Sample records for increasing heat input

  1. Development and testing of aluminum micro channel heat sink

    NASA Astrophysics Data System (ADS)

    Kumaraguruparan, G.; Sornakumar, T.

    2010-06-01

    Microchannel heat sinks constitute an innovative cooling technology for the removal of a large amount of heat from a small area and are suitable for electronics cooling. In the present work, Tool Steel D2 grade milling slitting saw type plain milling cutter is fabricated The microchannels are machined in aluminum work pieces to form the microchannel heat sink using the fabricated milling cutter in an horizontal milling machine. A new experimental set-up is fabricated to conduct the tests on the microchannel heat sink. The heat carried by the water increases with mass flow rate and heat input. The heat transfer coefficient and Nusselt number increases with mass flow rate and increased heat input. The pressure drop increases with Reynolds number and decreases with input heat. The friction factor decreases with Reynolds number and decreases with input heat. The thermal resistance decreases with pumping power and decreases with input heat.

  2. Effect of heat input on dissimilar welds of ultra high strength steel and duplex stainless steel: Microstructural and compositional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasalloti, H., E-mail: hamed.tasalloti.kashani@stu

    The effect of heat input on the microstructure and compositional heterogeneity of welds of direct-quenched ultra high strength steel (Optim 960 QC) and duplex stainless steel (UNS S32205) was studied. The dissimilar welds were made using GMAW with a fully austenitic filler wire. In addition to grain coarsening in the heat affected zone (HAZ) of the ferritic side, it was found that an increase in heat input correlatively increased the proportional volume of bainitic to martensitic phases. Coarse ferritic grains were observed in the duplex HAZ. Higher heat input, however, had a beneficial effect on the nucleation of austenite inmore » the HAZ. Heat input had a regulatory effect on grain growth within the austenitic weld and more favorable equiaxed austenite was obtained with higher heat input. On the ferritic side of the welds, macrosegregation in the form of a martensitic intermediate zone was observed for all the cooling rates studied. However, on the duplex side, macrosegregation in the fusion boundary was only noticed with higher cooling rates. Microstructural observations and compositional analysis suggest that higher heat input could be beneficial for the structural integrity of the weld despite higher heat input increasing the extent of adverse coarse grains in the HAZ, especially on the ferritic side. - Highlights: •The effect of heat input on dissimilar welds of UHSS and DSS was studied. •Transmutation of the microstructure was discussed in detail. •The influence of heat input on compositional heterogeneity of welds was described. •Higher heat input enhanced bainitic transformation on the ferritic side. •Macrosegregation was affected by the amount of heat input on the DSS side.« less

  3. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  4. Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel

    NASA Astrophysics Data System (ADS)

    Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu

    2018-05-01

    Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.

  5. Effect of Heat Input on Microstructure Evolution and Mechanical Properties in the Weld Heat-Affected Zone of 9Cr-2W-VTa Reduced Activation Ferritic-Martensitic Steel for Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Chang-Hoon; Lee, Tae-Ho; Kim, Hyoung Chan

    2015-01-01

    The phase transformation and mechanical properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic steel were explored. The samples for HAZs were prepared using a Gleeble simulator at different heat inputs. The base steel consisted of tempered martensite and carbides through quenching and tempering treatment, whereas the HAZs consisted of martensite, δ-ferrite, and a small volume of autotempered martensite. The prior austenite grain size, lath width of martensite, and δ-ferrite fraction in the HAZs increased with increase in the heat input. The mechanical properties were evaluated using Vickers hardness and Charpy V-notch impact test. The Vickers hardness in the HAZs was higher than that in the base steel but did not change noticeably with increase in the heat input. The HAZs showed poor impact property due to the formation of martensite and δ-ferrite as compared to the base steel. In addition, the impact property of the HAZs deteriorated more with the increase in the heat input. Post weld heat treatment contributed to improve the impact property of the HAZs through the formation of tempered martensite, but the impact property of the HAZs remained lower than that of base steel.

  6. Parasitic heat loss reduction in AMTEC cells by heat shield optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, C.A.; Svedberg, R.C.; Hendricks, T.J.

    1997-12-31

    Alkali metal thermal to electric conversion (AMTEC) cell performance can be increased by the proper design of thermal radiative shielding internal to the AMTEC cell. These heat shields essentially lower the radiative heat transfer between the heat input zone of the cell and the heat rejection zone of the cell. In addition to lowering the radiative heat transfer between the heat input and heat rejection surfaces of the cell, the shields raise the AMTEC cell performance by increasing the temperature of the beta alumina solid electrolyte (BASE). This increase in temperature of the BASE tube allows the evaporator temperature tomore » be increased without sodium condensing within the BASE tubes. Experimental testing and theoretical analysis have been performed to compare the relative merits of two candidate heat shield packages: (1) chevron, and (2) cylindrical heat shields. These two heat shield packages were compared to each other and a baseline cell which had no heat shields installed. For the two heat shield packages, the reduction in total heat transfer is between 17--27% for the heat input surface temperature varying from 700 C, 750 C, and 800 C with the heat rejection surface temperature kept at 300 C.« less

  7. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  8. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com; Idury, K.S.N. Satish, E-mail: satishidury@gmail.com; Ismail, T.P., E-mail: tpisma@gmail.com

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metalmore » arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual stresses and corrosion is studied. • HAZ and width of dendrite in the welded region increase with heat input. • Residual stresses are tensile near the welded region after the highest heat input. • Welded region has the highest pit density after highest heat input. • Dendrites and δ-ferrite were highly oriented in the welded region.« less

  9. Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

    NASA Astrophysics Data System (ADS)

    Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-03-01

    The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

  10. Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

    NASA Astrophysics Data System (ADS)

    Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-06-01

    The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

  11. Effect of Welding Heat Input on Microstructure and Texture of Inconel 625 Weld Overlay Studied Using the Electron Backscatter Diffraction Method

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Suk; Lee, Hae-Woo

    2016-12-01

    The grain size and the texture of three specimens prepared at different heat inputs were determined using optical microscopy and the electron backscatter diffraction method of scanning electron microscopy. Each specimen was equally divided into fusion line zone (FLZ), columnar dendrite zone (CDZ), and surface zone (SZ), according to the location of the weld. Fine dendrites were observed in the FLZ, coarse dendrites in the CDZ, and dendrites grew perpendicular to the FLZ and CDZ. As the heat input increased, the melted zone in the vicinity of the FLZ widened due to the higher Fe content. A lower image quality value was observed for the FLZ compared to the other zones. The results of grain size measurement in each zone showed that the grain size of the SZ became larger as the heat input increased. From the inverse pole figure (IPF) map in the normal direction (ND) and the rolling direction (RD), as the heat input increased, a specific orientation was formed. However, a dominant [001] direction was observed in the RD IPF map.

  12. Effect of Heat Input on Microstructural Changes and Corrosion Behavior of Commercially Pure Titanium Welds in Nitric Acid Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Gopalakrishnan, G.; Balusamy, V.; Kamachi Mudali, U.

    2009-11-01

    Commercially pure titanium (Ti) has been selected for the fabrication of dissolver for the proposed fast reactor fuel reprocessing plant at Kalpakkam, India. In the present investigation, microstructural changes and corrosion behavior of tungsten inert gas (TIG) welds of Ti grade-1 and grade-2 with different heat inputs were carried out. A wider heat affected zone was observed with higher heat inputs and coarse grains were observed from base metal toward the weld zone with increasing heat input. Fine and more equiaxed prior β grains were observed at lower heat input and the grain size increased toward fusion zone. The results indicated that Ti grade-1 and grade-2 with different heat inputs and different microstructures were insensitive to corrosion in liquid, vapor, and condensate phases of 11.5 M nitric acid tested up to 240 h. The corrosion rate in boiling liquid phase (0.60-0.76 mm/year) was higher than that in vapor (0.012-0.039 mm/year) and condensate phases (0.04-0.12 mm/year) of nitric acid for Ti grade-1 and grade-2, as well as for base metal for all heat inputs. Potentiodynamic polarization experiment carried out at room temperature indicated higher current densities and better passivation in 11.5 M nitric acid. SEM examination of Ti grade-1 welds for all heat inputs exposed to liquid phase after 240 h showed corrosion attack on the surface, exposing Widmanstatten microstructure containing acicular alpha. The continuous dissolution of the liquid-exposed samples was attributed to the heterogeneous microstructure and non-protective passive film formation.

  13. Analysis of WC/Ni-Based Coatings Deposited by Controlled Short-Circuit MIG Welding

    NASA Astrophysics Data System (ADS)

    Vespa, P.; Pinard, P. T.; Gauvin, R.; Brochu, M.

    2012-06-01

    This study investigates the recently developed controlled short-circuit metal inert gas (CSC-MIG) welding system for depositing WC/Ni-based claddings on carbon steel substrates. WC/Ni-based coatings deposited by CSC-MIG were analyzed by optical light microscopy and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) capabilities. X-ray diffraction (XRD) and hardness measurements of depositions are also reported. The CSC-MIG welding system provides a significant amount of user control over the current waveform during welding and has lower heat input when compared with traditional MIG welding. Heat input for the analyzed coatings ranged from 10.1 to 108.7 J/mm. Metallurgically bonded coatings free from spatter and with 0.75% average porosity were produced. It was found that the detrimental decarburization of the WC particles seen in thermal spray systems does not occur when welding with the CSC-MIG. Precipitation of a reaction layer around the reinforcing phase was identified as WC; the average thickness of which increases from 3.8 to 7.2 μm for the low and high heat input condition, respectively. Precipitation of newly formed WC particles was observed; their size distribution increased from D 50 of 2.4 μm in the low heat input weldment to 6.75 μm in the high heat input weldment. The level of dilution of the reinforcing phase increases significantly with heat input. The hardness of the deposited coatings decreases from 587 HV10 to 410 HV10 when the energy input was increased from 10.1 to 108.7 J/mm.

  14. Study on a neon cryogenic oscillating heat pipe with long heat transport distance

    NASA Astrophysics Data System (ADS)

    Liang, Qing; Li, Yi; Wang, Qiuliang

    2018-06-01

    An experimental study is carried out to study the heat transfer characteristics of a cryogenic oscillating heat pipe (OHP) with long heat transport distance. The OHP is made up of a capillary tube with an inner diameter of 1.0 mm and an outer diameter of 2.0 mm. The working fluid is neon, and the length of the adiabatic section is 480 mm. Tests are performed with the different heat inputs, liquid filling ratios and condenser temperature. For the cryogenic OHP with a liquid filling ratio of 30.7% at the condenser temperature of 28 K, the effective thermal conductivity is 3466-30,854 W/m K, and the maximum transfer power is 35.60 W. With the increment of the heat input, the effective thermal conductivity of the cryogenic OHP increases at the liquid filling ratios of 30.7% and 38.5%, while it first increases and then decreases at the liquid filling ratios of 15.2% and 23.3%. Moreover, the effective thermal conductivity increases with decreasing liquid filling ratio at the small heat input, and the maximum transfer power first increases and then decreases with increasing liquid filling ratio. Finally, it is found that the thermal performance of the cryogenic OHP can be improved by increasing the condenser temperature.

  15. The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics.

    PubMed

    Dong, Jianzhi; Agliata, Rosa; Steele-Dunne, Susan; Hoes, Olivier; Bogaard, Thom; Greco, Roberto; van de Giesen, Nick

    2017-09-13

    Several recent studies have highlighted the potential of Actively Heated Fiber Optics (AHFO) for high resolution soil moisture mapping. In AHFO, the soil moisture can be calculated from the cumulative temperature ( T cum ), the maximum temperature ( T max ), or the soil thermal conductivity determined from the cooling phase after heating ( λ ). This study investigates the performance of the T cum , T max and λ methods for different heating strategies, i.e., differences in the duration and input power of the applied heat pulse. The aim is to compare the three approaches and to determine which is best suited to field applications where the power supply is limited. Results show that increasing the input power of the heat pulses makes it easier to differentiate between dry and wet soil conditions, which leads to an improved accuracy. Results suggest that if the power supply is limited, the heating strength is insufficient for the λ method to yield accurate estimates. Generally, the T cum and T max methods have similar accuracy. If the input power is limited, increasing the heat pulse duration can improve the accuracy of the AHFO method for both of these techniques. In particular, extending the heating duration can significantly increase the sensitivity of T cum to soil moisture. Hence, the T cum method is recommended when the input power is limited. Finally, results also show that up to 50% of the cable temperature change during the heat pulse can be attributed to soil background temperature, i.e., soil temperature changed by the net solar radiation. A method is proposed to correct this background temperature change. Without correction, soil moisture information can be completely masked by the background temperature error.

  16. The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics

    PubMed Central

    Dong, Jianzhi; Agliata, Rosa; Steele-Dunne, Susan; Hoes, Olivier; Bogaard, Thom; Greco, Roberto; van de Giesen, Nick

    2017-01-01

    Several recent studies have highlighted the potential of Actively Heated Fiber Optics (AHFO) for high resolution soil moisture mapping. In AHFO, the soil moisture can be calculated from the cumulative temperature (Tcum), the maximum temperature (Tmax), or the soil thermal conductivity determined from the cooling phase after heating (λ). This study investigates the performance of the Tcum, Tmax and λ methods for different heating strategies, i.e., differences in the duration and input power of the applied heat pulse. The aim is to compare the three approaches and to determine which is best suited to field applications where the power supply is limited. Results show that increasing the input power of the heat pulses makes it easier to differentiate between dry and wet soil conditions, which leads to an improved accuracy. Results suggest that if the power supply is limited, the heating strength is insufficient for the λ method to yield accurate estimates. Generally, the Tcum and Tmax methods have similar accuracy. If the input power is limited, increasing the heat pulse duration can improve the accuracy of the AHFO method for both of these techniques. In particular, extending the heating duration can significantly increase the sensitivity of Tcum to soil moisture. Hence, the Tcum method is recommended when the input power is limited. Finally, results also show that up to 50% of the cable temperature change during the heat pulse can be attributed to soil background temperature, i.e., soil temperature changed by the net solar radiation. A method is proposed to correct this background temperature change. Without correction, soil moisture information can be completely masked by the background temperature error. PMID:28902141

  17. Heat input and accumulation for ultrashort pulse processing with high average power

    NASA Astrophysics Data System (ADS)

    Finger, Johannes; Bornschlegel, Benedikt; Reininghaus, Martin; Dohrn, Andreas; Nießen, Markus; Gillner, Arnold; Poprawe, Reinhart

    2018-05-01

    Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.

  18. Modeling of a resonant heat engine

    NASA Astrophysics Data System (ADS)

    Preetham, B. S.; Anderson, M.; Richards, C.

    2012-12-01

    A resonant heat engine in which the piston assembly is replaced by a sealed elastic cavity is modeled and analyzed. A nondimensional lumped-parameter model is derived and used to investigate the factors that control the performance of the engine. The thermal efficiency predicted by the model agrees with that predicted from the relation for the Otto cycle based on compression ratio. The predictions show that for a fixed mechanical load, increasing the heat input results in increased efficiency. The output power and power density are shown to depend on the loading for a given heat input. The loading condition for maximum output power is different from that required for maximum power density.

  19. Effect of heat input on microstructure and properties of hybrid fiber laser-arc weld joints of the 800 MPa hot-rolled Nb-Ti-Mo microalloyed steels

    NASA Astrophysics Data System (ADS)

    Wang, X.-N.; Zhang, S.-H.; Zhou, J.; Zhang, M.; Chen, C.-J.; Misra, R. D. K.

    2017-04-01

    Hybrid fiber laser-arc welding (HLAW) process was applied to a novel hot-rolled Nb-Ti-Mo microalloyed steels of 8 mm thickness. The steel is primarily used to manufacture automotive and construction machinery components, etc. To elucidate the effect of heat input on geometry, microstructure and mechanical properties, different heat inputs (3.90, 5.20 and 7.75 kJ/cm) were used by changing the welding speeds. With increased heat input, the depth/width of penetration was decreased, and the geometry of fusion zone (FZ) changed to "wine cup-like" shape. In regard to the microstructural constituents, the martensite content was decreased, but granular bainite (GB) content was increased. The main microstructural difference was in the FZ cross-section at 7.75 kJ/cm because of the effect of thermal source on the top and bottom. The microstructure of the top part consisted of GB, grain boundary ferrite, and acicular ferrite, while the bottom part was primarily lath martensite. The hardness distribution was similar for different heat inputs. Hardness in FZ, coarse-grained HAZ and mixed-grained HAZ was higher than the base metal (BM), but for the fine-grained HAZ was similar or marginally less than the base metal (BM). Tensile strain was concentrated in the BM such that the fracture occurred in this region. In summary, the geometry, microstructure, and mechanical properties of weld joints were superior at heat input of 5.20 kJ/cm.

  20. Effect of Pin Length on Hook Size and Joint Properties in Friction Stir Lap Welding of 7B04 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Min; Zhang, Huijie; Zhang, Jingbao; Zhang, Xiao; Yang, Lei

    2014-05-01

    Friction stir lap welding of 7B04 aluminum alloy was conducted in the present paper, and the effect of pin length on hook size and joint properties was investigated in detail. It is found that for each given set of process parameters, the size of hook defect on the advancing side shows an "M" type evolution trend as the pin length is increased. The affecting characteristics of pin length on joint properties are dependent on the heat input levels. When the heat input is low, the fracture strength is firstly increased to a peak value and then shows a decrease. When the heat input is relatively high, the evolution trend of fracture strength tends to exhibit a "W" type with increasing the pin length.

  1. Effect of heat input on microstructure, wear and friction behavior of (wt.-%) 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding.

    PubMed

    Özel, Cihan; Gürgenç, Turan

    2018-01-01

    In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.

  2. Effect of heat input on microstructure, wear and friction behavior of (wt.-%) 50FeCrC-20FeW-30FeB coating on AISI 1020 produced by using PTA welding

    PubMed Central

    Gürgenç, Turan

    2018-01-01

    In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input. PMID:29324875

  3. 40 CFR Table 1 to Subpart Ddddd of... - Emission Limits and Work Practice Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Hydrogen Chloride 0.02 lb per MMBtu of heat input. c. Mercury 0.000003 lb per MMBtu of heat input. d... input; or (0.0003 lb per MMBtu of heat input). b. Hydrogen Chloride 0.02 lb per MMBtu of heat input. c.... Hydrogen Chloride 0.02 lb per MMBtu of heat input. c. Mercury 0.000003 lb per MMBtu of heat input. 4. New...

  4. 40 CFR Table 1 to Subpart Ddddd of... - Emission Limits and Work Practice Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Hydrogen Chloride 0.02 lb per MMBtu of heat input. c. Mercury 0.000003 lb per MMBtu of heat input. d... input; or (0.0003 lb per MMBtu of heat input). b. Hydrogen Chloride 0.02 lb per MMBtu of heat input. c.... Hydrogen Chloride 0.02 lb per MMBtu of heat input. c. Mercury 0.000003 lb per MMBtu of heat input. 4. New...

  5. 40 CFR Table 1 to Subpart Ddddd of... - Emission Limits and Work Practice Standards

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Hydrogen Chloride 0.02 lb per MMBtu of heat input. c. Mercury 0.000003 lb per MMBtu of heat input. d... input; or (0.0003 lb per MMBtu of heat input). b. Hydrogen Chloride 0.02 lb per MMBtu of heat input. c.... Hydrogen Chloride 0.02 lb per MMBtu of heat input. c. Mercury 0.000003 lb per MMBtu of heat input. 4. New...

  6. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  7. Relations between the efficiency, power and dissipation for linear irreversible heat engine at maximum trade-off figure of merit

    NASA Astrophysics Data System (ADS)

    Iyyappan, I.; Ponmurugan, M.

    2018-03-01

    A trade of figure of merit (\\dotΩ ) criterion accounts the best compromise between the useful input energy and the lost input energy of the heat devices. When the heat engine is working at maximum \\dotΩ criterion its efficiency increases significantly from the efficiency at maximum power. We derive the general relations between the power, efficiency at maximum \\dotΩ criterion and minimum dissipation for the linear irreversible heat engine. The efficiency at maximum \\dotΩ criterion has the lower bound \

  8. Effect of Heat Input and Post-Weld Heat Treatment on the Mechanical and Metallurgical Characteristics of Laser-Welded Maraging Steel Joints

    NASA Astrophysics Data System (ADS)

    Karthikeyan, R.; Saravanan, M.; Singaravel, B.; Sathiya, P.

    This paper investigates the impact of heat input and post-weld aging behavior at different temperatures on the laser paper welded maraging steel grade 250. Three different levels of heat inputs were chosen and CO2 laser welding was performed. Aging was done at six different temperatures: 360∘C, 400∘C, 440∘C, 480∘C, 520∘C and 560∘C. The macrostructure and microstructure of the fusion zone were obtained using optical microscope. The microhardness test was performed on the weld zone. Tensile tests and impact tests were carried out for the weld samples and different age-treated weld samples. Fracture surfaces were investigated by scanning electron microscopy (SEM). Microhardness values of the fusion zone increased with increasing aging temperature, while the base metal microhardness value decreased. Tensile properties increased with aging temperature up to 480∘C and reduced for 520∘C and 560∘C. This was mainly due to the formation of reverted austenite beyond 500∘C. XRD analysis confirmed the formation of reverted austenite.

  9. Effects of welding heat and travel speed on the impact property and microstructure of FC welds

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Soo; Jeong, Sang Hoon; Lim, Dong Yong; Yun, Jin Oh; Kim, Myung Hyun

    2010-10-01

    This paper is concerned with the effects of welding heat (current x voltage = W) and travel speed (v) on the impact property and microstructure of FC (flux cored) welds. Two sets of plate were welded under different welding conditions such as higher W, v and lower W, v, while maintaining identical heat input. We evaluated the effects of each factor by Charpy impact test and observation of the microstructure, and then compared these data with the results of the numerical temperature analysis. The size of the re-heated zone was increased as the v value decreased, and the results of numerical analysis also revealed the same tendency. Cooling rate of welds (both of as-welded and re-heated zones) decreased as the W value increased. Despite identical heat input conditions, the use of lower W and v made the microstructure finer and increased the volume fraction of AF, thereby leading to a substantial improvement of the impact property.

  10. Experimental Study of Heat Transfer Enhancements from Array of Alternate Rectangular Dwarf Fins at Different Inclinations

    NASA Astrophysics Data System (ADS)

    Awasarmol, Umesh Vandeorao; Pise, Ashok T.

    2018-02-01

    The main objective of this experimental work is to investigate and compare heat transfer enhancement of alternate dwarf fin array at different angles of inclination. In this study, the steady state heat transfer from the full length fin arrays and alternate dwarf fin arrays are measured in natural convection and radiation environment. Largest increase in the Nusselt number was achieved with alternate dwarf fin at angle of orientation 90°, which shows about 28% enhanced heat transfer coefficient as opposed to the full-length fin array with 25% saving in material. In case of non-black FAB, contribution of radiation heat transfer is found to be very small nearly within 1% of the heater input. After coating lamp black contribution of radiation heat transfer is found to increase to about 3-4% of the heater input in the range of temperatures considered in this study.

  11. Nanophotonics-enabled solar membrane distillation for off-grid water purification.

    PubMed

    Dongare, Pratiksha D; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R; Hogan, Nathaniel J; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J

    2017-07-03

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination.

  12. Nanophotonics-enabled solar membrane distillation for off-grid water purification

    PubMed Central

    Dongare, Pratiksha D.; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R.; Hogan, Nathaniel J.; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J.

    2017-01-01

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination. PMID:28630307

  13. Effect of thermal and thermo-mechanical cycling on the boron segregation behavior in the coarse-grained heat-affected zone of low-alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sanghoon; Kang, Yongjoon; Lee, Changhee, E-mail: chlee@hanyang.ac.kr

    The boron segregation behavior in the coarse-grained heat-affected zone (CGHAZ) of 10 ppm boron-added low-alloy steel during the welding cycle was investigated by taking the changes in the microstructure and hardness into account. Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress, and the boron segregation behavior was analyzed by secondary ion mass spectrometry (SIMS) and particle tracking autoradiography (PTA). The segregation of boron was found to initially increase, and then decrease with an increase in the heat input. This is believed to be due to the back-diffusion of boron withmore » an increase in the exposure time at high temperature after non-equilibrium grain boundary segregation. The grain boundary segregation of boron could be decreased by an external stress applied during the welding cycle. Such behavior may be due to an increase in the grain boundary area as a result of the grain size reduction induced by the external stress. - Highlights: • Boron segregation behavior in the CGHAZ of low-alloy steel during a welding cycle was investigated. • Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress. • Boron segregation behavior was analyzed using SIMS and PTA techniques.« less

  14. Heat dissipation in water-cooled reflectors

    NASA Technical Reports Server (NTRS)

    Kozai, Toyoki

    1994-01-01

    The energy balance of a lamp varies with the thermal and optical characteristics of the reflector. The photosynthetic radiation efficiency of lamps, defined as input power divided by photosynthetically active radiation (PAR, 400-700 nm) emitted from the lamp ranges between 0.17 and 0.26. The rest of the energy input is wasted as longwave (3000 nm and over) and non-PAR shortwave radiation (from 700 nm to 3000 nm), convective, and conductive heat from the lamp, reflector, and ballast, and simply for increasing the cooling load. Furthermore, some portion of the PAR is uselessly absorbed by the inner walls, shelves, vessels, etc. and some portion of the PAR received by the plantlets is converted into sensible and latent heat. More than 98% of the energy input is probably converted into heat, with only less than 2% of the energy input being converted into chemical energy as carbohydrates by photosynthesis. Therefore, it is essential to reduce the generation of heat in the culture room in order to reduce the cooling load. Through use of a water-cooled reflector, the generation of convective and conductive heat and longwave radiation from the reflector can be reduced, without reduction of PAR.

  15. Effects of heat input on the pitting resistance of Inconel 625 welds by overlay welding

    NASA Astrophysics Data System (ADS)

    Kim, Jun Seok; Park, Young IL; Lee, Hae Woo

    2015-03-01

    The objective of this study was to establish the relationship between the dilution ratio of the weld zone and pitting resistance depending on the heat input to welding of the Inconel alloy. Each specimen was produced by electroslag welding using Inconel 625 as the filler metal. In the weld zone of each specimen, dendrite grains were observed near the fusion line and equiaxed grains were observed on the surface. It was also observed that a melted zone with a high Fe content was formed around the fusion line, which became wider as the welding heat input increased. In order to evaluate the pitting resistance, potentiodynamic polarization tests and CPT tests were conducted. The results of these tests confirmed that there is no difference between the pitting resistances of each specimen, as the structures of the surfaces were identical despite the effect of the differences in the welding heat input for each specimen and the minor dilution effect on the surface.

  16. Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Lv, Xiaoqing; Zhang, Jianyang

    2018-03-01

    The influence of heat input in electron beam (EB) process on microstructure, mechanical properties, and pitting corrosion resistance of duplex stainless steel (DSS) welded interface was investigated. The rapid cooling in EB welding resulted in insufficient austenite formation. The austenite mainly consisted of grain boundary austenite and intragranular austenite, and there was abundant Cr2N precipitation in the ferrite. The Ni, Mo, and Si segregation indicated that the dendritic solidification was primarily ferrite in the weld. The weld exhibited higher hardness, lower toughness, and poorer pitting corrosion resistance than the base metal. The impact fractures of the welds were dominated by the transgranular cleavage failure of the ferrite. The ferrite was selectively attacked because of its lower pitting resistance equivalent number than that of austenite. The Cr2N precipitation accelerated the pitting corrosion. In summary, the optimised heat input slightly increased the austenite content, reduced the segregation degree and ferrite texture intensity, decreased the hardness, and improved the toughness and pitting corrosion resistance. However, the effects were limited. Furthermore, optimising the heat input could not suppress the Cr2N precipitation. Taking into full consideration the microstructure and properties, a heat input of 0.46 kJ/mm is recommended for the EB welding of DSS.

  17. Vapor chamber with hollow condenser tube heat sink

    NASA Astrophysics Data System (ADS)

    Ong, K. S.; Haw, P. L.; Lai, K. C.; Tan, K. H.

    2017-04-01

    Heat pipes are heat transfer devices capable of transferring large quantities of heat effectively and efficiently. A vapor chamber (VC) is a flat heat pipe. A novel VC with hollow condenser tubes embedded on the top of it is proposed. This paper reports on the experimental thermal performance of three VC devices embedded with hollow tubes and employed as heat sinks. The first device consisted of a VC with a single hollow tube while the other two VCs had an array of multi-tubes with different tube lengths. All three devices were tested under natural and force air convection cooling. An electrical resistance heater was employed to provide power inputs of 10 and 40 W. Surface temperatures were measured with thermocouple probes at different locations around the devices. The results show that temperatures increased with heater input while total device thermal resistances decreased. Force convection results in lower temperatures and lower resistance. Dry-out occurs at high input power and with too much condensing area. There appears to be an optimum fill ratio which depended upon dimensions of the VC and also heating power.

  18. Microstructural and Electrochemical Evaluation of Fusion Welded Low-Nickel and 304 SS at Different Heat Input

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Shukla, Sourabh

    2017-12-01

    The present research study investigates the effect of heat input using E 308 electrode (controlled by welding current, i.e., 70, 85 and 100 A) on microstructure, mechanical properties and corrosion behavior of low-nickel and 304 stainless steel (SS) weldments produced by shielded metal arc welding technique. SEM investigation shows that with the higher heat input, δ-ferrite content was reduced. Dendrite and inter-dendritic length is also reduced by lowering the heat input. For all the heat inputs, it is observed that δ-ferrite content was higher in 304 stainless steel (SS) as compared to that of low-nickel austenitic stainless steel (Cr-Mn SS). Considering the heat input for Cr-Mn SS, coarse grains were observed in the heat-affected zone region. For low heat input (LHI), tensile fracture surface has exhibited river-like pattern with dimple appearance. Corrosion studies show better pitting resistance for low heat input (LHI) samples due to higher δ-ferrite present in the weld region. Similarly, higher interphase corrosion resistance is observed in both the SS grades causing more dissolution in the LHI samples.

  19. Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4V Titanium Sheets

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Xiaolong; Zhang, Jianxun

    2016-11-01

    The present paper is focused on studying the effect of heat input on the tensile damage evolution of pulsed Nd:YAG laser welding of Ti6Al4V alloy under monotonic loading. To analyze the reasons that the tensile fracture site of the pulsed-laser-welded Ti6Al4V sheet joints changes with the heat input under monotonic loading, the microstructure of the sample with different nominal strain values was investigated by in situ observation. Experiment results show that the tensile ductility and fatigue life of welded joints with low heat input are higher than that of welded joints with high heat input. Under tensile loads, the critical engineering strain for crack initiation is much lower in the welded joint with high heat input than in the welded joints with low and medium heat input. And the microstructural damage accumulation is much faster in the fusion zone than in the base metal for the welded joints with high input, whereas the microstructural damage accumulation is much faster in the base metal than in the fusion zone for the welded joints with low input. Consequently, the welded joints fractured in the fusion zone for the welds with high heat input, whereas the welded joints ruptured in the base metal for the welds with low heat input. It is proved that the fine grain microstructure produced by low heat input can improve the critical nominal strain for crack initiation and the resistance ability of microstructural damage.

  20. 40 CFR 75.36 - Missing data procedures for heat input rate determinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Missing data procedures for heat input... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.36 Missing data procedures for heat input rate determinations. (a) When hourly heat input rate is...

  1. 40 CFR 75.36 - Missing data procedures for heat input rate determinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Missing data procedures for heat input... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.36 Missing data procedures for heat input rate determinations. (a) When hourly heat input rate is...

  2. 40 CFR 75.36 - Missing data procedures for heat input rate determinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Missing data procedures for heat input... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.36 Missing data procedures for heat input rate determinations. (a) When hourly heat input rate is...

  3. 40 CFR 75.36 - Missing data procedures for heat input rate determinations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Missing data procedures for heat input... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.36 Missing data procedures for heat input rate determinations. (a) When hourly heat input rate is...

  4. 40 CFR 75.36 - Missing data procedures for heat input rate determinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Missing data procedures for heat input... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.36 Missing data procedures for heat input rate determinations. (a) When hourly heat input rate is...

  5. Investigation of a continuous heating/cooling technique for cardiac output measurement.

    PubMed

    Ehlers, K C; Mylrea, K C; Calkins, J M

    1987-01-01

    Cardiac output is frequently measured to assess patient hemodynamic status in the operating room and intensive care unit. Current research for measuring cardiac output includes continuous sinusoidal heating and synchronous detection of thermal signals. This technique is limited by maximum heating element temperatures and background thermal noise. A continuous heating and cooling technique was investigated in vitro to determine if greater thermal signal magnitudes could be obtained. A fast responding thermistor was employed to measure consecutive ejected temperature plateaus in the thermal signal. A flow bath and mechanical ventricle were used to simulate the cardiovascular system. A thermoelectric module was used to apply heating and cooling energy to the flow stream. Trials encompassing a range of input power, input frequency, and flow rate were conducted. By alternating heating and cooling, thermal signal magnitude can be increased when compared to continuous heating alone. However, the increase was not sufficient to allow for recording in all patients over the expected normal range of cardiac output. Consecutive ejected temperature plateaus were also measured on the thermal signal and ejection fraction calculations were made.

  6. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  7. Mechanisms of Ocean Heat Uptake

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi

    An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical diffusion takes over transport in the tropics; in the Atlantic, the MOC transports heat as deep 2000m in about 30 years. Redistributive surface heat uptake alters the total amount surface heat uptake among the basins. Compared to the passive-only heat uptake, which is about the same among the basins, redistribution nearly doubles the surface heat input into the Atlantic but makes smaller increases in the Indian and Pacific oceans for a net global increase of about 25%, in the perturbation experiment with winds unchanged. The passive and redistributive heat uptake components are further distributed among the basins through the global conveyor belt. The Pacific gains twice the surface heat input into it through lateral transport from the other two basins, as a result, the Atlantic and Pacific gain similar amounts of heat even though surface heat input is in the Atlantic is much bigger. Of this heat transport, most of the passive component comes from the Indian and the redistributive component comes from the Atlantic. Different surface forcing perturbation gives different circulation change pattern and as a result yield different redistributive uptake. Ocean heat uptake is more sensitive to wind forcing perturbation than to thermohaline forcing perturbation. About 2% reduction in subtropical cells transport and southern ocean transport, in the wind-change perturbation experiment, resulted in about 10% reduction in the global ocean heat uptake of wind-unchanged experiment. The AMOC weakened by about 35% and resulted in a 25% increase in passive heat uptake in the wind-unchanged experiment. Surface winds weakening reduces heat uptake by warming the reservoir surface temperatures, while MOC weakening increases heat input by a cooling reservoir surface temperatures. Thermohaline forcing perturbation is combination of salinity and temperature perturbations, both weaken the AMOC, however, they have opposite redistributive effects. Ocean surface freshening gives positive redistributive effect, while surface temperature increase gives negative redistributive effect on heat uptake. The salinity effect dominates the redistributive effect for thermohaline perturbation.

  8. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell; Schifer, Nicholas

    2011-01-01

    Test hardware used to validate net heat prediction models. Problem: Net Heat Input cannot be measured directly during operation. Net heat input is a key parameter needed in prediction of efficiency for convertor performance. Efficiency = Electrical Power Output (Measured) divided by Net Heat Input (Calculated). Efficiency is used to compare convertor designs and trade technology advantages for mission planning.

  9. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  10. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  11. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  12. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  13. 40 CFR 97.76 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... heat input data. 97.76 Section 97.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Monitoring and Reporting § 97.76 Additional requirements to provide heat input data. The owner or operator of... a flow system shall also monitor and report heat input rate at the unit level using the procedures...

  14. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  15. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... heat input data for allocations purposes. 96.76 Section 96.76 Protection of Environment ENVIRONMENTAL... to provide heat input data for allocations purposes. (a) The owner or operator of a unit that elects... also monitor and report heat input at the unit level using the procedures set forth in part 75 of this...

  16. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input rate. 75.83 Section 75.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass emissions and heat input rate in accordance with the procedures in sections 9.1 through 9.3 of appendix F to...

  17. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... heat input data for allocations purposes. 96.76 Section 96.76 Protection of Environment ENVIRONMENTAL... to provide heat input data for allocations purposes. (a) The owner or operator of a unit that elects... also monitor and report heat input at the unit level using the procedures set forth in part 75 of this...

  18. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... heat input data for allocations purposes. 96.76 Section 96.76 Protection of Environment ENVIRONMENTAL... to provide heat input data for allocations purposes. (a) The owner or operator of a unit that elects... also monitor and report heat input at the unit level using the procedures set forth in part 75 of this...

  19. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... heat input data for allocations purposes. 96.76 Section 96.76 Protection of Environment ENVIRONMENTAL... to provide heat input data for allocations purposes. (a) The owner or operator of a unit that elects... also monitor and report heat input at the unit level using the procedures set forth in part 75 of this...

  20. Experimental Investigation on Heat Transfer Characteristics of Different Metallic Fin Arrays

    NASA Astrophysics Data System (ADS)

    Sangewar, Ravi Kumar

    2018-04-01

    The reliability of electronic equipment depends on the reliability of the system. For small applications natural convection cooling is sufficient, but for the electronic equipment having number of heat generating components, forced convection cooling is essential. In number of cases, pin fin arrangement is preferred for augmentation of heat transfer. Here, the performance of pin fin array of copper and aluminum material with in-line, as well as staggered arrangement over a flat plate is studied. Constant heat input was given to the inline, staggered arrangement of copper as well as aluminium pin fin arrays. In the present experimental study, heat input and airflow rates are the variables. It was found that the heat transfer coefficient for staggered array is 15% more than that of the in-line array, at the same time pressure drop across the staggered array is more by 10% than the in-line array. The pressure drop was observed to be increasing with increase in flow rate as expected. Endeavor of the present work is to find the optimum spacing between the fins in an array for maximum heat transfer rate, by investigating the heat transfer characteristics.

  1. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for... and for a flow monitoring system and an O2 or CO2 diluent gas monitoring system to measure heat input...

  2. 40 CFR Table 1 to Subpart Jjjjjj... - Emission Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pounds(lb) per million British thermal units (MMBtu) of heat input.2.2E-05 lb per MMBtu of heat input... MMBtu/hr that do not meet the definition of limited-use boiler a. PM (Filterable)b. Mercury c. CO 4.2E-01 lb per MMBtu of heat input.2.2E-05 lb per MMBtu of heat input. 420 ppm by volume on a dry basis...

  3. 40 CFR Table 1 to Subpart Jjjjjj... - Emission Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pounds(lb) per million British thermal units (MMBtu) of heat input.2.2E-05 lb per MMBtu of heat input... MMBtu/hr that do not meet the definition of limited-use boiler a. PM (Filterable)b. Mercury c. CO 4.2E-01 lb per MMBtu of heat input.2.2E-05 lb per MMBtu of heat input. 420 ppm by volume on a dry basis...

  4. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soochan; Phelan, Patrick E., E-mail: phelan@asu.edu; Dai, Lenore

    2014-04-14

    This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids.more » That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.« less

  5. Evaluation of AISI 4140 Steel Repair Without Post-Weld Heat Treatment

    NASA Astrophysics Data System (ADS)

    Silva, Cleiton C.; de Albuquerque, Victor H. C.; Moura, Cícero R. O.; Aguiar, Willys M.; Farias, Jesualdo P.

    2009-04-01

    The present work evaluates the two-layer technique on the heat affected zone (HAZ) of AISI 4140 steel welded with different heat input levels between the first and second layer. The weld heat input levels selected by the Higuchi test were 5/5, 5/10, and 15/5 kJ/cm. The evaluation of the refining and/or tempering of the coarsened grain HAZ of the first layer was carried out using metallographic tests, microhardness measurements, and the Charpy-V impact test. The tempering of the first layer was only reached when the weld heat input ratio was 5/5 kJ/cm. The results of the Charpy-V impact test showed that the two-layer technique was efficient, from the point of view of toughness, since the toughness values reached were greater than the base metal for all weld heat input ratios applied. The results obtained indicate that the best performance of the two-layer deposition technique was for the weld heat input ratio 5/5 kJ/cm employing low heat input.

  6. 40 CFR Table 1 to Subpart Jjjjjj... - Emission Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent oxygen. 3. New biomass-fired boiler with heat input capacity of 30 million Btu per hour or greater a. Particulate Matter 0.03 lb per MMBtu of heat input. 4. New biomass fired boiler with heat input...

  7. 40 CFR Table 1 to Subpart Jjjjjj... - Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent oxygen. 3. New biomass-fired boiler with heat input capacity of 30 million Btu per hour or greater a. Particulate Matter 0.03 lb per MMBtu of heat input. 4. New biomass fired boiler with heat input...

  8. Observation of a thermally enhanced magnetoresistance in NiFe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y.; Feng, C., E-mail: fengchun@ustb.edu.cn, E-mail: ghyu@mater.ustb.edu.cn; Liu, D. X.

    2016-04-15

    A thermally enhanced magnetoresistance (ThMR) was designed and obtained by simultaneously applying charge and heat currents to a NiFe thin film. From the measurement we observed that the magnetoresistance value was as high as -22600% when the input charge current and applied temperature gradient was 0.966 μA and 2.5 °C/mm, respectively. This ThMR can be controllable by adjusting the relative values of the input charge and heat currents. On increasing the input charge current from 0.85 to 1.05 μA by fixing the temperature gradient at 2.5 °C/mm, the ThMR first increased from 9% to 183% and then decreased from -259%more » to -13%, at intervals of ∼0.96 μA. This can be explained by the spin-dependent transport phenomenon i.e., scattering induced sign difference between magnetoresistance and magnetothermopower in NiFe.« less

  9. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  10. Turning bubbles on and off during boiling using charged surfactants

    PubMed Central

    Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.

    2015-01-01

    Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275

  11. 40 CFR 75.82 - Monitoring of Hg mass emissions and heat input at common and multiple stacks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input at common and multiple stacks. 75.82 Section 75.82 Protection of Environment ENVIRONMENTAL... Provisions § 75.82 Monitoring of Hg mass emissions and heat input at common and multiple stacks. (a) Unit... systems and perform the Hg emission testing described under § 75.81(b). If reporting of the unit heat...

  12. 40 CFR 60.4176 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Additional requirements to provide heat... requirements to provide heat input data. The owner or operator of a Hg Budget unit that monitors and reports Hg... monitor and report heat input rate at the unit level using the procedures set forth in part 75 of this...

  13. Heat transfer in an evaporation-condensation system in simulated weightlessness conditions

    NASA Astrophysics Data System (ADS)

    Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.

    2017-10-01

    The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.

  14. The impact of frequency on the performance of microwave ablation.

    PubMed

    Sawicki, James F; Shea, Jacob D; Behdad, Nader; Hagness, Susan C

    2017-02-01

    The use of higher frequencies in percutaneous microwave ablation (MWA) may offer compelling interstitial antenna design advantages over the 915 MHz and 2.45 GHz frequencies typically employed in current systems. To evaluate the impact of higher frequencies on ablation performance, we conducted a comprehensive computational and experimental study of microwave absorption and tissue heating as a function of frequency. We performed electromagnetic and thermal simulations of MWA in ex vivo and in vivo porcine muscle at discrete frequencies in the 1.9-26 GHz range. Ex vivo ablation experiments were performed in the 1.9-18 GHz range. We tracked the size of the ablation zone across frequency for constant input power and ablation duration. Further, we conducted simulations to investigate antenna feed line heating as a function of frequency, input power, and cable diameter. As the frequency was increased from 1.9 to 26 GHz the resulting ablation zone dimensions decreased in the longitudinal direction while remaining relatively constant in the radial direction; thus at higher frequencies the overall ablation zone was more spherical. However, cable heating at higher frequencies became more problematic for smaller diameter cables at constant input power. Comparably sized ablation zones are achievable well above 1.9 GHz, despite increasingly localised power absorption. Specific absorption rate alone does not accurately predict ablation performance, particularly at higher frequencies where thermal diffusion plays an important role. Cable heating due to ohmic losses at higher frequencies may be controlled through judicious choices of input power and cable diameter.

  15. Studies of heat source driven natural convection

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Nagle, M. E.; Cassen, P.

    1974-01-01

    Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes.

  16. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry; Schifer, Nicholas; Briggs, Maxwell

    2011-01-01

    Past methods of predicting net heat input needed to be validated. Validation effort pursued with several paths including improving model inputs, using test hardware to provide validation data, and validating high fidelity models. Validation test hardware provided direct measurement of net heat input for comparison to predicted values. Predicted value of net heat input was 1.7 percent less than measured value and initial calculations of measurement uncertainty were 2.1 percent (under review). Lessons learned during validation effort were incorporated into convertor modeling approach which improved predictions of convertor efficiency.

  17. Silicon Carbide (SiC) Device and Module Reliability, Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field

    DTIC Science & Technology

    2016-05-01

    AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled... Heat Input to an Acceleration Field Kirk L. Yerkes (AFRL/RQQI) and James D. Scofield (AFRL/RQQE) Flight Systems Integration Branch (AFRL/RQQI...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a

  18. NASA Lewis steady-state heat pipe code users manual

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.

    1992-01-01

    The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.

  19. NASA Lewis steady-state heat pipe code users manual

    NASA Astrophysics Data System (ADS)

    Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.

    1992-06-01

    The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.

  20. 40 CFR 96.142 - CAIR NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the 3 highest amounts of the unit's adjusted control period heat input for 2000 through 2004, with the adjusted control period heat input for each year calculated as follows: (A) If the unit is coal-fired... CAIR NOX Allowance Allocations § 96.142 CAIR NOX allowance allocations. (a)(1) The baseline heat input...

  1. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...

  2. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO 2...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...

  3. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...

  4. 40 CFR 75.16 - Special provisions for monitoring emissions from common, bypass, and multiple stacks for SO 2...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. 75.16... emissions from common, bypass, and multiple stacks for SO 2 emissions and heat input determinations. (a... by the Administrator, such that these emissions are not underestimated. (e) Heat input rate. The...

  5. 40 CFR 60.42c - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....2 lb/MMBtu) heat input. If coal is combusted with other fuels, the affected facility shall neither... excess of 520 ng/J (1.2 lb/MMBtu) heat input. If coal is fired with coal refuse, the affected facility.../MMBtu) heat input. If coal is combusted with other fuels, the affected facility is subject to the 50...

  6. 40 CFR 97.142 - CAIR NOX allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heat input for each year calculated as follows: (A) If the unit is coal-fired during the year, the unit... the first such 5 years. (2)(i) A unit's control period heat input, and a unit's status as coal-fired... Allocations § 97.142 CAIR NOX allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with...

  7. Device and method for measuring the coefficient of performance of a heat pump

    DOEpatents

    Brantley, V.R.; Miller, D.R.

    1982-05-18

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.

  8. Device and method for measuring the coefficient of performance of a heat pump

    DOEpatents

    Brantley, Vanston R.; Miller, Donald R.

    1984-01-01

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistance heaters. Temperature sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct temperatures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electronics is required to operate the instrument.

  9. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wei; Chen, Gaoqiang; Chen, Jian

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zonemore » mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.« less

  10. Start Up of a Nb-1%Zr Potassium Heat Pipe From the Frozen State

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    The start up of a liquid metal heat pipe from the frozen state was evaluated experimentally with a Nb-1%Zr heat pipe with potassium as the working fluid. The heat pipe was fabricated and tested at Los Alamos National Laboratory. RF induction heating was used to heat 13 cm of the 1-m-long heat pipe. The heat pipe and test conditions are well characterized so that the test data may be used for comparison with numerical analyses. An attempt was made during steady state tests to calibrate the heat input so that the heat input would be known during the transient cases. The heat pipe was heated to 675 C with a throughput of 600 W and an input heat flux of 6 W/cm(exp 2). Steady state tests, start up from the frozen state, and transient variations from steady state were performed.

  11. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr; Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasingmore » δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.« less

  12. The effect of welding parameters on high-strength SMAW all-weld-metal. Part 1: AWS E11018-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vercesi, J.; Surian, E.

    Three AWS A5.5-81 all-weld-metal test assemblies were welded with an E110180-M electrode from a standard production batch, varying the welding parameters in such a way as to obtain three energy inputs: high heat input and high interpass temperature (hot), medium heat input and medium interpass temperature (medium) and low heat input and low interpass temperature (cold). Mechanical properties and metallographic studies were performed in the as-welded condition, and it was found that only the tensile properties obtained with the test specimen made with the intermediate energy input satisfied the AWS E11018-M requirements. With the cold specimen, the maximal yield strengthmore » was exceeded, and with the hot one, neither the yield nor the tensile minimum strengths were achieved. The elongation and the impact properties were high enough to fulfill the minimal requirements, but the best Charpy-V notch values were obtained with the intermediate energy input. Metallographic studies showed that as the energy input increased the percentage of the columnar zones decreased, the grain size became larger, and in the as-welded zone, there was a little increment of both acicular ferrite and ferrite with second phase, with a consequent decrease of primary ferrite. These results showed that this type of alloy is very sensitive to the welding parameters and that very precise instructions must be given to secure the desired tensile properties in the all-weld-metal test specimens and under actual working conditions.« less

  13. A study of start-up characteristics of a potassium heat pipe from the frozen state

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon

    1992-01-01

    The start up characteristics of a potassium heat pipe were studied both analytically and experimentally. Using the radiation heat transfer mode the heat pipe was tested in a vacuum chamber. The transition temperature calculated for potassium was then compared with the experimental results of the heat pipe with various heat inputs. These results show that the heat pipe was inactive until it reached the transition temperature. In addition, during the start up period, the evaporator experienced dry-out with a heat input smaller than the capillary limit calculated at the steady state. However, when the working fluid at the condensor was completely melted, the evaporation was rewetted without external aid. The start up period was significantly reduced with a large heat input.

  14. Wildland Fire Induced Heating of Dome 375 Perma-Con®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, Eugene Michael

    AET-1 was tasked by ADEM with determining the temperature rise in the drum contents of drums stored in the Dome 375 Perma-Con® at TA-54 given a wildland fire. The wildland fire causes radiative and convective heating on the Perma-Con® exterior. The wildland fire time histories for the radiative and convective heating environment were provided to AET-1 by EES-16. If the calculated temperature rise results in a drum content temperature over 40 °C, then ADEM desires a design solution to ensure the peak temperature remains below 40 °C. An axi-symmetric FE simulation was completed to determine the peak temperature of themore » contents of a drum stored in the Dome 375 Perma-Con® during a wildland fire event. Three wildland fire time histories for the radiative and convective heat transfer were provided by EES-16 and were inputs for the FE simulation. The maximum drum content temperature reached was found to be 110 °C while using inputs from the SiteG_2ms_4ign_wind_from_west.xlsx time history input and not including the SWB in the model. Including the SWB in the results in a peak drum content temperature of 61 °C for the SiteG_2ms_4ign_wind_from_west.xlsx inputs. EES-16 decided that by using fuel mitigation efforts, such as mowing the grass and shrubs near the Perma-Con® they could reduce the shrub/grass fuel loading near the Perma-Con® from 1.46 kg/m 2 to 0.146 kg/m 2 and by using a less conservative fuel loading for the debris field inside the Dome 375 perimeter, reducing it from 0.58 kg/m2 to 0.058 kg/m 2 in their model. They also greatly increased the resolution of their radiation model and increased the accuracy of their model’s required convergence value. Using this refined input the maximum drum content temperature was found to be 28 °C with no SWB present in the model. Additionally, this refined input model was modified to include worst case emissivity values for the concrete, drum and Perma-Con® interior, along with adding a 91 second long residual radiative heat flux of 2,000 W/m2 to the end of the refined wildland fire input. For this case the maximum drum content temperature was found to be 32 °C. For Rev. 2 of this calculation and additional simulation was run that included a cable fire heat flux on the exterior of the Perma-Con® that was calculated by FP-DO. Including the cable fire heat flux in the model without the SWB resulted in a peak drum content temperature over time of 43 °C. Including the SWB in the simulation with the cable fire heat flux resulted in a peak drum content temperature over time of 35 °C.« less

  15. Thermodynamic and experimental study on heat transfer mechanism of miniature loop heat pipe with water-copper nanofluid

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong

    2018-02-01

    A miniature loop heat pipe (mLHP) is a promising device for heat dissipation of electronic products. Experimental study of heat transfer performance of an mLHP employing Cu-water nanofluid as working fluid was conducted. It is found that, when input power is above 25 W, the temperature differences between the evaporator wall and vapor of nanofluid, Te - Tv, and the total heat resistance of mLHP using nanofluid are always lower than those of mLHP using de-ionized water. The values of Te - Tv and total heat resistance of mLHP using nanofluid with concentration 1.5 wt. % are the lowest, while when the input power is 25 W, the values of Te - Tv and total heat resistance of mLHP using de-ionized water are even lower than those of mLHP using nanofluid with concentration 2.0 wt. %. At larger input power, the dominant interaction is collision between small bubbles and nanoparticles which can facilitate heat transfer. While at lower input power, nanoparticles adhere to the surface of large bubble. This does not benefit boiling heat transfer. For mLHP using nanofluid with larger concentration, for example 2.0%, the heat transfer may even be worse compared with using de-ionized water at lower input power. The special structure of the mLHP in this study, two separated chambers in the evaporator, produces an extra pressure difference and contributes to the heat transfer performance of the mLHP.

  16. 40 CFR 60.43Da - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and that burns 75 percent or more (by heat input) coal refuse on a 12-month rolling average basis...) of this section, any gases that contain SO2 in excess of: (1) 520 ng/J (1.20 lb/MMBtu) heat input and.../MMBtu) heat input. (b) On and after the date on which the initial performance test is completed or...

  17. 40 CFR 60.43b - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) heat input, (i) If the affected facility combusts only coal, or (ii) If the affected facility combusts.... (2) 43 ng/J (0.10 lb/MMBtu) heat input if the affected facility combusts coal and other fuels and has... greater than 10 percent (0.10) for fuels other than coal. (3) 86 ng/J (0.20 lb/MMBtu) heat input if the...

  18. 40 CFR 60.44c - Compliance and performance test methods and procedures for sulfur dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... = Fraction of the total heat input from fuel combustion derived from coal and oil, as determined by... total heat input from fuel combustion derived from coal and oil, as determined by applicable procedures... generating unit load during the 30-day period does not have to be the maximum design heat input capacity, but...

  19. A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.

  20. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel

    NASA Astrophysics Data System (ADS)

    Chu, Rensheng; Mu, Shukun; Liu, Jingang; Li, Zhanjun

    2017-09-01

    In the current paper, it is analyzed for the influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel. It is observed for the structure for different heat input of the coarse-grained area. It is finest for the coarse grain with the high heat input of 200 kJ / cm and the coarse grain area with 400 kJ / cm is the largest. The performance with the heat input of 200 kJ / cm for -20 °C V-shaped notch oscillatory power is better than the heat input of 400 kJ / cm. The grain structure is the ferrite and bainite for different holding time. The grain structure for 5s holding time has a grain size of 82.9 μm with heat input of 200 kJ/cm and grain size of 97.9 μm for 10s holding time. For the inclusions for HSLA steel with adding rare earth, they are Al2O3-CaS inclusions in the Al2O3-CaS-CaO ternary phase diagram. At the same time, it can not be found for low melting calcium aluminate inclusions compared to the inclusions for the HSLA steel without rare earth. Most of the size for the inclusions is between 1 ~ 10μm. The overall grain structure is smaller and the welding performance is more excellent for adding rare earth.

  1. A short circuit in thermohaline circulation: A cause for northern hemisphere glaciation?

    PubMed

    Driscoll; Haug

    1998-10-16

    The cause of Northern Hemisphere glaciation about 3 million years ago remains uncertain. Closing the Panamanian Isthmus increased thermohaline circulation and enhanced moisture supply to high latitudes, but the accompanying heat would have inhibited ice growth. One possible solution is that enhanced moisture transported to Eurasia also enhanced freshwater delivery to the Arctic via Siberian rivers. Freshwater input to the Arctic would facilitate sea ice formation, increase the albedo, and isolate the high heat capacity of the ocean from the atmosphere. It would also act as a negative feedback on the efficiency of the "conveyor belt" heat pump.

  2. 76 FR 80531 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... boilers are small (less than 10 MMBtu/hr heat input) and are generally owned and operated by contractors... (> 5MMBtu/h) or five-year ( New boilers with heat input capacity greater than 10 million Btu per hour that... with heat input capacity greater than 10 million Btu per hour that are biomass-fired or oil-fired must...

  3. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. (a) Coal-fired units. The owner or operator of a coal...

  4. Performance of a Thermoelectric Device with Integrated Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Barry, Matthew M.; Agbim, Kenechi A.; Chyu, Minking K.

    2015-06-01

    Thermoelectric devices (TEDs) convert heat directly into electrical energy, making them well suited for waste heat recovery applications. An integrated thermoelectric device (iTED) is a restructured TED that allows more heat to enter the p-n junctions, thus producing a greater power output . An iTED has heat exchangers incorporated into the hot-side interconnectors with flow channels directing the working fluid through the heat exchangers. The iTED was constructed of p- and n-type bismuth-telluride semiconductors and copper interconnectors and rectangular heat exchangers. The performance of the iTED in terms of , produced voltage and current , heat input and conversion efficiency for various flow rates (), inlet temperatures (C) ) and load resistances () with a constant cold-side temperature ( = 0C) was conducted experimentally. An increase in had a greater effect on the performance than did an increase in . A 3-fold increase in resulted in a 3.2-, 3.1-, 9.7-, 3.5- and 2.8-fold increase in and respectively. For a constant of 50C, a 3-fold increase in from 3300 to 9920 resulted in 1.6-, 1.6-, 2.6-, 1.5- and 1.9-fold increases in , , , and respectively.

  5. Comparison on welding mode characteristics of arc heat source for heat input control in hybrid welding of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Song, Moo-Keun; Kim, Jong-Do; Oh, Jae-Hwan

    2015-03-01

    Presently in shipbuilding, transportation and aerospace industries, the potential to apply welding using laser and laser-arc hybrid heat sources is widely under research. This study has the purpose of comparing the weldability depending on the arc mode by varying the welding modes of arc heat sources in applying laser-arc hybrid welding to aluminum alloy and of implementing efficient hybrid welding while controlling heat input. In the experimental study, we found that hybrid welding using CMT mode produced deeper penetration and sounder bead surface than those characteristics produced during only laser welding, with less heat input compared to that required in pulsed arc mode.

  6. Heat Pipe Vapor Dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Issacci, Farrokh

    1990-01-01

    The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na-filled heat pipe is on the order of seconds. Depending on the time constant for the overall system, the vapor transient time may be very short. Therefore, the vapor core may be assumed to be quasi-steady in the transient analysis of a heat pipe operation.

  7. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  8. A comparison of LBW and GTAW processes in miniature closure welds

    NASA Astrophysics Data System (ADS)

    Knorovsky, G. A.; Fuerschbach, P. W.; Gianoulakis, S. E.; Burchett, S. N.

    When small electronic components with glass-to-metal seals are closure welded, the residual stresses that develop in the glass are of concern. If these stresses exceed allowable tensile levels' the resulting weld-induced seal failure may cause the entire component to be scrapped or reworked at a substantial cost. Conventional wisdom says the best welding process for these applications is that which provides the least heat input, and so in that respect, Laser Beam Welding (LBW) provides less heat input than Gas Tungsten Arc Welding (GTAW), however, other concerns, such as weld fit-up, part variability, and material weldability, can modify the final choice of a welding process. In this paper, we compare the characteristic levels of heat input and the residual stresses generated in glass seals for two processes (as calculated by a 3D Finite Element Analysis) as a function of heat input and travel speed, and contrast some of the other manufacturing decisions that must be made in choosing a production process. The geometry chosen is that of a standing edge corner weld in a cylindrical container about 20 mm diameter by 35 mm tall. Four metal pins are glassed into the part lid. The stresses calculated from the resulting from continuous wave CO2 LBW are compared with those resulting from GTAW. The total energy required by the laser weld is significantly less than that needed for the equivalent size GTA weld. The energy input requirements for a given size weld is inversely proportional to the travel speed, but approaches a saturation level as the travel speed increases. LBW travel speeds ranging from 10 mm/s to 50 mm/s were examined.

  9. Experimental investigation on thermal performance of a closed loop pulsating heat pipe (CLPHP) using methanol and distilled water at different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Swarna, Anindita Dhar; Ahmed, Syed Nasif Uddin; Perven, Sanjida; Ali, Mohammad

    2016-07-01

    Pulsating Heat Pipes, the new two-phase heat transfer devices, with no counter current flow between liquid and vapor have become a modern topic for research in the field of thermal management. This paper focuses on the performance of methanol and distilled water as working fluid in a closed loop pulsating heat pipe (CLPHP). This performances are compared in terms of thermal resistance, heat transfer co-efficient, and evaporator and condenser wall temperature with variable heat inputs. Methanol and Distilled water are selected for their lower surface tension, dynamic viscosity and sensible heat. A closed loop PHP made of copper with 2mm ID and 2.5mm OD having total 8 loops are supplied with power input varied from 10W to 60W. During the experiment the PHP is kept vertical, while the filling ratio (FR) is increased gradually from 40% to 70% with 10% increment. The optimum filling ratio for a minimum thermal resistance is found to be 60% and 40% for distilled water and methanol respectively and methanol is found to be the better working fluid compared to distilled water in terms of its lower thermal resistance and higher heat transfer coefficient.

  10. Method and system for simulating heat and mass transfer in cooling towers

    DOEpatents

    Bharathan, Desikan; Hassani, A. Vahab

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  11. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biyanto, Totok R.

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model aremore » flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.« less

  12. Development of High Heat Input Welding Offshore Steel as Normalized Condition

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Qin, Xiaomei

    The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.

  13. Dynamics of heat-pipe reactors

    NASA Technical Reports Server (NTRS)

    Niederauer, G. F.

    1971-01-01

    A split-core heat pipe reactor, fueled with either U(233)C or U(235)C in a tungsten cermet and cooled by 7-Li-W heat pipes, was examined for the effects of the heat pipes on reactor while trying to safely absorb large reactivity inputs through inherent shutdown mechanisms. Limits on ramp reactivity inputs due to fuel melting temperature and heat pipe wall heat flux were mapped for the reactor in both startup and at-power operating modes.

  14. Evaluation of Advanced Stirling Convertor Net Heat Input Correlation Methods Using a Thermal Standard

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Schifer, Nicholas A.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including testing validation hardware, known as the Thermal Standard, to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. This validation hardware provided a comparison for scrutinizing and improving empirical correlations and numerical models of ASC-E2 net heat input. This hardware simulated the characteristics of an ASC-E2 convertor in both an operating and non-operating mode. This paper describes the Thermal Standard testing and the conclusions of the validation effort applied to the empirical correlation methods used by the Radioisotope Power System (RPS) team at NASA Glenn.

  15. 40 CFR 60.40c - Applicability and delegation of authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/h) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/h) heat input of fossil fuel. If the heat recovery steam...

  16. 40 CFR 60.40c - Applicability and delegation of authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... generators that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/hr) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/hr) heat input of fossil fuel. If the heat recovery...

  17. 40 CFR 60.40c - Applicability and delegation of authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... generators that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/hr) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/hr) heat input of fossil fuel. If the heat recovery...

  18. 40 CFR 60.40c - Applicability and delegation of authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/h) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/h) heat input of fossil fuel. If the heat recovery steam...

  19. 40 CFR 60.40c - Applicability and delegation of authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/h) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/h) heat input of fossil fuel. If the heat recovery steam...

  20. The effect of particle size on the heat affected zone during laser cladding of Ni-Cr-Si-B alloy on C45 carbon steel

    NASA Astrophysics Data System (ADS)

    Tanigawa, Daichi; Abe, Nobuyuki; Tsukamoto, Masahiro; Hayashi, Yoshihiko; Yamazaki, Hiroyuki; Tatsumi, Yoshihiro; Yoneyama, Mikio

    2018-02-01

    Laser cladding is one of the most useful surface coating methods for improving the wear and corrosion resistance of material surfaces. Although the heat input associated with laser cladding is small, a heat affected zone (HAZ) is still generated within the substrate because this is a thermal process. In order to reduce the area of the HAZ, the heat input must therefore be reduced. In the present study, we examined the effects of the powdered raw material particle size on the heat input and the extent of the HAZ during powder bed laser cladding. Ni-Cr-Si-B alloy layers were produced on C45 carbon steel substrates in conjunction with alloy powders having average particle sizes of 30, 40 and 55 μm, while measuring the HAZ area by optical microscopy. The heat input required for layer formation was found to decrease as smaller particles were used, such that the HAZ area was also reduced.

  1. Comparative Investigation and Operational Performance Characteristics of a Wick Assisted and Axially Square Grooved Heat Pipe

    NASA Astrophysics Data System (ADS)

    Naik, Rudra, Dr.; Rama Narasihma, K., Dr.; Anikivi, Atmanand

    2018-04-01

    The present work reported here involves the experimental investigation and performance evaluation of wick assisted and axially square grooved heat pipes of outer diameter 8mm, inner diameter 4mm with a length of 150mm.The objective of this work is to design, fabricate and test the heat pipes with and without an axial square groove for horizontal and gravity assisted conditions. The performance of the heat pipes was measured in terms of thermal resistance and heat transfer coefficients. In the present investigation four different working fluids were chosen namely acetone, ethanol, methanol and distilled water. Experiments were conducted by varying the heat load from 2 W to 10 W for different fill charge ratios in the range of 25% to 75% of evaporator volume for wick assisted heat pipe and 8 W to 18 W for axially square grooved heat pipe. From the experiments, it was found that there is a steady increase in temperature with the increase in heat input. The overall heat transfer coefficient was found to increase with the increase heat load for wick assisted heat pipe. In case of axially square grooved heat pipe, an attempt was made to experiment the heat pipe in different orientations. The maximum heat transfer coefficient of 7000 W/m2 °C is found for Acetone at 180° orientation.

  2. 40 CFR 60.252 - Standards for thermal dryers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) heat input. (iii) Thermal dryers that receive all of their thermal input from a source other than coal... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation.../MMBtu) heat input; or (ii) The owner or operator must not cause to be discharged into the atmosphere...

  3. Experimentally-determined external heat loss of automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  4. Designing insulation for cryogenic ducts

    NASA Astrophysics Data System (ADS)

    Love, C. C.

    1984-03-01

    It is pointed out that the great temperature difference between the outside of a cryogenic duct and the liquified gas it carries can cause a high heat input unless blocked by a high thermal resistance. High thermal resistance for lines needing maximum insulation is provided by metal vacuum jackets. Low-density foam is satisfactory in cases in which higher heat input can be tolerated. Attention is given to the heat transfer through a duct vacuum jacket, the calculation of heat input and the exterior surface's steady-state temperature for various thicknesses of insulation, the calculation of the heat transfer through gimbal jackets, and design specifications regarding the allowable pressure rise in the jacket's annular space.

  5. Unsteady heat transfer performance of heat pipe with axially swallow-tailed microgrooves

    NASA Astrophysics Data System (ADS)

    Zhang, R. P.

    2017-04-01

    A mathematical model is developed for predicting the transient heat transfer and fluid flow of heat pipe with axially swallow-tailed microgrooves. The effects of liquid convective heat transfer in the microgrooves, liquid-vapor interfacial phase-change heat transfer and liquid-vapor interfacial shear stress are accounted for in the present model. The coupled non-linear control equations are solved numerically. Mass flow rate at the interface is obtained from the application of kinetic theory. Time variation of wall temperature is studied from the initial startup to steady state. The numerical results are verified by experiments. Time constants for startup and shutdown operation are defined to determine how fast a heat pipe responds to an applied input heat flux, which slightly decreases with increasing heat load.

  6. Coronal heating by stochastic magnetic pumping

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Uchida, Y.

    1980-01-01

    Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength.

  7. Capillary pumped loop body heat exchanger

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  8. 40 CFR 60.665 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heater with a design heat input capacity of 44 MW (150 million Btu/hour) or greater is used to comply...) The average combustion temperature of the boiler or process heater with a design heat input capacity... design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission readings, heat content...

  9. 49 CFR 178.337-4 - Joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...

  10. 49 CFR 178.337-4 - Joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...

  11. 49 CFR 178.337-4 - Joints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...

  12. 49 CFR 178.337-4 - Joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must be considered as essential variables: Number of passes; thickness of plate; heat input per pass... not be used. The number of passes, thickness of plate, and heat input per pass may not vary more than... machine heat processes, provided such surfaces are remelted in the subsequent welding process. Where there...

  13. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    NASA Astrophysics Data System (ADS)

    Ogino, Y.; Hirata, Y.; Nomura, K.

    2011-06-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  14. Overview of Heat Addition and Efficiency Predictions for an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Reid, Terry V.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. Microporous bulk insulation is used in the ground support test hardware to minimize the loss of thermal energy from the electric heat source to the environment. The insulation package is characterized before operation to predict how much heat will be absorbed by the convertor and how much will be lost to the environment during operation. In an effort to validate these predictions, numerous tasks have been performed, which provided a more accurate value for net heat input into the ASCs. This test and modeling effort included: (a) making thermophysical property measurements of test setup materials to provide inputs to the numerical models, (b) acquiring additional test data that was collected during convertor tests to provide numerical models with temperature profiles of the test setup via thermocouple and infrared measurements, (c) using multidimensional numerical models (computational fluid dynamics code) to predict net heat input of an operating convertor, and (d) using validation test hardware to provide direct comparison of numerical results and validate the multidimensional numerical models used to predict convertor net heat input. This effort produced high fidelity ASC net heat input predictions, which were successfully validated using specially designed test hardware enabling measurement of heat transferred through a simulated Stirling cycle. The overall effort and results are discussed.

  15. 40 CFR Table 2 to Subpart Ddddd of... - Emission Limits for Existing Boilers and Process Heaters

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... runduration . . . 1. Units in all subcategories designed to burn solid fuel a. HCl 2.2E-02 lb per MMBtu of...-02 lb per MMBtu of heat input; or (5.3E-05 lb per MMBtu of heat input) 4.2E-02 lb per MMBtu of steam... lb per MMBtu of heat input) 4.3E-02 lb per MMBtu of steam output or 5.2E-01 lb per MWh; or (2.8E-04...

  16. Heat suppression of the fiber coating on a cladding light stripper in high-power fiber laser.

    PubMed

    Yan, Ming-Jian; Wang, Zheng; Meng, Ling-Qiang; Yin, Lu; Han, Zhi-Gang; Shen, Hua; Wang, Hai-Lin; Zhu, Ri-Hong

    2018-01-20

    We present a theoretical model for the thermal effect of the fiber coating on a high-power cladding light stripper, which is fabricated by chemical etching. For the input and output of the fiber coating, a novel segmented corrosion method and increasing attenuation method are proposed for heat suppression, respectively. The relationship between the attenuation and temperature rise of the fiber coating at the output is experimentally demonstrated. The temperature distribution of the fiber coating at the input as well as the return light power caused by scattering are measured for the etched fiber with different surface roughness values. The results suggest that the rise in temperature is primarily caused by the scattering light propagating into the coating. Finally, an attenuation of 27 dB is achieved. At a room temperature of 23°C and input pump power of 438 W, the highest temperature of the input fiber coating decreases from 39.5°C to 27.9°C by segmented corrosion, and the temperature rise of the output fiber coating is close to 0.

  17. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    NASA Astrophysics Data System (ADS)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  18. Heat Transfer Model for Hot Air Balloons

    NASA Astrophysics Data System (ADS)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  19. 40 CFR 60.4176 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Additional requirements to provide heat... Compliance Times for Coal-Fired Electric Steam Generating Units Monitoring and Reporting § 60.4176 Additional requirements to provide heat input data. The owner or operator of a Hg Budget unit that monitors and reports Hg...

  20. Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Ghoniem, N, M.; Catton, I.

    1996-01-01

    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.

  1. Flight-Path Characteristics for Decelerating From Supercircular Speed

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W.

    1961-01-01

    Characteristics of the following six flight paths for decelerating from a supercircular speed are developed in closed form: constant angle of attack, constant net acceleration, constant altitude" constant free-stream Reynolds number, and "modulated roll." The vehicles were required to remain in or near the atmosphere, and to stay within the aerodynamic capabilities of a vehicle with a maximum lift-drag ratio of 1.0 and within a maximum net acceleration G of 10 g's. The local Reynolds number for all the flight paths for a vehicle with a gross weight of 10,000 pounds and a 600 swept wing was found to be about 0.7 x 10(exp 6). With the assumption of a laminar boundary layer, the heating of the vehicle is studied as a function of type of flight path, initial G load, and initial velocity. The following heating parameters were considered: the distribution of the heating rate over the vehicle, the distribution of the heat per square foot over the vehicle, and the total heat input to the vehicle. The constant G load path at limiting G was found to give the lowest total heat input for a given initial velocity. For a vehicle with a maximum lift-drag ratio of 1.0 and a flight path with a maximum G of 10 g's, entry velocities of twice circular appear thermo- dynamically feasible, and entries at velocities of 2.8 times circular are aerodynamically possible. The predominant heating (about 85 percent) occurs at the leading edge of the vehicle. The total ablated weight for a 10,000-pound-gross-weight vehicle decelerating from an initial velocity of twice circular velocity is estimated to be 5 percent of gross weight. Modifying the constant G load flight path by a constant-angle-of-attack segment through a flight- to circular-velocity ratio of 1.0 gives essentially a "point landing" capability but also results in an increased total heat input to the vehicle.

  2. Solar energy system performance evaluation. Seasonal report for Wormser, Columbia, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Wormser Solar Energy System's operational performance from April 1979 through March 1980 was evaluated. The space heating subsystem met 42 percent of the measured space heating load and the hot water subsystem met 23 percent of the measured hot water demand. Net electrical energy savings were 4.36 million Btu's or 1277 kwh. Fossil energy savings will increase considerably if the uncontrolled solar energy input to the building is considered.

  3. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  4. A parametric heat transfer study for cryogenic ball bearings in SSME HPOTP

    NASA Technical Reports Server (NTRS)

    Chyu, Mingking K.

    1989-01-01

    A numerical modeling is to examine the effects of coolant convective heat transfer coefficient and frictional heating on the local temperature characteristics of a ball element in Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP) bearing. The present modeling uses a control-volume based, finite-difference method to solve the non-dimensionalized heat conduction equation in spherical coordinate system. The dimensionless temperature is found as a function of Biot number, heat flux ratio between the two race contacts, and location in the ball. The current results show that, for a given cooling capability, the ball temperature generally increases almost linearly with the heat input from the race-contacts. This increase is always very high at one of the two contacts. An increase in heat transfer coefficient generally reduces the ball temperature and alleviates the temperature gradient, except for the regions very close to the race contacts. For a 10-fold increase of heat transfer coefficient, temperature decrease is 35 percent for the average over entire ball, and 10 percent at the inner-race contact. The corresponding change of temperature gradient displays opposing trends between the regions immediately adjacent to the contacts and the remaining portion of the ball. The average temperature gradient in the vicinity of both contacts increases approximately 70 to 100 percent. A higher temperature gradient produces excessive thermal stress locally which may be detrimental to the material integrity. This, however, is the only unfavorable issue for an increase of heat transfer coefficient.

  5. Scalable microreactors and methods for using same

    DOEpatents

    Lawal, Adeniyi; Qian, Dongying

    2010-03-02

    The present invention provides a scalable microreactor comprising a multilayered reaction block having alternating reaction plates and heat exchanger plates that have a plurality of microchannels; a multilaminated reactor input manifold, a collecting reactor output manifold, a heat exchange input manifold and a heat exchange output manifold. The present invention also provides methods of using the microreactor for multiphase chemical reactions.

  6. A thermosyphon heat pipe cooler for high power LEDs cooling

    NASA Astrophysics Data System (ADS)

    Li, Ji; Tian, Wenkai; Lv, Lucang

    2016-08-01

    Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.

  7. Thermal Stress Analysis of a Continuous and Pulsed End-Pumped Nd:YAG Rod Crystal Using Non-Classic Conduction Heat Transfer Theory

    NASA Astrophysics Data System (ADS)

    Mojahedi, Mahdi; Shekoohinejad, Hamidreza

    2018-02-01

    In this paper, temperature distribution in the continuous and pulsed end-pumped Nd:YAG rod crystal is determined using nonclassical and classical heat conduction theories. In order to find the temperature distribution in crystal, heat transfer differential equations of crystal with consideration of boundary conditions are derived based on non-Fourier's model and temperature distribution of the crystal is achieved by an analytical method. Then, by transferring non-Fourier differential equations to matrix equations, using finite element method, temperature and stress of every point of crystal are calculated in the time domain. According to the results, a comparison between classical and nonclassical theories is represented to investigate rupture power values. In continuous end pumping with equal input powers, non-Fourier theory predicts greater temperature and stress compared to Fourier theory. It also shows that with an increase in relaxation time, crystal rupture power decreases. Despite of these results, in single rectangular pulsed end-pumping condition, with an equal input power, Fourier theory indicates higher temperature and stress rather than non-Fourier theory. It is also observed that, when the relaxation time increases, maximum amounts of temperature and stress decrease.

  8. Optimum systems design with random input and output applied to solar water heating

    NASA Astrophysics Data System (ADS)

    Abdel-Malek, L. L.

    1980-03-01

    Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.

  9. Mixing weld gases offers advantages

    NASA Technical Reports Server (NTRS)

    May, J. L.; Mendenhall, M. M.

    1969-01-01

    Argon added to helium during gas tungsten arc cover-pass welding in the horizontal position results in a better controlled wider bead width, increased arc stability, and reduction in heat input. Adequate filler material wetness and penetration pass coverage is possible with only one pass.

  10. Experimental investigation on a pulsating heat pipe with hydrogen

    NASA Astrophysics Data System (ADS)

    Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.

    2015-12-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.

  11. Evaluation of Energy Efficiency Performance of Heated Windows

    NASA Astrophysics Data System (ADS)

    Jammulamadaka, Hari Swarup

    The study about the evaluation of the performance of the heated windows was funded by the WVU Research Office as a technical assistance award at the 2014 TransTech Energy Business Development Conference to the Green Heated Glass company/project owned by Frank Dlubak. The award supports a WVU researcher to conduct a project important for commercialization. This project was awarded to the WVU Industrial Assessment Center in 2015. The current study attempted to evaluate the performance of the heated windows by developing an experimental setup to test the window at various temperatures by varying the current input to the window. The heated double pane window was installed in an insulated box. A temperature gradient was developed across the window by cooling one side of the window using gel based ice packs. The other face of the window was heated by passing current at different wattages through the window. The temperature of the inside and outside panes, current and voltage input, room and box temperature were recorded, and used to calculate the apparent R-value of the window when not being heated vs when being heated. It has been concluded from the study that the heated double pane window is more effective in reducing heat losses by as much as 50% than a non-heated double pane window, if the window temperature is maintained close to the room temperature. If the temperature of the window is much higher than the room temperature, the losses through the window appear to increase beyond that of a non-heated counterpart. The issues encountered during the current round of experiments are noted, and recommendations provided for future studies.

  12. Radar Absorbing Colloidal Solutions (RACS)

    DTIC Science & Technology

    2007-08-01

    fig.5 sloiws te W-b yskm tinder test (a) and the two W- and D-band homi (b). The sytm ut~u4 tapol Ogm ingpi~s uVsmsso thepeanemptyeietm eone Twele...Because there is a very well defined relationship between DNA sequence and the thermodynamics of double-stranded DNA (dsDNA) formation, it is possible...to test device performance. The mass flow rate basically increases with heat input from the heat son=v though the exact relationship would be

  13. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...

  14. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...

  15. Recent trends (2003-2013) of land surface heat fluxes on the southern side of the central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2015-12-01

    Novice efforts have been made in order to study the regional distribution of land surface heat fluxes on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface heat fluxes for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation flux is increasing as a result of decreasing precipitation (drier environment). The sensible heat flux did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible heat flux is decreasing because of decrease in wind speed, ground-air temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-air temperature difference and high rate of deforestation. The latent heat flux has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent heat flux can be attributed to increase in net radiation flux under persistent forest cover and irrigation land used for agriculture.

  16. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.

    PubMed

    Haseli, Y

    2016-05-01

    The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.

  17. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  18. Jupiter's Auroral Energy Input Observed by Hisaki/EXCEED and its Modulations by Io's Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Tao, C.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Yoshioka, K.; Kita, H.; Yamazaki, A.; Kasaba, Y.; Yoshikawa, I.; Fujimoto, M.

    2016-12-01

    Aurora is an important indicator representing the momentum transfer from the fast-rotating outer planet to the magnetosphere and the energy input into the atmosphere through the magnetosphere-ionosphere coupling. Long-term monitoring of Jupiter's northern aurora was achieved by the Extreme Ultraviolet (EUV) spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) onboard JAXA's Earth-orbiting planetary space telescope Hisaki until today after its launch in September 2013. We have proceeded the statistical survey of the Jupiter's auroral energy input into the upper atmosphere. The auroral electron energy is estimated using a hydrocarbon color ratio (CR) adopted for the wavelength range of EXCEED, and the emission power in the long wavelength range 138.5-144.8 nm is used as an indicator of total emitted power before hydrocarbon absorption and auroral electron energy flux. Temporal dynamic variation of the auroral intensity was detected when Io's volcanic activity and thus EUV emission from the Io plasma torus are enhanced in the early 2015. Average of the total input power over 80 days increases by 10% with sometimes sporadically more than a factor of 3 upto 7, while the CR indicates the auroral electron energy decrease by 20% during the volcanic event compared to the other period. This indicates much more increase in the current system and Joule heating which contributes heating of the upper atmosphere. We will discuss the impact of this event on the upper atmosphere and ionosphere.

  19. Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly

    NASA Astrophysics Data System (ADS)

    Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.

    2015-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This research was supported by The Aerospace Corporation's Technical Investment program

  20. Influence of Oxides on Microstructures and Mechanical Properties of High-Strength Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Cai, Yangchuan; Luo, Zhen; Huang, Zunyue; Zeng, Yida

    2016-11-01

    A comprehensive investigation was conducted into the effect of oxides on penetrations, microstructures and mechanical properties of BS700MC super steel weld bead. Boron oxide changed the penetration of weld bead by changing the Marangoni convection in the weld pool and contracting the welding arc. Chromium oxide only changed the Marangoni convection in the weld pool to increase the penetration of super steel. Thus, the super steel weld bead has higher penetration coated with flux boron oxide than that coated with chromium oxide. In other words, the activating flux TIG (A-TIG) welding with flux boron oxide has less welding heat input than the A-TIG welding with flux chromium oxide. As a result, on the one hand, there existed more fine and homogeneous acicular ferrites in the microstructure of welding heat-affected zone when the super steel was welded by A-TIG with flux boron oxide. Thus, the weld beads have higher value of low-temperature impact toughness. On the other hand, the softening degree of welding heat-affected zone, welded by A-TIG with flux boron oxide, will be decreased for the minimum value of welding heat input.

  1. Theoretical analysis of start-up power in helium pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Monan; Huang, Rongjin; Xu, Dong; Li, Laifeng

    2017-02-01

    An analytical model for one-turn helium pulsating heat pipes (PHPs) with single liquid slug and vapor plug is established in present study. When an additional heat power takes place in the evaporating section, temperature and pressure will increase. The pressure wave travels through vapor and liquid phases at different speed, producing a pressure difference in the system, which acts as an exciting force to start up the oscillating motion. Results show that the start-up power of helium PHP is related to the filling ratio. The start-up power increases with the filling ration. However, there exist an upper limit. Furthermore, the start-up power also depends on the inclination angle of PHP. When the inclination angle increases, the heat input needed to start up the oscillating motion decreases. But for one-turn helium PHP, it can not be started up when the inclination angle is up to 90°, equalling to horizontal position,. While the inclination angle ranges between 0° (vertical position) and 75°, it can operate successfully.

  2. Measurement of Coolant in a Flat Heat Pipe Using Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Mizuta, Kei; Saito, Yasushi; Goshima, Takashi; Tsutsui, Toshio

    A newly developed flat heat pipe FGHPTM (Morex Kiire Co.) was experimentally investigated by using neutron radiography. The test sample of the FGHP heat spreader was 65 × 65 × 2 mm3 composed of several etched copper plates and pure water was used as the coolant. Neutron radiography was performed at the E-2 port of the Kyoto University Research Reactor (KUR). The coolant distributions in the wick area of the FGHP and its heat transfer characteristics were measured at heating conditions. Experimental results show that the coolant distributions depend slightly on its installation posture and that the liquid thickness in the wick region remains constant with increasing heat input to the FGHP. In addition, it is found that the wick surface does not dry out even in the vertical posture at present experimental conditions.

  3. Hot Carriers in Semiconductors 6, Scottsdale, Arizona

    DTIC Science & Technology

    1989-11-01

    34Autosolitons in electron-hole plasma weakly heated by an electric field," M. N. IVinosiavskii, B. S. Kerner, V V. Osipov, and C. G. Sarbei, Kiev I TuP...neasur d at 0.3 K was In a many-valley semiconductor subject to an electric found to decrease with increasing input power , which field strength above a...work was supported by the Air Force Office of with the heating of an electron gas, e.g., by electric Scientific Research, the U. S. Army Research Office

  4. Power inverter with optical isolation

    DOEpatents

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  5. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers

    PubMed Central

    Xie, Bin; Singh, Ravi; Torti, F. M.; Keblinski, Pawel; Torti, Suzy

    2012-01-01

    Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging (MRI) characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (~ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ~ 2s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy. PMID:22948207

  6. Joule heating at high latitudes

    NASA Technical Reports Server (NTRS)

    Foster, J. C.; St.-Maurice, J.-P.; Abreu, V. J.

    1983-01-01

    Calculations based on simultaneous observations of the electric field magnitude, and individual measurements of ion drift velocity and particle precipitation, over the lifetime of the AE-C satellite, are used to determine high latitude Joule heating. Conductivities produced by an averaged seasonal illumination were included with those calculated from particle precipitation. It is found that high latitude Joule heating occurs in an approximately oval pattern, and consists of dayside cleft, dawn and dusk sunward convection, and night sector heating regions. On average, heating in the cleft and dawn-dusk regions contributes the largest heat input, and there is no apparent difference between hemispheres for similar seasons. Joule heat input is 50 percent greater in summer than in winter, due primarily to the greater conductivity caused by solar production.

  7. Experimental Analysis of the Effects of Inclination Angle and Working Fluid Amount on the Performance of a Heat Pipe

    NASA Astrophysics Data System (ADS)

    Mahdavi, Mahboobe; Tiari, Saeed; Qiu, Songgang

    2016-11-01

    Heat pipes are two-phase heat transfer devices, which operate based on evaporation and condensation of a working fluid inside a sealed container. In the current work, an experimental study was conducted to investigate the performance of a copper-water heat pipe. The performance was evaluated by calculating the corresponding thermal resistance as the ratio of temperature difference between evaporator and condenser to heat input. The effects of inclination angle and the amount of working fluid were studied on the equivalent thermal resistance. The results showed that if the heat pipe is under-filled with the working fluid, energy transferring capacity of the heat pipe decreases dramatically. However, overfilling heat pipe causes over flood and degrades heat pipe performance. The minimum thermal resistances were obtained for the case that 30% of the heat pipe volume was filled with working fluid. It was also found that in gravity-assisted orientations, the inclination angle does not have significant effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases and higher thermal resistances are obtained. Authors appreciate the financial support by a research Grant from Temple University.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petitpas, Guillaume; Whitesides, Russel

    UQHCCI_2 propagates the uncertainties of mass-average quantities (temperature, heat capacity ratio) and the output performances (IMEP, heat release, CA50 and RI) of a HCCI engine test bench using the pressure trace, and intake and exhaust molar fraction and IVC temperature distributions, as inputs (those inputs may be computed using another code UQHCCI_2, or entered independently).

  9. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES efficiency increases with increased in-pipe circulation rates; 2) BTES efficiency increases with decreasing soil thermal conductivity due to lateral heat loss from the system; and 3) BTES efficiency increases only slightly with decreasing soil permeability.

  10. Characterization of Modified Tapioca Starch Solutions and Their Sprays for High Temperature Coating Applications

    PubMed Central

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Shaari, Ku Zilati Ku

    2014-01-01

    The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature. PMID:24592165

  11. Welding-Induced Microstructure Evolution of a Cu-Bearing High-Strength Blast-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Caron, Jeremy L.; Babu, Sudarsanam Suresh; Lippold, John C.

    2011-12-01

    A new high strength, high toughness steel containing Cu for precipitation strengthening was recently developed for naval, blast-resistant structural applications. This steel, known as BlastAlloy160 (BA-160), is of nominal composition Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct). The evident solidification substructure of an autogenous gas tungsten arc (GTA) weld suggested fcc austenite as the primary solidification phase. The heat-affected zone (HAZ) hardness ranged from a minimum of 353 HV in the coarse-grained HAZ (CGHAZ) to a maximum of 448 HV in the intercritical HAZ (ICHAZ). After postweld heat treatment (PWHT) of the spot weld, hardness increases were observed in the fusion zone (FZ), CGHAZ, and fine-grained HAZ (FGHAZ) regions. Phase transformation and metallographic analyses of simulated single-pass HAZ regions revealed lath martensite to be the only austenitic transformation product in the HAZ. Single-pass HAZ simulations revealed a similar hardness profile for low heat-input (LHI) and high heat-input (HHI) conditions, with higher hardness values being measured for the LHI samples. The measured hardness values were in good agreement with those from the GTA weld. Single-pass HAZ regions exhibited higher Charpy V-notch impact toughness than the BM at both test temperatures of 293 K and 223 K (20 °C and -50 °C). Hardness increases were observed for multipass HAZ simulations employing an initial CGHAZ simulation.

  12. 40 CFR 60.44 - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel...) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue, or gaseous fossil fuel and wood residue. (3) 300 ng/J heat input (0...

  13. 40 CFR 60.44 - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel...) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue, or gaseous fossil fuel and wood residue. (3) 300 ng/J heat input (0...

  14. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  15. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  16. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  17. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  18. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  19. 40 CFR 97.374 - Recordkeeping and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section, the NOX emission rate and NOX concentration values substituted for missing data under subpart D... report the NOX mass emissions data and heat input data for such unit, in an electronic quarterly report... emissions) for such unit for the entire year and report the NOX mass emissions data and heat input data for...

  20. 40 CFR 96.76 - Additional requirements to provide heat input data for allocations purposes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Monitoring and Reporting § 96.76 Additional requirements... to monitor and report NOX Mass emissions using a NOX concentration system and a flow system shall... chapter for any source located in a state developing source allocations based upon heat input. (b) The...

  1. Heat transfer mechanisms in poplar wood undergoing torrefaction

    NASA Astrophysics Data System (ADS)

    Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira

    2016-03-01

    Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.

  2. Influence of dimension parameters of the gravity heat pipe on the thermal performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosa, Ľuboš, E-mail: lubos.kosa@fstroj.uniza.sk; Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Jobb, Marián, E-mail: marian.jobb@fstroj.uniza.sk

    Currently the problem with the increasing number of electronic devices is a problem with the outlet Joule heating. Joule heating, also known as ohmic heating and resistive heating, is the process by which the passage of an electric current through a conductor releases heat. Perfect dustproof cooling of electronic components ensures longer life of the equipment. One of more alternatives of heat transfer without the using of mechanical equipment is the use of the heat pipe. Heat pipes are easy to manufacture and maintenance of low input investment cost. The advantage of using the heat pipe is its use inmore » hermetic closed electronic device which is separated exchange of air between the device and the environment. This experiment deals with the influence of changes in the working tube diameter and changing the working fluid on performance parameters. Changing the working fluid and the tube diameter changes the thermal performance of the heat pipe. The result of this paper is finding the optimal diameter with ideal working substance for the greatest heat transfer for 1cm{sup 2} sectional area tube.« less

  3. Enhancement of the CAVE computer code. [aerodynamic heating package for nose cones and scramjet engine sidewalls

    NASA Technical Reports Server (NTRS)

    Rathjen, K. A.; Burk, H. O.

    1983-01-01

    The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.

  4. A model for heat and mass input control in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smartt, H.B.; Einerson, C.J.

    1993-05-01

    This work describes derivation of a control model for electrode melting and heat and mass transfer from the electrode to the work piece in gas metal arc welding (GMAW). Specifically, a model is developed which allows electrode speed and welding speed to be calculated for given values of voltage and torch-to-base metal distance, as a function of the desired heat and mass input to the weldment. Heat input is given on a per unit weld length basis, and mass input is given in terms of transverse cross-sectional area added to the weld bead (termed reinforcement). The relationship to prior workmore » is discussed. The model was demonstrated using a computer-controlled welding machine and a proportional-integral (PI) controller receiving input from a digital filter. The difference between model-calculated welding current and measured current is used as controller feedback. The model is calibrated for use with carbon steel welding wire and base plate with Ar-CO[sub 2] shielding gas. Although the system is intended for application during spray transfer of molten metal from the electrode to the weld pool, satisfactory performance is also achieved during globular and streaming transfer. Data are presented showing steady-state and transient performance, as well as resistance to external disturbances.« less

  5. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  6. Enhancement of the CAVE computer code

    NASA Astrophysics Data System (ADS)

    Rathjen, K. A.; Burk, H. O.

    1983-12-01

    The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.

  7. Heat Control via Torque Control in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  8. Analysis of a combined heating and cooling system model under different operating strategies

    NASA Astrophysics Data System (ADS)

    Dzierzgowski, Mieczysław; Zwierzchowski, Ryszard

    2017-11-01

    The paper presents an analysis of a combined heating and cooling system model under different operating strategies. Cooling demand for air conditioning purposes has grown steadily in Poland since the early 1990s. The main clients are large office buildings and shopping malls in downtown locations. Increased demand for heat in the summer would mitigate a number of problems regarding District Heating System (DHS) operation at minimum power, affecting the average annual price of heat (in summertime the share of costs related to transport losses is a strong cost factor). In the paper, computer simulations were performed for different supply network water temperature, assuming as input, real changes in the parameters of the DHS (heat demand, flow rates, etc.). On the basis of calculations and taking into account investment costs of the Absorption Refrigeration System (ARS) and the Thermal Energy Storage (TES) system, an optimal capacity of the TES system was proposed to ensure smooth and efficient operation of the District Heating Plant (DHP). Application of ARS with the TES system in the DHS in question increases net profit by 19.4%, reducing the cooling price for consumers by 40%.

  9. Vapor bubble evolution on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Forster, Christopher J.; Glezer, Ari; Smith, Marc K.

    2011-11-01

    Power electronics require cooling technologies capable of high heat fluxes at or below the operating temperatures of these devices. Boiling heat transfer is an effective choice for such cooling, but it is limited by the critical heat flux (CHF), which is typically near 125 W/cm2 for pool boiling of water on a flat plate at standard pressure and gravity. One method of increasing CHF is to incorporate an array of microchannels into the heated surface. Microchannels have been experimentally shown to improve CHF, and the goal of this study is to determine the primary mechanisms associated with the microchannels that allow for the increased CHF. While the use of various microstructures is not new, the emphasis of previous work has been on heat transfer aspects, as opposed to the fluid dynamics inside and in the vicinity of the microchannels. This work considers the non-isothermal fluid motion during bubble growth and departure by varying channel geometry, spacing, and heat flux input using a level-set method including vaporization and condensation. These results and the study of the underlying mechanisms will aid in the design optimization of microchannel-based cooling devices. Supported by ONR.

  10. Uncertainty Determination for Aeroheating in Uranus and Saturn Probe Entries by the Monte Carlo Method

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Prabhu, Dinesh; Cruden, Brett A.

    2013-01-01

    The 2013-2022 Decaedal survey for planetary exploration has identified probe missions to Uranus and Saturn as high priorities. This work endeavors to examine the uncertainty for determining aeroheating in such entry environments. Representative entry trajectories are constructed using the TRAJ software. Flowfields at selected points on the trajectories are then computed using the Data Parallel Line Relaxation (DPLR) Computational Fluid Dynamics Code. A Monte Carlo study is performed on the DPLR input parameters to determine the uncertainty in the predicted aeroheating, and correlation coefficients are examined to identify which input parameters show the most influence on the uncertainty. A review of the present best practices for input parameters (e.g. transport coefficient and vibrational relaxation time) is also conducted. It is found that the 2(sigma) - uncertainty for heating on Uranus entry is no more than 2.1%, assuming an equilibrium catalytic wall, with the uncertainty being determined primarily by diffusion and H(sub 2) recombination rate within the boundary layer. However, if the wall is assumed to be partially or non-catalytic, this uncertainty may increase to as large as 18%. The catalytic wall model can contribute over 3x change in heat flux and a 20% variation in film coefficient. Therefore, coupled material response/fluid dynamic models are recommended for this problem. It was also found that much of this variability is artificially suppressed when a constant Schmidt number approach is implemented. Because the boundary layer is reacting, it is necessary to employ self-consistent effective binary diffusion to obtain a correct thermal transport solution. For Saturn entries, the 2(sigma) - uncertainty for convective heating was less than 3.7%. The major uncertainty driver was dependent on shock temperature/velocity, changing from boundary layer thermal conductivity to diffusivity and then to shock layer ionization rate as velocity increases. While radiative heating for Uranus entry was negligible, the nominal solution for Saturn computed up to 20% radiative heating at the highest velocity examined. The radiative heating followed a non-normal distribution, with up to a 3x variation in magnitude. This uncertainty is driven by the H(sub 2) dissociation rate, as H(sub 2) that persists in the hot non-equilibrium zone contributes significantly to radiation.

  11. Response of Cryolite-Based Bath to a Shift in Heat Input/output Balance

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2017-04-01

    A technology for low amperage potline operation is now recognized as a competitive advantage for the aluminum smelting industry in order to align smelter operations with the power and aluminum price markets. This study investigates the cryolite-based bath response to heat balance shifts when the heat extraction from the bath is adjusted to different levels in a laboratory analogue. In the analogue experiments, the heat balance shift is driven by a graphite `cold finger' heat exchanger, which can control the heat extraction from the analogue, and a corresponding change in heat input from the furnace which maintains the control temperature of the lab "cell." This paper reports the first experimental results from shifting the steady state of the lab cell heat balance, and investigates the effects on the frozen ledge and bath superheat. The lab cell energy balances are compared with energy balances in a published industrial cell model.

  12. 40 CFR 60.44 - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... NO2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue...

  13. 40 CFR 60.40Da - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil... capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in... reconstruction after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...

  14. 40 CFR 60.40Da - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil... capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in... reconstruction after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...

  15. 40 CFR 60.44 - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... NO2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue...

  16. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel.../J heat input (0.80 lb/MMBtu) derived from liquid fossil fuel or liquid fossil fuel and wood residue. (2) 520 ng/J heat input (1.2 lb/MMBtu) derived from solid fossil fuel or solid fossil fuel and wood...

  17. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel.../J heat input (0.80 lb/MMBtu) derived from liquid fossil fuel or liquid fossil fuel and wood residue. (2) 520 ng/J heat input (1.2 lb/MMBtu) derived from solid fossil fuel or solid fossil fuel and wood...

  18. 40 CFR 60.40Da - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil... capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in... reconstruction after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...

  19. 40 CFR 60.40Da - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... British thermal units per hour (MMBtu/hr)) heat input of fossil fuel (either alone or in combination with... MMBtu/hr) heat input of fossil fuel (either alone or in combination with any other fuel); and (2) The... after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...

  20. 40 CFR 60.44 - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... NO2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue...

  1. 40 CFR 60.40Da - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... British thermal units per hour (MMBtu/hr)) heat input of fossil fuel (either alone or in combination with... MMBtu/hr) heat input of fossil fuel (either alone or in combination with any other fuel); and (2) The... after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...

  2. 40 CFR 60.43 - Standard for sulfur dioxide (SO2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel.../J heat input (0.80 lb/MMBtu) derived from liquid fossil fuel or liquid fossil fuel and wood residue. (2) 520 ng/J heat input (1.2 lb/MMBtu) derived from solid fossil fuel or solid fossil fuel and wood...

  3. 40 CFR 96.374 - Recordkeeping and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... entire year and shall report the NOX mass emissions data and heat input data for such unit, in an... monitoring of NOX mass emissions) for such unit for the entire year and report the NOX mass emissions data and heat input data for such unit in accordance with paragraph (d)(1) of this section; or (ii) Meet...

  4. 40 CFR 60.615 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or process heater with a design heat input capacity of 44 MW (150 million Btu/hour) or greater is...) The average combustion temperature of the boiler or process heater with a design heat input capacity... this subpart seeks to comply with § 60.612(b) through the use of a smokeless flare, flare design (i.e...

  5. Tests of Transport Theory and Reduced Impurity Influx with Highly Radiative Plasmas in TFTR

    NASA Astrophysics Data System (ADS)

    Hill, K. W.

    1997-11-01

    The electron and ion temperature profiles in beam-heated plasmas were observed to be remarkably invariant when radiative losses were increased significantly through gas puffing of high-Z impurities (argon, krypton, xenon) in the Tokamak Fusion Test Reactor. Without impurity puffing, radiative losses accounted for typically only ~ 25\\char'45 of the input power and the radiation profile was strongly peaked at the plasma edge, where the dominant carbon impurity was not fully stripped. At central electron temperatures, T_eo, of ~ 6 keV, trace concentrations of krypton and xenon (n_z/ne ~ 10-3) generated flat and centrally peaked radiation profiles respectively, and a significant fraction of the input power (45-100\\char'45 ) was lost through radiation. This loss provided a nearly ideal technique for studying local heat transport in tokamaks because it perturbed the net heating profile strongly and in a measureable way, with little effect on the density and the beam deposition profiles. In supershot plasmas, Ti >> T_e, the ion temperature profile remained constant, or even increased modestly, as the radiated power fraction was increased to 75-90\\char'45 with krypton and xenon. This observation is surprising because ion-electron coupling is the dominant power loss term for the ions in the core of supershot plasmas, and the central Ti would have decreased a factor of two if the local ion thermal diffusivity had remained constant at its value without impurity puffing. In L-mode plasmas where ion-electron power coupling is a smaller term in the power balance, the electron temperature during impurity puffing also changed only ~ 10-15\\char'45 even as the net power flow through the electrons was decreased by a factor of ~ 3. The ``stiffness" of the temperature profiles to net input power is supportive of transport mechanisms which have a marginal-stability character. Preliminary comparisons of the temperature changes with predictions of the IFS/PPPL transport model,(M. Kotschenreuther, W. Dorland, M. A. Beer, and G. W. Hammett, Phys. Plasmas 2, 2381 (1995)) which has strong marginal-stability behavior, are reasonable; more detailed comparisons are in progress. Use of high-Z radiators did not impair fusion performance, confirming they can be used to reduce the heat flux to the plasma facing components with minimal ion dilution. At input power level s of 30-33 MW, enhanced radiation through krypton and xenon puffing eliminated serious carbon influx (carbon ``blooms") which occurred in comparable plasmas without impurity puffing.

  6. Effects of temperature and HRT on performance of a novel insulated anaerobic filter (IAF) system incorporated with the waste heat input for building wastewater treatment.

    PubMed

    Bouted, Chalearn; Ratanatamskul, Chavalit

    2018-01-15

    Effects of temperature and hydraulic retention time (HRT) on the performance of the novel insulated anaerobic filter system (IAF) incorporated with the waste heat input in treating building wastewater were investigated. In this study, an electric heater was used to simulate the waste heat input from air conditioner to the IAF system. The wastewater was collected from an office building in Phitsanulok province, Thailand. The HRTs of IAF system were varied to 9, 18 and 27 h, whereas the water temperatures were raised from 30 °C to 35 °C, 40 °C and 45 °C by electric heating to the IAF tank with the covered insulator. From the results, it was found that the IAF system with HRT 27 h and water temperature 35 °C had the highest removal efficiencies for SS, COD, TKN and TP at 67.71, 61.35, 51.20 and 20.08%, respectively per applied heat energy of 4.70 Wh. The predominant bacteria and Archaea species in the system were Uncultured Flavobacterium sp. and Uncultured Methanosaeta sp. The performance index of the IAF system was developed in this study as the highest treatment performance per lowest energy consumption. Therefore, the IAF system incorporated with waste heat input can be a challenging on-site wastewater treatment system for further usage of renewable energy from waste heat as well as environmental conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Takamura, S.; Uesugi, Y.

    2015-03-01

    Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.

  8. Electron kinetics in capacitively coupled plasmas modulated by electron injection

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Peng, Yanli; Innocenti, Maria Elena; Jiang, Wei; Wang, Hong-yu; Lapenta, Giovanni

    2017-09-01

    The controlling effect of an electron injection on the electron energy distribution function (EEDF) and on the energetic electron flux, in a capacitive radio-frequency argon plasma, is studied using a one-dimensional particle-in-cell/Monte Carlo collisions model. The input power of the electron beam is as small as several tens of Watts with laboratory achievable emission currents and energies. With the electron injection, the electron temperature decreases but with a significant high energy tail. The electron density, electron temperature in the sheath, and electron heating rate increase with the increasing emission energy. This is attributed to the extra heating of the energetic electrons in the EEDF tail. The non-equilibrium EEDF is obtained for strong non-local distributions of the electric field, electron heating rate, excitation, and ionization rate, indicating the discharge has transited from a volume heating (α-mode dominated) into a sheath heating (γ-mode dominated) type. In addition, the electron injection not only modifies the self-bias voltage, but also enhances the electron flux that can reach the electrodes. Moreover, the relative population of energetic electrons significantly increases with the electron injection compared to that without the electron injection, relevant for modifying the gas and surface chemistry reactions.

  9. Sensing the heat stress by Mammalian cells.

    PubMed

    Cates, Jordan; Graham, Garrett C; Omattage, Natalie; Pavesich, Elizabeth; Setliff, Ian; Shaw, Jack; Smith, Caitlin Lee; Lipan, Ovidiu

    2011-08-11

    The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO) cells. The time profile of the GFP protein depends on the transient activity, Transient(t), of the heat shock system. The function Transient(t) depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104). The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i) the response of the cell to two consecutive shocks (i.e., no recovery time in between shocks) depends on the order of the input shocks, that is the shocks do not commute; (ii) the responses may be classified as mild or severe, depending on the temperature level and the duration of the heat shock and (iii) the response is highly sensitive to small variations in temperature. We propose a mathematical model that maps temperature into the transient activity using experimental data that describes the time course of the response to input thermal stress. The model is built on thermotolerance without recovery time, sharp sensitivity to small variations in temperature and the existence of mild and severe classes of stress responses. The theoretical predictions are tested against experimental data using a series of double-shock inputs. The theoretical structure is represented by a sequence of three cascade processes that transform the input stress into the transient activity. The structure of the cascade is nonlinear-linear-nonlinear (NLN). The first nonlinear system (N) from the NLN structure represents the amplification of small changes in the environmental temperature; the linear system (L) represents the thermotolerance without recovery time, whereas the last system (N) represents the transition of the cell's response from a mild to a severe shock.

  10. User's Manual for Thermal Analysis Program of Axially Grooved Heat Pipe (HTGAP)

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.

    1978-01-01

    A computer program that numerically predicts the steady state temperature distribution inside an axially grooved heat pipe wall for a given groove geometry and working fluid under various heat input and output modes is described. The program computes both evaporator and condenser film coefficients. The program is able to handle both axisymmetric and nonaxisymmetric heat transfer cases. Non-axisymmetric heat transfer results either from non-uniform input at the evaporator or non-uniform heat removal from the condenser, or from both. The presence of a liquid pool in the condenser region under one-g condition also causes non-axisymmetric heat transfer, and its effect on the pipe wall temperature distribution is included in the present program. The hydrodynamic aspect of an axially grooved heat pipe is studied in the Groove Analysis Program (GAP). The present thermal analysis program assumes that the GAP program (or other similar programs) is run first so that the heat transport limit and optimum fluid charge of the heat pipe are known a priori.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.D. Francis

    The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less

  12. Modern fiber laser beam welding of the newly-designed precipitation-strengthened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Goodarzi, Massoud; Khodabakhshi, Meisam; Mapelli, Carlo; Barella, Silvia

    2014-04-01

    In the present research, the modern fiber laser beam welding of newly-designed precipitation-strengthened nickel-base superalloys using various welding parameters in constant heat input has been investigated. Five nickel-base superalloys with various Ti and Nb contents were designed and produced by Vacuum Induction Melting furnace. The fiber laser beam welding operations were performed in constant heat input (100 J mm-2) and different welding powers (400 and 1000 W) and velocities (40 and 100 mm s-1) using 6-axis anthropomorphic robot. The macro- and micro-structural features, weld defects, chemical composition and mechanical property of 3.2 mm weldments were assessed utilizing optical and scanning electron microscopes equipped with EDS analysis and microhardness tester. The results showed that welding with higher powers can create higher penetration-to-width ratios. The porosity formation was increased when the welding powers and velocities were increased. None of the welds displayed hot solidification and liquation cracks in 400 and 1000 W welding powers, but liquation phenomenon was observed in all the heat-affected zones. With increasing the Nb content of the superalloys the liquation length was increased. The changing of the welding power and velocity did not alter the hardness property of the welds. The hardness of welds decreased when the Ti content declined in the composition of superalloys. Finally, the 400 and 1000 W fiber laser powers with velocity of 40 and 100 m ms-1 have been offered for hot crack-free welding of the thin sheet of newly-designed precipitation-strengthened nickel-base superalloys.

  13. Pulsed Nd:YAG laser welding of cardiac pacemaker batteries with reduced heat input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerschbach, P.W.; Hinkley, D.A.

    1997-03-01

    The effects of Nd:YAG laser beam welding process parameters on the resulting heat input in 304L stainless steel cardiac pacemaker batteries have been studied. By careful selection of process parameters, the results can be used to reduce temperatures near glass-to-metal seals and assure hermeticity in laser beam welding of high reliability components. Three designed response surface experiments were used to compare welding performance with lenses of varying focal lengths. The measured peak temperatures at the glass-to-metal seals varied from 65 to 140 C (149 to 284 F) and depended strongly on the levels of the experimental factors. It was foundmore » that welds of equivalent size can be made with significantly reduced temperatures. The reduction in battery temperatures has been attributed to an increase in the melting efficiency. This increase is thought to be due primarily to increased travel speeds, which were facilitated by high peak powers and low pulse energies. For longer focal length lenses, weld fusion zone widths were found to be greater even without a corresponding increase in the size of the weld. It was also found that increases in laser beam irradiance either by higher peak powers or smaller spot sizes created deeper and larger welds. These gains were attributed to an increase in the laser energy transfer efficiency.« less

  14. BOILING HEAT TRANSFER IN ZERO GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zara, E.A.

    1964-01-01

    The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less

  15. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick; Kravitz, Ben; Lu, Jian

    In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  16. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE PAGES

    Kelly, Patrick; Kravitz, Ben; Lu, Jian; ...

    2018-04-16

    In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  17. Simulation and optimization of a pulsating heat pipe using artificial neural network and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad

    2016-11-01

    In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.

  18. Properties of Miniature Cantilever-Type Ultrasonic Motor Using Lead-Free Array-Type Multilayer Piezoelectric Ceramics of (Sr,Ca)2NaNb5O15 under High Input Power

    NASA Astrophysics Data System (ADS)

    Doshida, Yutaka; Shimizu, Hiroyuki; Mizuno, Youich; Tamura, Hideki

    2012-07-01

    The properties of miniature cantilever-type ultrasonic motors using lead-free array-type multilayer piezoelectric ceramics of (Sr,Ca)2NaNb5O15 (SCNN) developed using the design rule were investigated under high input power by comparison with the high-power properties of SCNN ceramics. The frequency dependence of the revolution speed reflected the nonlinear behavior of SCNN ceramics with the hard-spring effect and showed a mirror-reversed image relative to that of the motor of Pb(Zr,Ti)O3 (PZT) ceramics. The output power increased linearly with increasing input power up to 110 mW without heat generation, and the driving properties were almost the same as the expectations under low input power. The output power density characteristics of the motors were high in comparison with those of the commercialized motors of PZT ceramics. It appeared that the motors have a high potential as an environmental friendly piezoelectric device with excellent properties, reflecting the high-power properties of SCNN ceramics.

  19. Heat accumulation between scans during multi-pass cutting of carbon fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Kononenko, T. V.; Freitag, C.; Komlenok, M. S.; Weber, R.; Graf, T.; Konov, V. I.

    2018-02-01

    Matrix evaporation caused by heat accumulation between scans (HAS) was studied in the case of multi-pass scanning of a laser beam over the surface of carbon fiber reinforced plastic (CFRP). The experiments were performed in two regimes, namely, in the process of CFRP cutting and in the regime of low-fluence irradiation avoiding ablation of carbon fibers. The feature of the ablation-free regime is that all absorbed energy remains in the material as heat, while in the cutting regime the fraction of residual heat is unknown. An analytical model based on two-dimensional (2D) heat flow was applied to predict the critical number of scans, after which the HAS effect causes a distinct growth of the matrix evaporation zone (MEZ). According to the model, the critical number of scans decreases exponentially with increasing laser power, while no dependence on the feed rate is expected. It was found that the model fits well to the experimental data obtained in the ablation-free regime where the heat input is well defined and known. In the cutting regime the measured significant reduction of the critical number of scans observed in deep grooves may be attributed to transformation of the heat flow geometry and to an expected increase of the residual heat fraction.

  20. Investigation of the transport shortfall in Alcator C-Mod L-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, N. T.; White, A. E.; Greenwald, M.

    2013-03-15

    A so-called 'transport shortfall,' where ion and electron heat fluxes and turbulence are underpredicted by gyrokinetic codes, has been robustly identified in DIII-D L-mode plasmas for {rho}>0.55[T. L. Rhodes et al., Nucl. Fusion 51(6), 063022 (2011); and C. Holland et al., Phys. Plasmas 16(5), 052301 (2009)]. To probe the existence of a transport shortfall across different tokamaks, a dedicated scan of auxiliary heated L-mode discharges in Alcator C-Mod are studied in detail with nonlinear gyrokinetic simulations for the first time. Two discharges, only differing by the amount of auxiliary heating are investigated using both linear and nonlinear simulation of themore » GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. Nonlinear gyrokinetic simulation of the low and high input power discharges reveals a discrepancy between simulation and experiment in only the electron heat flux channel of the low input power discharge. However, both discharges demonstrate excellent agreement in the ion heat flux channel, and the high input power discharge demonstrates simultaneous agreement with experiment in both the electron and ion heat flux channels. A summary of linear and nonlinear gyrokinetic results and a discussion of possible explanations for the agreement/disagreement in each heat flux channel is presented.« less

  1. 40 CFR Table 13 to Subpart Ddddd... - Alternative Emission Limits for New or Reconstructed Boilers and Process Heaters That Commenced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... oxygen 1 hr minimum sampling time. b. Filterable PM (or TSM) 3.2E-01 lb per MMBtu of heat input; or (4.0E... per run. 13. Units designed to burn liquid fuel a. HCl 1.2E-03 lb per MMBtu of heat input For M26A...

  2. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...

  3. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...

  4. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Specific provisions for monitoring NOX... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...-diluent continuous emission monitoring system (consisting of a NOX pollutant concentration monitor, an O2...

  5. 40 CFR 60.43c - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction, reconstruction, or modification on or before February 28, 2005, that combusts coal or combusts mixtures of coal with other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater, shall... mixtures of wood with other fuels (except coal) and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or...

  6. Metallurgy and mechanical properties variation with heat input,during dissimilar metal welding between stainless and carbon steel

    NASA Astrophysics Data System (ADS)

    Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.

    2018-02-01

    The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.

  7. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water

    PubMed Central

    van Wijk, Esmee

    2018-01-01

    Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise. PMID:29675467

  8. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.

    PubMed

    Silvano, Alessandro; Rintoul, Stephen Rich; Peña-Molino, Beatriz; Hobbs, William Richard; van Wijk, Esmee; Aoki, Shigeru; Tamura, Takeshi; Williams, Guy Darvall

    2018-04-01

    Strong heat loss and brine release during sea ice formation in coastal polynyas act to cool and salinify waters on the Antarctic continental shelf. Polynya activity thus both limits the ocean heat flux to the Antarctic Ice Sheet and promotes formation of Dense Shelf Water (DSW), the precursor to Antarctic Bottom Water. However, despite the presence of strong polynyas, DSW is not formed on the Sabrina Coast in East Antarctica and in the Amundsen Sea in West Antarctica. Using a simple ocean model driven by observed forcing, we show that freshwater input from basal melt of ice shelves partially offsets the salt flux by sea ice formation in polynyas found in both regions, preventing full-depth convection and formation of DSW. In the absence of deep convection, warm water that reaches the continental shelf in the bottom layer does not lose much heat to the atmosphere and is thus available to drive the rapid basal melt observed at the Totten Ice Shelf on the Sabrina Coast and at the Dotson and Getz ice shelves in the Amundsen Sea. Our results suggest that increased glacial meltwater input in a warming climate will both reduce Antarctic Bottom Water formation and trigger increased mass loss from the Antarctic Ice Sheet, with consequences for the global overturning circulation and sea level rise.

  9. Free Energy and Heat Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurata, Masaki; Devanathan, Ramaswami

    2015-10-13

    Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuel fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed.

  10. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    DOE Data Explorer

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  11. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    DOE Data Explorer

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  12. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    DOE Data Explorer

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  13. Greenhouse gas emissions associated with direct energy inputs for a warmwater low-salinity recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gases (GHGs) are gases that trap heat in the atmosphere. These gases include carbon dioxide (CO2), methane (CH3), nitrous oxide (N2O), and fluorinated gases. Some of these gases occur naturally and some are created by human activities which can increase their concentrations. The most comm...

  14. Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly

    NASA Astrophysics Data System (ADS)

    Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.

    2016-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics via advection, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grant: NNX16AH46G issues through the Heliophysics Supporting Research Program. This research was also supported by The Aerospace Corporation's Technical Investment program

  15. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy

    NASA Astrophysics Data System (ADS)

    Mohandas, T.; Banerjee, D.; Kutumba Rao, V. V.

    1999-03-01

    The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti -6.8 Al -3.42 Mo -1.9 Zr -0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the β heat-treated condition, while in the α+β heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of α+β heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. As the PWHTs were conducted in a furnace, the role of thermal gradients can be ruled out. Intragranular microstructure in the aswelded condition consisted of hexagonal martensite. The scale of the martensite laths depended on welding speed. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.

  16. Two Heat-Transfer Improvements for Gas Liquefiers

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.

    2005-01-01

    Two improvements in heat-transfer design have been investigated with a view toward increasing the efficiency of refrigerators used to liquefy gases. The improvements could contribute to the development of relatively inexpensive, portable oxygen liquefiers for medical use. A description of the heat-transfer problem in a pulse-tube refrigerator is prerequisite to a meaningful description of the first improvement. In a pulse-tube refrigerator in particular, one of in-line configuration heat must be rejected from two locations: an aftercooler (where most of the heat is rejected) and a warm heat exchanger (where a small fraction of the total input power must be rejected as heat). Rejection of heat from the warm heat exchanger can be problematic because this heat exchanger is usually inside a vacuum vessel. When an acoustic-inertance tube is used to provide a phase shift needed in the pulse-tube cooling cycle, another problem arises: Inasmuch as the acoustic power in the acoustic-inertance tube is dissipated over the entire length of the tube, the gas in the tube must be warmer than the warm heat exchanger in order to reject heat at the warm heat exchanger. This is disadvantageous because the increase in viscosity with temperature causes an undesired increase in dissipation of acoustic energy and an undesired decrease in the achievable phase shift. Consequently, the overall performance of the pulse-tube refrigerator decreases with increasing temperature in the acoustic-inertance tube. In the first improvement, the acoustic-inertance tube is made to serve as the warm heat exchanger and to operate in an approximately isothermal condition at a lower temperature, thereby increasing the achievable phase shift and the overall performance of the refrigerator. This is accomplished by placing the acoustic-inertance tube inside another tube and pumping a cooling fluid (e.g., water) in the annular space between the tubes. Another benefit of this improvement is added flexibility of design to locate the warm heat-rejection components outside the vacuum vessel. The second improvement is the development of a compact radial-flow condenser characterized by a very high heat transfer coefficient and a small pressure drop.

  17. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  18. An overview of the value of parabolic dish solar thermal systems in industrial cogeneration applications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The essential elements of the cogeneration system configuration to be captured were the displacement of thermal energy by collection and use of the Brayton exhaust stream, and the sale back to the utility of any electricity production in excess of on-site requirements. In contrast to simply dumping these energy flows, their use or sale obviously serves, by itself, to increase gross value of the solar thermal energy system. Net allowable cost of the parabolic dish modules may or may not be increased, however. A consideration is that the waste heat capture and delivery subsystems are not free. This study does not address the incremental cost of adding waste heat capture, transport, and conversion (to steam, if necessary). It does compute a value for the thermal energy thereby displaced. This value can serve as a first-round input to any detailed economic evaluation of waste heat recovery.

  19. Effect of Circuit Inductance on Ceramics Joining by Titanium Foil Explosion

    NASA Astrophysics Data System (ADS)

    Takada, Yoshihiro; Takaki, Koichi; Itagaki, Minoru; Mukaigawa, Seiji; Fujiwara, Tamiya; Ohshima, Shuzo; Takahashi, Ikuo; Kuwashima, Takayuki

    This article describes the influences of circuit inductance on alumina (Al2O3) tile joining using explosive titanium foil. Several kAs pulse current was supplied from 8.28 µF storage capacitor to the 50 µm thickness titanium foil which was sandwiched between the Al2O3 tiles with pressure of 8.3 MPa. The temperature of the foil was rapidly increased owing to ohmic heating with the large current, and then the foil was liquefied and vaporized. The Al2O3 tiles were successfully bonded when the input energy to the titanium foil was higher than the energy required for the foil vaporization. The bonding strength increases with increasing the energy input to the foil. However, the foil explosion cracked the tiles when the input energy exceeds a critical value. Increasing the circuit inductance from 1.13 µH to 64.8 µH, the critical energy of tile cracking increase from 160 J to 507 J, respectively. the maximum bonding strength of 330 kg was obtained when the circuit inductance was 21.8 µH. An investigation of the interfacial structure of the joints using electron probe micro-analysis revealed that distinct reaction areas existed in the interlayer.

  20. Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Moss, T. A.

    1993-06-01

    Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

  1. Position control of twisted and coiled polymer actuator using a controlled fan for cooling

    NASA Astrophysics Data System (ADS)

    Takagi, Kentaro; Arakawa, Takeshi; Takeda, Jun; Masuya, Ken; Tahara, Kenji; Asaka, Kinji

    2017-04-01

    Recently, artificial muscles made of fishing lines or sewing threads, namely twisted and coiled polymer actuators (TCPAs), have been proposed by Haines et al. A TCPA contracts by applying heat and returns to its initial length by cooling. A TCPA can be driven by voltage if the TCPA is plated by metal or if conductive wire such as nichrome is wound around it. Compared with the conventional electroactive polymers, advantages of TCPAs are low cost, simple structure, large actuation strain, and large force. However, a big disadvantage of TCPAs is slow response due to heat transfer. The problem becomes apparent during cooling, although the response of heating can be improved by feedback control. This paper proposes a control method of switching heating and cooling. In the proposed method, a TCPA is cooled by an electric cooling fan. When the TCPA is heating, the cooling fan is stopped. In a previous report, the response speed can be improved by keeping cooling fan always on; however, unnecessary energy consumption is required even during heating. In the proposed method, energy consumption during heating does not increase and the response speed can be improved using fan only during cooling. The proposed control law is as follows. Firstly, the desired control input is determined by PI-D control with respect to the length of the actuator. Then, the control inputs to the heater and to the cooling fan are switched according to the sign of the PI-D controller output. The effectiveness of the proposed control method is demonstrated by comparing the cases with and without the cooling fan in the experiments.

  2. Potentialities of TEC topping: A simplified view of parametric effects

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1980-01-01

    An examination of the benefits of thermionic-energy-conversion (TEC)-topped power plants and methods of increasing conversion efficiency are discussed. Reductions in the cost of TEC modules yield direct decreases in the cost of electricity (COE) from TEC-topped central station power plants. Simplified COE, overall-efficiency charts presented illustrate this trend. Additional capital-cost diminution results from designing more compact furnaces with considerably increased heat transfer rates allowable and desirable for high temperature TEC and heat pipes. Such improvements can evolve of the protection from hot corrosion and slag as well as the thermal expansion compatibilities offered by silicon-carbide clads on TEC-heating surfaces. Greater efficiencies and far fewer modules are possible with high-temperature, high-power-density TEC: This decreases capital and fuel costs much more and substantially increases electric power outputs for fixed fuel inputs. In addition to more electricity, less pollution, and lower costs, TEC topping used directly in coal-combustion products contributes balance-of-payment gains.

  3. Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Hermenegildo, Tahiana F. C.; Santos, Tiago F. A.; Torres, Edwar A.; Afonso, Conrado R. M.; Ramirez, Antonio J.

    2018-03-01

    Evaluation was made of friction stir welded joints, identifying conditions that resulted in satisfactory welded joints free from defects and with microstructural characteristics that provided good mechanical properties. Microstructural characterization and cooling curve analysis of the joints with lower and higher heat inputs evidenced deformation below and above the non-recrystallization temperature (Tnr) and dynamic recrystallization during microstructural evolution. Microscopy analyses showed acicular ferrite, bainitic ferrite, and coalesced bainite microstructures in the stir zone of the cold weld (lower heat input), while the stir zone of the hot weld (higher heat input) contained bainitic ferrite, acicular ferrite, coalesced bainite, martensite, and dispersed carbides. Granular bainite and dispersed carbides were observed in all the heat affected zones. Analysis of the microstructural transformations, together with the thermal history of the joints, showed that the variable that had the greatest influence on the morphology of the bainite (granular bainite/bainitic ferrite) was the deformation temperature.

  4. 78 FR 7487 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    .... All documents in the docket are listed on the http://www.regulations.gov Web site. Although listed in... boilers (i.e., with a design heat input capacity of 10 MMBtu/hr or more). A review of the data has... small coal-fired units (i.e., with a design heat input capacity of less than 10 MMBtu/hr) are subject to...

  5. 40 CFR 52.129 - Review of new sources and modifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... g/100 stdm3); has a heat input of not more than 1 MBtu/h (250 Mg-cal/h) and burns only distillate oil; or has a heat input of not more than 350,000 Btu/h (88.2 Mg-cal/h) and burns any other fuel. (iv... the source to be provided with: (i) Sampling ports of a size, number, and location as the...

  6. 40 CFR 52.129 - Review of new sources and modifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... g/100 stdm3); has a heat input of not more than 1 MBtu/h (250 Mg-cal/h) and burns only distillate oil; or has a heat input of not more than 350,000 Btu/h (88.2 Mg-cal/h) and burns any other fuel. (iv... the source to be provided with: (i) Sampling ports of a size, number, and location as the...

  7. Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Murakami, T.; Okuno, Y.; Yamasaki, H.

    2008-02-01

    This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  8. Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser

    NASA Astrophysics Data System (ADS)

    Aghel, Babak; Rahimi, Masoud; Almasi, Saeed

    2017-03-01

    The present study reports the heat-transfer performance of a two-phase closed thermosyphon (TPCT) equipped with a novel condenser. Distillated water was used as working fluid, with a volumetric liquid filling ratio of 75 %. An increase in heat flux was used to measure the response of the TPCT, including variations in temperature distribution, thermal resistance, average temperature of each section of TPCT and overall thermal difference. Results show that for various power inputs from 71 to 960 W, the TPCT with the novel condenser had a lower wall-temperature difference between the evaporator and condenser sections than did the unmodified TPCT. Given the experimental data for heat-transfer performance, it was found that the thermal resistance in the TPCT equipped with the proposed condenser was between 10 and 17 % lower than in the one without.

  9. Weld geometry strength effect in 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Novak, H. L.; Mcilwain, M. C.

    1981-01-01

    A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.

  10. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust

    USGS Publications Warehouse

    Guffanti, M.; Clynne, M.A.; Muffler, L.J.P.

    1996-01-01

    We have analyzed the heat and mass demands of a petrologic model of basaltdriven magmatic evolution in which variously fractionated mafic magmas mix with silicic partial melts of the lower crust. We have formulated steady state heat budgets for two volcanically distinct areas in the Lassen region: the large, late Quaternary, intermediate to silicic Lassen volcanic center and the nearby, coeval, less evolved Caribou volcanic field. At Caribou volcanic field, heat provided by cooling and fractional crystallization of 52 km3 of basalt is more than sufficient to produce 10 km3 of rhyolitic melt by partial melting of lower crust. Net heat added by basalt intrusion at Caribou volcanic field is equivalent to an increase in lower crustal heat flow of ???7 mW m-2, indicating that the field is not a major crustal thermal anomaly. Addition of cumulates from fractionation is offset by removal of erupted partial melts. A minimum basalt influx of 0.3 km3 (km2 Ma)-1 is needed to supply Caribou volcanic field. Our methodology does not fully account for an influx of basalt that remains in the crust as derivative intrusives. On the basis of comparison to deep heat flow, the input of basalt could be ???3 to 7 times the amount we calculate. At Lassen volcanic center, at least 203 km3 of mantle-derived basalt is needed to produce 141 km3 of partial melt and drive the volcanic system. Partial melting mobilizes lower crustal material, augmenting the magmatic volume available for eruption at Lassen volcanic center; thus the erupted volume of 215 km3 exceeds the calculated basalt input of 203 km3. The minimum basalt input of 1.6 km3 (km2 Ma)-1 is >5 times the minimum influx to the Caribou volcanic field. Basalt influx high enough to sustain considerable partial melting, coupled with locally high extension rate, is a crucial factor in development of Lassen volcanic center; in contrast. Caribou volcanic field has failed to develop into a large silicic center primarily because basalt supply there has been insufficient.

  11. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    NASA Technical Reports Server (NTRS)

    Wilson, Dcott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  12. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two high-efficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  13. NASA Glenn Steady-State Heat Pipe Code Users Manual, DOS Input. Version 2

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.

    2000-01-01

    The heat pipe code LERCHP has been revised, corrected, and extended. New features include provisions for pipes with curvature and bends in "G" fields. Heat pipe limits are examined in detail and limit envelopes are shown for some sodium and lithium-filled heat pipes. Refluxing heat pipes and gas-loaded or variable conductance heat pipes were not considered.

  14. Effect of filling ratio and orientation on the thermal performance of closed loop pulsating heat pipe using ethanol

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Chowdhury, Mehrin; Islam, Nawshad Arslan; Mufti, Sayed Muhammad; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new, promising yet ambiguous technology for effective heat transfer of microelectronic devices where heat is carried by the vapor plugs and liquid slugs of the working fluid. The aim of this research paper is to better understand the operation of PHP through experimental investigations and obtain comparative results for different parameters. A series of experiments are conducted on a closed loop PHP (CLPHP) with 8 loops made of copper capillary tube of 2 mm inner diameter. Ethanol is taken as the working fluid. The operating characteristics are studied for the variation of heat input, filling ratio (FR) and orientation. The filling ratios are 40%, 50%, 60% and 70% based on its total volume. The orientations are 0° (vertical), 30°, 45° and 60°. The results clearly demonstrate the effect of filling ratio and inclination angle on the performance, operational stability and heat transfer capability of ethanol as working fluid of CLPHP. Important insight of the operational characteristics of CLPHP is obtained and optimum performance of CLPHP using ethanol is thus identified. Ethanol works best at 50-60%FR at wide range of heat inputs. At very low heat inputs, 40%FR can be used for attaining a good performance. Filling ratio below 40%FR is not suitable for using in CLPHP as it gives a low performance. The optimum performance of the device can be obtained at vertical position.

  15. 40 CFR Table 12 to Subpart Ddddd... - Alternative Emission Limits for New or Reconstructed Boilers and Process Heaters That Commenced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../solid fossil fuels on an annual heat input basis a. Particulate Matter 0.008 lb per MMBtu of heat input... all subcategories designed to burn solid fuel that combust at least 10 percent coal/solid fossil fuels.../solid fossil fuel a. CO 90 ppm by volume on a dry basis corrected to 3 percent oxygen 1 hr minimum...

  16. 40 CFR Table 12 to Subpart Ddddd... - Alternative Emission Limits for New or Reconstructed Boilers and Process Heaters That Commenced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../solid fossil fuels on an annual heat input basis a. Particulate Matter 0.008 lb per MMBtu of heat input... all subcategories designed to burn solid fuel that combust at least 10 percent coal/solid fossil fuels.../solid fossil fuel a. CO 90 ppm by volume on a dry basis corrected to 3 percent oxygen 1 hr minimum...

  17. Experimental analysis of a Flat Plate Pulsating Heat Pipe with Self-ReWetting Fluids during a parabolic flight campaign

    NASA Astrophysics Data System (ADS)

    Cecere, Anselmo; De Cristofaro, Davide; Savino, Raffaele; Ayel, Vincent; Sole-Agostinelli, Thibaud; Marengo, Marco; Romestant, Cyril; Bertin, Yves

    2018-06-01

    A Flat Plate Pulsating Heat Pipe (FPPHP) filled with an ordinary liquid (water) and a self-rewetting mixture (dilutes aqueous solutions of long-chain alcohols with unusual surface tension behavior) is investigated under variable gravity conditions on board a 'Zero-g' plane during the 65th Parabolic Flight Campaign of the European Space Agency. The FPPHP thermal performance in terms of evaporator and condenser temperatures, start-up levels and flow regimes is characterized for the two working fluids and a power input ranging from 0 to 200 W (up to 17 W/cm2 at the heater/evaporator wall interface). The experimental set-up also includes a transparent plate enabling the visualization of the oscillating flow patterns during the experiments. For a low power input (4 W/cm2), the pulsating heat pipe filled with pure water is not able to work under low-g conditions, because the evaporator immediately exhibits dry-out conditions and the fluid oscillations stops, preventing heat transfer between the hot and cold side and resulting in a global increase of the temperatures. On the other hand, the FPPHP filled with the self-rewetting fluid runs also during the microgravity phase. The liquid rewets several times the evaporator zone triggering the oscillatory regime. The self-rewetting fluid helps both the start-up and the thermal performance of the FPPHP in microgravity conditions.

  18. Effects of Surface Roughness, Oxidation, and Temperature on the Emissivity of Reactor Pressure Vessel Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. L.; Jo, H.; Tirawat, R.

    Thermal radiation will be an important mode of heat transfer in future high-temperature reactors and in off-normal high-temperature scenarios in present reactors. In this work, spectral directional emissivities of two reactor pressure vessel (RPV) candidate materials were measured at room temperature after exposure to high-temperature air. In the case of SA508 steel, significant increases in emissivity were observed due to oxidation. In the case of Grade 91 steel, only very small increases were observed under the tested conditions. Effects of roughness were also investigated. To study the effects of roughening, unexposed samples of SA508 and Grade 91 steel were roughenedmore » via one of either grinding or shot-peening before being measured. Significant increases were observed only in samples having roughness exceeding the roughness expected of RPV surfaces. While the emissivity increases for SA508 from oxidation were indeed significant, the measured emissivity coefficients were below that of values commonly used in heat transfer models. Based on the observed experimental data, recommendations for emissivity inputs for heat transfer simulations are provided.« less

  19. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  20. Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441

    NASA Astrophysics Data System (ADS)

    Brytan, Z.; Niagaj, J.; Reiman, Ł.

    2016-12-01

    The corrosion characterisation of lean duplex stainless steel (1.4662) UNS S82441 welded joints using the potentiodynamic test and electrochemical impedance spectroscopy in 1 M NaCl solution are discussed. The influence of autogenous TIG welding parameters (amount of heat input and composition of shielding gases like Ar and Ar-N2 and an Ar-He mixture), as well as A-TIG welding was studied. The influence of welding parameters on phase balance, microstructural changes and the protective properties of passive oxide films formed at the open circuit potential or during the anodic polarisation were studied. From the results of the potentiodynamic test and electrochemical impedance spectroscopy of TIG and A-TiG, welded joints show a lower corrosion resistance compared to non-welded parent metal, but introducing heat input properly during welding and applying shielding gases rich in nitrogen or helium can increase austenitic phase content, which is beneficial for corrosion resistance, and improves surface oxide layer resistance in 1 M NaCl solution.

  1. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig Turchi; Guangdong Zhu; Michael Wagner

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant usingmore » the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.« less

  2. High stability buffered phase comparator

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1984-01-01

    A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.

  3. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet) (in Chinese; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss.more » The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.« less

  4. Control of heat and humidity in German mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlotte, W.

    1999-07-01

    In order to increase the economic efficiency of West European hard coal, great efforts are being made at present in the coal-producing countries to lower production costs. This aim is to be achieved in Germany, among other things, by a drastic increase in the saleable output per working face up to an average of 10,000 t/d in these cases where very long longwall faces (400 m {+-} 50 m) are possible. With the substantially greater heat input into the air stream which this involves, there is the danger that climatic limits will be exceeded even at longwall faces with lowermore » than average rock temperatures. Working in high temperatures and/or humidities can lead to risky lack of concentration of the miners to heat collapse and extremely dangerous heat stroke. In order to minimize the costs for mine climate control well-proven planning software and climitization technology is necessary for underground workings. With the DMT climate simulation programs, both the dry and the extremely significant humid heat transfer can be calculated and the optimum air cooling system for a mine can be designed with due regard to technical and economic aspects.« less

  5. High duty cycle far-infrared germanium lasers

    NASA Astrophysics Data System (ADS)

    Chamberlin, Danielle Russell

    The effects of crystal geometry, heat transport, and optics on high duty cycle germanium hole population inversion lasers are investigated. Currently the laser's low duty cycle limits its utility for many applications. This low duty cycle is a result of the combination of the large electrical input power necessary and insufficient heat extraction. In order to achieve a continuous-wave device, the input power must be decreased and the cooling power increased. In order to improve laser efficiency and lower the input power, the effect of laser crystal geometry on the electric field uniformity is considered. Geometries with d/L>>1 or <<1 are shown to have improved electric field uniformity, where d is the distance between electrical contacts and L is the length in the direction of the Hall electric field. A geometry with d/L>>1 is shown to decrease the threshold voltage for lasing. Laser crystals with the traditional contact geometry have been compared to a new, planar contact design with both electrical contacts on the same side of the laser crystal. This new geometry provides a large d/L ratio while also allowing effective heat sinking. A pure, single-crystal silicon heat sink is developed for planar contact design lasers, which improves the duty cycle tenfold. For the traditional contact design, copper heat sinks are developed that demonstrate cooling powers up to 10 Watts. The effects of thermal conductivity, surface area, and interfacial thermal resistance on the heat transport are compared. To improve the cavity quality, thereby allowing for smaller crystal volumes, new optical designs are investigated. A vertical cavity structure is demonstrated for the planar contact structure using strontium titanate single crystals as mirrors. A mode-selecting cavity is implemented for the traditional contact design. The spectra of small-volume, near-threshold lasers are measured. In contrast to the emission of larger lasers, these lasers emit within narrow frequency peaks that do not shift smoothly with magnetic field. The details of the emission are shown to strongly depend on the optical cavity. A record duty cycle of 5% is achieved using a laser of dimensions 0.80 x 3 x 11 mm3 with the traditional contact geometry, improved copper heat sinks, and carefully etched crystal surfaces.

  6. Relationship between fatigue of generation II image intensifier and input illumination

    NASA Astrophysics Data System (ADS)

    Chen, Qingyou

    1995-09-01

    If there is fatigue for an image intesifier, then it has an effect on the imaging property of the night vision system. In this paper, using the principle of Joule Heat, we derive a mathematical formula for the generated heat of semiconductor photocathode. We describe the relationship among the various parameters in the formula. We also discuss reasons for the fatigue of Generation II image intensifier caused by bigger input illumination.

  7. Investigation on edge joints of Inconel 625 sheets processed with laser welding

    NASA Astrophysics Data System (ADS)

    Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.

    2017-08-01

    Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.

  8. An Investigation of TIG welding parameters on microhardness and microstructure of heat affected zone of HSLA steel

    NASA Astrophysics Data System (ADS)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2018-01-01

    Nowadays a wide variety of metal joining methods are used in fabrication industries. In this study, the effect of various welding parameters of the TIG welding process on microhardness, depth, and microstructure of the heat-affected zone (HAZ) of L450 HSLA steel and optimizing these process parameters following Taguchi experimental design was investigated. The microhardness tended to increase significantly with the increase of welding speed from 1.0 to 2.5 mm/s whereas the width of HAZ decreased. The current and arc voltage was found to be less significant in relative comparison. Microstructures of the welded samples were also studied to analyze the changes in the microstructure of the material in terms of ferrite, pearlite, bainite, and martensite formations. Welding speed was found to be the most significant factors leading to changes in microhardness and metallurgical properties. The increase of welding heat input caused an increase in width (depth) of HAZ and the growth of prior austenite grains and then enlarged the grain size of coarse grain heat affected zone (CGHAZ). However, the amount of martensite in the HAZ decreased accompanied by an opposite change of paint. It was observed that the hardness properties and the microstructural feature of HAZ area was strongly affected by the welding parameters.

  9. Determination of the oil distribution in a hermetic compressor using numerical simulation

    NASA Astrophysics Data System (ADS)

    Posch, S.; Hopfgartner, J.; Berger, E.; Zuber, B.; Almbauer, R.; Schöllauf, P.

    2017-08-01

    In addition to the reduction of friction the oil in a hermetic compressor is very important for the transfer of heat from hot parts to the compressor shell. The simulation of the oil distribution in a hermetic reciprocating compressor for refrigeration application is shown in the present work. Using the commercial Computational Fluid Dynamics (CFD) software ANSYS Fluent, the oil flow inside the compressor shell from the oil pump outlet to the oil sump is calculated. A comprehensive overview of the used models and the boundary conditions is given. After reaching steady-state conditions the oil covered surfaces are analysed concerning heat transfer coefficients. The gained heat transfer coefficients are used as input parameters for a thermal model of a hermetic compressor. An increase in accuracy of the thermal model with the simulated heat transfer coefficients compared to values from literature is shown by model validation with experimental data.

  10. Characterization testing of Lockheed Martin high-power micro pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    McKinley, I. M.; Hummel, C. D.; Johnson, D. L.; Rodriguez, J. I.

    2017-12-01

    This paper describes the thermal vacuum, microphonics, magnetics, and radiation testing and results of a Lockheed Martin high-power micro pulse tube cryocooler. The thermal performance of the microcooler was measured in vacuum for heat reject temperatures between 185 and 300 K. The cooler was driven with a Chroma 61602 AC power source for input powers ranging from 10 to 60 W and drive frequency between 115 and 140 Hz during thermal performance testing. The optimal drive frequency was dependent on both input power and heat reject temperature. In addition, the microphonics of the cooler were measured with the cooler driven by Iris Technologies LCCE-2 and HP-LCCE drive electronics for input powers ranging from 10 to 60 W and drive frequency between 135 and 145 Hz. The exported forces were strongly dependent on input power while only weakly dependent on the drive frequency. Moreover, the exported force in the compressor axis was minimized by closed loop control with the HP-LCCE. The cooler also survived a 500 krad radiation dose while being continuously operated with 30 W of input power at 220 K heat rejection temperature in vacuum. Finally, the DC and AC magnetic fields around the cooler were measured at various locations.

  11. Variable Gravity Effects on the Cooling Performance of a Single Phase Confined Spray

    NASA Technical Reports Server (NTRS)

    Michalak, Travis; Yerkes, Kirk; Baysinger, Karri; McQuillen, John

    2005-01-01

    The objective of this paper is to discuss the testing of a spray cooling experiment designed to be flown on NASA's KC-135 Reduced Gravity Testing Platform. Spray cooling is an example of a thermal management technique that may be utilized in high flux heat acquisition and high thermal energy transport concepts. Many researchers have investigated the utility of spray cooling for the thermal management of devices generating high heat fluxes. However, there has been little research addressing the physics and ultimate performance of spray cooling in a variable gravity environment. An experimental package, consisting of a spray chamber coupled to a fluid delivery loop system, was fabricated for variable gravity flight tests. The spray chamber contains two opposing nozzles spraying on target Indium Tin Oxide (ITO) heaters. These heaters are mounted on glass pedestals, which are part of a sump system to remove unconstrained liquid from the test chamber. Liquid is collected in the sumps and returned to the fluid delivery loop. Thermocouples mounted in and around the pedestals are used to determine both the heat loss through the underside of the IT0 heater and the heat extracted by the spray. A series of flight tests were carried out aboard the KC-135, utilizing the ability of the aircraft to produce various gravity conditions. During the flight tests, for a fixed flow rate, heat input was varied at 20, 30, 50, and 80W with variable gravities of 0.01, 0.16, 0.36, and 1.8g. Flight test data was compared to terrestrial baseline data in addition to analytical and numerical solutions to evaluate the heat transfer in the heater and support structure . There were significant differences observed in the spray cooling performance as a result of variable gravity conditions and heat inputs. In general, the Nussult number at the heater surface was found to increase with decreasing gravity conditions for heat loads greater than 30W.

  12. Automated manual transmission clutch controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.

    1999-11-30

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  13. Automated manual transmission shift sequence controller

    DOEpatents

    Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.

    2000-02-01

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  14. Automated manual transmission mode selection controller

    DOEpatents

    Lawrie, Robert E.

    1999-11-09

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  15. Automated manual transmission controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  16. Program documentation: Surface heating rate of thin skin models (THNSKN)

    NASA Technical Reports Server (NTRS)

    Mcbryde, J. D.

    1975-01-01

    Program THNSKN computes the mean heating rate at a maximum of 100 locations on the surface of thin skin transient heating rate models. Output is printed in tabular form and consists of time history tabulation of temperatures, average temperatures, heat loss without conduction correction, mean heating rate, least squares heating rate, and the percent standard error of the least squares heating rates. The input tape used is produced by the program EHTS03.

  17. Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Flemming, Leslie; Mascaro, Stephen

    2013-01-01

    A wet shape memory alloy (SMA) actuator is characterized by an SMA wire embedded within a compliant fluid-filled tube. Heating and cooling of the SMA wire produces a linear contraction and extension of the wire. Thermal energy can be transferred to and from the wire using combinations of resistive heating and free/forced convection. This paper analyzes the speed and efficiency of a simulated wet SMA actuator using a variety of control strategies involving different combinations of electrical and thermofluidic inputs. A computational fluid dynamics (CFD) model is used in conjunction with a temperature-strain model of the SMA wire to simulate the thermal response of the wire and compute strains, contraction/extension times and efficiency. The simulations produce cycle rates of up to 5 Hz for electrical heating and fluidic cooling, and up to 2 Hz for fluidic heating and cooling. The simulated results demonstrate efficiencies up to 0.5% for electric heating and up to 0.2% for fluidic heating. Using both electric and fluidic inputs concurrently improves the speed and efficiency of the actuator and allows for the actuator to remain contracted without continually delivering energy to the actuator, because of the thermal capacitance of the hot fluid. The characterized speeds and efficiencies are key requirements for implementing broader research efforts involving the intelligent control of electric and thermofluidic networks to optimize the speed and efficiency of wet actuator arrays.

  18. Laser-Assisted Stir Welding of 25-mm-Thick HSLA-65 Plate

    NASA Astrophysics Data System (ADS)

    Williamson, Keith M.

    2002-12-01

    Laser-assisted stir welding is a hybrid process that combines energy from a laser with functional heating and mechanical energy to join materials in the solid state. The technology is an adaptation of friction stir welding which is particularly suited for joining thick plates. Aluminum plates up to 75 mm thick have been successfully joined using friction stir welding. Since joining occurs in the solid state, stir technology offers the capability for fabricating full penetration joints in thick plates with better mechanical properties and less weld distortion than is possible by fusion processes. Currently friction stir welding is being used in several industries to improve productivity, reduce weight, and increase the strength of welded structures. Examples include: (a) the aircraft/aerospace industry where stir technology is currently being used to fabricate the space shuttle's external tank as well as components of the Delta family of rockets; (b) the shipping industry where container manufacturers are using stir technology to produce lighter containers with more payload capacity; and (c) the oil industry where offshore platform manufactures are using automated stir welding plants to fabricate large panels and structures up to 16 meters long with widths as required. In all these cases, stir technology has been restricted to aluminum alloys; however, stainless and HSLA 65 steels have been recently stir welded with friction as the primary heat source. One of the difficulties in adapting stir welding to steel is tool wear aggravated by the high tool rubbing velocities needed to provide frictional heat input into the material. Early work showed that the tool shoulder reached temperatures above 1000 C and the weld seam behind the tool stayed within this temperature range for up to 25 mm behind the tool. Cross sections of stir welded samples showed that the heat-affected zone is relatively wide and follows the profile of the tool shoulder. Besides minimizing the tool wear by increasing the energy into the material, another benefit of the proposed Laser Assisted Stir Welding (LASW is to reduce the width of the heat affected zone which typically has the lowest hardness in the weld region. Additionally, thermal modeling of the friction stir process shows that the heat input is asymmetric and suggests that the degree of asymmetry could improve the efficiency of the process. These asymmetries occur because the leading edge of the tool supplies heat to cold material while the trailing edge provides heat to material already preheated by the leading edge. As a result, flow stresses on the advancing side of the joint are lower than corresponding values on the retreating side. The proposed LASW process enhances these asymmetries by providing directional heating to increase the differential in flow stress across the joint and improve the stir tool efficiency. Theoretically the LASW process can provide the energy input to allow the flow stresses on the advancing side to approach zero and the stir efficiency to approach 100 percent. Reducing the flow stresses on the advancing side of the weld creates the greatest pressure differential across the stir weld and eliminates the possibility of voids on the advancing side of the joint. Small pressure differentials result in poor stir welds because voids on the advancing side are not filled by the plastic flow of material from the retreating side.

  19. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  20. High performance felt-metal-wick heat pipe for solar receivers

    NASA Astrophysics Data System (ADS)

    Andraka, Charles E.; Moss, Timothy A.; Baturkin, Volodymyr; Zaripov, Vladlen; Nishchyk, Oleksandr

    2016-05-01

    Sodium heat pipes have been identified as a potentially effective heat transport approach for CSP systems that require near-isothermal input to power cycles or storage, such as dish Stirling and highly recuperated reheat-cycle supercritical CO2 turbines. Heat pipes offer high heat flux capabilities, leading to small receivers, as well as low exergetic losses through isothermal coupling with the engine. Sandia developed a felt metal wick approach in the 1990's, and demonstrated very high performance1. However, multiple durability issues arose, primarily the structural collapse of the wick at temperature over short time periods. NTUU developed several methods of improving robustness of the wick2, but the resulting wick had limited performance capabilities. For application to CSP systems, the wick structures must retain high heat pipe performance with robustness for long term operation. In this paper we present our findings in developing an optimal balance between performance and ruggedness, including operation of a laboratory-scale heat pipe for over 5500 hours so far. Application of heat pipes to dish-Stirling systems has been shown to increase performance as much as 20%3, and application to supercritical CO2 systems has been proposed.

  1. Hourly test reference weather data in the changing climate of Finland for building energy simulations.

    PubMed

    Jylhä, Kirsti; Ruosteenoja, Kimmo; Jokisalo, Juha; Pilli-Sihvola, Karoliina; Kalamees, Targo; Mäkelä, Hanna; Hyvönen, Reijo; Drebs, Achim

    2015-09-01

    Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].

  2. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    NASA Astrophysics Data System (ADS)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  3. Prediction modeling of physiological responses and human performance in the heat with application to space operations

    NASA Technical Reports Server (NTRS)

    Pandolf, Kent B.; Stroschein, Leander A.; Gonzalez, Richard R.; Sawka, Michael N.

    1994-01-01

    This institute has developed a comprehensive USARIEM heat strain model for predicting physiological responses and soldier performance in the heat which has been programmed for use by hand-held calculators, personal computers, and incorporated into the development of a heat strain decision aid. This model deals directly with five major inputs: the clothing worn, the physical work intensity, the state of heat acclimation, the ambient environment (air temperature, relative humidity, wind speed, and solar load), and the accepted heat casualty level. In addition to predicting rectal temperature, heart rate, and sweat loss given the above inputs, our model predicts the expected physical work/rest cycle, the maximum safe physical work time, the estimated recovery time from maximal physical work, and the drinking water requirements associated with each of these situations. This model provides heat injury risk management guidance based on thermal strain predictions from the user specified environmental conditions, soldier characteristics, clothing worn, and the physical work intensity. If heat transfer values for space operations' clothing are known, NASA can use this prediction model to help avoid undue heat strain in astronauts during space flight.

  4. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.

    PubMed

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H

    2017-01-01

    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  5. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.

  6. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  7. Low-latitude Ionospheric Heating during Solar Flares

    NASA Astrophysics Data System (ADS)

    Klenzing, J.; Chamberlin, P. C.; Qian, L.; Haaser, R. A.; Burrell, A. G.; Earle, G. D.; Heelis, R. A.; Simoes, F. A.

    2013-12-01

    The advent of the Solar Dynamics Observatory (SDO) represents a leap forward in our capability to measure rapidly changing transient events on the sun. SDO measurements are paired with the comprehensive low latitude measurements of the ionosphere and thermosphere provided by the Communication/Navigation Outage Forecast System (C/NOFS) satellite and state-of-the-art general circulation models to discuss the coupling between the terrestrial upper atmosphere and solar radiation. Here we discuss ionospheric heating as detected by the Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on the C/NOFS satellite during solar flares. Also discusses is the necessity of decoupling the heating due to increased EUV irradiance and that due to geomagnetic storms, which sometimes occur with flares. Increases in both the ion temperature and ion density in the subsolar topside ionosphere are detected within 77 minutes of the 23 Jan 2012 M-class flare, and the observed results are compared with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the Flare Irradiance Spectral Model (FISM) as an input.

  8. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-07-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  9. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-04-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  10. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress

    NASA Astrophysics Data System (ADS)

    Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai

    2018-03-01

    The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.

  11. Ridge Jumps Associated with Plume-Ridge Interaction 1: Off-axis Heating due to Lithospheric Magma Penetration

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2005-12-01

    In many hot spot-ridge systems, changes in the ridge axis geometry occur between the hot spot centers and nearby mid-ocean ridges in the form of ridge jumps. Such ridge jumps likely occur as a result of anomalous lithospheric stresses associated with mantle plume-lithosphere interaction, as well as weakening of the hot spot lithosphere due to physical and thermal thinning caused by rising buoyant asthenosphere and magma transport through the lithosphere. In this study, we use numerical models to quantify the effects of excess magmatism through the near-ridge lithosphere. Hot spot magmatism can weaken the lithosphere both mechanically through fracturing and thermally through conduction and advection of heat into the plate. Here we focus on the effects of thermal weakening. Using a plane-strain approximation, we examine deformation in a 2-D cross section of a visco-elastic-plastic lithosphere with the finite element code FLAC. The model has isothermal top and bottom boundaries and a prescribed velocity equal to the half spreading rate is imposed on the sides to drive seafloor spreading. The initial condition, as predicted for normal mid-ocean ridges, is a square root of lithospheric age cooling curve with a corner flow velocity field symmetric about the ridge axis. A range of heat inputs are introduced at various plate ages and spreading rates to simulate off-axis magma transport. To reveal the physical conditions that allow for a ridge jump and control its timing, we vary 4 parameters: spreading rate, lithospheric age, crustal thickness and heat input. Results indicate that the heating rate required to produce a ridge jump increases as a function of lithospheric age at the location of magma intrusion. The time necessary for a ridge jump to develop in lithosphere of a particular age decreases with increasing crustal thicknesses. For magma fluxes comparable to those estimated for Galapagos and Iceland, lithospheric heating by the penetrating magma alone is sufficient to cause a ridge jump, even without the other effects.

  12. Novel Long Stroke Reciprocating Compressor for Energy Efficient Jaggery Making

    NASA Astrophysics Data System (ADS)

    Rane, M. V.; Uphade, D. B.

    2017-08-01

    Novel Long Stroke Reciprocating Compressor is analysed for jaggery making while avoiding burning of bagasse for concentrating juice. Heat of evaporated water vapour along with small compressor work is recycled to enable boiling of juice. Condensate formed during heating of juice is pure water, as oil-less compressor is used. Superheat of compressor is suppressed by flow of superheated vapours through condensate. It limits heating surface temperature and avoids caramelization of sugar. Thereby improves quality of jaggery and eliminates need to use chemicals for colour improvement. Stroke to bore ratio is 0.6 to 1.2 in conventional reciprocating drives. Long stroke in reciprocating compressors enhances heat dissipation to surrounding by providing large surface area and increases isentropic efficiency by reducing compressor outlet temperature. Longer stroke increases inlet and exit valve operation timings, which reduces inertial effects substantially. Thereby allowing use of sturdier valves. This enables handling liquid along with vapour in compressors. Thereby supressing the superheat and reducing compressor power input. Longer stroke increases stroke to clearance ratios which increases volumetric efficiency and ability of compressor to compress through higher pressure ratios efficiently. Stress-strain simulation is performed in SolidWorks for gear drive. Long Stroke Reciprocating Compressor is developed at Heat Pump Laboratory, stroke/bore 292 mm/32 mm. It is operated and tested successfully at different speeds for operational stability of components. Theoretical volumetric efficiency is 93.9% at pressure ratio 2.0. Specific energy consumption is 108.3 kWhe/m3 separated water, considering free run power.

  13. Investigation of heat flux processes governing the increase of groundwater temperatures beneath cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.

    2012-12-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the city of Karlsruhe (Germany), for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.

  14. Assessment of stream water chemistry and impact of geothermal fluid in the up-Buyuk Menderes Basin, Turkey.

    PubMed

    Davraz, Aysen; Aksever, Fatma; Afsin, Mustafa

    2017-12-01

    The discharge of geothermal fluid into the natural water environment may lead to serious damages. In this study, the impact of geothermal waste water on surface water has been investigated in the up-Buyuk Menderes River, Turkey. Thermal return water from district heating and from thermal bath in the Sandıklı region were the most important source of major solutes and trace elements to the up-Buyuk Menderes River and tributaries. The thermal contribution causes a drastic increase in Na, SO 4 ions, EC, and temperature of surface waters. The concentrations of As, Al, B, Fe, Cr, Li, S, P, Pb, U, Mn, and Zn are increasing dramatically downstream of thermal water inputs in the Kufi Creek tributary. In addition to natural thermal water inputs, water quality was impacted by anthropogenic trace and major element inputs from surface waters. The increased of some trace elements (Al, As, B, Cu, Cd, Fe, Mn, P, U) in surface water are related to anthropogenic activities such as agricultural activities, sewage effluents, and stockyards in the study area. Additionally, surface water quality of the up-Buyuk Menderes River and tributaries was evaluated according to standards given by the Environmental Protection Agency of both Turkey and USA. Our study demonstrates the influence of thermal water inputs on water quality of surface waters.

  15. High efficiency 40 K single-stage Stirling-type pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.

    2017-12-01

    A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.

  16. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick; Kravitz, Ben; Lu, Jian

    Here we demonstrate that changes of the North Atlantic subtropical high (NASH) and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO2 increase can both be understood as a remote response to changes in the African and Indian monsoon systems. Despite different sources and patterns of radiative forcing (increase in CO2 concentration vs. changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are very similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing. Anmore » increase in energy input over land drives a westward displacement of the coupled NASH-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. Ultimately, this study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  17. SIRTF thermal design modifications to increase lifetime

    NASA Astrophysics Data System (ADS)

    Petrick, S. W.

    1993-01-01

    An effort was made to increase the predicted lifetime of the SIRTF dewar by lowering the exterior shell temperature, increasing the radiated energy from the vapor cooled shields and reconfiguring the vapor cooled shields. The lifetime increases can be used to increase the scientific return from the mission and as a trade-off against mass and cost. This paper describes the configurations studied, the steady state thermal model used, the analytical methods and the results of the analysis. Much of the heat input to the outside dewar shell is radiative heat transfer from the solar panel. To lower the shell temperature, radiative cooled shields were placed between the solar panel and the dewar shell and between the bus and the dewar shell. Analysis showed that placing a radiator on the outer vapor cooled shield had a significant effect on lifetime. Lengthening the distance between the outer shell and the point where the vapor cooled shields are attached to the support straps also improved lifetime.

  18. Urban heat islands in the subsurface of German cities

    NASA Astrophysics Data System (ADS)

    Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.

    2012-04-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.

  19. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers

    PubMed Central

    Davies, Edward; Christodoulides, Paul; Florides, George; Kalli, Kyriacos

    2014-01-01

    A finite element analysis (FEA) model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF) accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel. PMID:28788263

  20. Rapid Generation of Superheated Steam Using a Water-containing Porous Material

    NASA Astrophysics Data System (ADS)

    Mori, Shoji; Okuyama, Kunito

    Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.

  1. 40 CFR 60.703 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... position before any substantial heat exchange is encountered. (ii) Where a catalytic incinerator is used... equipment: (1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel...

  2. 40 CFR 60.703 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... position before any substantial heat exchange is encountered. (ii) Where a catalytic incinerator is used... equipment: (1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel...

  3. 40 CFR 60.703 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... position before any substantial heat exchange is encountered. (ii) Where a catalytic incinerator is used... equipment: (1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel...

  4. 40 CFR 63.1271 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...

  5. 40 CFR 63.1271 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...

  6. Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon

    Treesearch

    Christina Tague; Michael Farrell; Gordon Grant; Sarah Lewis; Serge Rey

    2007-01-01

    Stream temperature is a complex function of energy inputs including solar radiation and latent and sensible heat transfer. In streams where groundwater inputs are significant, energy input through advection can also be an important control on stream temperature. For an individual stream reach, models of stream temperature can take advantage of direct measurement or...

  7. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    ERIC Educational Resources Information Center

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  8. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    Sea Ice , and the Ice Albedo Feedback in a...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice , and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a...during a period when incident solar irradiance is large increasing solar heat input to the ice . Seasonal sea ice typically has a smaller albedo

  9. Heat budget of ionospheric electrons

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Schneck, L. J.

    1976-01-01

    Heat input calculations were detached from solar extreme UV data and monatomic oxygen densities were derived from simultaneously measured data sets (ion composition 146-191 km) in a study of the heat budget of ionosphere electrons. Earlier inferences that cooling predominates over heating are supported. A search for additional heat sources or a revision of the cooling rates is recommended, by way of balancing the heat budget. Importance is attached to electron cooling by fine structure excitation of monatomic oxygen.

  10. Dimensionless numbers in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Mukherjee, T.; Manvatkar, V.; De, A.; DebRoy, T.

    2017-02-01

    The effects of many process variables and alloy properties on the structure and properties of additively manufactured parts are examined using four dimensionless numbers. The structure and properties of components made from 316 Stainless steel, Ti-6Al-4V, and Inconel 718 powders for various dimensionless heat inputs, Peclet numbers, Marangoni numbers, and Fourier numbers are studied. Temperature fields, cooling rates, solidification parameters, lack of fusion defects, and thermal strains are examined using a well-tested three-dimensional transient heat transfer and fluid flow model. The results show that lack of fusion defects in the fabricated parts can be minimized by strengthening interlayer bonding using high values of dimensionless heat input. The formation of harmful intermetallics such as laves phases in Inconel 718 can be suppressed using low heat input that results in a small molten pool, a steep temperature gradient, and a fast cooling rate. Improved interlayer bonding can be achieved at high Marangoni numbers, which results in vigorous circulation of liquid metal, larger pool dimensions, and greater depth of penetration. A high Fourier number ensures rapid cooling, low thermal distortion, and a high ratio of temperature gradient to the solidification growth rate with a greater tendency of plane front solidification.

  11. CAVE: A computer code for two-dimensional transient heating analysis of conceptual thermal protection systems for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Rathjen, K. A.

    1977-01-01

    A digital computer code CAVE (Conduction Analysis Via Eigenvalues), which finds application in the analysis of two dimensional transient heating of hypersonic vehicles is described. The CAVE is written in FORTRAN 4 and is operational on both IBM 360-67 and CDC 6600 computers. The method of solution is a hybrid analytical numerical technique that is inherently stable permitting large time steps even with the best of conductors having the finest of mesh size. The aerodynamic heating boundary conditions are calculated by the code based on the input flight trajectory or can optionally be calculated external to the code and then entered as input data. The code computes the network conduction and convection links, as well as capacitance values, given basic geometrical and mesh sizes, for four generations (leading edges, cooled panels, X-24C structure and slabs). Input and output formats are presented and explained. Sample problems are included. A brief summary of the hybrid analytical-numerical technique, which utilizes eigenvalues (thermal frequencies) and eigenvectors (thermal mode vectors) is given along with aerodynamic heating equations that have been incorporated in the code and flow charts.

  12. Space shuttle heat pipe thermal control systems

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1973-01-01

    Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

  13. Ground Source Geothermal District Heating and Cooling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, James William

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reducemore » worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx« less

  14. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  15. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    USGS Publications Warehouse

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate continuous, rapid venting. Increased heat input at the base of the faults resulted in temporarily greater fluid discharge, but the flow could not be sustained because the modeled system could not recharge cold fluid quickly enough to remove sufficient heat through the vents.

  16. Isotope heat source simulator for testing of space power systems

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Smith, R. B.

    1973-01-01

    A reliable isotope heat source simulator was designed for use in a Brayton power system. This simulator is composed of an electrically heated tungsten wire which is wound around a boron nitride core and enclosed in a graphite jacket. Simulator testing was performed at the expected operating temperature of the Brayton power system. Endurance testing for 5012 hours was followed by cycling the simulator temperature. The integrity of this simulator was maintained throughout testing. Alumina beads served as a diffusion barrier to prevent interaction between the tungsten heater and boron nitride core. The simulator was designed to maintain a surface temperature of 1311 to 1366 K (1900 to 2000 F) with a power input of approximately 400 watts. The design concept and the materials used in the simulator make possible man different geometries. This flexibility increases its potential use.

  17. Microstructural and Mechanical Properties of Welded High Strength Steel Plate Using SMAW and SAW Method for LPG Storage Tanks

    NASA Astrophysics Data System (ADS)

    Winarto, Winarto; Riastuti, Rini; Kumeidi, Nur

    2018-03-01

    Indonesian government policy to convert energy consumption for domestic household from kerosene to liquefied petroleum gas (LPG) may lead to the increasing demand for LPG storage tank. LPG storage tank with a large capacity generally used the HSLA steel material of ASTM A516 Grade 70 joined by SMAW or combination between SMAW and SAW method. The heat input can affect the microstructure and mechanical properties of the weld area. The input heat is proportional to the welding current and the arc voltage, but inversely proportional to its welding speed. The result shows that the combination of SMAW-SAW process yield the lower hardness in the HAZ and the fusion zone compared to the singe SMAW process. PWHT mainly applied to reduce residual stress of welded joint. The result shows that PWHT can reduce the hardness in the HAZ and the fusion zone in comparing with the singe SMAW process. The microstructure of weld joint shows a coarser structure in the combined welding process (SMAW-SAW) comparing with the single welding process (SMAW).

  18. Summary of Test Results From a 1 kW(sub e)-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  19. Summary of Test Results From a 1 kWe-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  20. The Development and Microstructure Analysis of High Strength Steel Plate NVE36 for Large Heat Input Welding

    NASA Astrophysics Data System (ADS)

    Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li

    In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.

  1. Assessment of delta ferrite in multipass TIG welds of 40 mm thick SS 316L: A comparative study of ferrite number (FN) prediction and measurements

    NASA Astrophysics Data System (ADS)

    Buddu, Ramesh Kumar; Raole, P. M.; Sarkar, B.

    2017-04-01

    Austenitic stainless steels are widely used in the fabrication of fusion reactor major systems like vacuum vessel, divertor, cryostat and other structural components development. Multipass welding is used for the development of thick plates for the structural components fabrication. Due to the repeated weld thermal cycles, the microstructure adversely alters owing to the presence of complex phases like austenite, ferrite and delta ferrite and subsequently influences the mechanical properties like tensile and impact toughness of joints. The present paper reports the detail analysis of delta ferrite phase in welded region of 40 mm thick SS316L plates welded by special design multipass narrow groove TIG welding process under three different heat input conditions. The correlation of delta ferrite microstructure of different type structures acicular and vermicular is observed. The chemical composition of weld samples was used to predict the Ferrite Number (FN), which is representative form of delta ferrite in welds, with Schaeffler’s, WRC-1992 diagram and DeLong techniques by calculating the Creq and Nieq ratios and compared with experimental data of FN from Feritescope measurements. The low heat input conditions (1.67 kJ/mm) have produced higher FN (7.28), medium heat input (1.72 kJ/mm) shown FN (7.04) where as high heat input (1.87 kJ/mm) conditions has shown FN (6.68) decreasing trend and FN data is compared with the prediction methods.

  2. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment.

    PubMed

    Lin, Jianjun; Lv, Yaohui; Liu, Yuxin; Sun, Zhe; Wang, Kaibo; Li, Zhuguo; Wu, Yixiong; Xu, Binshi

    2017-05-01

    Plasma arc additive manufacturing (PAM) is a novel additive manufacturing (AM) technology due to its big potential in improving efficiency, convenience and being cost-savings compared to other AM processes of high energy bea\\m. In this research, several Ti-6Al-4V thin walls were deposited by optimized weld wire-feed continuous PAM process (CPAM), in which the heat input was gradually decreased layer by layer. The deposited thin wall consisted of various morphologies, which includes epitaxial growth of prior β grains, horizontal layer bands, martensite and basket weave microstructure, that depends on the heat input, multiple thermal cycles and gradual cooling rate in the deposition process. By gradually reducing heat input of each bead and using continuous current in the PAM process, the average yield strength (YS), ultimate tensile strength (UTS) and elongation reach about 877MPa, 968MPa and 1.5%, respectively, which exceed the standard level of forging. The mechanical property was strengthened and toughened due to weakening the aspect ratio of prior β grains and separating nano-dispersoids among α lamellar. Furthermore, this research demonstrates that the CPAM process has a potential to manufacture or remanufacture in AM components of metallic biomaterials without post-processing heat treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Uncertainty in modeled upper ocean heat content change

    NASA Astrophysics Data System (ADS)

    Tokmakian, Robin; Challenor, Peter

    2014-02-01

    This paper examines the uncertainty in the change in the heat content in the ocean component of a general circulation model. We describe the design and implementation of our statistical methodology. Using an ensemble of model runs and an emulator, we produce an estimate of the full probability distribution function (PDF) for the change in upper ocean heat in an Atmosphere/Ocean General Circulation Model, the Community Climate System Model v. 3, across a multi-dimensional input space. We show how the emulator of the GCM's heat content change and hence, the PDF, can be validated and how implausible outcomes from the emulator can be identified when compared to observational estimates of the metric. In addition, the paper describes how the emulator outcomes and related uncertainty information might inform estimates of the same metric from a multi-model Coupled Model Intercomparison Project phase 3 ensemble. We illustrate how to (1) construct an ensemble based on experiment design methods, (2) construct and evaluate an emulator for a particular metric of a complex model, (3) validate the emulator using observational estimates and explore the input space with respect to implausible outcomes and (4) contribute to the understanding of uncertainties within a multi-model ensemble. Finally, we estimate the most likely value for heat content change and its uncertainty for the model, with respect to both observations and the uncertainty in the value for the input parameters.

  4. The effect of a turbulent wake on the stagnation point. II - Heat transfer results

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Wilson, Dennis E.

    1992-01-01

    A phenomenological model is proposed which relates the effects of freestream turbulence to the increase in stagnation point heat transfer. The model requires both turbulence intensity and energy spectra as inputs to the unsteady velocity at the edge of the boundary layer. The form of the edge velocity contains both a pulsation of the incoming flow and an oscillation of the streamlines. The incompressible unsteady and time-averaged boundary layer response is determined by solving the momentum and energy equations. The model allows for arbitary two-dimensional geometry, however, results are given only for a circular cylinder. The time-averaged Nusselt number is determined theoretically and compared to existing experimental data.

  5. Heating of the lower thermosphere by the dissipation of acoustic waves

    NASA Technical Reports Server (NTRS)

    Rind, D.

    1977-01-01

    Infrasound of 0.2 Hz known as microbaroms, generated by interfering ocean waves, propagates into the lower thermosphere where it is dissipated between 110 and 140 km. It is shown here that under average conditions in winter the energy input into this region is of the order of 0.33 W/kg, the same as that estimated for gravity wave dissipation, and capable of producing a heating of at least 30 K/day. To arrive at this result different dissipation mechanisms are discussed, with the calculated attenuation compared to previously published observations and observations of natural infrasound at Palisades, N.Y. Increased acoustic attenuation due to the presence of turbulence is not, in general, in evidence.

  6. Ceramic Technology for Advanced Heat Engines Project. Semiannual progress report, October 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-09-01

    A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less

  7. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less

  8. Impact of synovial fluid flow on temperature regulation in knee cartilage.

    PubMed

    Moghadam, Mohamadreza Nassajian; Abdel-Sayed, Philippe; Camine, Valérie Malfroy; Pioletti, Dominique P

    2015-01-21

    Several studies have reported an increase of temperature in cartilage submitted to cyclic sinusoidal loading. The temperature increase is in part due to the viscous behavior of this tissue, which partially dissipates the input mechanical energy into heat. While the synovial fluid flow within the intra-articular gap and inside the porous cartilage is supposed to play an important role in the regulation of the cartilage temperature, no specific study has evaluated this aspect. In the present numerical study, a poroelastic model of the knee cartilage is developed to evaluate first the temperature increase in the cartilage due to dissipation and second the impact of the synovial fluid flow in the cartilage heat transfer phenomenon. Our results showed that, the local temperature is effectively increased in knee cartilage due to its viscous behavior. The synovial fluid flow cannot significantly preventing this phenomenon. We explain this result by the low permeability of cartilage and the moderate fluid exchange at the surface of cartilage under deformation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  10. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  11. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  12. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  13. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  14. 40 CFR 63.1271 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion device that is used for destroying organic compounds. Auxiliary fuel may be used to heat waste gas... that provides the principal heat input (i.e., more than 50 percent) to the device. To be considered... means an enclosed device using a controlled flame, the primary purpose of which is to transfer heat to a...

  15. 40 CFR 63.1271 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion device that is used for destroying organic compounds. Auxiliary fuel may be used to heat waste gas... that provides the principal heat input (i.e., more than 50 percent) to the device. To be considered... means an enclosed device using a controlled flame, the primary purpose of which is to transfer heat to a...

  16. 40 CFR 63.1271 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion device that is used for destroying organic compounds. Auxiliary fuel may be used to heat waste gas... that provides the principal heat input (i.e., more than 50 percent) to the device. To be considered... means an enclosed device using a controlled flame, the primary purpose of which is to transfer heat to a...

  17. Low noise and conductively cooled microchannel plates

    NASA Technical Reports Server (NTRS)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  18. Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Maddah, Heydar; Ghasemi, Nahid

    2017-12-01

    In this study, heat transfer efficiency of water and iron oxide nanofluid in a double pipe heat exchanger equipped with a typical twisted tape is experimentally investigated and impacts of the concentration of nanofluid and twisted tape on the heat transfer efficiency are also studied. Experiments were conducted under the laminar and turbulent flow for Reynolds numbers in the range of 1000 to 6000 and the concentration of nanofluid was 0.01, 0.02 and 0.03 wt%. In order to model and predict the heat transfer efficiency, an artificial neural network was used. The temperature of the hot fluid (nanofluid), the temperature of the cold fluid (water), mass flow rate of hot fluid (nanofluid), mass flow rate of cold fluid (water), the concentration of nanofluid and twist ratio are input data in artificial neural network and heat transfer is output or target. Heat transfer efficiency in the presence of 0.03 wt% nanofluid increases by 30% while using both the 0.03 wt% nanofluid and twisted tape with twist ratio 2 increases the heat transfer efficiency by 60%. Implementation of various structures of neural network with different number of neurons in the middle layer showed that 1-10-6 arrangement with the correlation coefficient 0.99181 and normal root mean square error 0.001621 is suggested as a desirable arrangement. The above structure has been successful in predicting 72% to 97%of variation in heat transfer efficiency characteristics based on the independent variables changes. In total, comparing the predicted results in this study with other studies and also the statistical measures shows the efficiency of artificial neural network.

  19. Design and Development of a Residential Gas-Fired Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vineyard, Edward Allan; Abu-Heiba, Ahmad; Mahderekal, Dr. Isaac

    2017-01-01

    Heating, ventilating, and air-conditioning equipment consumes 43% of the total primary energy consumption in U.S. households. Presently, conventional gas furnaces have maximum heating efficiencies of 98%. Electric air conditioners used in association with the furnace for cooling have a minimum seasonal energy efficiency ratio (SEER) of 14.0. A residential gas-fired heat pump (RGHP) was developed and tested under standard rating conditions, resulting in a significant increase in heating efficiency of over 40% versus conventional natural gas furnaces. The associated efficiency of the RGHP in cooling mode is comparable in efficiency to an electric air conditioner (14.0 SEER) when compared onmore » a primary energy basis. The RGHP is similar in nature to a conventional heat pump but with two main differences. First, the primary energy savings are higher, based on a site versus source comparison, as the result of using natural gas to supply shaft power to the compressor rather than an electric motor. Second, waste heat is recovered from the engine to supplement space heating and reduce the energy input. It can also be used to provide supplemental water heating. The system utilizes a programmable logic controller that allows variable-speed operation to achieve improved control to meet building loads. RGHPs significantly reduce peak electric use during periods of high demand, especially peak summer loads, as well as peak winter loads in regions with widespread use of electric heating. This contributes to leveling year-round gas loads, with the potential to increase annual gas demand in some regions. The widespread adoption of RGHPs will contribute to significant reductions in primary energy consumption and carbon emissions through improved efficiencies.« less

  20. On the Importance of Adiabatic Heating on Deformation Behavior of Medium-Manganese Sheet Steels

    NASA Astrophysics Data System (ADS)

    Rana, Radhakanta; De Moor, Emmanuel; Speer, John G.; Matlock, David K.

    2018-02-01

    The effects of adiabatic heating during deformation of a medium-manganese transformation-induced plasticity steel containing 10.1Mn-1.68Al-0.14C-0.2Si (wt.%) processed with initially 57 vol.% retained austenite were investigated over the temperature range from - 60°C to 100°C at strain rates from 0.002 s-1 to 0.2 s-1. Tensile tests were performed on specimens immersed in isothermal baths, which reduced but did not completely eliminate adiabatic heating. The specimen temperature depended on the extent of adiabatic heating, which increased with strain and strain rate. The measured properties primarily reflected the effects of temperature on austenite stability and the corresponding resistance of austenite transformation to martensite with strain. Changes in austenite stability were monitored by measurements of austenite fractions at a specific strain and observation of microstructures after deformation. The results of this study provide a basis to identify input material parameters required for numerical models applicable to sheet metal forming of medium-Mn steels.

  1. Facets of Arctic energy accumulation based on observations and reanalyses 2000-2015

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Haimberger, Leopold; Pietschnig, Marianne; Storto, Andrea

    2016-10-01

    Various observation- and reanalysis-based estimates of sea ice mass and ocean heat content trends imply that the energy imbalance of the Arctic climate system was similar [1.0 (0.9,1.2) Wm-2] to the global ocean average during the 2000-2015 period. Most of this extra heat warmed the ocean, and a comparatively small fraction went into sea ice melt. Poleward energy transports and radiation contributed to this energy increase at varying strengths. On a seasonal scale, stronger radiative energy input during summer associated with the ice-albedo feedback enhances seasonal oceanic heat uptake and sea ice melt. In return, lower sea ice extent and higher sea surface temperatures lead to enhanced heat release from the ocean during fall. This weakens meridional temperature gradients, consequently reducing atmospheric energy transports into the polar cap. The seasonal cycle of the Arctic energy budget is thus amplified, whereas the Arctic's long-term energy imbalance is close to the global mean.

  2. Facets of Arctic energy accumulation based on observations and reanalyses 2000-2015.

    PubMed

    Mayer, Michael; Haimberger, Leopold; Pietschnig, Marianne; Storto, Andrea

    2016-10-16

    Various observation- and reanalysis-based estimates of sea ice mass and ocean heat content trends imply that the energy imbalance of the Arctic climate system was similar [1.0 (0.9,1.2) Wm -2 ] to the global ocean average during the 2000-2015 period. Most of this extra heat warmed the ocean, and a comparatively small fraction went into sea ice melt. Poleward energy transports and radiation contributed to this energy increase at varying strengths. On a seasonal scale, stronger radiative energy input during summer associated with the ice-albedo feedback enhances seasonal oceanic heat uptake and sea ice melt. In return, lower sea ice extent and higher sea surface temperatures lead to enhanced heat release from the ocean during fall. This weakens meridional temperature gradients, consequently reducing atmospheric energy transports into the polar cap. The seasonal cycle of the Arctic energy budget is thus amplified, whereas the Arctic's long-term energy imbalance is close to the global mean.

  3. Material thermal inputs of Iowa materials for MEPDG : tech transfer summary.

    DOT National Transportation Integrated Search

    2008-02-01

    The thermal properties of concrete materials, such as coeffi cient of : thermal expansion (CTE), thermal conductivity, and heat capacity, are : required by the MEPDG program as the material inputs for pavement : design. However, a limited amount of t...

  4. Development and evaluation of an empirical diurnal sea surface temperature model

    NASA Astrophysics Data System (ADS)

    Weihs, R. R.; Bourassa, M. A.

    2013-12-01

    An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with accumulated wind stress and peak solar radiation to create an empirical relationship that approximates physical processes such as turbulence and heating memory (capacity) of the ocean. Weaknesses and strengths of the model, including potential spatial biases, will be discussed.

  5. The heat source of Ruapehu crater lake; deductions from the energy and mass balances

    NASA Astrophysics Data System (ADS)

    Hurst, A. W.; Bibby, H. M.; Scott, B. J.; McGuinness, M. J.

    1991-05-01

    Regular observations of temperature, outflow rates and water chemistry of Crater Lake, Mt. Ruapehu, New Zealand have been made for the last 25 years. These data have been used to derive a model of the dynamics of the lake, and determine the input of energy, mass, and chloride from the volcano to the Crater Lake. The recent, relatively quiescent state of the volcano, when virtually no heat has been input to the lake, has also enabled an assessment to be made of the surface heat loss characteristics, which play an important role in the model of the lake. The modelling suggests that since about 1982 the ratio of the volcanic heat to mass added to the base of the lake is about 6 MJ/kg, which is not compatible with heating of the lake by magmatic steam alone. Thus, only about 50% of the heating has been by magmatic steam. It is suggested that heat could be transferred from a magmatic source to the region below the lake by a heat-pipe mechanism, commonly associated with geothermal systems. The simultaneous upward movement of vapour phase, and downward movement of liquid phase from condensed vapour allows efficient heat transfer without overall mass transfer. The permeability necessary to supply the required heat is of the order of 10 darcy, and is consistent with a rubble filled vent. For at least the last five years, there has been a characteristic pattern in the Crater Lake temperature record, with alternate heating and cooling phases. The heating phase generally lasts for one or two months, while the cooling phase lasts for six months to a year. A possible explanation for this cyclic behaviour is the presence of a layer of liquid sulphur under Crater Lake, acting as a partial barrier between the heat-pipe and the lake. The unusual variations of the viscosity of liquid sulphur with temperature will mean that at temperatures greater than 160°C, the layer of sulphur becomes highly viscous and would block any upwards steam flow and hence stop the heat input to Crater Lake, so producing a cooling phase. This blockage would last until the heating from below raised the temperature of the sulphur beyond the high-viscosity region, so gases could again pass through the sulphur.

  6. Thermal Measurement during Electrolysis of Pd-Ni Thin-film -Cathodes in Li2SO4/H2O Solution

    NASA Astrophysics Data System (ADS)

    Castano, C. H.; Lipson, A. G.; S-O, Kim; Miley, G. H.

    2002-03-01

    Using LENR - open type calorimeters, measurements of excess heat production were carried out during electrolysis in Li_2SO_4/H_2O solution with a Pt-anode and Pd-Ni thin film cathodes (2000-8000 Åthick) sputtered on the different dielectric substrates. In order to accurately evaluate actual performance during electrolysis runs in the open-type calorimeter used, considering effects of heat convection, bubbling and possible H_2+O2 recombination, smooth Pt sheets were used as cathodes. Pt provides a reference since it does not produce excess heat in the light water electrolyte. To increase the accuracy of measurements the water dissociation potential was determined for each cathode taking into account its individual over-voltage value. It is found that this design for the Pd-Ni cathodes resulted in the excess heat production of ~ 20-25 % of input power, equivalent to ~300 mW. In cases of the Pd/Ni- film fracture (or detachment from substrate) no excess heat was detected, providing an added reference point. These experiments plus use of optimized films will be presented.

  7. Improved Abutting Edges For Welding In Keyhole Mode

    NASA Technical Reports Server (NTRS)

    Harwing, Dennis D.; Sanders, John M.

    1994-01-01

    Welds of better quality made, and/or heat input reduced. Improved shapes devised for abutting edges of metal pieces to be joined by plasma arc welding in keyhole mode, in which gas jet maintains molten hole ("keyhole") completely through thickness of weld joint. Edges of metal pieces to be welded together machined to provide required combination gap and shaped, thin sections. Shapes and dimensions chosen to optimize weld in various respects; e.g., to enhance penetration of keyhole or reduce heat input to produce joint of given thickness.

  8. Air Brayton Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.

    1981-01-01

    An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.

  9. A modified Monte Carlo model for the ionospheric heating rates

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Fontheim, E. G.; Robertson, S. C.

    1972-01-01

    A Monte Carlo method is adopted as a basis for the derivation of the photoelectron heat input into the ionospheric plasma. This approach is modified in an attempt to minimize the computation time. The heat input distributions are computed for arbitrarily small source elements that are spaced at distances apart corresponding to the photoelectron dissipation range. By means of a nonlinear interpolation procedure their individual heating rate distributions are utilized to produce synthetic ones that fill the gaps between the Monte Carlo generated distributions. By varying these gaps and the corresponding number of Monte Carlo runs the accuracy of the results is tested to verify the validity of this procedure. It is concluded that this model can reduce the computation time by more than a factor of three, thus improving the feasibility of including Monte Carlo calculations in self-consistent ionosphere models.

  10. Critical heat flux phenomena depending on pre-pressurization in transient heat input

    NASA Astrophysics Data System (ADS)

    Park, Jongdoc; Fukuda, Katsuya; Liu, Qiusheng

    2017-07-01

    The critical heat flux (CHF) levels that occurred due to exponential heat inputs for varying periods to a 1.0-mm diameter horizontal cylinder immersed in various liquids were measured to develop an extended database on the effect of various pressures and subcoolings by photographic study. Two main mechanisms of CHF were found. One mechanism is due to the time lag of the hydrodynamic instability (HI) which starts at steady-state CHF upon fully developed nucleate boiling, and the other mechanism is due to the explosive process of heterogeneous spontaneous nucleation (HSN) which occurs at a certain HSN superheat in originally flooded cavities on the cylinder surface. The incipience of boiling processes was completely different depending on pre-pressurization. Also, the dependence of pre-pressure in transient CHFs changed due to the wettability of boiling liquids. The objective of this work is to clarify the transient CHF phenomena due to HI or HSN by photographic.

  11. Impact of high-latitude energy input on the mid- and low-latitude ionosphere and thermosphere

    NASA Astrophysics Data System (ADS)

    Lu, G.; Sheng, C.

    2017-12-01

    High-latitude energy input has a profound impact on the ionosphere and thermosphere especially during geomagnetic storms. Intense auroral particle precipitation ionizes neutral gases and modifies ionospheric conductivity; collisions between neutrals and fast-moving ions accelerate the neutral winds and produce Joule frictional heating; and the excess Joule and particle heating causes atmospheric upwelling and changes neutral composition due to the rising of the heavier, molecular-rich air. In addition, impulsive Joule heating launches large-scale gravity waves that propagate equatorward toward middle and low latitudes and even into the opposite hemisphere, altering the mean global circulation of the thermosphere. Furthermore, high-latitude electric field can also directly penetrate to lower latitudes under rapidly changing external conditions, causing prompt ionospheric variations in the mid- and low-latitude regions. To study the effects of high-latitude energy input, we apply the different convection and auroral precipitation patterns based on both empirical models and the AMIE outputs. We investigate how the mid- and low-latitude regions respond to the different specifications of high-latitude energy input. The main purpose of the study is to delineate the various dynamical, electrodynamical, and chemical processes and to determine their relative importance in the resulting ionospheric and thermospheric properties at mid and low latitudes.

  12. iMatTOUGH: An open-source Matlab-based graphical user interface for pre- and post-processing of TOUGH2 and iTOUGH2 models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan

    TOUGH2 and iTOUGH2 are powerful models that simulate the heat and fluid flows in porous and fracture media, and perform parameter estimation, sensitivity analysis and uncertainty propagation analysis. However, setting up the input files is not only tedious, but error prone, and processing output files is time consuming. Here, we present an open source Matlab-based tool (iMatTOUGH) that supports the generation of all necessary inputs for both TOUGH2 and iTOUGH2 and visualize their outputs. The tool links the inputs of TOUGH2 and iTOUGH2, making sure the two input files are consistent. It supports the generation of rectangular computational mesh, i.e.,more » it automatically generates the elements and connections as well as their properties as required by TOUGH2. The tool also allows the specification of initial and time-dependent boundary conditions for better subsurface heat and water flow simulations. The effectiveness of the tool is illustrated by an example that uses TOUGH2 and iTOUGH2 to estimate soil hydrological and thermal properties from soil temperature data and simulate the heat and water flows at the Rifle site in Colorado.« less

  13. Environmental Loss Characterization of an Advanced Stirling Convertor (ASC-E2) Insulation Package Using a Mock Heater Head

    NASA Technical Reports Server (NTRS)

    Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a specified electrical power output for a given net heat input. While electrical power output can be precisely quantified, thermal power input to the Stirling cycle cannot be directly measured. In an effort to improve net heat input predictions, the Mock Heater Head was developed with the same relative thermal paths as a convertor using a conducting rod to represent the Stirling cycle and tested to provide a direct comparison to numerical and empirical models used to predict convertor net heat input. The Mock Heater Head also served as the pathfinder for a higher fidelity version of validation test hardware, known as the Thermal Standard. This paper describes how the Mock Heater Head was tested and utilized to validate a process for the Thermal Standard.

  14. iMatTOUGH: An open-source Matlab-based graphical user interface for pre- and post-processing of TOUGH2 and iTOUGH2 models

    DOE PAGES

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan

    2016-04-01

    TOUGH2 and iTOUGH2 are powerful models that simulate the heat and fluid flows in porous and fracture media, and perform parameter estimation, sensitivity analysis and uncertainty propagation analysis. However, setting up the input files is not only tedious, but error prone, and processing output files is time consuming. Here, we present an open source Matlab-based tool (iMatTOUGH) that supports the generation of all necessary inputs for both TOUGH2 and iTOUGH2 and visualize their outputs. The tool links the inputs of TOUGH2 and iTOUGH2, making sure the two input files are consistent. It supports the generation of rectangular computational mesh, i.e.,more » it automatically generates the elements and connections as well as their properties as required by TOUGH2. The tool also allows the specification of initial and time-dependent boundary conditions for better subsurface heat and water flow simulations. The effectiveness of the tool is illustrated by an example that uses TOUGH2 and iTOUGH2 to estimate soil hydrological and thermal properties from soil temperature data and simulate the heat and water flows at the Rifle site in Colorado.« less

  15. Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.

    PubMed

    Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S

    2015-12-01

    This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Active Flow Control with Thermoacoustic Actuators

    DTIC Science & Technology

    2014-01-31

    AC power has been shown to produce large-amplitude acoustic waves [6]. The input AC current sinusoidally heats this device due to joule heating and...conventional metals, the heat capacity value for carbon-based material (carbon nanotubes/graphene) in consideration here is at least 2 orders of...magnitude smaller. Since the output acoustic power delivered to the surrounding flow field is related inversely to the material heat capacity C (i.e., Poutput

  17. Welding High Strength Modern Line Pipe Steel

    NASA Astrophysics Data System (ADS)

    Goodall, Graeme Robertson

    The effect of modern mechanized girth welding on high strength line pipe has been investigated. The single cycle grain coarsened heat affected zone in three grade 690 line pipe steels and a grade 550 steel has been simulated using a Gleeble thermo-mechanical simulator. The continuous cooling transformation diagrams applicable to the grain coarsened heat affected zone resulting from a range of heat inputs applicable to modern mechanized welding have been established by dilatometry and metallography. The coarse grained heat affected zone was found to transform to lath martensite, bainite, and granular bainite depending on the cooling rate. The impact toughness of the steels was measured using Charpy impact toughness and compared to the toughness of the grain coarsened heat affected zone corresponding to a welding thermal cycle. The ductile to brittle transition temperature was found to be lowest for the steel with the highest hardenability. The toughness resulting from three different thermal cycles including a novel interrupted intercritically reheated grain coarsened (NTR ICR GC HAZ) that can result from dual torch welding at fast travel speed and close torch spacing have been investigated. All of the thermally HAZ regions showed reduced toughness that was attributed to bainitic microstructure and large effective grain sizes. Continuous cooling transformation diagrams for five weld metal chemistries applicable to mechanized pulsed gas metal arc welding of modern high strength pipe steel (SMYS>550 MPa) have been constructed. Welds at heat inputs of 1.5 kJmm-1 and 0.5 kJmm-1 have been created for simulation and analysis. Dilatometric analysis was performed on weld metal specimens cut from single pass 1.5 kJmm-1 as deposited beads. The resulting microstructures were found to range from martensite to polygonal ferrite. There is excellent agreement between the simulated and as deposited weld metal regions. Toughness testing indicates improved energy absorption at -20 °C with increased cooling time.

  18. An Investigation Into: I) Active Flow Control for Cold-Start Performance Enhancement of a Pump-Assisted, Capillary-Driven, Two-Phase Cooling Loop II) Surface Tension of n-Pentanol + Water, a Self-Rewetting Working Fluid, From 25 °C to 85 °C

    NASA Astrophysics Data System (ADS)

    Bejarano, Roberto Villa

    Cold-start performance enhancement of a pump-assisted, capillary-driven, two-phase cooling loop was attained using proportional integral and fuzzy logic controls to manage the boiling condition inside the evaporator. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting fluid, was also investigated for enhancing heat transfer performance of capillary driven (passive) thermal devices was also studied. A proportional-integral control algorithm was used to regulate the boiling condition (from pool boiling to thin-film boiling) and backpressure in the evaporator during cold-start and low heat input conditions. Active flow control improved the thermal resistance at low heat inputs by 50% compared to the baseline (constant flow rate) case, while realizing a total pumping power savings of 56%. Temperature overshoot at start-up was mitigated combining fuzzy-logic with a proportional-integral controller. A constant evaporator surface temperature of 60°C with a variation of +/-8°C during start-up was attained with evaporator thermal resistances as low as 0.10 cm2--K/W. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting working fluid, as a function of concentration and temperature were also investigated. Self-rewetting working fluids are promising in two-phase heat transfer applications because they have the ability to passively drive additional working fluid towards the heated surface; thereby increasing the dryout limitations of the thermal device. Very little data is available in literature regarding the surface tension of these fluids due to the complexity involved in fluid handling, heating, and experimentation. Careful experiments were performed to investigate the surface tension of n-Pentanol + water. The concentration and temperature range investigated were from 0.25%wt. to1.8%wt and 25°C to 85°C, respectively.

  19. 76 FR 9650 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Amendment to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... water and fuel-burning installations that involve direct heat exchange. Fuel-burning installations, such... (British thermal unit) Btu per hour heat input or the sulfur content of the fuel. Since a ``furnace'' is usually direct heat exchange, the State of Maryland concludes that it should not be included in the...

  20. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Goodge, John W.

    2018-02-01

    Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central East Antarctica resembles that in the Proterozoic Arunta and Tennant Creek inliers of Australia but is dissimilar to other areas like the Central Australian Heat Flow Province that are characterized by anomalously high heat flow. Age variation within the sample suite indicates that central East Antarctic lithosphere is heterogeneous, yet the average heat production and heat flow of four age subgroups cluster around the group mean, indicating minor variation in the thermal contribution to the overlying ice sheet from upper crustal heat production. Despite these minor differences, ice-sheet models may favor a geologically realistic input of crustal heat flow represented by the distribution of ages and geothermal characteristics found in these glacial clasts.

  1. Heat Rejection Systems Utilizing Composites and Heat Pipes: Design and Performance Testing

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Beach, Duane E.; Sanzi, James L.

    2007-01-01

    Polymer matrix composites offer the promise of reducing the mass and increasing the performance of future heat rejection systems. With lifetimes for heat rejection systems reaching a decade or more in a micrometeoroid environment, use of multiple heat pipes for fault tolerant design is compelling. The combination of polymer matrix composites and heat pipes is of particular interest for heat rejection systems operating on the lunar surface. A technology development effort is under way to study the performance of two radiator demonstration units manufactured with different polymer matrix composite face sheet resin and bonding adhesives, along with different titanium-water heat pipe designs. Common to the two radiator demonstration units is the use of high thermal conductivity fibers in the face sheets and high thermal conductivity graphite saddles within a light weight aluminum honeycomb core. Testing of the radiator demonstration units included thermal vacuum exposure and thermal vacuum exposure with a simulated heat pipe failure. Steady state performance data were obtained at different operating temperatures to identify heat transfer and thermal resistance characteristics. Heat pipe failure was simulated by removing the input power from an individual heat pipe in order to identify the diminished performance characteristics of the entire panel after a micrometeoroid strike. Freeze-thaw performance was also of interest. This paper presents a summary of the two radiator demonstration units manufactured to support this technology development effort along with the thermal performance characteristics obtained to date. Future work will also be discussed.

  2. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  3. Modeling the wet bulb globe temperature using standard meteorological measurements.

    PubMed

    Liljegren, James C; Carhart, Richard A; Lawday, Philip; Tschopp, Stephen; Sharp, Robert

    2008-10-01

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 degree C based on comparisons with wet bulb globe temperature measurements at all depots.

  4. Development of a national anthropogenic heating database with an extrapolation for international cities

    NASA Astrophysics Data System (ADS)

    Sailor, David J.; Georgescu, Matei; Milne, Jeffrey M.; Hart, Melissa A.

    2015-10-01

    Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment - anthropogenic heating - is an essential element toward continued progress in urban climate assessment.

  5. Over a century of PAH contamination history to New York City

    NASA Astrophysics Data System (ADS)

    Yan, B.; Bopp, R.; Chillrud, S. N.; Abrajano, T.

    2015-12-01

    Spatially and temporally integrated urban lake sediments have the potential to be used for reconstructing air contamination history, with data being available even before the start of urban air quality monitoring. In a previous study, fine-grained sediment sample cores were collected from the Lower Hudson River basin and dated via radionuclides. An objective source appointment method has been established based on several source-sensitive molecular indicators we found. An over 100 year historical record of energy usage in New York City has been reconstructed in cores from Central Park Lake. The reconstructed history is consistent with historical energy consumption data of NYS complied by the US Department of Energy. Wood combustion was dominant one century ago in Manhattan, followed by coal combustion dominance from the 1900s to the 1940s. Petroleum combustion, mainly from motor vehicles in Manhattan, increased gradually from the 1920s, and became the dominant PAH input after 1940s. In most samples collected from elsewhere in the lower Hudson River Basin, petroleum combustion was the dominant PAH input in the last half century. From 2001 to 2012, indoor and outdoor air filter samples were collected from NYC apartments; though non-volatile PAH levels were quite stable, pyrene, which is a semi-volatile PAHs compound, increased over these 12 years, especially in the heating season. The burning of No.6 oil in NYC boilers is thought to lead to this increase and the recent effort in switching No. 6 heating oil to No.2 oil has the potential to overturn the increasing trend.

  6. Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data

    NASA Astrophysics Data System (ADS)

    Siemann, Amanda Lynn

    The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the decrease in the available energy balances the decrease in the sensible heat flux. These datasets are useful for benchmarking climate models and LSM output at the global annual scale and the regional scale subject to the regional uncertainties and performance. Future work should improve the input data, particularly the temperature gradient and Zilitinkevich empirical constant, to reduce uncertainties.

  7. Ground coupled solar heat pumps: analysis of four options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.W.

    Heat pump systems which utilize both solar energy and energy withdrawn from the ground are analyzed using a simplified procedure which optimizes the solar storage temperature on a monthly basis. Four ways of introducing collected solar energy to the system are optimized and compared. These include use of actively collected thermal input to the heat pump; use of collected solar energy to heat the load directly (two different ways); and use of a passive option to reduce the effective heating load.

  8. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  9. Human Powered Centrifuge

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  10. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    PubMed

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  11. Locked-mode avoidance and recovery without momentum input

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L.; Rice, J. E.; Wolfe, S.; Cziegler, I.; Gao, C.; Granetz, R.; Wukitch, S.; Terry, J.; Greenwald, M.; Sugiyama, L.; Hubbard, A.; Hugges, J.; Marmar, E.; Phillips, P.; Rowan, W.

    2015-11-01

    Error-field-induced locked-modes (LMs) have been studied in Alcator C-Mod at ITER-Bϕ, without NBI fueling and momentum input. Delay of the mode-onset and locked-mode recovery has been successfully obtained without external momentum input using Ion Cyclotron Resonance Heating (ICRH). The use of external heating in-sync with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW, which demonstrates the existence of a power threshold to ``unlock'' the mode; in the presence of an error field the L-mode discharge can transition into H-mode only when PICRH > 2 MW and at high densities, avoiding also the density pump-out. The effects of ion heating observed on unlocking the core plasma may be due to ICRH induced flows in the plasma boundary, or modifications of plasma profiles that changed the underlying turbulence. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT, DE-FG03-96ER-54373 at University of Texas at Austin, and DE-AC02-09CH11466 at PPPL.

  12. Modeling the direct sun component in buildings using matrix algebraic approaches: Methods and validation

    DOE PAGES

    Lee, Eleanor S.; Geisler-Moroder, David; Ward, Gregory

    2017-12-23

    Simulation tools that enable annual energy performance analysis of optically-complex fenestration systems have been widely adopted by the building industry for use in building design, code development, and the development of rating and certification programs for commercially-available shading and daylighting products. The tools rely on a three-phase matrix operation to compute solar heat gains, using as input low-resolution bidirectional scattering distribution function (BSDF) data (10–15° angular resolution; BSDF data define the angle-dependent behavior of light-scattering materials and systems). Measurement standards and product libraries for BSDF data are undergoing development to support solar heat gain calculations. Simulation of other metrics suchmore » as discomfort glare, annual solar exposure, and potentially thermal discomfort, however, require algorithms and BSDF input data that more accurately model the spatial distribution of transmitted and reflected irradiance or illuminance from the sun (0.5° resolution). This study describes such algorithms and input data, then validates the tools (i.e., an interpolation tool for measured BSDF data and the five-phase method) through comparisons with ray-tracing simulations and field monitored data from a full-scale testbed. Simulations of daylight-redirecting films, a micro-louvered screen, and venetian blinds using variable resolution, tensor tree BSDF input data derived from interpolated scanning goniophotometer measurements were shown to agree with field monitored data to within 20% for greater than 75% of the measurement period for illuminance-based performance parameters. The three-phase method delivered significantly less accurate results. We discuss the ramifications of these findings on industry and provide recommendations to increase end user awareness of the current limitations of existing software tools and BSDF product libraries.« less

  13. Modeling the direct sun component in buildings using matrix algebraic approaches: Methods and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor S.; Geisler-Moroder, David; Ward, Gregory

    Simulation tools that enable annual energy performance analysis of optically-complex fenestration systems have been widely adopted by the building industry for use in building design, code development, and the development of rating and certification programs for commercially-available shading and daylighting products. The tools rely on a three-phase matrix operation to compute solar heat gains, using as input low-resolution bidirectional scattering distribution function (BSDF) data (10–15° angular resolution; BSDF data define the angle-dependent behavior of light-scattering materials and systems). Measurement standards and product libraries for BSDF data are undergoing development to support solar heat gain calculations. Simulation of other metrics suchmore » as discomfort glare, annual solar exposure, and potentially thermal discomfort, however, require algorithms and BSDF input data that more accurately model the spatial distribution of transmitted and reflected irradiance or illuminance from the sun (0.5° resolution). This study describes such algorithms and input data, then validates the tools (i.e., an interpolation tool for measured BSDF data and the five-phase method) through comparisons with ray-tracing simulations and field monitored data from a full-scale testbed. Simulations of daylight-redirecting films, a micro-louvered screen, and venetian blinds using variable resolution, tensor tree BSDF input data derived from interpolated scanning goniophotometer measurements were shown to agree with field monitored data to within 20% for greater than 75% of the measurement period for illuminance-based performance parameters. The three-phase method delivered significantly less accurate results. We discuss the ramifications of these findings on industry and provide recommendations to increase end user awareness of the current limitations of existing software tools and BSDF product libraries.« less

  14. Cooling/grounding mount for hybrid circuits

    NASA Technical Reports Server (NTRS)

    Bagstad, B.; Estrada, R.; Mandel, H.

    1981-01-01

    Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.

  15. Identifying the location of the OMP separatrix in DIII-D using power accounting

    DOE PAGES

    Stangeby, Peter C.; Canik, John M.; Elder, J. D.; ...

    2015-08-07

    In order to identify reliable scalings for the scrape-off layer (SOL) power width it is necessary to know the location of the separatrix in divertor tokamaks as accurately as possible, specifically its location at the outside midplane (OMP) the standard reference location. Two methods are described which use power accounting to improve the accuracy of identifying the location of the OMP separatrix. The first uses the infrared-measured deposited power profile at the outer target as the primary input, the 'more » $$P_{{\\rm SOL}}^{{\\rm exhaust}}$$ method'. The second uses the measured power input to the SOL, obtained by subtracting the power radiated from inside the separatrix from the total heating power, the ' $$P_{{\\rm SOL}}^{{\\rm input}}$$ method'. Furthermore, these two power accounting methods are illustrated with the examples of 21 H-mode DIII-D discharges. High spatial resolution Thomson scattering measured profiles of ne and Te for the main SOL near the OMP are also used as primary input to the analysis; only between-edge localized mode data are used here. The Thomson profiles are used to calculate the electron parallel conducted heat flux profiles which are then matched to the measured $$P_{{\\rm SOL}}^{{\\rm exhaust}}$$ and $$P_{{\\rm SOL}}^{{\\rm input}}$$ by adjusting the location of the OMP separatrix relative to that of the Thomson data. For these attached discharges, it is found that the values of $$R_{{\\rm sep}}^{{\\rm omp}}$$ given by the two power accounting methods agree to within ~1 mm of each other and also to within ~1 mm of the values given by the 'standard DIII-D method' described by Porter et al (1998 Phys. Plasmas 5 1410). Lastly, the shifted $$R_{{\\rm sep}}^{{\\rm omp}}$$ results in only modest changes to the values of ne and Te at the OMP separatrix relative to the 'standard' values, increasing $$n_{{\\rm e}}^{{\\rm sep}}$$ by 8% and $$T_{{\\rm e}}^{{\\rm sep}}$$ by 20%.« less

  16. Improved silicon nitride for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Wimmer, J. M.

    1986-01-01

    Silicon nitride is a high temperature material currently under consideration for heat engine and other applications. The objective is to improve the net shape fabrication technology of Si3N4 by injection molding. This is to be accomplished by optimizing the process through a series of statistically designed matrix experiments. To provide input to the matrix experiments, a wide range of alternate materials and processing parameters was investigated throughout the whole program. The improvement in the processing is to be demonstrated by a 20 percent increase in strength and a 100 percent increase in the Weibull modulus over that of the baseline material. A full characterization of the baseline process was completed. Material properties were found to be highly dependent on each step of the process. Several important parameters identified thus far are the starting raw materials, sinter/hot isostatic pressing cycle, powder bed, mixing methods, and sintering aid levels.

  17. Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Lin, Robert H.; Schlecht, Erich T.; Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Siegel, Peter H.; Ward, John S.; Lee, Choonsup; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    The planar GaAs Shottky diode frequency multiplier is a critical technology for the local oscillator (LO) for submillimeter- wave heterodyne receivers due to low mass, tenability, long lifetime, and room-temperature operation. The use of a W-band (75-100 GHz) power amplifier followed by a frequency multiplier is the most common for submillimeter-wave sources. Its greatest challenge is to provide enough input power to the LO for instruments onboard future planetary missions. Recently, JPL produced 800 mW at 92.5 GHz by combining four MMICs in parallel in a balanced configuration. As more power at W-band is available to the multipliers, their power-handling capability be comes more important. High operating temperatures can lead to degradation of conversion efficiency or catastrophic failure. The goal of this innovation is to reduce the thermal resistance by attaching diamond film as a heat-spreader on the backside of multipliers to improve their power-handling capability. Polycrystalline diamond is deposited by hot-filament chemical vapor deposition (CVD). This diamond film acts as a heat-spreader to both the existing 250- and 300-GHz triplers, and has a high thermal conductivity (1,000-1,200 W/mK). It is approximately 2.5 times greater than copper (401 W/mK) and 20 times greater than GaAs (46 W/mK). It is an electrical insulator (resistivity approx. equals 10(exp 15) Ohms-cm), and has a low relative dielectric constant of 5.7. Diamond heat-spreaders reduce by at least 200 C at 250 mW of input power, compared to the tripler without diamond, according to thermal simulation. This superior thermal management provides a 100-percent increase in power-handling capability. For example, with this innovation, 40-mW output power has been achieved from a 250-GHz tripler at 350-mW input power, while the previous triplers, without diamond, suffered catastrophic failures. This breakthrough provides a stepping-stone for frequency multipliers-based LO up to 3 THz. The future work for this design is to apply the high output power from both the 250 and 300 GHz to multiple chains in order to generate milliwatts at 2.3 THz. Using the first generation of results for this innovation, 40 mW of output power were produced from a 240-GHz tripler at 350-mW input power, and 27- mW output power was produced from a 300-GHz tripler at 408-mW input power. This is two times higher than the current state-of-the-art output power capability. A finite-element thermal simulation also shows that 30-microns thick diamond dropped the temperature of the anodes by at least 200 C.

  18. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    PubMed

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  19. Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorour, A.A., E-mail: ahmad.sorour@mail.mcgill.ca; Chromik, R.R., E-mail: richard.chromik@mcgill.ca; Gauvin, R., E-mail: raynald.gauvin@mcgill.ca

    2013-12-15

    The present is a study of the solidification and microstructure of Fe–28.2%Cr–3.8%B–1.5%Si–1.5%Mn (wt.%) alloy deposited onto a 1020 plain carbon steel substrate using the controlled short-circuit metal inert gas welding process. The as-solidified alloy was a metal matrix composite with a hypereutectic microstructure. Thermodynamic calculation based on the Scheil–Gulliver model showed that a primary (Cr,Fe){sub 2}B phase formed first during solidification, followed by an eutectic formation of the (Cr,Fe){sub 2}B phase and a body-centered cubic Fe-based solid solution matrix, which contained Cr, Mn and Si. Microstructure analysis confirmed the formation of these phases and showed that the shape of themore » (Cr,Fe){sub 2}B phase was irregular plate. As the welding heat input increased, the weld dilution increased and thus the volume fraction of the (Cr,Fe){sub 2}B plates decreased while other microstructural characteristics were similar. - Highlights: • We deposit Fe–Cr–B-based alloy onto plain carbon steel using the CSC-MIG process. • We model the solidification behavior using thermodynamic calculation. • As deposited alloy consists of (Cr,Fe){sub 2}B plates embedded in Fe-based matrix. • We study the effect of the welding heat input on the microstructure.« less

  20. Faraday Shields within a Solenoidal Coil to Reduce Sample Heating: Numerical Comparison of Designs and Experimental Verification

    PubMed Central

    Park, BuSik; Neuberger, Thomas; Webb, Andrew G.; Bigler, Don C.; Collins, Christopher M.

    2009-01-01

    A comparison of methods to decrease RF power dissipation and related heating in conductive samples using passive conductors surrounding a sample in a solenoid coil is presented. Full-Maxwell finite difference time domain numerical calculations were performed to evaluate the effect of the passive conductors by calculating conservative and magnetically-induced electric field and magnetic field distributions. To validate the simulation method, experimental measurements of temperature increase were conducted using a solenoidal coil (diameter 3 mm), a saline sample (10 mM NaCl) and passive copper shielding wires (50 μm diameter). The temperature increase was 58% lower with the copper wires present for several different input powers to the coil. This was in good agreement with simulation for the same geometry, which indicated 57% lower power dissipated in the sample with conductors present. Simulations indicate that some designs should be capable of reducing temperature increase by more than 85%. PMID:19879784

  1. Generalized approach to cooling charge-coupled devices using thermoelectric coolers

    NASA Technical Reports Server (NTRS)

    Petrick, S. Walter

    1987-01-01

    This paper is concerned with the use of thermoelectric coolers (TECs) to cool charge-coupled devices (CCDs). Heat inputs to the CCD from the warmer environment are identified, and generalized graphs are used to approximate the major heat inputs. A method of choosing and estimating the power consumption of the TEC is discussed. This method includes the use of TEC performance information supplied by the manufacturer and equations derived from this information. Parameters of the equations are tabulated to enable the reader to use the TEC performance equations for choosing and estimating the power needed for specific TEC applications.

  2. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  3. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2017-09-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  4. Characterisation of a grooved heat pipe with an anodised surface

    NASA Astrophysics Data System (ADS)

    Solomon, A. Brusly; Ram Kumar, A. M.; Ramachandran, K.; Pillai, B. C.; Senthil Kumar, C.; Sharifpur, Mohsen; Meyer, Josua P.

    2017-03-01

    A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°-90°, 25-250 W and 10-70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m2. The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.

  5. Modern Thermocouple Experiment.

    ERIC Educational Resources Information Center

    Chang, K. N.; And Others

    1978-01-01

    Describes a thermocouple circuit used to measure Joule heating as well as Peltier heating and cooling for a copper-Constantan metallic junction. Shows how the Seebeck effect from a thermocouple can monitor the temperature condition of a junction with regard to input power and Peltier effect. (Author/GA)

  6. Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke

    2017-08-01

    Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.

  7. Comparison of heat transfer performance on closed pulsating heat pipe for Fe3O4 and ɤFe2O3 for achieving an empirical correlation

    NASA Astrophysics Data System (ADS)

    Goshayeshi, Hamid Reza; Izadi, Farhad; Bashirnezhad, Kazem

    2017-05-01

    This paper describes the effect of heat transfer coefficient in an oscillating heat pipe for Fe3O4/water and ɤ (gamma) Fe2O3/kerosene. Experimental studies were performed to investigate the thermal performance of three oscillating heat pipes operating with heating power input in a range of 0-140 W. The tested OHPs are all made from copper tubes with inner diameters (IDs) of 2, 2.5 and 3 mm with different number of turns. Two working fluids, Fe3O4/water and ɤ (gamma) Fe2O3/kerosene, were used by filling ratios of 50%, by volume. Experimental results show that thermal performance of the OHPs depends on the conjugation effects of working fluid, inner diameter, heating power input and magnetic field. The 2.5 mm ID CLOHPs had better thermal performance when charged with Fe3O4/water as compared with ɤFe2O3/kerosene. Finally, an empirical correlation based on 600 sets of available experimental data was proposed to predict the thermal performance of vertical CLOHPs for Fe3O4/water and ɤ (gamma) Fe2O3/kerosene.

  8. Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodrigues, Dario B.; Sinahon, Randolf; Sbarro, Lyndsey; Beckhoff, Valeria; Hurwitz, Mark D.

    2017-02-01

    Background: Hyperthermia, i.e., raising tissue temperature to 40-45°C for 60 min, has been demonstrated to increase the effectiveness of radiation and chemotherapy for cancer. Although multi-element conformal heat applicators are under development to provide more adjustable heating of contoured anatomy, to date the most often used applicator to heat superficial disease is the simple microwave waveguide. With only a single power input, the operator must be resourceful to adjust heat treatment to accommodate variable size and shape tumors spreading across contoured anatomy. Methods: We used multiphysics simulation software that couples electromagnetic, thermal and fluid dynamics physics to simulate heating patterns in superficial tumors from commercially available microwave waveguide applicators. Temperature distributions were calculated inside homogenous muscle and layered skin-fat-muscle-tumor-bone tissue loads for a typical range of applicator coupling configurations and size of waterbolus. Variable thickness waterbolus was simulated as necessary to accommodate contoured anatomy. Physical models of several treatment configurations were constructed for comparison of simulation results with experimental specific absorption rate (SAR) measurements in homogenous muscle phantom. Results: Accuracy of the simulation model was confirmed with experimental SAR measurements of three unique applicator setups. Simulations demonstrated the ability to generate a wide range of power deposition patterns with commercially available waveguide antennas by controllably varying size and thickness of the waterbolus layer. Conclusion: Heating characteristics of 915 MHz waveguide antennas can be varied over a wide range by controlled adjustment of microwave power, coupling configuration, and waterbolus lateral size and thickness. The uniformity of thermal dose delivered to superficial tumors can be improved by cyclic switching of waterbolus thickness during treatment to proactively shift heat peaks and nulls around under the aperture, thereby reducing patient pain while increasing minimum thermal dose by end of treatment.

  9. Energy harvesting using TEG and PV cell for low power application

    NASA Astrophysics Data System (ADS)

    Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain

    2018-02-01

    A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.

  10. Effect of shoulder to pin ratio on magnesium alloy Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Othman, N. H.; Ishak, M.; Shah, L. H.

    2017-09-01

    This study focuses on the effect of shoulder to pin diameter ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 2 mm were friction stir welded by using conventional milling machine. The shoulder to pin diameter ratio used in this experiment are 2.25, 2.5, 2.75, 3, 3.33, 3.66, 4.5, 5 and 5.5. The rotational speed and welding speed used in this study are 1000 rpm and 100 mm/min, respectively. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. The grain size of stir zone increased with decreasing shoulder to pin ratio from ratio 3.33 to 5.5 due to higher heat input. It is observed that, surface galling and faying surface defect is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Shoulder to pin ratio 5.5 shows lowest tensile strength while shoulder to pin diameter ratio 3.33 shows highest tensile strength with weld efficiency 91 % from based metal.

  11. A study of high-temperature heat pipes with multiple heat sources and sinks. I - Experimental methodology and frozen startup profiles. II - Analysis of continuum transient and steady-state experimental data with numerical predictions

    NASA Technical Reports Server (NTRS)

    Faghri, A.; Cao, Y.; Buchko, M.

    1991-01-01

    Experimental profiles for heat pipe startup from the frozen state were obtained, using a high-temperature sodium/stainless steel pipe with multiple heat sources and sinks to investigate the startup behavior of the heat pipe for various heat loads and input locations, with both low and high heat rejection rates at the condensor. The experimental results of the performance characteristics for the continuum transient and steady-state operation of the heat pipe were analyzed, and the performance limits for operation with varying heat fluxes and location are determined.

  12. A model of heat transfer in immersed man

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.

    1974-01-01

    An equation representing man's thermal balance under water is considered. The equation states that the body thermal loading from metabolic heat production and artificial heat input must be offset by respiratory and environmental heat exchange to maintain a constant body temperature. Critical body regions are affected by cold-water thermal stress. A model of the thermoregulatory system may be divided into the physical-controlled system and the dynamic controlling system. The thermal model is simulated by computer programs.

  13. Catastrophic cooling and cessation of heating in the solar corona

    NASA Astrophysics Data System (ADS)

    Peter, H.; Bingert, S.; Kamio, S.

    2012-01-01

    Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org

  14. Operation characteristic of a heat pump of mechanical vapor recompression propelled by fans and its performance analysis applied to waste-water treatment

    NASA Astrophysics Data System (ADS)

    Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang

    2014-01-01

    In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check electricity power consumption while operating practically in light of electric motor efficiency (ηe) and ηad.

  15. ERTS-C (Landsat 3) cryogenic heat pipe experiment definition

    NASA Technical Reports Server (NTRS)

    Brennan, P. J.; Kroliczek, E. J.

    1975-01-01

    A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.

  16. Numerical investigation of the staged gasification of wet wood

    NASA Astrophysics Data System (ADS)

    Donskoi, I. G.; Kozlov, A. N.; Svishchev, D. A.; Shamanskii, V. A.

    2017-04-01

    Gasification of wooden biomass makes it possible to utilize forestry wastes and agricultural residues for generation of heat and power in isolated small-scale power systems. In spite of the availability of a huge amount of cheap biomass, the implementation of the gasification process is impeded by formation of tar products and poor thermal stability of the process. These factors reduce the competitiveness of gasification as compared with alternative technologies. The use of staged technologies enables certain disadvantages of conventional processes to be avoided. One of the previously proposed staged processes is investigated in this paper. For this purpose, mathematical models were developed for individual stages of the process, such as pyrolysis, pyrolysis gas combustion, and semicoke gasification. The effect of controlling parameters on the efficiency of fuel conversion into combustible gases is studied numerically using these models. For the controlling parameter are selected heat inputted into a pyrolysis reactor, the excess of oxidizer during gas combustion, and the wood moisture content. The process efficiency criterion is the gasification chemical efficiency accounting for the input of external heat (used for fuel drying and pyrolysis). The generated regime diagrams represent the gasification efficiency as a function of controlling parameters. Modeling results demonstrate that an increase in the fraction of heat supplied from an external source can result in an adequate efficiency of the wood gasification through the use of steam generated during drying. There are regions where it is feasible to perform incomplete combustion of the pyrolysis gas prior to the gasification. The calculated chemical efficiency of the staged gasification is as high as 80-85%, which is 10-20% higher that in conventional single-stage processes.

  17. Geophysical characteristics of the hydrothermal systems of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Kauahikaua, J.

    1993-01-01

    Clues to the overall structure of Kilauea volcano can be obtained from spatial studies of gravity, magnetic, and seismic velocity variations. The rift zones and summit are underlain by dense, magnetic, high P-wave-velocity rocks at depths of about 2 km less. The gravity and seismic velocity studies indicate that the rift structures are broad, extending farther to the north than to the south of the surface features. The magnetic data give more definition to the rift structures by allowing separation into a narrow, highly-magnetized, shallow zone and broad, flanking, magnetic lows. The patterns of gravity, magnetic variations, and seismicity document the southward migration of the upper cast rift zone. Regional, hydrologic features of Kilauea can be determined from resistivity and self-potential studies. High-level groundwater exists beneath Kilauea summit to elevations of +800 m within a triangular area bounded by the west edge of the upper southwest rift zone, the east edge of the upper east rift zone, and the Koa'c fault system. High-level groundwater is present within the east rift zone beyond the triangular summit area. Self-potential mapping shows that areas of local heat produce local fluid circulation in the unconfined aquifer (water table). The dynamics of Kilauea eruptions are responsible for both the source of heat and the fracture permeability of the hydrothermal system. Shallow seismicity and surface deformation indicate that magma is intruding and that fractures are forming beneath the rift zones and summit area. Magma supply estimates are used to calculate the rate of heat input to Kilauea's hydrothermal systems. Heat flows of 370-820 mW/m2 are calculated from deep wells within the lower east rift zone. The estimated heat input rate for Kilauea of 9 gigawatts (GW) is at least 25 times higher than the conductive heat loss as estimated from the heat flow in wells extrapolated over the area of the summit caldera and rift zones. Heat must be dissipated by another mechanism, or the heat input rate estimates are much too high. ?? 1993.

  18. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.

  19. Multi-leg heat pipe evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A. (Inventor)

    1986-01-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  20. Central Safety Factor and Normalized Beta Control Under Near-Zero Input Torque Constraints in DIII-D

    NASA Astrophysics Data System (ADS)

    Pajares, Andres; Wehner, William; Schuster, Eugenio; Burrell, Keith; Ferron, John; Walker, Michael; Humphreys, David; Lehigh University Team; Atomics Team, General

    2017-10-01

    DIII-D experiments have assessed the capability of combined central safety factor (q0) and normalized beta (βN) control under near-zero net torque to facilitate access to QH-mode with reverse Ip and normal Bt. Regulation of q0 and βN can prevent magneto-hydrodynamic instabilities that deteriorate plasma performance in discharges with a monotonically increasing safety-factor profile. Zero-input-torque scenarios are of special interest because future burning plasma tokamaks such as ITER will most likely operate with very low input torque, which makes these scenarios more susceptible to locked modes. To support studies of such scenarios, a controller for simultaneous regulation of q0 and βN has been developed using near-zero net input torque actuators including balanced neutral beam injection (NBI) and electron-cyclotron heating & current drive (ECH/ECCD). Experimental results show that in spite of the presence of locked modes the use of feedback control resulted in good tracking of the commanded q0 and βN when both ECCD/ECH and NBI were available. Supported by the US DOE under DE-SC0010661 and DE-FC02-04ER54698.

  1. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  2. Hypothetical Reentry Thermostructural Performance of Space Shuttle Orbiter With Missing or Eroded Thermal Protection Tiles

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Gong, Leslie; Quinn, Robert D.

    2004-01-01

    This report deals with hypothetical reentry thermostructural performance of the Space Shuttle orbiter with missing or eroded thermal protection system (TPS) tiles. The original STS-5 heating (normal transition at 1100 sec) and the modified STS-5 heating (premature transition at 800 sec) were used as reentry heat inputs. The TPS missing or eroded site is assumed to be located at the center or corner (spar-rib juncture) of the lower surface of wing midspan bay 3. For cases of missing TPS tiles, under the original STS-5 heating, the orbiter can afford to lose only one TPS tile at the center or two TPS tiles at the corner (spar-rib juncture) of the lower surface of wing midspan bay 3. Under modified STS-5 heating, the orbiter cannot afford to lose even one TPS tile at the center or at the corner of the lower surface of wing midspan bay 3. For cases of eroded TPS tiles, the aluminum skin temperature rises relatively slowly with the decreasing thickness of the eroded central or corner TPS tile until most of the TPS tile is eroded away, and then increases exponentially toward the missing tile case.

  3. Closed Form Equations for the Preliminary Design of a Heat-Pipe-Cooled Leading Edge

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1998-01-01

    A set of closed form equations for the preliminary evaluation and design of a heat-pipe-cooled leading edge is presented. The set of equations can provide a leading-edge designer with a quick evaluation of the feasibility of using heat-pipe cooling. The heat pipes can be embedded in a metallic or composite structure. The maximum heat flux, total integrated heat load, and thermal properties of the structure and heat-pipe container are required input. The heat-pipe operating temperature, maximum surface temperature, heat-pipe length, and heat pipe-spacing can be estimated. Results using the design equations compared well with those from a 3-D finite element analysis for both a large and small radius leading edge.

  4. Downhole steam injector

    DOEpatents

    Donaldson, A. Burl; Hoke, Donald E.

    1983-01-01

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  5. Influence of Heat Input on Microstructure and Toughness Properties in Simulated CGHAZ of X80 Steel Manufactured Using High-Temperature Processing

    NASA Astrophysics Data System (ADS)

    Zhu, Zhixiong; Han, Jian; Li, Huijun

    2015-11-01

    To determine and demonstrate the weldability of high-Nb high-temperature processed (HTP) steels and provide extremely valuable information for future line pipe steel design and general steel manufacture, in the current study the toughness in simulated coarse-grained heat-affected zone (CGHAZ) of an X80 grade steel manufactured using HTP was evaluated. The simulated CGHAZs subjected to thermal cycles with various heat inputs (HIs) (0.8 to 5.0 kJ/mm) were produced using a Gleeble 3500 simulator. The microstructures and corresponding mechanical properties were investigated by means of optical microscopy, scanning electron microscopy, electron backscatter diffraction, hardness testing, and Charpy V-notch (CVN) testing. The microstructural examination shows that the simulated CGHAZs consisted of a bainite-dominant microstructure and relatively low amount (<2 pct) of martensite-austenite (M-A) constituent. The prior austenite grain size was controlled to be 45 to 55 µm at HIs of 0.8 to 3.5 kJ/mm, and remarkably increased to 85 µm at an HI of 5 kJ/mm. The results of CVN testing suggest that superior toughness can be achieved in the studied range of HIs (0.8 to 5 kJ/mm). This is thought to be associated with the combined effects of bainitic microstructure and low M-A fraction as well as comparatively fine austenite grain size in the studied CGHAZs.

  6. Effects of Ultrasonic Vibration on Heat Transfer Characteristics of Lithium Bromide Aqueous Solution under the Reduced Pressure

    NASA Astrophysics Data System (ADS)

    Yamashiro, Hikaru; Nakashima, Ryou

    The effects of ultrasonic vibration on heat transfer characteristics of lithium bromide aqueous solution under the reduced pressures are studied experimentally. Pool boiling curves on horizontal smooth tube are obtained using distilled water and 50 % LiBr aqueous solution as test liquids. The system pressure p is varied from 12 to 101 kPa and the liquid subcooling ΔTsub ranges from 0 to 70 K. The frequency of ultrasonic vibration vi s set at 24 and 44 kHz, and the power input to the vibrator P is varied from 0 to 35 W. The wall superheat at the boiling incipience is found to decrease with increasing P, and the nucleate boiling curve shifts toward the lower wall temperature region. However, the effect of P is not found to be very significant in the high heat flux region, especially in the case of small liquid subcooling. Ultrasonic vibration is also found to improve the nucleate boiling heat transfer coefficient by up to a maximum of 3.5 times and to prevent crystallization of the solution and precipitation of additives.

  7. 40 CFR 60.40b - Applicability and delegation of authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired...) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only...

  8. 40 CFR 60.40b - Applicability and delegation of authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired...) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only...

  9. Technique for Low Amperage Potline Operation for Electricity Grid Storage

    NASA Astrophysics Data System (ADS)

    Taylor, Mark P.; Chen, John J. J.

    2015-03-01

    Following a critical review and analysis of steady-state energy balance windows for large modern cell technologies [ Taylor et al ., Met. Mat. Transactions E, 9th Sept. 2014], the issue of a substantial reduction in energy input and heat output to a specific cell technology is addressed in this paper. To investigate the feasibility of such a reduction, the dynamic response to substantial changes in cell amperage and energy input must be quantified. If large amperage reductions can be shown to be feasible and to have no major detrimental affects, a flexible amperage operating philosophy would allow the use of smelting cells as an energy reservoir in the following way: in times of high electricity demand the cells would operate at reduced amperage, releasing electricity to the grid, while in times of low demand or an over-supply of electricity on the grid, the cells would store the surplus electricity in the form of additional aluminum metal. However, to take the above concept out of the realms of the theoretical, it will first be necessary to demonstrate an ability to predict and control the response of the cell to such changes in energy input through regulating the heat losses from the cell. The process of regulation of cell heat loss is quite foreign to operators of aluminum smelters, because the technology to regulate heat loss from smelting cells has not existed previously. This technology does now exist in the form of patented heat exchangers [ Taylor et al ., US Patent 7,901,617 B2, Mar. 8, 2011], but its impact on smelter cell walls must be examined in a dynamic analysis to determine the effect on the molten bath temperature and liquid mass within the cell. The objective of this paper therefore is to perform a first-order analysis of this problem, and to identify the key scientific issues in regulating cell heat loss and in the operating philosophy of heat loss regulation.

  10. Experimental and Numerical Investigation of Forced Convection Heat Transfer in Heat Sink with Rectangular Plates at Varying Inclinations on Vertical Base

    NASA Astrophysics Data System (ADS)

    Patil, Harshal Bhauso; Dingare, Sunil Vishnu

    2018-03-01

    Heat exchange upgrade is a vital territory of research area. Utilization of reasonable systems can bring about noteworthy specialized points of interest coming about reserve funds of cost. Rectangular plates are viewed as best balance arrangement utilized for heat exchange improvement. This gives an enlargement strategy to heat exchange with beginning of limit layer and vortex development. To assess and look at the rate of heat exchange enhancement by rectangular plate fins with differing inclinations (0°-30°-60°), shifting Re and heat supply under forced convection are the principle destinations of this study. The study is done by fluctuating introductions of fins with various inclinations, input heat supply and Re under forced convection. The coefficient of heat transfer increments observed with the expansion in air speed for all the examined designs. The coefficient of the heat transfer is discovered higher at the edge of introduction of fins at 30° for inline arrangement and 0° for staggered arrangement. Looking at both the arrangements, it is discovered that the heat transfer coefficient in 0° fin staggered arrangement is about 17% higher than 30° inline arrangement and 76% higher than the vertical plate fin. For plate fin heat sink, boundary layer formation and growth results in decrease of the coefficient of heat transfer in forced convection. This issue is overcome by accommodating some rectangular fins on the plate fin. It brings about increment of heat transfer coefficient of the RPFHS under the states of trial factors. As indicated by past research, it is discovered that examination of the plate fin heat sink with various sorts of fins for horizontal orientation is done yet but this investigation expects to discover the upgrade of transfer coefficient of plate fin heat sink for its vertical position with rectangular plates at different inclinations under the shifting scopes of heat input supply, fin arrangements and Reynolds number (Re).

  11. Modeling the Ionosphere-Thermosphere Response to a Geomagnetic Storm Using Physics-based Magnetospheric Energy Input: OpenGGCM-CTIM Results

    NASA Technical Reports Server (NTRS)

    Connor, Hyunju K.; Zesta, Eftyhia; Fedrizzi, Mariangel; Shi, Yong; Raeder, Joachim; Codrescu, Mihail V.; Fuller-Rowell, Tim J.

    2016-01-01

    The magnetosphere is a major source of energy for the Earth's ionosphere and thermosphere (IT) system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM) coupled with the Coupled Thermosphere Ionosphere Model (CTIM). OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD) equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe). CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCMCTIM reproduces localized neutral density peaks at approx. 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset, which in turn effectively heats the thermosphere and causes the neutral density increase at 400 km altitude.

  12. An asymptotic-preserving stochastic Galerkin method for the radiative heat transfer equations with random inputs and diffusive scalings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shi, E-mail: sjin@wisc.edu; Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240; Lu, Hanqing, E-mail: hanqing@math.wisc.edu

    2017-04-01

    In this paper, we develop an Asymptotic-Preserving (AP) stochastic Galerkin scheme for the radiative heat transfer equations with random inputs and diffusive scalings. In this problem the random inputs arise due to uncertainties in cross section, initial data or boundary data. We use the generalized polynomial chaos based stochastic Galerkin (gPC-SG) method, which is combined with the micro–macro decomposition based deterministic AP framework in order to handle efficiently the diffusive regime. For linearized problem we prove the regularity of the solution in the random space and consequently the spectral accuracy of the gPC-SG method. We also prove the uniform (inmore » the mean free path) linear stability for the space-time discretizations. Several numerical tests are presented to show the efficiency and accuracy of proposed scheme, especially in the diffusive regime.« less

  13. The structural significance of HAZ sigma phase formation in welded 25%Cr super duplex pipework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesner, C.S.; Garwood, S.J.; Bowden, P.L.

    1993-12-31

    The welding of 25%Cr duplex stainless steel can lead to the formation of sigma phase in both weld metal and heat affected zone (HAZ) regions. It has generally been accepted that this can be avoided by the adoption of appropriate welding procedure controls, generally aimed at reducing heat input and promoting rapid cooling rates. However, experience during pipe spool fabrication for the Marathon East Brae Project has shown that it is extremely difficult to satisfy a welding specification requiring sigma free HAZs. This has proved a particular problem with thin wall pipe welds made in the 2G/5G or 6G fixedmore » positions, where the joint geometry reduces heat flow away from the weld and welding conditions tend to result in the use of higher heat inputs. This paper examines the effect of sigma phase on the fracture toughness of 25%Cr super duplex steel (UNS S32760). It is shown that the CTOD toughness at {minus}20 C decreases as soon as any sigma phase is present and continues to decrease with increasing sigma levels. The toughness of the sigmatized specimens produced by heat treatment was shown to be conservative compared to the toughness measured in the HAZ of 14.2mm and 7.1mm thick pipe weldments, made with welding parameters chosen to enhance HAZ sigma phase formation. Based on the CTOD versus percent sigma level relationship derived from the laboratory specimens, fracture assessment calculations of tolerable flaw sizes were performed. These demonstrated that under the severest design conditions, assuming the maximum flaw sizes which could remain undetected in the pipework, sigma levels up to 2.5% can be tolerated safely. The conservatism of the fracture assessments for predicting the performance of weldments was demonstrated by full scale tensile testing of 2 inch nominal bore x 2.77 mm wall thickness pipe butt welds containing through-thickness circumferential fatigue cracks located in the sigmatized HAZ.« less

  14. Satellite data based approach for the estimation of anthropogenic heat flux over urban areas

    NASA Astrophysics Data System (ADS)

    Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios

    2017-09-01

    Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.

  15. High-quality eddy-covariance CO2 budgets under cold climate conditions

    NASA Astrophysics Data System (ADS)

    Kittler, Fanny; Eugster, Werner; Foken, Thomas; Heimann, Martin; Kolle, Olaf; Göckede, Mathias

    2017-08-01

    This study aimed at quantifying potential negative effects of instrument heating to improve eddy-covariance flux data quality in cold environments. Our overarching objective was to minimize heating-related bias in annual CO2 budgets from an Arctic permafrost system. We used continuous eddy-covariance measurements covering three full years within an Arctic permafrost ecosystem with parallel sonic anemometers operation with activated heating and without heating as well as parallel operation of open- and closed-path gas analyzers, the latter serving as a reference. Our results demonstrate that the sonic anemometer heating has a direct effect on temperature measurements while the turbulent wind field is not affected. As a consequence, fluxes of sensible heat are increased by an average 5 W m-2 with activated heating, while no direct effect on other scalar fluxes was observed. However, the biased measurements in sensible heat fluxes can have an indirect effect on the CO2 fluxes in case they are used as input for a density-flux WPL correction of an open-path gas analyzer. Evaluating the self-heating effect of the open-path gas analyzer by comparing CO2 flux measurements between open- and closed-path gas analyzers, we found systematically higher CO2 uptake recorded with the open-path sensor, leading to a cumulative annual offset of 96 gC m-2, which was not only the result of the cold winter season but also due to substantial self-heating effects during summer. With an inclined sensor mounting, only a fraction of the self-heating correction for vertically mounted instruments is required.

  16. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... includes any non-heating season pilot input loss. Area of the space (A): the horizontal lighted area of a... doors of a building. Integrated part-load value (IPLV): a single-number figure of merit based on part-load EER or COP expressing part-load efficiency for air-conditioning and heat pump equipment on the...

  17. The Constrained Vapor Bubble Experiment - Interfacial Flow Region

    NASA Technical Reports Server (NTRS)

    Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.

    2015-01-01

    Internal heat transfer coefficient of the CVB correlated to the presence of the interfacial flow region. Competition between capillary and Marangoni flow caused Flooding and not a Dry-out region. Interfacial flow region growth is arrested at higher power inputs. 1D heat model confirms the presence of interfacial flow region. 1D heat model confirms the arresting phenomena of interfacial flow region Visual observations are essential to understanding.

  18. WRC bulletin. A review of underclad cracking in pressure-vessel components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinckier, A.G.; Pense, A.W.

    1974-01-01

    This review of cracking underneath the weld cladding is to determine what factors contribute to this condition, and to outline means for alleviating or eliminating this condition. Considerable data on manufacture, heat treatment, and cladding of heavy-section pressure-vessel steels for nuclear service are also included. Three factors in combination that promote underclad cracking are susceptible microstructure, favorable residual-stress pattern, and a thermal treatment bringing the steel into a critical temperature region (600-650/sup 0/C) where creep ductility is low. High-heat-input weld-overlay cladding produces the susceptible microstructure and residual-stress pattern and postweld heat treatment produces the critical temperature. Most underclad cracking wasmore » found in SA508 Class 2 steel forgings clad with one-layer submerged-arc strip electrodes or multi-electrode processes. It was not produced in SA533 Grade B plate or when multilayer overlay processes were used. Underclad cracking can be reduced or eliminated by a two-layer cladding technique, by controlling welding process variables (low heat input), renormalizing the sensitive HAZ region prior to heat treatment, by use of nonsusceptible materials, or by eliminating the postweld heat treatment. Results of a questionnaire survey are also included. 50 references. (DLC)« less

  19. A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges

    DOE R&D Accomplishments Database

    Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.

    1987-02-01

    Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.

  20. Prolonging thermal barrier coated specimen life by thermal cycle management

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.; Poolos, N. P.

    1981-01-01

    Thermal barrier coatings applied to the heated side of engine components such as seals, combustor, and blades of a gas turbine offer a potential increase in efficiency through the use of higher gas temperatures or less cooling air or benefits arising from extended component life by reducing component metal temperatures. The considered investigation has the objective to show that while a thermal barrier coated (TBC) specimen can be brought to a fixed temperature using various fuel-air ratio (F/A) values, lower calculated stresses are associated with lower (F/A) values. This implies that control of (F/A) values (i.e., rates of heat input) during the starting transient and to a lesser extent during shutdown and operation, offers a potential method of improving TBC lifetime through thermal cycle management.

  1. Characterization of a spray torch and analysis of process parameters

    NASA Astrophysics Data System (ADS)

    Ramasamy, R.; Selvarajan, V.

    1999-07-01

    Anode for a non-transferred DC plasma spray torch was designed to improve electrothermal efficiency. A theoretical calculation was made for the electrothermal efficiency in a DC plasma torch operating with argon at atmospheric pressure with power level in the range of 5.2 20 kW using energy balance equations. ANOVA for the two level factorial design was done. Plasma gas flow rate, current intensity, nozzle diameter and length were found to influence the efficiency. The efficiency was found to decrease with increase in current intensity and nozzle length and to increase with increase in nozzle diameter and gas flow rate. The overall energy balance calculations showed that the heat transfer to the plasma-forming gas decreases with increase in arc current and the same was more significant at higher flow rates. Plasma jet velocity for different flow rates, input to the torch and nozzle dimensions was calculated from the gas enthalpy. It was found that the velocity increased with increase in the power input to the torch and gas flow rate and decreased with increase in nozzle length and diameter. The current voltage characteristics of the torch operating with argon gas were studied for different gas flow rates. The Nottingham coefficients were calculated using least square method.

  2. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  3. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy.

    PubMed

    Dickenson, Nicholas E; Erickson, Elizabeth S; Mooren, Olivia L; Dunn, Robert C

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to approximately 55-60 degrees C as output powers reach approximately 50 nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of approximately 450 nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4+/-1.7 and 20.7+/-6.9 mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes ( approximately 15 degrees for etched and approximately 6 degrees for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of approximately 6 microm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  4. Thermoacoustic sound projector: exceeding the fundamental efficiency of carbon nanotubes.

    PubMed

    Aliev, Ali E; Codoluto, Daniel; Baughman, Ray H; Ovalle-Robles, Raquel; Inoue, Kanzan; Romanov, Stepan A; Nasibulin, Albert G; Kumar, Prashant; Priya, Shashank; Mayo, Nathanael K; Blottman, John B

    2018-08-10

    The combination of smooth, continuous sound spectra produced by a sound source having no vibrating parts, a nanoscale thickness of a flexible active layer and the feasibility of creating large, conformal projectors provoke interest in thermoacoustic phenomena. However, at low frequencies, the sound pressure level (SPL) and the sound generation efficiency of an open carbon nanotube sheet (CNTS) is low. In addition, the nanoscale thickness of fragile heating elements, their high sensitivity to the environment and the high surface temperatures practical for thermoacoustic sound generation necessitate protective encapsulation of a freestanding CNTS in inert gases. Encapsulation provides the desired increase of sound pressure towards low frequencies. However, the protective enclosure restricts heat dissipation from the resistively heated CNTS and the interior of the encapsulated device. Here, the heat dissipation issue is addressed by short pulse excitations of the CNTS. An overall increase of energy conversion efficiency by more than four orders (from 10 -5 to 0.1) and the SPL of 120 dB re 20 μPa @ 1 m in air and 170 dB re 1 μPa @ 1 m in water were demonstrated. The short pulse excitation provides a stable linear increase of output sound pressure with substantially increased input power density (>2.5 W cm -2 ). We provide an extensive experimental study of pulse excitations in different thermodynamic regimes for freestanding CNTSs with varying thermal inertias (single-walled and multiwalled with varying diameters and numbers of superimposed sheet layers) in vacuum and in air. The acoustical and geometrical parameters providing further enhancement of energy conversion efficiency are discussed.

  5. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change.

    PubMed

    Lopes, Marta S; El-Basyoni, Ibrahim; Baenziger, Peter S; Singh, Sukhwinder; Royo, Conxita; Ozbek, Kursad; Aktas, Husnu; Ozer, Emel; Ozdemir, Fatih; Manickavelu, Alagu; Ban, Tomohiro; Vikram, Prashant

    2015-06-01

    Climate change has generated unpredictability in the timing and amount of rain, as well as extreme heat and cold spells that have affected grain yields worldwide and threaten food security. Sources of specific adaptation related to drought and heat, as well as associated breeding of genetic traits, will contribute to maintaining grain yields in dry and warm years. Increased crop photosynthesis and biomass have been achieved particularly through disease resistance and healthy leaves. Similarly, sources of drought and heat adaptation through extended photosynthesis and increased biomass would also greatly benefit crop improvement. Wheat landraces have been cultivated for thousands of years under the most extreme environmental conditions. They have also been cultivated in lower input farming systems for which adaptation traits, particularly those that increase the duration of photosynthesis, have been conserved. Landraces are a valuable source of genetic diversity and specific adaptation to local environmental conditions according to their place of origin. Evidence supports the hypothesis that landraces can provide sources of increased biomass and thousand kernel weight, both important traits for adaptation to tolerate drought and heat. Evaluation of wheat landraces stored in gene banks with highly beneficial untapped diversity and sources of stress adaptation, once characterized, should also be used for wheat improvement. Unified development of databases and promotion of data sharing among physiologists, pathologists, wheat quality scientists, national programmes, and breeders will greatly benefit wheat improvement for adaptation to climate change worldwide. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Cost-effective computational method for radiation heat transfer in semi-crystalline polymers

    NASA Astrophysics Data System (ADS)

    Boztepe, Sinan; Gilblas, Rémi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2018-05-01

    This paper introduces a cost-effective numerical model for infrared (IR) heating of semi-crystalline polymers. For the numerical and experimental studies presented here semi-crystalline polyethylene (PE) was used. The optical properties of PE were experimentally analyzed under varying temperature and the obtained results were used as input in the numerical studies. The model was built based on optically homogeneous medium assumption whereas the strong variation in the thermo-optical properties of semi-crystalline PE under heating was taken into account. Thus, the change in the amount radiative energy absorbed by the PE medium was introduced in the model induced by its temperature-dependent thermo-optical properties. The computational study was carried out considering an iterative closed-loop computation, where the absorbed radiation was computed using an in-house developed radiation heat transfer algorithm -RAYHEAT- and the computed results was transferred into the commercial software -COMSOL Multiphysics- for solving transient heat transfer problem to predict temperature field. The predicted temperature field was used to iterate the thermo-optical properties of PE that varies under heating. In order to analyze the accuracy of the numerical model experimental analyses were carried out performing IR-thermographic measurements during the heating of the PE plate. The applicability of the model in terms of computational cost, number of numerical input and accuracy was highlighted.

  7. A Radio-frequency Coupling Network for Heating of Citrate-coated Gold Nanoparticles for Cancer Therapy: Design and Analysis

    PubMed Central

    Kruse, Dustin E.; Stephens, Douglas N.; Lindfors, Heather A.; Ingham, Elizabeth S.; Paoli, Eric E.; Ferrara, Katherine W.

    2012-01-01

    Gold nanoparticles (GNPs) are non-toxic, can be functionalized with ligands, and preferentially accumulate in tumors. We have developed a 13.56 MHz radiofrequency-electromagnetic field (RF-EM) delivery system capable of generating high electric field strengths required for non-invasive, non-contact heating of GNPs. The bulk heating and specific heating rates were measured as a function of NP size and concentration. It was found that heating is both size and concentration dependent, with 5 nm particles producing a 50.6±0.2°C temperature rise in 30 s for 25 μg/mL gold (125 W input). The specific heating rate was also size and concentration dependent, with 5 nm particles producing a specific heating rate of 356±78 kW/g gold at 16 μg/mL (125 W input). Furthermore, we demonstrate that cancer cells incubated with GNPs are killed when exposed to 13.56 MHz RFEM fields. Compared to cells that were not incubated with GNPs, 3 out of 4 RF-treated groups showed a significant enhancement of cell death with GNPs (p<0.05). GNP-enhanced cell killing appears to require temperatures above 50°C for the experimental parameters used in this study. Transmission electron micrographs show extensive vacuolization with the combination of GNPs and RF treatment. PMID:21402506

  8. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process

    NASA Astrophysics Data System (ADS)

    Kong, Fanrong; Kovacevic, Radovan

    2010-12-01

    The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model, a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning of the laser beam. An enthalpy-porosity approach is applied to deal with the solidification and melting that occurs in the cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.

  9. Inactivation of Escherichia coli in a tropical fruit smoothie by a combination of heat and pulsed electric fields.

    PubMed

    Walkling-Ribeiro, M; Noci, F; Cronin, D A; Lyng, J G; Morgan, D J

    2008-10-01

    Moderate heat in combination with pulsed electric fields (PEF) was investigated as a potential alternative to thermal pasteurization of a tropical fruit smoothie based on pineapple, banana, and coconut milk, inoculated with Escherichia coli K12. The smoothie was heated from 25 degrees C to either 45 or 55 degrees C over 60 s and subsequently cooled to 10 degrees C. PEF was applied at electric field strengths of 24 and 34 kV/cm with specific energy inputs of 350, 500, and 650 kJ/L. Both processing technologies were combined using heat (45 or 55 degrees C) and the most effective set of PEF conditions. Bacterial inactivation was estimated on standard and NaCl-supplemented tryptone soy agar (TSA) to enumerate sublethally injured cells. By increasing the temperature from 45 to 55 degrees C, a higher reduction in E. coli numbers (1 compared with 1.7 log(10) colony forming units {CFU} per milliliter, P < 0.05) was achieved. Similarly, as the field strength was increased during stand-alone PEF treatment from 24 to 34 kV/cm, a greater number of E. coli cells were inactivated (2.8 compared with 4.2 log(10) CFU/mL, P < 0.05). An increase in heating temperature from 45 to 55 degrees C during a combined heat/PEF hurdle approach induced a higher inactivation (5.1 compared with 6.9 log(10) CFU/mL, respectively [P < 0.05]) with the latter value comparable to the bacterial reduction of 6.3 log(10) CFU/mL (P> or = 0.05) achieved by thermal pasteurization (72 degrees C, 15 s). A reversed hurdle processing sequence did not affect bacterial inactivation (P> or = 0.05). No differences were observed (P> or = 0.05) between the bacterial counts estimated on nonselective and selective TSA, suggesting that sublethal cell injury did not occur during single PEF treatments or combined heat/PEF treatments.

  10. Development of a small-scale power system with meso-scale vortex combustor and thermo-electric device

    NASA Astrophysics Data System (ADS)

    Shimokuri, D.; Hara, T.; Matsumoto, R.

    2015-10-01

    A small-scale vortex combustion power system has been developed using a thermo-electric device (TED). The system consisted of a heat medium, TED, and cooling plates. A vortex combustion chamber (7 mm inner diameter and 27 mm long) was fabricated inside the heat medium (40  ×  40  ×  20 mm and 52 g of duralumin). It was found that a stable propane/air flame could be established in the narrow 7 mm channel even for the large heat input conditions of 213 ~ 355 W. With a couple of TEDs, the maximum of 8.1 W (9.8 V  ×  0.83 A) could be successfully obtained for 355 W heat input, which corresponded to the energy conversion rate of 2.4%. The results of the gas and the combustor wall temperature measurements showed that the heat transfer from the burned gas to combustor wall was significantly enhanced by the vortex flow, which contributed to the relatively high efficiency energy conversion on the vortex combustion power system.

  11. Two-point modeling of SOL losses of HHFW power in NSTX

    NASA Astrophysics Data System (ADS)

    Kish, Ayden; Perkins, Rory; Ahn, Joon-Wook; Diallo, Ahmed; Gray, Travis; Hosea, Joel; Jaworski, Michael; Kramer, Gerrit; Leblanc, Benoit; Sabbagh, Steve

    2017-10-01

    High-harmonic fast-wave (HHFW) heating is a heating and current-drive scheme on the National Spherical Torus eXperiment (NSTX) complimentary to neutral beam injection. Previous experiments suggest that a significant fraction, up to 50%, of the HHFW power is promptly lost to the scrape-off layer (SOL). Research indicates that the lost power reaches the divertor via wave propagation and is converted to a heat flux at the divertor through RF rectification rather than heating the SOL plasma at the midplane. This counter-intuitive hypothesis is investigated using a simplified two-point model, relating plasma parameters at the divertor to those at the midplane. Taking measurements at the divertor region of NSTX as input, this two-point model is used to predict midplane parameters, using the predicted heat flux as an indicator of power input to the SOL. These predictions are compared to measurements at the midplane to evaluate the extent to which they are consistent with experiment. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  12. Improving the yield from fermentative hydrogen production.

    PubMed

    Kraemer, Jeremy T; Bagley, David M

    2007-05-01

    Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.

  13. Closure of the energy balance equation over bare soil during the formation and evaporation of non-rainfall water inputs

    NASA Astrophysics Data System (ADS)

    Florentin, Anat; Agam, Nurit

    2015-04-01

    The Negev desert is characterized by an arid climate (annual mean precipitation is 90 mm) with sea breeze carrying moisture from the Mediterranean Sea during the afternoon regularly. Non-rainfall water inputs (NRWIs) are thus of great importance to the hydrometeorology and the ecological functioning of the region. The small magnitude of NRWIs challenges attempts to quantify these processes. The aim of this research was to test commonly used micrometeorological methods to quantify the energy balance components during the deposition and evaporation of NRWIs. A fully equipped micrometeorological station was set up near the Blaustein Institutes for Desert Research of the Ben-Gurion University of the Negev (30o 51' 35.6" N; 34o 46' 24.8" E) during September-October 2014. Net-radiation was measured with a 4-way net radiometer, and soil heat flux was quantified by the calorimetric method in three replicates. Latent heat was measured using an eddy-covariance (EC) and compared to a micro-lysimeter (ML); sensible heat flux was measured with an EC and a surface layer scintillometer (SLS). Sensible heat fluxes measured by the EC and the SLS showed good agreement. EC latent heat fluxes were in good agreement with those derived by the ML. Nevertheless, derivation of latent heat flux from the SLS measurements through the energy balance equation showed a relatively large deviation from the directly measured latent heat flux. This deviation is likely attributed to measurement errors of the soil heat flux.

  14. Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sanzi, James L.; Jaworske, Donald A.

    2012-01-01

    Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.

  15. Skylab extravehicular mobility unit thermal simulator

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.; Phillips, M. A.

    1974-01-01

    The analytical methods, thermal model, and user's instructions for the Skylab Extravehicular Mobility Unit (SEMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the SEMU on the NASA-JSC Univac 1108 computer system. It accounts for conductive, convective, and radiant heat transfer as well as fluid flow and special component characterization. The program provides thermal performance predictions for a 967 node thermal model in one thirty-sixth (1/36) of mission time when operated at a calculating interval of three minutes (mission time). The program has the operational flexibility to: (1) accept card or magnetic tape data input for the thermal model describing the SEMU structure, fluid systems, crewman and component performance, (2) accept card and/or magnetic tape input of internally generated heat and heat influx from the space environment, and (3) output tabular or plotted histories of temperature, flow rates, and other parameters describing system operating modes.

  16. Pressure Ratio to Thermal Environments

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro; Wang, Winston

    2012-01-01

    A pressure ratio to thermal environments (PRatTlE.pl) program is a Perl language code that estimates heating at requested body point locations by scaling the heating at a reference location times a pressure ratio factor. The pressure ratio factor is the ratio of the local pressure at the reference point and the requested point from CFD (computational fluid dynamics) solutions. This innovation provides pressure ratio-based thermal environments in an automated and traceable method. Previously, the pressure ratio methodology was implemented via a Microsoft Excel spreadsheet and macro scripts. PRatTlE is able to calculate heating environments for 150 body points in less than two minutes. PRatTlE is coded in Perl programming language, is command-line-driven, and has been successfully executed on both the HP and Linux platforms. It supports multiple concurrent runs. PRatTlE contains error trapping and input file format verification, which allows clear visibility into the input data structure and intermediate calculations.

  17. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less

  18. ANL/RBC: A computer code for the analysis of Rankine bottoming cycles, including system cost evaluation and off-design performance

    NASA Technical Reports Server (NTRS)

    Mclennan, G. A.

    1986-01-01

    This report describes, and is a User's Manual for, a computer code (ANL/RBC) which calculates cycle performance for Rankine bottoming cycles extracting heat from a specified source gas stream. The code calculates cycle power and efficiency and the sizes for the heat exchangers, using tabular input of the properties of the cycle working fluid. An option is provided to calculate the costs of system components from user defined input cost functions. These cost functions may be defined in equation form or by numerical tabular data. A variety of functional forms have been included for these functions and they may be combined to create very general cost functions. An optional calculation mode can be used to determine the off-design performance of a system when operated away from the design-point, using the heat exchanger areas calculated for the design-point.

  19. NASA Lewis Steady-State Heat Pipe Code Architecture

    NASA Technical Reports Server (NTRS)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  20. Probing Reliability of Transport Phenomena Based Heat Transfer and Fluid Flow Analysis in Autogeneous Fusion Welding Process

    NASA Astrophysics Data System (ADS)

    Bag, S.; de, A.

    2010-09-01

    The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.

  1. Sensory Afferents Use Different Coding Strategies for Heat and Cold.

    PubMed

    Wang, Feng; Bélanger, Erik; Côté, Sylvain L; Desrosiers, Patrick; Prescott, Steven A; Côté, Daniel C; De Koninck, Yves

    2018-05-15

    Primary afferents transduce environmental stimuli into electrical activity that is transmitted centrally to be decoded into corresponding sensations. However, it remains unknown how afferent populations encode different somatosensory inputs. To address this, we performed two-photon Ca 2+ imaging from thousands of dorsal root ganglion (DRG) neurons in anesthetized mice while applying mechanical and thermal stimuli to hind paws. We found that approximately half of all neurons are polymodal and that heat and cold are encoded very differently. As temperature increases, more heating-sensitive neurons are activated, and most individual neurons respond more strongly, consistent with graded coding at population and single-neuron levels, respectively. In contrast, most cooling-sensitive neurons respond in an ungraded fashion, inconsistent with graded coding and suggesting combinatorial coding, based on which neurons are co-activated. Although individual neurons may respond to multiple stimuli, our results show that different stimuli activate distinct combinations of diversely tuned neurons, enabling rich population-level coding. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Heat pipe cooling of power processing magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Chester, M.

    1979-01-01

    The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  3. Miniature Heat Transport System for Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)

    2002-01-01

    Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes, pressure gradients, and local heat transfer coefficients using ammonia, propylene, and R134, are carried out.

  4. Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    NASA Astrophysics Data System (ADS)

    Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.

    2017-11-01

    A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.

  5. Efficient needle plasma actuators for flow control and surface cooling

    NASA Astrophysics Data System (ADS)

    Zhao, Pengfei; Portugal, Sherlie; Roy, Subrata

    2015-07-01

    We introduce a milliwatt class needle actuator suitable for plasma channels, vortex generation, and surface cooling. Electrode configurations tested for a channel configuration show 1400% and 300% increase in energy conversion efficiency as compared to conventional surface and channel corona actuators, respectively, generating up to 3.4 m/s air jet across the channel outlet. The positive polarity of the needle is shown to have a beneficial effect on actuator efficiency. Needle-plate configuration is demonstrated for improving cooling of a flat surface with a 57% increase in convective heat transfer coefficient. Vortex generation by selective input signal manipulation is also demonstrated.

  6. Positional glow curve simulation for thermoluminescent detector (TLD) system design

    NASA Astrophysics Data System (ADS)

    Branch, C. J.; Kearfott, K. J.

    1999-02-01

    Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design.

  7. 40 CFR 76.5 - NOX emission limitations for Group 1 boilers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wall-fired boiler (other than units applying cell burner technology) shall not discharge, or allow to... input on an annual average basis for tangentially fired boilers. (2) 0.50 lb/mmBtu of heat input on an annual average basis for dry bottom wall-fired boilers (other than units applying cell burner technology...

  8. Prevention of Over-Pressurization During Combustion in a Sealed Chamber

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Niehaus, Justin E.; Olson, Sandra L.; Dietrich, Daniel L.; Ruff, Gary A.; Johnston, Michael C.

    2012-01-01

    The combustion of flammable material in a sealed chamber invariably leads to an initial pressure rise in the volume. The pressure rise is due to the increase in the total number of gaseous moles (condensed fuel plus chamber oxygen combining to form gaseous carbon dioxide and water vapor) and, most importantly, the temperature rise of the gas in the chamber. Though the rise in temperature and pressure would reduce with time after flame extinguishment due to the absorption of heat by the walls and contents of the sealed spacecraft, the initial pressure rise from a fire, if large enough, could lead to a vehicle over-pressure and the release of gas through the pressure relief valve. This paper presents a simple lumped-parameter model of the pressure rise in a sealed chamber resulting from the heat release during combustion. The transient model considers the increase in gaseous moles due to combustion, and heat transfer to the chamber walls by convection and radiation and to the fuel-sample holder by conduction, as a function of the burning rate of the material. The results of the model are compared to the pressure rise in an experimental chamber during flame spread tests as well as to the pressure falloff after flame extinguishment. The experiments involve flame spread over thin solid fuel samples. Estimates of the heat release rate profiles for input to the model come from the assumed stoichiometric burning of the fuel along with the observed flame spread behavior. The sensitivity of the model to predict maximum chamber pressure is determined with respect to the uncertainties in input parameters. Model predictions are also presented for the pressure profile anticipated in the Fire Safety-1 experiment, a material flammability and fire safety experiment proposed for the European Space Agency (ESA) Automated Transfer Vehicle (ATV). Computations are done for a range of scenarios including various initial pressures and sample sizes. Based on these results, various mitigation approaches are suggested to prevent vehicle over-pressurization and help guide the definition of the space experiment.

  9. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  10. Testing the effect of increased temperature and river water input on benthic and pelagic metabolism using a large scale experimental pond ecosystem

    NASA Astrophysics Data System (ADS)

    Rodriguez, Patricia; Geibrink, Erik; Vasconcelos, Francisco; Hedström, Per; Byström, Pär; Karlsson, Jan

    2013-04-01

    We performed a large scale experimental study to test the effect of increased temperatures and concentration of allochthonous dissolved organic carbon (DOC) on benthic and pelagic primary production and respiration. The experiment was carried out during one ice-free season (May-October 2012) in a clear-water pond ecosystem divided into 16 enclosures (each 120 m3 and 1.6 m deep) including natural benthic and pelagic habitats and fish as top consumers (40 adult three-spine sticklebacks were introduced at the beginning of the experiment). Treatments included input of brown river water (23 mg/L in DOC) and heating (3° C above ambient temperature) in a factorial design: 4 enclosures were kept as controls (clear-cold), 4 enclosures were heated (clear-hot), 4 received river water (dark-cold) and 4 were both heated and received river water (dark-hot). Physical and chemical variables were monitored weekly meanwhile benthic, pelagic and ecosystems metabolism were estimated from free-water oxygen data and incubation studies. The 3° C difference in temperature between hot and cold enclosures was consistent during the study and DOC concentrations averaged 4 and 8 mg/L in clear water and dark enclosures, respectively; without any interaction effect between temperature and DOC concentration. Vertical light attenuation coefficient (Kd) showed significant differences between treatments with (0.62±0.40 m-1) and without river water (0.24±0.13 m-1). Total nitrogen concentrations ranged between 187 and 300 μg/L, with higher values in the dark-cold enclosures. The same pattern of higher values in dark-cold enclosures was found in phytoplankton chlorophyll a and primary production. Preliminary results show that gross benthic primary production (higher in clear-cold enclosures) largely exceeded phytoplankton production at the beginning of the experiment. Due to high respiration compared to gross primary production the net ecosystem production was in general negative in the pelagic habitat and did not show any effect of temperature or river water treatment. Our results suggest that input of river water may affect relatively shallow lake ecosystems differently compared to what is generally assumed based on studies of deeper systems.

  11. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Jun; You Guoqiang; Long Siyuan

    2008-08-15

    One of the major concerns during gas tungsten arc (GTA) welding of cast magnesium alloys is the presence of large macroporosity in weldments, normally thought to occur from the presence of gas in the castings. In this study, a double-sided GTA welding process was adopted to join wrought magnesium AZ91D alloy plates. Micropores were formed in the weld zone of the first side that was welded, due to precipitation of H{sub 2} as the mushy zone freezes. When the reverse side was welded, the heat generated caused the mushy zone in the initial weld to reform. The micropores in themore » initial weld then coalesced and expanded to form macropores by means of gas expansion through small holes that are present at the grain boundaries in the partially melted zone. Macropores in the partially melted zone increase with increased heat input, so that when a filler metal is used the macropores are smaller in number and in size.« less

  12. Thermal Impact of Gas Flares on the Biological Activity of Soils

    NASA Astrophysics Data System (ADS)

    Yevdokimov, I. V.; Yusupov, I. A.; Larionova, A. A.; Bykhovets, S. S.; Glagolev, M. V.; Shavnin, S. A.

    2017-12-01

    Global warming can lead to a significant transformation of the structure of terrestrial ecosystems and changes in the mode of functioning of their components. In this connection, studies of soil respiration, particularly of the biological activity of soils under forest exposed to warm impact of flaring flare are of scientific and practical interests. A long-term experimental plot was established in a lichen pine forest on the Albic Podzols (Arenic) (Khanty-Mansi Autonomous Area-Yugra). Sampling and measurements were carried out in the areas at the distances of 70, 90, and 130 m from the flare with the strong, moderate, and weak heating effects, respectively. In the zone of the maximum heating effect, the soil temperature was by 1.3°C higher, and the rate of CO2 emission from the surface in situ was greater by 18% compared to the zone with weak impact of the flare. Along with increasing CO2 emissions, organic matter accumulated due to increasing the stable pool. The parameters of the microbial biomass, basal respiration, and the input of labile organic matter pool increased with the distance from the flare.

  13. Solar heat collection with suspended metal roofing and whole house ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maynard, T.

    1996-10-01

    A south pitched roof is employed for solar collection directly onto a roofing with chocolate brown color. The roofing is structural and is suspended over plywood decking so as to create an air space which receives input from the coolest and lowest basement air of the house interior. Air heated beneath the metal roofing is returned to a basement storage wall. Full length plenum cavities are formed into the ordinary rafter truss framing--at the knee wall and collar tie spaces. Preliminary testing of BTU gain at known air flows is acquired with a microprocessor system continuously collecting input and outputmore » temperatures at the roof collector into disk data files.« less

  14. Effect of Weld Tool Geometry on Friction Stir Welded AA2219-T87 Properties

    NASA Technical Reports Server (NTRS)

    Querin, Joseph A.; Schneider, Judy A.

    2008-01-01

    In this study, flat panels of AA2219-T87 were friction stir welded (FSWed) using weld tools with tapered pins The three pin geometries of the weld tools included: 0 (straight cylinder), 30 , and 60 angles on the frustum. For each weld tool geometry, the FSW process parameters were optimized to eliminate defects. A constant heat input was maintained while varying the process parameters of spindle rpm and travel speed. This provided a constant heat input for each FSW weld panel while altering the hot working conditions imparted to the workpiece. The resulting mechanical properties were evaluated from tensile test results of the FSW joint.

  15. Influence of Heat Input on the Content of Delta Ferrite in the Structure of 304L Stainless Steel GTA Welded Joints

    NASA Astrophysics Data System (ADS)

    Sejč, Pavol; Kubíček, Rastislav

    2011-12-01

    Welding of austenitic stainless steel has its specific issues, even when the weldability is considered good. The main problems of austenitic stainless steel welding are connected with its metallurgical weldability. The amount of the components presented in the structure of stainless steel welded joint affect its properties, therefore the understanding of the behavior of stainless steel during its welding is important for successful processing and allows the fabricators the possibility to manage the resulting issues. This paper is focused on the influence of heat input on the structural changes in GTA welded joints of austenitic stainless steel designated: ASTM SA TP 304L.

  16. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  17. Degradation of a Multilayer Insulation Due to a Seam and a Penetration

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1976-01-01

    The degradation of the thermal performance of a multilayer insulation due to the presence of a seam and a penetration was studied. The multilayer insulation had 30 aluminized Mylar radiation shields with silk net spacers. The seam, an offset butt joint, caused a heat input of 0.169 watt per meter in addition to the basic insulation thermal performance of 0.388 watt per square meter obtained before the installation of the butt joint. The penetration, a fiberglass tank support strut, provided a heat input (including the degradation of the insulation) of 0.543 watt in addition to the basic insulation thermal performance of 0.452 watt per square meter obtained before the penetration.

  18. Heating 7.2 user`s manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  19. Heating 7. 2 user's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, K.W.

    1993-02-01

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less

  20. Localized heating and bonding technique for MEMS packaging

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Ting

    Localized heating and bonding techniques have been developed for hermetic and vacuum packaging of MEMS devices, including silicon-to-glass fusion, silicon-gold eutectic, and silicon-to-glass bonding using PSG, indium, aluminum, and aluminum/silicon alloy as the intermediate layer. Line shaped phosphorus-doped polysilicon or gold films are used as resistive microheaters to provide enough thermal energy for bonding. The bonding processes are conducted in the common environment of room temperature and atmospheric pressure and can achieve bonding strength comparable to the fracture toughness of bulk silicon in less than 10 minutes. About 5 watts of input power is needed for localized bonding which can seal a 500 x 500 mum2 area. The total input power is determined by the thermal properties of bonding materials, including the heat capacity and latent heat. Two important bonding results are obtained: (1) The surface step created by the electrical interconnect line can be planarized by reflowing the metal solder. (2) Small applied pressure, less than 1MPa, for intimate contact reduces mechanical damage to the device substrate. This new class of bonding technology has potential applications for MEMS fabrication and packaging that require low temperature processing at the wafer level, excellent bonding strength and hermetic sealing characteristics. A hermetic package based on localized aluminum/silicon-to-glass bonding has been successfully fabricated. Less than 0.2 MPa contact pressure with 46mA input current for two parallel 3.5mum wide polysilicon on-chip microheaters can create as high as 700°C bonding temperature and achieve a strong and reliable bond in 7.5 minutes. Accelerated testing in an autoclave shows some packages survive more than 450 hours under 3 atm, 100%RH and 128°C. Premature failure has been attributed to some unbonded regions on the failed samples. The bonding yield and reliability have been improved by increasing bonding time and applied pressure. Finally, vacuum encapsulation of folded-beam comb-drive mu-resonators used as pressure monitors has been demonstrated using localized aluminum/silicon-to-glass bonding. With 3.4 watt heating power, ˜0.2MPa applied contact pressure, and 90 minutes wait time before bonding, vacuum encapsulation can be achieved with the same vacuum level as the packaging environment which is about 25 mtorr. Metal coating used as diffusion barrier and a longer wait time before bonding are used to improve the vacuum level of the package. Long-term measurement of the Q of un-annealed vacuum-packaged mu-resonators, illustrates stable operation after 19 weeks.

  1. Power accounting of plasma discharges in the linear device Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Showers, M.; Piotrowicz, P. A.; Beers, C. J.; Biewer, T. M.; Caneses, J.; Canik, J.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Lumsdaine, A.; Kafle, N.; Owen, L. W.; Rapp, J.; Ray, H.

    2018-06-01

    Plasma material interaction (PMI) studies are crucial to the successful development of future fusion reactors. Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a prototype design for the MPEX, a steady-state linear device being developed to study PMI. The primary purpose of Proto-MPEX is developing the plasma heating source concepts for MPEX. A power accounting study of Proto-MPEX works to identify machine operating parameters that could improve its performance, thereby increasing its PMI research capabilities, potentially impacting the MPEX design concept. To build a comprehensive power balance, an analysis of the helicon region has been performed implementing a diagnostic suite and software modeling to identify mechanisms and locations of heat loss from the main plasma. Of the 106.3 kW of input power, up to 90.5% of the power has been accounted for in the helicon region. When the analysis was extended to encompass the device to its end plates, 49.2% of the input power was accounted for and verified diagnostically. Areas requiring further diagnostic analysis are identified. The required improvements will be implemented in future work. The data acquisition and analysis processes will be streamlined to form a working model for future power balance studies of Proto-MPEX. ).

  2. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    PubMed Central

    Gao, Ming; Chen, Cong; Gu, Yunze; Zeng, Xiaoyan

    2014-01-01

    Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs) layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties. PMID:28788533

  3. Aging Degradation of Austenitic Stainless Steel Weld Probed by Electrochemical Method and Impact Toughness Evaluation

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Das, Goutam; Mahato, B.; Singh, P. K.

    2017-03-01

    The present study discriminates the spinodal decomposition and G-phase precipitation in stainless steel welds by double loop electrochemical potentio-kinetic reactivation method and correlates it with the degradation in toughness property. The welds produced with different heat inputs were aged up to 10,000 hours at 673 K to 723 K (400 to 450 °C) and evaluated subsequently for the degree of sensitization (DOS) and impact toughness. The DOS values obtained were attributed to the spinodal decomposition and precipitation of G-phase. Study shows that the DOS correlates well with the impact toughness of the 304LN weld. Prolonged aging at 673 K and 723 K (400 °C and 450 °C) increased the DOS values while the impact toughness was decreased. The weld fabricated at 1 kJ/mm of heat input, produced higher DOS, compared to that at 3 kJ/mm. The geometrical location along the weld is shown to influence the DOS; higher values were obtained at the root than at the topside of the weld. Vermicular and columnar microstructure, in addition to the spinodal decomposition and G-phase precipitation, observed in the root side of the weld appear risky for the impact toughness.

  4. Preliminary Development of Electrodes for an Electric-Arc Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Boldman, Donald R.

    1959-01-01

    Two electrode configurations were tested in an electric-arc wind tunnel at the NASA Lewis Research Center. The results indicated approximately the same heat-loss rate per unit of arc power input for each of the configurations. Measured heat-loss rates were on the order of 40 percent of the arc power input. Nearly all this loss occurred at the anode. The power input and arc current limitations of the electrodes appear to be the critical design factors. Up to now, the maximum power to the stream has been 115 kilowatts with a cooled tungsten cathode and a cooled cylindrical anode incorporating a magnetic field. The maximum power input to this anode could not be established with the cooled tungsten cathode because cathode failures occurred at a gross power level of approximately 175 kilowatts. It was necessary to use a graphite cathode to seek the limitation of the anode. The results indicated that the anode limitation was primarily a function of arc current rather than power input. The anode was successfully operated at a power of 340 kilowatts at 1730 amperes; however, the anode failed with a power input of 324 kilowatts and a current of 2140 amperes. The magnetic flux density at the time of failure was 0.32 weber per square meter, or 3200 gauss. The graphite cathode was used only to establish the anode limitation; further investigation of graphite cathodes was discontinued because of the large amount of stream contamination associated with this type of electrode.

  5. Waste-Heat-Driven Cooling Using Complex Compound Sorbents

    NASA Technical Reports Server (NTRS)

    Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh

    2004-01-01

    Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.

  6. Modeling and Simulation of the Off-gas in an Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Meier, Thomas; Gandt, Karima; Echterhof, Thomas; Pfeifer, Herbert

    2017-12-01

    The following paper describes an approach to process modeling and simulation of the gas phase in an electric arc furnace (EAF). The work presented represents the continuation of research by Logar, Dovžan, and Škrjanc on modeling the heat and mass transfer and the thermochemistry in an EAF. Due to the lack of off-gas measurements, Logar et al. modeled a simplified gas phase under consideration of five gas components and simplified chemical reactions. The off-gas is one of the main continuously measurable EAF process values and the off-gas flow represents a heat loss up to 30 pct of the entire EAF energy input. Therefore, gas phase modeling offers further development opportunities for future EAF optimization. This paper presents the enhancement of the previous EAF gas phase modeling by the consideration of additional gas components and a more detailed heat and mass transfer modeling. In order to avoid the increase of simulation time due to more complex modeling, the EAF model has been newly implemented to use an efficient numerical solver for ordinary differential equations. Compared to the original model, the chemical components H2, H2O, and CH4 are included in the gas phase and equilibrium reactions are implemented. The results show high levels of similarity between the measured operational data from an industrial scale EAF and the theoretical data from the simulation within a reasonable simulation time. In the future, the dynamic EAF model will be applicable for on- and offline optimizations, e.g., to analyze alternative input materials and mode of operations.

  7. A single-probe heat pulse method for estimating sap velocity in trees.

    PubMed

    López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J

    2017-10-01

    Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (V h ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position

    PubMed Central

    Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-01-01

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically. PMID:28885573

  9. Central neural control of thermoregulation and brown adipose tissue

    PubMed Central

    Morrison, Shaun F.

    2016-01-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. PMID:26924538

  10. Central neural control of thermoregulation and brown adipose tissue.

    PubMed

    Morrison, Shaun F

    2016-04-01

    Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    PubMed

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  12. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, M.A., E-mail: mgonzalez@comimsa.com.mx; Martinez, D.I., E-mail: dorairma@yahoo.com; Perez, A., E-mail: betinperez@hotmail.com

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy,more » specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.« less

  13. Development of an intravascular heating source using an MR imaging guidewire.

    PubMed

    Qiu, Bensheng; Yeung, Christopher J; Du, Xiangying; Atalar, Ergin; Yang, Xiaoming

    2002-12-01

    To develop a novel endovascular heating source using a magnetic resonance (MR) imaging guidewire (MRIG) to deliver controlled microwave energy into the target vessel for thermal enhancement of vascular gene transfection. A 0.032-inch MRIG was connected to a 2.45-GHz microwave generator. We 1) calculated the microwave power loss along the MRIG, 2) simulated the power distribution around the MRIG, 3) measured the temperature increase vs. input power with the MRIG, and 4) evaluated the thermal effect on the balloon-compressed/microwave-heated aorta of six living rabbits. In addition, during balloon inflation, we also simultaneously generated high-resolution MR images of the aortic wall. The power loss was calculated to be 3.9 dB along the MRIG. The simulation-predicted power distribution pattern was cylindrically symmetric, analogous to the geometry of vessels. Under balloon compression, the vessel wall could be locally heated at 41 degrees C with no thermal damage apparent on histology. This study demonstrates the possibility of using the MRIG as a multifunctional device, not only as a receiver antenna to generate intravascular high-resolution MR images of atherosclerotic plaques and as a conventional guidewire to guide endovascular interventions during MR imaging, but also as a potential intravascular heating source to produce local heat for thermal enhancement of vascular gene transfection. Copyright 2002 Wiley-Liss, Inc.

  14. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    PubMed Central

    Chen, Ke; Zhang, Minna; Zhu, Huihui; Huang, Meiyu; Zhu, Qing; Tang, Diyong; Han, Xiaole; Li, Jinlin; Sun, Jie; Fu, Jinmin

    2017-01-01

    L-Ascorbate (Asc) plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo), which reflects the inhibited activity of the photochemical phase of photosystem II (PSII). Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0), which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study. PMID:28848577

  15. SEAWAT-based simulation of axisymmetric heat transport.

    PubMed

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  16. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The technology involved in designing and fabricating a heat pipe thermal conditioning panel to satisfy a broad range of thermal control system requirements on NASA spacecraft is discussed. The design specifications were developed for a 30 by 30 inch heat pipe panel. The fundamental constraint was a maximum of 15 gradient from source to sink at 300 watts input and a flux density of 2 watts per square inch. The results of the performance tests conducted on the panel are analyzed.

  17. Synergistic cross-scale coupling of turbulence in a tokamak plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, N. T., E-mail: nthoward@psfc.mit.edu; Holland, C.; White, A. E.

    2014-11-15

    For the first time, nonlinear gyrokinetic simulations spanning both the ion and electron spatio-temporal scales have been performed with realistic electron mass ratio ((m{sub D}∕m{sub e}){sup 1∕2 }= 60.0), realistic geometry, and all experimental inputs, demonstrating the coexistence and synergy of ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron-scale (k{sub θ}ρ{sub e}∼O(1.0)) turbulence in the core of a tokamak plasma. All multi-scale simulations utilized the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] to study the coupling of ion and electron-scale turbulence in the core (r/a = 0.6) of an Alcator C-Mod L-mode discharge shown previously to exhibit an under-predictionmore » of the electron heat flux when using simulations only including ion-scale turbulence. Electron-scale turbulence is found to play a dominant role in setting the electron heat flux level and radially elongated (k{sub r} ≪ k{sub θ}) “streamers” are found to coexist with ion-scale eddies in experimental plasma conditions. Inclusion of electron-scale turbulence in these simulations is found to increase both ion and electron heat flux levels by enhancing the transport at the ion-scale while also driving electron heat flux at sub-ρ{sub i} scales. The combined increases in the low and high-k driven electron heat flux may explain previously observed discrepancies between simulated and experimental electron heat fluxes and indicates a complex interaction of short and long wavelength turbulence.« less

  18. Heating and thermal squeezing in parametrically driven oscillators with added noise.

    PubMed

    Batista, Adriano A

    2012-11-01

    In this paper we report a theoretical model based on Green's functions, Floquet theory, and averaging techniques up to second order that describes the dynamics of parametrically driven oscillators with added thermal noise. Quantitative estimates for heating and quadrature thermal noise squeezing near and below the transition line of the first parametric instability zone of the oscillator are given. Furthermore, we give an intuitive explanation as to why heating and thermal squeezing occur. For small amplitudes of the parametric pump the Floquet multipliers are complex conjugate of each other with a constant magnitude. As the pump amplitude is increased past a threshold value in the stable zone near the first parametric instability, the two Floquet multipliers become real and have different magnitudes. This creates two different effective dissipation rates (one smaller and the other larger than the real dissipation rate) along the stable manifolds of the first-return Poincaré map. We also show that the statistical average of the input power due to thermal noise is constant and independent of the pump amplitude and frequency. The combination of these effects causes most of heating and thermal squeezing. Very good agreement between analytical and numerical estimates of the thermal fluctuations is achieved.

  19. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Gerecht, Andrea C.; Šupraha, Luka; Langer, Gerald; Henderiks, Jorijntje

    2018-02-01

    Calcifying haptophytes (coccolithophores) sequester carbon in the form of organic and inorganic cellular components (coccoliths). We examined the effect of phosphorus (P) limitation and heat stress on particulate organic and inorganic carbon (calcite) production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous) induce different physiologies. This affects the ratio of particulate inorganic (PIC) to organic carbon (POC) and complicates general predictions on the effect of P limitation on the PIC  /  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  20. Rainfall as a trigger for stratification and winter phytoplankton growth in temperate shelf seas

    NASA Astrophysics Data System (ADS)

    Jardine, Jenny; Palmer, Matthew; Mahaffey, Claire; Holt, Jason; Mellor, Adam; Wakelin, Sarah

    2017-04-01

    We present new data from ocean gliders to investigate physical controls on stratification and phytoplankton dynamics, collected in the Celtic Sea between November 2014 and August 2015 as part of the UK Shelf Sea Biogeochemistry programme. This presentation focuses on the winter period (Jan-March) when the diurnal heating cycle results in regular but weak near surface stratification followed by night-time convection. Despite low light conditions, this daily cycle often promotes a daytime increase in observed chlorophyll fluorescence, indicative of phytoplankton growth. This daily cycle is occasionally interrupted when buoyancy inputs are sufficient to outcompete night-time convection and result in short-term periods of sustained winter stratification, typically lasting 2-3 days. Sustained stratification often coincides with periods of heavy rainfall, suggesting freshwater input from precipitation may play a role on these events by producing a subtle yet significant freshening of the surface layer of the order of 0.005 PSU. Comparing rainfall estimates with observed salinity changes confirms rainfall to often be the initiator of these winter stratification periods. As winter winds subside and solar heating increases towards spring, the water column becomes more susceptible to periods of halo-stratification, such that heavy rainfall during the winter-spring transition is likely to promote sustained stratification. The timing and extent of a heavy rainfall event in March 2015 does suggest it may be the critical trigger for shelf-wide stratification that eventually instigates the spring bloom. We propose that the timing of these downpours relative to the daily heating cycle can be a triggering mechanism for both short term and seasonal stratification in shelf seas, and so play a critical role in winter and early spring phytoplankton growth and the shelf sea carbon cycle. We further test the importance of this process using historical data, and results from the NEMO-AMM7 model to test how rainfall events have affected previous winter and spring conditions.

  1. Influence of uranium hydride oxidation on uranium metal behaviour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, N.; Hambley, D.; Clarke, S.A.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less

  2. Transparent multi-zone crystal growth furnace and method for controlling the same

    NASA Technical Reports Server (NTRS)

    Batur, Celal (Inventor); Bennett, Robert J. (Inventor); Duval, Walter (Inventor)

    2000-01-01

    A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.

  3. Transparent multi-zone crystal growth furnace and method for controlling the same

    NASA Technical Reports Server (NTRS)

    Batur, Celal (Inventor); Duval, Walter (Inventor); Bennett, Robert J. (Inventor)

    2001-01-01

    A crystal growth system, comprising: a furnace; a plurality of heating elements coupled to said furnace, each said plurality of heating elements defining a heat zone, each said heating element set to a desired temperature value; a plurality of thermocouples associated with respective heat zones to detect a temperature value; a translation system for passing an ampoule containing crystal growth material through said furnace into said heat zones and providing a positional location of said ampoule and; a multi-variable self-tuning temperature controller connected to said plurality of heating elements, said plurality of thermocouples and said translation system, said controller monitoring each said zone temperature value and upon considering the thermal interaction of heating zones and the moving thermal inertia of the ampoule, adjusting voltage input to said heat zones to obtain optimal crystal growth within said ampoule.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.

    The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.

  5. Thermochemical water decomposition. [hydrogen separation for energy applications

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1977-01-01

    At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.

  6. Thermal footprints in groundwater of central European cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Blum, P.

    2014-12-01

    Atmospheric thermal pollution in densely populated areas is recognized as a severe problem with consequences for human health, and considerable efforts are being taken to mitigate heat stress in cities. However, anthropogenic activities also influence the thermal environment beneath the ground level, with commonly growing temperatures that affect groundwater ecology and geothermal use efficiency. In our work, we identify the controlling mechanisms for the long-term evolution of such urban heat islands. The shallow groundwater temperatures in several central European cities such as Cologne, Karlsruhe, Munich, Berlin and Zurich were mapped at high spatial and temporal resolution. Thermal anomalies were found to be highly heterogeneous with local hot spots showing temperatures of more than 20°C. Accordingly, these urban regions show a considerable groundwater warming in comparison to undisturbed temperatures of 8-11°C. Examination of potential heat sources by analytical modelling reveals that increased ground surface temperatures and basements of buildings act as dominant drivers for the anthropogenic heat input into the groundwater. The factors are revealed to be case-specific and they may have pronounced local or regional effects. Typical local factors are for example buried district heating networks. In selected cities we find that the average urban heat flux is around one order of magnitude higher than the elevated ground heat flux due to recent climate change. Additionally, such as observed in Zurich, naturally controlled temperature variations can be substantial and they are shown to wash out anthropogenic thermal footprints.

  7. A global model for steady state and transient S.I. engine heat transfer studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohac, S.V.; Assanis, D.N.; Baker, D.M.

    1996-09-01

    A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less

  8. Responses of Lithium-Modified Bath to a Shift in Heat Input/Output Balance and Observation of Freeze-Lining Formation During the Heat Balance Shift

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2018-02-01

    In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.

  9. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Astrophysics Data System (ADS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-06-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on a 87.6 in diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  10. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Astrophysics Data System (ADS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-06-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  11. Simulation of a 20-ton LiBr/H{sub 2}O absorption cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardono, B.; Nelson, R.M.

    The possibility of using solar energy as the main heat input for cooling systems has led to several studies of available cooling technologies that use solar energy. The results show that double-effect absorption cooling systems give relatively high performance. To further study absorption cooling systems, a computer code was developed for a double-effect lithium bromide/water (LiBr/H{sub 2}O) absorption system. To evaluate the performance, two objective functions were developed including the coefficient of performance (COP) and the system cost. Based on the system cost, an optimization to find the minimum cost was performed to determine the nominal heat transfer areas ofmore » each heat exchanger. The nominal values of other system variables, such as the mass flow rates and inlet temperatures of the hot water, cooling water, and chilled water, are specified as commonly used values for commercial machines. The results of the optimization show that there are optimum heat transfer areas. In this study, hot water is used as the main energy input. Using a constant load of 20 tons cooling capacity, the effects of various variables including the heat transfer ares, mass flow rates, and inlet temperatures of hot water, cooling water, and chilled water are presented.« less

  12. A geothermal AMTEC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuller, M.J.; LeMire, R.A.; Horner-Richardson, K.

    1995-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), with the support of ORION International Technologies, is investigating new methods of advanced thermal to electric power conversion for space and terrestrial applications. The alkali metal thermal-to-electric converter (AMTEC), manufactured primarily by Advanced Modular Power Systems (AMPS) of Ann Arbor, MI, has reached a level of technological maturity which would allow its use in a constant, unattended thermal source, such as a geothermal field. Approximately 95,000 square miles in the western United States has hot dry rock with thermal gradients of 60 C/km and higher. Several places in the United Statesmore » and the world have thermal gradients of 500 C/km. Such heat sources represent an excellent thermal source for a system of modular power units using AMTEC devices to convert the heat to electricity. AMTEC cells using sodium as a working fluid require heat input at temperatures between 500 and 1,000 C to generate power. The present state of the art is capable of 15% efficiency with 800 C heat input and has demonstrated 18% efficiency for single cells. This paper discusses the basics of AMTEC operation, current drilling technology as a cost driver, design of modular AMTEC power units, heat rejection technologies, materials considerations, and estimates of power production from a geothermal AMTEC concept.« less

  13. Brain mediators of the effects of noxious heat on pain

    PubMed Central

    Atlas, Lauren Y.; Lindquist, Martin A.; Bolger, Niall; Wager, Tor D.

    2014-01-01

    Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. While useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this paper, we used multi-level mediation analysis to identify brain mediators of pain—regions whose trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across four levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including: a) somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and b) two networks co-localized with ‘default mode’ regions in which stimulus intensity-related decreases mediated increased pain. We also identified ‘thermosensory’ regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. PMID:24845572

  14. Feasibility Study and Development of Modular Appliance Technologies, Centralized Heating (MATCH) Field Kitchen

    DTIC Science & Technology

    1994-07-01

    including standby losses. The required input fuel rate is 261.000 Btu/hr ( LHV ) or 277,700 Btu/hr ( HHV ). The Becker burner used in the system is rated at 2...cost of -$6/gallon. Burning diesel fuel , with 20-percent excess air and a final exhaust temperature of 932°F, requires a fuel LHV input of 261,000 Btu...GPH diesel fuel burning rate, corresponding to 280.000 Btu/hr ( HHV ) input. The flue gases leave the fluid heater at a nominal temperature of 932°F

  15. [Mechanism of the organic pollutant degradation in water by hybrid gas-liquid electrical discharge].

    PubMed

    Zhu, Li-nan; Ma, Jun; Yang, Shi-dong

    2007-09-01

    The method of hybrid gas-liquid electrical discharge was investigated for the removal of phenol. The results indicate that this new method can remove phenol in water effectively. The removal rate increases with increasing voltage and air aeration. The production quantity of H2O2 and O3 is measured respectively in the discharge region and the production quantity increases with increasing of voltage and air aeration. The energy consumption analysis indicates that with increasing the voltage, the increase extent of the phenol removal rate is smaller than the energy's, so the increase of energy efficiency is very small. Air aeration increases the energy consumption. At the same time, a considerable part of energy in the overall input energy makes the temperature of the solution increase, and more energy is transformed into heat, which leads to the waste of energy.

  16. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  17. Relationships between the intensity and duration of Peltier heat stimulation and pain magnitude

    PubMed Central

    Vierck, Charles J.; Mauderli, Andre P.; Riley, Joseph L.

    2013-01-01

    Ramp-and-hold heat stimulation with a Peltier thermode is a standard procedure for quantitative sensory testing of human pain sensitivity. Because myelinated and unmyelinated nociceptive afferents respond preferentially to changing and steady temperatures, respectively, ramp-and-hold heat stimulation could assess processing of input from A-delta nociceptors early and C nociceptors late during prolonged thermal stimulation. In order to evaluate the progression from dynamic change to a steady temperature during prolonged Peltier stimulation, recordings of temperatures at the probe-skin interface were obtained. First, recordings of temperature during contact-and-hold stimulation (solenoid powered delivery of a preheated thermode to the skin) provided an evaluation of heat dissipation from the beginning of stimulation, uncontaminated by ramping. The heat sink effect lasted up to 8 sec. and accounted in part for substantial increases in pain intensity as a combined function of durations from 1–16 sec. and stimulus intensities from 43°C to 59°. Recordings during longer periods of stimulation showed that Peltier stimulation generated feedback oscillations in temperature for up to 75 sec that were tracked by subjects’ continuous ratings of pain. During 120 sec. trials, sensitization of pain was observed over 45 seconds after the oscillations subsided. In contrast, sensitization was not observed during 130.5 sec. of stimulation with alternately increasing and decreasing temperatures that maintained a target eVAS rating of 35. Thus, long duration stimulation can be utilized to evaluate sensitization, presumably of C nociception, when not disrupted by oscillations inherent to feedback control of Peltier stimulation. PMID:23423165

  18. Relationships between the intensity and duration of Peltier heat stimulation and pain magnitude.

    PubMed

    Vierck, Charles J; Mauderli, Andre P; Riley, Joseph L

    2013-03-01

    Ramp-and-hold heat stimulation with a Peltier thermode is a standard procedure for quantitative sensory testing of human pain sensitivity. Because myelinated and unmyelinated nociceptive afferents respond preferentially to changing and steady temperatures, respectively, ramp-and-hold heat stimulation could assess processing of input from A-delta nociceptors early and C nociceptors late during prolonged thermal stimulation. In order to evaluate the progression from dynamic change to a steady temperature during prolonged Peltier stimulation, recordings of temperatures at the probe-skin interface were obtained. First, recordings of temperature during contact-and-hold stimulation (solenoid powered delivery of a preheated thermode to the skin) provided an evaluation of heat dissipation from the beginning of stimulation, uncontaminated by ramping. The heat-sink effect lasted up to 8 s and accounted in part for a slow increase in pain intensity for stimulus durations of 1-16 s and stimulus intensities of 43-59 °C. Recordings during longer periods of stimulation showed that feedback-controlled Peltier stimulation generated oscillations in temperature that were tracked for up to 75 s by subjects' continuous ratings of pain. During 120-s trials, sensitization of pain was observed over 45 s after the oscillations subsided. Thus, long-duration stimulation can be utilized to evaluate sensitization, presumably of C nociception, when not disrupted by oscillations in thermode temperature (e.g., those inherent to feedback control of Peltier stimulation). In contrast, sensitization was not observed during 130.5 s of stimulation with alternately increasing and decreasing temperatures that repeatedly activated A-delta nociceptors.

  19. Transient characteristics of a grooved water heat pipe with variable heat load

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon

    1990-01-01

    The transient characteristics of a grooved water heat pipe were studied by using variable heat load. First, the effects of the property variations of the working fluid with temperature were investigated by operating the water heat pipe at several different temperatures. The experimental results show that, even for the same heat input profile and heat pipe configuration, the heat pipe transports more heat at higher temperature within the tested temperature range. Adequate liquid return to the evaporator due to decreasing viscosity of the working fluid permits continuous vaporization of water without dry-out. Second, rewetting of the evaporator was studied after the evaporator had experienced dry-out. To rewet the evaporator, the elevation of the condenser end was the most effective way. Without elevating the condenser end, rewetting is not straight-forward even with power turned off unless the heat pipe is kept at isothermal condition for sufficiently long time.

  20. Forecasting decadal changes in sea surface temperatures and coral bleaching within a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Li, Angang; Reidenbach, Matthew A.

    2014-09-01

    Elevated sea surface temperature (SST) caused by global warming is one of the major threats to coral reefs. While increased SST has been shown to negatively affect the health of coral reefs by increasing rates of coral bleaching, how changes to atmospheric heating impact SST distributions, modified by local flow environments, has been less understood. This study aimed to simulate future water flow patterns and water surface heating in response to increased air temperature within a coral reef system in Bocas del Toro, Panama, located within the Caribbean Sea. Water flow and SST were modeled using the Delft3D-FLOWcomputer simulation package. Locally measured physical parameters, including bathymetry, astronomic tidal forcing, and coral habitat distribution were input into the model and water flow, and SST was simulated over a four-month period under present day, as well as projected warming scenarios in 2020s, 2050s, and 2080s. Changes in SST, and hence the thermal stress to corals, were quantified by degree heating weeks. Results showed that present-day reported bleaching sites were consistent with localized regions of continuous high SST. Regions with highest SST were located within shallow coastal sites adjacent to the mainland or within the interior of the bay, and characterized by low currents with high water retention times. Under projected increases in SSTs, shallow reef areas in low flow regions were found to be hot spots for future bleaching.

Top