana leaves harvested from cocoa trees. This higher inhibitory effect could be attributed to its significantly higher antioxidant properties as typified by their phenolic content, DPPH radical scavenging ability and reducing power. Therefore, oxidative stress associated with diabetes and its other complications could be potentially managed/prevented by harnessing Phragmanthera incana leaves as cheap nutraceuticals. However, Phragmanthera incana leaves harvested from kolanut trees exhibited better antioxidant properties.

  1. Siderite (FeCO₃) and magnetite (Fe₃O₄) overload-dependent pulmonary toxicity is determined by the poorly soluble particle not the iron content.

    PubMed

    Pauluhn, Jürgen; Wiemann, Martin

    2011-11-01

    The two poorly soluble iron containing solid aerosols of siderite (FeCO₃) and magnetite (Fe₃O₄) were compared in a 4-week inhalation study on rats at similar particle mass concentrations of approximately 30 or 100 mg/m³. The particle size distributions were essentially identical (MMAD ≈1.4 μm). The iron-based concentrations were 12 or 38 and 22 or 66 mg Fe/m³ for FeCO₃ and Fe₃O₄, respectively. Modeled and empirically determined iron lung burdens were compared with endpoints suggestive of pulmonary inflammation by determinations in bronchoalveolar lavage (BAL) and oxidative stress in lung tissue during a postexposure period of 3 months. The objective of study was to identify the most germane exposure metrics, that are the concentration of elemental iron (mg Fe/m³), total particle mass (mg PM/m³) or particle volume (μl PM/m³) and their associations with the effects observed. From this analysis it was apparent that the intensity of pulmonary inflammation was clearly dependent on the concentration of particle-mass or -volume and not of iron. Despite its lower iron content, the exposure to FeCO₃ caused a more pronounced and sustained inflammation as compared to Fe₃O₄. Similarly, borderline evidence of increased oxidative stress and inflammation occurred especially following exposure to FeCO₃ at moderate lung overload levels. The in situ analysis of 8-oxoguanine in epithelial cells of alveolar and bronchiolar regions supports the conclusion that both FeCO₃ and Fe₃O₄ particles are effectively endocytosed by macrophages as opposed to epithelial cells. Evidence of intracellular or nuclear sources of redox-active iron did not exist. In summary, this mechanistic study supports previous conclusions, namely that the repeated inhalation exposure of rats to highly respirable pigment-type iron oxides cause nonspecific pulmonary inflammation which shows a clear dependence on the particle volume-dependent lung overload rather than any increased dissolution and/or bioavailability of redox-active iron.

  2. Characterisation of urban catchment suspended particulate matter (Auckland region, New Zealand); a comparison with non-urban SPM.

    PubMed

    Bibby, Rebecca L; Webster-Brown, Jenny G

    2005-05-01

    Suspended particulate matter (SPM) is an important transport agent for metal contaminants in streams, particularly during high flow periods such as storm events. For highly contaminated urban catchments in the greater Auckland (New Zealand) area, trace metal partitioning between the dissolved phase and SPM was determined, and SPM characterised in terms of its Si, Al, Fe, Mn, Zn, Cu, Pb, TOC, TON and PO(4) concentrations, as well as particle size, abundance, type and surface area. This data was compared to similar data from representative non-urban catchments in the Auckland region, the Kaipara River and Waikato River catchments, to identify any significant differences in the SPM and its potential trace metal adsorption capacity. Trace metal partitioning was assessed by way of a distribution coefficient: K(D)=[Me(SPM)]/[Me(DISS)]. Auckland urban SPM comprises quartz, feldspars and clay minerals, with Fe-oxides and minor Mn-oxides. No particles of anthropogenic origin, other than glass shards, were observed. No change in urban SPM particle size or SSA was observed with seasonal change in temperature, but the nature of the SPM was observed to change with flow regime. The abundance of finer particles, SSA and Al content of the SPM increased under moderate flow conditions; however, Si/Al ratios remained constant, confirming the importance of aluminosilicate detrital minerals in surface run-off. The SPM Fe content was observed to decrease with increased flow and was attributed to dilution of SPM Fe-oxide of groundwater origin. The Kaipara River SPM was found to be mineralogically, chemically and biologically similar to the urban SPM. However, major differences between urban catchment SPM and SPM from the much larger (non-urban) Waikato River were observed, and attributed to a higher abundance of diatoms. The Fe content of the Waikato River SPM was consistently lower (<5%), and the Si/Al ratio and Mn content was higher. Such differences observed between urban and non-urban SPM did not appear to affect the partitioning of Zn and Cu; however, Pb in the Kaipara and Waikato Rivers was found to be more associated with the dissolved phase. This is likely to reflect higher particulate Pb inputs to urban systems.

  3. Experimental study of the solubilities of pyrite in NaCl-bearing aqueous solutions at 250-350°C

    NASA Astrophysics Data System (ADS)

    Ohmoto, Hiroshi; Hayashi, Ken-Ichiro; Kajisa, Yukari

    1994-05-01

    A total of sixty-three silica capsule experiments were performed to determine the solubilities of pyrite in NaCl-bearing aqueous solutions (0, 0.1, 0.5, 1, 2, 3, and 4 m) at 250, 300, and 350°C at pressures of vapor/liquid coexistence. The starting materials in the capsules were H2O(1) + FeS2( s) + S ° ( s) ± NaCl ( s). After reaction times up to ~ 60 days, the quenched solutions were analyzed for ΣFe, σH2S, ΣSO42-, and pH; the ΣFe content, ranging 5-1,300 ppm, generally increased with increasing temperature and ΣCl content of solution. The calculated solution compositions at the experimental P-T conditions fall mostly in the following ranges: pH = 2.0 to 3.2, logaH2s = -1.9 to -1.0, logaHSO4- = -3.8 to -2.0, and logaH2( aq) = -7.0 to -5.0. Evaluation of the experimental data suggests that the various redox equilibria between solution and mineral were attained in most of the experimental solutions. The pH, aH2S( aq) , and aH2( aq) of the solutions were controlled by the sulfur hydrolysis reaction (48° + 4 H2O( l) = 3 H2S( aq) + HSO4- + H+) and the sulfide/sulfate reaction ( H2S( aq) + 4 H2O( l) = 4 H2( aq) + H+ + HSO4-). The pyrite solubility is controlled by a general reaction: FeS2( s) + nCl- + 2 H+ + H2( aq) = FeCln2- n + 2 H2S( aq). The equilibrium constants for this reaction, as well as those for association of ferrous chloride complexes ( Fe2+ + nCl- = FeCln2- n), were obtained at 250, 300, and 350°C; they were used also to compute the equilibrium constants for the reactions controlling the solubilities of pyrrhotite, magnetite, and hematite: FeS( s) + 2 H+ + nCl- = FeCln2- n + H2S( aq); Fe3O4( s) + 6 H+ + 3 nCl- + H2( aq) = 3 FeCln2- n + H2O( aq); Fe2O3( s) + 4 H+ + 2 nCl- + H2( aq) = 2 FeCln2- n + 3 H2O( aq). Our experimental data suggest that the dominant Fe-Cl complex is FeCl + in solutions of ΣCl ≤ 0.5 m at 250°C and ΣCl ≤ 0.1 m at 300 and 350°C; FeCl 20 is dominant in solutions of the higher ΣCl contents at each temperature. The association constants for FeCl + and FeCl 2 estimated from this study are in good agreement with those estimated recently by HEINRICH and SEWARD (1990), DING and SEYFRIED (1992), Fein et al. (1992), and Palmer and Hyde (1992). Our solubility constants for pyrite are in good agreement with those obtained by CRERAR et al. (1978) and WOOD et al. (1987) for 3 m ΣCl solution at 350°C, but are 0.5-2 orders of magnitude higher than those obtained by them at lower temperatures and/or at lower ΣCl values. Our data suggest that natural hydrothermal fluids that are in equilibrium with pyrite, the most abundant sulfide mineral in the upper crust, are able to transport sufficient amounts (> 10 -m) of both Fe and H 2S to produce pyrite-rich ore deposits at temperatures above 250°C, and possibly at lower temperatures. The solubility of pyrite (and of other Fe-bearing minerals) is affected very little by a change of temperature, provided the pH, aH2( aq), aH2S( aq), and ΣCl values remain constant.

  4. Microwave magnetic properties of spinel ferrite films deposited by one-step electrochemical method

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Yuan, Lixin; Zhang, Xiaozhi; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2017-07-01

    Spinel ferrites have been widely used in microwave devices due to their excellent electromagnetic properties. In this study, two kinds of spinel ferrite films, Fe3O4 and Co xFe3-xO4, were grown on Pt(111)/Ti/SiO2/Si substrates by one-step electrochemical deposition method. The XRD and SEM characterizations demonstrated that the orientation of the ferrite films changed from (111) to (100) with the increase of depositing time. The cobalt content within Co xFe3-xO4 films was studied in detail by EDS analysis. The ferromagnetic resonance (FMR) responses of the ferrite films were measured by the flip-chip method using a vector network analyzer (VNA). It showed that the FMR frequency of Fe3O4 films reached to 10.5 GHz under an out-plane magnetic field of 5 kOe, while it reached to 27 GHz under an in-plane magnetic field of 5 kOe for Co xFe3-xO4 films. Meanwhile, whether the magnetic field was applied parallelly or perpendicularly, the resonant peaks were increased linearly with increasing the magnetic field, indicating that the films are promising candidates for applications in tunable wave-absorbing materials or other tunable frequency devices.

  5. Ductility and fracture in B2 FeAl alloys. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Crimp, Martin A.

    1987-01-01

    The mechanical behavior of B2FeAl alloys was studied. Stoichiometric Fe-50Al exhibits totally brittle behavior while iron-rich Fe-40Al yields and displays about 3% total strain. This change in behavior results from large decreases in the yield strength with iron-rich deviations from stoichiometry while the fracture stress remains essentially constant. Single crystal studies show that these yield strength decreases are directly related to decreases in the critical resolved shear stress for a group of zone axes /111/ set of (110) planes slip. This behavior is rationalized in terms of the decrease in antiphase boundary energy with decreasing aluminum content. The addition of boron results in improvements in the mechanical behavior of alloys on the iron-rich side of stoichiometry. These improvements are increased brittle fracture stresses of near-stoichiometric alloys, and enhanced ductility of up to 6% in Fe-40Al. These effects were attributed to increased grain boundary adhesion as reflected by changes in fracture mode from intergranular to transgranular failure. The increases in yield strength, which are observed in both polycrystals and single crystals, result from the quenching in of large numbers of thermal vacancies. Hall-Petch plots show that the cooling rate effects are a direct result of changes in the Hall-Petch intercept/lattice resistance flow.

  6. Seasonal changes of the mineral contents in the rumen of wild Yeso sika deer (Cervus nippon yesoensis).

    PubMed

    Hayashida, Maki; Souma, Kousaku; Hanagata, Osamu; Okamoto, Masayo; Masuko, Takayoshi

    2012-03-01

    The rumen contents were collected from 36 wild Yeso sika deer (Cervus nippon yesoensis) captured by deer culling or by hunting in the spring, summer, autumn and winter in Hokkaido, Japan. Botanical classification was conducted, and the contents of mineral (calcium (Ca), phosphorus (P), potassium (K), sodium (Na), iron (Fe), copper (Cu) and zinc (Zn)) were measured. The animals were captured around pastures or fallow field areas in the Kushiro area. The rumen contents consisted of grasses and Sasa sp. leaves regardless of the season. Leaves and bark were ingested in the spring, autumn and winter. The macro-mineral contents in the rumen showed seasonal changes. In the summer, the Ca, K and P contents were high, and the Na content was low. There were no seasonal changes in the Fe content. The P, Na and Fe contents were higher than the animals' requirements. In a future survey, it is needed to determine the mineral contents of the food ingested by wild Yeso sika deer. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  7. Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi.

    PubMed

    Lin, Chia-Hung; Wei, Yi-Tien; Chou, Cheng-Chun

    2006-10-01

    In the present study, soybean koji fermented with various GRAS filamentous fungi, including Aspergillus sojae BCRC 30103, Aspergillus oryzae BCRC 30222, Aspergillus awamori, Actinomucor taiwanensis and Rhizopus sp. These organisms are commonly used as starters in the fermentation of many traditional, oriental food products. The growth of starter organisms, total phenolic content, and antioxidative activities of the methanol extract of these kojis are compared with specific reference to alpha-diphenyl-2-picryl-hydrozyl (DPPH) radicals scavenging effects, Fe2+-chelating ability, and reducing power. Depending on starter organism, various extents of mycelia propagation (35.23-86.29 mg/g koji) were noted after 3 days of fermentation. Total phenolic content increased in soybean after fermentation. Koji also displayed enhanced antioxidative activates in comparison with the non-fermented soybean. Among the five kinds of koji tested, those fermented with Asp. awamori exhibited the highest levels of DPPH-free radicals scavenging activity, Fe2+-chelating ability and reducing power. The DPPH-free radicals scavenging activity and Fe2+-chelating ability of this soybean koji was ca. 8.9 and 6.7 fold that of the control. Analysis of the dose-response effect also revealed that before reaching a threshold point, there is a linear relationship between increases in antioxidative activity and increases in the concentration of the koji extract. These results show the potential for developing a healthy food supplement with soybean fermented by the GRAS filamentous fungi.

  8. An investigation of reaction parameters on geochemical storage of non-pure CO2 streams in iron oxides-bearing formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Susana; Liu, Q.; Bacon, Diana H.

    2014-08-26

    Hematite deposit that is the main FeIII-bearing mineral in sedimentary red beds was proposed as a potential host repository for converting CO2 into carbonate minerals such as siderite (FeCO3), when CO2–SO2 gas mixtures are co-injected. This work investigated CO2 mineral trapping using hematite and sensitivity of the reactive systems to different parameters, including particle size, gas composition, temperature, pressure, and solid-to-liquid ratio. Experimental and modelling studies of hydrothermal experiments were conducted, which emulated a CO2 sequestration scenario by injecting CO2-SO2 gas streams into a NaCl-NaOH brine hosted in iron oxide-containing aquifer. This study provides novel information on the mineralogical changesmore » and fluid chemistry derived from the co-injection of CO2-SO2 gas mixtures in hematite deposit. It can be concluded that the amount of siderite precipitate depends primarily on the SO2 content of the gas stream. Increasing SO2 content in the system could promote the reduction of Fe3+ from the hematite sample to Fe2+, which will be further available for its precipitation as siderite. Moreover, siderite precipitation is enhanced at low temperatures and high pressures. The influence of the solid to liquid ratio on the overall carbonation reaction suggests that the conversion increases if the system becomes more diluted.« less

  9. Synthesis of titanium oxycarbonitride by carbothermal reduction and nitridation of ilmenite with recycling of polyethylene terephthalate (PET)

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Fauzi, Ahmad; Hussin, Hashim; Baharun, Norlia; Ariffin, Kamar Shah; Rezan, Sheikh Abdul

    2017-04-01

    An innovative and sustainable carbothermal reduction and nitridation (CTRN) process of ilmenite (FeTiO3) using a mixture of polyethylene terephthalate (PET) and coal as the primary reductant under an H2-N2 atmosphere was proposed. The use of PET as an alternative source of carbon not only enhances the porosity of the pellets but also results in the separation of Fe from titanium oxycarbonitride (TiO x C y N z ) particles because of the differences in surface tension. The experiments were carried out at 1250°C for 3 h using four different PET contents ranging from 25wt% to 100wt% in the reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX), and LECO elemental analysis were used to study the phases and microstructures of the reduced samples. In the case of 75wt% PET, iron distinctly separated from the synthesized TiO x C y N z phase. With increasing PET content in the sample, the reduction and nitridation rates substantially increased. The synthesis of an oxycarbonitride with stoichiometry of TiO0.02C0.13N0.85 with minimal intermediate titanium sub-oxides was achieved. The results also showed that the iron particles formed from CTRN of FeTiO3 exhibited a spherical morphology, which is conducive for Fe removal via the Becher process.

  10. Concentration effect on inter-mineral equilibrium isotope fractionation: insights from Mg and Ca isotopic systems

    NASA Astrophysics Data System (ADS)

    Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.

    2017-12-01

    Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.

  11. Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition.

    PubMed

    P, Ragesh Kumar T; Weirich, Paul; Hrachowina, Lukas; Hanefeld, Marc; Bjornsson, Ragnar; Hrodmarsson, Helgi Rafn; Barth, Sven; Fairbrother, D Howard; Huth, Michael; Ingólfsson, Oddur

    2018-01-01

    In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H 2 FeRu 3 (CO) 13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo 3 (CO) 12 , metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H 2 FeRu 3 (CO) 13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8-9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO) 4 from H 2 FeRu 3 (CO) 13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H 2 FeRu 3 (CO) 13 as compared to the structurally similar HFeCo 3 (CO) 12 .

  12. Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition

    PubMed Central

    P, Ragesh Kumar T; Weirich, Paul; Hrachowina, Lukas; Hanefeld, Marc; Bjornsson, Ragnar; Hrodmarsson, Helgi Rafn; Barth, Sven; Fairbrother, D Howard; Huth, Michael

    2018-01-01

    In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H2FeRu3(CO)13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3(CO)12, metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H2FeRu3(CO)13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8–9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2FeRu3(CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H2FeRu3(CO)13 as compared to the structurally similar HFeCo3(CO)12. PMID:29527432

  13. Expression analysis of metallothioneins and mineral contents in tomato (Lycopersicon esculentum) under heavy metal stress.

    PubMed

    Kısa, Dursun; Öztürk, Lokman; Doker, Serhat; Gökçe, İsa

    2017-04-01

    Heavy metals are considered to be the most important pollutants in the contamination of soils; they adversely affect plant growth and development and cause some physiological and molecular changes. The contamination of agricultural soils by heavy metals has changed the mineral element content of vegetables. Plant metallothioneins (MTs) are thought to have the functional role in heavy metal homeostasis, and they are used as the biomarkers for evaluating environmental pollution. We aimed to evaluate the expression of MT isoforms (MT1, 2, 3 and 4) and some mineral element composition of tomato roots, leaves and fruits exposed to copper and lead. Heavy metal applications increased MT1 and MT2 gene expressions compared to the control in the tissues of tomato. The highest level of MT1 and MT2 transcripts was found in roots and leaves, respectively. The expression of MT3 is induced in roots, leaves and fruits except for Pb treatment in roots. MT4 expression increased in fruits; however, other tissues did not show a clear change. Our results indicated that Cu content was higher than Pb in all tissues of tomato. The lower doses of Cu (10 ppm) increased the content of Mg, Fe, Ca and Mn in roots. Pb generally increased the level of minerals in leaves and fruits, but it decreased Mg, Mn and Fe contents in roots. Both heavy metals not only moved to aerial parts but also caused alterations to mineral element levels. These results show that MT transcripts are regulated by Cu and Pb, and expression pattern changes to MT isoforms and tissue types. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments.

    PubMed

    Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M

    2014-01-01

    Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.

  15. Molecular characterization of human xanthine oxidoreductase: the enzyme is grossly deficient in molybdenum and substantially deficient in iron-sulphur centres

    PubMed Central

    2005-01-01

    XOR (xanthine oxidoreductase) purified from human milk was shown to contain 0.04 atom of Mo and 0.09 molecule of molybdopterin/subunit. On the basis of UV/visible and CD spectra, the human enzyme was approx. 30% deficient in iron-sulphur centres. Mo(V) EPR showed the presence of a weak rapid signal corresponding to the enzyme of low xanthine oxidase activity and a slow signal indicating a significant content of desulpho-form. Resulphuration experiments, together with calculations based on enzymic activity and Mo content, led to an estimate of 50–60% desulpho-form. Fe/S EPR showed, in addition to the well-known Fe/S I and Fe/S II species, the presence of a third Fe/S signal, named Fe/S III, which appears to replace partially Fe/S I. Comparison is made with similarly prepared bovine milk XOR, which has approx. 15-fold higher enzymic activity and Mo content. Taken along with evidence of low Mo content in the milk of other mammals, these findings add further support to the idea that XOR protein plays a physiological role in milk (e.g. in secretion) equal in importance to its catalytic function as an enzyme. PMID:15679468

  16. Improved isolation of cadmium from paddy soil by novel technology based on pore water drainage with graphite-contained electro-kinetic geosynthetics.

    PubMed

    Tang, Xianqiang; Li, Qingyun; Wang, Zhenhua; Hu, Yanping; Hu, Yuan; Scholz, Miklas

    2018-03-10

    Novel soil remediation equipment based on electro-kinetic geosynthetics (EKG) was developed for in situ isolation of metals from paddy soil. Two mutually independent field plot experiments A and B (with and without electric current applied) were conducted. After saturation using ferric chloride (FeCl 3 ) and calcium chloride (CaCl 2 ), soil water drainage capacity, soil cadmium (Cd) removal performance, energy consumption as well as soil residual of iron (Fe) and chloride (Cl) were assessed. Cadmium dissolved in the soil matrix and resulted in a 100% increase of diethylenetriamine-pentaacetic acid (DTPA) extracted phyto-available Cd. The total soil Cd content reductions were 15.20% and 26.58% for groups A and B, respectively, and electric field applications resulted in a 74.87% increase of soil total Cd removal. The electric energy consumption was only 2.17 kWh/m 3 for group B. Drainage by gravity contributed to > 90% of the overall soil dewatering capacity. Compared to conventional electro-kinetic technology, excellent and fast soil water drainage resulted in negligible hydrogen ion (H + ) and hydroxide ion (OH - ) accumulation at nearby electrode zones, which addressed the challenge of anode corrosion and cathode precipitation of soil metals. External addition of FeCl 3 and CaCl 2 caused soil Fe and Cl residuals and led to 4.33-7.59% and 139-172% acceptable augments in soil total Fe and Cl content, correspondingly, if compared to original untreated soils. Therefore, the novel soil remediation equipment developed based on EKG can be regarded as a promising new in situ technology for thoroughly isolating metals from large-scale paddy soil fields.

  17. Siderophile Element Partitioning between Cohenite and Liquid in Fe-Ni-S-C System and Implications for Geochemistry of Planetary Cores and Mantles

    NASA Astrophysics Data System (ADS)

    Buono, A. S.; Dasgupta, R.; Walker, D.

    2011-12-01

    Secular cooling of terrestrial planets is known to cause crystallization of a solid inner core from metallic liquid core. Fractionation of light and siderophile elements is important during such crystallization for evolution of outer core and possible core-mantle interaction. Thus far studies focused on a pure Fe inner core in simple binary systems but the effects of possible formation of a carbide inner core component on siderophile element partitioning in a multi-component system has yet to be looked at in detail. We investigated the effects of pressure and S content on partition coefficients (D) between cohenite and liquid in the Fe-Ni-S-C system. Multi-anvil experiments were performed at 3 and 6 GPa at 1150 °C, in an Fe-rich mix containing a constant C and Ni to which S contents of 0, 5, and 14 wt.% were added. All the mixes were doped with W, Re, Os, Pt, and Co. Samples were imaged and analyzed for Fe, Ni, S, and C using an EPMA. Fe, Ni, and trace elements were analyzed using a LA-ICP-MS. All the experiments produced cohenite and Fe-Ni-C±S liquid. Compared to solid-Fe/melt Ds [1-2], cohenite/melt Ds are lower for all elements except W. The light element (S+C) content of the liquid is the dominant controlling factor in siderophile element partitioning between cohenite and liquid as it is between crystalline Fe and liquid. In the cohenite-metallic melt experiments, D Ni decreases as S+C increases. Ni is excluded from the crystallizing solid if the solid is cohenite. We also find that in the Fe-Ni-S-C system, cohenite is stabilized to higher P than in the Fe-S-C system [3-5]. Similar to the Fe-metallic liquid systems the non-metal avoidance model [6] is applicable to the Fe3C-metallic liquid system studied here. Our study has implications for both the cores of smaller planets and the mantles of larger planets. If inner core forms a cohenite layer we would predict that depletions in the outer core will be less than they might be for Fe metal crystallization. For the mantle of the earth, which is thought to become Fe-Ni metal-saturated as shallow as 250 km, the sub-system Fe-Ni + C + S becomes relevant and Fe-Ni carbide rather than metallic Fe-Ni alloy may become the crystalline phase of interest. Our study implies that because the partition coefficients between cohenite and Fe-C-S melts are significantly lower than those between Fe-metal and S-rich liquid, in the presence of cohenite and Fe-C-S melt in the mantle, the mantle budget of Ni, Co, and Pt may be dominated by Fe-C-S liquid. W, Re, and Os will also be slightly enriched in C-rich Fe-Ni liquid over cohenite if the metal sub-system of interest is S-free. [1] Chabot et al., GCA 70, 1322-1335, 2006 [2] Chabot et al., GCA 72, 4146-4158, 2008 [3] Chabot et al., Meteorit. Planet. Sci. 42, 1735-1750, 2007 [4] Stewart et al., EPSL 284, 302-309, 2009 [5] Van Orman et al., EPSL 274, 250-257, 2008 [6] Jones, J.H., Malvin, D.J., Metall Mater Trans B 21, 697-706, 1990

  18. Space weathering of silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations

    NASA Astrophysics Data System (ADS)

    Moroz, Lyuba V.; Starukhina, Larissa V.; Rout, Surya Snata; Sasaki, Sho; Helbert, Jörn; Baither, Dietmar; Bischoff, Addi; Hiesinger, Harald

    2014-06-01

    To investigate effects of micrometeorite bombardment on optical spectra and composition of planetary and asteroid regoliths with low Fe contents, we irradiated samples of a Fe-poor plagioclase feldspar (andesine-labradorite) using a nanosecond pulsed laser. We measured reflectance spectra of irradiated and non-irradiated areas of the samples (pressed pellets) between 0.5 and 18 μm and performed SEM/EDS and TEM studies of the samples. Bulk FeO content of 0.72 wt.% in the samples is comparable, for example, to FeO content in silicates on the surface of Mercury, that was recently mapped by NASA's MESSENGER mission and will be spectrally mapped by remote sensing instruments MERTIS and SYMBIO-SYS on board the ESA BepiColombo spacecraft. We also employed theoretical spectral modeling to characterize optical alteration caused by formation of nano- and submicrometer Fe0 inclusions within space-weathered surface layers and grain rims of a Fe-poor regolith. The laser-irradiated surface layer of plagioclase reveals significant melting, while reflectance spectra show mild darkening and reddening in the visible and near-infrared (VNIR). Our spectral modeling indicates that the optical changes observed in the visible require reduction of bulk FeO (including Fe from mineral impurities found in the sample) and formation of nanophase (np) Fe0 within the glassy surface layer. A vapor deposit, if present, is optically too thin to contribute to optical modification of the investigated samples or to cause space weathering-induced optical alteration of Fe-poor regoliths in general. Due to low thickness of vapor deposits, npFe0 formation in the latter can cause darkening and reddening only for a regolith with rather high bulk Fe content. Our calculations show that only a fraction of bulk Fe is likely to be converted to npFe0 in nanosecond laser irradiation experiments and probably in natural regolith layers modified by space weathering. The previously reported differences in response of different minerals to laser irradiation, and probably to space weathering-induced heating are likely controlled by their differences in electrical conductivities and melting points. For a given mineral grain, its susceptibility to melting/vaporization is also affected by electric conductivities of adjacent grains of other minerals in the regolith. Published nanosecond laser irradiation experiments simulate optical alteration of immature regoliths, since only the uppermost surface layer of an irradiated pellet is subject to heating. According to our calculations, if regolith particles due to impact-induced turnover are mantled with npFe0-bearing rims of the same thickness, then even low contents of Fe similar to our sample or Mercury' surface can cause significant darkening and reddening, provided a melt layer, rather than a thin vapor deposit is involved into npFe0 formation. All spectral effects observed in the thermal infrared (TIR) after irradiation of our feldspar sample are likely to be associated with textural changes. We expect that mineralogical interpretation of the BepiColombo MERTIS infrared spectra of Mercury between 7 and 17 μm will be influenced mostly by textural effects (porosity, comminution) and impact glass formation rather than formation of npFe0 inclusions.

  19. Fireside Corrosion Behaviors of Super304H and HR3C in Coal Ash/Gas Environment with Different SO2 Contents at 650 °C

    NASA Astrophysics Data System (ADS)

    Lu, Jintao; Yang, Zhen; Li, Yan; Huang, Jinyang; Zhou, Yongli; Zhao, Xinbao; Yuan, Yong

    2018-05-01

    The corrosion behaviors of Super304H and HR3C used for USC boiler applications were investigated in simulated coal ash/gas environments with 0.1 and 1.5% of SO2 at 650 °C for 500 h. The results indicated that the increase in SO2 accelerated the corrosion rate and the spalling tendency of the corrosion layer in both tested alloys. Fe2O3, Cr2O3 and FeCr2O4 main peaks were revealed by XRD on Super304H, but on HR3C only the Cr2O3 peak showed a high intensity. The SO2 content did not affect the corrosion product composition of any of the alloys, but accelerated the inner sulfidation and the spallation on Super304H. No obvious internal sulfidation was observed on HR3C in either SO2 content. Based on the experimental results, the alloy corrosion mechanism and the influence of sulfur content on the corrosion process were discussed.

  20. Effect of Ti content on the microstructure and mechanical behavior of (Fe 36Ni 18Mn 33Al 13) 100–xTi x high entropy alloys

    DOE PAGES

    Wang, Zhangwei; Wu, Margaret; Cai, Zhonghou; ...

    2016-06-13

    The microstructure and mechanical properties studies of a series of two-phase f.c.c./B2 (ordered b.c.c.) lamellar-structured, high entropy alloys (HEA) Fe 36Ni 18Mn 33Al 13Ti x with x up to 6 at. % Ti have been investigated. X-ray microanalysis in a TEM showed that the Ti resided mostly in the B2 phase. The lamellar spacing decreased significantly with increasing Ti content from 1.56 μm for the undoped alloy to 155 nm with an addition of 4 at. % Ti, leading to a sharp increase in room-temperature yield strength,σ y, from 270 MPa to 953 MPa, but with a concomitant decrease inmore » ductility from 22% elongation to 2.3%. Annealing at 1173 K for 20 h greatly increased the lamellar spacing of Fe 36Ni 18Mn 33Al 13Ti 4 to 577 nm, producing a corresponding decrease in σy to 511 MPa. The yield strengths of all the doped alloys decreased significantly when tensile tested at 973 K with a concomitant increase in ductility due to softening of the B2 phase. The fracture mode changed from cleavage at room temperature to a ductile dimple-type rupture at 973 K. Lastly, the results are discussed in terms of the Hall-Petch-type relationship.« less

Top