Mn-Site Doped CaMnO 3: Creation of the CMR Effect
NASA Astrophysics Data System (ADS)
Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.
2000-01-01
The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.
NASA Astrophysics Data System (ADS)
Yoon, Seok-Hyun; Randall, Clive A.; Hur, Kang-Heon
2010-09-01
The difference in the resistance degradation behavior was investigated between fixed valence acceptor (Mg) and the variable valence acceptor (Mn)-doped BaTiO3 ceramics with an increase of each acceptor concentration. Coarse-grained specimens with uniform grain sizes and different acceptor concentrations were prepared. In the case of Mg-doped BaTiO3, the time to degradation systematically decreased with the increase in Mg concentration. In contrast, there is a systematically increased time to degradation with the increase in Mn concentration in Mn-doped BaTiO3. The fast degradation by the increase in Mg concentration directly corresponded to an increase in the Warburg impedance and ionic transference number (tion) associated with an increase in oxygen vacancy concentration ([VO••]). On the other hand, no distinct Warburg impedance or ionic conduction contribution could be observed with the increase in Mn concentration. It is supposed that the increase in [VO••] is negligible in spite of the increase in acceptor Mn concentration, when it is compared to Mg-doped BaTiO3. The much lower [VO••] and more dominant electron/hole trapping effect due to multivalence nature of Mn are supposed to cause such a contrary degradation behavior between Mg and Mn-doped BaTiO3. Reoxidation in a slightly reducing atmosphere (N2) showed better resistance to degradation behavior than in a oxidizing air atmosphere in both Mg and Mn-doped BaTiO3, which is anticipated to be an increase in the electron/hole trapping sites. All these behaviors could be explained by the low temperature defect chemical model that shows difference in the defect structure between Mg and Mn-doped BaTiO3, and its dependence on the oxygen partial pressure (pO2) during reoxidation and cooling. Not only the [VO••], but also the density of electron/hole trap sites, are believed to be crucial in controlling resistance degradation.
NASA Astrophysics Data System (ADS)
Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox
2018-05-01
The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.
Synthesis and characterization of single-phase Mn-doped ZnO
NASA Astrophysics Data System (ADS)
Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.
2009-05-01
Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.
Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain
NASA Astrophysics Data System (ADS)
Miao, Yaping; Huang, Yuhong; Bao, Hongwei; Xu, Kewei; Ma, Fei; Chu, Paul K.
2018-05-01
First-principles calculations are conducted to study the electronic and magnetic states of Mn-doped monolayer MoS2 under lattice strain. Mn-doped MoS2 exhibits half-metallic and ferromagnetic (FM) characteristics in which the majority spin channel exhibits metallic features but there is a bandgap in the minority spin channel. The FM state and the total magnetic moment of 1 µ B are always maintained for the larger supercells of monolayer MoS2 with only one doped Mn, no matter under tensile or compressive strain. Furthermore, the FM state will be enhanced by the tensile strain if two Mo atoms are substituted by Mn atoms in the monolayer MoS2. The magnetic moment increases up to 0.50 µ B per unit cell at a tensile strain of 7%. However, the Mn-doped MoS2 changes to metallic and antiferromagnetic under compressive strain. The spin polarization of Mn 3d orbitals disappears gradually with increasing compressive strain, and the superexchange interaction between Mn atoms increases gradually. The results suggest that the electronic and magnetic properties of Mn-doped monolayer MoS2 can be effectively modulated by strain engineering providing insight into application to electronic and spintronic devices.
Cheng, Yan; Chen, Rui; Feng, Haifeng; Hao, Weichang; Xu, Huaizhe; Wang, Yu; Li, Jiong
2014-03-14
Mn-doped ZnO-ZnS complex nanocrystals were fabricated through coating of dodecanethiol on Mn-doped ZnO nanocrystals. The relationship between the component of white light emission and the coordination environments of Mn-dopants were experimentally investigated. It was shown that Mn ions mainly formed Mn(3+)O6 octahedra in as prepared Mn-doped ZnO, while the Mn(3+) ions on the surface of ZnO transferred into Mn(2+) ions at the interface between ZnO and ZnS after dodecanethiol coating. The Mn(2+)S4 tetrahedron density and the orange emission intensity increased upon enhancing the dodecanethiol content. These results provide an alternative way to optimize the white emission spectrum from nanocrystals of Mn-doped ZnS-ZnO complex structures through modulation of the coordination environment of Mn ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuping, Duan, E-mail: duanyp@dlut.edu.c; Jia, Zhang; Hui, Jing
Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO{sub 2} with Fe, the relative complex permittivity of MnO{sub 2} and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO{sub 2} exhibits good microwavemore » absorption capability. -- Graphical Abstract: Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized in a high magnetic field of 10 T via a simple chemical process. Display Omitted Highlights: {yields} Fe-doped MnO{sub 2} with a hollow sea urchin-like ball chain shape was first synthesized. {yields} We investigated formation mechanism and electromagnetic properties of the Fe-doped MnO{sub 2}. {yields} By doping MnO{sub 2} with Fe, the electromagnetic properties are improved obviously.« less
Magnetic properties and magnetocaloric effect in Pt doped Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Singh, Sanjay; D'Souza, S. W.; Mukherjee, K.; Kushwaha, P.; Barman, S. R.; Agarwal, Sandeep; Mukhopadhyay, P. K.; Chakrabarti, Aparna; Sampathkumaran, E. V.
2014-06-01
Large magnetocaloric effect is observed in Ni1.8Pt0.2MnGa close to room temperature. The entropy change shows a crossover from positive to negative sign at the martensite transition. It is negative above 1.6 T and its magnitude increases linearly with magnetic field. An increase in the saturation magnetic moment is observed with Pt doping in Ni2MnGa. Ab initio theoretical calculations show that the increase in magnetic moment with Pt doping in Ni2MnGa is associated with increase in the Mn and Pt local moments in the ferromagnetic ground state. The Curie temperature calculated from the exchange interaction parameters is in good agreement with experiment, showing the absence of any antiferromagnetic correlation due to Pt doping.
Microstructural and optical properties of Mn doped NiO nanostructures synthesized via sol-gel method
NASA Astrophysics Data System (ADS)
Shah, Shamim H.; Khan, Wasi; Naseem, Swaleha; Husain, Shahid; Nadeem, M.
2018-04-01
Undoped and Mn(0, 5%, 10% and 15%) doped NiO nanostructures were synthesized by sol-gel method. Structure, morphology and optical properties were investigated through XRD, FTIR, SEM/EDS and UV-visible absorption spectroscopy techniques. XRD data analysis reveals the single phase nature with cubic crystal symmetry of the samples and the average crystallite size decreases with the doping of Mn ions upto 10%. FTIR spectra further confirmed the purity and composition of the synthesized samples. The non-spherical shape of the nanostructures was observed from SEM micrographs and gain size of the nanostructures reduces with Mn doping in NiO, whereas agglomeration increases in doped sample. Optical band gap was estimated using Tauc'srelation and found to increase on incorporation of Mn upto 10% in host lattice and then decreases for further doping.
Ferromagnetic properties of Mn-doped HfS2 monolayer under strain
NASA Astrophysics Data System (ADS)
Ma, Xu; Zhao, Xu; Wu, Ninghua; Xin, Qianqian; Liu, Xiaomeng; Wang, Tianxing; Wei, Shuyi
2017-12-01
Using the first-principles calculations, we investigated electronic and magnetic properties of Mn-doped HfS2 monolayer for 4% and 8% Mn concentration. We study the strain tuning of electronic and magnetic properties of 4% Mn-doped HfS2 monolayer firstly. Our results show that the Mn-doped HfS2 monolayer is magnetic nanomaterial without strain. It keeps this character until the compressive strain comes to -8%, and the magnetism disappear with lager compressive strain. With the increasing tensile strain, the doped system transforms from semiconductor to half-metallic when the tensile strain is equivalent to or greater than 5%. The largest half-metallic gap is 1.307 eV at 5% tensile strain and the magnetic moment always keeps about 3μB, which indicates that Mn-doped HfS2 monolayer can be a candidate for superior half-metallic namomaterial. Furthermore, we find two Mn dopants couple ferromagnetically via antiferromagnetic (AFM) p-d exchange interaction at the environment of 8% concentration. It keeps the properties of magnetic semiconductor under two Mn-doped configurations with different Mn-Mn separations. Our studies predict Mn-doped HfS2 monolayer under strain to be candidates for dilute magnetic semiconductors.
Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase
NASA Astrophysics Data System (ADS)
Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.
2013-11-01
Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.
Effect of Mn doping on the temperature-dependent anomalous giant dielectric behavior of CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Kim, C. H.; Jang, Y. H.; Seo, S. J.; Song, C. H.; Son, J. Y.; Yang, Y. S.; Cho, J. H.
2012-06-01
We report dielectric properties and dielectric relaxation behaviors of Mn-substituted CaCu3Ti4O12 (CCTO) on Cu sites. While CCTO exhibits the giant dielectric constant and low dielectric loss in a wide temperature range, drastic suppression of the dielectric constant in Mn-doped CCTO (CCMTO) samples have been observed in temperature and frequency dependencies of dielectric properties with two possible origins as Mn doping increases. The observed suppression of dielectric response in the low Mn doping differs from the heavy doping of Mn in CCMTO samples. The low-Mn-doped CCMTO samples (x=0.01 and 0.02) show that the relaxation time and the activation energy Ea were slightly reduced due to a decreased contribution from the density of the dipolar effect. However, in heavily doped CCMTO samples (x=0.03, 0.04, and 0.05), the dielectric response, relaxation time, and Ea were significantly decreased, suggesting Mn doping plays a significant role in the destruction of the intrinsic dipolar effect.
Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V
2014-01-01
Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aimouch, D. E.; Meskine, S.; Boukortt, A.; Zaoui, A.
2018-04-01
In this study, structural, electronic and magnetic properties of Mn doped (ZnO:Mn) and (Mn,Cr) co-doped zinc oxide (ZnO:(Mn,Cr)) have been calculated with the FP-LAPW method by using the LSDA and LSDA+U approximations. Going through three configurations of Mn,Cr co-doped ZnO corresponding to three different distances between manganese and chromium, we have analyzed that ZnO:(Mn,Cr) system is more stable in its preferred configuration2. The lattice constant of undoped ZnO that has been calculated in this study is in a good agreement with the experimental and theoretical values. It was found to be increased by doping with Mn or (Mn,Cr) impurities. The band structure calculations showed the metallic character of Mn doped and Mn,Cr co-doped ZnO. As results, by using LSDA+U (U = 6eV), we show the half-metallic character of ZnO:Mn and ZnO:Mn,Cr. We present the calculated exchange couplings d-d of Mn doped ZnO which is in a good agreement with the former FPLO calculation data and the magnetization step measurement of the experimental work. The magnetic coupling between neighboring Mn impurities in ZnO is found to be antiferromagnetic. In the case of (Mn,Cr) co-doped ZnO, the magnetic coupling between Mn and Cr impurities is found to be antiferromagnetic for configuration1 and 3, and ferromagnetic for configuration2. Thus, the ferromagnetic coupling is weak in ZnO:Mn. Chromium co-doping greatly enhance the ferromagnetism, especially when using configuration2. At last, we present the 2D and 3D spin-density distribution of ZnO:Mn and ZnO:(Mn,Cr) where the ferromagnetic state in ZnO:(Mn,Cr) comes from the strong p-d and d-d interactions between 2p-O, 3d-Mn and 3d-Cr electrons. The results of our calculations suggest that the co-doping ZnO(Mn, Cr) can be among DMS behavior for spintronic applications.
NASA Astrophysics Data System (ADS)
Yuping, Duan; Jia, Zhang; Hui, Jing; Shunhua, Liu
2011-05-01
Fe-doped MnO 2 with a hollow sea urchin-like ball chain shape was first synthesized under a high magnetic field of 10 T. The formation mechanism was investigated and discussed in detail. The synthesized samples were characterized by XRD, SEM, TEM, EMPA, and vector network analysis. By doping MnO 2 with Fe, the relative complex permittivity of MnO 2 and its corresponding loss tangent clearly decreases, but its relative complex permeability and its corresponding loss tangent markedly increases. Moreover, the theoretically calculated values of reflection loss show that with increasing the Fe content, the as-prepared Fe-doped MnO 2 exhibits good microwave absorption capability.
Multivalent Mn-doped TiO2 thin films
NASA Astrophysics Data System (ADS)
Lin, C. Y. W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C. C.
2012-07-01
Thin films of TiO2 doped with Mn were deposited on F-doped SnO2-coated glass using spin coating. The concentration of the dopant was in the range 0-7 wt% Mn (metal basis). The films were examined in terms of the structural, chemical, and optical properties. Glancing angle X-ray diffraction data show that the films consisted of the anatase polymorph of TiO2, without any contaminant phases. The X-ray photoelectron spectroscopy data indicate the presence of Mn3+ and Mn4+ in the doped films as well as atomic disorder and associated structural distortion. Ultraviolet-visible spectrophotometry data show that the optical indirect band gap of the films decreased significantly with increasing manganese doping, from 3.32 eV for the undoped composition to 2.90 eV for that doped with 7 wt% Mn.
Doped SnO₂ transparent conductive multilayer thin films explored by continuous composition spread.
Lee, Jin Ju; Ha, Jong-Yoon; Choi, Won-Kook; Cho, Yong Soo; Choi, Ji-Won
2015-04-13
Mn-doped SnO₂ thin films were fabricated by a continuous composition spread (CCS) method on a glass substrate at room temperature to find optimized compositions. The fabricated materials were found to have a lower resistivity than pure SnO₂ thin films because of oxygen vacancies generated by Mn doping. As Mn content was increased, resistivity was found to decrease for limited doping concentrations. The minimum thin film resistivity was 0.29 Ω-cm for a composition of 2.59 wt % Mn-doped SnO₂. The Sn-O vibrational stretching frequency in FT-IR showed a blue shift, consistent with oxygen deficiency. Mn-doped SnO₂/Ag/Mn-doped SnO₂ multilayer structures were fabricated using this optimized composition deposited by an on-axis radio frequency (RF) sputter. The multilayer transparent conducting oxide film had a resistivity of 7.35 × 10⁻⁵ Ω-cm and an average transmittance above 86% in the 550 nm wavelength region.
Manikandan, Dhamodaran; Boukhvalov, D W; Amirthapandian, S; Zhidkov, I S; Kukharenko, A I; Cholakh, S O; Kurmaev, E Z; Murugan, Ramaswamy
2018-02-28
SnO 2 and Mn-doped SnO 2 single-phase tetragonal crystal structure quantum dots (QDs) of uniform size with control over dopant composition and microstructure were synthesized using the high pressure microwave synthesis technique. On a broader vision, we systematically investigated the influence of dilute Mn ions in SnO 2 under the strong quantum confinement regime through various experimental techniques and density functional theoretical (DFT) calculations to disclose the physical mechanism governing the observed ferromagnetism. DFT calculations revealed that the formation of the stable (001) surface was much more energetically favorable than that of the (100) surface, and the formation energy of the oxygen vacancies in the stable (001) surface was comparatively higher in the undoped SnO 2 QDs. X-ray photoelectron spectroscopy (XPS) and first-principles modeling of doped QDs revealed that the lower doping concentration of Mn favored the formation of MnO-like (Mn 2+ ) structures in defect-rich areas and the higher doping concentration of Mn led to the formation of multiple configurations of Mn (Mn 2+ and Mn 3+ ) in the stable surfaces of SnO 2 QDs. Electronic absorption spectra indicated the characteristic spin allowed ligand field transitions of Mn 2+ and Mn 3+ and the red shift in the band gap. DFT calculations clearly indicated that only the substitutional dopant antiferromagnetic configurations were more energetically favorable. The gradual increase of magnetization at a low level of Mn-doping could be explained by the prevalence of antiferromagnetic manganese-vacancy pairs. Higher concentrations of Mn led to the appearance of ferromagnetic interactions between manganese and oxygen vacancies. The increase in the concentration of metallic dopants caused not just an increase in the total magnetic moment of the system but also changed the magnetic interactions between the magnetic moments on the metal ions and oxygen. The present study provides new insight into the fundamental understanding of the origin of ferromagnetism in transition metal-doped QDs.
Evolution of magnetic properties of CaMn1-x Nb x O3 with Nb-doping
NASA Astrophysics Data System (ADS)
Markovich, V.; Fita, I.; Wisniewski, A.; Puzniak, R.; Martin, C.; Mogilyansky, D.; Jung, G.; Gorodetsky, G.
2015-08-01
Magnetic and structural properties of Nb-doped CaMnO3 have been studied and the effect of doping with 0.02 ⩽ x ⩽ 0.1 has been investigated. Substitution of Nb5+ ion for the Mn4+ site of the parent matrix causes one-electron doping with the chemical formula \\text{CaMn}1-2x4+\\text{Mn}x3+\\text{Nb}x5+{{\\text{O}}3} , accompanied by a monotonous increase of the lattice parameters, unit-cell volume, average Mn-O bond distance and a decrease in Mn-O-Mn bond angle, with increasing x. Low temperature magnetic ground state of CaMn1-x Nb x O3 has been found to be dependent on niobium doping level. The ground magnetic state evolves from mostly antiferromagnetic, with a weak ferromagnetic component for x = 0.02-0.08, to charge ordered C-type antiferromagnetic state at x = 0.1. Spontaneous magnetization increases sharply with increasing doping level, approaches a maximal value of 4.1 emu g-1 at T = 10 K for x = 0.08, and then decreases rapidly to reach a very small value of 0.2 emu g-1 for x = 0.1. Anomalous negative magnetization behavior below the magnetic transition temperature has been observed for the compound with x = 0.04 in the field cooled magnetization and remanent dc magnetization measurements. Vertical and horizontal shifts of the hysteresis loop of the field cooled sample have been observed for CaMn0.9Nb0.1O3 as possible signatures of the exchange bias effect. The effect of hydrostatic pressure on dc magnetization for the sample with x > 0.02 revealed a significant increase of the ferromagnetic phase volume under pressure, linked to progressive suppression of a negative magnetization in x = 0.04 sample.
Role of Cu-Ion Doping in Cu-α-MnO 2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction
Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; ...
2014-07-09
The role of Cu-ion doping in α-MnO 2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO 2 nanowires (Cu-α-MnO 2) were prepared with varying amounts of Cu 2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO 2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO 2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn 3+ content for the Cu-α-MnO 2 nanowires. The Mn 3+/Mn 4+ couple is themediator for the rate-limiting redoxmore » driven O 2 -/OH - exchange. It is proposed that O 2 adsorbs viaan axial site (the e g orbital on the Mn 3+ d 4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O 2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn 3+ character of the oxide.« less
Room temperature ferromagnetism in Mn-doped NiO nanoparticles
NASA Astrophysics Data System (ADS)
Layek, Samar; Verma, H. C.
2016-01-01
Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.
NASA Astrophysics Data System (ADS)
Zhang, Ziying; Zhang, Huizhen; Zhao, Hui; Yu, Zhishui; He, Liang; Li, Jin
2015-04-01
The crystal structures, electronic structures, thermodynamic and mechanical properties of Mg2Ni alloy and its saturated hydride with different Mn-doping contents are investigated using first-principles density functional theory. The lattice parameters for the Mn-doped Mg2Ni alloys and their saturated hydrides decreased with an increasing Mn-doping content because of the smaller atomic size of Mn compared with that of Mg. Analysis of the formation enthalpies and electronic structures reveal that the partial substitution of Mg with Mn reduces the stability of Mg2Ni alloy and its saturated hydride. The calculated elastic constants indicate that, although the partial substitution of Mg with Mn lowers the toughness of the hexagonal Mg2Ni alloy, the charge/discharge cycles are elevated when the Mn-doping content is high enough to form the predicted intermetallic compound Mg3MnNi2.
Chromium doping effects on structural and dielectric properties of Mn-Zn cobaltites
NASA Astrophysics Data System (ADS)
Yadav, A.; Dar, Mashkoor A.; Choudhary, P.; Shah, P.; Varshney, Dinesh
2016-05-01
The effect of transition metal Cr2+ ion as a dopant of Zn2+ in Mn0.5Zn0.5Co2O4 is investigated. Co-doped Mn0.5Zn0.5-xCrxCo2O4 (x = 0, 0.3 and 0.5) cobaltites were prepared by solid-state reaction route. X-ray powder diffraction (XRD) analysis reveals that the samples prepared are polycrystalline single-phase cubic spinel in structure having a space group Fd3m. An increase in average particle size observed with Cr2+ doping. However other structural parameters such as X-ray density, micro strain and dislocation density shows almost a similar decreasing trend with increase in Cr2+. High value of permittivity ˜105 is observed for the parent Mn0.5Zn0.5Co2O4 and shows a substantial decrease with increase in the Cr2+ doping. Higher doping of Cr2+ also increases the dielectric loss and hence limits its technological importance. At lower frequencies ac conductivity has been found to increase with increase in Cr2+ content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Wen, E-mail: wenxiong@cqu.edu.cn; Chen, Wensuo
2013-12-21
The electronic structure of Mn and Co-doped CdSe nanowires are calculated based on the six-band k·p effective-mass theory. Through the calculation, it is found that the splitting energies of the degenerate hole states in Mn-doped CdSe nanowires are larger than that in Co-doped CdSe nanowires when the concentration of these two kinds of magnetic ions is the same. In order to analysis the magneto-optical spectrum of Mn and Co-doped CdSe nanowires, the four lowest electron states and the four highest hole states are sorted when the magnetic field is applied, and the 10 lowest optical transitions between the conduction subbandsmore » and the valence subbands at the Γ point in Mn and Co-doped CdSe nanowires are shown in the paper, it is found that the order of the optical transitions at the Γ point almost do not change although two different kinds of magnetic ions are doped in CdSe nanowires. Finally, the effective excitonic Zeeman splitting energies at the Γ point are found to increase almost linearly with the increase of the concentration of the magnetic ions and the magnetic field; meanwhile, the giant positive effective excitonic g factors in Mn and Co-doped CdSe nanowires are predicted based on our theoretical calculation.« less
Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application
NASA Astrophysics Data System (ADS)
Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.
2018-02-01
Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.
Structural study of Co doped MnV2O4 from first principles
NASA Astrophysics Data System (ADS)
Krishna, Jyoti; Maitra, Tulika
2017-05-01
Inspired by the recent experiments, we have theoretically investigated the compound Mn1-xCoxV2O4 using first-principles density functional theory for x = 0.0, 0.25, 0.5, 0.75. On increasing Co doping on Mn site, chemical pressure on V-V bonds increases which make the system more itinerant as indicated by decrease in the calculated RV-V values with increasing x. The calculated band gap is also seen to decrease with increasing x. This Co-doping induced itinerancy facilitates superexchange interaction among Co and V ions leading to an increase in the magnetic transition temperature.
Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates
NASA Astrophysics Data System (ADS)
Putri, Nur Ajrina; Fauzia, Vivi; Iwan, S.; Roza, Liszulfah; Umar, Akrajas Ali; Budi, Setia
2018-05-01
Mn-doped ZnO nanorods were synthesized on glass substrates via a two-steps process of ultrasonic spray pyrolysis and hydrothermal methods with four different concentrations Mn-doping (0, 1, 3, and 7 mol%). Introduction of Mn into ZnO is known could enhance the photocatalytic activity owing to the increase in the defect sites that effectively suppress the recombination of free electrons and holes. In this study, results show that Mn-doping has effectively modified the nucleations and crystal growth of ZnO, as evidenced by the increasing in the diameter, height, and the number of nanorods per unit area, besides slightly reduced the band gap and increased the oxygen vacancy concentrations in the ZnO lattice. This condition has successfully multiplied the photocatalytic performance of the ZnO nanorods in the degradation of methylene blue (MB) compared to the undoped-ZnO sample where in the typical process the MB can be degraded approximately 77% within only 35 min under a UV light irradiation.
Ozmen, Murat; Güngördü, Abbas; Erdemoglu, Sema; Ozmen, Nesrin; Asilturk, Meltem
2015-08-01
The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO2. Undoped and Mn-doped TiO2 nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV-vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO2 was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO2 nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO2 increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2-4h of degradation. However, biochemical assays showed that both Mn-doped TiO2 and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn-doped TiO2 should be considered due to nanomaterial applications and for spilled nanoparticles in an aquatic ecosystem. Also, the risk of nanoparticles should be considered using indicator reference biochemical markers to verify the environmental health impacts. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, F.; Zhao, G. Q.; Escanhoela, Jr., C. A.
We investigate doping- and pressure-induced changes in the electronic state of Mn 3d and As 4p orbitals in II-II-V based diluted magnetic semiconductor (Ba 1-x,K x)(Zn 1-y,Mn y) 2As 2 to shed light into the mechanism of indirect exchange interactions leading to high ferromagnetic ordering temperature (T c = 230 K in optimally doped samples). A suite of x-ray spectroscopy experiments (emission, absorption and dichroism) show that the emergence, and further enhancement of ferromagnetic interactions with increased hole doping into the As 4p band is accompanied by a decrease in local 3d spin density at Mn sites. This is amore » result of increasing Mn 3d - As 4p hybridization with hole doping which enhances indirect exchange interactions between Mn dopants and gives rise to induced magnetic polarization in As 4p states. On the contrary, application of pressure suppresses exchange interactions. While Mn Kβ emission spectra show a weak response of 3d state to pressure, clear As 4p band broadening (hole delocalization) is observed under pressure ultimately leading to loss of ferromagnetism concomitant with a semiconductor to metal transition. The pressure response of As 4p and Mn 3d states is intimately connected with the evolution of the As-As interlayer distance and the geometry of the MnAs 4 tetrahedral units, which we probed with X-ray diffraction. Our results indicate that hole doping increases the degree of covalency between the anion (As) p states and cation (Mn) d states in the MnA s4 tetrahedron, a crucial ingredient to promote indirect exchange interactions between Mn dopants and high T c ferromagnetism. As a result, the instability of ferromagnetism and semiconducting state against pressure is mainly dictated by delocalization of anion p states.« less
Sun, F.; Zhao, G. Q.; Escanhoela, Jr., C. A.; ...
2017-03-13
We investigate doping- and pressure-induced changes in the electronic state of Mn 3d and As 4p orbitals in II-II-V based diluted magnetic semiconductor (Ba 1-x,K x)(Zn 1-y,Mn y) 2As 2 to shed light into the mechanism of indirect exchange interactions leading to high ferromagnetic ordering temperature (T c = 230 K in optimally doped samples). A suite of x-ray spectroscopy experiments (emission, absorption and dichroism) show that the emergence, and further enhancement of ferromagnetic interactions with increased hole doping into the As 4p band is accompanied by a decrease in local 3d spin density at Mn sites. This is amore » result of increasing Mn 3d - As 4p hybridization with hole doping which enhances indirect exchange interactions between Mn dopants and gives rise to induced magnetic polarization in As 4p states. On the contrary, application of pressure suppresses exchange interactions. While Mn Kβ emission spectra show a weak response of 3d state to pressure, clear As 4p band broadening (hole delocalization) is observed under pressure ultimately leading to loss of ferromagnetism concomitant with a semiconductor to metal transition. The pressure response of As 4p and Mn 3d states is intimately connected with the evolution of the As-As interlayer distance and the geometry of the MnAs 4 tetrahedral units, which we probed with X-ray diffraction. Our results indicate that hole doping increases the degree of covalency between the anion (As) p states and cation (Mn) d states in the MnA s4 tetrahedron, a crucial ingredient to promote indirect exchange interactions between Mn dopants and high T c ferromagnetism. As a result, the instability of ferromagnetism and semiconducting state against pressure is mainly dictated by delocalization of anion p states.« less
NASA Astrophysics Data System (ADS)
Zhao, B. C.; Song, W. H.; Ma, Y. Q.; Ang, R.; Zhang, S. B.; Sun, Y. P.
2005-10-01
Single crystals of La1-x Pbx Mn1-y-z Cuy O3 ( x˜0.14 ; y=0 ,0.01,0.02,0.04,0.06; z=0.02 ,0.08,0.11,0.17,0.20) are grown by the flux growth technique. The effect of Cu doping at the Mn-site on magnetic and transport properties is studied. All studied samples undergo a paramagnetic-ferromagnetic transition. The Curie temperature TC decreases and the transition becomes broader with increasing Cu-doping level. The high-temperature insulator-metal (I-M) transition moves to lower temperature with increasing Cu-doping level. A reentrant M-I transition at the low temperature T* is observed for samples with y⩾0.02 . In addition, T* increases with increasing Cu-doping level and is not affected by applied magnetic fields. Accompanying the appearance of T* , there exists a large, almost constant magnetoresistance (MR) below T* except for a large MR peak near TC . This reentrant M-I transition is ascribed to charge carrier localization due to lattice distortion caused by the Cu doping at Mn sites.
Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration
NASA Astrophysics Data System (ADS)
Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki
2018-04-01
The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.
Enhance D. C. resistivity of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by acceptor (Mn) doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hakikat, E-mail: sharmahakikat@yahoo.in; Arya, G. S.; Pramar, Kusum
2015-05-15
In the present work, we prepared Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Mn (2 and 3 at % on Ti site) doped Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by sol- gel method. The samples were characterized by X-ray diffraction (XRD). The XRD patterns reveled that Mn ions did not change the perovskite structure of BST (70/30). The dielectric measurements proved that dielectric constant decreased with Mn doping. The dc resistivity was studied by using I-V measurements. The dc resistivity of the BST increased with Mn doping, which suppressed the leakage current.
Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders.
Guo, Meilan; Gao, Yun; Shao, G
2016-01-28
Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond which the Mn3O4 compound appeared as a secondary phase. The optical absorption edges for Mn-doped anatase TiO2 were red-shifted effectively through increasing Mn content. Alloying chemistry and associated elemental valences were elaborated through combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and theoretical simulation in the framework of density functional theory (DFT). The results showed that the Mn species exhibited mixed valence states of 3+ and 4+ in anatase TiO2, with the latter being the key to remarkable photocatalytic performance.
NASA Astrophysics Data System (ADS)
Surmach, M. A.; Chen, B. J.; Deng, Z.; Jin, C. Q.; Glasbrenner, J. K.; Mazin, I. I.; Ivanov, A.; Inosov, D. S.
2018-03-01
Dilute magnetic semiconductors (DMS) are nonmagnetic semiconductors doped with magnetic transition metals. The recently discovered DMS material (Ba1 -xKx) (Zn1-yMny) 2As2 offers a unique and versatile control of the Curie temperature TC by decoupling the spin (Mn2 +, S =5 /2 ) and charge (K+) doping in different crystallographic layers. In an attempt to describe from first-principles calculations the role of hole doping in stabilizing ferromagnetic order, it was recently suggested that the antiferromagnetic exchange coupling J between the nearest-neighbor Mn ions would experience a nearly twofold suppression upon doping 20% of holes by potassium substitution. At the same time, further-neighbor interactions become increasingly ferromagnetic upon doping, leading to a rapid increase of TC. Using inelastic neutron scattering, we have observed a localized magnetic excitation at about 13 meV associated with the destruction of the nearest-neighbor Mn-Mn singlet ground state. Hole doping results in a notable broadening of this peak, evidencing significant particle-hole damping, but with only a minor change in the peak position. We argue that this unexpected result can be explained by a combined effect of superexchange and double-exchange interactions.
NASA Astrophysics Data System (ADS)
Sun, F.; Zhao, G. Q.; Escanhoela, C. A.; Chen, B. J.; Kou, R. H.; Wang, Y. G.; Xiao, Y. M.; Chow, P.; Mao, H. K.; Haskel, D.; Yang, W. G.; Jin, C. Q.
2017-03-01
We investigate doping- and pressure-induced changes in the electronic state of Mn 3 d and As 4 p orbitals in II-II-V-based diluted magnetic semiconductor (B a1 -xKx ) (Zn1-yM ny ) 2A s2 to shed light into the mechanism of indirect exchange interactions leading to high ferromagnetic ordering temperature (T c =230 K in optimally doped samples). A suite of x-ray spectroscopy experiments (emission, absorption, and dichroism) show that the emergence and further enhancement of ferromagnetic interactions with increased hole doping into the As 4 p band is accompanied by a decrease in local 3 d spin density at Mn sites. This is a result of increasing Mn 3 d -As 4 p hybridization with hole doping, which enhances indirect exchange interactions between Mn dopants and gives rise to induced magnetic polarization in As 4 p states. On the contrary, application of pressure suppresses exchange interactions. While Mn K β emission spectra show a weak response of 3 d states to pressure, clear As 4 p band broadening (hole delocalization) is observed under pressure, ultimately leading to loss of ferromagnetism concomitant with a semiconductor to metal transition. The pressure response of As 4 p and Mn 3 d states is intimately connected with the evolution of the As-As interlayer distance and the geometry of the MnA s4 tetrahedral units, which we probed with x-ray diffraction. Our results indicate that hole doping increases the degree of covalency between the anion (As) p states and cation (Mn) d states in the MnA s4 tetrahedron, a crucial ingredient to promote indirect exchange interactions between Mn dopants and high T c ferromagnetism. The instability of ferromagnetism and semiconducting states against pressure is mainly dictated by delocalization of anion p states.
Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.
Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi
2011-04-01
The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingyan, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Ren, Wei, E-mail: l.y.wang@mail.xjtu.edu.cn, E-mail: wren@mail.xjtu.edu.cn; Shi, Peng
Lead-free ferroelectric un-doped and doped K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) films with different amounts of manganese (Mn) were prepared by a chemical solution deposition method. The thicknesses of all films are about 1.6 μm. Their phase, microstructure, leakage current behavior, and electrical properties were investigated. With increasing the amounts of Mn, the crystallinity became worse. Fortunately, the electrical properties were improved due to the decreased leakage current density after Mn-doping. The study on leakage behaviors shows that the dominant conduction mechanism at low electric field in the un-doped KNN film is ohmic mode and that at high electric field is space-charge-limitedmore » and Pool-Frenkel emission. After Mn doping, the dominant conduction mechanism at high electric field of KNN films changed single space-charge-limited. However, the introduction of higher amount of Mn into the KNN film would lead to a changed conduction mechanism from space-charge-limited to ohmic mode. Consequently, there exists an optimal amount of Mn doping of 2.0 mol. %. The 2.0 mol. % Mn doped KNN film shows the lowest leakage current density and the best electrical properties. With the secondary ion mass spectroscopies and x-ray photoelectron spectroscopy analyses, the homogeneous distribution in the KNN films and entrance of Mn element in the lattice of KNN perovskite structure were also confirmed.« less
Effect of Fe doping on the electrochemical capacitor behavior of MnO2 nanocrystals
NASA Astrophysics Data System (ADS)
Poonguzhali, R.; Shanmugam, N.; Gobi, R.; Senthilkumar, A.; Viruthagiri, G.; Kannadasan, N.
2015-10-01
In this work, the influence of Fe doping on the capacitance behavior of MnO2 nanoparticles synthesized by chemical precipitation was investigated. During the doping process the concentration of Fe was increased from 0.025 M to 0.125 M in steps of 0.025 M. The products obtained were characterized by X-ray diffraction, Fourier infrared spectroscopy, scanning electron microscopy and N2 adsorption-desorption isotherms. To demonstrate the suitability of Fe-doped MnO2 for capacitor applications, cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance were recorded. Among the different levels of doping, the specific capacitance of 912 F/g was delivered by 0.075 M of Fe-doped MnO2 at a scan rate of 10 mV/s, which is almost more than fourfold that of the bare MnO2 electrode (210 F/g). Moreover, for the same concentration the charge, discharge studies revealed the highest specific capacitance of 1084 F/g at a current density of 10 A/g.
Effect of sintering on structure and magnetic properties of Mn-doped Zn ferrite
NASA Astrophysics Data System (ADS)
Farheen, Atiya; Singh, Rajender
2018-05-01
The Mn-doped zinc ferrites, MnxZn1-xFe2O4 (x= 0 and 0.1) were prepared using co-precipitation method. The as-prepared samples were sintered at different temperatures. The x-ray diffraction pattern for all the samples confirms single phase spinel structure with Fd-3m space group. The lattice parameters have been estimated using Rietveld fitting. The magnetic moment is found to increase with Mn-doping. The magnetization increases as the sintering temperature increases up to 1200°C. The as-prepared samples are super paramagnetic, while the sintered samples are ferrimagnetic in nature.
NASA Astrophysics Data System (ADS)
Todorov, Yanko M.; Hideshima, Yasufumi; Noguchi, Hideyuki; Yoshio, Masaki
The theoretical capacity and cation vacancy of metal ion (M)-doped LiMn 2- xM xO 4 spinel compounds serving as positive electrodes in a 4-V lithium ion batteries are calculated. The capacity depends strongly on the mole fraction of doped metal ion and vacancies. The theoretical capacity increases with increasing oxidation number of the doped metal ion in the 16d site of LiMn 2O 4 at the same doping fraction. The validity of the proposed equation for calculation of the capacity has been initially confirmed using a metal ion with well-known valence, such as the Al ion. The oxidation state of Co, Ni and Cr ions in the spinel structure is found to be trivalent, divalent and trivalent, respectively. Analysis shows that metal ion-doped spinel compounds with low vacancy content promote high capacity.
Colossal permittivity and the polarization mechanism of (Mg, Mn) co-doped LaGaO3 ceramics
NASA Astrophysics Data System (ADS)
Luo, Tingting; Liu, Zhifu; Zhang, Faqiang; Li, Yongxiang
2018-03-01
Mg and Mn co-doped LaGa0.7-xMgxMn0.3O3 (x = 0, 0.05, 0.10, 0.15) ceramics were prepared by a solid-state reaction method. The electrical properties of the LaGa0.7-xMgxMn0.3O3 ceramics were studied in detail by dielectric spectra, impedance spectra, and I-V characteristic analysis. Colossal permittivity up to 104 could be obtained across the frequency range up to 104 Hz. The impedance analysis of the co-doped LaGaO3 ceramics indicated that the Mott's variable range hopping (VRH) polarization should be the main origin of colossal permittivity. Mg and Mn co-doping suppressed the formation of Mn3+ and enhanced the VRH polarization, resulting in increased permittivity. Partial localization of electrons by Mg reduced the long-range electron hopping and led to the decrease in dielectric loss.
Hole transport in pure and doped hematite
NASA Astrophysics Data System (ADS)
Liao, Peilin; Carter, Emily A.
2012-07-01
Hematite (α-Fe2O3) is a promising candidate for use in photovoltaic (PV) and photoelectrochemical devices. Its poor conductivity is one major drawback. Doping hematite either p-type or n-type greatly enhances its measured conductivity and is required for potential p-n junctions in PVs. Here, we study hole transport in pure and doped hematite using an electrostatically embedded cluster model with ab initio quantum mechanics (unrestricted Hartree-Fock theory). Consistent with previous work, the model suggests that hole hopping is via oxygen anions for pure hematite. The activation energy for hole mobility is predicted to be at least 0.1 eV higher than the activation energy for electron mobility, consistent with the trend observed in experiments. We examine four dopants—magnesium(II), nickel(II), copper(II), and manganese(II/III) in direct cation substitution sites—to gain insight into the mechanism by which conductivity is improved. The activation energies are used to assess qualitative effects of different dopants. The hole carriers are predicted to be attracted to O anions near the dopants. The magnitude of the trapping effect is similar among the four dopants in their +2 oxidation states. The multivalent character of Mn doping facilitates local hole transport around Mn centers via a low-barrier O-Mn-O pathway, which suggests that higher hole mobility can be achieved with increasing Mn doping concentration, especially when a network of these low-barrier pathways is produced. Our results suggest that the experimentally observed conductivity increase in Mg-, Ni-, and Cu-doped p-type hematite is mostly due to an increase in hole carriers rather than improved mobility, and that Mg-, Ni-, and Cu-doping perform similarly, while the conductivity of Mn-doped hematite might be significantly improved in the high doping concentration limit.
NASA Astrophysics Data System (ADS)
Okuda, T.; Hata, H.; Eto, T.; Nishina, K.; Kuwahara, H.; Nakamura, M.; Kajimoto, R.
2014-12-01
We have tried to improve the n-type thermoelectric properties of the electron- doped Perovskite Sr1-xLaxTiO3 by a Mn substitution. The 1 ~ 2 % Mn substitution enhances the Seebeck coefficient (S) and reduces the thermal conductivity (κ) by about 50 % at room temperature (RT) without largely increasing the resistivity for the 5 % electron-doped SrTiO3. Consequently, the power factor at RT keeps a large value comparable to that of Bi2Te3 and the dimensionless figure-of-merits at RT increases twofold by the slight Mn substitution. Such a large reduction of κ at RT is perhaps due to the effect of Jahn-Teller active Mn3+ ions, around which dynamical local lattice distortion may occur.
Chromium doping effects on structural and dielectric properties of Mn-Zn cobaltites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, A.; Department of Physics, MEDICAPS Institute of Science and Technology, Pithampur 45331; Dar, Mashkoor A., E-mail: darmashkoor.phst@gmail.com
2016-05-06
The effect of transition metal Cr{sup 2+} ion as a dopant of Zn{sup 2+} in Mn{sub 0.5}Zn{sub 0.5}Co{sub 2}O{sub 4} is investigated. Co-doped Mn{sub 0.5}Zn{sub 0.5-x}Cr{sub x}Co{sub 2}O{sub 4} (x = 0, 0.3 and 0.5) cobaltites were prepared by solid-state reaction route. X-ray powder diffraction (XRD) analysis reveals that the samples prepared are polycrystalline single-phase cubic spinel in structure having a space group Fd3m. An increase in average particle size observed with Cr{sup 2+} doping. However other structural parameters such as X-ray density, micro strain and dislocation density shows almost a similar decreasing trend with increase in Cr{sup 2+}. Highmore » value of permittivity ∼10{sup 5} is observed for the parent Mn{sub 0.5}Zn{sub 0.5}Co{sub 2}O{sub 4} and shows a substantial decrease with increase in the Cr{sup 2+} doping. Higher doping of Cr{sup 2+} also increases the dielectric loss and hence limits its technological importance. At lower frequencies ac conductivity has been found to increase with increase in Cr{sup 2+} content.« less
NASA Astrophysics Data System (ADS)
Zhou, Aiyi; Yu, Danqing; Yang, Liu; Sheng, Zhongyi
2016-08-01
A series of Mn-Ce/TiO2 catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH3). Na2SO4 was added into the catalyst to simulate the combined effects of alkali metal and SO2 in the flue gas. Experimental results showed that Na2SO4 had strong and fluctuant influence on the activity of Mn-Ce/TiO2, because the effect of Na2SO4 included pore occlusion and sulfation effect simultaneously. When Na2SO4 loading content increased from 0 to 1 wt.%, the SCR activities of Na2SO4-doped catalysts decreased greatly. With further increasing amount of Na2SO4, however, the catalytic activity increased gradually. XRD results showed that Na2SO4 doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na2SO4. XPS results indicated that part of Ce4+ and Mn3+ were transferred to Ce3+ and Mn4+ due to the sulfation after Na2SO4 deposition on the surface of the catalysts. When the doped amounts of Na2SO4 increased, NH3-TPD results showed that the Lewis acid sites decreased and the Brønsted acid sites of Mn-Ce/TiO2 increased quickly, which could be considered as another reason for the observed changes in the catalytic activity. The decreased Mn and Ce atomic concentration, the changes of their oxidative states, and the variation in acidic properties on the surface of Na2SO4-doped catalysts could be the reasons for the fluctuant changes of the catalytic activity.
Biaxial tensile strain modulates magnetic properties of the 3d transition metal doped stanene
NASA Astrophysics Data System (ADS)
Dai, Xian-Qi; Zhao, Ming-Yu; Zhao, Ru-Meng; Li, Wei
2017-06-01
Utilizing first-principle calculations, the biaxial tensile strain modulating magnetic states and electronic structures of transition metal (TM) (i.e., Mn, Fe, Sc, Ni and Ti) atoms doped in stanene are investigated. It shows that Mn and Fe doped stanene systems are magnetic, while the Sc, Ti and Ni doped stanene systems are nonmagnetic. When the biaxial tensile strain increases, a weaker antiferromagnetic coupling between the nearest neighbor (NN) Sn atoms and Mn (Fe, Ti) atom is observed. For Sc and Ni doped stanene systems, the biaxial strain doesn't introduce spin polarization for the TM atoms. In a word, the TM atoms doped stanene systems may manifest potential applications in nanoelectronics, spintronics and magnetic storage devices.
NASA Astrophysics Data System (ADS)
Belkhedkar, M. R.; Ubale, A. U.
2018-05-01
Nanocrystalline Fe doped and undoped Mn3O4 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates using MnCl2 and NaOH as cationic and anionic precursors. The grazing incidence X-ray diffraction (GIXRD) and field emission scanning electron microscopy (FESEM)) have been carried out to analyze structural and surface morphological properties of the films. The LPG sensing performance of Mn3O4thin films have been studied by varying temperature, concentration of LPG, thickness of the film and doping percentage of Fe. The LPG response of the Mn3O4thin films were found to be enhances with film thickness and decreases with increased Fe doping (0 to 8 wt. %) at 573 K temperature.
NASA Astrophysics Data System (ADS)
He, Gaihua; Duan, Yuping; Song, Lulu; Zhang, Xuefeng
2018-06-01
Potassium-ion-doped MnO2 has been successfully synthesized using the hydrothermal method, and the influence of the doped potassium ions on the electrical conductivity and permittivity is studied. X-ray powder diffraction, scanning electron microscopy, electron-probe micro-analysis, and a vector network analyzer are used to perform characterization. The densities of states of doped and undoped MnO2 tunnel structures are also discussed based on first-principles calculations. Results show that the conductivity and dielectric resonance of MnO2 can be elevated by means of K+ doping. The conductivity of K+-doped MnO2 prepared at different reaction times shows a decreasing trend and is generally 1 order of magnitude higher than that of pure MnO2. The electrical conductivity of K+-doped MnO2 (R3) shows the highest value of 3.33 × 10-2 S/cm at the reaction time of 24 h, while that of pure MnO2 is 8.50 × 10-4 S/cm. When treated with acid, the conductivity of samples remains basically stable along with the increase of treatment time. In addition, acid treatment plays a very significant role in controlling the amount of K+ ions in crystals. The K+ contents of acid-treated samples are 5 times lower than that of the untreated R1. The dielectric losses of the samples with different reaction times are enhanced markedly with frequency increment. The complex permittivity of pure MnO2 only exhibits a resonance at ˜12 GHz, while K+-doped MnO2 exhibits another resonance behavior at ˜9 GHz. The capacity of the dielectric property in the net structure is enhanced by the interfacial polarization, dielectric relaxation, multiple internal reflections, and multiple scattering benefiting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingtao; Zhang, Jincang, E-mail: jczhang@staff.shu.edu.cn; Materials Genome Institute, Shanghai University, Shanghai 200444
2014-11-10
We report a comparative study of the critical current density (J{sub c}) and vortex pinning among pure and Mn doped K{sub x}Fe{sub 2−y}Se{sub 2} single crystals. It is found that the J{sub c} values can be greatly improved by Mn doping and post-quenching treatment when comparing to pristine pure sample. In contrast to pure samples, an anomalous second magnetization peak (SMP) effect is observed in both 1% and 2% Mn doped samples at T = 3 K for H∥ab but not for H∥c. Referring to Dew-Hughes and Kramer's model, we performed scaling analyses of the vortex pinning force density vs magnetic field inmore » 1% Mn doped and quenched pristine crystals. The results show that the normal point defects are the dominant pinning sources, which probably originate from the variations of intercalated K atoms. We propose that the large nonsuperconducting K-Mn-Se inclusions may contribute to the partial normal surface pinning and give rise to the anomalous SMP effect for H∥ab in Mn doped crystals. These results may facilitate further understanding of the superconductivity and vortex pinning in intercalated iron-selenides superconductors.« less
NASA Astrophysics Data System (ADS)
Omri, K.; Alyamani, A.; Mir, L. El
2018-02-01
Mn2+-doped Zn2SiO4 (ZSM2+) was synthesized by a facile sol-gel technique. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. Under UV excitation, spectra showed that the α-ZSM2+ phosphor exhibited a strong green emission around 525 nm and reached the highest luminescence intensity with the Mn doping concentration of 5 at.%. However, for the β-ZSM2+ phase, an interesting yellow emission band centered at 575 nm of Mn2+ at the Zn2+ tetrahedral sites was observed. In addition, an unusual red shift with increasing Mn2+ content was also found and attributed to an exchange interaction between Mn2+. Both PL and CL spectra exhibit an intense green and yellow emission centered at 525 and 573 nm, respectively, due to the 4T1 (4G)-6A1 (6S) transition of Mn2+. Furthermore, these results indicated that the Mn2+-doped zinc silicate phosphors may have potential applications in green and yellow emissions displays like field emission displays (FEDs).
Hao, Yao-Ming; Lou, Shi-Yun; Zhou, Shao-Min; Yuan, Rui-Jian; Zhu, Gong-Yu; Li, Ning
2012-02-02
In this study, a series of manganese [Mn]-doped zinc oxide [ZnO] hierarchical microspheres [HMSs] are prepared by hydrothermal method only using zinc acetate and manganese acetate as precursors and ethylene glycol as solvent. X-ray diffraction indicates that all of the as-obtained samples including the highest Mn (7 mol%) in the crystal lattice of ZnO have a pure phase (hexagonal wurtzite structure). A broad Raman spectrum from as-synthesized doping samples ranges from 500 to 600 cm-1, revealing the successful doping of paramagnetic Mn2+ ions in the host ZnO. Optical absorption analysis of the samples exhibits a blueshift in the absorption band edge with increasing dopant concentration, and corresponding photoluminescence spectra show that Mn doping suppresses both near-band edge UV emission and defect-related blue emission. In particular, magnetic measurements confirm robust room-temperature ferromagnetic behavior with a high Curie temperature exceeding 400 K, signifying that the as-formed Mn-doped ZnO HMSs will have immense potential in spintronic devices and spin-based electronic technologies.
First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path
NASA Astrophysics Data System (ADS)
Zelený, M.; Sozinov, A.; Straka, L.; Björkman, T.; Nieminen, R. M.
2014-05-01
The influence of Co and Cu doping on Ni-Mn-Ga Heusler alloy is investigated using the first-principles exact muffin-tin orbital method in combination with the coherent-potential approximation. Single-element doping and simultaneous doping by both elements are investigated in Ni50-xCoxMn25-yGa25-zCuy+z alloys, with dopant concentrations x ,y, and z up to 7.5 at. %. Doping with Co in the Ni sublattice decreases the (c/a)NM ratio of the nonmodulated (NM) martensite, but it simultaneously increases the cubic phase stability with respect to the NM phase. Doping with Cu in the Mn or in Ga sublattices does not change the (c/a)NM ratio significantly and it decreases the cubic phase stability. For simultaneous doping by Co in the Ni sublattice and Cu in the Mn or Ga sublattices, the effects of the individual dopants are independent and about the same as for the single-element doping. Thus, the (c/a)NM ratio can be adjusted by Co doping while the phase stability can be balanced by Cu doping, resulting in stable martensite with a reduced (c/a)NM. The local stability of the cubic phase with respect to the tetragonal deformation can be understood on the basis of a density-of-states analysis.
Effect of Ti4+ doping on magnetic properties of charge ordered Bi0.3Ca0.7MnO3
NASA Astrophysics Data System (ADS)
Yadav, Kamlesh; Singh, M. P.; Razavi, F. S.; Varma, G. D.
2017-07-01
The effect of Ti doping in Bi0.3Ca0.7Mn1-x Ti x O3 (where x = 0.0, 0.015, 0.03, 0.05, 0.08, 0.12 and 0.16) on structural, magnetic and transport properties have been studied. The charge-ordering temperature (T CO) decreases gradually with increasing Ti doping content, and finally disappears completely for x = 0.12. The Neel temperature (T N) also decreases with increasing Ti doping content. A transition to a cluster glass like state is observed at T ⩽ T N. The zero field cooled/field cooled (ZFC/FC) magnetization decreases at high temperature (T > 200 K) with increasing Ti content, whereas an opposite trend is observed at low temperature (T < 200 K). Small exchange bias effect is also observed for x = 0.08 at 10 K. The resistivity increases with increasing Ti doping content. The disorder induced by Ti doping on the Mn site plays a key role in explaining the observed magnetic and electrical properties.
NASA Astrophysics Data System (ADS)
Katayama, Yumiko; Kayumi, Tomohiro; Ueda, Jumpei; Tanabe, Setsuhisa
2018-05-01
The effect of Zn substitution on the persistent luminescence properties of MgGeO3:Mn2+-Ln3+ (Ln = Eu and Yb) red phosphors was investigated. The intensity of the persistent luminescence of the Eu3+ co-doped phosphors increased with increasing Zn content, whereas that of the Yb3+ co-doped samples decreased. For both series of lanthanide co-doped samples, the thermoluminescence (TL) glow peak shifted to the lower temperature side with increasing Zn content. These persistent luminescence properties were well explained in terms of lowering of the bottom of the conduction band relative to the ground state of the divalent lanthanide ions. Especially, in Eu3+ co-doped system, TL peak shifted from 520 K to 318 K by 50% Zn substitution. The persistent radiance of the (Mg0.5 Zn0.5)GeO3: Mn2+-Eu3+ sample at 1 h after ceasing UV light was 46 times stronger than that of MgGeO3:Mn2+-Eu3+, and 11 times stronger than that of ZnGa2O4: Cr3+ standard deep red persistent phosphor.
X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi{sub 2}Se{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins-McIntyre, L. J.; Watson, M. D.; Zhang, S. L.
2014-12-15
We report the growth of Mn-doped Bi{sub 2}Se{sub 3} thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mnmore » is observed with increasing doping concentration. A magnetic moment of 5.1 μ{sub B}/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 μ{sub B}/Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn L{sub 2,3} edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.« less
NASA Astrophysics Data System (ADS)
Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun
2016-05-01
A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection.
Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun
2016-01-01
A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection. PMID:27161193
Dielectric characteristics of Mn-doped LaTiO3+δ ceramics
NASA Astrophysics Data System (ADS)
Chen, Yan; Cui, Yimin
A series of ceramic composites of Mn-doped La1- x MnxTiO3+ δ and LaMnxTi1- x O3+ δ (x = 0.1, 0.2) were synthesized by conventional solid-state reaction method. The low-frequency complex dielectric properties of the composites were investigated as functions of temperature (77 K <= T <= 360 K) and frequency (100 Hz <= f <= 1 MHz), respectively. The dielectric constant of A-site doped samples is higher than that of B-site doped samples. The loss tangent of low doped samples is much less than that of high doped samples. The A-site doped composites exhibit intrinsic dielectric response with a dielectric constant of 40 in the temperature below 250 K. Interestingly, the dielectric constants of B-site doped ceramics increase slightly in the temperature range from 77 to 360 K. And it is clearly observed that extraordinarily high dielectric loss tangent ( 6) appear at low frequency (100 Hz) in LaMn0.2Ti0.8O3+ δ , which is 8 times larger than that of LaMn0.1Ti0.9O3+ δ , which indicates that the doped content can affect the intrinsic dielectric characteristics significantly.
NASA Astrophysics Data System (ADS)
Islam, Ishtihadah; Khandy, Shakeel Ahmad; Hafiz, Aurangzeb Khurram
2018-05-01
In the present work, preparation and characterization of transition metal doped MgO: Zn0.94Mn0.01TM0.05O (TM = Co, Ni and Cu) nano-particles have been reported. Transition metal doped samples of MgO were synthesized by Sol gel auto combustion method. Structural characterisation from XRD and SEM show the formation of single-phase primary particles, nearly of spherical shaped nano-crystallites. The crystallite size was found to be 78.2, 67.02, 78.11 and 64 nm for pure, Co, Cu and Ni doped MgMnO nano-particles, respectively. Hence, the average crystallite size increases monotonously from Co to Cu doping.
NASA Astrophysics Data System (ADS)
Labiadh, Houcine; Sellami, Badreddine; Khazri, Abdelhafidh; Saidani, Wiem; Khemais, Said
2017-02-01
Undoped and Mn-doped ZnS nanoparticles were synthesized at 95 °C in basic aqueous solution using the nucleation-doping strategy. Various samples of the Mn:ZnS NPs with 5, 10 and 20% of Mn dopant have been prepared and characterized using X-ray diffraction, energy-dispersive X-ray analysis, high resolution electron microscopy and photoluminescence (PL) measurements. When increasing the concentration of manganese Mn, the photoluminescence intensity gradually decreases. The PL spectra of the Mn-doped ZnS nanoparticles at room temperature exhibit both, the 450 nm blue defect-related emission and the 592 nm orange Mn2+ emission. It is vital to obtain NPs that meet the application requirements, however their environmental toxicity needs to be investigated. In this study, the induction of oxidative stress within the digestive gland of the Ruditapes decussatus organism (clam) is described. Antioxidant enzyme activities (superoxide dismutase (SOD) and catalase (CAT)) as well as malondialdehyde (MDA) levels have been determined in the digestive gland after exposure to 100 μg/L of ZnS, ZnS:Mn (5%), ZnS:Mn (10%) and ZnS:Mn (20%). The nanomaterials studied exhibit different responses in the digestive gland. Undoped Mn-ZnS has no effect on the markers considered, showing the limited interaction between this nanoparticle and the cells of the test organisms. In contrast, Mn-doped ZnS increases the activities of SOD and CAT and the level of MDA species, although this toxicity is highly dependent on the chemical properties of the material. These findings provide ideas for future considerations of ZnS nanoparticles, as well as information on the interaction between these materials and an aquatic environment. These data are the first evidence available of the formation of ZnS NPs using aqueous method and are an indication of the importance of knowing the biological target of the NPs when testing their potential impact on environmental model organisms.
[Lead adsorption and arsenite oxidation by cobalt doped birnessite].
Yin, Hui; Feng, Xiong-Han; Qiu, Guo-Hong; Tan, Wen-Feng; Liu, Fan
2011-07-01
In order to study the effects of transition metal ions on the physic-chemical properties of manganese dioxides as environmental friendly materials, three-dimensional nano-microsphere cobalt-doped birnessite was synthesized by reduction of potassium permanganate by mixtures of concentrated hydrochloride and cobalt (II) chloride. Powder X-ray diffraction, chemical analysis, N2 physical adsorption, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectra (XPS) were used to characterize the crystal structure, chemical composition and micro-morphologies of products. In the range of molar ratios from 0.05 to 0.20, birnessite was fabricated exclusively. It was observed that cobalt incorporated into the layers of birnessite and had little effect on the crystal structure and micromorpholgy, but crystallinity decreased after cobalt doping. Both chemical analysis and XPS results showed that manganese average oxidation state decreased after cobalt doping, and the percentage of Mn3+ increased. Co(III) OOH existed mainly in the structure. With the increase of cobalt, hydroxide oxygen percentage in molar increased from 12.79% for undoped birnessite to 13.05%, 17.69% and 17.79% for doped samples respectively. Adsorption capacity for lead and oxidation of arsenite of birnessite were enhanced by cobalt doping. The maximum capacity of Pb2+ adsorption increased in the order HB (2 538 mmol/kg) < CoB5 (2798 mmol/kg) < CoB10 (2932 mmol/kg) < CoB20 (3 146 mmol/kg). Oxidation percentage of arsenite in simulated waste water by undoped birnessite was 76.5%, those of doped ones increased by 2.0%, 12.8% and 18.9% respectively. Partial of Co3+ substitution for Mn4+ results in the increase of negative charge of the layer and the content of hydroxyl group, which could account for the improved adsorption capacity of Pb2+. After substitution of manganese by cobalt, oxidation capacity of arsenite by birnessite increases likely due to the higher standard redox potential of Co3+/Co2+ than those of Mn4+/Mn3+/Mn2+. Therefore, Co-doped birnessite is more applicable for the remediation of water polluted with heavy metal ions, implying new methods of modification of manganese dioxides in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Pankaj; Dar, M. A.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: ty.ru123@gmail.com
2016-05-23
A series of Cr doped Mn-Zn ferrites with compositional formula Mn{sub 0.5}Zn{sub 0.5-x}Cr{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α–Fe{sub 2}O{sub 3}. Slight variation in the lattice parameter of Cr doped Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectricmore » constant ~10{sup 4} is observed for parent Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} which is found to decrease with increase in Cr{sup 2+} doping. Low dielectric loss is observed for Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and improves with Cr{sup 2+} doping at Zn{sup 2+} site.« less
NASA Astrophysics Data System (ADS)
Astik, Nidhi M.; Soni, Himadri; Jha, Prafulla K.; Sathe, Vasant
2018-07-01
We present experimental and theoretical studies on the effect of Fe doping at Mn site, on the structural, morphological, electronic and vibrational properties of La0.67Sr0.3MnO3 nanoparticle. The samples of La0.67Sr0.3MnO3 and La0.67Sr0.33Mn1-xFexO3 (x = 0.15, 0.25 and 0.35) have been prepared by ball milling route. The phase purity of these samples has been confirmed using X-ray diffraction, while compositional analysis is done using EDAX. The morphological analysis done using scanning microscope indicates the agglomeration. The vibrational analysis which is done using Raman scattering and density functional theory (DFT) calculations show a substantial shift in A1g and Eg modes with Fe doping. The Eg modes become broader with Fe doping. The UV-visible spectra were measured in the energy range of 1-5 eV and compared with DFT results. The spin polarized density functional calculations show an increase in density of states at Fermi level due to MnO6octahedra modification and significant magnetism on Fe doping. The total magnetic moment is found from 16 to 17 μB for considered concentration. The effective mass of carriers is also calculated and found increasing with increasing concentration.
NASA Astrophysics Data System (ADS)
Zhao, Hongyuan; Liu, Xingquan; Cheng, Cai; Li, Qiang; Zhang, Zheng; Wu, Yue; Chen, Bing; Xiong, Weiqiang
2015-05-01
The spinel LiMn1.94MO4 (M = Mn0.06, Mg0.06, Si0.06, (Mg0.03Si0.03)) compounds are successfully synthesized by citric acid-assisted sol-gel method. The crystal structures and morphologies of synthesized compounds are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. All the compounds possess the cubic spinel structure of LiMn2O4 with space group of Fd-3m. The electrochemical properties of synthesized compounds are investigated by galvanostatic charge-discharge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the Si-doping can increase the discharge capacity of LiMn2O4 due to the more expanded and regular MnO6 octahedra. In particular, for the LiMn1.94Mg0.03Si0.03O4 compound, the addition of Si4+ ions can make up for the shortage of Mg-doping in term of the discharge capacity. As a result, the Mg2+ and Si4+ co-doping has the effect of synergistic enhancement, which can make full use of the respective advantages of Mg-doping and Si-doping. The optimal LiMn1.94Mg0.03Si0.03O4 can deliver the initial discharge capacity of 128.3 mAh g-1 with good capacity retention of 92.8% after 100 cycles at 0.5 C in the voltage range of 3.20-4.35 V. Compared with the undoped LiMn2O4, the co-doped compound also presents superior rate performance, especially the capacity recovery performance.
Temperature Dependence Discontinuity in the Stability of Manganese doped Ceria Nanocrystals
Wu, Longjia; Dholabhai, Pratik; Uberuaga, Blas P.; ...
2017-01-05
CeO 2 has strong potential for chemical-looping water splitting. It has been shown that manganese doping decreases interface energies of CeO 2, allowing increased stability of high surface areas in this oxygen carrier oxide. The phenomenon is related to the segregation of Mn3+ at interfaces, which causes a measurable decrease in excess energy. Here in the present work, it is shown that, despite the stability of nanocrystals of manganese-doped CeO 2 with relation to undoped CeO 2, the effect is strongly dependent on the oxidation state of manganese, i.e., on the temperature. At temperatures below 800 °C, Mn is inmore » the 3+ valence state, and coarsening is hindered by the reduced interface energetics, showing smaller crystal sizes with increasing Mn content. At temperatures above 800 °C, Mn is reduced to its 2+ valence state, and coarsening is enhanced with increasing Mn content. Atomistic simulations show the segregation of Mn to grain boundaries is relatively insensitive to the charge state of the dopant. However, point defect modeling finds that the reduced state causes a decrease in cation vacancy concentration and an increase in cation interstitials, reducing drag forces for grain boundary mobility and increasing growth rates.« less
Investigating the effect of Cd-Mn co-doped nano-sized BiFeO3 on its physical properties
NASA Astrophysics Data System (ADS)
Ishaq, B.; Murtaza, G.; Sharif, S.; Azhar Khan, M.; Akhtar, Naeem; Will, I. G.; Saleem, Murtaza; Ramay, Shahid M.
This work deals with the investigation of different effects on the structural, magnetic, electronic and dielectric properties of Cd and Mn doped Bi0.75Cd0.25Fe1-xMnxO3 multiferroic samples by taking fixed ratios of Cd and varying the Mn ratio with values of x = 0.0, 0.5, 0.10 and 0.15. Cd-Mn doped samples were synthesized chemically using a microemulsion method. All the samples were finally sintered at 700 °C for 2 h to obtain the single phase perovskites structure of BiFeO3 materials. The synthesized samples were characterized by different techniques, such as X-ray diffractometry (XRD), Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), LCR meter and magnetic properties using VSM. XRD results confirm BFO is a perovskite structure having crystallite size in the range of 24-54 nm. XRD results also reveal observed structural distortion due to doping of Cd at the A-site and Mn at the B-site of BFO. SEM results depict that, as the substitution of Cd-Mn increases in BFO, grain size decreases up to 30 nm. FTIR spectra showed prominent absorption bands at 555 cm-1 and 445 cm-1 corresponding to the stretching vibrations of the metal ions complexes at site A and site B, respectively. Variation of dielectric constant (ɛ‧) and loss tangent (tan δ) at room temperature in the range of 1 MHz to 3 GHz have been investigated. Results reveal that with Cd-Mn co doping a slight decrease in dielectric constant have been observed. Magnetic properties of Cd-Mn doped pure BFO samples have been studied at 300 K. Results reveal that undoped BiFeO3 exhibits weak ferromagnetic ordering due to the canting of its spin. Increase in magnetization and decrease in coercivity is a clear indication that a material can be used in high density recording media and memory devices.
NASA Astrophysics Data System (ADS)
Wang, Bai-Bin; Chang, Chi-Fen; Yang, Wein-Duo
2013-07-01
γ-LiAlO2:Mn2+ phosphor was synthesized using the cellulose-citric acid sol-gel method, and its light emission and energy transfer properties were investigated. Excitation and emission spectrum analysis revealed a decrease in intensity of the spectrum as the amount of Mn2+ doping increased. Blasse's equation determined the maximum distance for energy transfer between Mn2+ ions as 4.3142 nm. Dexter's theory verifies that the mechanism of energy transfer between Mn2+ ions conforms to an electric dipole and electric quadrupole interaction.
Influence of Mn doping on structural, dielectric and optical properties of neodymium orthoferrite
NASA Astrophysics Data System (ADS)
Somvanshi, Anand; Manzoor, Samiya; Husain, Shahid
2018-05-01
We report the study of structural, dielectric and optical properties of nanocrystalline samples of NdFe1-xMnxO3 (x=0, 0.1 and 0.2) synthesized using solid state reaction route. X-ray diffraction (XRD) patterns are recorded to confirm phase purity. These samples conform in orthorhombic crystal symmetry with Pbnm space group. The lattice parameters are determined using Rietveld refinement. The crystallite size is calculated using Scherrer formula and that is found to lie in the range of 40-50 nm. The dielectric constant (ɛ') decreases with the increase in frequency as well as Mn doping concentration. Energy bandgap (Eg) as determined using UV-Vis. absorption spectra, is found to decrease with the increase in Mn doping.
NASA Astrophysics Data System (ADS)
Wang, Rui; Yuan, Maohui; Zhang, Chaofan; Wang, Hongyan; Xu, Xiaojun
2018-05-01
Transition metal ions (e.g. Mn2+) and lanthanide co-doped upconversion (UC) materials have attracted wide attention in recent years due to their promising application in multicolor display. Here, we report the hydrothermal synthesis and characterization of Mn2+ doped monodisperse CaF2:Yb3+/Ho3+ microspheres. The results of X-ray diffraction (XRD) revealed that Mn2+ doping does not change the cubic phase of CaF2 material but will lead to diffraction peaks shifting slightly towards higher angle due to the substitution of larger Ca2+ by the relatively smaller Mn2+. Under the excitation of 980 nm continuous wave (CW) laser, these microspheres exhibit green-yellow-red tuning colors and remarkable enhancement of both red to green ratio (R/G) and red to blue ratio (R/B) when increasing Mn2+ concentration from 0 to 30 mol%. The energy migration process between Ho3+ and Mn2+ was proposed and supported by time-decay and power dependence measurements of Ho3+ UC emission. These upconversion materials may have potential applications in optical devices, color display, nanoscale lasers and biomedical imaging.
NASA Astrophysics Data System (ADS)
Phan, The-Long; Zhang, P.; Grinting, D.; Yu, S. C.; Nghia, N. X.; Dang, N. V.; Lam, V. D.
2012-07-01
Polycrystalline samples of BaTiO3 doped with 2.0 at. % Mn were prepared by solid-state reaction at various temperatures (Tan) ranging from 500 to 1350 °C, used high-pure powders of BaCO3, TiO2, and MnCO3 as precursors. Experimental results obtained from x-ray diffraction patterns and Raman scattering spectra reveal that tetragonal Mn-doped BaTiO3 starts constituting as Tan ≈ 500 °C. The Tan increase leads to the development of this phase. Interestingly, there is the tetragonal-hexagonal transformation in the crystal structure of BaTiO3 as Tan ≈ 1100 °C. Such the variations influence directly magnetic properties of the samples. Besides paramagnetic contributions of Mn2+ centers traced to electron spin resonance, the room-temperature ferromagnetism found in the samples is assigned to exchange interactions taking place between Mn3+ and Mn4+ ions located in tetragonal BaTiO3 crystals.
Suppression of electron spin relaxation in Mn-doped GaAs.
Astakhov, G V; Dzhioev, R I; Kavokin, K V; Korenev, V L; Lazarev, M V; Tkachuk, M N; Kusrayev, Yu G; Kiessling, T; Ossau, W; Molenkamp, L W
2008-08-15
We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.
Suppression of Electron Spin Relaxation in Mn-Doped GaAs
NASA Astrophysics Data System (ADS)
Astakhov, G. V.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Lazarev, M. V.; Tkachuk, M. N.; Kusrayev, Yu. G.; Kiessling, T.; Ossau, W.; Molenkamp, L. W.
2008-08-01
We report a surprisingly long spin relaxation time of electrons in Mn-doped p-GaAs. The spin relaxation time scales with the optical pumping and increases from 12 ns in the dark to 160 ns upon saturation. This behavior is associated with the difference in spin relaxation rates of electrons precessing in the fluctuating fields of ionized or neutral Mn acceptors, respectively. For the latter, the antiferromagnetic exchange interaction between a Mn ion and a bound hole results in a partial compensation of these fluctuating fields, leading to the enhanced spin memory.
Understanding the effects of cationic dopants on α-MnO 2 oxygen reduction reaction electrocatalysis
Lambert, Timothy N.; Vigil, Julian A.; White, Suzanne E.; ...
2017-01-09
Nickel-doped α-MnO 2 nanowires (Ni–α-MnO 2) were prepared with 3.4% or 4.9% Ni using a hydrothermal method. A comparison of the electrocatalytic data for the oxygen reduction reaction (ORR) in alkaline electrolyte versus that obtained with α-MnO 2 or Cu–α-MnO 2 is provided. In general, Ni-α-MnO 2 (e.g., Ni-4.9%) had higher n values (n = 3.6), faster kinetics (k = 0.015 cm s –1), and lower charge transfer resistance (R CT = 2264 Ω at half-wave) values than MnO 2 (n = 3.0, k = 0.006 cm s –1, R CT = 6104 Ω at half-wave) or Cu–α-MnO 2 (Cu-2.9%,more » n = 3.5, k = 0.015 cm s –1, R CT = 3412 Ω at half-wave), and the overall activity for Ni–α-MnO 2 trended with increasing Ni content, i.e., Ni-4.9% > Ni-3.4%. As observed for Cu–α-MnO 2, the increase in ORR activity correlates with the amount of Mn 3+ at the surface of the Ni–α-MnO 2 nanowire. Examining the activity for both Ni–α-MnO 2 and Cu–α-MnO 2 materials indicates that the Mn 3+ at the surface of the electrocatalysts dictates the activity trends within the overall series. Single nanowire resistance measurements conducted on 47 nanowire devices (15 of α-MnO 2, 16 of Cu–α-MnO 2-2.9%, and 16 of Ni–α-MnO 2-4.9%) demonstrated that Cu-doping leads to a slightly lower resistance value than Ni-doping, although both were considerably improved relative to the undoped α-MnO 2. As a result, the data also suggest that the ORR charge transfer resistance value, as determined by electrochemical impedance spectroscopy, is a better indicator of the cation-doping effect on ORR catalysis than the electrical resistance of the nanowire.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Haw; Hsia, Chih-Hao
Novel Mn.sup.2+-doped quantum dots are provided. These Mn.sup.2+-doped quantum dots exhibit excellent temperature sensitivity in both organic solvents and water-based solutions. Methods of preparing the Mn.sup.2+-doped quantum dots are provided. The Mn.sup.2+-doped quantum dots may be prepared via a stepwise procedure using air-stable and inexpensive chemicals. The use of air-stable chemicals can significantly reduce the cost of synthesis, chemical storage, and the risk associated with handling flammable chemicals. Methods of temperature sensing using Mn.sup.2+-doped quantum dots are provided. The stepwise procedure provides the ability to tune the temperature-sensing properties to satisfy specific needs for temperature sensing applications. Water solubility maymore » be achieved by passivating the Mn.sup.2+-doped quantum dots, allowing the Mn.sup.2+-doped quantum dots to probe the fluctuations of local temperature in biological environments.« less
NASA Astrophysics Data System (ADS)
Aydogdu, Yildirim; Turabi, Ali Sadi; Kok, Mediha; Aydogdu, Ayse; Tobe, Hirobumi; Karaca, Haluk Ersin
2014-12-01
The effects of the substitution of gallium with boron on the physical, mechanical and magnetic shape memory properties of Ni51Mn28.5Ga20.5- xBx (at.%) ( x = 0, 1, 2, 3) polycrystalline alloys are investigated. It has been found that transformation temperatures are decreasing while hardness is increasing with boron addition. B-doping of NiMnGa alloys results in the formation of a second phase that increases its ductility and strength in compression. Moreover, saturation magnetization of austenite is decreasing, while Curie temperature of austenite is increasing with B-doping.
Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries
NASA Astrophysics Data System (ADS)
Wang, Chao; Xu, Youlong; Sun, Xiaofei; Zhang, Baofeng; Chen, Yanjun; He, Shengnan
2018-02-01
The Li2MnSiO4 as a novel cathode material for lithium ion batteries, performs high specific capacity, high thermal stability, low cost and etc. However, it suffers from relatively low electronic conductivity and lithium ion diffusion rate. Herein, we successfully introduce fluorine to Li2MnSiO4 (Li2MnSiO4-xFx, x = 0.00, 0.01, 0.03 and 0.05) to overcome these obstacles. The results show that F doping not only enlarges the lattice parameters but also decreases the particle size, synergistically improving the lithium ion diffusion of Li2MnSiO4. Moreover, F doping increase electronic conductivity of Li2MnSiO4/C by inhibiting the formation of C-O bonds in the carbon layers. Meanwhile, F doping improves the crystallinity and stabilizes the crystal structure of Li2MnSiO4. Finally, the Li2MnSiO3.97F0.03/C with the best electrochemical performances delivers the initial specific discharge capacity of 279 mA h g-1 at 25mA g-1 current density from 1.5 V to 4.8 V. Also, it maintains a higher capacity (201 mA h g-1) than F-free Li2MnSiO4 (145 mA h g-1) after 50 cycles.
THE EFFECT OF
NASA Astrophysics Data System (ADS)
Na, Seong-Hwan; Kim, Hyun-Soo; Moon, Seong-In
A new simple way of synthesizing Li[NiMnCo]O2 was contrived and its electrochemical characteristics were enhanced by Si doping using solution-based synthetic route. The newly synthesized Li[NiMnCo]O2 showed capacity of 175mAh/g and good cycle life at as high cut-off voltage as 4.5V. Si-doping improved the rate capability, specific capacity, and cycle life of the material through increasing lattice parameters and lowering electrochemical impedance.
NASA Astrophysics Data System (ADS)
Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang
2018-03-01
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm-2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.
Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...
2015-06-11
Hall-effect (HE) sensors based on high-quality Mn-doped Bi 2Te 3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi 2Te 3. The sensors with low Mn concentrations, Mn xBi 2-xTe 3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almostmore » eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less
NASA Astrophysics Data System (ADS)
Poojary, Thrapthi; Babu, P. D.; Sanil, Tejaswini; Daivajna, Mamatha D.
2018-07-01
In the present investigation structural, magneto-transport, magnetic and thermo-power measurements of Gadolinium (Gd) doped Pr0.8-xGdxSr0.2MnO3 (0, 0.2, 0.25 and 0.3) manganites have been done. All the samples are single phased with orthorhombic structure. Temperature variation of resistance exhibits a high temperature transition occurring at 156 K and a low temperature cusp at around 95 K for pristine sample. With Gd doping resistance behavior shows insulating behavior throughout the whole temperature range. Magneto-Resistance (MR%) increases with Gd doping. A huge increase in thermo-electric power is observed with Gd doping.
NASA Astrophysics Data System (ADS)
Heczko, O.; Drahokoupil, J.; Straka, L.
2015-05-01
Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.
Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)
NASA Astrophysics Data System (ADS)
Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.
2018-01-01
Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.
Thermally stimulated luminescence studies of undoped, Cu- and Mn-doped CaSO4 compounds
NASA Astrophysics Data System (ADS)
Manam, J.; Das, S.
Thermally stimulated luminescence (TSL) of undoped and doped CaSO4 with activators such as Cu and Mn has been investigated. The polycrystalline samples of undoped and doped CaSO4 are prepared by the melting method. The formation of CaSO4 compound is confirmed by X-ray diffraction and Fourier transform infrared studies. Scanning electron microscopic studies of CaSO4 are also carried out. The TSL glow curves of undoped CaSO4, Cu- and Mn-doped CaSO4 are studied. Comparison of the thermoluminescence (TL) intensity of the most intensive glow peak of Cu-doped CaSO4 compound with that of undoped CaSO4 shows that addition of Cu impurity in CaSO4 compound enhances the TL intensity by about four times. However, the addition of Mn impurity to undoped CaSO4 increases the TL intensity by about three times when compared with that of undoped CaSO4. The TL-dose dependence of all three samples was studied and was observed to be almost linear in the studied range of irradiation time. Among the samples studied, namely undoped CaSO4 and Cu- and Mn-doped CaSO4, Cu-doped CaSO4 is found to be the most sensitive. The trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peaks of CaSO4:Mn, CaSO4:Cu and CaSO4 phosphors were determined using the glow curve shape (Chen's) method.
NASA Astrophysics Data System (ADS)
Li, Cuiqin; Chen, Qianlin; Yan, Yunan; Li, Yanan; Zhao, Ying
2018-02-01
A series of Ca0.92La0.04RE0.04MnO3 (RE = Sm, Dy and Yb) compounds are synthesized via a coprecipitation technique. The influence of La/RE dual doping on the phase structure, microstructure and thermoelectric properties of the CaMnO3 system is investigated. Increased material density with grain sizes of 1-2 μm and a homogeneous microstructure is realized. Dual doping decreases the electrical resistivity due to an increase in the carrier concentration and also decreases the thermal conductivity due to increased grain scattering, damping of local vibrations by heavier La/RE ions compared to Ca and lattice distortion. The Ca0.92La0.04Yb0.04MnO3 shows the highest power factor of 3.49 × 10-4 W m-1 K-2 and the highest dimensionless figure of merit ZT of 0.25 at 770 K, which is approximately 3 times larger than that obtained for the undoped CaMnO3 and significantly larger than that of single-doped CaMnO3 prepared by solid-state reaction. This work provides a basic foundation for the industrial application of this thermoelectric material.
NASA Astrophysics Data System (ADS)
Dar, M. A.; Varshney, Dinesh
2018-02-01
Nanocrystalline samples of Zn0.94Mn0.06O and transition metal (TM) doped Zn0.94Mn0.01TM0.05O (TM = Co, Ni, and Cu) were prepared by sol-gel auto combustion method. X-ray diffraction (XRD) pattern infers that all synthesized samples except Zn0.94Mn0.01Ni0.05O and Zn0.94Mn0.01Cu0.05O with secondary phases of NiO and CuO are in single phase with hexagonal wurtzite structure (P63mc space group). Raman spectroscopy reveals four vibrational phonon modes are centered at 331, 380, 410, and 438 cm-1, assigned as E2 (H)-E2(L), A1(TO), E1(TO), and E1(LO) modes, respectively. A Raman spectrum of Zn0.94Mn0.01TM0.05O is entirely different from undoped Zn0.94Mn0.06O sample. Also, the infrared spectrum of transition metal doped samples is completely different from undoped Zn0.94Mn0.06O. Similar spectra are observed for Zn0.94Mn0.01Co0.05O, Zn0.94Mn0.01NiO, Zn0.94Mn0.01Cu0.05O and Zn0.94Mn0.01Zn0.05O samples. It was found that the band gap of Zn0.94Mn0.06O increased from 3.19 to 3.25eV by doping 5% transition metal oxide. Improved dielectric constant and reduced dielectric loss is measured for Zn0.94Mn0.01Ni/Cu0.05O as compared to Zn0.94Mn0.06O.
Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Raland, R. D.; Borah, J. P.
2017-01-01
Manganese doped Zinc ferrite (Mn-ZnFe2O4, where Mn = 0%, 3%, 5% and 7%) nanoparticles were synthesized by a simple co-precipitation method. CTAB (cetyltrimethylammonium bromide) was used as a surfactant to inhibitgrowth and agglomeration. In this work, we have discussed on the influence of CTAB and Mn doping in tailoring the structural and magnetic properties of Mn-ZnFe2O4 nanoparticles for the effective application of magnetic hyperthermia. X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure of Mn-ZnFe2O4 nanoparticles. Lattice parameter and x-ray densities were obtained from the Rietveld refinement of the XRD pattern. The presence of CTAB as a stabilizing layer adsorbed on the surface of the nanoparticles were confirmed by transmission electron microscope (TEM) and Raman vibrational spectrum. The saturation magnetization showsan increasing trend with Mn addition owing to cationic re-distribution and an increase super-exchange interaction between the two sub-lattices. Superparamagnetic behaviorof Mn-ZnFe2O4 nanoparticles were confirmed by temperature-dependent zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves. The efficiency of induction heating measured by its specific absorption rate (SAR) and intrinsic loss power (ILP) value varies as a function of saturation magnetization. It has been hypothesized that the maximum generation of heat arises from Neel relaxation mechanism. The optimum generation of heat of Mn-ZnFe2O4 nanoparticle is determined by the higher frequency (f = 337 kHz) range and maximum concentration of Mn doping.
NASA Astrophysics Data System (ADS)
Lee, Y. M.; Ahn, D.; Kim, J.-Y.; Kim, Y. S.; Cho, S.; Ahn, M.; Cho, M.-H.; Jung, M. S.; Choi, D. K.; Jung, M.-C.; Qi, Y. B.
2014-04-01
We fabricated and characterized the material with Mn (10 at.%: atomic percent) doped In3Sb1Te2 (MIST) using co-sputtering and synchrotron radiation, respectively. The MIST thin film showed phase-changes at 97 and 320°C, with sheet resistances of ~10 kΩsq (amorphous), ~0.2 kΩsq (first phase-change), and ~10 Ωsq (second phase-change). MIST did not exhibit any chemical separation or increased structural instability during either phase-change, as determined with high-resolution x-ray photoelectron spectroscopy. Chemical state changes were only depended for In without concomitant changes of Sb and Te. Apparently, doped Mn atoms can be induced with movement of only In atoms.
Observation of ferromagnetism in Mn doped KNbO3
NASA Astrophysics Data System (ADS)
Manikandan, M.; Venkateswaran, C.
2015-06-01
Pure and Mn doped KNbO3 have been prepared by ball milling assisted ceramic method. Mn ion had been doped at Nb site to induce ferromagnetism at room temperature. X-ray diffraction (XRD) patterns reveal the formation of orthorhombic phase. High resolution scanning electron micrograph (HR-SEM) of both pure and Mn doped samples show a mixture of spherical and plate like particles. Room temperature magnetic behavior of both the samples were analyzed using vibrating sample magnetometer (VSM). 5% Mn doped KNbO3 exhibits ferromagnetic behavior. Observed ferromagnetic feature has been explained by interactions between bound magnetic polarons which are created by Mn4+ ions.
Optical spectra of the colloidal Fe-doped manganate CaMn1- x Fe x O3 ( x = 0, 0.01, 0.03, 0.05)
NASA Astrophysics Data System (ADS)
Pham, Duc Huyen Yen; Nguyen, Duc Tho; Pham, Duc Thang; Hoang, Nam Nhat; Pham, The Tan
2013-06-01
We report the optical behaviors of the Fe-doped CaMnO3 family of compounds at low doping concentrations x ≤ 5%. The study aims at assisting the evaluation of the competition between ferroand antiferromagnetic orderings, which is believed to be a cause of many interesting properties of this class of compounds, including the magnetization reversal effect recently discovered. The structural characterization showed a predominant orthorhombic phase with slightly increased cell constants due to doping. The Raman spectra revealed changes associated with the Mn sites, and the IR absorption spectrum showed a characteristic Fe band at 1.2 eV, which should be accompanied by a change of spin. The analysis of the magnetization data allowed us to predict that while the doping reduced the ferromagnetic coupling strength, and therefore the T C , the maximal doping concentration for the effective exchange to be zero was around 14%.
Luminescent manganese-doped CsPbCl3 perovskite quantum dots
NASA Astrophysics Data System (ADS)
Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries
2017-04-01
Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn2+ or Co2+. Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl4) to the QDs in toluene results in the formation of Mn‒doped CsPbCl3 QDs showing bright orange Mn2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn2+ emission, with all features of the CsPbCl3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs.
Luminescent manganese-doped CsPbCl3 perovskite quantum dots.
Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries
2017-04-12
Nanocrystalline cesium lead halide perovskites (CsPbX 3 , X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn 2+ or Co 2+ . Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl 4 ) to the QDs in toluene results in the formation of Mn‒doped CsPbCl 3 QDs showing bright orange Mn 2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn 2+ emission, with all features of the CsPbCl 3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn 2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs.
Li-adsorption on doped Mo2C monolayer: A novel electrode material for Li-ion batteries
NASA Astrophysics Data System (ADS)
Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.
2018-04-01
A first principle calculation has been used to study the electronic and magnetic properties of pristine and N/Mn-doped Mo2C with and without Li-adsorption. The pseudopotential method implemented in SIESTA code based on density functional theory with generalized gradient approximation (GGA) as exchange-correlation (XC) potential has been employed. Our calculated results revealed that the Li gets favorably adsorbed on the hexagonal centre in pristine Mo2C and at the top of C-atom in case of N/Mn-doped Mo2C. The doping of Mn and N atom increases the adsorption of Li in Mo2C monolayer which may results in enhancement of storage capacity in Li-ion batteries. The metallic nature of Li-adsorbed pristine and N/Mn-doped Mo2C monolayer implies a good electronic conduction which is crucial for anode materials for its applications in rechargeable batteries. Also, the open circuit voltage for single Li-adsorption in doped Mo2C monolayer comes in the range of 0.4-1.0 eV which is the optimal range for any material to be used as an anode material. Our result emphasized the enhanced performance of doped Mo2C as an anode material in Li-ion batteries.
Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals.
Parobek, David; Roman, Benjamin J; Dong, Yitong; Jin, Ho; Lee, Elbert; Sheldon, Matthew; Son, Dong Hee
2016-12-14
We report the one-pot synthesis of colloidal Mn-doped cesium lead halide (CsPbX 3 ) perovskite nanocrystals and efficient intraparticle energy transfer between the exciton and dopant ions resulting in intense sensitized Mn luminescence. Mn-doped CsPbCl 3 and CsPb(Cl/Br) 3 nanocrystals maintained the same lattice structure and crystallinity as their undoped counterparts with nearly identical lattice parameters at ∼0.2% doping concentrations and no signature of phase separation. The strong sensitized luminescence from d-d transition of Mn 2+ ions upon band-edge excitation of the CsPbX 3 host is indicative of sufficiently strong exchange coupling between the charge carriers of the host and dopant d electrons mediating the energy transfer, essential for obtaining unique properties of magnetically doped quantum dots. Highly homogeneous spectral characteristics of Mn luminescence from an ensemble of Mn-doped CsPbX 3 nanocrystals and well-defined electron paramagnetic resonance spectra of Mn 2+ in host CsPbX 3 nanocrystal lattices suggest relatively uniform doping sites, likely from substitutional doping at Pb 2+ . These observations indicate that CsPbX 3 nanocrystals, possessing many superior optical and electronic characteristics, can be utilized as a new platform for magnetically doped quantum dots expanding the range of optical, electronic, and magnetic functionality.
NASA Astrophysics Data System (ADS)
Shukla, Mayoorika; Pramila; Agrawal, Jitesh; Dixit, Tejendra; Palani, I. A.; Singh, Vipul
2018-05-01
Mn doped ZnO nanopencils were synthesized via low temperature hydrothermal process for fabrication of enzymatic electrochemical glucose biosensor. The KMnO4 was found to play a dual role in modifying morphology and inducing Mn doping. Interestingly, two different types of morphologies viz nanorods and nanopencils along with Mn doping in the later were obtained. Incorporation of Mn has shown a tremendous effect on the morphological variations, repression of defects and electrochemical charge transfer at electrode electrolyte interface. The possible reason behind obtained morphological changes has been proposed which in turn were responsible for the improvement in the different figure of merits of as fabricated enzymatic electrochemical biosensor. There has been a 17 fold enhancement in the sensitivity of the as fabricated glucose biosensor from ZnO nanorods to Mn doped ZnO nanopencils which can be attributed to morphological variation and Mn doping.
NASA Astrophysics Data System (ADS)
Choi, Eun-Ae; Kang, Joongoo; Chang, K. J.
2006-12-01
We perform first-principles pseudopotential calculations to study the influence of Mn doping on the stability of two polytypes, wurtzite and zinc-blende, in GaN . In Mn δ -doped GaN and GaMnN alloys, we find similar critical concentrations of the Mn ions for stabilizing the zinc-blende phase against the wurtzite phase. Using a slab geometry of hexagonal lattices, we find that it is energetically unfavorable to form inversion domains with Mn exposure, in contrast to Mg doping. At the initial stage of epitaxial growth, a stacking fault that leads to the cubic bonds can be generated with the Mn exposure to the Ga-polar surface. However, the influence of the Mn δ -doped layer on the formation of the cubic phase is only effective for GaN layers deposited up to two monolayers. We find that the Mn ions are energetically more stable on the growth front than in the bulk, indicating that these ions act as a surfactant. Thus it is possible to grow cubic GaN if the Mn ions are periodically supplied or diffuse out from the Mn δ -doped layer to the growth front during the growth process.
Inhibition of unintentional extra carriers by Mn valence change for high insulating devices
Guo, Daoyou; Li, Peigang; Wu, Zhenping; Cui, Wei; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Tang, Weihua
2016-01-01
For intrinsic oxide semiconductors, oxygen vacancies served as the electron donors have long been, and inevitably still are, attributed as the primary cause of conductivity, making oxide semiconductors seem hard to act as high insulating materials. Meanwhile, the presence of oxygen vacancies often leads to a persistent photoconductivity phenomenon which is not conducive to the practical use in the fast photoelectric response devices. Herein, we propose a possible way to reduce the influence of oxygen vacancies by introducing a valence change doping in the monoclinic β-Ga2O3 epitaxial thin film. The unintentional extra electrons induced by oxygen vacancies can be strongly suppressed by the change valence of the doped Mn ions from +3 to +2. The resistance for the Mn-doped Ga2O3 increases two orders of magnitude in compared with the pure Ga2O3. As a result, photodetector based on Mn-doped Ga2O3 thin films takes on a lower dark current, a higher sensitivity, and a faster photoresponse time, exhibiting a promising candidate using in high performance solar-blind photodetector. The study presents that the intentional doping of Mn may provide a convenient and reliable method of obtaining high insulating thin film in oxide semiconductor for the application of specific device. PMID:27068227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kai; Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn; Xu, Ju
2014-01-01
Graphical abstract: We have synthesized Eu{sup 2+} doped and Eu{sup 2+}/Mn{sup 2+} co-doped Ca{sub 3}(PO{sub 4}){sub 2} phosphors. The emitting color varies from blue to green with increasing of Eu{sup 2+} content for the Eu{sup 2+}-doped phosphor, and the quantum yield of the 0.05Eu{sup 2+}: Ca{sub 2.95}(PO{sub 4}){sub 2} sample reaches 56.7%. Interestingly, Mn{sup 2+} co-doping into Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu{sup 2+} → Mn{sup 2+} energy transfer. - Highlights: • A series of novel Eu{sup 2+}: Ca{submore » 3}(PO{sub 4}){sub 2} phosphors were successfully synthesized. • Phase transition of Ca{sub 3}(PO{sub 4}){sub 2} from orthorhombic to rhombohedral occurred when Mn{sup 2+} ions were doped. • The phosphors exhibited tunable multi-color luminescence. • The quantum yield of 0.05Eu{sup 2+}: Ca{sub 2.95}(PO{sub 4}){sub 2} phosphor can reach 56.7%. • The analyses of phosphors were carried out by many measurements. - Abstract: Intense blue-green-emitting Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} and tunable multicolor-emitting Eu{sup 2+}/Mn{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} phosphors are prepared via a solid-state reaction route. Eu{sup 2+}-doped orthorhombic Ca{sub 3}(PO{sub 4}){sub 2} phosphor exhibits a broad emission band in the wavelength range of 400–700 nm with a maximum quantum yield of 56.7%, and the emission peak red-shifts gradually from 479 to 520 nm with increase of Eu{sup 2+} doping content. Broad excitation spectrum (250–420 nm) of Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} matches well with the near-ultraviolet LED chip, indicating its potential applications as tri-color phosphors in white LEDs. Interestingly, Mn{sup 2+} co-doping into Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu{sup 2+} → Mn{sup 2+} energy transfer, under 365 nm UV lamp excitation.« less
Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet
NASA Astrophysics Data System (ADS)
Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar
2017-05-01
The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.
NASA Astrophysics Data System (ADS)
Liu, Huatao; Zhao, Yanming; Zhang, Hui; Lian, Xin; Dong, Youzhong; Kuang, Quan
2017-12-01
A series of Fe-doped Na2Mn3-xFex(P2O7)2 (x = 0.0, 0.5, 1.0, 1.5 and 2.0) compounds have been successfully prepared by using sol-gel method. Rietveld refinement results indicate that single phase Na2Mn3-xFex(P2O7)2 with triclinic structure can be obtained within 0 ≤ x ≤ 2 although no Na2Fe3(P2O7)2 existing under our experimental conditions, and the cell parameters (including a, b, c and V) are decreasing with the increasing of x. Our results reveal that Na2Mn3(P2O7)2 exhibits an electrochemical activity in the voltage range of 1.5 V-4.5 V vs. Na+/Na when using as the cathode material for SIBs although it gives a limited rate capability and poor capacity retention. However, the electrochemical performance of Fe-doped Na2Mn3-xFex(P2O7)2 (0 ≤ x ≤ 2) can be improved significantly where cycle performance and rate capability can be improved significantly than that of the pristine one. Sodium ion diffusion coefficient can be increased by about two orders of magnitude with the Fe-doping content higher than x = 0.5.
Shinde, K N; Dhoble, S J
2013-01-01
A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co-doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg-free excitation, Ca6AlP5O20:Eu exhibited Eu(2+) (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce(3+) emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co-activators of Ce(3+) and Mn(2+) ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce(3+) → Eu(2+) and Eu(2+) → Mn(2+), respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co-doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.
Luminescent manganese-doped CsPbCl3 perovskite quantum dots
Lin, Chun Che; Xu, Kun Yuan; Wang, Da; Meijerink, Andries
2017-01-01
Nanocrystalline cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I) form an exciting new class of semiconductor materials showing quantum confinement. The emission color can be tuned over the full visible spectral region making them promising for light‒emitting applications. Further control over the optical and magnetic properties of quantum dots (QDs) can be achieved through doping of transition metal (TM) ions such as Mn2+ or Co2+. Here we demonstrate how, following QD synthesis in the presence of a Mn‒precursor, dropwise addition of silicon tetrachloride (SiCl4) to the QDs in toluene results in the formation of Mn‒doped CsPbCl3 QDs showing bright orange Mn2+ emission around 600 nm. Evidence for successful doping is provided by excitation spectra of the Mn2+ emission, with all features of the CsPbCl3 QD absorption spectrum and a decrease of the 410 nm excitonic emission life time with increasing Mn‒concentration, giving evidence for enhanced exciton to Mn2+ energy transfer. As a doping mechanism we propose a combination of surface etching and reconstruction and diffusion doping. The presently reported approach provides a promising avenue for doping TM ions into perovskites QDs enabling a wider control over optical and magnetic properties for this new class of QDs. PMID:28401894
Magnetic refrigeration capabilities of magnetocaloric Ni2Mn:75Cu:25Ga
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jenkins, C. A.; Dubenko, I.; Samanta, T.; Ali, N.; Roy, S.
2013-03-01
Doping-driven competition between energetically similar ground states leads to many exciting materials phenomena such as the emergence of high-Tc superconductivity, diluted magnetic semiconductors, and colossal magnetoresistance. Doped Ni2MnGa Heusler alloy, which is a multifunctional ferromagnetic alloy with various exotic physical properties demonstrates this notion of rich phenomenology via modified ground spin states. Adopting this generic concept, here we will present a novel doped Ni2Mn.75Cu.25Ga alloy that offers unprecedented co-existence of the magnetocaloric effect and fully controlled ferromagnetism at room temperature. Application of site engineering enables us to manipulate the ground spin state that leads to the decrease in magnetic transition temperature and also increases the delocalization of the Mn magnetism. SQUID magnetometery suggests that Cu doping enhances the saturation magnetization, coercive field and clarity of magnetic hysteresis loops. By exploiting x-ray absorption techniques and measuring element specific magnetic hysteresis loops, here we will describe the microscopic origin of enhnaced magnetocaloric properties and d-d interaction driven charge transfer effects in Ni2Mn.75Cu.25Ga This work was supported by DOE Grant No. DE-FG02-06ER46291
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heczko, O., E-mail: heczko@fzu.cz; Drahokoupil, J.; Straka, L.
2015-05-07
Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolutionmore » of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.« less
Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang
2018-03-01
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.
Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei
2018-01-01
A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm−2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn2+ doping into CdSe QDs is an innovative and simple method—chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density–voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs. PMID:29657776
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Kaji, Hiroki; Nishina, Kousuke; Kuwahara, Hideki; Nakamura, Mitsutaka; Kajimoto, Ryoichi
2016-09-01
We studied how Mn substitution affects the thermoelectric properties and thermal excitations of the electron-doped perovskite Sr1-xLaxTiO3 by measuring its electrical and thermal transport properties, magnetization, specific heat, and inelastic neutron scattering. Slight Mn substitution with the lattice defects enhanced the Seebeck coefficient, perhaps because of coupling between itinerant electrons and localized spins or between itinerant electrons and local lattice distortion around Mn3+ ions, while it enhanced anharmonic lattice vibrations, which effectively suppressed thermal conductivity in a state of high electrical conductivity. Consequently, slight Mn substitution increased the dimensionless thermoelectric figure of merit for Sr1-xLaxTiO3 near room temperature.
Studies of doped LaMnO3 samples prepared by citrate combustion process
NASA Astrophysics Data System (ADS)
Dimri, M. Chandra; Khanduri, H.; Mere, A.; Stern, R.
2018-04-01
La0.95A0.05MnO3 (where A=Na, Sr, Er, Dy and Ce) powder samples were synthesized by chemical solution route and the magnetic and structural properties are reported in this paper. The pervoskite structure was confirmed from X-ray diffraction patterns and Raman spectra at room temperature in all of these doped samples. Curie transition temperatures in doped LaMnO3 bulk samples were around 250K, which are much higher than the ideal value (˜140 K) in undoped samples. The increase in the magnetic transition temperatures can be related to non-stoichiometry and cation vacancies created due to higher valence substitutions for the univalent La1+ ions.
NASA Astrophysics Data System (ADS)
Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.
2018-01-01
Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.
Galvanostatically deposited Fe: MnO2 electrodes for supercapacitor application
NASA Astrophysics Data System (ADS)
Dubal, D. P.; Kim, W. B.; Lokhande, C. D.
2012-01-01
The present investigation describes the addition of iron (Fe) in order to improve the supercapacitive properties of MnO2 electrodes using galvanostatic mode. These amorphous worm like Fe: MnO2 electrodes are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and wettability test. The supercapacitive properties of MnO2 and Fe: MnO2 electrodes are investigated using cyclic voltammetry, chronopotentiometry and impedance techniques. It is seen that the supercapacitance increases with increase in Fe doping concentration and achieved a maximum of 173 F g-1 at 2 at% Fe doping. The maximum supercapacitance obtained is 218 F g-1 for 2 at% Fe: MnO2 electrode. This hydrous binary oxide exhibited ideal capacitive behavior with high reversibility and high pulse charge-discharge property between -0.1 and +0.9 V/SCE in 1 M Na2SO4 electrolyte indicating a promising electrode material for electrochemical supercapacitors.
Gupta, Shiva; Zhao, Shuai; Wang, Xiao Xia; ...
2017-10-31
The intrinsic instability of carbon largely limits its use for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as a bifunctional catalyst in reversible fuel cells or water electrolyzers. In this paper, we discovered that Mn doping has a promotional role in stabilizing nanocarbon catalysts for the ORR/OER in alkaline media. Stable nanocarbon composites are derived from an inexpensive carbon/nitrogen precursor (i.e., dicyandiamide) and quaternary FeCoNiMn alloy via a template-free carbonization process. In addition to FeCoNiMn metal alloys/oxides, the carbon composites comprise substantial carbon tube forests growing on a thick and dense graphitic substrate. The dense carbon substratemore » with high degree of graphitization results from Mn doping, while active nitrogen-doped carbon tubes stem from FeCoNi. Catalyst structures and performance are greatly dependent on the doping content of Mn. Various accelerated stress tests (AST) and life tests verify the encouraging ORR/OER stability of the nanocarbon composite catalyst with optimal Mn doping. Extensive characterization before and after ASTs elucidates the mechanism of stability enhancement resulting from Mn doping, which is attributed to (i) hybrid carbon nanostructures with enhanced resistance to oxidation and (ii) the in situ formation of the β-MnO 2 and FeCoNi-based oxides capable of preventing carbon corrosion and promoting activity. Note that the improvement in stability due to Mn doping is accompanied by a slight activity loss due to a decrease in surface area. Finally, this work provides a strategy to stabilize carbon catalysts by appropriately integrating transition metals and engineering carbon structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Shiva; Zhao, Shuai; Wang, Xiao Xia
The intrinsic instability of carbon largely limits its use for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as a bifunctional catalyst in reversible fuel cells or water electrolyzers. In this paper, we discovered that Mn doping has a promotional role in stabilizing nanocarbon catalysts for the ORR/OER in alkaline media. Stable nanocarbon composites are derived from an inexpensive carbon/nitrogen precursor (i.e., dicyandiamide) and quaternary FeCoNiMn alloy via a template-free carbonization process. In addition to FeCoNiMn metal alloys/oxides, the carbon composites comprise substantial carbon tube forests growing on a thick and dense graphitic substrate. The dense carbon substratemore » with high degree of graphitization results from Mn doping, while active nitrogen-doped carbon tubes stem from FeCoNi. Catalyst structures and performance are greatly dependent on the doping content of Mn. Various accelerated stress tests (AST) and life tests verify the encouraging ORR/OER stability of the nanocarbon composite catalyst with optimal Mn doping. Extensive characterization before and after ASTs elucidates the mechanism of stability enhancement resulting from Mn doping, which is attributed to (i) hybrid carbon nanostructures with enhanced resistance to oxidation and (ii) the in situ formation of the β-MnO 2 and FeCoNi-based oxides capable of preventing carbon corrosion and promoting activity. Note that the improvement in stability due to Mn doping is accompanied by a slight activity loss due to a decrease in surface area. Finally, this work provides a strategy to stabilize carbon catalysts by appropriately integrating transition metals and engineering carbon structures.« less
NASA Astrophysics Data System (ADS)
Kole, A. K.; Tiwary, C. S.; Kumbhakar, P.
2013-03-01
Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be ˜1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity.
NASA Astrophysics Data System (ADS)
Driscoll, L. L.; Kendrick, E.; Knight, K. S.; Wright, A. J.; Slater, P. R.
2018-02-01
In this paper we report an investigation into the phases formed on dehydration of Na2M(SO4)2-x(SeO4)x·2H2O (0 ≤ x ≤ 1; M = Mn, Fe, Co and Ni). For the Fe series, all attempts to dehydrate the samples doped with selenate resulted in amorphous products, and it is suspected that a side redox reaction involving the Fe and selenate may be occurring leading to phase decomposition and hence the lack of a crystalline product on dehydration. For M = Mn, Co, Ni, the structure observed was shown to depend upon the transition metal cation and level of selenate doping. An alluaudite phase, Na3M1.5(SO4)3-1.5x(SeO4)1.5x, was observed for the selenate doped compositions, with this phase forming as a single phase for x ≥ 0.5 M = Co, and x = 1.0 M = Ni. For M = Mn, the alluaudite structure is obtained across the series, albeit with small impurities for lower selenate content samples. Although the alluaudite-type phases Na2+2y(Mn/Co)2-y(SO4)3 have recently been reported [1,2], doping with selenate appears to increase the maximum sodium content within the structure. Moreover, the selenate doped Ni based samples reported here are the first examples of a Ni sulfate/selenate containing system exhibiting the alluaudite structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xiaoyan; Ohuchi, Fumio; Hatano, Hideki
2011-08-01
Visible light-induced polarization-dependent photochemical deposition of silver nanoparticles (AgNPs) has been demonstrated using Mn-doped congruent LiNbO{sub 3} (CLN) single crystals. Mn-doped CLN has a strong absorption over a wide region of the visible spectrum that allowed effective visible light irradiation for photochemical deposition. The AgNPs deposition on Mn-doped CLN was compared with that on non-doped congruent LiNbO{sub 3}, and together these further confirmed that the photochemical deposition on LiNbO{sub 3} is caused by the strong photogalvanic effect.
Magnetic and magnetotransport properties of the orthorhombic perovskites (Lu,Ca)MnO3
NASA Astrophysics Data System (ADS)
Imamura, N.; Karppinen, M.; Motohashi, T.; Yamauchi, H.
2008-01-01
Here we extend the research of the (R,Ca)MnO3 perovskites to the smallest- R end member (Lu,Ca)MnO3 . Magnetic and magnetotransport properties of the (Lu1-xCax)MnO3 system are systematically investigated in regard to carrier doping. It is found that hole doping into the antiferromagnetic x=0.0 phase, LuMnO3 , causes a spin-glass-like magnetic competition in the wide doping range of 0.1≤x≤0.6 , whereas electron doping into the antiferromagnetic x=1.0 phase, CaMnO3 , induces a large magnetoresistance effect for 0.8≤x≤0.95 .
Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping
NASA Astrophysics Data System (ADS)
Gómez, A.; Chavarriaga, E.; Supelano, I.; Parra, C. A.; Morán, O.
2018-04-01
The effect of Ni2+ doping on the magnetic and magnetocaloric properties of La0.7Ca0.3MnO3 manganites synthesized via the auto-combustion method is reported. The aim of studying Ni2+-substituted La0.7Ca0.3Mn1 - xNixO3 (x = 0 , 0.02 , 0.07, and 0.1) manganites was to explore the possibility of increasing the operating temperature range for the magnetocaloric effect through tuning of the magnetic transition temperature. X-ray diffraction analysis confirmed the phase purity of the synthesized samples. The substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice was also corroborated through this technique. The dependence of the magnetization on the temperature reveals that all the compositions exhibit a well-defined ferromagnetic to paramagnetic transition near the Curie temperature. A systematic decrease in the values of the Curie temperature is clearly observed upon Ni2+ doping. Probably the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and the magnetic moment in the samples. By using Arrott plots, it was found that the phase transition from ferromagnetic to paramagnetic is second order. The maximum magnetic entropy changes observed for the x = 0 , 0.02 , 0.07, and 0.1 composites was 0.85, 0.77, 0.63, and 0.59 J/kg K, respectively, under a magnetic field of 1.5 T. In general, it was verified that the magnetic entropy change achieved for La0.7Ca0.3Mn1 - xNixO3 manganites synthesized via the auto-combustion method is higher than those reported for other manganites with comparable Ni2+-doping levels synthesized via standard solid state reaction. The addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (∼60 J/kg) is found for a Ni-doping level of 2% around 230 K in a field of 1.5 T.
SPIN-FRUSTRATED EFFECT AND THE MAGNETIC PROPERTIES IN YMn1-xAlxO3
NASA Astrophysics Data System (ADS)
Zhang, A. M.; Zhu, W. H.; Wu, X. S.; Bian, Q.
2013-08-01
Polycrystalline samples YMn1-xAlxO3 with different Al doping concentration were synthesized by standard solid-state reaction. Effect of Al doping on the magnetic properties was studied. Magnetization measurements show that the magnetization increases, while the calculated frustration factor decreases with the doping content of Al3+ ion increasing. And the spin-glass behavior becomes more and more obvious with increasing the Al doping content. These results were ascribed to the broken exchange path between Mn ions by Al doping.
Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor
NASA Astrophysics Data System (ADS)
Mary, A. Juliet Christina; Bose, A. Chandra
2017-12-01
Mn-doped ZnCo2O4 nanoparticle has been synthesized by hydrothermal method without adding any surfactants. Structural, morphological and electrochemical performances have been studied for the pure and various concentration of Mn-doped ZnCo2O4 nanoparticles. XRD and Raman studies demonstrate the crystalline structure of the material. Specific capacitance of the 10 wt% Mn doped ZnCo2O4 nanomaterial is analysed using the three-electrode system. 10 wt% Mn-doped ZnCo2O4 has a maximum capacitance of 707.4 F g-1 at a current density of 0.5 A g-1. Coulombic efficiency of the material is 96.3% for 500 cycles in the KOH electrolyte medium. A two-electrode device using 10 wt% Mn-doped ZnCo2O4 exhibits the highest specific capacitance of 6.5 F g-1 at a current density of 0.03 A g-1 which is the suitable material for supercapacitor application.
Quantum Dots for Solar Cell Application
NASA Astrophysics Data System (ADS)
Poudyal, Uma
Solar energy has been anticipated as the most important and reliable source of renewable energy to address the ever-increasing energy demand. To harvest solar energy efficiently, diverse kinds of solar cells have been studied. Among these, quantum dot sensitized solar cells have been an interesting group of solar cells mainly due to tunable, size-dependent electronic and optical properties of quantum dots. Moreover, doping these quantum dots with transition metal elements such as Mn opens avenue for improved performance of solar cells as well as for spin based technologies. In this dissertation, Mn-doped CdSe QDs (Mn-CdSe) have been synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method. They are used in solar cells to study the effect of Mn doping in the performance of solar cells. Incident photon to current-conversion efficiency (IPCE) is used to record the effect of Mn-doping. Intensity modulated photovoltage and photocurrent spectroscopy (IMVS/PS) has been used to study the carrier dynamics in these solar cells. Additionally, the magnetic properties of Mn-CdSe QDs is studied and its possible origin is discussed. Moreover, CdS/CdSe QDs have been used to study the effect of liquid, gel and solid electrolyte in the performance and stability of the solar cells. Using IPCE spectra, the time decay measurements are presented and the possible reactions between the QD and the electrolytes are explained.
Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots
NASA Astrophysics Data System (ADS)
Deng, Pan; Lu, Li-Qiang; Cao, Wei-Cheng; Tian, Xi-Ke
2017-02-01
The phosphorescent L-cysteine modified manganese-doped zinc sulfide quantum dots (L-cys-MnZnS QDs) was developed for a highly sensitive detection of permanganate anions (MnO4-). L-cys-MnZnS QDs, which were easily synthesized in aqueous media using safe and low-cost materials, can emit intense phosphorescence even though the solution was not deoxygenated. However, the phosphorescence of L-cys-Mn-ZnS QDs was strongly quenched by MnO4- ascribed to the oxidation of L-cys and the increase of surface defects on L-cys-MnZnS QDs. Under the optimal conditions, L-cys-MnZnS QDs offer high selectivity over other anions for MnO4- determination, and good linear Stern-Volmer equation was obtained for MnO4- in the range of 0.5-100 μM with a detection limit down to 0.24 μM. The developed method was finally applied to the detection of MnO4- in water samples, and the spike-recoveries fell in the range of 95-106%.
Hassanpour, E.; Wegmayr, V.; Schaab, J.; ...
2016-04-12
We investigate the effect of chemical doping on the electric and magnetic domain pattern in multiferroic hexagonal ErMnO 3 . Hole- and electron doping are achieved through the growth of Er 1-x Ca x MnO 3 and Er 1-x Zr x MnO 3 single crystals, which allows for a controlled introduction of divalent and tetravalent ions, respectively. Using conductance measurements, piezoresponse force microscopy and nonlinear optics we study doping-related variations in the electronic transport and image the corrsponding ferroelectric and antiferromagnetic domains. We find that moderate doping levels allow for adjusting the electronic conduction properties of ErMnO 3 without destroyingmore » its characteristic domain patterns. Our findings demonstrate the feasibility of chemical doping for nonperturbative property-engineering of intrinsic domain states in this important class of multiferroics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinamarca, Robinson; Garcia, Ximena; Jimenez, Romel
Highlights: • A-site defective perovskites increases the oxidation state of the B-cation. • Not always non-stoichiometric perovskites exhibit higher catalytic activity in soot combustion. • The highly symmetric cubic crystalline structure diminishes the redox properties of perovskites. - Abstract: The influence of lanthanum stoichiometry in Ag-doped (La{sub 1-x}Ag{sub x}Mn{sub 0.9}Co{sub 0.1}O{sub 3}) and A-site deficient (La{sub 1-x}Mn{sub 0.9}Co{sub 0.1}O{sub 3-δ}) perovskites with x equal to 10, 20 and 30 at.% has been investigated in catalysts for soot combustion. The catalysts were prepared by the amorphous citrate method and characterized by XRD, nitrogen adsorption, XPS, O{sub 2}-TPD and TPR. The formationmore » of a rhombohedral excess-oxygen perovskite for Ag-doped and a cubic perovskite structure for an A-site deficient series is confirmed. The efficient catalytic performance of the larger Ag-doped perovskite structure is attributed to the rhombohedral crystalline structure, Ag{sub 2}O segregated phases and the redox pair Mn{sup 4+}/Mn{sup 3+}. A poor catalytic activity for soot combustion was observed with A-site deficient perovskites, despite the increase in the redox pair Mn{sup 4+}/Mn{sup 3+}, which is attributed to the cubic crystalline structure.« less
Yoshinaga, Taizo; Saruyama, Masaki; Xiong, Anke; Ham, Yeilin; Kuang, Yongbo; Niishiro, Ryo; Akiyama, Seiji; Sakamoto, Masanori; Hisatomi, Takashi; Domen, Kazunari; Teranishi, Toshiharu
2018-06-14
The effect of cobalt doping into a manganese oxide (tetragonal spinel Mn 3 O 4 ) nanoparticle cocatalyst up to Co/(Co + Mn) = 0.4 (mol/mol) on the activity of photocatalytic water oxidation was studied. Monodisperse ∼10 nm Co y Mn 1-y O (0 ≤y≤ 0.4) nanoparticles were uniformly loaded onto photocatalysts and converted to Co x Mn 3-x O 4 nanoparticles through calcination. 40 mol% cobalt-doped Mn 3 O 4 nanoparticle-loaded Rh@Cr 2 O 3 /SrTiO 3 photocatalyst exhibited 1.8 times-higher overall water splitting activity than that with pure Mn 3 O 4 nanoparticles. Investigation on the band structure and electrocatalytic water oxidation activity of Co x Mn 3-x O 4 nanoparticles revealed that the Co doping mainly contributes to the improvement of water oxidation kinetics on the surface of the cocatalyst nanoparticles.
Electronic and magnetic properties of Mn-doped WSe2 monolayer under strain
NASA Astrophysics Data System (ADS)
Xin, Qianqian; Zhao, Xu; Wang, Tianxing
2017-04-01
Electronic and magnetic properties of Mn-doped WSe2 monolyer subject to isotropic strain are investigated using the first-principles methods based on the density functional theory. Our results indicate that Mn-doped WSe2 monolayer is a magnetic semiconductor nanomaterial with strong spontaneous magnetism without strain and the total magnetic moment of Mn-doped system is 1.038μB. We applied strain to Mn-doped WSe2 monolayer from -10% to 10%. The doped system transforms from magnetic semiconductor to half-metallic material from -10% to -2% compressive strain and from 2% to 6% tensile strain. The largest half-metallic gap is 0.450 eV at -2% compressive strain. The doped system shows metal property from 7% to 10%. Its maximum magnetic moment comes to 1.181μB at 6% tensile strain. However, the magnetic moment of system decreases to zero sharply when tensile strain arrived at 7%. Strain changes the redistribution of charges and arises to the magnetic effect. The coupling between the 3d orbital of Mn atom, 5d orbital of W atom and 4p orbital of Se atom is analyzed to explain the strong strain effect on the magnetic properties. Our studies predict Mn-doped WSe2 monolayers under strain to be candidates for thin dilute magnetic semiconductors, which is important for application in semiconductor spintronics.
Shang, Mengmeng; Liang, Sisi; Lian, Hongzhou; Lin, Jun
2017-06-05
A series of Eu 3+ /Tb 3+ /Mn 2+ -ion-doped Ca 19 Ce(PO 4 ) 14 (CCPO) phosphors have been prepared via the conventional high-temperature solid-state reaction process. Under UV radiation, the CCPO host presents a broad blue emission band from Ce 3+ ions, which are generated during the preparation process because of the formation of deficiency. The Eu 3+ -doped CCPO phosphors can exhibit magenta to red-orange emission as a result of the abnormal coexistence of Ce 3+ /Ce 4+ /Eu 3+ and the metal-metal charge-transfer (MMCT) effect between Ce 3+ and Eu 3+ . When Tb 3+ /Mn 2+ are doped into the hosts, the samples excited with 300 nm UV light present multicolor emissions due to energy transfer (ET) from the host (Ce 3+ ) to the activators with increasing activator concentrations. The emitting colors of CCPO:Tb 3+ phosphors can be tuned from blue to green, and the CCPO:Mn 2+ phosphors can emit red light. The ET mechanism from the host (Ce 3+ ) to Tb 3+ /Mn 2+ is demonstrated to be a dipole-quadrapole interaction for Ce 3+ → Tb 3+ and an exchange interaction for Ce 3+ → Mn 2+ in CCPO:Tb 3+ /Mn 2+ . Abundant emission colors containing white emission were obtained in the Tb 3+ - and Mn 2+ -codoped CCPO phosphors through control of the levels of doped Tb 3+ and Mn 2+ ions. The white-emitted CCPO:Tb 3+ /Mn 2+ phosphor exhibited excellent thermal stability. The photoluminescence properties have shown that these materials might have potential for UV-pumped white-light-emitting diodes.
Wang, Xujun; Wan, Yong; Wang, Ruiqi; Xu, Xiantang; Wang, He; Chang, Mingning; Yuan, Feng; Ge, Xiaohui; Shao, Weiquan; Xu, Sheng
2018-04-01
LiNi1/3ZnxCo1/3-xMn1/3O2 (0.000 ≤ x ≤ 0.133) hollow microspheres are synthesized using MnO2 hollow microspheres both as a self-template and Mn source. These hollow microspheres, ~4 μm in diameter, are composed of approximately 300 nm basic nanoparticles. The XRD patterns of LiNi1/3ZnxCo1/3-xMn1/3O2 were analyzed by the RIETAN-FP program, and the obtained samples have a layered α-NaFeO2 structure. Electrochemical performances of the samples were carried out between 2.5 V and 4.5 V. The behavior of the lattice parameters is consistent with Cycling performance and rate performance change with increase of x. Compared with the others, the sample of x = 0.133 exhibits a relatively superior electrochemical performance. The specific capacity of x = 0.133 was increased by 10.7% than no-doped. In addition, the cyclic voltammograms curves of the second cycle show no significant alteration compared with the first cycle and the electrochemical impedance of zinc doping sample showed smaller transfer resistance than the no-doping sample.
NASA Astrophysics Data System (ADS)
Rani, Reena; Yadav, Kamlesh
2015-08-01
Barium manganite (BaMnO3), a perovskite based material, has been studied extensively. BaMnO3 properties can be changed by doping different elements at manganese (Mn) lattice site. We have prepared BaMnO3 and BaMn1-xCrxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) by Microwave Synthesizer. Data obtained from Fourier Transform Infrared Spectroscopy (FTIR) that the band gap of pure BaMnO3 is less as compare to the Cr doped BaMnO3. It is also clear from the FTIR that the band gap decreased with increasing the concentration of chromium. Broaden peak at 3201 cm-1 correspond to the stretching vibration of hydroxyl group (OH or H2O). The peaks appear on 724, 863 and 974 cm-1 is corresponding to the stretching vibration of metal oxide (M-O) bonds in the BaMnO3. BaMnO3 have applications in memory storage devices.
In vitro study of manganese-doped bioactive glasses for bone regeneration.
Miola, Marta; Brovarone, Chiara Vitale; Maina, Giovanni; Rossi, Federica; Bergandi, Loredana; Ghigo, Dario; Saracino, Silvia; Maggiora, Marina; Canuto, Rosa Angela; Muzio, Giuliana; Vernè, Enrica
2014-05-01
A glass belonging to the system SiO2-P2O5-CaO-MgO-Na2O-K2O was modified by introducing two different amounts of manganese oxide (MnO). Mn-doped glasses were prepared by melt and quenching technique and characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) observation and energy dispersion spectrometry (EDS) analysis. In vitro bioactivity test in simulated body fluid (SBF) showed a slight decrease in the reactivity kinetics of Mn-doped glasses compared to the glass used as control; however the glasses maintained a good degree of bioactivity. Mn-leaching test in SBF and minimum essential medium (MEM) revealed fluctuating trends probably due to a re-precipitation of Mn compounds during the bioactivity process. Cellular tests showed that all the Mn-doped glasses, up to a concentration of 50 μg/cm(2) (μg of glass powders/cm(2) of cell monolayer), did not produce cytotoxic effects on human MG-63 osteoblasts cultured for up to 5 days. Finally, biocompatibility tests demonstrated a good osteoblast proliferation and spreading on Mn-doped glasses and most of all that the Mn-doping can promote the expression of alkaline phosphatase (ALP) and some bone morphogenetic proteins (BMPs). Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, H G; Xie, L; Liu, X C; Xiong, M X; Cao, L L; Li, Y T
2017-09-20
The crystal structure, electronic structure and magnetic properties were systematically studied in a series of Fe-doped La 1.5 Sr 0.5 CoMnO 6 double perovskites. The X-ray diffraction patterns of the samples are all refined with a rhombohedral (R3[combining macron]c) structure. The parameters a and c continuously increase with increasing Fe doping concentration x. X-ray photoelectron spectroscopy (XPS) spectra of the Mn, Co, and Fe 2p core levels, consistent with the soft X-ray absorption spectroscopy (XAS) spectra of Mn, Co, and Fe L 2,3 edges, indicate that their valence states are Mn 3+ and Mn 4+ , Co 2+ and Co 3+ , and Fe 3+ , respectively. However, relative to samples with x ≤ 0.1, there is an abrupt change of photon energy in the Co- and Fe-2p XAS spectra for x ≥ 0.2, implying the spin state transition is from high to low. In addition, this is further confirmed by a comparison between the calculated effective spin moment from the paramagnetic data and the theoretical value. Interestingly, we demonstrate the reversal of both zero-field-cooling magnetization and the sign switching of the spontaneous exchange bias (SEB) with the doping concentration from magnetic measurements. The magnetization reverses from positive to negative with the temperature decreasing across the compensation temperature at the critical concentration x = 0.2. Meanwhile, the exchange bias field of the SEB reverses from large negative values to positive ones. Our findings allow us to propose that the spin state transition caused by inhomogeneity is considered to play an important role in the reversal of the magnetization and the SEB effect.
NASA Astrophysics Data System (ADS)
Wang, Jia-Wei; Chen, Ya; Chen, Bai-Zhen
2014-11-01
δ-MnO2 materials doped with transition-metal cations (Zn, Co, and Ag) were successfully synthesized using a hydrothermal technique. The structures and morphologies of the obtained oxides were analyzed using X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller measurements. Additionally, the electrochemical properties were evaluated through cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic cycling measurements. The results indicate that the pure and doped samples crystallize in the δ form with a layered structure and that the Mn/Zn, Mn/Co and Mn/Ag molar ratios are all approximately 1:0.09. Both the Zn-doped and pure MnO2 materials exhibit a petal-like morphology; however, the former has a higher specific surface area of up to 98.97m2 g-1. Furthermore, the Zn-doped MnO2 exhibits a near-rectangular cyclic voltammetry (CV) curve with broad quasi-reversible redox peaks and a specific capacitance of 182.9 F g-1 at a CV scan rate of 2 mV s-1. The Co-doped material exhibits a distinct spiny-fiber morphology, and the electrochemical performance of this material is significantly worse than that of pure MnO2. The average attenuation rate of the Ag-doped material is only 0.028% after 1000 cycles, which is lower than that of pure MnO2.
Yabuta, Hisato; Tanaka, Hidenori; Furuta, Tatsuo; Watanabe, Takayuki; Kubota, Makoto; Matsuda, Takanori; Ifuku, Toshihiro; Yoneda, Yasuhiro
2017-01-01
To stabilise ferroelectric-tetragonal phase of BaTiO3, the double-doping of Bi and Mn up to 0.5 mol% was studied. Upon increasing the Bi content in BaTiO3:Mn:Bi, the tetragonal crystal-lattice-constants a and c shrank and elongated, respectively, resulting in an enhancement of tetragonal anisotropy, and the temperature-range of the ferroelectric tetragonal phase expanded. X-ray absorption fine structure measurements confirmed that Bi and Mn were located at the A(Ba)-site and B(Ti)-site, respectively, and Bi was markedly displaced from the centrosymmetric position in the BiO12 cluster. This A-site substitution of Bi also caused fluctuations of B-site atoms. Magnetic susceptibility measurements revealed a change in the Mn valence from +4 to +3 upon addition of the same molar amount of Bi as Mn, probably resulting from a compensating behaviour of the Mn at Ti4+ sites for donor doping of Bi3+ into the Ba2+ site. Because addition of La3+ instead of Bi3+ showed neither the enhancement of the tetragonal anisotropy nor the stabilisation of the tetragonal phase, these phenomena in BaTiO3:Mn:Bi were not caused by the Jahn-Teller effect of Mn3+ in the MnO6 octahedron, but caused by the Bi-displacement, probably resulting from the effect of the 6 s lone-pair electrons in Bi3+. PMID:28367973
The Influence of Different Metal Ions on the Absorption Properties of Nano-Nickel Zinc Ferrite
Ma, Zhijun; Mang, Changye; Weng, Xingyuan; Si, Liwei; Zhao, Haitao
2018-01-01
The hydrothermal method was used to dope different amounts of Co2+, Mn2+, and Cu2+ in nano-nickel zinc ferrite powder. X-ray diffraction (XRD), a scanning electron microscopy (TEM), and a vector network analyzer (VNA) were used to explore the influence of doping on particle size, morphology, and electromagnetic wave absorption performance. Pure nanometer cobalt nickel zinc ferrite phase was prepared using the hydrothermal method with an increasing Co2+ content. Results showed that the grain type structure changed from a spherical structure to an irregular quadrilateral structure with the average particle size increasing from 35 nm to 60 nm. The lattice constant increased from 0.8352 to 0.8404 nm with Co2+ doping. The increasing Co2+ can change the position of the absorption peak, increase the bandwidth of the absorber, and improve the performance of the materials in GHz low frequency. The doping ratio of Mn2+ can affect the size of the lattice constant, but nanocrystals are easy to reunite without improving the electromagnetic loss. However, the absorbance performance decreases. For the doping of Cu2+, there is an agglomeration phenomenon. When the doping quantity is 0.15, the absorbing wave performance becomes better. PMID:29641477
The Influence of Different Metal Ions on the Absorption Properties of Nano-Nickel Zinc Ferrite.
Ma, Zhijun; Mang, Changye; Weng, Xingyuan; Zhang, Qi; Si, Liwei; Zhao, Haitao
2018-04-11
The hydrothermal method was used to dope different amounts of Co 2+ , Mn 2+ , and Cu 2+ in nano-nickel zinc ferrite powder. X-ray diffraction (XRD), a scanning electron microscopy (TEM), and a vector network analyzer (VNA) were used to explore the influence of doping on particle size, morphology, and electromagnetic wave absorption performance. Pure nanometer cobalt nickel zinc ferrite phase was prepared using the hydrothermal method with an increasing Co 2+ content. Results showed that the grain type structure changed from a spherical structure to an irregular quadrilateral structure with the average particle size increasing from 35 nm to 60 nm. The lattice constant increased from 0.8352 to 0.8404 nm with Co 2+ doping. The increasing Co 2+ can change the position of the absorption peak, increase the bandwidth of the absorber, and improve the performance of the materials in GHz low frequency. The doping ratio of Mn 2+ can affect the size of the lattice constant, but nanocrystals are easy to reunite without improving the electromagnetic loss. However, the absorbance performance decreases. For the doping of Cu 2+ , there is an agglomeration phenomenon. When the doping quantity is 0.15, the absorbing wave performance becomes better.
2014-01-01
ferromagnetic films with perpendicular anisotropy were examined, and finally, the magnetoresistance and Hall effect in Manganese- doped Germanium was...interest in ferromagnetic semiconductors. Germanium doped with Mn is particularly interesting Distribution A: Approved for public release...unavoidable, and doped films are strongly inhomogeneous with GexMny, metallic precipitates coexisting with Mn-rich regions and Mn dilute matrix
Effects of manganese doping on the structure evolution of small-sized boron clusters
NASA Astrophysics Data System (ADS)
Zhao, Lingquan; Qu, Xin; Wang, Yanchao; Lv, Jian; Zhang, Lijun; Hu, Ziyu; Gu, Guangrui; Ma, Yanming
2017-07-01
Atomic doping of clusters is known as an effective approach to stabilize or modify the structures and properties of resulting doped clusters. We herein report the effect of manganese (Mn) doping on the structure evolution of small-sized boron (B) clusters. The global minimum structures of both neutral and charged Mn doped B cluster \\text{MnB}nQ (n = 10-20 and Q = 0, ±1) have been proposed through extensive first-principles swarm-intelligence based structure searches. It is found that Mn doping has significantly modified the grow behaviors of B clusters, leading to two novel structural transitions from planar to tubular and then to cage-like B structures in both neutral and charged species. Half-sandwich-type structures are most favorable for small \\text{MnB}n-/0/+ (n ⩽ 13) clusters and gradually transform to Mn-centered double-ring tubular structures at \\text{MnB}16-/0/+ clusters with superior thermodynamic stabilities compared with their neighbors. Most strikingly, endohedral cages become the ground-state structures for larger \\text{MnB}n-/0/+ (n ⩾ 19) clusters, among which \\text{MnB}20+ adopts a highly symmetric structure with superior thermodynamic stability and a large HOMO-LUMO gap of 4.53 eV. The unique stability of the endohedral \\text{MnB}\\text{20}+ cage is attributed to the geometric fit and formation of 18-electron closed-shell configuration. The results significantly advance our understanding about the structure and bonding of B-based clusters and strongly suggest transition-metal doping as a viable route to synthesize intriguing B-based nanomaterials.
Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping
NASA Astrophysics Data System (ADS)
Fang, De; He, Feng; Liu, Xiaoqing; Qi, Kai; Xie, Junlin; Li, Fengxiang; Yu, Chongqinq
2018-01-01
MnOx/TiO2 catalysts doped with Mg have been prepared with the impregnation method. Surprisingly, 7% Mg-MnOx/TiO2 catalyst containing more Mn3+ ions showed superior low-temperature SCR activity and stability. Mg doping resulted in some adverse effects on the phases, BET surface areas, reducibility, NH3 adsorption, and morphology structures. However, according to the SCR performance, these effects were thought to be rather limited in comparison with the catalytic properties of MgMn2O4 which might stem from the enhancement of NH3-SCR activity and stability. Meanwhile, based on the in situ DRIFTS tests, the NH3-SCR reaction route of MnOx/TiO2 and Mg doped MnOx/TiO2 catalysts depended on the kind of gas (NH3 or NO) pre-adsorbed on the catalyst.
Magnetic properties and photovoltaic applications of ZnO:Mn nanocrystals.
Zhang, Ying; Han, Fengxiang; Dai, Qilin; Tang, Jinke
2018-05-01
A simple and large-scale synthetic method of Mn doped ZnO (ZnO:Mn) was developed in this work. ZnO:Mn nanocrystals with hexagonal structure were prepared by thermal decomposition of zinc acetate and manganese acetate in the presence of oleylamine and oleic acid with different temperatures, ligand ratios, and Mn doping concentrations. The particle size (47-375 nm) and morphology (hexagonal nanopyramid, hexagonal nanodisk and irregular nanospheres) of ZnO:Mn nanocrystals can be controlled by the ratio of capping ligand, reaction temperature, reaction time and Mn doping concentration. The corresponding optical and magnetic properties were systemically studied and compared. All samples were found to be paramagnetic with antiferromagnetic (AFM) exchange interactions between the Mn moments in the ZnO lattice, which can be affected by the reaction conditions. The quantum dot sensitized solar cells (QDSSCs) were fabricated based on ZnO:Mn nanocrystals and CdS quantum dots, and the device performance affected by Mn doping concentration was also studied and compared. Copyright © 2018 Elsevier Inc. All rights reserved.
Enhanced Ferromagnetism in Nanoscale GaN:Mn Wires Grown on GaN Ridges.
Cheng, Ji; Jiang, Shengxiang; Zhang, Yan; Yang, Zhijian; Wang, Cunda; Yu, Tongjun; Zhang, Guoyi
2017-05-02
The problem of weak magnetism has hindered the application of magnetic semiconductors since their invention, and on the other hand, the magnetic mechanism of GaN-based magnetic semiconductors has been the focus of long-standing debate. In this work, nanoscale GaN:Mn wires were grown on the top of GaN ridges by metalorganic chemical vapor deposition (MOCVD), and the superconducting quantum interference device (SQUID) magnetometer shows that its ferromagnetism is greatly enhanced. Secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy (EDS) reveal an obvious increase of Mn composition in the nanowire part, and transmission electron microscopy (TEM) and EDS mapping results further indicate the correlation between the abundant stacking faults (SFs) and high Mn doping. When further combined with the micro-Raman results, the magnetism in GaN:Mn might be related not only to Mn concentration, but also to some kinds of built-in defects introduced together with the Mn doping or the SFs.
Magnetic order and polaron formation in hole-doped LaMnO_3
NASA Astrophysics Data System (ADS)
Terashita, Hirotoshi; Neumeier, John J.; Mitchell, J. F.
2003-03-01
We report the magnetic properties of hole-doped La_1-xCa_xMnO3 (0 <= x <= 0.14). A ferromagnetic saturation moment M_sat develops linearly with Mn^4+ concentration. The slope of M_sat versus Mn^4+ concentration is 27 μ_B/(Mn-ion) per substututed Mn^4+, which is about 3 times larger in magnitude than that of electron-doped CaMnO3 [1]. This result suggests differences in the formation of magnetic polarons of the A-type antiferromagnet LaMnO3 versus that of the G-type antiferromagnet CaMnO_3. Supported by NSF Grant DMR9982834 and the USDOE under contract W-31-109-ENG-38. [1] J. J. Neumeier and J. L. Cohn, Phys. Rev. B 61, 14319 (2000).
NASA Astrophysics Data System (ADS)
Urata, T.; Tanabe, Y.; Huynh, K. K.; Heguri, S.; Oguro, H.; Watanabe, K.; Tanigaki, K.
2015-05-01
In Fe pnictide (Pn) superconducting materials, neither Mn nor Cr doping to the Fe site induces superconductivity, even though hole carriers are generated. This is in strong contrast with the superconductivity appearing when holes are introduced by alkali-metal substitution on the insulating blocking layers. We investigate in detail the effects of Mn doping on magnetotransport properties in Ba (Fe1 -xMnxAs )2 for elucidating the intrinsic reason. The negative Hall coefficient for x =0 estimated in the low magnetic field (B ) regime gradually increases as x increases, and its sign changes to a positive one at x =0.020 . Hall resistivities as well as simultaneous interpretation using the magnetoconductivity tensor including both longitudinal and transverse transport components clarify that minority holes with high mobility are generated by the Mn doping via spin-density wave transition at low temperatures, while original majority electrons and holes residing in the paraboliclike Fermi surfaces of the semimetallic Ba (FeAs )2 are negligibly affected. Present results indicate that the mechanism of hole doping in Ba (Fe1 -xMnxAs )2 is greatly different from that of the other superconducting FePn family.
Gopi, Chandu V V M; Venkata-Haritha, M; Kim, Soo-Kyoung; Kim, Hee-Je
2015-01-14
This article describes the effect of manganese (Mn) doping in CdS to improve the photovoltaic performance of quantum dot sensitized solar cells (QDSSCs). The performances of the QDSSCs are examined in detail using a polysulfide electrolyte with a copper sulfide (CuS) counter electrode. Under the illumination of one sun (AM 1.5 G, 100 mW cm(-2)), 10 molar% Mn-doped CdS QDSSCs exhibit a power conversion efficiency (η) of 2.85%, which is higher than the value of 2.11% obtained with bare CdS. The improved photovoltaic performance is due to the impurities from Mn(2+) doping of CdS, which have an impact on the structure of the host material and decrease the surface roughness. The surface roughness and morphology of Mn-doped CdS nanoparticles can be characterised from atomic force microscopy images. Furthermore, the cell device based on the Mn-CdS electrode shows superior stability in the sulfide/polysulfide electrolyte in a working state for over 10 h, resulting in a highly reproducible performance, which is a serious challenge for the Mn-doped solar cell. Our finding provides an effective method for the fabrication of Mn-doped CdS QDs, which can pave the way to further improve the efficiency of future QDSSCs.
NASA Astrophysics Data System (ADS)
Liu, Shiyuan; Wang, Lijun; Chou, Kuochih
2018-03-01
Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.
High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3
NASA Astrophysics Data System (ADS)
Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.
2018-06-01
We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.
Mn doped InSb studied at the atomic scale by cross-sectional scanning tunneling microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, S. J. C.; Bocquel, J.; Koenraad, P. M., E-mail: p.m.koenraad@tue.nl
2015-11-30
We present an atomically resolved study of metal-organic vapor epitaxy grown Mn doped InSb. Both topographic and spectroscopic measurements have been performed by cross-sectional scanning tunneling microscopy (STM). The measurements on the Mn doped InSb samples show a perfect crystal structure without any precipitates and reveal that Mn acts as a shallow acceptor. The Mn concentration of the order of ∼10{sup 20 }cm{sup −3} obtained from the cross-sectional STM data compare well with the intended doping concentration. While the pair correlation function of the Mn atoms showed that their local distribution is uncorrelated beyond the STM resolution for observing individual dopants,more » disorder in the Mn ion location giving rise to percolation pathways is clearly noted. The amount of clustering that we see is thus as expected for a fully randomly disordered distribution of the Mn atoms and no enhanced clustering or second phase material was observed.« less
Pressure-induced photoluminescence in Mn2+-doped BaF2 and SrF2 fluorites
NASA Astrophysics Data System (ADS)
Hernández, Ignacio; Rodríguez, Fernando
2003-01-01
This work reports an effective way for inducing room temperature photoluminescence (PL) in Mn2+-doped BaF2 and SrF2 using high-pressure techniques. The aim is to understand the surprising PL behavior exhibited by Mn2+ at the cubal site of the fluorite structure. While Mn2+-doped CaF2 shows a green PL with quantum yield close to 1 at room temperature, Mn2+-doped MF2 (M=Ba,Sr) is not PL either at room temperature (SrF2) or at any temperature (BaF2) at ambient pressure. We associate the loss of Mn2+ PL on passing from CaF2 to SrF2 or BaF2 with nonradiative multiphonon relaxation whose thermal activation energy decreases along the series CaF2→SrF2→BaF2. A salient feature of this work deals with the increase of activation energy induced by pressure. It leads to a quantum yield enhancement, which favors PL recovery. Furthermore, the activation energy mainly depends on the crystal volume per molecule irrespective of the crystal structure or the local symmetry around the impurity. In this way, the relevance of the fluorite-to-cotunnite phase transition is analyzed in connection with the PL properties of the investigated compounds. The PL spectrum and the corresponding lifetime are reported for both structural phases as a function of pressure.
Sun, Jian; Cai, Bihai; Xu, Wenjing; Huang, Yu; Zhang, Yaping; Peng, Yenping; Chang, Kenlin; Kuo, Jiahong; Chen, Kufan; Ning, Xunan; Liu, Guoguang; Wang, Yujie; Yang, Zuoyi; Liu, Jingyong
2017-02-01
A novel anthraquinone-2,6-disulfonate/MnO x -doped polypyrrole film (AQDS/Mn/PPy) electrode was prepared by one-step electropolymerization method and was used to improve performance of a reversible photo-bioelectrochemical cell (RPBEC). The RPBEC was operated in polarity reversion depended on dark/light reaction of alga Chlorella vulgaris by which sequential decolorization of azo dye and mineralization of decolorization products coupled with bioelectricity generation can be achieved. The results showed that formation of uniform AQDS/Mn/PPy film significantly enhanced electroactive surface area and electrocatalytic activity of carbon electrode. The RPBEC with AQDS/Mn/PPy electrodes demonstrated 77% increases in maximum power and 73% increases in Congo red decolorization rate before polarity reversion, and 198% increases in maximum power and 138% increases in decolorization products mineralization rate after polarity reversion, respectively, compared to the RPBEC with bare electrode. This was resulted from simultaneous dynamics improvement in half-reaction rate of anode and photo-biocathode due to enhanced electron transfer and algal-bacterial biofilm formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Hydrothermal synthesis and luminescence of one-dimensional Mn(2+)-doped CdS nanocrystals].
Yuan, Qiu-Li; Zhao, Jin-Tao; Nie, Qiu-Lin
2007-06-01
One-dimensional Mn(2+)-doped CdS nanocrystals were synthesized by the hydrothermal route. The products were characterized by SEM, EDS, XRD, TEM, HRTEM and PL, respectively. The results revealed that dopant Mn2+ completely substitutes Cd2+ in CdS nanocrystals, and the product was of good crystallite. Further more, a complete suppression of the emission from surface states at room temperature when doping with ions Mn2+ has been observed.
Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells
NASA Astrophysics Data System (ADS)
Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong
2017-10-01
In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.
NASA Astrophysics Data System (ADS)
Thongjamroon, S.; Ding, J.; Herng, T. S.; Tang, I. M.; Thongmee, S.
2017-10-01
The effects of Mn doping on the ferromagnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods (NR's) having the nominal composit-ions x = 0, 0.01, 0.03, 0.04 and 0.05 grown by a low temperature hydrothermal method are studied. Energy dispersive X-ray (EDX) is used to determine the actual amounts of the elements in each NR's. X-ray diffraction, scanning electron microscopy, photoluminescence and vibrating sample magnetometer measurements are used to observe the effects of the Mn substitution on the properties of the doped ZnO and to relate the changes in the properties to changes in the defect content. It is observed that the saturation magnetization of the Mn ions in the wurtzite structure varies from 0.0210 μB/Mn2+ to 0.0234 μB/Mn2+ reaching a high of 0.0251 μB/Mn2+ as the Mn concentrations is varied from 0.9 to 7.36 atomic%. It is argued that the changes in the saturation magnetization are due to the competition between the direct Mn-Mn exchange interaction and the indirect Mn-O-Mn exchange interaction in the doped Mn ZnO NP's.
Multicolor tuning of manganese-doped ZnS colloidal nanocrystals.
Quan, Zewei; Yang, Dongmei; Li, Chunxia; Kong, Deyan; Yang, Piaoping; Cheng, Ziyong; Lin, Jun
2009-09-01
In this paper, we report a facile route which is based on tuning doping concentration of Mn(2+) ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn(2+) dopant (orange-yellow) are sensitive to the Mn(2+) doping concentration, due to the energy transfer from ZnS host to Mn(2+) dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn(2+)-doped ZnS nanocrystals. Furthermore, the as-synthesized doped nanocrystals possess extremely narrow size distribution and can be readily transferred into aqueous solution for the next potential applications.
First-principles study of Mn-S codoped anatase TiO2
NASA Astrophysics Data System (ADS)
Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui
2018-04-01
In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.
Convenient synthesis of Mn-doped Zn (O,S) nanoparticle photocatalyst for 4-nitrophenol reduction
NASA Astrophysics Data System (ADS)
Susanto Gultom, Noto; Abdullah, Hairus; Kuo, Dong-Hau
2018-04-01
The conversion of 4-nitrophenol as a toxic and waste pollutant to 4-aminophenol as a non-toxic and useful compound by photocatalytic reduction is highly important. In this work, the solid-solution concept by doping was involved to synthesis earth-abundant and green material of Mn-doped Zn(O,S). Zn(O,S) with different Mn doping contents was easily synthesized at low temperature 90°C for 4-NP reduction without using the reducing agent of NaBH4. The Mn-doped Zn(O,S) catalyst exhibited the enhancements in optical and electrochemical properties compared to un-doped Zn(O,S).It was found that 10% Mn-doped Zn(O,S) had the best properties and it could totally reduce 4-NP after 2h photoreactions under low UV illumination. The hydrogen ion was proposed to involve the 4-NP reduction to 4-AP, which is hydrogen ion and electron replaced the oxygen in amino (NO2) group of 4-NP to form the nitro (NH2) group. We alsoproposed the incorporation of Mn in Zn site in the Zn(O,S) host lattice could make the oxygen surface bonding weak for easily forming the oxygen vacancy. The more oxygen vacancy for more hydrogen ion would be generated to consume for 4-NP reduction.
Cheng, Tao; Yu, Baozhi; Cao, Linli; Tan, Huiyun; Li, Xinghua; Zheng, Xinliang; Li, Weilong; Ren, Zhaoyu; Bai, Jinbo
2017-09-01
The ternary composite electrodes, nitrogen-doped graphene foam/carbon nanotube/manganese dioxide (NGF/CNT/MnO 2 ), have been successfully fabricated via chemical vapor deposition (CVD) and facile hydrothermal method. The morphologies of the MnO 2 nanoflakes presented the loading-dependent characteristics and the nanoflake thickness could also be tuned by MnO 2 mass loading in the fabrication process. The correlation between their morphology and electrochemical performance was systematically investigated by controlling MnO 2 mass loading in the ternary composite electrodes. The electrochemical properties of the flexible ternary electrode (MnO 2 mass loading of 70%) exhibited a high areal capacitance of 3.03F/cm 2 and a high specific capacitance of 284F/g at the scan rate of 2mV/s. Moreover, it was interesting to find that the capacitance of the NGF/CNT/MnO 2 composite electrodes showed a 51.6% increase after 15,000 cycles. The gradual increase in specific capacitance was due to the formation of defective regions in the MnO 2 nanostructures during the electrochemical cycles of the electrodes, which further resulted in increased porosity, surface area, and consequently increased electrochemical capacity. This work demonstrates a rarely reported conclusion about loading-dependent characteristics for the NGF/CNT/MnO 2 ternary composite electrodes. It will bring new perspectives on designing novel ternary or multi-structure for various energy storage applications. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ya Fei; Li, Can, E-mail: canli1983@gmail.com; Lu, Song
2016-03-15
The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and themore » carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.« less
NASA Astrophysics Data System (ADS)
Sangwan, Kanta Maan; Ahlawat, Neetu; Kundu, R. S.; Rani, Suman; Rani, Sunita; Ahlawat, Navneet; Murugavel, Sevi
2018-06-01
Lead free Mn doped barium zirconium titanate ceramic of composition BaZr0.045 (MnxTi1-x)0.955O3 (x = 0.00, 0.01, 0.02) were prepared by solid state reaction method. Tetragonal perovskite structure was confirmed by Rietveld refinement of X-ray diffraction pattern. Analysis of Scanning electron microscope (SEM) micrographs revealed that addition of Mn up to a certain limit accelerates grain growth of BZT ceramic. Static dielectric constant was successfully extended up to high frequencies with an appreciable decrease in dielectric loss about 70% for Mn doped BZT ceramics. The experimental data fitted with Curie Weiss Law and Power Law confirmed first order transition and diffusive behavior of the investigated system. The shifting of Curie temperature (Tc) from 387 K to 402 K indicated tendency for sustained ferroelectricity in doped BZMT ceramics. High value of percentage temperature coefficient of capacitance TCC >10% near Tc was observed for all the compositions and increases with Mn content in pure BZT. At room temperature, BZT modified ceramic corresponding to x = 0.01 composition shows better values of remnant polarization (Pr = 5.718 μC/cm2), saturation polarization (Ps = 14.410 μC/cm2), low coercive field (Ec = 0.612 kV/cm), and highest value of Pr/Ps = 0.396.
Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei
2017-11-09
Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.
Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster.
Ngan, Vu Thi; Pierloot, Kristine; Nguyen, Minh Tho
2013-04-21
The electronic structure of Mn@Si14(+) is determined using DFT and CASPT2/CASSCF(14,15) computations with large basis sets. The endohedrally Mn-doped Si cationic cluster has a D3h fullerene-like structure featuring a closed-shell singlet ground state with a singlet-triplet gap of ~1 eV. A strong stabilizing interaction occurs between the 3d(Mn) and the 2D-shell(Si14) orbitals, and a large amount of charge is transferred from the Si14 cage to the Mn dopant. The 3d(Mn) orbitals are filled by encapsulation, and the magnetic moment of Mn is completely quenched. Full occupation of [2S, 2P, 2D] shell orbitals by 18 delocalized electrons confers the doped Mn@Si14(+) cluster a spherically aromatic character.
Synthesis and Characterization of Manganese Doped Silicon Nanoparticles
Zhang, Xiaoming; Brynda, Marcin; Britt, R. David; Carroll, Elizabeth; Larsen, Delmar S.; Louie, Angelique Y.; Kauzlarich, Susan M.
2008-01-01
Mn doped Si nanoparticles have been synthesized via a low temperature solution route and characterize by X-ray powder diffraction, TEM, optical and emission spectroscopy and by EPR. The particle diameter was 4 nm and the surface was capped by octyl groups. 5% Mn doping resulted in a green emission with slightly lower quantum yield than undoped Si nanoparticles prepared by the same method. Mn2+ doped into the nanoparticle is confirmed by epr hyperfine and the charge carrier dynamics were probed by ultrafast transient absorption spectroscopy. Both techniques are consistent with Mn2+ on or close to the surface of the nanoparticle. PMID:17691792
Third order nonlinear optical properties of Mn doped CeO2 nanostructures
NASA Astrophysics Data System (ADS)
Mani Rahulan, K.; Angeline Little Flower, N.; Annie Sujatha, R.; Mohana Priya, P.; Gopalakrishnan, C.
2018-05-01
Mn doped CeO2 nanoparticles with different ratios of Mn were synthesized by hydrothermal method and their structural properties were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD patterns revealed that the peaks are highly crystalline structure with no segregation of Mn. The surface morphology from SEM reveals that particle size decreases with increase in Mn concentration. Nonlinear optical studies of the samples were measured by single-beam open aperture Z-scan technique using 5 ns laser pulses at 532 nm. The measured optical nonlinearity of all the samples exhibit typical third order nonlinear optical behavior including two-photon absorption (2 PA) and reverse saturable absorption (RSA). The experimental results show that the presence of RSA in these nanoparticles makes them a promising material for the fabrication of optical limiting devices. .
Electromechanical properties of engineered lead free potassium sodium niobate based materials =
NASA Astrophysics Data System (ADS)
Rafiq, Muhammad Asif
K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials for an intended application. Hence, polycrystalline KNN ceramics (undoped, non-stoichiometric; NST and doped), high-quality KNN single crystals and textured KNN based ceramics were successfully synthesized and characterized in this work. Polycrystalline undoped, non-stoichiometric (NST) and Mn doped KNN ceramics were prepared by conventional ceramic processing. Structure, microstructure and electrical properties were measured. It was observed that the window for mono-phasic compositions was very narrow for both NST ceramics and Mn doped ceramics. For NST ceramics the variation of A/B ratio influenced the polarization (P-E) hysteresis loop and better piezoelectric and dielectric responses could be found for small stoichiometry deviations (A/B = 0.97). Regarding Mn doping, as compared to undoped KNN which showed leaky polarization (P-E) hysteresis loops, B-site Mn doped ceramics showed a well saturated, less-leaky hysteresis loop and a significant properties improvement. Impedance spectroscopy was used to assess the role of Mn and a relation between charge transport - defects and ferroelectric response in K0.5Na0.5NbO3 (KNN) and Mn doped KNN ceramics could be established. At room temperature the conduction in KNN which is associated with holes transport is suppressed by Mn doping. Hence Mn addition increases the resistivity of the ceramic, which proved to be very helpful for improving the saturation of the P-E loop. At high temperatures the conduction is dominated by the motion of ionized oxygen vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 ?C/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. (Abstract shortened by ProQuest.).
Zhu, Dong; Li, Wei; Wen, Hong-Mei; Yu, Sheng; Miao, Zhao-Yi; Kang, An; Zhang, Aihua
2015-12-15
A silver nanoparticles (AgNPs)-enhanced time-resolved fluorescence (TR-FL) sensor based on long-lived fluorescent Mn-doped ZnS quantum dots (QDs) is developed for the sensitive detection of vascular endothelial growth factor-165 (VEGF165), a predominant cancer biomarker in cancer angiogenesis. The aptamers bond with the Mn-doped ZnS QDs and the BHQ-2 quencher-labelling strands hybridized in duplex are coupled with streptavidin (SA)-functionalized AgNPs to form the AgNPs-enhanced TR-FL sensor, showing lower fluorescence intensity in the duplex state due to the fluorescence resonance energy transfer (FRET) between the Mn-doped ZnS QDs and quenchers. Upon the addition of VEGF165, the BHQ-2 quencher-labelling strands of the duplex are displaced, leading to the disruption of the FRET. As a result, the fluorescence of the Mn-doped QDs within the proximity of the AgNPs is recovered. The FL signal can be measured free of the interference of short-lived background by setting appropriate delay time and gate time, which offers a signal with high signal-to-noise ratio in photoluminescent biodetection. Compared with the bare TR-FL sensor, the AgNPs-based TR-FL sensor showed a huge improvement in fluorescence based on metal-enhanced fluorescence (MEF) effect, and the sensitivity increased 11-fold with the detection limit of 0.08 nM. In addition, the sensor provided a wide range of linear detection from 0.1 nM to 16 nM. Copyright © 2015 Elsevier B.V. All rights reserved.
Doping effects on the relaxation of frustration and magnetic properties of YMn0.9Cu0.1O3
NASA Astrophysics Data System (ADS)
Xiao, L. X.; Xia, Z. C.; Wang, X.; Ni, Y.; Yu, W.; Shi, L. R.; Jin, Z.; Xiao, G. L.
2017-12-01
The crystal structure and magnetic properties of hexagonal YMn0.9Cu0.1O3 single crystal are systematically investigated. The refinement results of XRD show the lattice constant decreases, which is unusually due to the doped Cu2+ ion has a larger ionic radius than the Mn3+ ions. The XPS results show that the coexistence of Mn2+, Mn3+ and Mn4+ ions in YMn0.9Cu0.1O3 single crystal. Magnetization measurements show that Cu doped YMn0.9Cu0.1O3 and parent YMnO3 have almost the same antiferromagnetic transition temperature TN, which indicates the AFM interaction is robust in the geometry frustrated system. Because doping directly destroy some of the Mn3+ ions nets, the relaxation of frustration of Mn in-plane 2D triangular geometry network leads to the significantly decrease of Mn3+ ions AFM interaction. In addition, the coexistence and competition between the ferromagnetic and antiferromagnetic interactions among the Mn2+, Mn3+ and Mn4+ ions lead to a complicated and irreversible magnetization behavior in YMn0.9Cu0.1O3 single crystal.
Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Rashad, M. M.; Rayan, D. A.; El-Barawy, K.
2010-01-01
Nanocrystallite Mn doped Zn1-XS (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200oC for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn2+ ions up to 0.2.
NASA Astrophysics Data System (ADS)
Oumezzine, Marwène; Peña, Octavio; Kallel, Sami; Kallel, Nabil; Guizouarn, Thierry; Gouttefangeas, Francis; Oumezzine, Mohamed
2014-03-01
The effects of non-magnetic Ti4+ substitution on the structural, electrical and magnetic properties of La0.67Ba0.33Mn1- x Ti x O3 (0≤ x≤0.1) are investigated and compared to those existing in La0.67Ba0.33Mn1- x Cr x O3 (magnetic Cr3+). The structural refinement by the Rietveld method revealed that Ti-doped samples crystallize in the cubic lattice with space group , while samples with Cr crystallize in the hexagonal setting of the rhombohedral space group for identical contents of dopant. The most relevant structural features are an increase of the lattice parameters, of the cell volume and of the inter-ionic distances with increasing Ti doping level. Both series of samples show a decrease of the paramagnetic-ferromagnetic transition temperature when the amount of chromium or titanium increases. Transport measurements show that when increasing the metal doping, the resistivity increases whereas the metallic behavior of the parent compound La0.67Ba0.33MnO3 is destroyed. For a substitution higher than 5 at.% of Ti and 10 at.% of Cr, the samples exhibit a semiconducting behavior in the whole range of temperature, for which the electronic transport can be explained by variable range hopping and/or small polaron hopping models.
Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn2As2
NASA Astrophysics Data System (ADS)
Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek; Lamsal, J.; Abernathy, D. L.; Niedziela, J. L.; Stone, M. B.; Kreyssig, A.; Goldman, A. I.; Johnston, D. C.; McQueeney, R. J.
2017-06-01
BaMn2As2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (TN) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba1 -xKxMn2As2 with x =0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to a linear spin-wave theory approximation to the J1-J2-Jc Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. The changes observed in the exchange constants are consistent with the small drop of TN with doping.
Spin properties of charged Mn-doped quantum dota)
NASA Astrophysics Data System (ADS)
Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.
2007-04-01
The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.
Crystal Structure, Magnetic and Optical Properties of Mn-Doped BiFeO₃ by Hydrothermal Synthesis.
Zhang, Ning; Wei, Qinhua; Qin, Laishun; Chen, Da; Chen, Zhi; Niu, Feng; Wang, Jiangying; Huanag, Yuexiang
2017-01-01
In this paper, Mn doped BiFeO₃ were firstly synthesized by hydrothermal process. The influence of Mn doping on structural, optical and magnetic properties of BiFeO₃ was studied. The different amounts of Mn doping in BiFeO₃ were characterized by X-ray diffraction, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscope, UV-Vis diffuse reflectance spectroscopy and magnetic measurements. The X-ray diffraction (XRD) patterns confirmed the formation of pure phase rhombohedral structure in BiFe(1−x) Mn (x) O₃ (x = 0.01, 0.03, 0.05, 0.07) samples. The morphologies and chemical compositions of as-prepared samples could be observed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscope (EDS). A relative large saturated magnetization (Ms) of 0.53 emu/g for x = 0.07 sample was obtained at room temperature, which is considered to be Mn ions doping. UV-Vis diffuse reflectance spectroscopy showed strong absorption of light in the range of 200–1000 nm, indicating the optical band gap in the visible region for these samples. This implied that BiFe(1−x) Mn(x)O₃ may be a potential photocatalyst for utilizing solar energy.
Methanol adsorption and dissociation on LaMnO 3 and Sr doped LaMnO 3 (001) surfaces
Beste, Ariana
2017-06-20
Using density functional theory, we investigate in this paper methanol adsorption and dissociation on the MnO 2- and LaO-terminated LaMnO 3 (001) surface as a function of Sr dopant enrichment in and near the surface. In response to bulk cleavage, we find electron depletion of the negatively charged MnO 2 surface layer that is enhanced by Sr doping in the subsurface. In contrast, we observe electron accumulation in the positively charged LaO surface layer that is reduced by Sr doping in the surface layer. Methanol adsorbs dissociatively on the LaO termination of the LaMnO 3 (001) surface. Methanol adsorption onmore » the LaO termination is strongly preferred over adsorption on the MnO 2 termination. While moderate doping has a small influence on methanol adsorption and dissociation, when 100% of La is replaced by Sr in the surface or subsurface, the adsorption preference of methanol is reversed. Finally, if the surface is highly dopant enriched, methanol favours dissociative adsorption on the MnO 2-terminated surface.« less
Methanol adsorption and dissociation on LaMnO 3 and Sr doped LaMnO 3 (001) surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beste, Ariana
Using density functional theory, we investigate in this paper methanol adsorption and dissociation on the MnO 2- and LaO-terminated LaMnO 3 (001) surface as a function of Sr dopant enrichment in and near the surface. In response to bulk cleavage, we find electron depletion of the negatively charged MnO 2 surface layer that is enhanced by Sr doping in the subsurface. In contrast, we observe electron accumulation in the positively charged LaO surface layer that is reduced by Sr doping in the surface layer. Methanol adsorbs dissociatively on the LaO termination of the LaMnO 3 (001) surface. Methanol adsorption onmore » the LaO termination is strongly preferred over adsorption on the MnO 2 termination. While moderate doping has a small influence on methanol adsorption and dissociation, when 100% of La is replaced by Sr in the surface or subsurface, the adsorption preference of methanol is reversed. Finally, if the surface is highly dopant enriched, methanol favours dissociative adsorption on the MnO 2-terminated surface.« less
NASA Astrophysics Data System (ADS)
Pashchanka, Mikhail; Hoffmann, Rudolf C.; Burghaus, Olaf; Corzilius, Björn; Cherkashinin, Gennady; Schneider, Jörg J.
2011-01-01
The synthesis and full characterisation of pure and Mn-doped polycrystalline zinc oxide nanorods with tailored dopant content are obtained via a single source molecular precursor approach using two Schiff base type coordination compounds is reported. The infiltration of precursor solutions into the cylindrical pores of a polycarbonate template and their thermal conversion into a ceramic green body followed by dissolution of the template gives the desired ZnO and Mn-doped ZnO nanomaterial as compact rods. The ZnO nanorods have a mean diameter between 170 and 180 nm or 60-70 nm, depending on the template pore size employed, comprising a length of 5-6 μm. These nanorods are composed of individual sub-5 nm ZnO nanocrystals. Exact doping of these hierarchically structured ZnO nanorods was achieved by introducing Mn(II) into the ZnO host lattice with the precursor complex Diaquo-bis[2-(meth-oxyimino)-propanoato]manganese, which allows to tailor the exact Mn(II) doping content of the ZnO rods. Investigation of the Mn-doped ZnO samples by XRD, TEM, XPS, PL and EPR, reveals that manganese occurs exclusively in its oxidation state + II and is distributed within the volume as well as on the surface of the ZnO host.
NASA Astrophysics Data System (ADS)
Zhao, Pengfei; Liang, Chongyun; Gong, Xiwen; Gao, Ran; Liu, Jiwei; Wang, Min; Che, Renchao
2013-08-01
Monodispersed manganese oxide (Mn1-xCox)3O4 (0 <= x <= 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low temperature, ranging from 90 to 100 °C, without any inertia gas for protection. The influences of the Co dopant content on the critical reaction temperature required for the nanoparticle formation, electronic band structures, magnetic properties, and the microwave absorption capability of (Mn1-xCox)3O4 are comprehensively investigated by means of both experimental and theoretical approaches including powder X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), super conductivity quantum interference device (SQUID) examination, and first-principle simulations. Co is successfully doped into the Mn atomic sites of the (Mn1-xCox)3O4 lattice, which is further confirmed by EELS data acquired from one individual nanoparticle. Therefore, continuous solid solutions of well-crystallized (Mn1-xCox)3O4 products are achieved without any impurity phase or phase separation. With increases in the Co dopant concentration x from 0 to 0.5, the lattice parameters change systemically, where the overall saturation magnetization at 30 K increases due to the more intense coupling of the 3d electrons between Mn and Co, as revealed by simulations. The microwave absorption properties of the (Mn1-xCox)3O4 nanoparticles are examined between 2 and 18 GHz. The maximum absorption peak -11.0 dB of the x = 0 sample is enhanced to -11.5 dB for x = 0.2, -12.7 dB for x = 0.25, -15.6 dB for x = 0.33, and -24.0 dB for x = 0.5 respectively, suggesting the Co doping effects. Our results might provide novel insights into the understanding of the influences of metallic ion doping on the electromagnetic properties of metallic oxide nanomaterials.Monodispersed manganese oxide (Mn1-xCox)3O4 (0 <= x <= 0.5) nanoparticles, less than 10 nm size, are respectively synthesized via a facile thermolysis method at a rather low temperature, ranging from 90 to 100 °C, without any inertia gas for protection. The influences of the Co dopant content on the critical reaction temperature required for the nanoparticle formation, electronic band structures, magnetic properties, and the microwave absorption capability of (Mn1-xCox)3O4 are comprehensively investigated by means of both experimental and theoretical approaches including powder X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), super conductivity quantum interference device (SQUID) examination, and first-principle simulations. Co is successfully doped into the Mn atomic sites of the (Mn1-xCox)3O4 lattice, which is further confirmed by EELS data acquired from one individual nanoparticle. Therefore, continuous solid solutions of well-crystallized (Mn1-xCox)3O4 products are achieved without any impurity phase or phase separation. With increases in the Co dopant concentration x from 0 to 0.5, the lattice parameters change systemically, where the overall saturation magnetization at 30 K increases due to the more intense coupling of the 3d electrons between Mn and Co, as revealed by simulations. The microwave absorption properties of the (Mn1-xCox)3O4 nanoparticles are examined between 2 and 18 GHz. The maximum absorption peak -11.0 dB of the x = 0 sample is enhanced to -11.5 dB for x = 0.2, -12.7 dB for x = 0.25, -15.6 dB for x = 0.33, and -24.0 dB for x = 0.5 respectively, suggesting the Co doping effects. Our results might provide novel insights into the understanding of the influences of metallic ion doping on the electromagnetic properties of metallic oxide nanomaterials. Electronic supplementary information (ESI) available: Fig. S1. A digital photo showing the large-scale synthesis of our monodispersed (Mn1-xCox)3O4 Fig. S2. Microwave absorption measurements; Fig. S3. Schematic diagram of the microwave absorption mechanism of the (Mn1-xCox)3O4. See DOI: 10.1039/c3nr02287k
Structure, reactivity and electronic properties of Mn doped Ni13 clusters
NASA Astrophysics Data System (ADS)
Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit
2013-06-01
In this work we have studied the structural and magnetic properties of Ni13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni12Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni12MnH2. Our analysis of the stability and HOMO-LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H2 absorption in the doped NiMnm alloy clusters. This has been reported earlier for smaller Nin clusters [1].
Synthesis and characterization of nanosized lithium manganate and its derivatives
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad Javed; Zahoor, Sabia
Spinel lithium manganese oxide, LiMn 2O 4 and its derivatives are prepared by the sol-gel method. The lattice constant of the pure material is calculated as 8.23 Å. Different transition metal cations of chromium, iron, cobalt, nickel, copper and zinc (0.05 and 0.15 M) are doped in place of manganese in the LiMn 2O 4. X-ray powder diffraction data show that the spinel framework preserved its integrity upon doping. Formation of a single phase and the purity of the samples are confirmed by X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The crystallite size of the samples is calculated by use of the Scherrer formula and is found to be within a range of 43-66 nm. The electrical conductivity of the samples is determined over a temperature range of 200-300 K by means of four-point probe method. An increasing trend of conductivity with increase in temperature is noted for all the samples. The parent compound LiMn 2O 4 has a conductivity value of 3.47 × 10 -4 ohm -1 cm -1 at room temperature. This value increases on doping with the above-mentioned transition metal cations.
Growth and characterization of pure and Ca2+ doped MnHg(SCN)4 single crystals
NASA Astrophysics Data System (ADS)
Latha, C.; Mahadevan, C. K.; Guo, Li; Liu, Jinghe
2018-05-01
Manganese-mercury thiocyanate, MnHg(SCN)4, crystal is considered to be an important organometallic nonlinear optical (NLO) material exhibiting higher thermal stability and second harmonic generation (SHG) efficiency. In order to understand the effect of Ca2+ as an impurity on the physicochemical properties, we have grown pure and Ca2+ doped (with a concentration of 1 mol%) MnHg(SCN)4 single crystals by the free evaporation of solvent method and characterized structurally, chemically, optically and electrically by adopting the available standard methods. Results obtained indicate that Ca2+ doping increases significantly the optical transmittance, SHG efficiency, and DC electrical conductivity and decreases the dielectric loss factor (improves the crystal quality), and AC electrical conductivity without distorting the crystal structure. Also, the low dielectric constant (εr) values observed for both the pure and doped crystals considered at near ambient temperatures indicate the possibility of using these crystals not only as potential NLO materials (useful in the photonics industry) but also as promising low εr value dielectric materials (useful in the microelectronics industry).
Srivastava, D; Azough, F; Freer, R; Combe, E; Funahashi, R; Kepaptsoglou, D M; Ramasse, Q M; Molinari, M; Yeandel, S R; Baran, J D; Parker, S C
2015-12-21
A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO 3 . High quality Sr-Mo co-substituted CaMnO 3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO 3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101} orthorhombic ; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn 3+ in the Mn 4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit ( ZT ) values higher than 0.1 at temperatures above 850 K. Ca 0.7 Sr 0.3 Mn 0.96 Mo 0.04 O 3 ceramics exhibit enhanced properties with S 1000K = -180 μV K -1 , ρ 1000K = 5 × 10 -5 Ωm, k 1000K = 1.8 W m -1 K -1 and ZT ≈ 0.11 at 1000 K.
NASA Astrophysics Data System (ADS)
Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh
2016-04-01
The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700 μmol L- 1 with a detection limit of 24 μmol L- 1. The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries.
Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh
2016-04-15
The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700 μmol L(-1) with a detection limit of 24 μmol L(-1). The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.
Bi, Lin; Yu, Yuan-Hua
2015-04-05
Mercaptopropionic acid-capped Mn-doped ZnS quantum dots/ethidium bromide (EB) nanohybrids were constructed for photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for DNA detection. EB could quench the RTP of Mn-doped ZnS QDs by PIET, thereby forming Mn-doped ZnS QDs/EB nanohybrids and storing RTP. Meanwhile, EB could be inserted into DNA and EB could be competitively desorbed from the surface of Mn-doped ZnS QDs by DNA, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this mechanism, a RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 0.045 mg L(-1), the relative standard deviation was 1.7%, and the method linear ranged from 0.2 to 20 mg L(-1). The proposed method was applied to biological fluids, in which satisfactory results were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Han; Yao, Linxiao; Zhang, Ming
2018-06-01
The pristine Li1.20[Mn0.52Ni0.20Co0.08]O2 and Ce3+-doped Li1.20[Mn0.50Ni0.20Co0.08Ce0.02]O2 cathode materials have been synthesized by using the typical sol-gel method. The XRD, SEM, ICP-OES and galvanostatic charge-discharge tests were carried out to study the influence of Ce3+ doping on the crystal structural, morphology and electrochemical properties of Li1.20Mn0.54Ni0.13Co0.13O2. The XRD result revealed the Ce3+ doping modification could decrease the cation mixing degree. The galvanostatic charge-discharge tests results showed that the sample after Ce3+ doping demonstrated the smaller irreversible capacity loss, more stable cyclic performance and better rate capacity than those of the pristine one.
Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method
NASA Astrophysics Data System (ADS)
Deshpande, M. P.; Patel, Kamakshi; Gujarati, Vivek P.; Chaki, S. H.
2016-05-01
ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn2+ an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.
NASA Astrophysics Data System (ADS)
Takeshita, N.; Terakura, C.; Akahoshi, D.; Tokura, Y.; Takagi, H.
2004-05-01
The effect of quenched disorder on the multiphase competition has been investigated by examining the pressure phase diagram of the half-doped manganite L0.5Ba0.5MnO3 (L=Sm and Nd) with A-site disorders. Sm0.5Ba0.5MnO3, a spin-glass insulator at ambient pressure, switches to a ferromagnetic metal through an intermediate state with increasing pressure, followed by a rapid increase of the ferromagnetic transition temperature TC. The rapid increase of TC was also confirmed for Nd0.5Ba0.5MnO3. These observations indicate that the unusual suppression of the multicritical phase boundary in the A-site disordered system, previously observed as a function of the averaged A-site ionic radius, is essentially controlled by the pressure and hence the bandwidth. The effect of quenched disorder is therefore much more enhanced with approaching the multicritical region.
NASA Astrophysics Data System (ADS)
Dejene, F. B.; Onani, M. O.; Koao, L. F.; Wako, A. H.; Motloung, S. V.; Yihunie, M. T.
2016-01-01
The undoped and Mn-doped ZnO(1-x)Sx nano-powders were successfully synthesized by precipitation method without using any capping agent. Its structure, morphology, elemental analysis, optical and luminescence properties were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy (UV) and photoluminescence spectroscopy (PL). A typical SEM image of the un-doped ZnO(1-x)Sx nanoparticles exhibit flake like structures that changes to nearly spherical particles with Mn-doping. The XRD of undoped and Mn doped ZnO(1-x)Sx pattern reveals the formation of a product indexed to the hexagonal wurtzite phase of ZnS. The nanopowders have crystallite sizes estimated from XRD measurements were in the range of 10-20 nm. All the samples showed absorption maximum of ZnO(1-x)Sx at 271 nm and high transmittance in UV and visible region, respectively. The undoped ZnO(1-x)Sx nanoparticles show strong room-temperature photoluminescence with four emission bands centering at 338 nm, 384 nm, 448 nm and 705 nm that may originate to the impurity of ZnO(1-x)Sx, existence of oxide related defects. The calculated bandgap of the nanocrystalline ZnO(1-x)Sx showed a blue-shift with respect to the Mn-doping. The PL spectra of the Mn-doped samples exhibit a strong orange emission at around 594 nm attributed to the 4T1-6A1 transition of the Mn2+ ions.
NASA Astrophysics Data System (ADS)
Patle, L. B.; Huse, V. R.; Chaudhari, A. L.
2017-10-01
Nanocrystalline undoped and transition metal ion doped (TM:Cu2+, Mn2+ and Fe3+) TiO2 nanoparticles, with 1 mol% were synthesized by a simple and cost effective modified co-precipitation method at room temperature and were successfully used as photoanode for dye sensitized solar cell (DSSC). The effect of transition metal ions into TiO2 nano crystalline powder has been systematically investigated using x-ray diffraction (XRD), UV-Vis spectroscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX). The results of XRD confirm nanocrystalline anatase tetragonal structure of prepared undoped and TM doped TiO2 semiconductor. The influence of doping on band edge movement has been estimated using UV-visible spectroscopy. The SEM results indicate that microscopic effect of doping on morphology of the TiO2. The peaks of EDX signify incorporation of transition metal cations into TiO2 lattice. The effect of doping on flat band potential was estimated using interpolation on Mott-Schottky plot. The performances of DSSCs of undoped and doped TiO2 photoelectrodes were investigated under light illumination. In comparison with undoped and (Cu2+, Fe3+) doped TiO2 photoanodes we found that incorporation of Mn2+ into TiO2 exhibits improvement in photoconversion efficiency (η). There is increase in photoconversion efficiency of DSSCs with Mn2+ doped TiO2 by 6% as compared to that of undoped TiO2 photoanode.
Doping Y 2O 3 with Mn 4+ for energy-efficient lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua
Developing energy-efficient LEDs that emit warm white light requires new red phosphors with appropriate emission wavelengths and band widths. Mn 4+-activated Y 2O 3 is a potential red LED phosphor with narrow emission and improved emission wavelength compared to previously known Mn 4+-activated oxide phosphors. Here in this work, the dopability and the oxidation state of Mn in Y 2O 3 are investigated based on the formation energies of native defects, Mn dopants, and divalent co-dopants (i.e., Ca, Sr, Cd, and Zn) calculated using hybrid density functional theory. We found that Mn 4+ is difficult to form in Y 2Omore » 3 without co-doping. Stabilizing Mn 4+ on Y 3+ sites (forming Mn + Y donors) requires the co-doping of compensating acceptors (Ca or Sr) in oxygen-rich growth environments.« less
Doping Y 2O 3 with Mn 4+ for energy-efficient lighting
Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua
2018-03-28
Developing energy-efficient LEDs that emit warm white light requires new red phosphors with appropriate emission wavelengths and band widths. Mn 4+-activated Y 2O 3 is a potential red LED phosphor with narrow emission and improved emission wavelength compared to previously known Mn 4+-activated oxide phosphors. Here in this work, the dopability and the oxidation state of Mn in Y 2O 3 are investigated based on the formation energies of native defects, Mn dopants, and divalent co-dopants (i.e., Ca, Sr, Cd, and Zn) calculated using hybrid density functional theory. We found that Mn 4+ is difficult to form in Y 2Omore » 3 without co-doping. Stabilizing Mn 4+ on Y 3+ sites (forming Mn + Y donors) requires the co-doping of compensating acceptors (Ca or Sr) in oxygen-rich growth environments.« less
The effect of Ga vacancies on the defect and magnetic properties of Mn-doped GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Joongoo; Chang, K. J.; Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and Korea Institute for Advanced Study, Seoul 130-722
2007-10-15
We perform first-principles theoretical calculations to investigate the effect of the presence of Ga vacancy on the defect and magnetic properties of Mn-doped GaN. When a Ga vacancy (V{sub Ga}) is introduced to the Mn ions occupying the Ga lattice sites, a charge transfer occurs from the Mn d band to the acceptor levels of V{sub Ga}, and strong Mn-N bonds are formed between the Mn ion and the N atoms in the neighborhood of V{sub Ga}. The charge transfer and chemical bonding effects significantly affect the defect and magnetic properties of Mn-doped GaN. In a Mn-V{sub Ga} complex, whichmore » consists of a Ga vacancy and one Mn ion, the dangling bond orbital of the N atom involved in the Mn-N bond is electrically deactivated, and the remaining dangling bond orbitals of V{sub Ga} lead to the shallowness of the defect level. When a Ga vacancy forms a complex with two Mn ions located at a distance of about 6 A, which corresponds to the percolation length in determining the Curie temperature in diluted Mn-doped GaN, the Mn d band is broadened and the density of states at the Fermi level is reduced due to two strong Mn-N bonds. Although the broadening and depopulation of the Mn d band weaken the ferromagnetic stability between the Mn ions, the ferromagnetism is still maintained because of the lack of antiferromagnetic superexchange interactions at the percolation length.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yoejin; Park, Sangmoon, E-mail: spark@silla.ac.kr
Graphical abstract: - Highlights: • New near-ultraviolet (NUV)-excitable materials composed of Ba{sub 9}Eu{sub m}Mn{sub n}Y{sub 2}Si{sub 6}O{sub 24} (m = 0.01–0.5, n = 0–0.7) were prepared. • High energy-transfer from Eu{sup 2+} to Mn{sup 2+} and their energy-transfer mechanism were discussed. • The co-doping of Eu{sup 2+} and Mn{sup 2+} in the orthosilicate structure resulted in the emission of white light under NUV LED light. - Abstract: New single-phase and near-ultraviolet (NUV)-excitable materials composed of Ba{sub 9}Eu{sub m}Mn{sub n}Y{sub 2}Si{sub 6}O{sub 24} (m = 0.01–0.5, n = 0–0.7) were prepared via a solid-state reaction in reducing atmosphere. X-ray diffraction patternsmore » of the obtained phosphors were examined to index the peak positions. After doping the host structure with Eu{sup 2+} and Mn{sup 2+} emitters, the intense green, white, and orange emission lights that were observed in the photoluminescence spectra under NUV excitation were monitored. The dependence of the luminescent intensity of the Mn{sup 2+} co-doped (n = 0.1–0.7) host lattices on the fixed Eu{sup 2+} content (m = 0.1, 0.3, 0.5) is also investigated. Co-doping Mn{sup 2+} into the Eu{sup 2+}-doped host structure enabled a high energy-transfer from Eu{sup 2+} to Mn{sup 2+} and their energy-transfer mechanism were discussed. Using these phosphors, the desired CIE values including emissions throughout the green to orange regions of the spectra were achieved. Efficient white-light light-emitting diodes (LEDs) were fabricated using Eu{sup 2+} and Mn{sup 2+} co-doped phosphors based on NUV-excitable LED lights.« less
Red-emitting manganese-doped aluminum nitride phosphor
NASA Astrophysics Data System (ADS)
Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Åberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.; Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.; Schlagel, Deborah L.; Lograsso, Thomas A.
2016-04-01
We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.
Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide
NASA Astrophysics Data System (ADS)
Dey, Subhashish; Dhal, Ganesh Chandra; Mohan, Devendra; Prasad, Ram; Gupta, Rajeev Nayan
2018-05-01
Carbon monoxide (CO) is a poisonous gas, recognized as a silent killer for the 21st century. It is produced from the partial oxidation of carbon containing compounds. The catalytic oxidation of CO receives a huge attention due to its applications in different fields. In the present work, hopcalite (CuMnOx) catalysts were synthesized using a co-precipitation method for CO oxidation purposes. Also, it was doped with the cobalt by varying concentration from 1 to 5wt%. It was observed that the addition of cobalt into the CuMnOx catalyst (by the deposition-precipitation method) improved the catalytic performance for the low-temperature CO oxidation. CuMnOx catalyst doped with 3wt% of cobalt exhibited most active performance and showed the highest activity than other cobalt concentrations. Different analytical tools (i.e. XRD, FTIR, BET, XPS and SEM-EDX) were used to characterize the as-synthesized catalysts. It was expected that the introduction of cobalt will introduce new active sites into the CuMnOx catalyst that are associated with the cobalt nano-particles. The order of calcination strategies based on the activity for cobalt doped CuMnOx catalysts was observed as: Reactive calcinations (RC) > flowing air > stagnant air. Therefore, RC (4.5% CO in air) route can be recommended for the synthesis of highly active catalysts. The catalytic activity of doped CuMnOx catalysts toward CO oxidation shows a correlation among average oxidation number of Mn and the position and the nature of the doped cobalt cation.
Red-emitting manganese-doped aluminum nitride phosphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.
2016-02-10
Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less
Wang, Huibo; Gao, Rui; Li, Zhengyao; Sun, Limei; Hu, Zhongbo; Liu, Xiangfeng
2018-05-07
P2-type layered oxides based on the elements Fe and Mn have attracted great interest as sodium ion battery (SIB) cathode materials owing to their inexpensive metal constituents and high specific capacity. However, they suffer from rapid capacity fading and complicated phase transformations. In this study, we modulate the crystal structure and optimize the electrochemical performances of Na 0.67 Mn 0.5 Fe 0.5 O 2 by Al doping for Mn or Fe, respectively, and the roles of Al in the enhancement of the rate capability and cycling performance are unraveled. (1) The substitution of Al for Mn or Fe decreases the lattice parameters a and c but enlarges d spacing and lengthens Na-O bonds, which enhances Na + diffusion and rate capability especially for Na 0.67 Mn 0.5 Fe 0.47 Al 0.03 O 2 . (2) Al doping reduces the thickness of TMO 2 and strengthens TM-O/O-O bonding. This enhances the layered structure stability and the capacity retention. (3) Al doping mitigates Mn 3+ and Jahn-Teller distortion, mitigating the irreversible phase transition. (4) Al doping also alleviates the lattice volume variation and the structure strain. This further improves the stability of the layered structure and the cycling performances particularly in the case of Al doping for Fe. The in-depth insights into the roles of Al substitution might be also useful for designing high-performance cathode materials for SIBs through appropriate lattice doping.
Leakage current phenomena in Mn-doped Bi(Na,K)TiO{sub 3}-based ferroelectric thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walenza-Slabe, J.; Gibbons, B. J., E-mail: brady.gibbons@oregonstate.edu
2016-08-28
Mn-doped 80(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-20(Bi{sub 0.5}K{sub 0.5})TiO{sub 3} thin films were fabricated by chemical solution deposition on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, theremore » were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ∼60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μ{sub ion} ≈ 1.7 × 10{sup −12} cm{sup 2} V{sup −1} s{sup −1} and E{sub A,ion} ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Yang, He; Guo, Junling; Zhao, Shupeng; Gong, Shoutao; Du, Xinyu; Zhang, Fengxiang
2017-11-01
In this work, nitrogen-doped hollow porous carbon nanospheres coated with MnO2 nanosheets (NHPC@MnO2) were prepared as a novel sulfur host for the cathode of lithium-sulfur battery. N-doping of carbon and deposition of the inherently polar MnO2 promote chemical binding of the host with sulfur and its reduction products, known as polysulfides. Meanwhile, proper N-doping can improve the electron conductivity of carbon, and the nanosheet structure may help to guarantee facile electron- and lithium-ion transport through MnO2. Attributed to these advantages, the NHPC@MnO2/S cathode with a high sulfur content (70 wt% and 2.6 mg cm-2) exhibited an excellent cycle stability: its capacity retention was 93% within 100 cycles at 0.5 C. It also displayed a good rate capability: discharge capacities being ˜1130 mAh g-1 at 0.2 C, ˜1000 mAh g-1 at 0.5 C, ˜820 mAh g-1 at 1 C, and ˜630 mAh g-1 at 2 C. Our work demonstrates the synergistic effect of MnO2 nanostructure and N-doped carbon nanospheres for enhanced performance of lithium-sulfur battery cathodes.
Optical, electrochemical and thermal properties of Mn2+ doped CdS nanoparticles
NASA Astrophysics Data System (ADS)
Muruganandam, S.; Anbalagan, G.; Murugadoss, G.
2015-08-01
Mn2+ doped (1-5 and 10 %) CdS nanoparticles have been synthesized by the chemical precipitation method using polyvinylpyrrolidone as a capping agent. The particle size, morphology and optical properties have been studied by X-ray powder diffraction, transmission electron microscopy, UV-Visible and photoluminescence spectroscopy. Powder diffraction data have confirmed that the crystallite size is around 2-5 nm. The band gap of the nanoparticles has been calculated using UV-Visible absorption spectra. An optimum concentration, Mn2+ (3 %) has been selected by optical study. The functional groups of the capping agent have been identified by fourier transform infrared spectroscopy study. The presence of dopant (Mn2+) has been confirmed by electron paramagnetic resonance spectroscopy. Thermal properties of CdS:Mn2+ have been analyzed using thermogravimetric-differential thermal analyser. The electrochemical properties of the undoped and doped samples have been studied by cyclic voltammetry for electrode applications. In addition, magnetic properties of Mn2+ doped CdS have been studied using a vibrating sample magnetometer.
Influence of Ce Doping on Structural and Transport Properties of Ca1- x Ce x MnO3 ( x=0.2) Manganite
NASA Astrophysics Data System (ADS)
Varshney, Dinesh; Mansuri, Irfan
2011-01-01
We have investigated structural, electric, magnetic and thermal transport properties of electron doped Ca1- x Ce x MnO3 ( x=0.2) manganites. The Cerium substitution for Ca2+causes electron doping into insulating CaMnO3 without e g electron. At room temperature the polycrystalline Ca0.8Ce0.2MnO3 is in the crystallographic orthorhombic structure, with Pnma space group symmetry from the refinement of x-ray powder diffraction patterns. The electrical resistivity data infers that Ca0.8Ce0.2MnO3 manganite is in the semiconducting phase. A smooth linear behavior of log plot values is obtained and is well fitted with adiabatic small polaron conduction model. Nearest-neighbor hopping of a small polaron leads to a mobility with a thermally activated form. The negative values of thermopower infer electron as carriers in Ca0.8Ce0.2MnO3. From susceptibility measurements the Ce doped CaMnO3 shows a transition from antiferromagnetic (AFM) to paramagnetic (PM) phase.
NASA Astrophysics Data System (ADS)
Liu, Boli; Liu, Zhengjiao; Li, Dan; Guo, Pengqian; Liu, Dequan; Shang, Xiaonan; Lv, Mingzhi; He, Deyan
2017-09-01
The rock-salt structural manganous sulfide (α-MnS) is of higher lithium storage capacity. To improve the cyclability of α-MnS anode in lithium-ion batteries, we prepared a composite of α-MnS nanocrystallites grown on nitrogen and sulfur co-doped reduced graphene oxide (rGO) honeycomb framework. N and S atoms have been co-doped into rGO along with the growth of the α-MnS nanocystallites by a one-pot hydrothermal synthesis using thiourea as dopant and reactant. The typical α-MnS/Nsbnd S co-doped rGO (NSG) composite electrode exhibits a reversible capacity as high as 763.5 mAh g-1 after 100 cycles at 100 mA g-1, and a reversible capacity of 576.7 mAh g-1 even after 2000 cycles at 1000 mA g-1. More importantly, the α-MnS/NSG composite electrodes show superior cycle performance at asymmetric discharge/charge current densities. The excellent electrochemical performance can be attributed to that the α-MnS nanocrystallites shorten lithium ion transmission distance, N-S co-doping improves the electronic conductivity of rGO, and the formation of chemical bonds combination between α-MnS and NSG enhances the electrode structural stability and the electron transport. In addition, more stable architecture of NSG-supported ultrafine α-MnS particles is formed upon cycling, which greatly enhances the electrical contact and further improves the electrochemical performance.
NASA Astrophysics Data System (ADS)
Lü, Xiaodan; Yang, Jing; Fu, Yuqin; Liu, Qianqian; Qi, Bin; Lü, Changli; Su, Zhongmin
2010-03-01
White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.
Infrared photorefractive effect in doped KNbO3 crystals
NASA Astrophysics Data System (ADS)
Medrano, C.; Zgonik, M.; Liakatas, I.; Günter, P.
1996-11-01
The photorefractive sensitivity of potassium niobate crystals doped with Ce, Co, Cu, Fe, Mn, Ni, and Rh and double-doped with Mn and Rh is investigated over an extended spectral range. We present experimental evidence on extrinsic properties important for the photorefractive effect, such as absorption and effective trap density. Photorefractive gratings are investigated with two-wave mixing experiments. Results on exponential gain, response time, and photorefractive sensitivity at near-infrared wavelengths are reported. The best photorefractive sensitivities at 860 and 1064 nm were obtained in crystals doped with Rh, Fe, Mn, and Mn-Rh. This makes them suitable for applications at laser-diode wavelengths; at 1064 nm, however, Rh:KNbO3 shows a better photorefractive sensitivity than the others. .
Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn 2 As 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek
BaMn 2 As 2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (T N) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba 1 - xK xMn 2 As 2 with x = 0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to amore » linear spin-wave theory approximation to the J 1 $-$ J 2 $-$ J c Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. Lastly, the changes observed in the exchange constants are consistent with the small drop of T N with doping.« less
Robust antiferromagnetic spin waves across the metal-insulator transition in hole-doped BaMn 2 As 2
Ramazanoglu, M.; Sapkota, A.; Pandey, Abhishek; ...
2017-06-01
BaMn 2 As 2 is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Néel temperature (T N) and the ordered moment, suggesting that doped holes interact weakly with the Mn spin system. Powder inelastic neutron scattering measurements were performed on three different samples of Ba 1 - xK xMn 2 As 2 with x = 0 , 0.125, and 0.25 to study the effect of hole doping and metallization on the spin dynamics. We compare the neutron intensities to amore » linear spin-wave theory approximation to the J 1 $-$ J 2 $-$ J c Heisenberg model. Hole doping is found to introduce only minor modifications to the exchange energies and spin gap. Lastly, the changes observed in the exchange constants are consistent with the small drop of T N with doping.« less
NASA Astrophysics Data System (ADS)
Jahanbin, Tania; Gaceur, Meriem; Gros-Dagnac, Hélène; Benderbous, Soraya; Merah, Souad Ammar
2015-06-01
Over several decades, metal-doped quantum dots (QDs) with core-shell structure have been studied as dual probes: fluorescence and magnetic resonance imaging (MRI) probes (Dixit et al., Mater Lett 63(30):2669-2671, 2009). However, metal-doped nanoparticles, in which the majority of metal ions are close to the surface, can affect their efficacy as MRI contrast agents (CAs). In this context, herein the high potential of synthesized Mn-doped ZnS QDs via polyol method as imaging probe is demonstrated. The mean diameters of QDs were measured via transmission electron microscopy (TEM) and X-ray diffraction (XRD). Optical and magnetic properties of MnZnS nanoparticles were characterized using fluorescence spectroscopy and super quanducting interference devices magnetometer and electron paramagnetic resonance system, respectively. T1- and T2-weighted images of nanoparticles in aqueous solution were acquired from spin-echo sequences at 3 T. From TEM images and XRD spectra of the prepared nanoparticles, it is observed that the average diameter of particles does not significantly change with Mn dopant content ( 1.6-1.9 nm). All three samples exhibit broad blue emission under UV light excitation. According to the MRI studies, MnZnS nanoparticles generate strong T1 contrast enhancement (bright T1-weighted images) at the low concentration (<0.1 mM). The MnZnS nanoparticles exhibit the high longitudinal ( r 1) relaxivity that increases from 20.34 to 75.5 mM-1 s-1 with the Mn dopant contents varying between 10 and 30 %. Strong signal intensity on T1-weighted images and high r 1 with {r2 }/{r_{1 }} ≈ 1 can demonstrate the high potential of the synthesized Mn:ZnS nanoparticles, which can serve as an effective T1 CA.
Pressure effects on magnetic ground states in cobalt doped multiferroic Mn 1-xCo xWO 4
Wang, Jinchen; Ye, Feng; Chi, Songxue; ...
2016-04-28
Using x-ray and high pressure neutron diffraction, we studied the pressure effect on structural and magnetic properties of multiferroic Mn 1-xCo xWO 4 single crystals (x = 0, 0.05, 0.135 and 0.17), and compared it with the effects of doping. Both Co doping and pressure stretch the Mn-Mn chain along the c direction. At high doping level (x = 0.135 and 0.17), pressure and Co doping drive the system in a very similar way and induce a spin-flop transition for the x = 0.135 compound. In contrast, magnetic ground states at lower doping level (x = 0 and 0.05) aremore » robust against pressure but experience a pronounced change upon Co substitution. As Co introduces both chemical pressure and magnetic anisotropy into the frustrated magnetic system, our results suggest the magnetic anisotropy is the main driving force for the Co induced phase transitions at low doping level, and chemical pressure plays a more significant role at higher Co concentrations.« less
NASA Astrophysics Data System (ADS)
Hoang, Khang
2017-12-01
We report a detailed first-principles study of doping in Li2MnO3 , in both the dilute doping limit and heavy doping, using hybrid density-functional calculations. We find that Al, Fe, Mo, and Ru impurities are energetically most favorable when incorporated into Li2MnO3 at the Mn site, whereas Mg is most favorable when doped at the Li sites. Nickel, on the other hand, can be incorporated at the Li site and/or the Mn site, and the distribution of Ni over the lattice sites can be tuned by tuning the material preparation conditions. There is a strong interplay among the lattice site preference and charge and spin states of the dopant, the electronic structure of the doped material, and the delithiation mechanism. The calculated electronic structure and voltage profile indicate that in Ni-, Mo-, or Ru-doped Li2MnO3 , oxidation occurs on the electrochemically active transition-metal ion(s) before it does on oxygen during the delithiation process. The role of the dopants is to provide charge compensation and bulk electronic conduction mechanisms in the initial stages of delithiation, hence enabling the oxidation of the lattice oxygen in the later stages. This work thus illustrates how the oxygen-oxidation mechanism can be used in combination with the conventional mechanism involving transition-metal cations in design of high-capacity battery cathode materials.
Bulk magnetic properties of La1-xCaxMnO3 (0⩽x⩽0.14) : Signatures of local ferromagnetic order
NASA Astrophysics Data System (ADS)
Terashita, Hirotoshi; Neumeier, J. J.
2005-04-01
We report the bulk magnetic properties of hole-doped La1-xCaxMnO3 (0⩽x⩽0.14) in the paramagnetic and antiferromagnetic regions; the Mn4+ concentration was determined with chemical analysis. Significant enhancement of the effective paramagnetic moment illustrates the existence of ferromagnetic clusters (polarons). The data reveal a distinct crossover in the paramagnetic region, signifying competition between ferromagnetic clusters and antiferromagnetic correlations associated with the low-temperature magnetically ordered state. The results suggest similarity in the magnetic properties at low temperatures between hole-doped LaMnO3 and electron-doped CaMnO3 .
Wang, Yuting; Cheng, Jing; Yu, Suye; Alcocer, Enric Juan; Shahid, Muhammad; Wang, Ziyuan; Pan, Wei
2016-01-01
Here we report a high efficiency photocatalyst, i.e., Mn2+-doped and N-decorated ZnO nanofibers (NFs) enriched with vacancy defects, fabricated via electrospinning and a subsequent controlled annealing process. This nanocatalyst exhibits excellent visible-light photocatalytic activity and an apparent quantum efficiency up to 12.77%, which is 50 times higher than that of pure ZnO. It also demonstrates good stability and durability in repeated photocatalytic degradation experiments. A comprehensive structural analysis shows that high density of oxygen vacancies and nitrogen are introduced into the nanofibers surface. Hence, the significant enhanced visible photocatalytic properties for Mn-ZnO NFs are due to the synergetic effects of both Mn2+ doping and N decorated. Further investigations exhibit that the Mn2+-doping facilitates the formation of N-decorated and surface defects when annealing in N2 atmosphere. N doping induce the huge band gap decrease and thus significantly enhance the absorption of ZnO nanofibers in the range of visible-light. Overall, this paper provides a new approach to fabricate visible-light nanocatalysts using both doping and annealing under anoxic ambient. PMID:27600260
Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping
NASA Astrophysics Data System (ADS)
Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.
2018-04-01
Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.
Zhu, Qi; Song, Caiyun; Li, Xiaodong; Sun, Xudong; Li, Ji-Guang
2018-04-09
Submicron sized, monodispersed spheres of Mn2+, Yb3+/Er3+ and Mn2+/Yb3+/Er3+ doped α-NaYF4 were easily autoclaved from mixed solutions of the component nitrates and ammonium fluoride (NH4F), in the presence of EDTA-2Na. Detailed characterizations of the resultant phosphors were obtained using XRD, Raman spectroscopy, FE-SEM, HR-TEM, STEM, PLE/PL spectroscopy, and fluorescence decay analysis. Finer structure and better crystal perfection was observed at a higher calcination temperature, and the spherical shape and excellent dispersion of the original particles was retained at temperatures up to 600 °C. Under the 980 nm infrared excitation, the Yb3+/Er3+-doped sample (calcined at 400 °C) exhibits a stronger green emission centered at ∼524 nm (2H11/2 → 4I15/2 transition of Er3+) and a weaker red emission centered at ∼657 nm (4F9/2 → 4I15/2 transition of Er3+). A 200 °C increase in the temperature from 400 °C to 600 °C resulted in the dominant red emission originating from the 4F9/2 → 4I15/2 transition of Er3+, instead of the previously dominant green one. Mn2+ doping induced a remarkable more enhanced intensity at ∼657 nm and ∼667 nm (red emission area) than that at ∼524 nm and ∼546 nm (green emission area), because of the non-radiative energy transfer between Mn2+ and Er3+. However, a poor thermal stability was induced by Mn2+ doping. The observed upconversion luminescence of the samples calcined at 400 °C and 600 °C followed the two photon process and the four photon process, respectively.
AlMn Transition Edge Sensors for Advanced ACTPol
NASA Astrophysics Data System (ADS)
Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.
2016-07-01
Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.
Manganese modified structural and optical properties of zinc soda lime silica glasses.
Samsudin, Nur Farhana; Matori, Khamirul Amin; Wahab, Zaidan Abdul; Fen, Yap Wing; Liew, Josephine Ying Chi; Lim, Way Foong; Mohd Zaid, Mohd Hafiz; Omar, Nur Alia Sheh
2016-03-20
A series of MnO-doped zinc soda lime silica glass systems was prepared by a conventional melt and quenching technique. In this study, the x-ray diffraction analysis was applied to confirm the amorphous nature of the glasses. Fourier transform infrared spectroscopy shows the glass network consists of MnO4, SiO4, and ZnO4 units as basic structural units. The glass samples under field emission scanning electron microscopy observation demonstrated irregularity in shape and size with glassy phase-like structure. The optical absorption studies revealed that the optical bandgap (Eopt) values decrease with an increase of MnO content. Through the results of various measurements, the doping of MnO in the glass matrix had effects on the performance of the glasses and significantly improved the properties of the glass sample as a potential host for phosphor material.
Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.
2018-05-01
We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.
Chen, Lin; Yang, Xiang; Yang, Fuhua; Zhao, Jianhua; Misuraca, Jennifer; Xiong, Peng; von Molnár, Stephan
2011-07-13
We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T(C) with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalentyeva, I. L.; Vikhrova, O. V., E-mail: istery@rambler.ru; Danilov, Yu. A.
2016-11-15
The effects of isochronal thermal annealing (at 325–725°C) on the radiative properties of InGaAs/GaAs nanoheterostructures containing a low-temperature GaAs layer δ-doped with Mn grown by laser deposition are studied. A decrease in the photoluminescence intensity and increase in the ground transition energy are observed upon thermal impact for quantum wells located near the low-temperature GaAs layer. The distribution of Mn atoms in the initial and annealed structures is obtained by secondary-ion mass spectrometry. A qualitative model of the observed effects of thermal annealing on the radiative properties of the structures is discussed; this model takes into account two main processes:more » diffusion of point defects (primarily gallium vacancies) from the GaAs coating layer deep into the structure and Mn diffusion in both directions by the dissociation mechanism. Magnetization studies show that, as a result of thermal annealing, an increase in the proportion of the ferromagnetic phase at room temperature (presumably, MnAs clusters) in the low-temperature GaAs coating layer takes place.« less
NASA Astrophysics Data System (ADS)
Hsini, Mohamed; Hamdaoui, Nejeh; Hcini, Sobhi; Bouazizi, Mohamed Lamjed; Zemni, Sadok; Beji, Lotfi
2018-03-01
The effect of Fe-doping at Mn-site on the structural and electrical properties of Nd0.67Ba0.33Mn1-xFexO3 (0 ≤ x ≤ 0.05) perovskites has been investigated. X-ray diffraction patterns show that the structural parameters change slightly due to the fact that the Fe3+ ions replacing the Mn3+ have similar ionic radius. The electrical properties of these samples have been investigated using complex impedance spectroscopy technique. a function of the frequency at different temperatures. When increasing the Fe-content, a decrease of dc conductivity was observed throughout the whole explored temperature range and the deduced activation energy values are found to increase from 128 meV for x = 0 to 166 meV for x = 0.05. The curves of the imaginary part of impedance (Z″) show the presence of relaxation phenomenon in our samples. The complex impedance spectra show semicircle arcs at different temperatures and an equivalent circuit of the type of Rg + (Rgb//Cgb) has been proposed to explain the impedance results.
Luo, Jingting; Luo, Pingxiang; Xie, Min; Du, Ke; Zhao, Bixia; Pan, Feng; Fan, Ping; Zeng, Fei; Zhang, Dongping; Zheng, Zhuanghao; Liang, Guangxing
2013-11-15
This work reports a high-performance Mn-doped ZnO multilayer structure Love mode surface acoustic wave (SAW) biosensor for the detection of blood sugar. The biosensor was functionalized via immobilizing glucose oxidase onto a pH-sensitive polymer which was attached on Mn-doped ZnO biosensor. The fabricated SAW glucose biosensor is highly sensitive, accurate and fast with good anti-interference. The sensitivity of the SAW glucose biosensor is 7.184 MHz/mM and the accuracy is 6.96 × 10(-3)mM, which is sensitive and accurate enough for glucose monitoring. A good degree of reversibility and stability of the glucose sensor is also demonstrated, which keeps a constant differential frequency shift up to 32 days. Concerning the time response to human serum, the glucose sensor shows a value of 4.6 ± 0.4 min when increasing glucose concentrations and 7.1 ± 0.6 min when decreasing, which is less than 10 min and reach the fast response requirement for medical applications. The Mn-doped ZnO Love mode SAW biosensor can be fully integrated with CMOS Si chips and developed as a portable, passive and wireless real time detection system for blood sugar monitoring in human serum. Copyright © 2013 Elsevier B.V. All rights reserved.
Spin tuning of electron-doped metal-phthalocyanine layers.
Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro
2014-04-09
The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.
Carrier-induced ferromagnetism in the insulating Mn-doped III-V semiconductor InP
NASA Astrophysics Data System (ADS)
Bouzerar, Richard; May, Daniel; Löw, Ute; Machon, Denis; Melinon, Patrice; Zhou, Shengqiang; Bouzerar, Georges
2016-09-01
Although InP and GaAs have very similar band structure their magnetic properties appear to drastically differ. Critical temperatures in (In,Mn)P are much smaller than those of (Ga,Mn)As and scale linearly with Mn concentration. This is in contrast to the square-root behavior found in (Ga,Mn)As. Moreover the magnetization curve exhibits an unconventional shape in (In,Mn)P contrasting with the conventional one of well-annealed (Ga,Mn)As. By combining several theoretical approaches, the nature of ferromagnetism in Mn-doped InP is investigated. It appears that the magnetic properties are essentially controlled by the position of the Mn acceptor level. Our calculations are in excellent agreement with recent measurements for both critical temperatures and magnetizations. The results are only consistent with a Fermi level lying in an impurity band, ruling out the possibility to understand the physical properties of Mn-doped InP within the valence band scenario. The quantitative success found here reveals a predictive tool of choice that should open interesting pathways to address magnetic properties in other compounds.
NASA Astrophysics Data System (ADS)
Hassanpour, A.; Guo, P.; Shen, S.; Bianucci, P.
2017-10-01
Undoped and C-doped (C: Mg2+, Ni2+, Mn2+, Co2+, Cu2+, Cr3+) ZnO nanorods were synthesized by a hydrothermal method at temperatures as low as 60 °C. The effect of doping on the morphology of the ZnO nanorods was visualized by taking their cross section and top SEM images. The results show that the size of nanorods was increased in both height and diameter by cation doping. The crystallinity change of the ZnO nanorods due to each doping element was thoroughly investigated by an x-ray diffraction (XRD). The XRD patterns show that the wurtzite crystal structure of ZnO nanorods was maintained after cation addition. The optical Raman-active modes of undoped and cation-doped nanorods were measured with a micro-Raman setup at room temperature. The surface chemistry of samples was investigated by x-ray photoelectron spectroscopy and energy-dispersive x-ray spectroscopy. Finally, the effect of each cation dopant on band-gap shift of the ZnO nanorods was investigated by a photoluminescence setup at room temperature. Although the amount of dopants (Mg2+, Ni2+, and Co2+) was smaller than the amount of Mn2+, Cu2+, and Cr3+ in the nanorods, their effect on the band structure of the ZnO nanorods was profound. The highest band-gap shift was achieved for a Co-doped sample, and the best crystal orientation was for Mn-doped ZnO nanorods. Our results can be used as a comprehensive reference for engineering of the morphological, structural and optical properties of cation-doped ZnO nanorods by using a low-temperature synthesis as an economical mass-production approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaresavanji, M., E-mail: vanji.hplt@gmail.com; Fontes, M.B.; Lopes, A.M.L.
2014-03-01
Highlights: • Effect of Mn-site doping by Ru has been studied in La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7}. • Electrical resistance, magnetoresistance and magnetic properties were measured. • Ru substitution enhances the ferromagnetism and metallicity. • Results were interpreted by the ferromagnetically coupled Ru with Mn ions in Mn–O–Ru network. - Abstract: The effect of Mn-site doping on magnetic and transport properties in the bilayer manganites La{sub 1.24}Sr{sub 1.76}Mn{sub 2-y}Ru{sub y}O{sub 7} (y = 0.0, 0.04, 0.08 and 0.15) has been studied. The undoped compound La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} exhibits a ferromagnetic metal to paramagnetic insulator transition at T{submore » C} = 130 K and the substitution of Ru shifts the transition temperatures to higher temperature values. The increased metal–insulator transition by Ru substitution, obtained from temperature dependence of resistivity measurements, indicates that the Ru substitution enhances the metallic state at low temperature regime and favours the Mn–Ru pairs in the Ru doped samples. Moreover, the activation energy values calculated from the temperature dependence of resistivity curves suggest that the Ru substitution weakens the formation of polarons. The increased magnetoresistance ratio from 108% to 136% by Ru substitution, measured at 5 K, points out that the Ru substitution also enhances the inter-grain tunneling magnetoresistance. Thus, the ferromagnetic order and metallic state in La{sub 1.24}Sr{sub 1.76}Mn{sub 2}O{sub 7} system have been enhanced by the presence of Ru in the Mn-site. These reinforcements of ferromagnetic metallic state and magnetoresistance have been interpreted by the ferromagnetically coupled high spin states of Ru with Mn ions in the Mn–O–Ru network.« less
Influences of Ru-doping on the magnetic properties of Ca0.85Pr0.15Mn1- x Ru x O3
NASA Astrophysics Data System (ADS)
Phan, T. L.; Zhang, Y. D.; Yu, S. C.; Thanh, P. Q.; Yen, P. D. H.
2012-11-01
CaMnO3 is an antiferromagnet, in which the super-exchange interaction taking place between Mn4+ ions plays an important role. The doping of a small amount of 15% Pr into the Ca site, Ca0.85Pr0.15MnO3, leads to the appearance of Mn3+ ions, and introduces the ferromagnetic (FM) double-exchange interaction between Mn3+ and Mn4+ ions, which is dominant in a narrow temperature range of 90 ˜ 115 K. The FM interaction becomes strong for Ca0.85Pr0.15MnO3 doped with 4 and 8% Ru into the Mn site ( i.e., Ca0.85Pr0.15Mn1- x Ru x O3 with x = 0.04 and 0.08). The Curie temperature obtained for x = 0.04 and 0.08 are about 135 and 180 K, respectively. While the FM interaction in the former is dominant due to Mn3+-Mn4+ exchange pairs, the latter has the contribution of Ru ions. This results in remarkable differences in the features of their FM-paramagnetic phase transitions and their coercive fields H c .
Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging
NASA Astrophysics Data System (ADS)
Zhou, Ronghui; Li, Mei; Wang, Shanling; Wu, Peng; Wu, Lan; Hou, Xiandeng
2014-11-01
Fluorescent bio-imaging has received significant attention in a myriad of research disciplines, and QDs are playing an increasingly important role in these areas. Doped QDs, an important alternative to conventional heavy metal-containing QDs are employed for biomedical applications. However, since QDs are exogenous substances to the biological environment, the biocompatibility of QDs is expected to be challenging in some cases. Herein, nano fluorine-doped hydroxyapatite (FAp, a well-known biocompatible material) was introduced to endow biocompatibility to Cd-free Mn-doped ZnSe@ZnS QDs. Thus, a nano-FAp-QD conjugate was developed and the biocompatibility, as well as potential cell imaging application, was investigated. To construct the proposed conjugate, Cd-free highly luminescent Mn-doped ZnSe@ZnS QDs and monodispersed nano-FAp were first prepared in high-temperature organic media. For facilitating the conjugation, hydrophobic nano-FAp was made water soluble via o-phosphoethanolamine (PEA) coating, which further provides conjugating sites for QDs to anchor. Cytotoxicity studies indicated the developed conjugate indeed possesses good compatibility and low toxicity to cells. The nano-FAp-QDs conjugate was successfully employed for cancer cell staining for at least 24 h, demonstrating the potential usefulness of this material in future biomedical research.Fluorescent bio-imaging has received significant attention in a myriad of research disciplines, and QDs are playing an increasingly important role in these areas. Doped QDs, an important alternative to conventional heavy metal-containing QDs are employed for biomedical applications. However, since QDs are exogenous substances to the biological environment, the biocompatibility of QDs is expected to be challenging in some cases. Herein, nano fluorine-doped hydroxyapatite (FAp, a well-known biocompatible material) was introduced to endow biocompatibility to Cd-free Mn-doped ZnSe@ZnS QDs. Thus, a nano-FAp-QD conjugate was developed and the biocompatibility, as well as potential cell imaging application, was investigated. To construct the proposed conjugate, Cd-free highly luminescent Mn-doped ZnSe@ZnS QDs and monodispersed nano-FAp were first prepared in high-temperature organic media. For facilitating the conjugation, hydrophobic nano-FAp was made water soluble via o-phosphoethanolamine (PEA) coating, which further provides conjugating sites for QDs to anchor. Cytotoxicity studies indicated the developed conjugate indeed possesses good compatibility and low toxicity to cells. The nano-FAp-QDs conjugate was successfully employed for cancer cell staining for at least 24 h, demonstrating the potential usefulness of this material in future biomedical research. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c4nr04473h
Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.
Santra, Pralay K; Kamat, Prashant V
2012-02-08
To make Quantum Dot Sensitized Solar Cells (QDSC) competitive, it is necessary to achieve power conversion efficiencies comparable to other emerging solar cell technologies. By employing Mn(2+) doping of CdS, we have now succeeded in significantly improving QDSC performance. QDSC constructed with Mn-doped-CdS/CdSe deposited on mesoscopic TiO(2) film as photoanode, Cu(2)S/Graphene Oxide composite electrode, and sulfide/polysulfide electrolyte deliver power conversion efficiency of 5.4%.
Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.
van der Meulen, Machteld I; Petkov, Nikolay; Morris, Michael A; Kazakova, Olga; Han, Xinhai; Wang, Kang L; Jacob, Ajey P; Holmes, Justin D
2009-01-01
Magnetically doped Si and Ge nanowires have potential application in future nanowire spin-based devices. Here, we report a supercritical fluid method for producing single crystalline Mn-doped Ge nanowires with a Mn-doping concentration of between 0.5-1.0 atomic % that display ferromagnetism above 300 K and a superior performance with respect to the hole mobility of around 340 cm(2)/Vs, demonstrating the potential of using these nanowires as building blocks for electronic devices.
Ou, Xu; Li, Qi; Xu, Dan; Guo, Jiangna; Yan, Feng
2018-03-02
Nitrogen-doped porous carbon nanotubes@MnO 2 (N-CNTs@MnO 2 ) nanocomposites are prepared through the in situ growth of MnO 2 nanosheets on N-CNTs derived from polypyrrole nanotubes (PNTs). Benefiting from the synergistic effects between N-CNTs (high conductivity and N doping level) and MnO 2 nanosheets (high theoretical capacity), the as-prepared N-CNTs@MnO 2 -800 nanocomposites show a specific capacitance of 219 F g -1 at a current density of 1.0 A g -1 , which is higher than that of pure MnO 2 nanosheets (128 F g -1 ) and PNTs (42 F g -1 ) in 0.5 m Na 2 SO 4 solution. Meanwhile, the capacitance retention of 86.8 % (after 1000 cycles at 10 A g -1 ) indicates an excellent electrochemical performance of N-CNTs@MnO 2 prepared in this work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasma-assisted quadruple-channel optosensing of proteins and cells with Mn-doped ZnS quantum dots.
Li, Chenghui; Wu, Peng; Hou, Xiandeng
2016-02-21
Information extraction from nano-bio-systems is crucial for understanding their inner molecular level interactions and can help in the development of multidimensional/multimodal sensing devices to realize novel or expanded functionalities. The intrinsic fluorescence (IF) of proteins has long been considered as an effective tool for studying protein structures and dynamics, but not for protein recognition analysis partially because it generally contributes to the fluorescence background in bioanalysis. Here we explored the use of IF as the fourth channel optical input for a multidimensional optosensing device, together with the triple-channel optical output of Mn-doped ZnS QDs (fluorescence from ZnS host, phosphorescence from Mn(2+) dopant, and Rayleigh light scattering from the QDs), to dramatically improve the protein recognition and discrimination resolution. To further increase the cross-reactivity of the multidimensional optosensing device, plasma modification of proteins was explored to enhance the IF difference as well as their interactions with Mn-doped ZnS QDs. Such a sensor device was demonstrated for highly discriminative and precise identification of proteins in human serum and urine samples, and for cancer and normal cells as well.
Room temperature ferromagnetism in transition metal-doped black phosphorous
NASA Astrophysics Data System (ADS)
Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang
2018-05-01
High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Asar; Gajbhiye, Namdeo S., E-mail: nsg@iitk.ac.i
Cuprous oxide (Cu{sub 2}O) flower-like nanostructures doped with various metal ions i.e. Fe, Co, Ni and Mn have been synthesized by an organic phase solution method. The powder X-ray diffraction study clearly reveals them as single phase simple cubic cuprite lattice. Study of their magnetic properties have shown that these doped samples are ferromagnetic in nature; however, no such property was observed for the undoped Cu{sub 2}O sample. The magnitude of the ferromagnetic behavior was found to be dependent on the dopant metal ions amount, which increased consistently with its increase. As total magnetic moment contribution of the doped metalmore » ions calculated was insignificant, it is believed to have originated from the induced magnetic moments at cation deficiency sites in the material, created possibly due to the disturbance of the crystal lattice by the dopant ions. The existence of the defects has been supported by photoluminescence spectra of the doped samples. -- Graphical abstract: Room temperature ferromagnetic behavior was observed in the Cu{sub 2}O nanoflowers doped with Fe, Co, Ni and Mn ions. Cation deficiencies formed due to dopant ions were possibly responsible for ferromagnetism. Display Omitted« less
NASA Astrophysics Data System (ADS)
Srivastava, S. K.; Ravi, S.
2009-12-01
In this paper we report a systematic study of Mn-site substitution by M=Co, Cr and Al in La 0.85Ag 0.15MnO 3 series to understand the magnetic interactions between Mn and other transition metals. The long-range ferromagnetic (FM) ordering of the parent compound was significantly affected by Mn-site substitution. The measured magnetic properties of Co-doped samples have been explained on the basis of FM interactions in Mn 3+-O-Mn 4+, Co 2+-O-Mn 4+, Co 3+-O-Mn 4+ networks and simultaneous antiferromagnetic (AFM) interactions in Mn 4+-O-Mn 4+, Co 2+-O-Mn 3+ networks. The magnetic properties of Cr-doped compounds could be understood on the basis of double exchange FM interactions in Mn 3+-O 2--Mn 4+ networks and competing AFM in Cr 3+-O-Mn 4+, Mn 4+-O-Mn 4+, Cr 3+-O-Mn 3+ networks. However, it is found that the doping of Al ions play a role of magnetic dilution, without contributing any other competing magnetic interaction. The field variations of magnetization of all the above three series could be analysed by fitting to Brillouin function model and the effective spin contribution for FM has been determined. The measured saturation magnetization has been explained quantitatively.
NASA Astrophysics Data System (ADS)
Xu, Ruilin; Zhang, Jiayu
Usually, exciton-Mn energy transfer in Mn-doped CdS/ZnS nanocrystals (NCs) can readily outcompete the exciton trapping by an order of magnitude. However, with the accumulation of non-radiative defects in the giant shell during the rapid growth of the thick shell (up to ~20 monolayers in no more than 10 minutes), the photoluminescence (PL) quantum yield of this kind of ``giant'' NCs is significantly reduced by the accumulation of non-radiative defects during the rapid growth of thick shell. That is because the exciton-Mn energy transfer in Mn-doped CdS/ZnS NCs is significantly inhibited by the hole trapping as the major competing process, resulting from the insufficient hole-confinement in CdS/ZnS NCs. Accordingly ``flash'' synthesis of giant Mn-doped CdS/ZnSe/ZnS NCs with ZnSe layer as hole quantum-well is developed to suppress the inhibition. Meanwhile Mn2+ PL peak changes profoundly from ~620 nm to ~540 nm after addition of ZnSe layer. Studies are under the way to explore the relevant mechanisms.
Structural transition in Mg-doped LiMn 2O 4: a comparison with other M-doped Li-Mn spinels
NASA Astrophysics Data System (ADS)
Capsoni, Doretta; Bini, Marcella; Chiodelli, Gaetano; Massarotti, Vincenzo; Mozzati, Maria Cristina; Azzoni, Carlo B.
2003-01-01
The charge distribution in the Mg-doped lithium manganese spinel Li 1.02Mg xMn 1.98- xO 4 with 0.00< x≤0.20 is discussed and compared to those pertinent to other M-doped samples (M=Ni 2+, Co 3+, Cr 3+, Al 3+ and Ga 3+). EPR spectra, low temperature X-ray diffraction and conductivity data are related to the cooperative Jahn-Teller (J-T) transition occurring at about 280 K in the undoped sample. The sensitivity of the cationic sublattice in displaying electronic and magnetic changes after substitution is remarked. The inhibition of the J-T transition is related to the ratio r=|Mn 4+|/|Mn 3+| as deduced from the charge distribution model [Li 1- xt+Mg xt2+] tetr[Li y+ xt+Mg xo2+Mn 1-3 y-2 x3+Mn 1+2 y+ x4+] octa where x= xo+ xt. For y=0.02 and x=0.02, a value r=1.177 is obtained, very close to rlim=1.18, the limit value beyond which the transition is inhibited.
Strain-sensitive upconversion for imaging biological forces (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lay, Alice; Wisser, Michael; Lin, Yu; Narayan, Tarun; Krieg, Michael; Atre, Ashwin; Goodman, Miriam; Dionne, Jennifer A.
2016-09-01
Nearly all diseases can be traced back to abnormal mechanotransduction, but few sensors can reliably measure biologically-relevant forces in vivo. Here, we investigate sub-25nm lanthanide-doped upconverting nanoparticles as novel optical force probes, which provide several biocompatible features: sharp emission peaks with near infrared illumination, a high signal-to-noise ratio, and photostability. To increase force sensitivity, we include d-metal doping in the nanoparticles; the d-metal siphons energy from the lanthanide ions with an efficiency that varies with pressure. We synthesize cubic-phase NaYF4: Er3+,Yb3+ nanoparticles doped with 0-5% Mn2+ and compress them in a hydrostatic environment using a diamond anvil cell. When illuminated at 980nm, the nanoparticles show sharp emission peaks centered at wavelengths of 522nm, 545nm, and 660nm. In 20nN increments, up to 700nN, the ratio of the red-to-green peaks in 0% Mn-doped nanoparticles increases by nearly 30%, resulting in a perceived color change from orange to red. In contrast, the 1% Mn-doped samples exhibit little color change but a large 40% decrease in upconversion intensity. In both cases, the red-to-green ratio varies linearly with strain and the optical properties are recoverable upon release. We further use atomic force microscopy to characterize optical responses at lower, pico-Newton to nano-Newton forces. To demonstrate in vivo imaging capabilities, we incubate C. elegans with nanoparticles dispersed in buffer solution (5mg/mL concentration) and image forces involved in digestion using confocal microscopy. Our nanoparticles provide a platform for the first, non-genetically-encoded in vivo force sensors, and we describe routes to increase their sensitivity to the single-pN range.
Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO
NASA Astrophysics Data System (ADS)
Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.
2018-05-01
The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.
NASA Astrophysics Data System (ADS)
Lee, Yun-Sung; Kumada, Naoki; Yoshio, Masaki
LiAl xMn 2- xO 4 has been synthesized using various aluminum starting materials, such as Al(NO 3) 3, Al(OH) 3, AlF 3 and Al 2O 3 at 600-800°C for 20 h in air or oxygen atmosphere. A melt-impregnation method was used to synthesize Al-doped spinel with good battery performance in this research. The Al-doped content and the intensity ratio of (3 1 1)/(4 0 0) peaks can be important parameters in synthesizing Al-doped spinel which satisfies the requirements of high discharge capacity and good cycleability at the same time. The decrease in Mn 3+ ion by Al substitution induces a high average oxidation state of Mn ion in the LiAl xMn 2- xO 4 material. The electrochemical behavior of all samples was studied in Li/LiPF 6-EC/DMC (1:2 by volume)/LiAl xMn 2- xO 4 cells. Especially, the initial and last discharge capacity of LiAl 0.09Mn 1.97O 4 using LiOH, Mn 3O 4 and Al(OH) 3 complex were 128.7 and 115.5 mAh/g after 100 cycles. The Al substitution in LiMn 2O 4 was an excellent method of enhancing the cycleability of stoichiometric spinel during electrochemical cycling.
NASA Astrophysics Data System (ADS)
Talic, Belma; Molin, Sebastian; Wiik, Kjell; Hendriksen, Peter Vang; Lein, Hilde Lea
2017-12-01
MnCo2O4, MnCo1.7Cu0.3O4 and MnCo1.7Fe0.3O4 are investigated as coatings for corrosion protection of metallic interconnects in solid oxide fuel cell stacks. Electrophoretic deposition is used to deposit the coatings on Crofer 22 APU alloy. All three coating materials reduce the parabolic oxidation rate in air at 900 °C and 800 °C. At 700 °C there is no significant difference in oxidation rate between coated samples and uncoated pre-oxidized Crofer 22 APU. The cross-scale area specific resistance (ASR) is measured in air at 800 °C using La0.85Sr0.1Mn1.1O3 (LSM) contact plates to simulate the interaction with the cathode in a SOFC stack. All coated samples have three times lower ASR than uncoated Crofer 22 APU after 4370 h aging. The ASR increase with time is lowest with the MnCo2O4 coating, followed by the MnCo1.7Fe0.3O4 and MnCo1.7Cu0.3O4 coatings. LSM plates contacted to uncoated Crofer 22 APU contain significant amounts of Cr after aging, while all three coatings effectively prevent Cr diffusion into the LSM. A complex Cr-rich reaction layer develops at the coating-alloy interface during oxidation. Cu and Fe doping reduce the extent of this reaction layer at 900 °C, while at 800 °C the effect of doping is insignificant.
Influence of cation choice on magnetic behavior of III-N dilute magnetic semiconductors
NASA Astrophysics Data System (ADS)
Frazier, Rachel Marian
With the increasing interest in spintronics, many attempts have been made at incorporating spin-based functionality into existing semiconductor technology. One approach, utilizing dilute magnetic semiconductors (DMS) formed via introduction of transition metal ions into III-Nitride hosts, would allow for integration of spin based phenomena into current wide bandgap device technology. To accomplish such device structures, it is necessary to achieve single phase transition metal doped GaN and AlN which exhibit room temperature magnetic behavior. Ion implantation is an effective survey method for introduction of various transition metals into AlN. In ion implanted AlN, the Co and Cr doped films showed hysteresis at 300K while the Mn doped material did not. However, it is not a technique which will allow for the development of advanced spin based devices. Such devices will require epitaxial methods of the sort currently used for synthesis of III-Nitride optoelectronics. One such technique, Gas Source Molecular Beam Epitaxy (GSMBE), has been used to synthesize AlN films doped with Cr and Mn. Room temperature ferromagnetism has been observed for AlMnN and AlCrN grown by GSMBE. In both cases, the magnetic signal was found to depend on the flux of the dopant. The magnetization of the AlCrN was found to be an order of magnitude greater than in the AlMnN. The temperature dependent magnetic behavior of AlCrN was also superior to AlMnN; however, the AlCrN was not resistant to thermal degradation. An all-semiconductor tunneling magnetoresistive device (TMR) was grown with GaMnN as a spin injector and AlMnN as a spin filter. The resistance of the device should change with applied magnetic field depending on the magnetization of the injector and filter. However, due to the impurity bands found in the AlMnN, the resistance was found to change very little with magnetic field. To overcome such obstacles as found in the transition metal doped AlN, another dopant must be used. One viable dopant is Gd, which due to the low concentration incorporated in the semiconductor matrix should provide a single impurity level within the DMS instead of an impurity band. The incorporation of Gd into GaN and AlN may be the ultimate dopant for these III-N based DMS.
Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping
2017-08-01
Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Soltani, Tayyebeh; Tayyebi, Ahmad; Lee, Byeong-Kyu
2018-05-01
Mn-doped BiFeO3 magnetic nanoparticles (BFO MNPs), namely BiFe1-xMnxO3 (x = 0.05 and 0.10), were successfully synthesized using a simple and novel sol-gel method and then applied as a highly efficient peroxymonosulfate (KHSO5, PMS) activation catalyst for the fast degradation of bisphenol A (BPA) from aqueous solution. The strong PMS activation ability of 10% Mn-doped BFO MNPs without any metal leaching due to the simultaneous effects of iron and manganese ions in the production of radical sulfate (SO4rad -), caused complete BPA degradation in 15 min, which was much faster than that using combinations with H2O2. TOC was reduced to 33%, 23% and 13% by PMS activated with BFO, 5 and 10% Mn doped BFO, respectively, which are 2.1, 2.6 and 3.15-fold lower than that same nanoparticles activated with H2O2. The photocatalytic mechanism of BPA with the simultaneous effects of iron and manganese ions in Mn-doped BFO was explored. The addition of KBrO3 and NaNO3 salts into Mn-doped BFO/PMS system reduced the complete BPA degradation time to 10 min, whereas Na2CO3 and NaCl salt addition retarded it, because salt addition can generate radical species that are either more or less active than SO4rad -.
Tang, Tang; Jiang, Wen-Jie; Niu, Shuai; Liu, Ning; Luo, Hao; Chen, Yu-Yun; Jin, Shi-Feng; Gao, Feng; Wan, Li-Jun; Hu, Jin-Song
2017-06-21
Developing bifunctional efficient and durable non-noble electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desirable and challenging for overall water splitting. Herein, Co-Mn carbonate hydroxide (CoMnCH) nanosheet arrays with controllable morphology and composition were developed on nickel foam (NF) as such a bifunctional electrocatalyst. It is discovered that Mn doping in CoCH can simultaneously modulate the nanosheet morphology to significantly increase the electrochemical active surface area for exposing more accessible active sites and tune the electronic structure of Co center to effectively boost its intrinsic activity. As a result, the optimized Co 1 Mn 1 CH/NF electrode exhibits unprecedented OER activity with an ultralow overpotential of 294 mV at 30 mA cm -2 , compared with all reported metal carbonate hydroxides. Benefited from 3D open nanosheet array topographic structure with tight contact between nanosheets and NF, it is able to deliver a high and stable current density of 1000 mA cm -2 at only an overpotential of 462 mV with no interference from high-flux oxygen evolution. Despite no reports about effective HER on metal carbonate hydroxides yet, the small overpotential of 180 mV at 10 mA cm -2 for HER can be also achieved on Co 1 Mn 1 CH/NF by the dual modulation of Mn doping. This offers a two-electrode electrolyzer using bifunctional Co 1 Mn 1 CH/NF as both anode and cathode to perform stable overall water splitting with a cell voltage of only 1.68 V at 10 mA cm -2 . These findings may open up opportunities to explore other multimetal carbonate hydroxides as practical bifunctional electrocatalysts for scale-up water electrolysis.
NASA Astrophysics Data System (ADS)
Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook
2007-10-01
ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.
Structural, dielectric and magnetic studies of Mn doped Y-type barium hexaferrite (Ba2Mg2Fe12O22)
NASA Astrophysics Data System (ADS)
Abdullah, Md. F.; Pal, P.; Mohapatra, S. R.; Yadav, C. S.; Kaushik, S. D.; Singh, A. K.
2018-04-01
The polycrystalline single phase Ba2Mg2Fe12O22 (BMF) and Ba2Mg2Fe11.52Mn0.48O22 (BMFM) were prepared using conventional solid state reaction route. We report the modification in structural, dielectric and magnetic properties of BMF due to 4% Mn doping at Fe site. Phase purity of both sample are confirmed by the Reitveld refinement of XRD data. Temperature dependent dielectric study shows decrease in dielectric constant (ɛ') and dielectric loss (tan δ) due to 4% Mn doping in parent sample. The ferrimagnetic to paramagnetic transition temperature (Tc) in doped sample decreases from 277°C to 150°C. Room temperature magnetization measurement shows ferrimagnetic behavior for both the samples. We have fitted the saturation magnetization data at 300 K by using least square method which confirms the enhancement of saturation magnetization and magnetic anisotropy constant in doped sample.
Syntheses and applications of manganese-doped II-VI semiconductor nanocrystals
NASA Astrophysics Data System (ADS)
Yang, Heesun
Syntheses, characterizations, and applications of two different Mn-doped semiconductor nanocrystals, ZnS:Mn and CdS:Mn/ZnS core/shell, were investigated. ZnS:Mn nanocrystals with sizes between 3 and 4 nm were synthesized via a competitive reaction chemistry. A direct current (dc) electroluminescent (EL) device having a hybrid organic/inorganic multilayer structure of an indium tin oxide (ITO) transparent conducting electrode, a (poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT-PSS) and a poly(N-vinylcarbazole) (PVK) bilayer hole transport film, a ZnS:Mn nanocrystal layer, and Al dot contacts was demonstrated to emit blue (˜445 and ˜495 nm) from PVK and yellow (˜600 nm) light from Mn activator in ZnS. The EL emission spectrum was dependent upon both the voltage and Mn concentration, showing a decreasing nanocrystal to PVK emission ratio from 10 at 20 V to 4 at 28 V, and an increasing ratio from 1.3 at 0.40 mol % to 4.3 at 2.14 mol %. Mn-doped CdS core nanocrystals were produced ranging from 1.5 to 2.3 nm in diameter with a ZnS shell via a reverse micelle process. In contrast to CdS:Mn nanocrystals passivated by n-dodecanethiol, ZnS-passivated CdS:Mn (CdS:Mn/ZnS core/shell) nanocrystals were efficient and photostable. CdS:Mn/ZnS core/shell nanocrystals exhibited a quantum yield of ˜18%, and the photoluminescence (PL) intensity increased by 40% after 400 nm UV irradiation in air. X-ray photoelectron spectroscopy (XPS) data showed that UV irradiation of CdS:Mn/ZnS nanocrystals induces the photooxidation of the ZnS shell surface to ZnSO4. This photooxidation product is presumably responsible for the increased PL emission by serving as a passivating surface layer. Luminescent lifetime data from the core/shell nanocrystals could be fit with two exponential functions, with a time constant of ˜170 nsec for the defect-related centers and of ˜1 msec for the Mn centers. The CdS:Mn/ZnS nanocrystals with a core crystal diameter of 2.3 nm and a 0.4 nm thick ZnS shell were used as an electroluminescent material. EL devices were tested having a hybrid organic/inorganic multilayer structure of ITO//PEDOT-PSS//conjugated polymer//CdS:Mn/ZnS nanocrystal//Al. Orange from PVK device and green EL emission from poly(p-phenylene vinylene) (PPV) device were observed, respectively. These observations are shown to be consistent with the energy level diagrams of the EL devices. The CdS:Mn/ZnS core/shell quantum dots are not water-soluble because of their hydrophobicity. Silica-overcoated CdS:Mn/ZnS quantum dots were synthesized to create water-soluble quantum dots. The amorphous and porous silica layer did not significantly modify the optical and photophysical properties of CdS:Mn/ZnS quantum dots.
NASA Astrophysics Data System (ADS)
Liu, Yi; Ning, De; Zheng, Lirong; Zhang, Qinghua; Gu, Lin; Gao, Rui; Zhang, Jicheng; Franz, Alexandra; Schumacher, Gerhard; Liu, Xiangfeng
2018-01-01
Li-rich layered oxide cathodes suffer from poor rate capability, voltage decay and inferior cycling stability. Herein, we propose a novel synergistic strategy to improve the electrochemical performances of Li-rich Li1.20Ni0.13Co0.13Mn0.54O2 by the co-doping of Na+ and PO43-. The co-doping of Na+ for Li and PO43- for Mn is simultaneously achieved using Na3PO4 as a dopant. The co-doping of Na+ and PO43- not only enhances the high-rate performance (106.4 mAhg-1@10C) and capacity retention (93.8%@1C@100 cycles) but also mitigates the voltage decay owing to the synergistic effect of Na+ and PO43- co-doping. The synergistic mechanism is unraveled based on neutron diffraction, aberration-corrected scanning transmission electron microscope, X-ray photoelectron spectroscopy, ex-situ X-ray absorption spectra, ex-situ X-ray diffraction, electrochemical impedance spectroscopy and electrochemical measurements. The co-doping of Na+ and PO43- enlarges the interlayer spacing and suppresses Li/Ni mixing which increases Li+ diffusivity and enhances the rate capability. Meanwhile, the co-doping of Na+ and PO43- shrinks the thickness of the slabs, weakens the TM-O covalency and alleviates the volume change in the charge/discharge process which improves the layered structure stability and the cycling performances. This study presents some new insights into designing high performance cathode materials through a cooperative modulation of different crystal sites doping.
Da, Ning; Peng, Mingying; Krolikowski, Sebastian; Wondraczek, Lothar
2010-02-01
We report on intense red fluorescence from Mn(2+)-doped sulfophosphate glasses and glass ceramics of the type ZnO-Na(2)O-SO(3)-P(2)O(5). As a hypothesis, controlled internal crystallization of as-melted glasses is achieved on the basis of thermally-induced bimodal separation of an SO(3)-rich phase. Crystal formation is then confined to the relict structure of phase separation. The whole synthesis procedure is performed in air at
NASA Astrophysics Data System (ADS)
Gómez, Adrián; Chavarriaga, Edgar; Supelano, Iván; Parra, Carlos Arturo; Morán, Oswaldo
2018-05-01
A systematic study of the dependence of the magnetization on the magnetic field around the ferromagnetic-paramagnetic phase transition temperature is carried out on La0.7Ca0.3Mn1-xNixO3 (x=0, 0.02, 0.07, and 1) samples synthesized by auto-combustion method. The successful substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice is corroborated by X-ray diffraction technique. Banerjees criteria, Arrott plots, and the scaling hypothesis are used to analyze the experimental data. It is verified that the Ni-doping increases the operating temperature range for magnetocaloric effect through tuning of the magnetic transition temperature. Probably, the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and magnetic moment in the samples. The Arrott plots suggest that the phase transition from ferromagnetic to paramagnetic in the nano-sized manganite is of second order. The analysis of the magnetization results show that the maximum magnetic entropy changes observed for x=0, 0.02, 0.07, and 0.1 compositions are 0.85, 0.77, 0.63, and 0.59 J/kg K, under a magnetic field of 1.5 T. These values indicate that the magnetic entropy change achieved for La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method is higher than those reported for other manganites with comparable Ni-doping levels but synthesized by standard solid state reaction. It is also observed that the addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (˜60 J/kg) is found for a Ni-doping level of 2 % around 230 K in a field of 1.5 T.
Srivastava, D.; Azough, F.; Combe, E.; Funahashi, R.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Molinari, M.; Yeandel, S. R.; Baran, J. D.
2015-01-01
A combination of experimental and computational techniques has been employed to study doping effects in perovskite CaMnO3. High quality Sr–Mo co-substituted CaMnO3 ceramics were prepared by the conventional mixed oxide route. Crystallographic data from X-ray and electron diffraction showed an orthorhombic to tetragonal symmetry change on increasing the Sr content, suggesting that Sr widens the transition temperature in CaMnO3 preventing phase transformation-cracking on cooling after sintering, enabling the fabrication of high density ceramics. Atomically resolved imaging and analysis showed a random distribution of Sr in the A-site of the perovskite structure and revealed a boundary structure of 90° rotational twin boundaries across {101}orthorhombic; the latter are predominant phonon scattering sources to lower the thermal conductivity as suggested by molecular dynamics calculations. The effect of doping on the thermoelectric properties was evaluated. Increasing Sr substitution reduces the Seebeck coefficient but the power factor remains high due to improved densification by Sr substitution. Mo doping generates additional charge carriers due to the presence of Mn3+ in the Mn4+ matrix, reducing electrical resistivity. The major impact of Sr on thermoelectric behaviour is the reduction of the thermal conductivity as shown experimentally and by modelling. Strontium containing ceramics showed thermoelectric figure of merit (ZT) values higher than 0.1 at temperatures above 850 K. Ca0.7Sr0.3Mn0.96Mo0.04O3 ceramics exhibit enhanced properties with S 1000K = –180 μV K–1, ρ 1000K = 5 × 10–5 Ωm, k 1000K = 1.8 W m–1 K–1 and ZT ≈ 0.11 at 1000 K. PMID:28496979
NASA Astrophysics Data System (ADS)
Antonov, V. N.; Bekenov, L. V.; Uba, S.; Ernst, A.
2017-12-01
We studied the structural, electronic, and magnetic properties of Mn-doped topological insulators Bi2Se3 and Bi2Te3 within the density-functional theory (DFT) using the generalized gradient approximation (GGA) in the framework of the fully relativistic spin-polarized Dirac linear muffin-tin orbital band-structure method. The x-ray absorption spectra (XAS) and x-ray magnetic circular dichroism at the Mn K and L2 ,3 edges were investigated theoretically from first principles. The calculated results are in good agreement with experimental data. The complex fine structure of the Mn L2 ,3 XAS in Mn-doped Bi2Se3 and Bi2Te3 was found to be not compatible with a pure Mn3 + valency state. Its interpretation demands mixed valent states. The theoretically calculated x-ray emission spectra at the Mn K and L2 ,3 edges are also presented and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dar, Mashkoor Ahmad, E-mail: darmashkoor.phst@gmail.com; Dar, Hilal Ahmad; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com
2016-05-06
Structural and dielectric properties of polycrystalline YMnO{sub 3} (x = 0.0, 0.10 and 0.20) which was prepared by solid-state reaction route, have been investigated. The X-ray diffraction pattern reveals that all the samples are in single phase and show hexagonal structure with P63cm space group. The particle size decreases with increase in Sm doping while to that X-ray density increases with increasing x. The dielectric constant (ε’) of Y{sub 1-x}Sm{sub x}MnO{sub 3} measured in the frequency range 10 Hz to 1MHz is much higher at lower frequencies (≤ 1KHz) and its value decreases with enhanced frequency. At very high frequencies, ε’more » becomes frequency independent and is attributed to Maxwell Wagner type of interfacial polarization model. A very high value of dielectric constant ∼18642 is observed for x = 10%. The dielectric loss (tan δ) decreases wit increase in Sm doping.« less
NASA Astrophysics Data System (ADS)
Qiao, Huimin; He, Chao; Yuan, Feifei; Wang, Zujian; Li, Xiuzhi; Liu, Ying; Guo, Haiyan; Long, Xifa
2018-04-01
The acceptor doped relaxor-based ferroelectric materials are useful for high power applications such as probes in ultrasound-guided high intensity focused ultrasound therapy. In addition, a high Curie temperature is desired because of wider temperature usage and improved temperature stability. Previous investigations have focused on Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Zn1/3Nb2/3)O3-PbTiO3 systems, which have a ultrahigh piezoelectric coefficient and dielectric constant, but a relatively low Curie temperature. It is desirable to study the binary relaxor-based system with a high Curie temperature. Therefore, Pb(In1/2Nb1/2)O3-PbTiO3 (PINT) single crystals were chosen to study the Mn-doped influence on their electrical properties and domain configuration. The evolution of ferroelectric hysteresis loops for doped and virgin samples exhibit the pinning effect in Mn-doped PINT crystals. The relaxation behaviors of doped and virgin samples are studied by fit of the modified Curie-Weiss law and Volgel-Fucher relation. In addition, a short-range correlation length was fitted to study the behavior of polar nanoregions based on the domain configuration obtained by piezoresponse force microscopy. Complex domain structures and smaller short-range correlation lengths (100-150 nm for Mn-doped PINT and >400 nm for pure PINT) were obtained in the Mn-doped PINT single crystals.
Enhanced specific heat jump in electron-doped CaMnO3: Spin ordering driven by charge separation
NASA Astrophysics Data System (ADS)
Moritomo, Y.; Machida, A.; Nishibori, E.; Takata, M.; Sakata, M.
2001-12-01
Temperature variation of the magnetic susceptibility χ, resistivity ρ, specific heat C, and lattice constants has been investigated in electron-doped CaMnO3. The parent CaMnO3 is an antiferromagnetic band insulator, and shows an insulator-metal crossover with electron doping, together with an enhanced ferromagnetic component. We have found an enhancement of the specific heat jump ΔC at the spin-ordering temperature Tspin and interpreted the enhancement in terms of the intrinsic charge separation.
Structural, dielectric and impedance spectroscopy studies in Co doped La0.7Te0.3MnO3
NASA Astrophysics Data System (ADS)
Uthaman, Bhagya; Revathy, R.; Job, Rojerce Brown; Varma, Manoj Raama
2018-05-01
The effect of cobalt doping on the structural and dielectric properties of the electron-doped manganite La0.7Te0.3Mn1-xCoxO3 (x=0, 0.1, 0.3 and 0.5) has been investigated. Cobalt substitution induces a structural transition from rhombohedral structure (R-3 c space group) to orthorhombic structure (Pbnm space group). It is observed that, dielectric constant decreases with Co concentration which could be due to suppression of double exchange (DE) interaction between Mn2+ and Mn3+. Also, the effect of the grain and grain boundary density on the dielectric response is studied using Cole-Cole plots.
Yang, Ying; Yang, Feng; Lee, Sungsik; ...
2016-01-16
Facile fabrication of manganese oxide (MnO x, 0 < x < 2) and nitrogen (N) co-doped carbon microspheres (MnO x-N-CS) has been firstly developed by one-pot construction of Mn-functionalized melamine-formaldehyde (Mn-MF) resin spheres before pyrolysis. The resulting hybrids bear evenly dispersed MnO x and N moieties in situ anchored on hierarchically porous carbon microspheres formed simultaneously. The capacitive performance is greatly tailored by varying the Mn/melamine molar ratio in the synthetic mixture and pyrolysis temperature. It is found that the MnO x-N-CS hybrid (0.008 wt% Mn, pyrolyzed at 800 °C) exhibits the highest specific capacitance up to 258 F gmore » –1 at a scan rate of 1 mV s –1 (in 6 M KOH), and keeps a high capacitance retention ratio of 98% after 5000 cycles. The synergism between MnO x, N moieties and carbon spheres proves to be responsible for the remarkably improved performance, as compared to the pure carbon sphere and MnO x (N)-doped carbon sphere. Lastly, the well-developed MnO x-N-CS hybrids highlight the great potentials for widespread supercapacitor applications.« less
Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun
2013-11-21
Eu(2+) singly and Eu(2+)/Mn(2+) co-doped Na2SrMg(PO4)2 (NSMP) phosphors have been prepared via a high-temperature solid-state reaction process. Upon UV excitation of 260-360 nm, the NSMP:xEu(2+) phosphors exhibit a violet band located at 399 nm and a blue band centered at 445 nm, which originate from Eu(2+) ions occupying two different crystallographic sites: Eu(2+)(I) and Eu(2+)(II), respectively. Excitation wavelengths longer than 380 nm can selectively excite Eu(2+)(II) to emit blue light. Energy transfer processes in the Eu(2+)(I)-Eu(2+)(II) and Eu(2+)-Mn(2+) pairs have been observed and investigated by luminescence spectra and decay curves. The emission color of as-prepared samples can be tuned by changing the relative concentrations of Eu(2+) and Mn(2+) ions and adjusting the excitation wavelength. Under UV excitation of 323 nm, the absolute quantum yield of NSMP:0.005Eu(2+) is 91%, which is higher than most of the other Eu(2+)-doped phosphors reported previously. The temperature dependent luminescence properties and decay curves (4.3-450 K) of NSMP:Eu(2+) and NSMP:Eu(2+), Mn(2+) phosphors have been studied in detail. Thermal quenching of Eu(2+) has been observed while the emission band of Mn(2+) shows a blue-shift and an abnormal increase of intensity with increasing temperature. The unusual thermal quenching behavior indicates that the NSMP compound can serve as a good lattice host for Mn(2+) ions which can be used as a red-emitting phosphor. Additionally, the lifetimes for Eu(2+)(I) and Eu(2+)(II) increase with increasing temperatures.
Yin, Hui; Feng, Xionghan; Tan, Wenfeng; Koopal, Luuk K; Hu, Tiandou; Zhu, Mengqiang; Liu, Fan
2015-05-15
Vanadium(V)-doped hexagonal turbostratic birnessites were synthesized and characterized by multiple techniques and were used to remove Pb(2+) from aqueous solutions. With increasing V content, the V(V)-doped birnessites have significantly decreased crystallinity, i.e., the thickness of crystals in the c axis decreases from 9.8 nm to ∼0.7 nm, and the amount of vacancies slightly increases from 0.063 to 0.089. The specific surface areas of these samples increase after doping while the Mn average oxidation sates are almost constant. V has a valence of +5 and tetrahedral symmetry, and exists as oxyanions, including V₆O₁₆(2-), and VO4(3-) on birnessite edge sites by forming monodentate corning-sharing complexes. Pb LIII-edge extended X-ray absorption fine structure (EXAFS) spectra analysis shows that, at low V contents (V/Mn≤0.07) Pb(2+) mainly binds with birnessite on octahedral vacancy and especially edge sites whereas at higher V contents (V/Mn>0.07) more Pb(2+) associates with V oxyanions and form vanadinite [Pb₅(VO₄)₃Cl]-like precipitates. With increasing V(V) content, the Pb(2+) binding affinity on the V-doped birnessites significantly increases, ascribing to both the formation of the vanadinite precipitates and decreased particle sizes of birnessite. These results are useful to design environmentally benign materials for treatment of metal-polluted water. Copyright © 2015 Elsevier B.V. All rights reserved.
Luminescent properties of Mn2+ doped apatite nanophosphors
NASA Astrophysics Data System (ADS)
Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.
2016-05-01
Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn2+ doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn2+ doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn2+ doped CLHA nanophosphors.
NASA Astrophysics Data System (ADS)
Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.
2013-12-01
Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.
Study of magnetic and electrical properties of nanocrystalline Mn doped NiO.
Raja, S Philip; Venkateswaran, C
2011-03-01
Diluted Magnetic Semiconductors (DMS) are intensively explored in recent years for its applications in spintronics, which is expected to revolutionize the present day information technology. Nanocrystalline Mn doped NiO samples were prepared using chemical co-precipitation method with an aim to realize room temperature ferromagnetism. Phase formation of the samples was studied using X-ray diffraction-Rietveld analysis. Scanning electron microscopy and Energy dispersive X-ray analysis results reveal the nanocrystalline nature of the samples, agglomeration of the particles, considerable particle size distribution and the near stoichiometry. Thermomagnetic curves confirm the single-phase formation of the samples up to 1% doping of Mn. Vibrating Sample Magnetometer measurements indicate the absence of ferromagnetism at room temperature. This may be due to the low concentration of Mn2+ ions having weak indirect coupling with Ni2+ ions. The lack of free carriers is also expected to be the reason for the absence of ferromagnetism, which is in agreement with the results of resistivity measurements using impedance spectroscopy. Arrhenius plot shows the presence of two thermally activated regions and the activation energy for the nanocrystalline Mn doped sample was found to be greater than that of undoped NiO. This is attributed to the doping effect of Mn. However, the dielectric constant of the samples was found to be of the same order of magnitude very much comparable with that of undoped NiO.
NASA Astrophysics Data System (ADS)
Narang, Sukhleen Bindra; Kaur, Pawandeep; Bahel, Shalini; Pubby, Kunal
2018-01-01
The present study reports on the microwave absorption characterization of Mn2+-Zr4+ substituted lanthanum strontium ferrites, Sr0.85La0.15(MnZr) x Fe12-2 x O19, where x = 0.0, 0.25, 0.50, 0.75 and 1.0 in the X- and Ku-band. The synthesized ferrites are characterized with regard to their electromagnetic properties such as complex permittivity ( {ɛ^' - jɛ^'' ) and complex permeability ( {μ^' - jμ^'' ) using vector network analysis in the 8.2-18 GHz frequency range. Real and imaginary parts of permittivity decrease with the increase in Mn-Zr concentration due to a reduction in electron hopping conduction and eddy current losses, respectively. Microwave permeability spectra are also affected by the doping. The amplitude of magnetic loss peak increases with the increase in doping except for the x = 1.0 composition. Two commonly used approaches, open-circuit and short-circuit, have been employed for the absorption analysis. The difference in the results of these two techniques is justified on the basis of the reflection mechanism. The presented experimental findings underline the potential of the synthesized compositions with Mn-Zr concentrations x = 0.25, 0.5 and 0.75 in the suppression of electromagnetic reflections and radar signatures.
Singh, Saurabh; Shinde, Nanasaheb M; Xia, Qi Xun; Gopi, Chandu V V M; Yun, Je Moon; Mane, Rajaram S; Kim, Kwang Ho
2017-10-14
Herein, we tailor the surface morphology of nickel-manganese-layered double hydroxide (NiMn-LDH) nanostructures on 3D nickel-foam via a step-wise cobalt (Co)-doping hydrothermal chemical process. At the 10% optimum level of Co-doping, we noticed a thriving tuned morphological pattern of NiMn-LDH nanostructures (NiCoMn-LDH (10%)) in terms of the porosity of the nanosheet (NS) arrays which not only improves the rate capability as well as cycling stability, but also demonstrates nearly two-fold specific capacitance enhancement compared to Co-free and other NiCoMn-LDH electrodes with a half-cell configuration in 3 M KOH, suggesting that Co-doping is indispensable for improving the electrochemical performance of NiMn-LDH electrodes. Moreover, when this high performing NiCoMn-LDH (10%) electrode is employed as a cathode material to fabricate an asymmetric supercapacitor (ASC) device with reduced graphene oxide (rGO) as an anode material, excellent energy storage performance (57.4 Wh kg -1 at 749.9 W kg -1 ) and cycling stability (89.4% capacitive retention even after 2500 cycles) are corroborated. Additionally, we present a demonstration of illuminating a light emitting diode for 600 s with the NiCoMn-LDH (10%)//rGO ASC device, evidencing the potential of the NiCoMn-LDH (10%) electrode in fabricating energy storage devices.
Oriented Attachment Is a Major Control Mechanism To Form Nail-like Mn-Doped ZnO Nanocrystals.
Patterson, Samuel; Arora, Priyanka; Price, Paige; Dittmar, Jasper W; Das, Vijay Kumar; Pink, Maren; Stein, Barry; Morgan, David Gene; Losovyj, Yaroslav; Koczkur, Kallum M; Skrabalak, Sara E; Bronstein, Lyudmila M
2017-12-26
Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn 2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.
Photoluminescence properties of Mn2+/Yb3+ co-doped oxyfluoride glasses for solar cells application
NASA Astrophysics Data System (ADS)
Yan, Ying; Chen, Zeng; Jia, Xiyang; Li, Shengjun
2018-01-01
Mn2+/Yb3+ co-doped oxyfluoride glasses were facilely synthesized in the SiO2-Al2O3-Na2O-CaF2 system. Partial crystallization processed during the preparation of the glasses, by which small amounts of CaF2 nano-crystals were formed. Under ultraviolet and blue (370-500 nm) light excitation, an efficient down-conversion involving the emission of near-infrared is realized in the Mn2+/Yb3+ co-doped oxyfluoride glasses. The near-infrared emission peaks mainly at 976 nm and secondarily at 1020 nm, which is a comfortable match with the band gap of c-Si. The variation in visible and near-infrared spectra and the decay curves of Mn2+:4T1 → 6A1 emission have been investigated to verify the possible energy transfer from Mn2+ ions to Yb3+ ions. On analyzing the energy transfer processes theoretically and experimentally, we propose that quantum cutting and down-shifting processes may occur simultaneously in the samples. We suggest that the Mn2+-Yb3+ co-doped materials can provide a novel direction to realize UV-Vis to NIR down-conversion for Si solar cells.
NASA Astrophysics Data System (ADS)
Kim, Kwang Joo; Kyung Kim, Hee; Ran Park, Young; Choi, Seung-li; Eun Kim, Sung; Jung Lee, Hee; Yun Park, Jae; Jin Kim, Sam
Effects of Mn and Cr substitution for Co on crystallographic and magnetic properties of inverse-spinel CoFe 2O 4 thin films were investigated. The crystal structure of the samples remain cubic for x<1 with the lattice constant ( a0) increasing with x for Mn doping and remaining constant for Cr doping. Tetrahedral Fe 2+ ions were detected in Cr xCo 1-xFe 2O 4 by Mössbauer spectroscopy while no such ions existed in Mn xCo 1-xFe 2O 4. The appearance of the tetrahedral Fe 2+ ions can be explained in terms of the Cr 3+ substitution for the octahedral Co 2+ sites with the resultant charge imbalance being compensated by a reduction of the tetrahedral Fe 3+ into Fe 2+. The observed variation in a0 and magnetic properties can be partly explained in terms of Mn 2+ and Cr 3+ substitution of octahedral sites in Mn xCo 1-xFe 2O 4 and Cr xCo 1-xFe 2O 4, respectively.
NASA Astrophysics Data System (ADS)
Okuda, T.; Fujii, Y.
2010-11-01
We have investigated magnetic, transport, and thermoelecric properties of polycrystalline Ca1-xSrxMn1-yMoyO3, and have tried to optimize the n-type thermoelectric response below room temperature. The Sr substitution enlarges a Mn-O-Mn bond angle and increases a crystal symmetry, which enhances one electron transfer of the electrons doped by the Mo substitution. This effect promotes the competition between correlations of a G-type antiferromagnetic (AF) order and a C-type AF order accompanying a 3d3z2-r2 orbital order, leading to the more complicated magnetic phase diagram of Ca0.75Sr0.25Mn1-yMoyO3 than that of CaMn1-yMoyO3. A subtle balance between the effects of the enhanced one electron transfer and the introduced disorder into the A(Ca)-site upon the transport properties enhances a dimensionless thermoelectric figure-of-merit ZT up to 0.03 at room temperature. However, a correlation of the 3d3z2-r2 orbital order is also promoted by the Sr substitution, which bounds a further enhancement of ZT.
Novel room temperature ferromagnetic semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Amita
2004-06-01
Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will bemore » higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2 + state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2 + state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.« less
Synthesis and characterization of Ca-doped LaMnAsO
NASA Astrophysics Data System (ADS)
Liu, Yong; Straszheim, Warren E.; Das, Pinaki; Islam, Farhan; Heitmann, Thomas W.; McQueeney, Robert J.; Vaknin, David
2018-05-01
We report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La3 + site by Ca2 +. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La1 -xCax)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤0.01 . Magnetic susceptibility of the parent and the x =0.002 (xnom=0.04 ) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of both the tetragonal (P 4 /n m m ) structure upon doping and the antiferromagnetic ordering temperature, TN=355 ±5 K.
Negative Thermal Expansion over a Wide Temperature Range in Fe-doped MnNiGe Composites
NASA Astrophysics Data System (ADS)
Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong
2018-02-01
Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of -285.23×10-6 K-1 (192-305 K) and -1167.09×10-6 K-1 (246-305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from -64.92×10-6 K-1 (125-274 K) to -4.73×10-6 K-1 (173-229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment.
Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs.
Xu, Chaoying; Zhou, Ronghui; He, Wenwei; Wu, Lan; Wu, Peng; Hou, Xiandeng
2014-04-01
Fingerprints are unique characteristics of an individual, and their imaging and recognition is a top-priority task in forensic science. Fast LFP (latent fingerprint) acquirement can greatly help policemen in screening the potential criminal scenes and capturing fingerprint clues. Of the two major latent fingerprints (LFP), eccrine is expected to be more representative than sebaceous in LFP identification. Here we explored the heavy metal-free Mn-doped ZnS quantum dots (QDs) as a new imaging moiety for eccrine LFPs. To study the effects of different ligands on the LFP image quality, we prepared Mn-doped ZnS QDs with various surface-capping ligands using QDs synthesized in high-temperature organic media as starting material. The orange fluorescence emission from Mn-doped ZnS QDs clearly revealed the optical images of eccrine LFPs. Interestingly, N-acetyl-cysteine-capped Mn-doped ZnS QDs could stain the eccrine LFPs in as fast as 5 s. Meanwhile, the levels 2 and 3 substructures of the fingerprints could also be simultaneously and clearly identified. While in the absence of QDs or without rubbing and stamping the finger onto foil, no fluorescent fingerprint images could be visualized. Besides fresh fingerprint, aged (5, 10, and 50 days), incomplete eccrine LFPs could also be successfully stained with N-acetyl-cysteine-capped Mn-doped ZnS QDs, demonstrating the analytical potential of this method in real world applications. The method was also robust for imaging of eccrine LFPs on a series of nonporous surfaces, such as aluminum foil, compact discs, glass, and black plastic bags.
Ning, Xuewen; Wang, Xixin; Yu, Xiaofei; Zhao, Jianling; Wang, Mingli; Li, Haoran; Yang, Yang
2016-01-01
Mn-doped TiO2 micro/nanostructure porous film was prepared by anodizing a Ti-Mn alloy. The film annealed at 300 °C yields the highest areal capacitance of 1451.3 mF/cm2 at a current density of 3 mA/cm2 when used as a high-performance supercapacitor electrode. Areal capacitance retention is 63.7% when the current density increases from 3 to 20 mA/cm2, and the capacitance retention is 88.1% after 5,000 cycles. The superior areal capacitance of the porous film is derived from the brush-like metal substrate, which could greatly increase the contact area, improve the charge transport ability at the oxide layer/metal substrate interface, and thereby significantly enhance the electrochemical activities toward high performance energy storage. Additionally, the effects of manganese content and specific surface area of the porous film on the supercapacitive performance were also investigated in this work. PMID:26940546
NASA Astrophysics Data System (ADS)
Amaral, Fábio A.; Bocchi, Nerilso; Brocenschi, Ricardo F.; Biaggio, Sonia R.; Rocha-Filho, Romeu C.
The doped and milled spinels Li 1.05M 0.02Mn 1.98O 3.98N 0.02 (M = Ga 3+, Al 3+ or Co 3+; N = S 2- or F -) are studied aiming at obtaining an improved charge/discharge cycling performance. These spinels are prepared by a solid-state reaction among the precursors ɛ-MnO 2, LiOH, and the respective oxide/salt of the doping ions at 750 °C for 72 h and milled for 30 min. The obtained spinels are characterized by XRD, SEM, and determinations of the average manganese valence n. In the charge and discharge tests, the doped spinels present outstanding initial values of the specific discharge capacity C (117-126 mA h g -1), decreasing in the following order: C(Li 1.05Al 0.02Mn 1.98S 3.02O 3.98) > C(Li 1.05Al 0.02Mn 1.98F 3.02O 3.98) > C(Li 1.05Ga 0.02Mn 1.98S 3.02O 3.98) > C(Li 1.05Ga 0.02Mn 1.98F 3.02O 3.98) > C(Li 1.05Co 0.02Mn 1.98S 3.02O 3.98) > C(Li 1.05Co 0.02Mn 1.98F 3.02O 3.98). The doped spinel Li 1.05Ga 0.02Mn 1.98S 3.02O 3.98 presents an excellent electrochemical performance, with a low capacity loss even after 300 charge and discharge cycles (from 120 to 115 mA h g -1 or 4%).
NASA Astrophysics Data System (ADS)
Elyana, E.; Mohamed, Z.; Kamil, S. A.; Supardan, S. N.; Chen, S. K.; Yahya, A. K.
2018-02-01
Ru doping in charge-ordered Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) manganites was studied to investigate its effect on structure, electrical transport, magnetic properties, and magnetotransport properties. DC electrical resistivity (ρ), magnetic susceptibility, and χ' measurements showed that sample x = 0 exhibits insulating behavior within the entire temperature range and antiferromagnetic (AFM) behavior below the charge-ordering (CO) transition temperature TCO of 221 K. Ru4+ substitution (x>0.01) suppressed the CO state, which resulted in the revival of paramagnetic to ferromagnetic (FM) transition at the Curie temperature Tc, increasing from 120 K (x = 0.01) to 193 K (x = 0.1). Deviation from the Curie-Weiss law above Tc in the 1/χ' versus T plot for x = 0.01 doped samples indicated the existence of Griffiths phase with Griffith temperature at 169 K. Electrical resistivity measurements showed that Ru4+ substitution increased the metallic-to-insulating transition temperature TMI from 144 K (x = 0.01) to 192 K (x = 0.05) due to enhanced double-exchange mechanism, but TMI decreased to 176 K (x = 0.1) probably due to the existence of AFM clusters within the FM domain. The present work also discussed the possible theoretical models at the resistivity curve of Pr0.75Na0.25Mn1-xRuxO3 (x = 0-0.1) for the entire temperature range.
Interplay of local structure, charge, and spin in bilayered manganese perovskites
NASA Astrophysics Data System (ADS)
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; Kapusta, Czesław; Mitchell, John F.
2018-03-01
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. Here, we show results of high-energy resolution x-ray absorption and emission spectroscopies on a La2 -2 xSr1 +2 xMn2O7 family of bilayered manganites in a broad doping range (0.5 ≤x ≤1 ). We established a relation between local Mn charge and Mn-O distances as a function of doping. Based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.
AlMn Transition Edge Sensors for Advanced ACTPol
NASA Technical Reports Server (NTRS)
Li, Dale; Austermann, Jason E.; Beall, James A.; Tucker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes;
2016-01-01
Advanced ACTPol (Adv ACT) will use an array of multichroic polarization sensitive AIMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.
Microstructure and fracture toughness of Mn-stabilized cubic titanium trialuminide
NASA Astrophysics Data System (ADS)
Zbroniec, Leszek Ireneusz
This thesis project is related to the fracture toughness aspects of the mechanical behavior of the selected Mn-modified cubic Ll2 titanium trialuminicles. Fracture toughness was evaluated using two specimen types: Single-Edge-Precracked-Beam (SEPB) and Chevron-Notched-Beam (CNB). The material tested was in cast, homogenized and HIP-ed condition. In the preliminary stage of the project due to lack of the ASTM Standard for fracture toughness testing of the chevron-notched specimens in bending the analyses of the CNB configuration were done to establish the optimal chevron notch dimensions. Two types of alloys were investigated: (a) boron-free and boron doped low-Mn (9at.% Mn), as well as (b) boron-free and boron-doped high-Mn (14at.% Mn). Toughness was investigated in the temperature range from room temperature to 1000°C and was calculated from the maximum load. It has been found that toughness of coarse-grained "base" 9Mn-25Ti alloy exhibits a broad peak at the 200--500°C temperature range and then decreases with increasing temperature, reaching its room temperature value at 10000°C. However, the work of fracture (gammaWOF) and the stress intensity factor calculated from it (KIWOF) increases continuously with increasing temperature. Also the fracture mode dependence on temperature has been established. To understand the effect of environment on the fracture toughness of coarse-grained "base", boron-free 9Mn-25Ti alloy, the tests were carried out in vacuum (˜1.3 x 10-5 Pa), argon, oxygen, water and liquid nitrogen. It has been shown that fracture toughness at ambient temperature is not affected by the environments containing moisture (water vapor). It seems that at ambient temperatures these materials are completely immune to the water-vapor hydrogen embrittlement and their cause of brittleness is other than environment. To explore the influence of the grain size on fracture toughness the fracture toughness tests were also performed on the dynamically recrystallized "base", boron-free 9Mn-25Ti material with the average grain size of 45 mum. Further refinement of the grain size was obtained by ball-milling of powders in order to obtain a nanostructure material. These were subsequently consolidated by hot pressing with the objective of retaining the nanostructure to the largest extent possible. The estimated grain size of the powder compact was ˜50--200 mum. The indentation microcracking fracture toughness measurements were performed on the powder compacts. It has been found that fracture toughness is independent of the grain size in the range ˜1300--45 mum and that for the finest grains (˜50--200 mum) it drops substantially and is equal to half of that for coarse-grained material. A beneficial effect of boron doping, high-(Mn+Ti) concentration and combination of both, on the fracture toughness was observed at room and elevated temperatures. The addition of boron to a "base" 9at.% Mn-25at.% Ti trialuminicle improves the room temperature fracture toughness by 25--50%. Addition of boron to a high (Mn+Ti) trialuminide improves the room temperature fracture toughness by 100% with respect to a "base" 9Mn-25Ti alloy. Depending on the Mn+Ti concentrations and the level of boron doping, improvements of fracture toughness at 200--600°C and 800--1000°C ranges are also observed.
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huon, A.; Lee, D.; Herklotz, A.
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
Huon, A.; Lee, D.; Herklotz, A.; ...
2017-09-18
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
NASA Astrophysics Data System (ADS)
Xia, Weiren; Wu, Heng; Xue, Piaojie; Zhu, Xinhua
2018-05-01
We report on microstructural, magnetic, and optical properties of Pr-doped perovskite manganite (La1 - xPrx)0.67Ca0.33MnO3 (LPCMO, x = 0.0-0.5) nanoparticles synthesized via sol-gel process. Structural characterizations (X-ray and electron diffraction patterns, (high resolution) TEM images) provide information regarding the phase formation and the single-crystalline nature of the LPCMO systems. X-ray and electron diffraction patterns reveal that all the LPCMO samples crystallize in perovskite crystallography with an orthorhombic structure ( Pnma space group), where the MnO6 octahedron is elongated along the b axis due to the Jahn-Teller effect. That is confirmed by Raman spectra. Crystallite sizes and grain sizes were calculated from XRD and TEM respectively, and the lattice fringes resolved in the high-resolution TEM images of individual LPCMO nanoparticle confirmed its single-crystalline nature. FTIR spectra identify the characteristic Mn-O bond stretching vibration mode near 600 cm- 1, which shifts towards high wavenumbers with increasing post-annealing temperature or Pr-doping concentration, resulting in further distortion of the MnO6 octahedron. XPS revealed dual oxidation states of Mn3+ and Mn4+ in the LPCMO nanoparticles. UV-vis absorption spectra confirm the semiconducting nature of the LPCMO nanoparticles with optical bandgaps of 2.55-2.71 eV. Magnetic measurements as a function of temperature and magnetic field at field cooling and zero-field cooling modes, provided a Curie temperature around 230 K, saturation magnetization of about 81 emu/g, and coercive field of 390 Oe at 10 K. Such magnetic properties and the semiconducting nature of the LPCMO nanoparticles will make them as suitable candidate for magnetic semiconductor spintronics.
Polar-antipolar transition and weak ferromagnetism in Mn-doped Bi0.86La0.14FeO3
NASA Astrophysics Data System (ADS)
Khomchenko, V. A.; Karpinsky, D. V.; Troyanchuk, I. O.; Sikolenko, V. V.; Többens, D. M.; Ivanov, M. S.; Silibin, M. V.; Rai, R.; Paixão, J. A.
2018-04-01
Having been considered as a prime example of a room-temperature magnetoelectric multiferroic, BiFeO3 continues to attract much interest. Since functional properties of this material can be effectively influenced by chemical, electrical, magnetic, mechanical and thermal stimuli, it can serve as a model for the investigation of cross-coupling phenomena in solids. Special attention is currently paid to the study of chemical pressure-driven magneto-structural transformations. In this paper, we report on the effect of the Mn doping on the crystal structure and magnetic behavior of the Bi1‑x La x FeO3 multiferroics near their polar-antipolar (antiferromagnetic-weak ferromagnetic) phase boundary. Synchrotron x-ray and neutron powder diffraction measurements of the Bi0.86La0.14Fe1‑x Mn x O3 (x = 0.05, 0.1, 0.15) compounds have been performed. The diffraction data suggest that the Mn substitution results in the suppression of the ferroelectric polarization and gives rise to the appearance of the antiferroelectric (generally, PbZrO3-related) phase characteristic of the phase diagrams of the Bi1‑x RE x FeO3 (RE = rare-earth) systems. Depending on the Mn concentration (determining phase composition of the Bi0.86La0.14Fe1‑x Mn x O3 samples at room temperature), either complete or partial revival of the polar phase can be observed with increasing temperature. Magnetic measurements of the samples indicate that the Mn doping affects the stability of the cycloidal antiferromagnetic order specific to the polar phase, thus resulting in the formation of a ferroelectric and weak ferromagnetic state.
Curie-Weiss behavior of Y1-xSrxMnO3 (x = 0 and 0.03)
NASA Astrophysics Data System (ADS)
Thakur, Rajesh K.; Thakur, Rasna; Gaur, N. K.; Bharathi, A.; Kaurav, N.; Okram, G. S.
2015-06-01
The effect of bivalent cation Sr-doping on magnetic properties in multiferroic YMnO3 manganites was systemically studied by DC magnetic measurements. Both of the reported samples were prepared by solid-state reaction method with composition Y1-xSrxMnO3 (x = 0.00 and 0.03). The X-ray diffraction (XRD) results show that the compounds are synthesized in hexagonal crystal structure with space group P63cm (JCPDS: 25-1079) and slight increase in the lattice parameter is observed with strontium doping. The magnetisation versus temperature curve shows no clear anomaly near the antiferromagnetic transition temperature (TN), however from the magnetic measurements at 1000Oe a slight increase in the magnetisation is clearly witnessed with increasing Stront ium content to the Y-site.
Micelle-templated composite quantum dots for super-resolution imaging.
Xu, Jianquan; Fan, Qirui; Mahajan, Kalpesh D; Ruan, Gang; Herrington, Andrew; Tehrani, Kayvan F; Kner, Peter; Winter, Jessica O
2014-05-16
Quantum dots (QDs) have tremendous potential for biomedical imaging, including super-resolution techniques that permit imaging below the diffraction limit. However, most QDs are produced via organic methods, and hence require surface treatment to render them water-soluble for biological applications. Previously, we reported a micelle-templating method that yields nanocomposites containing multiple core/shell ZnS-CdSe QDs within the same nanocarrier, increasing overall particle brightness and virtually eliminating QD blinking. Here, this technique is extended to the encapsulation of Mn-doped ZnSe QDs (Mn-ZnSe QDs), which have potential applications in super-resolution imaging as a result of the introduction of Mn(2+) dopant energy levels. The size, shape and fluorescence characteristics of these doped QD-micelles were compared to those of micelles created using core/shell ZnS-CdSe QDs (ZnS-CdSe QD-micelles). Additionally, the stability of both types of particles to photo-oxidation was investigated. Compared to commercial QDs, micelle-templated QDs demonstrated superior fluorescence intensity, higher signal-to-noise ratios, and greater stability against photo-oxidization,while reducing blinking. Additionally, the fluorescence of doped QD-micelles could be modulated from a bright 'on' state to a dark 'off' state, with a modulation depth of up to 76%, suggesting the potential of doped QD-micelles for applications in super-resolution imaging.
NASA Astrophysics Data System (ADS)
Wei, Jianglin; Lan, Mu; Zhang, Xi; Xiang, Gang
2017-07-01
Mn-doped SixGe1-x nanowires (NWs) with different Ge concentrations have been studied by first-principles calculations. It is found that the spin dependent energy bands of the NWs show rich variations both in bandgap width and type (from indirect to direct) as the Ge concentration changes. The Mn-doped SixGe1-x NWs exhibit half-metallic characteristics for all Ge concentrations, and the ground states of the NWs are found to be ferromagnetic (FM). The net magnetization mapping and spin density of states calculations reveal that Mn 3d electrons have a strong hybridization effect with nearest Ge 4p electrons, which results in the Ge’s nontrivial contribution to the magnetic moment of the NWs. Further magnon dispersion studies show that the magnetic order stability of the NWs is influenced by Ge concentrations. Finally, the dependence of the optical properties of the magnetic NWs on the Ge concentration is demonstrated. Our results suggest that Mn-doped SixGe1-x NWs may be useful in spintronic and optoelectronic devices.
Synthesis, self-assembly, and properties of Mn doped ZnO nanoparticles.
Barick, K C; Bahadur, D
2007-06-01
We report here a novel process to prepare Mn doped ZnO nanoparticles by a soft chemical route at low temperature. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and manganese acetate tetrahydrate heated under reflux to 160-175 degrees C using diethylene glycol as a solvent. X-ray diffraction analysis reveals that the Mn doped ZnO crystallizes in a wurtzite structure with crystal size of 15-25 nm. These nano size crystallites of Mn doped ZnO self-organize into polydisperse spheres in size ranging from 100-400 nm. Transmission Electron Microscopy image also shows that each sphere is made up of numerous nanocrystals of average diameter 15-25 nm. By means of X-ray photoelectron spectroscopy and electron spin resonance spectroscopy, we determined the valence state of Mn ions as 2+. These nanoparticles were found to be ferromagnetic at room temperature. Monodisperse porous spheres (approximately 250 nm) were obtained by size selective separation technique and then self-assembled in a closed pack periodic array through sedimentation with slow solvent evaporation, which gives strong opalescence in visible region.
Synthesis and magnetic properties of tin spinel ferrites doped manganese
NASA Astrophysics Data System (ADS)
El Moussaoui, H.; Mahfoud, T.; Habouti, S.; El Maalam, K.; Ben Ali, M.; Hamedoun, M.; Mounkachi, O.; Masrour, R.; Hlil, E. K.; Benyoussef, A.
2016-05-01
In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn1-xMnxFe2O4 with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn0.5Mn0.5Fe2O4 has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn0.5Mn0.5Fe2O4 with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn1-xMnxFe2O4; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases.
Competing exchanges and spin-phonon coupling in Eu(1-x)R(x)MnO3 (R=Y, Lu).
Mota, D A; Barcelay, Y Romaguera; Tavares, P B; Chaves, M R; Almeida, A; Oliveira, J; Ferreira, W S; Moreira, J Agostinho
2013-06-12
This work is focused on the phase diagrams and physical properties of Y-doped and Lu-doped EuMnO3. The differences in the corresponding phase boundaries in the (x,T) phase diagram could be overcome by considering a scaling of the Y(3+) and Lu(3+) concentrations to the tolerance factor. This outcome evidences that the tolerance factor is in fact a more reliable representative of the lattice deformation induced by doping. The normalization of the phase boundaries using the tolerance factor corroborates previous theoretical outcomes regarding the key role of competitive FM and AFM exchanges in determining the phase diagrams of manganite perovskites. However, significant differences in the nature and number of phases at low temperatures and concentrations could not be explained by just considering the normalization to the tolerance factor. The vertical phase boundary observed just for Lu-doped EuMnO3, close to 10% Lu, is understood by considering a low temperature Peierls-type spin-phonon coupling, which stabilizes the AFM-4 phase in Lu-doped EuMnO3.
Optical spectroscopy of disordered Ca3Ga2Ge4O14 crystal doped with manganese
NASA Astrophysics Data System (ADS)
Burkov, Vladimir; Alyabyeva, Liudmila; Mill, Boris; Kotov, Viacheslav
2018-05-01
Circular dichroism, absorption and luminescence spectra of single crystalline manganese doped calcium gallogermanate Ca3Ga2Ge4O14:Mn were investigated in 300-850 nm wavelength region in wide temperature range 8-300 K. Careful analysis of experimental results revealed presence of electron transitions typical for sixfold coordinated trivalent manganese ions with d4 electron configuration. Thus, manganese ions doping the crystal matrix of CCG incorporate into lattice in 1a octahedral site-positions substituting Ga3+ ions. The results obtained were compared with investigation of isostructural to CGG manganese doped langasite crystals, La3Ga5SiO14:Mn where dopant is in octahedral Mn4+ state.
Combined optical/MCD/ODMR investigations of photochromism in doubly-doped Bi12GeO20
NASA Astrophysics Data System (ADS)
Briat, B.; Borowiec, M. T.; Rjeily, H. B.; Ramaz, F.; Hamri, A.; Szymczak, H.
Electron paramagnetic resonance is detected optically via the change of magnetic circular dichroism under microwaves at 35 GHz. The technique is applied to Bi12GeO20 samples co-doped with vanadium and a second transition metal (Cr, Mn, Co, Cu). The optical and magnetic properties of several paramagnetic defects (V-Ge(4+) and Cr-Ge(4+)) are directly correlated. The basic photochromic processes occuring in samples doped with V, Mn, and Mn+V are explained. The V-Ge(4+/5+) level is positioned roughly 2.2 eV above the valence band.
Miao, Yanming; Zhang, Zhifeng; Gong, Yan; Yan, Guiqin
2014-09-15
MPA-capped Mn-doped ZnS QDs/DXR nanohybrids (MPA: 3-mercaptopropionic acid; QDs: quantum dots; DXR: cetyltrimethyl ammonium bromide) were constructed via photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for detection of DNA. DXR as a quencher will quench the RTP of Mn-doped ZnS QDs via PIET, thereby forming Mn-doped ZnS QDs/DXR nanohybrids and storing RTP. With the addition of DNA, it will be inserted into DXR and thus DXR will be competitively desorbed from the surface of Mn-doped ZnS QDs, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this, a new method for DNA detection was built. The sensor for DNA has a detection limit of 0.039 mg L(-1) and a linear range from 0.1 to 14 mg L(-1). The present QDs-based RTP method does not need deoxidants or other inducers as required by conventional RTP detection methods, and avoids interference from autofluorescence and the scattering light of the matrix that are encountered in spectrofluorometry. Therefore, this method can be used to detect the DNA content in body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.
Co-Precipitation Synthesis and Optical Properties of Mn4+-Doped Hexafluoroaluminate w-LED Phosphors
Geitenbeek, Robin G.; Meijerink, Andries
2017-01-01
Mn4+-activated hexafluoroaluminates are promising red-emitting phosphors for white light emitting diodes (w-LEDs). Here, we report the synthesis of Na3AlF6:Mn4+, K3AlF6:Mn4+ and K2NaAlF6:Mn4+ phosphors through a simple two-step co-precipitation method. Highly monodisperse large (~20 μm) smoothed-octahedron shaped crystallites are obtained for K2NaAlF6:Mn4+. The large size, regular shape and small size distribution are favorable for application in w-LEDs. All Mn4+-doped hexafluoroaluminates show bright red Mn4+ luminescence under blue light excitation. We compare the optical properties of Na3AlF6:Mn4+, K3AlF6:Mn4+ and K2NaAlF6:Mn4+ at room temperature and 4 K. The luminescence measurements reveal that multiple Mn4+ sites exist in M3AlF6:Mn4+ (M = Na, K), which is explained by the charge compensation that is required for Mn4+ on Al3+ sites. Thermal cycling experiments show that the site distribution changes after annealing. Finally, we investigate thermal quenching and show that the luminescence quenching temperature is high, around 460–490 K, which makes these Mn4+-doped hexafluoroaluminates interesting red phosphors for w-LEDs. The new insights reported on the synthesis and optical properties of Mn4+ in the chemically and thermally stable hexafluoroaluminates can contribute to the optimization of red-emitting Mn4+ phosphors for w-LEDs. PMID:29149083
Spin-polarized electron emitter: Mn-doped GaN nanotubes and their arrays
NASA Astrophysics Data System (ADS)
Hao, Shaogang; Zhou, Gang; Wu, Jian; Duan, Wenhui; Gu, Bing-Lin
2004-03-01
The influences from the doping magnetic atom, Mn, on the geometry, electronic properties, and spin-polarization characteristics are demonstrated for open armchair gallium nitrogen (GaN) nanotubes and arrays by use of the first-principles calculations. The interaction between dangling bonds of Ga (Mn) and N atoms at the open-end promotes the self-close of the tube mouth and formation of a more stable open semicone top. Primarily owing to hybridization of Mn 3d and N 2p orbitals, one Mn atom introduces several impurity energy levels into the original energy gap, and the calculated magnetic moment is 4μB. The electron spin polarizations in the field emission are theoretically evaluated. We suggest that armchair open GaN nanotube arrays doped with a finite number of magnetic atoms may have application potential as the electron source of spintronic devices in the future.
Synthesis and characterization of Ca-doped LaMnAsO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Straszheim, Warren E.; Das, Pinaki
Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less
The effect of cation doping on spinel LiMn 2O 4: a first-principles investigation
NASA Astrophysics Data System (ADS)
Shi, Siqi; Ouyang, Chuying; Wang, Ding-sheng; Chen, Liquan; Huang, Xuejie
2003-05-01
The effect of the cation doping on the electronic structure of spinel LiM yMn 2- yO 4 (M=Cr, Mn, Fe, Co and Ni) has been calculated by first-principles. Our calculation shows that new M-3d bands emerge in the density of states compared with that in LiMn 2O 4. Simultaneously, the new O-2p bands appear accordingly in almost the same energy range around the Fermi energy owing to the M-3d/O-2p interaction. It is found that the appearance of new O-2p bands in the lower energy position results in a higher intercalation voltage. Consequently, the origin of higher intercalation voltage in LiM yMn 2- yO 4 can be ascribed to the lower O-2p level introduced by the doping cation M.
Synthesis and characterization of Ca-doped LaMnAsO
Liu, Yong; Straszheim, Warren E.; Das, Pinaki; ...
2018-05-18
Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less
High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates.
Cheng, Lina; Chen, Zhi-Gang; Ma, Song; Zhang, Zhi-dong; Wang, Yong; Xu, Hong-Yi; Yang, Lei; Han, Guang; Jack, Kevin; Lu, Gaoqing Max; Zou, Jin
2012-11-21
Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-level Mn doping induces significant lattice distortion and decreases the crystal lattice by 1.07% in the a axis and 3.18% in the c axis. A high ferromagnetic state with a Curie temperature of ~45 K is observed in these nanoplates due to Mn(2+) and Mn(3+) ion doping, which is a significant progress in the field of electronics and spintronics.
Interplay of local structure, charge, and spin in bilayered manganese perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less
Interplay of local structure, charge, and spin in bilayered manganese perovskites
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; ...
2018-03-27
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less
NASA Astrophysics Data System (ADS)
Ming, Lei; Zhang, Bao; Cao, Yang; Zhang, Jia-Feng; Wang, Chun-Hui; Wang, Xiao-Wei; Li, Hui
2018-04-01
The Li1.2Mn0.54-xNbxCo0.13Ni0.13O2-6xF6x (x=0, 0.01, 0.03, 0.05) is prepared by traditional solid-phase method, and the Nb and F ions have been successfully doped into Mn and O sites of layered materials Li1.2Mn0.54Co0.13Ni0.13O2, respectively. The incorporating Nb ion in Mn site could effectively restrain the migration of transtion metal ions during long-term cycling, and keep the stability of the crystal structure. The Li1.2Mn0.54-xNbxCo0.13Ni0.13O2-6xF6x shows suppressed voltage fade and higher capacity retention of 98.1 after 200 cycles at rate of 1 C. The replacement of O2- by the strongly electronegative F- was beneficial for suppressed the structure change of Li2MnO3 from the eliminating of oxygen in initial charge process. Therefore, the initial coulomb efficiency of doped Li1.2Mn0.54-xNbxCo0.13Ni0.13O2-6xF6x gets improved, which is higher than that of pure Li1.2Mn0.54Co0.13Ni0.13O2. In addition, the Nb and F co-doping could effectively enhance the transfer of lithium-ion and electrons, and thus improving rate performance.
Liu, Xiao; Gong, Hao; Wang, Tao; Guo, Hu; Song, Li; Xia, Wei; Gao, Bin; Jiang, Zhongyi; Feng, Linfei; He, Jianping
2018-03-02
Perovskite-type oxides based on rare-earth metals containing lanthanum manganate are promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. Perovskite-type LaMnO 3 shows excellent ORR performance, but poor OER activity. To improve the OER performance of LaMnO 3 , the element cobalt is doped into perovskite-type LaMnO 3 through a sol-gel method followed by a calcination process. To assess electrocatalytic activities for the ORR and OER, a series of LaMn 1-x Co x O 3 (x=0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) perovskite oxides were synthesized. The results indicate that the amount of doped cobalt has a significant effect on the catalytic performance of LaMn 1-x Co x O 3 . If x=0.3, LaMn 0.7 Co 0.3 O 3 not only shows a tolerable electrocatalytic activity for the ORR, but also exhibits a great improvement (>200 mV) on the catalytic activity for the OER; this indicates that the doping of cobalt is an effective approach to improve the OER performance of LaMnO 3 . Furthermore, the results demonstrate that LaMn 0.7 Co 0.3 O 3 is a promising cost-effective bifunctional catalyst with high performance in the ORR and OER for application in hybrid Li-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dong, Jinyang; Lu, Gang; Wu, Fan; Xu, Chenxi; Kang, Xiaohong; Cheng, Zhiming
2018-01-01
A flower-like MnO2 nanocomposite embedded in nitrogen-doped graphene (NG-MnO2) is fabricated by a hydrothermal method. It is a mesoporous nanomaterial with a pore size of approximately 0.765 cm3 g-1 and specific surface area of 201.8 m2 g-1. NG-MnO2 exhibits a superior average specific capacitance of 220 F g-1 at 0.5 A g-1 and a preferable capacitance of 189.1 F g-1, even at 10 A g-1. After 1000 cycles, over 98.3% of the original specific capacitance retention of the NG-MnO2 electrode is maintained, and it can even activate a red light emitting diode (LED) after being charged, which indicates that it has excellent cycling stability as an electrode material. This prominent electrochemical performance is primarily attributed to the nitrogen doping and mesoporous structures of NG-MnO2, which can be attributed to its numerous electroactive sites as well as faster ion and electron transfer for redox reactions than general graphene-MnO2 nanocomposites (G-MnO2).
Min, Kyoungmin; Seo, Seung-Woo; Song, You Young; Lee, Hyo Sug; Cho, Eunseog
2017-01-18
First-principles calculations have been used to investigate the effects of Al and Mg doping on the prevention of degradation phenomena in Li(Ni 0.8 Co 0.1 Mn 0.1 )O 2 cathode materials. Specifically, we have examined the effects of dopants on the suppression of oxygen evolution and cation disordering, as well as their correlation. It is found that Al doping can suppress the formation of oxygen vacancies effectively, while Mg doping prevents the cation disordering behaviors, i.e., excess Ni and Li/Ni exchange, and Ni migration. This study also demonstrates that formation of oxygen vacancies can facilitate the construction of the cation disordering, and vice versa. Delithiation can increase the probabilities of formation of all defect types, especially oxygen vacancies. When oxygen vacancies are present, Ni can migrate to the Li site during delithiation. However, Al and Mg doping can inhibit Ni migration, even in structures with preformed oxygen defects. The analysis of atomic charge variations during delithiation demonstrates that the degree of oxidation behavior in oxygen atoms is alleviated in the case of Al doping, indicating the enhanced oxygen stability in this structure. In addition, changes in the lattice parameters during delithiation are suppressed in the Mg-doped structure, which suggests that Mg doping may improve the lattice stability.
Band structure modification of the thermoelectric Heusler-phase TiFe2Sn via Mn substitution.
Zou, Tianhua; Jia, Tiantian; Xie, Wenjie; Zhang, Yongsheng; Widenmeyer, Marc; Xiao, Xingxing; Weidenkaff, Anke
2017-07-19
Doping (or substitution)-induced modification of the electronic structure to increase the electronic density of states (eDOS) near the Fermi level is considered as an effective strategy to enhance the Seebeck coefficient, and may consequently boost the thermoelectric performance. Through density-functional theory calculations of Mn-substituted TiFe 2-x Mn x Sn compounds, we demonstrate that the d-states of the substituted Mn atoms induce a strong resonant level near the Fermi energy. Our experimental results are in good agreement with the calculations. They show that Mn substitution results in a large increase of the Seebeck coefficient, arising from an enhanced eDOS in Heusler compounds. The results prove that a proper substitution position and element selection can increase the eDOS, leading to a higher Seebeck coefficient and thermoelectric performance of ecofriendly materials.
Nakaya, Masafumi; Tanaka, Itaru; Muramatsu, Atsushi
2012-12-01
In this study, the random dope of Mn into CdS nanoparticles in zincblende phase has been carried out under the mild reaction condition. The resulting nanoparticles were characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffractometer (XRD), UV-Vis spectrometer, PL spectrometer, and SQUID. EDX showed that the compositions of Mn doped CdS nanoparticles were readily controlled. TEM showed the particle sizes were not significantly affected by the compositions, retaining to be ca. 3 nm with a narrow size distribution. UV-Vis and PL spectra of the resulting nanoparticles showed the intra-Mn level may be affected by the quantum size effect. SQUID measurement showed that the resulting nanoparticles showed diamagnetism, paramagnetism and superparamagnetism dependent on Mn content.
Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties
NASA Astrophysics Data System (ADS)
Wang, Xinjuan; Zhang, Qinglin; Zou, Bingsuo; Lei, Aihua; Ren, Pinyun
2011-10-01
Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn 2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.
NASA Astrophysics Data System (ADS)
Ramezanpour, B.; Mahmoudi Chenari, Hossein; Sadigh, M. Khadem
2017-11-01
In this work, undoped and Mn-doped PbS/PVA nanocomposite films have been successfully fabricated using the simple solution-casting method. Their crystalline structure was examined by X-ray powder diffraction (XRD). XRD pattern show the formation of cubic structure of PbS for Mn-doped PbS in PVA matrix. Microstructure parameters of Mn-doped PbS/PVA nanocomposite films were obtained through the size-strain plot (SSP) method. The thermal stability of the nanocomposite film was determined using Thermogravimetric analysis (TGA). Furthermore, Z-scan technique was used to investigate the optical nonlinearity of nanocomposite films by a continuous-wave laser irradiation at the wavelength of 655 nm. This experimental results show that undoped PbS/PVA nanocomposite films indicate high nonlinear absorption characteristics. Moreover, the nanocomposite films with easy preparation characteristics, high thermal stability and nonlinear absorption properties can be used as an active element in optics and photonic devices.
NASA Astrophysics Data System (ADS)
Mohamed, R. M.; Shawky, Ahmed
2018-03-01
Hexagonal ZnO nanoparticles doped with Mn and supported with a minor amount of carbon nanotubes (CNTs) were synthesized through a simple coprecipitation-ultrasonication process with high yield. The effect of Mn doping, as well as CNTs addition on structure, surface morphology and texture, optical and electronic properties, was studied. We found that just 1% Mn doping and 1% CNT addition on ZnO showed the best crystallinity, highest surface area, improved visible light absorption, and a lowest estimated band gap of 2.6 eV with minimum charge recombination as revealed from photoluminescence spectra. The application of the optimum composition of the synthesized sample for the photodegradation of malachite green dye showed enhanced photocatalytic activity > 95% under visible light irradiation within 120 min at a minimum dosage of 0.1 g L-1 without any using of hole scavenger or changing the pH. This work highlighting the humble preparation procedure and develops photocatalysis research for real industrial applications.
Manganese-Doped One-Dimensional Organic Lead Bromide Perovskites with Bright White Emissions.
Zhou, Chenkun; Tian, Yu; Khabou, Oussama; Worku, Michael; Zhou, Yan; Hurley, Joseph; Lin, Haoran; Ma, Biwu
2017-11-22
Single-component white-emitting phosphors are highly promising to simplify the fabrication of optically pumped white light-emitting diodes. To achieve white emission, precise control of the excited state dynamics is required for a single-component system to generate emissions with different energies in the steady state. Here, we report a new class of white phosphors based on manganese (Mn)-doped one-dimensional (1D) organic lead bromide perovskites. The bright white emission is the combination of broadband blue emission from the self-trapped excited states of the 1D perovskites and red emission from the doped Mn 2+ ions. Because of the indirect nature of the self-trapped excited states in 1D perovskites, there is no energy transfer from these states to the Mn 2+ ions, resulting in an efficient dual emission. As compared to the pristine 1D perovskites with bluish-white emission, these Mn-doped 1D perovskites exhibit much higher color rendering index of up to 87 and photoluminescence quantum efficiency of up to 28%.
NASA Astrophysics Data System (ADS)
Abazari, M.; Akdoǧan, E. K.; Safari, A.
2008-05-01
Single phase, epitaxial, ⟨001⟩ oriented, undoped and 1mol% Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films of 400nm thickness were synthesized on SrRuO3 coated SrTiO3. Such films exhibit well saturated hysteresis loops and have a spontaneous polarization (Ps) of 10μC /cm2, which is a 150% higher over the Ps of the undoped composition. The coercive field of 1mol% Mn doped films is 13kV/cm. Mn-doping results in three orders of magnitude decrease in leakage current above 50kV/cm electric field, which we attribute to the suppression of intrinsic p-type conductivity of undoped films by Mn donors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bijuan; Deng, Zheng; Li, Wenmin
2016-08-28
We report the synthesis and characterization of a new bulk diluted ferromagnetic semiconductor via Na and Mn co-doping in SrCd{sub 2}As{sub 2} with a hexagonal CaAl{sub 2}Si{sub 2}-type structure. Together with carrier doping via (Sr,Na) substitution, spin doping via (Cd,Mn) substitution results in ferromagnetic order with Curie temperature of T{sub C} up to 13 K. Negative magnetoresistance is assigned to weak localization at low temperatures, where the magnetization of samples becomes saturated. The hexagonal structure of (Sr{sub 1−x}Na{sub x})(Cd{sub 1−x}Mn{sub x}){sub 2}As{sub 2} can be acted as a promising candidate for spin manipulations owing to its relatively small coercive field ofmore » less than 24 Oe.« less
NASA Astrophysics Data System (ADS)
Chen, Bijuan; Deng, Zheng; Li, Wenmin; Gao, Moran; Liu, Qingqing; Gu, C. Z.; Hu, F. X.; Shen, B. G.; Frandsen, Benjamin; Cheung, Sky; Lian, Liu; Uemura, Yasutomo J.; Ding, Cui; Guo, Shengli; Ning, Fanlong; Munsie, Timothy J. S.; Wilson, Murray Neff; Cai, Yipeng; Luke, Graeme; Guguchia, Zurab; Yonezawa, Shingo; Li, Zhi; Jin, Changqing
2016-11-01
We report the discovery of a new fluoride-arsenide bulk diluted magnetic semiconductor (Ba,K)F(Zn,Mn)As with the tetragonal ZrCuSiAs-type structure which is identical to that of the “1111” iron-based superconductors. The joint hole doping via (Ba,K) substitution & spin doping via (Zn,Mn) substitution results in ferromagnetic order with Curie temperature up to 30 K and demonstrates that the ferromagnetic interactions between the localized spins are mediated by the carriers. Muon spin relaxation measurements confirm the intrinsic nature of the long range magnetic order in the entire volume in the ferromagnetic phase. This is the first time that a diluted magnetic semiconductor with decoupled spin and charge doping is achieved in a fluoride compound. Comparing to the isostructure oxide counterpart of LaOZnSb, the fluoride DMS (Ba,K)F(Zn,Mn)As shows much improved semiconductive behavior that would be benefit for further application developments.
Effects of lattice deformation on magnetic properties of electron-doped La0.8Hf0.2MnO3 thin films
NASA Astrophysics Data System (ADS)
Wu, Z. P.; Jiang, Y. C.; Gao, J.
2013-05-01
The lattice deformation effects on electric and magnetic properties of electron-doped La0.8Hf0.2MnO3 (LHMO) thin films have been systematically investigated. LHMO films with various thicknesses (15 nm, 40 nm, and 80 nm) were grown on (001) SrTiO3 and (001) LaAlO3 substrates, which induces in-plane tensile and compressive biaxial stress, respectively. The metal-insulator phase transition temperature (TP) and magnetoresistance (MR) effect show a strong dependence on film thickness. TP increases with a decrease in thickness and is enhanced as the lattice strain rises, regardless of whether it is tensile or compressive. The maximum MR ratio is suppressed by reduction of the film thickness. These anomalous phenomena may be attributed to the competition between the strain induced modification of the Mn-O bond length and the eg orbital stability.
NASA Astrophysics Data System (ADS)
Jabeen, Uzma; Adhikari, Tham; Pathak, Dinesh; Shah, Syed Mujtaba; Nunzi, Jean-Michel
2018-04-01
Cadmium sulphide (CdS) and Mn-doped CdS nanocrystals were synthesized by co-precipitation method. The nanocrystals were characterized by Fluorescence, Fourier Transformed Infra-red Spectrometer (FTIR), UV-Visible, X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), Field Emission Scanning Electron Microscope (FESEM), and High Resolution Transmission Electron Microscope (HRTEM). A considerable blue shift of absorption band with respect to the cadmium sulphide was observed by the Mn concentration (0.5 M) in the doped sample with decreasing the size of nanocrystals. Other reason for this may be Mn doping. Subsequently the band gap was altered from 2.11 to 2.21 eV due to quantum confinement effect. Scanning electron microscope supplemented with EDAX was operated to find grain size and chemical composition of the synthesized nanomaterials. The PL spectrum of Mn-doped CdS nanocrystals displays three PL bands the first one, within the range of 500 nm and the second band at 537 nm, and the third one around 713 nm is labelled red band emission due to attributed to a 4T1→6A1 transition within the 3d shell of divalent manganese. XRD analysis showed that the material was in cubic crystalline state. A comparative study of surfaces of un-doped and metal doped CdS nanocrystals were investigated using X-ray Photoelectron Spectroscopy (XPS). The synthesized nanomaterial in combination with polymer, poly (3-hexyl thiophene) was operated in the construction of photovoltaic cells. The photovoltaic devices with CdS nanocrystals exhibited power conversion efficiency of 0.34% without annealing and 0.38% with annealing. However, the power conversion efficiency was enhanced by a factor of 0.35 without annealing and 0.42 with annealing with corporation of Mn impurity in CdS lattice. Atomic Force Microscopy was employed for morphology and packing behavior of blend of nanocrystals with organic polymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choura Maatar, S.; M’nassri, R.; Institut NEEL, CNRS, B.P.166, 38042 Grenoble Cedex 9
2015-05-15
In this work, we report the effect of Na doping on the structural, magnetic and magnetocaloric properties in La{sub 0.8}Ca{sub 0.2−x}Na{sub x}MnO{sub 3} powder samples. Our polycristalline samples have been synthesized using the solid-state reaction method at high temperatures. The parent compound La{sub 0.8}Ca{sub 0.2}MnO{sub 3} crystallizes in the orthorhombic system with Pbnm space group. Na doping induces a structural transition from orthorhombic (Pbnm space group) to rhombohedral (R-3C space group) symmetry. Magnetization measurements versus temperature in a magnetic applied field of 50 mT showed that all our investigated samples display a paramagnetic-ferromagnetic transition with decreasing temperature. The Curie temperaturemore » T{sub C} increases with Na content from 240 K for x=0 to 330 K for x=0.2. A large magnetocaloric effect has been observed in all samples, the maximum entropy change, |∆S{sub M}|{sub max}, shifts to smaller values with increasing Na content, from4.56 J/kg K (x=0.05) to 2.3 J/kg K (x=0.2) under a magnetic field change ∆µ{sub 0}H of 2 T. For the same applied magnetic field of 2 T, the Relative Cooling Power (RCP) values are found to be constant around 91 J/kg. - Graphical abstract: Sodium doping induces an increase of T{sub C} from 240 K for x=0 to 330 K for x=0.2. - Highlights: • La{sub 0.8}Ca{sub 0.2−x}Na{sub x}MnO{sub 3} are synthesized using the ceramic method at high temperatures. • Na doping induces a structural transition from Pbnm to R-3C space group. • T{sub C} increases with Na content from 240 K for x=0 to 330 K for x=0.2. • RCP is constant around 91 J/kg for all compounds under 2 T.« less
Giri, Soumen; Ghosh, Debasis; Das, Chapal Kumar
2013-10-28
NiMnO3-nitrogen doped graphene composite has been synthesized by a simple hydrothermal method and its supercapacitor performance investigated. The composite exhibits a specific capacitance of 750.2 F g(-1) in 1 M Na2SO4 at a scan rate of 1 mV s(-1). Nitrogen insertion inside the carbon lattice plays a crucial role in the enhancement of the overall specific capacitance and its long-term stability. This reproducible and superior performance of NiMnO3-nitrogen doped graphene composite make it attractive as a candidate for energy storage materials.
Diluted magnetic semiconductors with narrow band gaps
NASA Astrophysics Data System (ADS)
Gu, Bo; Maekawa, Sadamichi
2016-10-01
We propose a method to realize diluted magnetic semiconductors (DMSs) with p - and n -type carriers by choosing host semiconductors with a narrow band gap. By employing a combination of the density function theory and quantum Monte Carlo simulation, we demonstrate such semiconductors using Mn-doped BaZn2As2 , which has a band gap of 0.2 eV. In addition, we found a nontoxic DMS Mn-doped BaZn2Sb2 , of which the Curie temperature Tc is predicted to be higher than that of Mn-doped BaZn2As2 , the Tc of which was up to 230 K in a recent experiment.
NASA Astrophysics Data System (ADS)
Ilyas, Usman; Rawat, R. S.; Tan, T. L.
2013-10-01
This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.
Curie-Weiss behavior of Y{sub 1-x}Sr{sub x}MnO{sub 3} (x = 0 and 0.03)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com; Thakur, Rasna; Gaur, N. K.
2015-06-24
The effect of bivalent cation Sr-doping on magnetic properties in multiferroic YMnO{sub 3} manganites was systemically studied by DC magnetic measurements. Both of the reported samples were prepared by solid-state reaction method with composition Y{sub 1−x}Sr{sub x}MnO{sub 3} (x = 0.00 and 0.03). The X-ray diffraction (XRD) results show that the compounds are synthesized in hexagonal crystal structure with space group P6{sub 3}cm (JCPDS: 25-1079) and slight increase in the lattice parameter is observed with strontium doping. The magnetisation versus temperature curve shows no clear anomaly near the antiferromagnetic transition temperature (T{sub N}), however from the magnetic measurements at 1000Oemore » a slight increase in the magnetisation is clearly witnessed with increasing Stront ium content to the Y-site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez-Hernández, L.; Estévez-Hernández, O.; Instituto de Ciencia y Tecnología de Materiales
Mn-doped ZnO (Mn{sub x}Zn{sub 1−x}O) nanoparticles were synthesized by the co-precipitation method and coated with isonipecotic acid as capping ligand. The structure, composition and morphology of the resulting nanomaterial were investigated by energy disperse X-ray analysis, X-ray diffraction, and transmission electron microscopy data. Such measurements showed that the solid obtained contains 6 at% of Mn and it is formed by a highly crystalline material with 3–5 nm range of crystallite size, and only a small elongation of its cell parameter with respect to undoped ZnO wurtzite unit cell. Information on the state of manganese atom in the Mn{sub x}Zn{sub 1−x}Omore » nanostructures formed was obtained from X-ray photoelectron (XPS) and electron energy loss (EELS) spectroscopies. XPS and EELS spectra are composed of four peaks, corresponding to two species of Mn(II) and signals from Mn(III) and Mn(IV). Such spectral data on the state of Mn in the material studied is consistent with the mapping of Mn distribution observed in recorded transmission electron microscopy images, which reveal presence of clusters of Mn atoms. Only a fraction of doping Mn atoms were found forming a solid solution with the host ZnO structure. The functionalization of the nanoparticles system with Isonipecotic acid shows that this molecule remains anchored to the nanoparticles surface mainly through its N basic site. The availability of free carboxylate groups in the capping molecule was tested by conjugation to type IV horseradish peroxidase. - Graphical abstract: State of Mn atoms in Mn-doped ZnO nanostructures prepared by the precipitation method, their capping with isonipecotic acid and subsequent conjugation to peroxidase. - Highlights: • State of manganese in manganese-doped zinc oxide nanoparticles. • Isonipecotic acid as surface modifier of ZnO nanoparticles. • Peroxidase conjugation to ZnO nanoparticles modified with isonipecotic acid.« less
Jing, Wenjie; Lu, Yuexiang; Wang, Feiyang; He, Liuying; Sun, Jingwei; Liu, Yueying
2018-05-12
A time-resolved phosphorescence (TRP) is applied to the highly sensitive determination of Fe(II) ions. The method is based on the use of a phosphorescent probe consisting of cysteine-bridged Mn-doped ZnS quantum dots (Mn/ZnS QDs). The presence of cysteine enhances the phosphorescence of the QDs and also increases the efficiency of quenching caused by Fe(II) ions. This results in strongly improved selectivity for Fe(II). The linear response is obtained in the concentration range of 50-1000 nM with a 19 nM detection limit. Phosphorescence is recorded at excitation/emission peaks of 301/602 nm. The interference of short-lived fluorescent and scattering background from the biological fluids is eliminated by using the TRP mode with a delay time of 200 μs. The determination of Fe(II) in human serum samples spiked at a 150 nM level gave a 92.4% recovery when using the TRP mode, but only 52.4% when using steady-state phosphorescence. This demonstrates that this probe along with TRP detection enables highly sensitive and accurate determination of Fe(II) in serum. Graphical abstract Schematic of a novel phosphorescent method for the detection of Fe 2+ ions based on cysteine-bridged Mn-doped ZnS quantum dots. The sensitivity of this assay greatly increases due to the addition of cysteine. Interferences by short-lived auto-fluorescence and the scattering light from the biological fluids is eliminated by using time-resolved phosphorescence mode.
Wu, Peng; He, Yu; Wang, He-Fang; Yan, Xiu-Ping
2010-02-15
Integrating various enzymes with nanomaterials provides various nanohybrids with new possibilities in biosensor applications. Furthermore, the enzymatic activity and stability are also improved due to the large surface area of nanomaterials. Here we report the conjugation of glucose oxidase (GOD) onto phosphorescent Mn-doped ZnS quantum dots (QDs) using 1-ethyl-3-(3-dimethylaminopropy)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as coupling reagents for glucose biosensing based on the effective quenching of the room temperature phosphorescence (RTP) of Mn-doped ZnS QDs by the H(2)O(2) generated from GOD-catalyzed oxidation of glucose. The obtained bioconjugate not only provided improved enzymatic performance with Michaelis-Menten constant of 0.70 mM but also favored biological applications because the phosphorescent detection mode avoided the interference from autofluorescence and scattering light from the biological matrix. In addition, the GOD-conjugated Mn-doped ZnS QDs showed better thermal stability in the temperature range of 20-80 degrees C. The GOD-Mn-doped ZnS QDs based RTP sensor for glucose gave a detection limit of 3 microM and two linear ranges from 10 microM to 0.1 mM and from 0.1 to 1 mM. The developed biosensor was successfully applied to the determination of glucose in real serum samples without the need for any complicated sample pretreatments.
Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites
Zhao, Wenjun; Sun, Ying; Liu, Yufei; Shi, Kewen; Lu, Huiqing; Song, Ping; Wang, Lei; Han, Huimin; Yuan, Xiuliang; Wang, Cong
2018-01-01
Fe-doped MnNiGe alloys were successfully synthesized by solid-state reaction. Giant negative thermal expansion (NTE) behaviors with the coefficients of thermal expansion (CTE) of −285.23 × 10−6 K−1 (192–305 K) and −1167.09 × 10−6 K−1 (246–305 K) have been obtained in Mn0.90Fe0.10NiGe and MnNi0.90Fe0.10Ge, respectively. Furthermore, these materials were combined with Cu in order to control the NTE properties. The results indicate that the absolute value of CTE gradually decreases with increasing Cu contents. In Mn0.92Fe0.08NiGe/x%Cu, the CTE gradually changes from −64.92 × 10−6 K−1 (125–274 K) to −4.73 × 10−6 K−1 (173–229 K) with increasing value of x from 15 to 70. The magnetic measurements reveal that the NTE behaviors in this work are strongly correlated with the process of the magnetic phase transition and the introduction of Fe atoms could also change the spiral anti-ferromagnetic (s-AFM) state into ferromagnetic (FM) state at low temperature. Our study launches a new candidate for controlling thermal expansion properties of metal matrix materials which could have potential application in variable temperature environment. PMID:29468152
Effect of Mn in Li3V2-xMnx(PO4)3 as High Capacity Cathodes for Lithium Batteries.
Park, Jae-Sang; Kim, Jongsoon; Park, Woon Bae; Sun, Yang-Kook; Myung, Seung-Taek
2017-11-22
Li 3 V 2-x Mn x (PO 4 ) 3 (x = 0, 0.05) cathode materials, which allow extraction of 3 mol of Li from the formula unit, were investigated to achieve a high energy density utilizing multielectron reactions, activated by the V 3+/5+ redox reaction. Structural investigation demonstrates that V 3+ was replaced by equivalent Mn 3+ , as confirmed by Rietveld refinement of the X-ray diffraction data and X-ray absorption near edge spectroscopy. The substitution simultaneously lowered the band gap energy from 3.4 to 3.2 eV, according to a density functional theory calculation. In addition to the effect of Mn doping, surface carbonization of Li 3 V 2-x Mn x (PO 4 ) 3 (x = 0, 0.05) dramatically increased the electric conductivity up to 10 -3 S cm -1 . As a result, the carbon-coated Li 3 V 2-x Mn x (PO 4 ) 3 (x = 0.05) delivered a high discharge (reduction) capacity of approximately 180 mAh g -1 at a current of 20 mA g -1 (0.1 C rate) with excellent retention, delivering approximately 163 mAh g -1 at the 200th cycle. Even at 50 C (10 A g -1 ), the electrode afforded a discharge capacity of 68 mAh g -1 and delivered approximately 104 mAh g -1 (1 C) at -10 °C with the help of Mn doping and carbon coating. The synergetic effects such as a lowered band gap energy by Mn doping and high electric conductivity associated with carbon coating are responsible for the superior electrode performances, including thermal properties with extremely low exothermic heat generation (<0.4 J g -1 for Li 0.02 V 1.95 Mn 0.05 (PO 4 ) 3 ), which is compatible with the layered high energy density of LiNi 0.8 Co 0.15 Al 0.05 O 2 and LiNi 0.8 Co 0.1 Mn 0.1 O 2 materials.
Yi, Ting-Feng; Li, Yan-Mei; Yang, Shuang-Yuan; Zhu, Yan-Rong; Xie, Ying
2016-11-30
Layered Li-rich, Co-free, and Mn-based cathode material, Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (0 ≤ x ≤ 0.05), was successfully synthesized by a coprecipitation method. All prepared samples have typical Li-rich layered structure, and Mg has been doped in the Li 1.17 Ni 0.25 Mn 0.58 O 2 material successfully and homogeneously. The morphology and the grain size of all material are not changed by Mg doping. All materials have a estimated size of about 200 nm with a narrow particle size distribution. The electrochemical property results show that Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (x = 0.01 and 0.02) electrodes exhibit higher rate capability than that of the pristine one. Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (x = 0.02) indicates the largest reversible capacity of 148.3 mAh g -1 and best cycling stability (capacity retention of 95.1%) after 100 cycles at 2C charge-discharge rate. Li 1.17 Ni 0.25-x Mn 0.58 Mg x O 2 (x = 0.02) also shows the largest discharge capacity of 149.2 mAh g -1 discharged at 1C rate at elevated temperature (55 °C) after 50 cycles. The improved electrochemical performances may be attributed to the decreased polarization, reduced charge transfer resistance, enhanced the reversibility of Li + ion insertion/extraction, and increased lithium ion diffusion coefficient. This promising result gives a new understanding for designing the structure and improving the electrochemical performance of Li-rich cathode materials for the next-generation lithium-ion battery with high rate cycling performance.
Ming, Lei; Zhang, Bao; Cao, Yang; Zhang, Jia-Feng; Wang, Chun-Hui; Wang, Xiao-Wei; Li, Hui
2018-01-01
The Li1.2Mn0.54−xNbxCo0.13Ni0.13O2−6xF6x (x = 0, 0.01, 0.03, 0.05) is prepared by traditional solid-phase method, and the Nb and F ions are successfully doped into Mn and O sites of layered materials Li1.2Mn0.54Co0.13Ni0.13O2, respectively. The incorporating Nb ion in Mn site can effectively restrain the migration of transition metal ions during long-term cycling, and keep the stability of the crystal structure. The Li1.2Mn0.54−xNbxCo0.13Ni0.13O2−6xF6x shows suppressed voltage fade and higher capacity retention of 98.1% after 200 cycles at rate of 1 C. The replacement of O2− by the strongly electronegative F− is beneficial for suppressed the structure change of Li2MnO3 from the eliminating of oxygen in initial charge process. Therefore, the initial coulombic efficiency of doped Li1.2Mn0.54−xNbxCo0.13Ni0.13O2−6xF6x gets improved, which is higher than that of pure Li1.2Mn0.54Co0.13Ni0.13O2. In addition, the Nb and F co-doping can effectively enhance the transfer of lithium-ion and electrons, and thus improving rate performance. PMID:29675405
Doping of epitaxial III-V semiconductors for optoelectronic and magnetoelectronic applications
NASA Astrophysics Data System (ADS)
Overberg, Mark Eddy
Doped III-V semiconducting materials were studied in this dissertation for use in optoelectronic and magnetoelectronic applications. The specific areas of use are emitters for fiber optic communication and room temperature ferromagnetic layers for spintronic devices. The general requirement for both application areas is the ability to heavily dope (or alloy) the III-Vs with the intended active element, while still maintaining good crystallinity and semiconducting properties. Four dopant/semiconductor systems were investigated: erbium in gallium nitride (GaN:Er), europium in gallium nitride (GaN:Eu), manganese in gallium nitride (GaMnN), and manganese in gallium phosphide (GaMnP). These materials were fabricated using variants of the molecular beam epitaxy (MBE) technique, where beams of the constituent elements are produced in a high vacuum environment. The technique allows for a wide variety of parameters to be adjusted during the material preparation. The materials were deposited on sapphire, gallium nitride, and gallium phosphide surfaces; with particular emphasis on the correlation between growth conditions and the final chemical, structural, morphological, electronic, optical, and magnetic properties. The materials were characterized using a variety of techniques. Results with the GaN:Er material indicated that several percent of Er could be successfully incorporated into the material, and that the optical emission could be increased by incorporating C impurities into the film. These impurities were found to increase the overall emission and decrease the quenching of the emission with temperature. Optical emission results for GaN:Eu indicated that this material produced a visible red emission that was brighter under optical excitation than the AlGaAs used in commercial red emitting devices. The dilute magnetic semiconductors n-GaMnN and p-GaMnP were produced for the first time by the MBE technique. The SQUID magnetometry and magnetotransport results for n-GaMnN indicated the presence of ferromagnetic ordering with a Curie temperature between 20 K and 25 K. Magnetic measurements of the p-GaMnP indicated the presence of ferromagnetic ordering to 250 K, far above the theoretically predicted value of 100 K. Similar results were also produced by the direct implantation of Mn into GaP.
Near Infrared Luminescence Properties of Mn(5+): Ca5(PO4)3F
NASA Technical Reports Server (NTRS)
Davis, Valetta R.; Hoemmerich, Uwe; Loutts, George B.
1997-01-01
We report a spectroscopic investigation of Mn(5+) doped Ca5(PO4)(sub 3)F or FAP. Mn(5+) doped crystals have recently attracted world wide attention for potential solid-state laser applications. Following optical excitation of Mn: FAP with the 600 nm output of a Nd: YAG OPO laser system, we observed a strong near infrared luminescence centered at around 1150 nm. The room temperature luminescence decay time was measured to be approximately 635 microseconds. We attribute the infrared luminescence to the(1)E yields (3)A2 transition of tetrahedrally coordinated Mn5+ ions located in a strong crystal field environment. Absorption, luminescence and lifetime data of Mn: FAP will be presented and discussed.
Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3.
Veverka, Pavel; Kaman, Ondřej; Knížek, Karel; Novák, Pavel; Maryško, Miroslav; Jirák, Zdeněk
2017-01-25
Rare-earth-doped ferromagnetic manganites La 0.63 RE 0.07 Sr 0.30 MnO 3 (RE = Gd, Tb, Dy, and Ho) are synthesized in the form of sintered ceramics and nanocrystalline phases with the mean size of crystallites ≈30 nm. The electronic states of the dopants are investigated by SQUID magnetometry and theoretically interpreted based on the calculations of the crystal field splitting of rare-earth energy levels. The samples show the orthorhombic perovskite structure of Ibmm symmetry, with a complete FM order of Mn spins in bulk and reduced order in nanoparticles. Non-zero moments are also detected at the perovskite A sites, which can be attributed to magnetic polarization of the rare-earth dopants. The measurements in external field up to 70 kOe show a standard Curie-type contribution of the spin-only moments of Gd 3+ ions, whereas Kramers ions Dy 3+ and non-Kramers ions Ho 3+ contribute by Ising moments due to their doublet ground states. The behaviour of non-Kramers ions Tb 3+ is anomalous, pointing to singlet ground state with giant Van Vleck paramagnetism. The Tb 3+ doping leads also to a notably increased coercivity compared to other La 0.63 RE 0.07 Sr 0.30 MnO 3 systems.
Synthesis and Thermoluminescence of ZnS:Mn2+ Nanoparticles
NASA Astrophysics Data System (ADS)
Zahedifar, M.; Taghavinia, N.; Aminpour, M.
2007-08-01
The controlled chemical method has been used for synthesis of Mn doped ZnS nanoparticles. Optical absorption studies showed that increasing of surfactant density, from 0.0001 to 0.5 mol/lit., causes the size of nanoparticles to decrease from 4.8 nm to about 3 nm and the band gap width to increase from 4.15 to 4.50 eV. Also increasing the temperature during the synthesis process caused the nanoparticle size to be increased. As a new result we observed a thermoluminescence (TL) glow peak at about 475 K, with its intensity depending on concentration of the Mn dopant. Activation energy of this glow peak was obtained to be about 0.6eV. A discussion of the obtained results is also presented.
Ryu, Jungho; Han, Guifang; Lee, Jong-Pil; Lim, Dong-Soo; Park, Yun-Soo; Jeong, Dae-Yong
2013-05-01
Spinel structured highly dense NiMn2O4-based (NMO) negative temperature coefficient (NTC) thermistor thick films were fabricated by aerosol-deposition at room temperature. To enhance the thermistor B constant, which represents the temperature sensitivity of the NMO thermistor material, Co and Co-Fe doping was applied. In the case of single element doping of Co, 5 mol% doped NMO showed a high B constant of over 5000 K, while undoped NMO showed -4000 K. By doping Fe to the 5 mol% Co doped NMO, the B constant was more enhanced at over 5600 K. The aging effect on the NTC characteristics of Co doped and Fe-Co co-doped NMO thick film showed very stable resistivity-time characteristics because of the highly dense microstructure.
NASA Astrophysics Data System (ADS)
Cheng, Keyi; Zhang, Jianguo; Zhang, Liping; Wang, Lun; Chen, Hongqi
2017-01-01
A highly sensitive luminescent bioassay for the detection of Salmonella typhimurium was fabricated using Mn2 +-doped NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) as the donor and gold nanorods (Au NRs) as the acceptor and utilizing an energy transfer (LET) system. Mn2 +-doped NaYF4:Yb,Tm UCNPs with a strong emission peak at 807 nm were obtained by changing the doped ion ratio. Carboxyl-terminated Mn2 +-doped NaYF4:Yb,Tm UCNPs were coupled with S. typhimurium aptamers, which were employed to capture and concentrate S. typhimurium. The electrostatic interactions shorten the distance between the negatively charged donor and the positively charged acceptor, which results in luminescence quenching. The added S. typhimurium leads to the restoration of luminescence due to the formation of UCNPs-aptamers-S. typhimurium, which repels the UCNPs-aptamers from the Au NRs. The LET system does not occur because of the nonexistence of the luminescence emission band of Mn2 +-doped NaYF4:Yb,Tm UCNPs, which had large spectral overlap with the absorption band of Au NRs. Under optimal conditions, the linear range of detecting S. typhimurium was 12 to 5 × 105 cfu/mL (R = 0.99). The limit of detection for S. typhimurium was as low as 11 cfu/mL in an aqueous buffer. The measurement of S. typhimurium in milk samples was satisfied in accordance with the plate-counting method, suggesting that the proposed method was of practical value in the application of food security.
NASA Astrophysics Data System (ADS)
Shames, A. I.; Auslender, M.; Rozenberg, E.; Gorodetsky, G.; Martin, C.; Maignan, A.
2005-05-01
X-band electron magnetic-resonance (EMR) measurements of polycrystalline CaMn1-yMoyO3 (0⩽y ⩽0.14) samples were performed at 120K⩽T⩽540K. The data obtained are compared with those of another electron-doped manganite system, CaMn1-xRuxO3 (0⩽x ⩽0.40). The observed anomalies of the EMR parameters correlate pretty well with the temperatures of antiferro-, ferromagneticlike, and orbital/charge-ordering transitions in these systems. However, a strong difference is observed between the resonant properties of Mo- and Ru doped series at both paramagnetic (PM) and magnetically ordered states. To describe such a difference, the energy-band diagrams, which comprise the deep impurity t2g-like states +eg-like conductive band for CaMn1-xRuxO3 and shallow impurity states+conductive band, both having eg-like symmetry, for CaMn1-yMoyO3, are proposed. Specific electrons' contribution to the EMR linewidth at PM temperatures is introduced for the considered systems.
Chen, Binbin; Chen, Pingfan; Xu, Haoran; Jin, Feng; Guo, Zhuang; Lan, Da; Wan, Siyuan; Gao, Guanyin; Chen, Feng; Wu, Wenbin
2016-12-21
Controlling functionalities in oxide heterostructures remains challenging for the rather complex interfacial interactions. Here, by modifying the interface properties with chemical doping, we achieve a nontrivial control over the ferromagnetism in ultrathin La 0.67 Ca 0.33 MnO 3 (LCMO) layer sandwiched between CaRu 1-x Ti x O 3 [CRTO(x)] epilayers. The Ti doping suppresses the interfacial electron transfer from CRTO(x) to LCMO side; as a result, a steadily decreased Curie temperature with increasing x, from 262 K at x = 0 to 186 K at x = 0.8, is observed for the structures with LCMO fixed at 3.2 nm. Moreover, for more insulating CRTO(x ≥ 0.5), the electron confinement induces an interfacial Mn-e g (x 2 -y 2 ) orbital order in LCMO which further attenuates the ferromagnetism. Also, in order to characterize the heterointerfaces, for the first time the doping- and thickness-dependent metal-insulator transitions in CRTO(x) films are examined. Our results demonstrate that the LCMO/CRTO(x) heterostructure could be a model system for investigating the interfacial multiple interactions in correlated oxides.
Transport and magnetic properties of Fe doped CaMnO3
NASA Astrophysics Data System (ADS)
Neetika; Das, A.; Dhiman, I.; Nigam, A. K.; Yadav, A. K.; Bhattacharyya, D.; Meena, S. S.
2012-12-01
The structural, transport, and magnetic properties of CaMn1-xFexO3-δ (0.0 ≤ x ≤ 0.3) have been studied by using resistivity, magnetization, and neutron powder diffraction techniques. The compounds are found to be isostructural and crystallize in GdFeO3-type orthorhombic structure (space group Pnma). With Fe doping, no structural change is observed. Mössbauer and paramagnetic susceptibility measurements show that Fe substitutes in 4+ valence state, and XANES measurements indicate the presence of mixed valence state of Mn. The compounds exhibit insulating behavior in the studied temperature range. The temperature dependence of resistivity is found to be described by small polaron model for x = 0 and variable range hopping model for x = 0.1. For higher x values, it follows a parallel combination resistance model. A small reduction in TN from 120 K to 100 K with increase in x is found. The magnetic structure changes from Gz-type collinear antiferromagnetic (AFM) structure for x = 0.0 to canted AFM structure GZFY-type for Fe doped compounds. The AFM component of the moment progressively decreases with x while FM component exhibits a maximum at x = 0.2.
Molecular design of TiO2 for gigantic red shift via sublattice substitution.
Shao, Guosheng; Deng, Quanrong; Wan, Lin; Guo, Meilan; Xia, Xiaohong; Gao, Yun
2010-11-01
The effects of 3d transition metal doping in TiO2 phases have been simulated in detail. The results of modelling indicate that Mn has the biggest potential among 3d transition metals, for the reduction of energy gap and the introduction of effective intermediate bands to allow multi-band optical absorption. On the basis of theoretical formulation, we have incorporated considerable amount of Mn in nano-crystalline TiO2 materials. Mn doped samples demonstrate significant red shift in the optical absorption edge, with a secondary absorption edge corresponding to theoretically predicted intermediate bands/states. The gigantic red shift achievable in Mn-doped TiO2 is expected to extend the useful TiO2 functionalities well beyond the UV threshold via the optical absorption of both visible and infrared photon irradiance.
The EPR study of Mn(2+) ion doped DADT single crystal produced under high pressure and temperature.
Ceylan, Ümit; Tapramaz, Recep
2016-01-05
An EPR study on Cu(2+) and VO(2+) doped di ammonium d-tartrate single crystals has been reported in previous papers, but the same host did not accept Mn(2+) ion at the same reaction conditions in previous trials. In this study EPR study of Mn(2+) ion doped di ammonium d tartrate single crystal, (DADT) [(NH4)2C4H4O6], produced in a reactor under high pressure and high temperature. The electronic transitions were determined by the optical absorption spectrum. Hyperfine splitting and g values of the Mn(2+) ion forming a complex in the lattice were measured from experimental spectra and spin-spin dipolar splitting parameters D and E were found by the spectrum simulation techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of Sr-doping on electronic and magnetic properties of La2-xSrxCoMnO6
NASA Astrophysics Data System (ADS)
Khan, Anasua; Chatterjee, Swastika; Mandal, P. R.; Nath, T. K.
2018-04-01
In this report, La2-xSrxCoMnO6 (x=0, 1) have been synthesised using sol-gel technique. La2CoMnO6 (LCMO) takes a monoclinic phase, whereas LaSrCoMnO6 (LSCMO) appears in a mixed phase of having both monoclinic and rhombohedral symmetries. DC magnetization measurement shows that LCMO is Ferromagnetic in nature whereas LSCMO shows magnetic glassy nature. This experimental result is verified by ab-initio calculation using GGA+SO+U as implemented in WIEN2k code. Total energy calculations suggest that antisite disorder is enhanced with Sr doping at La site and LSCMO is predominantly ferromagnetic in nature. Co ions which appeared in high spin +2 charge state, converts to intermediate spin +3 charge state with Sr doping.
Rectifying and photovoltaic properties of the heterojunction composed of CaMnO3 and Nb-doped SrTiO3
NASA Astrophysics Data System (ADS)
Sun, J. R.; Zhang, S. Y.; Shen, B. G.; Wong, H. K.
2005-01-01
A heterojunction composed of CaMnO3 (CMO) and Nb-doped SrTiO3 (STON) was fabricated and its properties were studied and compared with La0.67Ca0.33MnO3/STON and LaMnO3+δ/STON p-n, junctions. This CMO/STON junction exhibits an asymmetric current-voltage relation similar to a p-n junction. The most remarkable discovery is that the magnetic state of the manganites has a strong impact on the rectifying behaviors. The diffusion voltage, which is the critical voltage for the current rush, shows a tendency to decrease/increase with the establishment of the antiferromagnetic/ferromagnetic order in the manganites of the junction. Similar to other manganite p-n junctions, CMO/STON also exhibits a significant photovoltaic effect, and the maximum photovoltage is ˜2.2mV under the illumination of ˜7mW light (λ=460nm). A qualitative explanation is given based on an analysis on the band diagram of the junctions.
Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping
Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei
2017-01-01
Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152
Effect of preparation methods and doping on the structural and tunable emissions of CdS
NASA Astrophysics Data System (ADS)
Mohamed, Mohamed Bakr; Abdel-Kader, M. H.; Alhazime, Ali A.; Almarashi, Jamal Q. M.
2018-03-01
Fe, Mn and Mg doped CdS samples were prepared by thermolysis method in air and under flow of nitrogen. Structural, compositional and optical properties of the prepared samples were investigated using x-ray powder diffraction (XRD), scanning electron microscope (SEM/EDS mapping), Fourier transform infrared red (FTIR), UV-vis absorption and photoluminescence (PL) spectroscopes. Rietveld refinement of x-ray data showed that all the undoped and doped CdS samples prepared in air and under flow of nitrogen have both cubic and hexagonal structures. The percentages of hexagonal and cubic phases for all prepared samples were determined. The crystallite size increased for CdS prepared under flow of N2 compared with the sample prepared in air. The energy gap of all the samples was calculated using UV data. The intensity of PL emission changed according to the method of preparation and the kind of doping elements. PL emission revealed a blue shift for CdS prepared in air compared with CdS prepared under flow of nitrogen; also all doped samples showed a red shift of PL spectra compared with undoped samples. Undoped and doped CdS with Fe and Mg samples emitted violet and blue sub-spectra. Mn doped CdS prepared in air revealed violet, blue and yellow sub-spectra, while the sample prepared under flow of N2 emitted violet, blue and green sub-spectra.
Structural, magnetic and Mössbauer studies of Nd-doped Mg-Mn ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Somnath; Sharma, Indu; Kotnala, R. K.; Singh, M.; Kumar, Arun; Dhiman, Pooja; Singh, Virender Pratap; Verma, Kartikey; Kumar, Gagan
2017-12-01
The present work is focused on the replacement of Fe3+ ions by rare-earth Nd3+ ions and their influence on the cations distribution, structural, magnetic and Mössbauer properties of Mg-Mn nanoferrites. Nanosized Nd-doped Mg-Mn nanoferrites, Mg0.9Mn0.1NdxFe2-xO4, where x = 0.1, 0.2 & 0.3, were successfully synthesized for the first time through solution combustion technique. X-ray diffraction studies confirmed the formation of single phase nature of the synthesized nanoferrites. Williamsons-Hall plots were used to obtain the particle size and strain while the lattice parameter was obtained from Nelson-Riley plots. The particle size was observed to decrease (19.2-13.5 nm) while lattice parameter was observed to increase (8.373-8.391 Å) with the incorporation of Nd3+ ions. Cation distribution between the tetrahedral (A-site) and octahedral (B-site) was estimated by using the X-ray diffraction method & magnetization technique. The estimated cation distribution was used to investigate the detailed structural parameters. Room temperature M-H study revealed a decrease of saturation magnetization (10.15-1.83 emu/g) and an increase in coercivity (22.86-27.19 Oe) with the increasing substitution of Nd3+ ions. Magnetic results obtained in the present study indicated that the synthesized nanoferrites can be a useful candidate for electromagnet applications.
NASA Astrophysics Data System (ADS)
Yuan, X. B.; Tian, Y. L.; Zhao, X. W.; Yue, W. W.; Hu, G. C.; Ren, J. F.
2018-05-01
First principles calculations are used to study the spin polarization properties of benzene molecule adsorbed on the graphene surface which doped with transition metals including Mn, Cr, Fe, Co, and Ni. The densities of states (DOS) of the benzene molecule can be induced to be spin split at the Fermi level only when it is adsorbed on Mn-, and Cr-doped graphene. The p-orbital of the benzene molecule will interact with the d orbital of the doped atoms, which will generate new spin coupling states and lead to obvious spin polarization of the benzene molecule. The spin-polarized density distributions as well as the differential charge density distributions of the systems also suggest that Mn-doped graphene will induce bigger spin polarization than that of Cr-doped graphene. Benzene molecule could be spin-polarized when it is adsorbed on the graphene surface with transition metal dopants, which could be a new method for researching graphene-based organic spintronic devices.
Electronic and magnetic properties of transition metal doped graphyne
NASA Astrophysics Data System (ADS)
Gangan, Abhijeet Sadashiv; Yadav, Asha S.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2017-05-01
We have theoretically investigated the interaction of few 3d (V,Mn) and 4d (Y,Zr) transition metals with the γ-graphyne structure using the spin-polarized density functional theory for its potentials application in Hydrogen storage, spintronics and nano-electronics. By doping different TMs we have observed that the system can be either metallic(Y), semi-conducting or half metallic. The system for Y and Zr doped graphyne becomes non-magnetic while V and Mn doped graphyne have a magnetic moments of l μB and 3 μB respectively From bader charge analysis it is seen that there is a charge transfer from the TM atom to the graphyne. Zr and Y have a net charge transfer of 2.15e and 1.73e respectively. Charge density analysis also shows the polarization on the carbon skeleton which becomes larger as the charge transfer for the TM atom increases. Thus we see Y and Zr are better candidates for hydrogen storage devices since they are non-magnetic and have less d electrons which is ideal for kubas-type interactions between hydrogen molecule and TM.
The Intrinsic Ferromagnetism in a MnO2 Monolayer.
Kan, M; Zhou, J; Sun, Q; Kawazoe, Y; Jena, P
2013-10-17
The Mn atom, because of its special electronic configuration of 3d(5)4s(2), has been widely used as a dopant in various two-dimensional (2D) monolayers such as graphene, BN, silicene and transition metal dichalcogenides (TMDs). The distributions of doped Mn atoms in these systems are highly sensitive to the synthesis process and conditions, thus suffering from problems of low solubility and surface clustering. Here we show for the first time that the MnO2 monolayer, synthetized 10 years ago, where Mn ions are individually held at specific sites, exhibits intrinsic ferromagnetism with a Curie temperature of 140 K, comparable to the highest TC value achieved experimentally for Mn-doped GaAs. The well-defined atomic configuration and the intrinsic ferromagnetism of the MnO2 monolayer suggest that it is superior to other magnetic monolayer materials.
NASA Astrophysics Data System (ADS)
Gomez, M. E.; Marin, L.; Ramirez, G.; Prieto, P.
2011-03-01
We studied the isothermal magnetic field dependence of the resistance behavior in ferromagnetic--antiferromagnetic interface based on the Ca-doped lanthanum manganite system at temperatures below Neel temperature of the antiferromagnetic layer. We studied the influence of the thickness of the AF-layer, tAF , and F-layer, tF , on the ZFC and FC magnetoresistance (MR) in La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) bilayers. HFC was 400 Oe and the applied magnetic field, H. We systematically varied the tF and tAF thickness, maintaining constant the total bilayer thickness (d = tF +tAF) . We found that MR has hysteretic behavior as observed in [ La 2/3 Ca 1/3 Mn O3 (tF) / La 1/3 Ca 2(3 Mn O3 (tAF) ]N superlattices, but; MR increases with the increasing field from H=0 to a maximum and then decreases continuously. This behavior also appears for negative fields in both ZFC and FC loops. The position and magnitude of the maximum is not symmetric with respect to the axis H=0. Work supported by CENM-COLCIENCIAS contract RC-0043-(2005).
Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles
NASA Astrophysics Data System (ADS)
Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra
2018-05-01
Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.
Synthesis and characterization of cathode materials for lithium ion-rechargeable batteries
NASA Astrophysics Data System (ADS)
Nieto Ramos, Santander
Lithium intercalation materials are of special interest for cathodes in rechargeable lihium-ion batteries, because they are capable of reversibly intercalating lithium ions without altering the main unit. We developed a novel solution-based route for the synthesis of these lithium intercalates oxides. The first part of this work was devoted to the optimization of chemical solution process parameters in order to correlate their electrochemical properties. It was found that the lattice parameters and the crystallite size increase, whereas the lattice strain decreases with the increase in calcinations temperature. Powders annealed at 700°C for 15 h yielded best electrochemical performance. The electrochemical performance of substituted Li1.2Mn2O 4, Li1.2Mn1.8O4, Li1.2Cr 0.05Mn1.95O4, and Li1.2Cr0.05 Mn1.75O4 spinel electrodes in lithium cell has been studied. The electrochemical data showed that the Li and Cr dopant effect improves the cycleablility of spinel LiMn2O4 electrodes. The second part of this dissertation was devoted to improve the rate capabilities of these cathode materials by growing nano-size cathode particles and also by cation co-doping. Though the discharge capacity of these nano-crystalline cathodes was equivalent to their microcrystalline counterpart, these exhibited capacity fading in the 4V range. Through a combined X-ray diffraction, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses, we correlated the observed capacity fading with the onset of Jahn-Teller (J-T) distortion toward the end of the discharge in the cut-off limit between 4.2 and 3.2V. It was postulated that J-T distortion is the dominant fading mechanism of these nano-crystalline cathodes then by increasing the average oxidation state of the Mn ion in a virgin lithium manganate cathode, the onset of such distortion towards the end of the discharge could be delayed, and therefore, the cycleability of these cathodes could be improved. By synthesizing lithium and aluminum ion co-doped lithium manganate particles, we could increase the average oxidation state of Mn ions in the virgin electrodes. Indeed, the cycleability of these co-doped cathodes was dramatically improved which supports our population. The third part of this thesis was devoted to synthesis and electrochemical properties of layered compounds. Lithium nickel oxides derivatives are promising positive materials for the next generation of lithium-ion batteries. Partial substitution of certain cations for nickel in this family of oxides which satisfies the demanding requirements for rechargeable battery applications. In this part the interest is focused on the effect of simultaneous cobalt as well as aluminum doping was studied to understand their effect on the phase formation behavior and electrochemical properties of solution derived lithium nickel oxide cathode materials for rechargeable batteries. (Abstract shortened by UMI.)
Scaling of terahertz conductivity at the metal-insulator transition in doped manganites
NASA Astrophysics Data System (ADS)
Pimenov, A.; Biberacher, M.; Ivannikov, D.; Loidl, A.; Mukhin, A. A.; Goncharov, Yu. G.; Balbashov, A. M.
2006-06-01
Magnetic field and temperature dependence of the terahertz conductivity and permittivity of the colossal magnetoresistance manganite Pr0.65Ca0.28Sr0.07MnO3 (PCSMO) is investigated approaching the metal-to-insulator transition (MIT) from the insulating side. In the charge-ordered state of PCSMO both conductivity and dielectric permittivity increase as a function of magnetic field and temperature. Universal scaling relationships Δɛ∝Δσ are observed in a broad range of temperatures and magnetic fields. Similar scaling is also seen in La1-xSrxMnO3 for different doping levels. The observed proportionality points towards the importance of pure ac-conductivity and phononic energy scale at MIT in manganites.
Superparamagnetic and ferrimagnetic behavior of nanocrystalline ZnO(MnO)
NASA Astrophysics Data System (ADS)
Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Arciszewska, M.; Romčević, N.; Romčević, M.; Hadžić, B.; Sibera, D.; Narkiewicz, U.
2018-04-01
We have studied the magnetic properties of nanocrystals of ZnO:MnO prepared by traditional wet chemistry method. The detailed structural and morphological characterization was performed. The results of systematic measurements of AC magnetic susceptibility as a function of temperature and frequency as well as DC magnetization are reported. We observed two different types of magnetic behavior depending on the concentration doping. For samples with low nominal content (up to 30 wt% of MnO), superparamagnetic behavior was observed. We attribute the observed superparamagnetism to the presence of nanosized ZnMnO3 phase. For nanocrystals doped above nominal 60 wt% of MnO ferrimagnetism was detected with TC at around 42 K. This magnetic behavior we assign to the presence of nanosized Mn3O4 phase.
Zhang, Yingying; Wang, Xiang; Hu, Dandan; Xue, Chaozhuang; Wang, Wei; Yang, Huajun; Li, Dongsheng; Wu, Tao
2018-04-25
The highly efficient and cheap non-Pt-based electrocatalysts such as transition-based catalysts prepared via facile methods for oxygen reduction reaction (ORR) are desirable for large-scale practical industry applications in energy conversion and storage systems. Herein, we report a straightforward top-down synthesis of monodisperse ultrasmall manganese-doped multimetallic (ZnGe) oxysulfide nanoparticles (NPs) as an efficient ORR electrocatalyst by simple ultrasonic treatment of the Mn-doped Zn-Ge-S chalcogenidometalate crystal precursors in H 2 O/EtOH for only 1 h at room temperature. Thus obtained ultrasmall monodisperse Mn-doped oxysulfide NPs with ultralow Mn loading level (3.92 wt %) not only exhibit comparable onset and half-wave potential (0.92 and 0.86 V vs reversible hydrogen electrode, respectively) to the commercial 20 wt % Pt/C but also exceptionally high metal mass activity (189 mA/mg at 0.8 V) and good methanol tolerance. A combination of transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical analysis demonstrated that the homogenous distribution of a large amount of Mn(III) on the surface of NPs mainly accounts for the high ORR activity. We believe that this simple synthesis of Mn-doped multimetallic (ZnGe) oxysulfide NPs derived from chalcogenidometalates will open a new route to explore the utilization of discrete-cluster-based chalcogenidometalates as novel non-Pt electrocatalysts for energy applications and provide a facile way to realize the effective reduction of the amount of catalyst while keeping desired catalytic performances.
Kim, Duho; Lim, Jin-Myoung; Park, Min-Sik; Cho, Kyeongjae; Cho, Maenghyo
2016-07-06
A combined study involving experiments and multiscale computational approaches is conducted to propose a theoretical solution for the suppression of the Jahn-Teller distortion which causes severe cyclic degradation. As-synthesized pristine and Al-doped Mn spinel compounds are the focus to understand the mechanism of the cyclic degradation in terms of the Jahn-Teller distortion, and the electrochemical performance of the Al-doped sample shows enhanced cyclic performance compared with that of the pristine one. Considering the electronic structures of the two systems using first-principles calculations, the pristine spinel suffers entirely from the Jahn-Teller distortion by Mn(3+), indicating an anisotropic electronic structure, but the Al-doped spinel exhibits an isotropic electronic structure, which means the suppressed Jahn-Teller distortion. A multiscale phase field model in nanodomain shows that the phase separation of the pristine spinel occurs to inactive Li0Mn2O4 (i.e., fully delithiated) gradually during cycles. In contrast, the Al-doped spinel does not show phase separation to an inactive phase. This explains why the Al-doped spinel maintains the capacity of the first charge during the subsequent cycles. On the basis of the mechanistic understanding of the origins and mechanism of the suppression of the Jahn-Teller distortion, fundamental insight for making tremendous cuts in the cyclic degradation could be provided for the Li-Mn-O compounds of Li-ion batteries.
Xia, Weiren; Wu, Heng; Xue, Piaojie; Zhu, Xinhua
2018-05-04
We report on microstructural, magnetic, and optical properties of Pr-doped perovskite manganite (La 1 - x Pr x ) 0.67 Ca 0.33 MnO 3 (LPCMO, x = 0.0-0.5) nanoparticles synthesized via sol-gel process. Structural characterizations (X-ray and electron diffraction patterns, (high resolution) TEM images) provide information regarding the phase formation and the single-crystalline nature of the LPCMO systems. X-ray and electron diffraction patterns reveal that all the LPCMO samples crystallize in perovskite crystallography with an orthorhombic structure (Pnma space group), where the MnO 6 octahedron is elongated along the b axis due to the Jahn-Teller effect. That is confirmed by Raman spectra. Crystallite sizes and grain sizes were calculated from XRD and TEM respectively, and the lattice fringes resolved in the high-resolution TEM images of individual LPCMO nanoparticle confirmed its single-crystalline nature. FTIR spectra identify the characteristic Mn-O bond stretching vibration mode near 600 cm - 1 , which shifts towards high wavenumbers with increasing post-annealing temperature or Pr-doping concentration, resulting in further distortion of the MnO 6 octahedron. XPS revealed dual oxidation states of Mn 3+ and Mn 4+ in the LPCMO nanoparticles. UV-vis absorption spectra confirm the semiconducting nature of the LPCMO nanoparticles with optical bandgaps of 2.55-2.71 eV. Magnetic measurements as a function of temperature and magnetic field at field cooling and zero-field cooling modes, provided a Curie temperature around 230 K, saturation magnetization of about 81 emu/g, and coercive field of 390 Oe at 10 K. Such magnetic properties and the semiconducting nature of the LPCMO nanoparticles will make them as suitable candidate for magnetic semiconductor spintronics.
Zhu, Jingrun; Yang, Xiaoling; Zhu, Yihua; Wang, Yuanwei; Cai, Jin; Shen, Jianhua; Sun, Luyi; Li, Chunzhong
2017-09-07
Here we report the room-temperature, atmospheric synthesis of Mn-doped cesium lead halide (CsPbX 3 ) perovskite quantum dots (QDs). The synthesis is performed without any sort of protection, and the dual-color emission mechanism is revealed by density functional theory. The Mn concentration reaches a maximum atomic percentage of 37.73 at%, which is significantly higher in comparison to those achieved in earlier reports via high temperature hot injection method. The optical properties of as-prepared nanocrystals (NCs) remain consistent even after several months. Therefore, red-orange LEDs were fabricated by coating the composite of PS and as-prepared QDs onto ultraviolet LED chips. Additionally, the present approach may open up new methods for doping other ions in CsPbX 3 QDs under room temperature, the capability of which is essential for applications such as memristors and other devices.
Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong
2014-09-07
The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.
Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.
2010-12-01
Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.
NASA Astrophysics Data System (ADS)
Maignan, A.; Martin, C.; Damay, F.; Raveau, B.; Hejtmanek, J.
1998-08-01
The study of Mn(IV)-rich manganites Ca1-xSmxMnO3 with low electron content corresponding to 0<=x<=0.12 demonstrates the large difference of their electronic and magnetic properties with that of Mn(III)-rich manganites. In particular, a metalliclike temperature dependence of the resistivity (ρ) is observed above TC, the smallest room-temperature ρ=10-3 Ω cm being reached for x=0.12. However increasing hopping energy with x suggests the creation of small polarons as eg electrons are injected into the Mn(IV) matrix. The thermopower (S) measurements confirm the increase of carriers with x and can be described within a single-band metal model. The ρ(T) and S(T) curves exhibit also a transition at a fixed temperature Tp~110 K for 0.075<=x<=0.12. Tp is related to the appearance of a ferromagnetic component as shown from T-dependent magnetization. Nevertheless, the ac-χ measurements reveal a complex behavior. CaMnO3 exhibits a weak ferromagnetic component (TC=122 K) whereas for Ca1-xSmxMnO3 (0
NASA Astrophysics Data System (ADS)
Gang, Liang; Yu, Yundan; Ge, Hongliang; Wei, Guoying; Jiang, Li; Sun, Lixia
Magnetic field parallel to electric field was induced during plating process to prepare CoNiMn alloy films on copper substrate. Electrochemistry mechanism and properties of CoNiMn alloy films were investigated in this paper. Micro magnetohydrodynamic convection phenomenon caused by vertical component of current density and parallel magnetic field due to deformation of current distribution contributed directly to the improvement of cathode current and deposition rate. Cathode current of the CoNiMn plating system increased about 30% with 1T magnetic field induced. It was found that CoNiMn films electrodeposited with magnetic fields basically belonged to a kind of progressive nucleation mode. Higher magnetic intensity intended to obtain CoNiMn films with good crystal structures and highly preferred orientations. With the increase of magnetic intensities, surface morphology of CoNiMn alloy films changed from typically nodular to needle-like structures. Compared with coatings electrodeposited without magnetic field, CoNiMn alloy films prepared with magnetic fields possessed better magnetic properties. Coercivity, remanence and saturation magnetization of samples increased sharply when 1T magnetic field was induced during plating process.
Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins.
Wu, Peng; Zhao, Ting; Tian, Yunfei; Wu, Lan; Hou, Xiandeng
2013-06-03
Proteins typically have nanoscale dimensions and multiple binding sites with inorganic ions, which facilitates the templated synthesis of nanoparticles to yield nanoparticle-protein hybrids with tailored functionality, water solubility, and tunable frameworks with well-defined structure. In this work, we report a protein-templated synthesis of Mn-doped ZnS quantum dots (QDs) by exploring bovine serum albumin (BSA) as the template. The obtained Mn-doped ZnS QDs give phosphorescence emission centered at 590 nm, with a decay time of about 1.9 ms. A dual-channel sensing system for two different proteins was developed through integration of the optical responses (phosphorescence emission and resonant light scattering (RLS)) of Mn-doped ZnS QDs and recognition of them by surface BSA phosphorescent sensing of trypsin and RLS sensing of lysozyme. Trypsin can digest BSA and remove BSA from the surface of Mn-doped ZnS QDs, thus quenching the phosphorescence of QDs, whereas lysozyme can assemble with BSA to lead to aggregation of QDs and enhanced RLS intensity. The detection limits for trypsin and lysozyme were 40 and 3 nM, respectively. The selectivity of the respective channel for trypsin and lysozyme was evaluated with a series of other proteins. Unlike other protein sensors based on nanobioconjugates, the proposed dual-channel sensor employs only one type of QDs but can detect two different proteins. Further, we found the RLS of QDs can also be useful for studying the BSA-lysozyme binding stoichiometry, which has not been reported in the literature. These successful biosensor applications clearly demonstrate that BSA not only serves as a template for growth of Mn-doped ZnS QDs, but also impacts the QDs for selective recognition of analyte proteins. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Meiyan; Wang, Wei; Ji, Min; Cheng, Xinlu
2018-05-01
Using density functional theory (DFT), we present a theoretical investigation of phenol (C6H5OH) and hydrazine (N2H4) on pristine and decorated MoS2 monolayer. In our work, we first focus on the interactions between several metal atoms and MoS2 monolayer and then choose the MoS2 nanosheet decorated by Sc, Ti, Cr and Mn to be the substrate. Furthermore, the properties of phenol and N2H4 on pure and X-doped (X = Sc, Ti, Cr and Mn) MoS2 base materials are discussed in terms of adsorption energy, adsorption distance, charge transfer, charge density difference, HOMO and LUMO molecular orbitals and density of states (DOS). The results predict that the adsorption of phenol and hydrazine upon X-decorated MoS2 monolayers are more favorable than the adsorption on isolated ones, which demonstrating that Sc, Ti, Cr and Mn doping help to improve the adsorption abilities. Calculations also show shorter adsorption distance and more charge transfer for Sc-, Ti-, Cr- and Mn-doped systems than the pristine one. The results confirm that X-doped MoS2 monolayer can be used as effective and potential adsorbents for toxic phenol and hydrazine.
Ren, Hu-Bo; Yan, Xiu-Ping
2012-08-15
An ultrasonic assisted approach was developed for rapid synthesis of highly water soluble phosphorescent adenosine triphosphate (ATP)-capped Mn-doped ZnS QDs. The prepared ATP-capped Mn-doped ZnS QDs allow selective phosphorescent detection of arginine and methylated arginine based on the specific recognition nature of supramolecular Mg(2+)-ATP-arginine ternary system in combination with the phosphorescence property of Mn-doped ZnS QDs. The developed QD based probe gives excellent selectivity and reproducibility (1.7% relative standard deviation for 11 replicate detections of 10 μM arginine) and low detection limit (3 s, 0.23 μM), and favors biological applications due to the effective elimination of interference from scattering light and autofluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.
Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.
Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee
2016-03-03
We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boujnah, M.; Zaari, H.; El Kenz, A., E-mail: elkenz@fsr.ac.ma
The electronic structure, magnetic, and optical properties in cubic crystalline phase of Zr{sub 1−x}TM{sub x}O{sub 2} (TM = V, Mn, Fe, and Co) at x = 6.25% are studied using density functional theory with the Generalized Gradient Approximation and the modified Becke-Johnson of the exchange-correlation energy and potential. In our calculations, the zirconia is a p-type semiconductor and has a large band gap. We evaluated the possibility of long-range magnetic order for transition metal ions substituting Zr. Our results show that ferromagnetism is the ground state in V, Mn, and Fe-doped ZrO{sub 2} and have a high value of energy in Mn-doped ZrO{sub 2}.more » However, in Co-doped ZrO{sub 2}, antiferromagnetic ordering is more stable than the ferromagnetic one. The exchange interaction mechanism has been discussed to explain the responsible of this stability. Moreover, it has been found that the V, Mn, and Fe transition metals provide half-metallic properties considered to be the leading cause, responsible for ferromagnetism. Furthermore, the optical absorption spectra in the TM -doped cubic ZrO{sub 2} are investigated.« less
Ke, Liqin; Harmon, Bruce N.; Kramer, Matthew J.
2017-03-20
In this study, the electronic structure and intrinsic magnetic properties of Fe 2AlB 2-related compounds and their alloys have been investigated using density functional theory. For Fe 2AlB 2, the crystallographic a axis is the easiest axis, which agrees with experiments. The magnetic ground state of Mn 2AlB 2 is found to be ferromagnetic in the basal ab plane, but antiferromagnetic along the c axis. All 3d dopings considered decrease the magnetization and Curie temperature in Fe 2AlB 2. Electron doping with Co or Ni has a stronger effect on the decreasing of Curie temperature in Fe 2AlB 2 thanmore » hole doping with Mn or Cr. However, a larger amount of Mn doping on Fe 2AlB 2 promotes the ferromagnetic to antiferromagnetic transition. A very anisotropic magnetoelastic effect is found in Fe 2AlB 2: the magnetization has a much stronger dependence on the lattice parameter c than on a or b, which is explained by electronic-structure features near the Fermi level. Dopings of other elements on B and Al sites are also discussed.« less
NASA Astrophysics Data System (ADS)
Pang, Wei-Lin; Zhang, Xiao-Hua; Guo, Jin-Zhi; Li, Jin-Yue; Yan, Xin; Hou, Bao-Hua; Guan, Hong-Yu; Wu, Xing-Long
2017-07-01
Recently, sodium-ion batteries (SIBs) have been considered as the promising alternative for lithium-ion batteries. Although layered P2-type transition metal oxides are an important class of cathode materials for SIBs, there are still some hurdles for the practical applications, including low specific capacity as well as poor cycling and rate properties. In this study, the electrochemical properties of layered Mn-based oxides have been effectively improved via Al doping, which cannot only promote the formation of layered P2-type structure in the preparation processes but also stabilize the lattice during the successive Na-intercalation/deintercalation due to suppression of the Jahn-Teller distortion of Mn3+. Among the as-prepared series of Na2/3Mn1-xAlxO2 (x = 0, 1/18, 1/9, and 2/9), Na2/3Mn8/9Al1/9O2 with x = 1/9 exhibits the optimal doping effect with the best electrochemical properties, in terms of the highest specific capacity of 162.3 mA h g-1 at 0.1 C, the highest rate capability, and the best cycling stability in comparison to the undoped Na2/3MnO2 and the other two materials with different Al-doped contents. Both cyclic voltammetry at varied scan rates and galvanostatic intermittent titration technique disclose the optimal electrode kinetics (the highest Na-diffusion coefficient) of the best Na2/3Mn8/9Al1/9O2.
NASA Astrophysics Data System (ADS)
Das, Soma; Dey, T. K.
2006-08-01
The magnetocaloric effect (MCE) in fine grained perovskite manganites of the type La1-xKxMnO3 (0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl; Gągor, Anna; Hermanowicz, Krzysztof
2016-05-15
We have incorporated Cr(III) into [(CH{sub 3}){sub 2}NH{sub 2}][Mn(HCOO){sub 3}] (DMMn) multiferroic metal organic framework (MOF). The highest concentration of Cr(III) in the synthesized samples reached 15.9 mol%. The obtained samples were characterized by powder and single-crystal X-ray diffraction, DSC, magnetic susceptibility, dielectric, EPR, Raman and IR methods. These methods and the performed chemical analysis revealed that electrical charge neutrality after substitution of Cr(III) for Mn(II) is maintained by partial replacement of dimethylammonium (DMA{sup +}) cations by neutral HCOOH molecules. These changes in the chemical composition are responsible for weakening of the hydrogen bonds and decreased flexibility of the framework.more » This in turn leads to lowering of the ferroelectric phase transition temperature, observed around 185 K for undoped DMMn and around 155 K for the sample containing 3.1 mol% of Cr(III), and lack of macroscopic phase transition for the samples with Cr(III) content of 8.2 and 15.9 mol %. Another interesting effect observed for the studied samples is pronounced strengthening of the weak ferromagnetism of in Cr(III)-doped samples, associated with slight decrease of the ferromagnetic ordering temperature from 8.5 K for DMMn to 7.0 K for the sample with 15.9 mol % Cr(III) content. - Graphical abstract: Incorporation of Cr(III) into [(CH3)2NH2[Mn(HCOO)3] framework increases the magnetization. - Highlights: • Chromium(III) substitutes for Mn(II) in the studied MOF. • Charge neutrality is maintained by replacing DMA{sup +} cations by neutral HCOOH molecules. • Compounds with 8.2 and 15.9% of Cr(III) show no phase transition above 100 K. • Doping with Cr(III) increases magnetization.« less
Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells
NASA Astrophysics Data System (ADS)
Rimal, Gaurab; Pimachev, Artem K.; Yost, Andrew J.; Poudyal, Uma; Maloney, Scott; Wang, Wenyong; Chien, TeYu; Dahnovsky, Yuri; Tang, Jinke
2016-09-01
A huge enhancement in the incident photon-to-current efficiency of PbS quantum dot (QD) sensitized solar cells by manganese doping is observed. In the presence of Mn dopants with relatively small concentration (4 at. %), the photoelectric current increases by an average of 300% (up to 700%). This effect cannot be explained by the light absorption mechanism because both the experimental and theoretical absorption spectra demonstrate several times decreases in the absorption coefficient. To explain such dramatic increase in the photocurrent we propose the electron tunneling mechanism from the LUMO of the QD excited state to the Zn2SnO4 (ZTO) semiconductor photoanode. This change is due to the presence of the Mn instead of Pb atom at the QD/ZTO interface. The ab initio calculations confirm this mechanism. This work proposes an alternative route for a significant improvement of the efficiency for quantum dot sensitized solar cells.
NASA Astrophysics Data System (ADS)
Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile
2017-12-01
We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.
Synthesis and structural stability of Cr-doped Li2MnSiO4/C cathode materials by solid-state method
NASA Astrophysics Data System (ADS)
Cheng, Hong-Mei; Zhao, Shi-Xi; Wu, Xia; Zhao, Jian-Wei; Wei, Lei; Nan, Ce-Wen
2018-03-01
The crystal structure of the Li2MnSiO4 cathode material would collapse during the charge and discharge process because of that the Mn-O coordination polyhedron changed from [MnO4] into [MnO6] in the process of Mn+2 to Mn+4, but the Cr element could remain [CrO4] crystal ligand from Cr+2 to Cr+4, so Cr element substitution was used to improve the structural stability of the Li2MnSiO4 cathode material. In this work, Li2Mn1-xCrxSiO4/C nanocomposites were synthesized by solid-state method. XRD, SEM and TEM observations show that the as-prepared Li2Mn1-xCrxSiO4/C materials presents an orthorhombic crystal structure (S.G. Pmn21), the particle size of Li2Mn1-xCrxSiO4/C powder ranges from 50 to 100 nm. The XRD and XPS results indicate that Cr+2 is successfully doped into Li2MnSiO4 lattice and has well compatibility with Li2MnSiO4. The electrochemical results display that Li2Mn92.5%Cr7.5%SiO4/C exhibits significantly enhanced cycle stability and discharge capability. The initial discharge capacity of the Li2Mn92.5%Cr7.5%SiO4/C sample is 255 mAh g-1, and the discharge capacity was still about 60 mAh g-1 after 50 cycles. Furthermore, the XRD patterns, TEM images and Raman analysis reveal that the Cr doping enhances the structural stability of Li2Mn1-xCrxSiO4/C and improves the electrochemical activity of the cathode. Thus, the Li2Mn92.5%Cr7.5%SiO4/C have shown potential applications for lithium ion batteries.
Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)
NASA Astrophysics Data System (ADS)
Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.
2014-02-01
In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.
NASA Astrophysics Data System (ADS)
Zhang, Linfang; Wang, Jingmin; Hua, Hui; Jiang, Chengbao; Xu, Huibin
2014-09-01
Some off-stoichiometric Ni-Mn-Ga alloys undergo a coupled magnetostructural transition from ferromagnetic martensite to paramagnetic austenite, giving rise to the large magnetocaloric effect. However, the magnetostructural transitions of Ni-Mn-Ga alloys generally take place at temperatures higher than room temperature. Here, we report that by the partial substitution of In for Ga, the paramagnetic austenite phase is well stabilized, and the magnetostructural transition can be tailored around room temperature. Sizable magnetic entropy change and adiabatic temperature change were induced by magnetic field change in the vicinity of the magnetostructural transition of the In-doped Ni-Mn-Ga alloys.
Dubal, Deepak P.; Aradilla, David; Bidan, Gérard; Gentile, Pascal; Schubert, Thomas J.S.; Wimberg, Jan; Sadki, Saïd; Gomez-Romero, Pedro
2015-01-01
Building of hierarchical core-shell hetero-structures is currently the subject of intensive research in the electrochemical field owing to its potential for making improved electrodes for high-performance micro-supercapacitors. Here we report a novel architecture design of hierarchical MnO2@silicon nanowires (MnO2@SiNWs) hetero-structures directly supported onto silicon wafer coupled with Li-ion doped 1-Methyl-1-propylpyrrolidinium bis(trifluromethylsulfonyl)imide (PMPyrrBTA) ionic liquids as electrolyte for micro-supercapacitors. A unique 3D mesoporous MnO2@SiNWs in Li-ion doped IL electrolyte can be cycled reversibly across a voltage of 2.2 V and exhibits a high areal capacitance of 13 mFcm−2. The high conductivity of the SiNWs arrays combined with the large surface area of ultrathin MnO2 nanoflakes are responsible for the remarkable performance of these MnO2@SiNWs hetero-structures which exhibit high energy density and excellent cycling stability. This combination of hybrid electrode and hybrid electrolyte opens up a novel avenue to design electrode materials for high-performance micro-supercapacitors. PMID:25985388
NASA Astrophysics Data System (ADS)
Wang, Xiaodeng; Zhou, Hongpeng; Zhang, Dingke; Pi, Mingyu; Feng, Jiajia; Chen, Shijian
2018-05-01
Developing stable and high-efficiency hydrogen generation electrocatalysts, particularly for the cathode hydrogen evolution reaction (HER), is an urgent challenge in energy conversion technologies. In this work, we have successfully synthesized Mn-doped NiP2 nanosheets on carbon cloth (Mn-NiP2 NSs/CC), which behaves as a higher efficient three dimensional HER electrocatalyst with better stability at all pH values than pure NiP2. Electrochemical tests demonstrate that the catalytic activity of NiP2 is enhanced by Mn doping. In 0.5 M H2SO4, this Mn-NiP2 NSs/CC catalyst drives 10 mA cm-2 at an overpotential of 69 mV, which is 20 mV smaller than pure NiP2. To achieve the same current density, it demands overpotentials of 97 and 107 mV in 1.0 M KOH and phosphate-buffered saline (PBS), respectively. Compared with pure NiP2, higher HER electrocatalytic performance for Mn-NiP2 NSs/CC can be attributed to its lower thermo-neutral hydrogen adsorption free energy, which is supported by density functional theory calculations.
NASA Astrophysics Data System (ADS)
Das, S. C.; Mandal, K.; Dutta, P.; Pramanick, S.; Chatterjee, S.
2018-02-01
The magnetic and magnetocaloric properties of a self-doped MnNiGe alloy of nominal composition MnNi0.9Ge1.1 have been investigated in ambient as well as in high pressure conditions. It orders ferromagnetically below around 225 K and undergoes first order martensitic phase transition (MPT) to an antiferromagnetic (AFM) martensite phase below 147 K. This self-doping results in a significant decrease in the lattice volume and hence the Mn-Mn intra-layer distance which induces ferromagnetism (FM) in otherwise AFM alloys. MPT affects this FM ordering and the alloy becomes predominantly AFM in nature below the structural transition temperature. The observed values of the magnetocaloric effects (MCE) are reasonably large at the magnetic (-5.5 J kg-1 K-1 for magnetic field changing from 0 to 50 kOe around 210 K) and structural (8.3 J kg-1 K-1 for magnetic field changing from 0 to 50 kOe around 136 K) transition temperatures in ambient condition. MCE is found to decrease with increasing external hydrostatic pressure (P) at MPT region, whilst this external P has vanishingly small effect on MCE around the magnetic transition temperature.
NASA Astrophysics Data System (ADS)
Ryzhov, V. A.; Lazuta, A. V.; Molkanov, P. L.; Khavronin, V. P.; Kurbakov, A. I.; Runov, V. V.; Mukovskii, Ya. M.; Pestun, A. E.; Privezentsev, R. V.
2012-10-01
The magnetic, transport and structural properties are studied for La0.83Sr0.17MnO3 and La0.82Sr0.18CoO3 single crystals with nearly the same doping and the metallic ground state. Their comparisons have shown that ferromagnetic clusters originate in the paramagnetic matrix below Т*>TC in both samples and exhibit similar properties. This suggests the possible universality of such phenomena in doped mixed-valence oxides of transition metals with the perovskite-type structure. The cluster density increases on cooling and plays an important role on the physical properties of these systems. The differences in cluster evolutions and scenarios of their insulator-metal transitions are related to different magnetic behaviors of the matrixes in these crystals that is mainly due to distinct spin states of the Mn3+ and Co3+ ions.
NASA Astrophysics Data System (ADS)
Benjwal, Poonam; De, Bibekananda; Kar, Kamal K.
2018-01-01
Morphology and electronic bandgap of titania (TiO2) are considered to be the primary factors for determining the photocatalytic efficiency, as they determine the number of active sites for the photocatalytic reactions. In the present study, two different morphologies of TiO2 (nanosphere and nanorod) with varying Zn and Mn co-doping were synthesized by solvothermal and hydrothermal methods to examine their photocatalytic efficiency by methylene blue degradation. The co-doped photocatalysts were characterized by XRD, XPS, SEM, TEM, Raman, FTIR and UV-vis DRS. Further, a comparison has been made with co-doped TiO2 nanospheres and TiO2 nanorods, where Zn, Mn co-doped TiO2 nanorods show higher photocatalytic activity compared to nanospheres. This higher photocatalytic activity of co-doped TiO2 is attributed to its polymorphic phases, as they act as heterojunctions for TiO2. Further, being 1-D nanostructure, the TiO2 nanorods exhibit the straight diffusion path for charge carriers, which reduces the recombination possibilities. The obtained results suggest that the photocatalysis efficiency of TiO2 can be significantly enhanced by tailoring the shape and co-doping concentration, which enforce a new concept for developing the new nanostructures of TiO2.
Effect of chromium doping on the structural and vibrational properties of Mn-Zn ferrites
NASA Astrophysics Data System (ADS)
Saleem, M.; Varshney, Dinesh
2018-05-01
The synthesis of Mn0.5Zn0.5-xCrxFe2O4 (x = 0.0, 0.1, 0.2 and 0.5) via sol-gel Auto-combustion technique is reported. The x-ray diffraction spectra analysis revealed the cubic spinel structure for all the prepared spinel ferrite samples with the space group Fd3m. The structural studies identify the decrease of lattice parameter however the crystallite size decreases on increasing the Cr concentration. The Raman spectrum reveals five active phonon modes at room temperature and shifting of modes toward the higher frequency side on moving from Mn-ZnFe2O4 to Mn-CrFe2O4.
Doping Induced Structural Stability and Electronic Properties of GaN Nanotubes
Khan, Mohammad Irfan; Tyagi, Neha; Swaroop Khare, Purnima
2014-01-01
The present paper discusses the effect of manganese doping on the structural stability and electronic band gap of chiral (2, 1), armchair (3, 3), and zigzag ((6, 0) and (10, 0)) single walled GaN nanotube by using density functional theory based Atomistix Toolkit (ATK) Virtual NanoLab (VNL). The structural stability has been analyzed in terms of minimum ground state total energy, binding, and formation energy. As an effect of Mn doping (1–4 atoms), all the GaN nanotubes taken into consideration show semiconducting to metallic transition first and after certain level of Mn doping changes its trend. PMID:24707225
Critical exponent analysis of lightly germanium-doped La0.7Ca0.3Mn1-xGexO3 (x = 0.05 and x = 0.07)
NASA Astrophysics Data System (ADS)
Nanto, Dwi; Kurniawan, Budhy; Soegijono, Bambang; Ghosh, Nilotpal; Hwang, Jong-Soon; Yu, Seong-Cho
2018-04-01
We have used a critical behavior study of La0.7Ca0.3MnO3 (LCMO) manganite perovskites whose Mn sites have been doped with Ge to explore magnetic interactions. Light Ge doping of 5 or 7 percent tended to produce LCMOs with second order magnetic transitions. The critical parameters of 5- and 7-percent Ge-doped LCMO were determined to be TC = 185 K, β = 0.331 ± 0.019, and γ = 1.15 ± 0.017; and TC = 153 K, β = 0.496 ± 0.011, and γ = 1.03 ± 0.046, respectively, via the modified Arrott plot method. Isothermal magnetization data collected near the Curie temperature (TC) was split into a universal function with two branches M(H,ɛ) = |ɛ|βf±(H/|ɛ|β+γ), where ɛ=(T-TC)/TC is the reduced temperature. f+ is used when T>TC, while f̲ is used when T
NASA Astrophysics Data System (ADS)
Phan, The-Long; Ho, T. A.; Dang, N. T.; Nguyen, Manh Cuong; Dao, Van-Duong
2017-07-01
We prepared well-aligned Zn1-x Mn x O:yP nanocolumns (x = 0-0.02, and y = 0 and 1 mol%) on SiO2/Si(0 0 1) substrates by using pulsed laser deposition (PLD) and then investigated their electronic structure and optical and magnetic properties at room temperature. The analyses of x-ray photoelectron and x-ray absorption fine structure spectra revealed Mn2+ and/or P ions existing in nanocolumns, where Mn2+ ions are situated in the Zn2+ site of the ZnO-wurtzite structure. Although the incorporation of Mn2+ and/or P ions did not form secondary phases, as confirmed by x-ray and electron diffraction patterns, more lattice defects were created, and consequently changed the band-gap energy as well as the electron-phonon interactions in the nanocolumns. Magnetization versus magnetic-field measurements revealed that all the samples exhibited FM order. In particular, the (Mn, P) co-doping with x = 0.02 and y = 1 remarkably enhanced the magnetic moment up to 2.92 µ B/Mn. Based on the results obtained from analyzing the electronic structures, UV-Vis absorption and resonant Raman scattering spectra, and theoretical calculations, we believe that the enhancement of the FM order in (Mn, P)-doped ZnO nanocolumns is due to exchange interactions taking place between vacancy-mediated Mn2+ ions.
Ojha, Gunendra Prasad; Pant, Bishweshwar; Park, Soo-Jin; Park, Mira; Kim, Hak-Yong
2017-05-15
A novel and efficient CeO 2 -doped MnO 2 nanorods decorated reduced graphene oxide (CeO 2 -MnO 2 /RGO) nanocomposite was successfully synthesized via hydrothermal method. The growth of the CeO 2 doped MnO 2 nanorods over GO sheets and reduction of GO were simultaneously carried out under hydrothermal treatment. The morphology and structure of as-synthesized nanocomposite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which revealed the formation of CeO 2 -MnO 2 decorated RGO nanocomposites. The electrochemical performance of as-prepared CeO 2 -MnO 2 /RGO nanocomposites as an active electrode material for supercapacitor was evaluated by cyclic voltammetry, charge-discharge, and electrochemical impedance spectroscopy (EIS) methods in 2M alkaline medium. The obtained results revealed that as-synthesized CeO 2 -MnO 2 /RGO nanocomposite exhibited higher specific capacitance (648F/g) as compared to other formulations (MnO 2 /RGO nanocomposites: 315.13 F/g and MnO 2 nanorods: 228.5 F/g) at the scan rate of 5mV/s. After 1000 cycles, it retained ∼90.4%, exhibiting a good stability. The high surface area, enhanced electrical conductivity, and good stability possess by the nanocomposite make this material a promising candidate to be applied as a supercapacitor electrode. Copyright © 2017 Elsevier Inc. All rights reserved.
Thermodynamic Stability of Transition Metal Substituted LiMn 2-xMxO 4 (M=Cr, Fe, Co, and Ni) Spinels
NASA Astrophysics Data System (ADS)
Lai, Chenying
The formation enthalpies from binary oxides of LiMn2O 4, LiMn2-xCrxO4 (x = 0.25, 0.5, 0.75 and 1), LiMn2-xFexO4 (x = 0.25 and 0.5), LiMn2-xCoxO4 (x = 0.25, 0.5, and 0.75) and LiMn1.75Ni 0.25O4 at 25 °C have been measured by high-temperature oxide-melt-solution calorimetry and were found to be strongly exothermic. Increasing Cr, Co and Ni content leads to more thermodynamically stable spinels, but increasing Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO 4 (M = Cr, Fe and Co) become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2O4 - LiMnMO 4 solid solutions. These data confirm that transition metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries.
Magneto-transport in LaTi1-xMnxO3/SrTiO3 oxide heterostructures
NASA Astrophysics Data System (ADS)
Kumar, Pramod; Dogra, Anjana; Budhani, R. C.
2014-04-01
We report the growth of ultrathin film of Mn doped LaTiO3 on TiO2 terminated SrTiO3 (001) substrate by pulsed laser deposition (PLD) and their electrical transport characteristics including magnetoresistance (MR). Though the replacement of Mn in LaTiO3 at the Ti site in dilute limit does not affect the metallic behaviour of films but variation in resistance is observed. Normalised resistance behaviour is explained on the basis of variation in charge carriers and increased interaction between Mn atoms in the system under investigation.
Effects of co-dopants on the microstructure and electroluminescence of ZnS:Mn thin film phosphors
NASA Astrophysics Data System (ADS)
Zhai, Qing
The objective of this study is to investigate the effects of the co-dopants of KCl and Ga2S3 and post-deposition annealing on the microstructure and electroluminescence (EL) properties of ZnS:Mn thin film phosphors. ZnS:Mn thin films are deposited by radio frequency (RF) magnetron sputtering from ZnS and Mn targets onto pre-deposited indium tin oxide (ITO) and aluminum titanium oxide (ATO) layers on Corning 7059 glass. Argon at 20mTorr is the sputtering ambient. The substrates are held at 180°C during deposition. Co-dopants are thermally evaporated after the ZnS:Mn films, and diffused into the ZnS:Mn films by ex situ annealing between 600°C and 800°C for 5 minutes in a nitrogen ambient. Brightness versus the applied voltage, luminous efficiency, and photoluminescence (PL) are used to characterize the EL devices. The figures of merit are the threshold voltage Vth, at which luminescence is first detected, B40 and eta40, the brightness and efficiency at 40V above the threshold voltage, respectively. In the as-deposited ZnS:Mn phosphor, the microstructure is heavily defected with two different grain morphologies: a roughly 100nm layer of equiaxed fine grains at the insulator/phosphor interface and columnar grains with an average diameter of 89nm in the rest of the film. The EL properties of as-deposited films are poor, with a Vth of 125V, B40 of 48.7nits, and a eta40 of 0.2275lm/W. Annealing at 700°C for 5 minutes raises B40 to 99.6nits and eta40 to 0.4463lm/W, with little change in Vth. In KCl doped ZnS:Mn samples, after 5 minutes of annealing at 700°C, SIMS indicates a uniform distribution of K and a complete diffusion of Cl throughout the phosphor. KCl co-doping enhances grain growth by improving dislocation motion, and the columnar grain size increases from 132nm to 187nm. EL properties are improved, with a B40 of 252nits and eta 40 of 0.9879lm/W. A slight increase in Vth is observed. In ZnS:Mn samples with Ga2S3, the grain growth is less than that in undoped ZnS:Mn. Energy dispersive spectrometry (EDS) data show Ga segregation to grain boundaries and triple points. Decreases of 40V in Vth and 10nits in B40 are observed from ZnS:Mn,Ga 2S3 samples annealed at 800°C. It is postulated that Ga2S3 creates a range of shallow donor states at the interface close to the conduction band, which causes lower threshold voltages and "leaky" turn-on properties. The low EL brightness is attributed to the low threshold voltage. The lack of reduction of the defects in the microstructure of ZnS:Mn,Ga2S3 during anneal is another reason for the poor EL properties. When samples are doped with Ga2S3 first followed by KCl, much better EL properties are observed than from samples doped with KCl first followed by Ga2S3 (B40 of 120nits versus 64.2nits). (Abstract shortened by UMI.)
Atomic-Scale Fingerprint of Mn Dopant at the Surface of Sr3(Ru1−xMnx)2O7
Li, Guorong; Li, Qing; Pan, Minghu; Hu, Biao; Chen, Chen; Teng, Jing; Diao, Zhenyu; Zhang, Jiandi; Jin, Rongying; Plummer, E. W.
2013-01-01
Chemical doping in materials is known to give rise to emergent phenomena. These phenomena are extremely difficult to predict a priori, because electron-electron interactions are entangled with local environment of assembled atoms. Scanning tunneling microscopy and low energy electron diffraction are combined to investigate how the local electronic structure is correlated with lattice distortion on the surface of Sr3(Ru1−xMnx)2O7, which has double-layer building blocks formed by (Ru/Mn)O6 octahedra with rotational distortion. The presence of doping-dependent tilt distortion of (Ru/Mn)O6 octahedra at the surface results in a C2v broken symmetry in contrast with the bulk C4v counterpart. It also enables us to observe two Mn sites associated with the octahedral rotation in the bulk through the “chirality” of local electronic density of states surrounding Mn, which is randomly distributed. These results serve as fingerprint of chemical doping on the atomic scale. PMID:24108411
Magnetic properties of Mn-doped GaN with defects: ab-initio calculations
NASA Astrophysics Data System (ADS)
Salmani, E.; Benyoussef, A.; Ez-Zahraouy, H.; H. Saidi, E.
2011-08-01
According to first-principles density functional calculations, we have investigated the magnetic properties of Mn-doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.
Interplay between magnetism and relativistic fermions in Eu doped (Sr/Ba)MnSb2
NASA Astrophysics Data System (ADS)
Liu, Jinyu; Hu, Jin; Zhu, Yanglin; Chuang, Alyssa; Graf, David; Jaime, Marcelo; Balakirev, Fedor; Weickert, Franziska; Zhang, Qiang; Ditusa, John; Wu, Yan; Cao, Huibo; Mao, Zhiqiang
Layered compounds AMnBi2 (A =Ca, Sr, Ba, Eu, and Yb) have been established as Dirac materials with fascinating properties. In our previous work, we have demonstrated that Sr1-y Mn1-z Sb2 (y, z <0.1), isostructural to AMnBi2, not only host relativistic fermions, but also exhibit ferromagnetic properties, with its ferromagnetism being coupled to the relativistic fermions' transport. To gain further insight into the relativistic fermion-magnetism coupling, we have synthesized a series of Eu doped (Sr/Ba)MnSb2 single crystals and found Eu moments order antiferromagnetically. Through neutron scattering experiments, we determined the magnetic structures for Sr1-xEuxMnSb2 with x = 0.2, 0.5, and 0.8. From magnetotransport measurements, we find the Eu antiferromagnetism is also coupled to relativistic fermion transport. More importantly, we observed a novel quantum phase with saturated magnetoresistivity near the quantum limit for the 10% Eu doped BaMnSb2 sample. We will discuss possible mechanisms for this novel phase.
Effects of Co and Mn doping in K0.8Fe2-ySe2 revisited.
Zhou, Tingting; Chen, Xiaolong; Guo, Jiangang; Jin, Shifeng; Wang, Gang; Lai, Xiaofang; Ying, Tianping; Zhang, Han; Shen, Shijie; Wang, Shunchong; Zhu, Kaixing
2013-07-10
Accumulated evidence indicates that phase separation occurs in potassium intercalated iron selenides, a superconducting phase coexisting with the antiferromagnetic phase K2Fe4Se5, the so-called '245 phase'. Here, we report a comparative study of substitution effects by Co and Mn for Fe sites in K0.8Fe2-ySe2 within the phase separation scenario. Our results demonstrate that Co and Mn dopants have distinct differences in occupancy and hence in the suppression mechanism of superconductivity upon doping of Fe sites. In K0.8Fe2-xCoxSe2, Co prefers to occupy the lattice of the superconducting phase and suppresses superconductivity very quickly, obeying the magnetic pair-breaking mechanism or the collapse of the Fermi surface nesting mechanism. In contrast, in K0.8Fe1.7-xMnxSe2, Mn shows no preferential occupancy in the superconducting phase or the 245 phase. The suppression of superconductivity can be attributed to restraining of the superconducting phase and meanwhile inducing another non-superconducting phase by Mn doping.
NASA Astrophysics Data System (ADS)
Korotana, R.; Mallia, G.; Gercsi, Z.; Liborio, L.; Harrison, N. M.
2014-05-01
Hybrid-exchange density functional theory calculations are carried out to determine the effects of A-site doping on the electronic and magnetic properties of the manganite series La1-xCaxMnO3. This study focuses on the ground state of an ordered Ca occupancy in a periodic structure. It is shown that the hybrid-exchange functional, Becke three-parameter Lee-Yang-Parr (B3LYP), provides an accurate and consistent description of the electronic structure for LaMnO3, CaMnO3, and La0.75Ca0.25MnO3. We have quantified the relevant structural, magnetic, and electronic energy contributions to the stability of the doped compound. An insight into the exchange coupling mechanism for the low hole density region of the phase diagram, where a polaron (anti-Jahn-Teller) forms, is also provided. This study completes a microscopic description of the lightly doped insulator with an antiferromagnetic-to-ferromagnetic and metal-to-insulator transition.
NASA Astrophysics Data System (ADS)
Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.
2018-06-01
Using the s-d microscopic model including the electron-phonon interaction and the Green's function theory we have considered the origin of room temperature ferromagnetism (RTFM) in pure and ion doped In2O3 nanoparticles (NPs). The magnetization M increases with decreasing particle size. M of Fe, Tb and Mn doped In2O3 NPs is investigated, which increases, decreases and has a maximum, respectively, with increasing doping concentration. The RTFM is due to surface oxygen vacancies and different ionic radius of the dopants compared to that of the host ions. This differences lead to different strains which changes the exchange interaction constants. We have calculated the dependence of the band gap energy on the particle size in In2O3 NPs and the Fe concentration of Fe doped In2O3 NPs. The results are in good qualitative agreement with the experimental data.
Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires
Sapkota, Keshab R.; Chen, Weimin; Maloney, F. Scott; ...
2016-10-14
We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior wasmore » modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. Finally, this work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.« less
NASA Astrophysics Data System (ADS)
Wahid Nuryadin, Bebeh; Suryani, Yayu; Yuliani, Yuli; Setiadji, Soni; Yeti Nuryantini, Ade; Iskandar, Ferry
2018-04-01
The effect of sintering time to the transient nature and optimization of red photoluminescence manganese-doped boron carbon oxynitride (BCNO:Mn) phosphor was investigated. The BCNO:Mn samples were synthesized using a facile urea-assisted combustion route involving boric acid, citric acid, manganese salt and urea. The optimized intensity of the dual peak emission at 420 nm (blue emission) and 630 nm (red emission) in the photoluminescence (PL) spectrum could be achieved by controlling the sintering time of the BCNO:Mn. The BCNO:Mn samples in high-crystalline form was found to be in a cubic and hexagonal structure. Based on the PL analysis, it is suggested that the BCNO:Mn symmetric band at 630 nm can be attributed to the 4T1(4G)—6A1(6S) transition absorption of Mn2+ ions into the hexagonal structure. Microstructure analysis showed an irregular and agglomerated shape of the BCNO:Mn sample.
Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daniel R.; National High Magnetic Field Laboratory, Tallahassee, FL 32310; Han, Ke
2016-05-15
Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn{sub 0.8}Ga{sub 0.2} system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealedmore » Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.« less
NASA Astrophysics Data System (ADS)
Huang, Jiajia; Liu, Haodong; Hu, Tao; Meng, Ying Shirley; Luo, Jian
2018-01-01
WO3 doping and accompanying spontaneous formation of a surface phase can substantially improve the discharge capacity, rate capability, and cycling stability of Co-free Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 cathode material. X-ray photoelectron spectroscopy, in conjunction with ion sputtering, shows that W segregates to the particle surfaces, decreases the surface Ni/Mn ratio, and changes the surface valence state. High-resolution transmission electron microscopy further suggests that W segregation increases surface structural disorder. The spontaneous and simultaneous changes in the surface structure, composition, and valence state represent the formation of a surface phase (complexion) as the preferred surface thermodynamic state. Consequently, the averaged discharge capacity is increased by ∼13% from 251 to 284 mAh g-1 at a low rate of C/20 and by ∼200% from 30 to 90 mAh g-1 at a high rate of 40C, in comparison with an undoped specimen processed under identical conditions. Moreover, after 100 cycles at a charge/discharge rate of 1C, the WO3 doped specimen retained a discharge capacity of 188 mAh g-1, being 27% higher than that of the undoped specimen. In a broader context, this work exemplifies an opportunity of utilizing spontaneously-formed surface phases as a scalable and cost-effective method to improve materials properties.
Thermoelectric study of crossroads material MnTe via sulfur doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Wenjie, E-mail: xie@imw.uni-stuttgart.de; Populoh, Sascha; Sagarna, Leyre
2014-03-14
Here, we report thermoelectric study of crossroads material MnTe via iso-electronic doping S on the Te-site. MnTe{sub 1-x}S{sub x} samples with nominal S content of x = 0.00, 0.05, and 0.10 were prepared using a melt-quench method followed by pulverization and spark plasma sintering. The X-ray powder diffraction, scanning electron microscopy, and ZAF-corrected compositional analysis confirmed that S uniformly substitutes Te up to slightly over 2%. A higher content of S in the starting materials led to the formation of secondary phases. The thermoelectric properties of MnTe{sub 1-x}S{sub x} samples were characterized by means of Seebeck coefficient, electrical conductivity, and thermal conductivitymore » measurements from 300 K to 773 K. Furthermore, Hall coefficient measurements and a single parabolic band model were used to help gain insights on the effects of S-doping on the scattering mechanism and the carrier effective mass. As expected, S doping not only introduced hole charge carriers but also created short-range defects that effectively scatter heat-carrying phonons at elevated temperatures. On the other hand, we found that S doping degraded the effective mass. As a result, the ZT of MnTe{sub 0.9}S{sub 0.1} was substantially enhanced over the pristine sample near 400 K, while the improvement of ZT became marginal at elevated temperatures. A ZT ∼ 0.65 at 773 K was obtained in all three samples.« less
NASA Astrophysics Data System (ADS)
Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Nunzi, Jean-Michel; Badshah, Amin; Ahmad, Iqbal
2017-06-01
Zinc sulphide (ZnS) and Mn-doped ZnS nanoparticles were synthesized by wet chemical method. The synthesized nanoparticles were characterized by UV-visible, fluorescence, X-ray diffraction (XRD), fourier transform infra-red (FTIR) spectrometer, field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). Scanning electron microscope (SEM) was used to find particle size while chemical composition of the synthesized materials was investigated by EDAX. UV-visible absorption spectrum of Mn-doped ZnS was slightly shifted to lower wavelength with respect to the un-doped zinc sulphide with decrease in the size of nanoparticles. Consequently, the band gap was tuned from 3.04 to 3.13 eV. The photoluminescence (PL) emission positioned at 597 nm was ascribed to 4T1 → 6A1 transition within the 3d shell of Mn2+. X-ray diffraction (XRD) analysis revealed that the synthesized nanomaterials existed in cubic crystalline state. The effect of embedding un-doped and doped ZnS nanoparticles in the active layer and changing the ratio of PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester) to nanoparticles on the performance of hybrid solar cell was studied. The device with active layer consisting of poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and un-doped ZnS nanoparticles combined in the ratio of (1:0.5:0.5) attained an efficiency of 2.42% which was found 71% higher than the reference device under the same conditions but not containing nanoparticles. Replacing ZnS nanoparticles with Mn-doped ZnS had a little effect on the enhancement of efficiency. The packing behavior and morphology of blend of nanoparticles with P3HT:PCBM were examined using atomic force microscope (AFM) and XRD. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.
2009-08-01
We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.
Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia.
Melnikov, O V; Gorbenko, O Yu; Markelova, M N; Kaul, A R; Atsarkin, V A; Demidov, V V; Soto, C; Roy, E J; Odintsov, B M
2009-12-15
The purpose of this study was to introduce newly synthesized nanomaterials as an alternative to superparamagnetic ironoxide based particles (SPIO) and thus to launch a new platform for highly controllable hyperthermia cancer therapy and imaging. The new material that forms the basis for this article is lanthanum manganite particles with silver ions inserted into the perovskite lattice: La(1-x)Ag(x)MnO(3+delta). Adjusting the silver doping level, it is possible to control the Curie temperature (T(c)) in the hyperthermia range of interest (41-44 degrees C). A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) is suggested. New nanoparticles are stable, and their properties were not affected by the typical ambient conditions in the living tissue. It is possible to monitor the particle uptake and retention by MRI. When these particles are placed into an alternating magnetic field, their temperature increases to the definite value near T(c) and then remains constant if the magnetic field is maintained. During the hyperthermia procedure, the temperature can be restricted, thereby preventing the necrosis of normal tissue. A new class of nanoparticles based on silver-doped manganites La(1-x)Ag(x)MnO(3+delta) was suggested. Ag-doped perovskite manganites particles clearly demonstrated the effect of adjustable Curie temperature necessary for highly controllable cellular hyperthermia. The magnetic relaxation properties of the particles are comparable with that of SPIO, and so we were able to monitor the particle movement and retention by MRI. Thus, the new material combines the MRI contrast enhancement capability with targeted hyperthermia treatment.
Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon
NASA Astrophysics Data System (ADS)
Du, Qian-Heng; Chen, Guo-Fu; Yang, Wen-Yun; Hua, Mu-Xin; Du, Hong-Lin; Wang, Chang-Sheng; Liu, Shun-Quan; Hang, Jing-Zhi; Zhou, Dong; Zhang, Yan; Yan, Jin-Bo
2015-06-01
The structure and magnetic properties of MnCoSi1- x Px (x = 0.05-0.50) are systematically investigated. With P content increasing, the lattice parameter a increases monotonically while both b and c decrease. At the same time, the temperature of metamagnetic transition from a low-temperature non-collinear ferromagnetic state to a high-temperature ferromagnetic state decreases and a new magnetic transition from a higher-magnetization ferromagnetic state to a lower-magnetization ferromagnetic state is observed in each of these compounds for the first time. This is explained by the changes of crystal structure and distance between Mn and Si atoms with the increase of temperature according to the high-temperature XRD result. The metamagnetic transition is found to be a second-order magnetic transition accompanied by a low inversed magnetocaloric effect (1.0 J·kg-1·K-1 at 5 T) with a large temperature span (190 K at 5 T) compared with the scenario of MnCoSi. The changes in the order of metamagnetic transition and structure make P-doped MoCoSi compounds good candidates for the study of magnetoelastic coupling and the modulation of magnetic phase transition. Project supported by the National Natural Science Foundation of China (Grant No. 11275013), the Fund from the National Physics Laboratory, China Academy of Engineering Physics (Grant No. 2013DB01), and the National Key Basic Research Program of China (Grant No. 2010CB833104).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahi, Prashant; Kumar, A.; Shukla, K. K.
2014-09-15
X-ray absorption near edge spectra (XANES) and magnetization of Zn doped MnV{sub 2}O{sub 4} have been measured and from the magnetic measurement the critical exponents and magnetocaloric effect have been estimated. The XANES study indicates that Zn doping does not change the valence states in Mn and V. It has been shown that the obtained values of critical exponents β, γ and δ do not belong to universal class and the values are in between the 3D Heisenberg model and the mean field interaction model. The magnetization data follow the scaling equation and collapse into two branches indicating that themore » calculated critical exponents and critical temperature are unambiguous and intrinsic to the system. All the samples show large magneto-caloric effect. The second peak in magneto-caloric curve of Mn{sub 0.95}Zn{sub 0.05}V{sub 2}O{sub 4} is due to the strong coupling between orbital and spin degrees of freedom. But 10% Zn doping reduces the residual spins on the V-V pairs resulting the decrease of coupling between orbital and spin degrees of freedom.« less
NASA Astrophysics Data System (ADS)
Jethva, Sadaf; Katba, Savan; Udeshi, Malay; Kuberkar, D. G.
2017-09-01
We report the results of the structural, transport and magnetotransport studies on polycrystalline La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 and 0.05) manganite investigated using XRD and resistivity (with and without field) measurements. Rietveld refinement of XRD patterns confirms the single phasic tetragonal structure for both the samples crystalizing in I4/mcm space group (No. 140). Low-temperature resistivity and MR measurements with H = 0 T & 5 T field show thermal hysteresis which has been attributed to the first order phase transition. The increase in resistivity and decrease in metal - insulator transition temperature (TMI) with Ru - doping concentration in La0.5Sr0.5MnO3 (LSMO) has been understood in the context of superexchange interaction between Mn and Ru ions. The observed upturn in resistivity at low temperature under field has been explained using combined effect of electron - electron (e - e) interaction, Kondo-like spin-dependent scattering and electron - phonon interaction while the variation in resistivity at high temperature (T > Tp) has been explained using adiabatic small polaron hopping model.
Nelson, Heidi D; Bradshaw, Liam R; Barrows, Charles J; Vlaskin, Vladimir A; Gamelin, Daniel R
2015-11-24
Spontaneous magnetization is observed at zero magnetic field in photoexcited colloidal Cd(1-x)Mn(x)Se (x = 0.13) quantum dots (QDs) prepared by diffusion doping, reflecting strong Mn(2+)-exciton exchange coupling. The picosecond dynamics of this phenomenon, known as an excitonic magnetic polaron (EMP), are examined using a combination of time-resolved photoluminescence, magneto-photoluminescence, and Faraday rotation (TRFR) spectroscopies, in conjunction with continuous-wave absorption, magnetic circular dichroism (MCD), and magnetic circularly polarized photoluminescence (MCPL) spectroscopies. The data indicate that EMPs form with random magnetization orientations at zero external field, but their formation can be directed by an external magnetic field. After formation, however, external magnetic fields are unable to reorient the EMPs within the luminescence lifetime, implicating anisotropy in the EMP potential-energy surfaces. TRFR measurements in a transverse magnetic field reveal rapid (<5 ps) spin transfer from excitons to Mn(2+) followed by coherent EMP precession at the Mn(2+) Larmor frequency for over a nanosecond. A dynamical TRFR phase inversion is observed during EMP formation attributed to the large shifts in excitonic absorption energies during spontaneous magnetization. Partial optical orientation of the EMPs by resonant circularly polarized photoexcitation is also demonstrated. Collectively, these results highlight the extraordinary physical properties of colloidal diffusion-doped Cd(1-x)Mn(x)Se QDs that result from their unique combination of strong quantum confinement, large Mn(2+) concentrations, and relatively narrow size distributions. The insights gained from these measurements advance our understanding of spin dynamics and magnetic exchange in colloidal doped semiconductor nanostructures, with potential ramifications for future spin-based information technologies.
NASA Astrophysics Data System (ADS)
Hossain, Aslam; Ghosh, Debamalya; Dutta, Uma; Walke, Pravin S.; Mordvinova, Natalia E.; Lebedev, Oleg I.; Sinha, Bhavesh; Pal, Kamalesh; Gayen, Arup; Kundu, Asish K.; Seikh, Md. Motin
2017-12-01
The effect of hole doping on magnetic properties of LaFe0.5Mn0.5O3 have been investigated. All the ceramics samples La1-xAxFe0.5Mn0.5O3 (A = Ca, Sr and Pb; x = 0 & 0.25) were synthesized at 500 °C by sol-gel method and the particles size were found to be in nanodimension. The samples were characterized by X-ray and electron diffraction, HRTEM and both dc and ac-magnetization measurements. The X-ray and electron diffraction patterns were indexed by cubic Pm-3m space group. The particle size of the LaFe0.5Mn0.5O3 is ∼100 nm, whereas the Pb-doped sample is ∼50 nm and for Ca or Sr doped samples the size is ∼10-30 nm. Both dc and ac-susceptibility measurements suggest that the effect of hole doping and A-site cationic radius in LaFe0.5Mn0.5O3 have no significant role on magnetic properties. However, the particle size plays an important role on magnetic property due to the development of surface ferromagnetic cluster at nanoscale. The competing interactions lead to magnetic phase separation where local ferromagnetic clusters coexist within the antiferromagentic matrix in all the samples.
Structural, electrical and magnetic properties of Sc3+ doped Mn-Zn ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Angadi, V. Jagdeesha; Choudhury, Leema; Sadhana, K.; Liu, Hsiang-Lin; Sandhya, R.; Matteppanavar, Shidaling; Rudraswamy, B.; Pattar, Vinayak; Anavekar, R. V.; Praveena, K.
2017-02-01
Sc3+ doped Mn0.5Zn0.5ScyFe2-yO4 (y=0.00, 0.01, 0.03 and 0.05) nanoparticles were synthesized by solution combustion method using mixture of fuels were reported for the first time. The mixture of fuels plays an important role in obtaining nano crystalline, single phase present without any heat treatment. X-ray diffraction (XRD) results confirm the formation of the single-phase ferrites which crystallize in cubic spinel structure. The Fourier transform infrared spectra (FTIR) exhibit two prominent bands around 360 cm-1 and 540 cm-1 which are characteristic feature of spinel ferrite. The transmission electron microscope (TEM) micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The room temperature impedance spectra (IS) and vibrating sample magnetometry (VSM) measurements were carried out in order to study the effect of doping (Sc3+) on the characteristic properties of Mn-Zn ferrites. Further, the frequency dependent dielectric constant and dielectric loss were found to decrease with increasing multiple Sc3+ concentration. Nyquist plot in the complex impedance spectra suggest the existence of multiple electrical responses. Magnetic measurements reveals that saturation magnetization (Ms), remnant magnetization (Mr), magnetic moment (ηB) and magnetic particle size (Dm) increase with Sc3+ ion concentration up to x=0.03 and then decrease. The values of spin canting angle (αY-K) and the magnetic particle size (Dm) are found to be in the range of 68-75° and 10-19 nm respectively with Sc3+ concentration. The room temperature Mössbauer spectra were fitted with two sextets corresponding to ions at tetrahedral (A-) and octahedral (B-) sites confirms the spinel lattice. The ferromagnetic resonance (FMR) spectra's has shown that high concentration of scandium doping leads to an increase in dipolar interaction and decrease in super exchange interaction.
Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis
NASA Astrophysics Data System (ADS)
Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.
2015-06-01
Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å3. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn2+ and its surroundings.
NASA Astrophysics Data System (ADS)
Nam, Yoonseung; Hwang, Inrok; Oh, Sungtaek; Lee, Sangik; Lee, Keundong; Hong, Sahwan; Kim, Jinsoo; Choi, Taekjib; Ho Park, Bae
2013-04-01
We investigated the asymmetric current-voltage (I-V) characteristics and accompanying unipolar resistive switching of pure ZnO and Mn(1%)-doped ZnO (Mn:ZnO) films sandwiched between Pt electrodes. After electroforming, a high resistance state of the Mn:ZnO capacitor revealed switchable diode characteristics whose forward direction was determined by the polarity of the electroforming voltage. Linear fitting of the I-V curves highlighted that the rectifying behavior was influenced by a Schottky barrier at the Pt/Mn:ZnO interface. Our results suggest that formation of conducting filaments from the cathode during the electroforming process resulted in a collapse of the Schottky barrier (near the cathode), and rectifying behaviors dominated by a remnant Schottky barrier near the anode.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe.
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-09-28
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La 3+ -Mn 4+ and Eu 3+ -Fe 3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La 3+ -Mn 4+ and Eu 3+ -Fe 3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications.
Optical and Piezoelectric Study of KNN Solid Solutions Co-Doped with La-Mn and Eu-Fe
Peña-Jiménez, Jesús-Alejandro; González, Federico; López-Juárez, Rigoberto; Hernández-Alcántara, José-Manuel; Camarillo, Enrique; Murrieta-Sánchez, Héctor; Pardo, Lorena; Villafuerte-Castrejón, María-Elena
2016-01-01
The solid-state method was used to synthesize single phase potassium-sodium niobate (KNN) co-doped with the La3+–Mn4+ and Eu3+–Fe3+ ion pairs. Structural determination of all studied solid solutions was accomplished by XRD and Rietveld refinement method. Electron paramagnetic resonance (EPR) studies were performed to determine the oxidation state of paramagnetic centers. Optical spectroscopy measurements, excitation, emission and decay lifetime were carried out for each solid solution. The present study reveals that doping KNN with La3+–Mn4+ and Eu3+–Fe3+ at concentrations of 0.5 mol % and 1 mol %, respectively, improves the ferroelectric and piezoelectric behavior and induce the generation of optical properties in the material for potential applications. PMID:28773925
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Fu, Zuoling, E-mail: zlfu@jlu.edu.cn; Wu, Zhijian
Graphical abstract: The structural and luminescent properties FAP: Ce{sup 3+} and FAP: Ce{sup 3+}, Mn{sup 2+} were investigated in detail by the spectral measurement and theoretical calculation. The emission of Ce{sup 3+} is fitted by two Gaussian functions dashed lines in wavenumber to further confirm the Ce{sup 3+} ion simultaneously occupy the 4f and 6h sites Ca{sub 5}(PO{sub 4})F host. - Highlights: • A simple hydrothermal method has been used to prepare Ca{sub 5}(PO{sub 4}){sub 3}F: Ce{sup 3+}, Mn{sup 2+} powders with structural and luminescent analysis. • The emission of Ce{sup 3+} is fitted by two Gaussian functions to confirmmore » the Ce{sup 3+} ion simultaneously to occupy the 4f and 6h sites in Ca{sub 5}(PO{sub 4}){sub 3}F host. • Due to an efficient energy transfer, the existence of Ce{sup 3+} (sensitizer) can dramatically enhance the green emission of Mn{sup 2+} (activator) in co-doped samples. - Abstract: Ce{sup 3+}/Mn{sup 2+} ions-doped oxyapatite calcium fluorapatite [Ca{sub 5}(PO{sub 4}){sub 3}F, FAP] has been successfully synthesized by a facile one-step hydrothermal method. The luminescent properties of Ce{sup 3+}- and Ce{sup 3+}/Mn{sup 2+}- activated FAP phosphors were investigated using the photoluminescence (PL) and photoluminescence excitation (PLE) spectra. The emission of Ce{sup 3+} was fitted by two Gaussian functions with dashed lines in wavenumber to confirm the Ce{sup 3+} ion simultaneously to occupy the 4f and 6h sites in Ca{sub 5}(PO{sub 4}){sub 3}F host, which was consistent with the calculated results of crystal field based on chemical bond theory. In addition, the existence of Ce{sup 3+} (sensitizer) can dramatically enhance the green emission of Mn{sup 2+} (activator) in Ce{sup 3+}/Mn{sup 2+} ions co-doped samples due to an efficient energy transfer from Ce{sup 3+} to Mn{sup 2+}. All of these results could help us understand the site assignments and optical properties of the rare earth ions doped in hexagonal Ca{sub 5}(PO{sub 4}){sub 3}F.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seña, N.; Dussan, A.; Mesa, F.
We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x = 0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the Mn{sub Ga} substitution is the most stable configuration with a formation energy of ∼1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 μ{sub B}/Mn-atom. The results indicate that the magnetic ground statemore » originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors.« less
Tuning of magnetism in DyMn1-xFexO3 (x<0.1) system by iron substitution
NASA Astrophysics Data System (ADS)
Mihalik, Matúš; Mihalik, Marián; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Fitta, Magdalena; Quintero, Pedro A.; Meisel, Mark W.
2018-05-01
The effect of Fe doping on the magnetism of DyMn1-xFexO3 (x<0.1) single crystals is reported. Specifically, TN of the Mn sublattice decreases from 38 K (x = 0) to 33 K (x = 0.1), TS = 17.9 K (x = 0) connected with the transition of Mn-spins into the cycloidal magnetic phase decreases to 15.9 K (x = 0.01) and vanishes for higher x concentrations, while the ordering temperature of the Dy sublattice varies between 5.9 K (x = 0.01) and 4.1 K (x = 0.02). These results indicate the ground state magnetic structure of DyMnO3 can be destabilized, and the multiferroicity is completely suppressed by very low Fe doping. Similar effects were previously observed in the multiferroic TbMn1-xFexO3 system.
Enhanced strain effect of aged acceptor-doped BaTiO3 ceramics with clamping domain structures
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhou, Zhiyong; Zhao, Xiaobo; Liu, Zhen; Liang, Ruihong; Dong, Xianlin
2017-03-01
A clamping domain structure is proposed to improve the amount of non-180° domain switching in BaTiO3 based piezoelectric ceramics. Experimental results show a large unipolar strain of 0.23% at 5 kV/mm in aged 0.5 mol. % Mn doped BaTiO3 ceramics with clamping domain structures, and the normalized strain (d33*= Smax/Emax) reaches 600 pm/V at low electric fields of 2 or 3 kV/mm. In contrast, pure BaTiO3 ceramics with clamping domain structures exhibit no clear polarization constriction or strain enhancement at 3 kV/mm. Electron paramagnetic resonance spectra verify the existence of titanium vacancies, Mn2+ and Mn4+, in 0.5 mol. % Mn doped BaTiO3 ceramics. These results indicate that the enhanced strain effect can be attributed to the combined effect of the clamping domain structure and stabilization of defect dipoles. This method provides a general way to obtain large strain in ferroelectrics.
Thermoelectric Properties of Electron-Doped SrMnO3 Single Crystals with Perovskite Structure
NASA Astrophysics Data System (ADS)
Suzuki, T.; Sakai, H.; Taguchi, Y.; Tokura, Y.
2012-06-01
Thermoelectric properties have been investigated for single crystals of Sr(Mn1- x Mo x )O3 with the perovskite structure. Similar to (Sr1- x Ce x )MnO3, the Seebeck coefficient for lightly electron-doped compounds ( x ≤ 0.01) is enhanced upon G-type antiferromagnetic ordering, while maintaining metallic conduction. This results in enhancement of the figure of merit ( ZT). On the other hand, the Seebeck coefficient for the more electron-doped compound ( x = 0.025) changes sign from negative to positive within a spin and orbital ordered phase (with C-type antiferromagnetic configuration and Mn 3 z 2 - r 2 type orbital order) as the temperature is lowered, whereas the Hall coefficient remains negative in the whole temperature range. The enhancement of the ZT value in the G-type antiferromagnetic phase implies the possibility for improvement of the thermoelectric efficiency by using the coupling between charge, spin, orbital, and lattice degrees of freedom in strongly correlated electron systems.
NASA Astrophysics Data System (ADS)
Kennedy, A.; Senthil Kumar, V.; Pradeev Raj, K.
2017-11-01
Bismuth (Bi)-doped manganese indium sulphide (MnInS4) thin films were deposited on heated glass substrates using an aqueous solution of MnCl2, InCl3, (NH2)2CS and BiCl3 by the common nebuliser spray pyrolysis technique. The thin films were grown at various substrate temperatures ranging from 250 to 400 °C with a constant spray time (5 min). The present work aims to study the effect of substrate temperature on the structural, optical, photoluminescence and electrical properties of the grown thin films using various techniques like X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectrum (EDS), UV-Vis absorption spectroscopy, photoluminescence spectra (PL) and four probe methods. The XRD pattern reveals that the Bi-doped MnInS4 thin films were polycrystalline in nature with a cubic spinel structure whose particle size varies between 8.2 and 23.5 nm. From the FE-SEM micrographs, due to the change in the substrate temperature, shapes such as spherical, needle-shaped and T-shaped grains were observed throughout the surface of the films. The energy dispersive analysis spectrum (EDS) shows the presence of Mn, In, S and Bi in the film grown at 250 °C. It is interesting to note that the structural homogeneity and crystallinity of the film is improved due to the decrease in the absorption coefficient (α) and extinction coefficient (K) with an increase in substrate temperature. Also, with an increase in the substrate temperature, the calculated band gap energy was found to decrease from 1.87 to 1.59 eV. From the PL spectra, several intense peaks corresponding to blue, green, yellow, orange and red band emissions were observed in the wavelength region of 350-650 nm. Moreover as the intensity of the peak increases with increase in the substrate temperature, the crystallinity of the material of the film greatly improves concomitant with minimum strain and defect states. From the electrical studies, the electrical conductivity increases with increase in substrate temperature and a maximum electrical conductivity of 3.73 × 10-3 Ω-1m-1 were obtained for the film prepared at 400 °C. The thickness of the films was also measured and the values ranged between 743 nm (250 °C) to 629 nm (400 °C). The high absorption coefficient (1.85 × 104 cm-1) and high transmittance of the films make them an efficient window layer for solar cell applications. Incorporation of Bismuth (Bi) into MnInS4 matrix leads to improve the optical transmittance (85%) and electrical conductivity (3.11 × 10-3 Ω-1 m-1) of the film grown at 400 °C. Other important parameters like dislocation density (δ), strain (ε), the number of crystallites per unit area (N) and lattice distortion (LD), which are commonly used to describe the structural analysis were also presented. Bi-doped MnInS4 thin films were grown by a variety of deposition methods. Among them, spray pyrolysis is an eco-friendly method because of its low cost, mass production capacity, large area coatings and minimum wastage of the source materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Proloy T., E-mail: dasproloy@phy.iitkgp.ernet.in; Nath, Tapan Kumar; Gupta, Kajal
2014-04-24
We report detailed field dependent electronic- (ρ-T) and magneto- transport (MR-H) studies of La{sub 1−x}Sm{sub x}Sr{sub 0.1}MnO{sub 3} (0.1≤x≤0.5) nanoparticles. Doping induced disorder at La site is observed in field dependent ρ-T measurements of the sample. At low doping side, nice metal to insulator transition (MIT) peak appears in ρ-T data whereas with increasing of Sm{sup +3} contents, metallic behavior is suppressed under the insulating background although a weak signature of MIT is found. Anomalous resistive nature of the samples with increasing of x can be explained in such a way that doping at nonmagnetic La site with magnetic Sm+3more » ion induces an extra magnetic coupling in the system which changes the long range ferromagnetic ordering to spin glass/cluster glass state in antiferromagnetic background. The field dependent magneto resistance (MR) mechanism at different temperatures is investigated using spin polarized tunneling model of conduction electrons between two adjacent grains at the grain boundaries. For the sample of x=0.5, maximum 83 % change in MR is found at 8 T near MIT which leads the colossal magneto resistance effect.« less
Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents
NASA Astrophysics Data System (ADS)
Wang, Yuru; Wang, Tianren; Chen, Xi; Xu, Yang; Li, Huanrong
2018-04-01
Herein, we prepared a Mn(II)-coordinated carbon dots (CDs) with fluorescence and MRI (magnetic resonance imaging) bimodal properties by a one-pot solvothermal method and separated via silica column chromatography. The quantum yield of the CDs increased greatly from 2.27% to 6.75% with increase of Mn(II) doping, meanwhile the CDs exhibited a higher MR activity (7.28 mM-1s-1) than that of commercial Gd-DTPA (4.63 mM-1s-1). In addition, white light emitting CDs were obtained by mixing the different types of CDs. Notably, these CDs exhibited different fluorescence emissions in different organic solvents and could be used to discriminate organic solvents based on the polarity and protonation of the solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Yang, Feng; Lee, Sungsik
Facile fabrication of manganese oxide (MnO x, 0 < x < 2) and nitrogen (N) co-doped carbon microspheres (MnO x-N-CS) has been firstly developed by one-pot construction of Mn-functionalized melamine-formaldehyde (Mn-MF) resin spheres before pyrolysis. The resulting hybrids bear evenly dispersed MnO x and N moieties in situ anchored on hierarchically porous carbon microspheres formed simultaneously. The capacitive performance is greatly tailored by varying the Mn/melamine molar ratio in the synthetic mixture and pyrolysis temperature. It is found that the MnO x-N-CS hybrid (0.008 wt% Mn, pyrolyzed at 800 °C) exhibits the highest specific capacitance up to 258 F gmore » –1 at a scan rate of 1 mV s –1 (in 6 M KOH), and keeps a high capacitance retention ratio of 98% after 5000 cycles. The synergism between MnO x, N moieties and carbon spheres proves to be responsible for the remarkably improved performance, as compared to the pure carbon sphere and MnO x (N)-doped carbon sphere. Lastly, the well-developed MnO x-N-CS hybrids highlight the great potentials for widespread supercapacitor applications.« less
Influence of Chromium Doping on Electrical and Magnetic Behavior of Nd0.5Sr0.5MnO3 System
NASA Astrophysics Data System (ADS)
Lalitha, G.; Pavan Kumar, N.; Venugopal Reddy, P.
2018-04-01
With a view to understand the influence of chromium doping at the Mn site on the electrical and magnetic behavior of the Nd0.5Sr0.5MnO3 manganite system, a series of samples were prepared by the citrate sol-gel route method. The samples were characterized structurally by XRD. A systematic investigation of electrical resistivity over a temperature range 5-300 K was carried out mainly to understand the magneto-transport behavior in these materials. Studies on the variation of magnetization with temperature over a temperature range 80-330 K were undertaken. Investigation of magnetization at different magnetic fields at two different temperatures, viz. 80 and 300 K, was also carried out. The results show that chromium doping gave typical electrical and magnetic properties. It has been concluded that the coexistence of charge ordered and ferromagnetic phases induced by chromium doping plays an important role in the low-temperature behavior of the system.
NASA Astrophysics Data System (ADS)
Lee, Ming-Tsung; Li, Yun-Shan; Sun, I.-Wen; Chang, Jeng-Kuei
2014-01-01
Ideal pseudocapacitive behavior of α-MnO2 electrodes over a potential range of 3 V is found in lithium bis(trifluoromethylsulfonyl)imide (LiTFSI)-doped butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL), which is non-flammable and has a decomposition temperature of as high as ∼300 °C. Accordingly, this electrolyte is promising for high-energy, high-power, and high-safety supercapacitor applications. The addition of 0.01 M LiTFSI in the IL improves the oxide capacitance from 90 F g-1 to 120 F g-1, which is due to the incorporated Li+ ions promoting Mn valent state variation (between trivalent and tetravalent) during charge-discharge. However, excessive LiTFSI doping causes a capacitance decay due to reduced electrolyte ionic conductivity. In situ X-ray absorption spectroscopy is used to investigate the energy storage mechanism. A capacitance activation process of α-MnO2 in the Li+-doped BMP-DCA IL is found.
Electronic self-organization in the single-layer manganite $$\\rm Pr_{1-x}Ca_{1+x}MnO4$$
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Chi, Songxue; Fernandez-Baca, Jaime A
We use neutron scattering to investigate the doping evolution of the magnetic correlations in the single-layer manganitemore » $$\\rm Pr_{\\it 1-x}Ca_{\\it 1+x}MnO_4$$, away from the $x=0.5$ composition where the CE-type commensurate antiferromagnetic (AF) structure is stable. We find that short-range incommensurate spin correlations develop as the system is electron doped ($x<0.5$), which coexist with the CE-type AF order. This suggests that electron doping in this system induces an inhomogeneous electronic self-organization, where commensurate AF patches with $x=0.5$ are separated by electron-rich domain walls with short range magnetic correlations. This behavior is strikingly different than for the three-dimensional $$\\rm Pr_{\\it 1-x}Ca_{\\it x}MnO_3$$, where the long-range CE-type commensurate AF structure is stable over a wide range of electron or hole doping around $x=0.5$.« less
NASA Astrophysics Data System (ADS)
Alzate-Cardona, J. D.; Barco-Rios, H.; Restrepo-Parra, E.
2018-02-01
The magnetocaloric behavior of La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 for x = 0.00, 0.02, 0.03, 0.05, 0.07, 0.08 and 0.10 under the influence of an external magnetic field was simulated and analyzed. Simulations were carried out using the Monte Carlo method and the classical Heisenberg model under the Metropolis algorithm. These mixed valence manganites are characterized by having three types of magnetic ions corresponding to Mn4+≤ft(S=\\frac{3}{2}\\right) , which are bonded with Ca2+ , and Mneg3+ and Mneg\\prime3+ (S=2) , related to La3+ . The Fe ions were randomly included, replacing Mn ions. With this model, the magnetic entropy change, Δ S , in an isothermal process was determined. -Δ Sm showed maximum peaks around the paramagnetic-ferromagnetic transition temperature, which depends on Fe doping. Relative cooling power was computed for different Fe concentrations varying the magnetic applied field. Our model and results show that the Fe doping decreases the magnetocaloric effect in the La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3, making this a bad candidate for magnetic refrigeration. The strong dependence of the magnetocaloric behavior on Fe doping and the external magnetic field in La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 can boost these materials for the future technological applications.
Robust antiferromagnetism preventing superconductivity in pressurized (Ba 0.61K 0.39)Mn 2Bi 2
Gu, Dachun; Dai, Xia; Le, Congcong; ...
2014-12-05
BaMn 2Bi 2 possesses an iso-structure of iron pnictide superconductors and similar antiferromagnetic (AFM) ground state to that of cuprates, therefore, it receives much more attention on its properties and is expected to be the parent compound of a new family of superconductors. When doped with potassium (K), BaMn 2Bi 2 undergoes a transition from an AFM insulator to an AFM metal. Consequently, it is of great interest to suppress the AFM order in the K-doped BaMn 2Bi 2 with the aim of exploring the potential superconductivity. Here, we report that external pressure up to 35.6 GPa cannot suppress themore » AFM order in the K-doped BaMn 2Bi 2 to develop superconductivity in the temperature range of 300 K–1.5 K, but induces a tetragonal (T) to an orthorhombic (OR) phase transition at ~20 GPa. Theoretical calculations for the T and OR phases, on basis of our high-pressure XRD data, indicate that the AFM order is robust in the pressurized Ba 0.61K 0.39Mn 2Bi 2. Utlimately, both of our experimental and theoretical results suggest that the robust AFM order essentially prevents the emergence of superconductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Haiqing; Moronta, Dominic; Li, Luyao
In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as-prepared composites. Specifically, when both components are photoexcited, both energy transfer and charge transfer were found to plausibly occur, albeit in opposite directions. When the CdSe QDs are excited alone for example, charge transfer probably takes place from the CdSe QDs to the dopant Mn 2+ ions. We believe that our as-processed heterostructures are therefore promising as a tunable light-harvesting motif. Essentially, these materials have broadened the effective light absorption range for optical ‘accessibility’, not only through their incorporation of dopant-tunable Zn 2SiO 4 possessing complementary absorption properties to those of the QDs but also through their integration of CdSe QDs with size-tailorable optical behavior.« less
Liu, Haiqing; Moronta, Dominic; Li, Luyao; ...
2018-03-28
In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration asmore » a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as-prepared composites. Specifically, when both components are photoexcited, both energy transfer and charge transfer were found to plausibly occur, albeit in opposite directions. When the CdSe QDs are excited alone for example, charge transfer probably takes place from the CdSe QDs to the dopant Mn 2+ ions. We believe that our as-processed heterostructures are therefore promising as a tunable light-harvesting motif. Essentially, these materials have broadened the effective light absorption range for optical ‘accessibility’, not only through their incorporation of dopant-tunable Zn 2SiO 4 possessing complementary absorption properties to those of the QDs but also through their integration of CdSe QDs with size-tailorable optical behavior.« less
NASA Astrophysics Data System (ADS)
Zhang, Yannan; Zhang, Yingjie; Zhang, Mingyu; Xu, Mingli; Li, Xue; Yu, Xiaohua; Dong, Peng
2018-05-01
Uniform and spherical LiAl0.075Mn1.925O4 particles have been successfully synthesized by the high-pressure spray-drying method. The structures and electrochemical properties of the particles were characterized by various techniques. Benefiting from the sphere-like morphology and Al-doping, LiAl0.075Mn1.925O4 delivers a capacity retention of 81.6% after 1000 cycles at 2°C, while LiMn2O4 exhibits a capacity retention of only 32.2%. The rate capability and reversible cycling performance are also improved. Furthermore, this work significantly alleviates the dissolution of Mn in LiMn2O4 materials, and effectively improves the transfer rate of lithium ions at the electrode/electrolyte interface. The spherical LiAl0.075Mn1.925O4 prepared by a facile method shows great potential for practical application in low-cost and long-life lithium-ion batteries.
Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters.
Yang, Jiwoong; Fainblat, Rachel; Kwon, Soon Gu; Muckel, Franziska; Yu, Jung Ho; Terlinden, Hendrik; Kim, Byung Hyo; Iavarone, Dino; Choi, Moon Kee; Kim, In Young; Park, Inchul; Hong, Hyo-Ki; Lee, Jihwa; Son, Jae Sung; Lee, Zonghoon; Kang, Kisuk; Hwang, Seong-Ju; Bacher, Gerd; Hyeon, Taeghwan
2015-10-14
Doping semiconductor nanocrystals with magnetic transition-metal ions has attracted fundamental interest to obtain a nanoscale dilute magnetic semiconductor, which has unique spin exchange interaction between magnetic spin and exciton. So far, the study on the doped semiconductor NCs has usually been conducted with NCs with larger than 2 nm because of synthetic challenges. Herein, we report the synthesis and characterization of Mn(2+)-doped (CdSe)13 clusters, the smallest doped semiconductors. In this study, single-sized doped clusters are produced in large scale. Despite their small size, these clusters have semiconductor band structure instead of that of molecules. Surprisingly, the clusters show multiple excitonic transitions with different magneto-optical activities, which can be attributed to the fine structure splitting. Magneto-optically active states exhibit giant Zeeman splittings up to elevated temperatures (128 K) with large g-factors of 81(±8) at 4 K. Our results present a new synthetic method for doped clusters and facilitate the understanding of doped semiconductor at the boundary of molecules and quantum nanostructure.
EPR and Structural Characterization of Water-Soluble Mn2+-Doped Si Nanoparticles
2016-01-01
Water-soluble poly(allylamine) Mn2+-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ± 0.7 nm were observed. The doping maximum obtained through this process was an average concentration of 0.4 ± 0.3% Mn per mole of Si. The water-soluble SiMn NPs showed a strong photoluminescence with a quantum yield up to 13%. The SiMn NPs had significant T1 contrast with an r1 relaxivity of 11.1 ± 1.5 mM–1 s–1 and r2 relaxivity of 32.7 ± 4.7 mM–1 s–1 where the concentration is in mM of Mn2+. Dextran-coated poly(allylamine) SiMn NPs produced NPs with T1 and T2 contrast with a r1 relaxivity of 27.1 ± 2.8 mM–1 s–1 and r2 relaxivity of 1078.5 ± 1.9 mM–1 s–1. X-band electron paramagnetic resonance spectra are fit with a two-site model demonstrating that there are two types of Mn2+ in these NP’s. The fits yield hyperfine splittings (A) of 265 and 238 MHz with significant zero field splitting (D and E terms). This is consistent with Mn in sites of symmetry lower than tetrahedral due to the small size of the NP’s. PMID:28154618
Na-doped La0.7Ca0.3MnO3 compounds exhibiting a large magnetocaloric effect near room temperature
NASA Astrophysics Data System (ADS)
Chi Linh, Dinh; Thi Ha, Nguyen; Huu Duc, Nguyen; Giang Nam, Le Huu; Bau, Le Viet; Manh An, Nguyen; Yu, Seong-Cho; Dang Thanh, Tran
2018-03-01
In this work, we have investigated the magnetic properties and the magnetocaloric effect of La0.7-xNaxCa0.3MnO3 compounds, which were prepared by a conventional solid-state reaction technique. The Rietveld refinement results suggested that the samples are single phase belonging to an orthorhombic structure (space group Pnma). Analyzing temperature dependence of magnetization M(T) revealed that the Curie temperature (TC) increases with increasing Na content (x). Their TC value is found to be 260-298 K for x=0.0-0.1, respectively. Base on M(T) data measured at different applied magnetic fields (H), temperature dependence of magnetic entropy change ΔSm(T) data for all the samples was calculated by using a phenomenological model. In the vicinity of TC, -ΔSm(T) curve reaches a maximum value (denoted as |ΔSmax|), which gradually increases with increasing H. Under 12 kOe, the value of |ΔSmax| is in a range of 1.47-5.19 J/kg K corresponding to the relative cooling power RCP=57.12-75.88 J/kg. Applied the universal master curve method for the magnetic entropy change, we concluded that Na-doped in La0.7-xNaxCa0.3MnO3 compounds leads to modification the nature of the magnetic phase transition from the first- to the second-order.
Srathongluan, Pornpimol; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab; Tubtimtae, Auttasit
2016-11-01
This work demonstrates the synthesis of a novel double-layered Cu2-xTe/MnTe structure on a WO3 photoelectrode as a solar absorber for photovoltaic devices. Each material absorber is synthesized using a successive ionic layer adsorption and reaction (SILAR) method. The synthesized individual particle sizes are Cu2-xTe(17) ∼5-10nm and MnTe(3) ∼2nm, whereas, the aggregated particle sizes of undoped and boron-doped Cu2-xTe(17)/MnTe(11) are ∼50 and 150nm, respectively. The larger size after doping is due to the interconnecting of nanoparticles as a network-like structure. A new alignment of the energy band is constructed after boron/MnTe(11) is coated on boron/Cu2-xTe nanoparticles (NPs), leading to a narrower Eg equal to 0.58eV. Then, the valence band maximum (VBM) and conduction band minimum (CBM) with a trap state are also up-shifted to near the CBM of WO3, leading to the shift of a Fermi level for ease of electron injection. The best efficiency of 1.41% was yielded for the WO3/boron-doped [Cu2-xTe(17)/MnTe(11)] structure with a photocurrent density (Jsc)=16.43mA/cm(2), an open-circuit voltage (Voc)=0.305V and a fill factor (FF)=28.1%. This work demonstrates the feasibility of this double-layered structure with doping material as a solar absorber material. Copyright © 2016 Elsevier Inc. All rights reserved.
Spectroscopic properties of (PVA+ZnO):Mn{sup 2+} polymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Ch.; Raju, D. Siva; Bindu, S. Hima
2015-05-15
Electron Paramagnetic Resonance (EPR), optical absorption and infrared spectral studies have been carried out on Mn{sup 2+} ions doped in poly(vinyl alcohol) complexed with zinc oxide polymer films prepared by solution cast technique. The EPR spectra of 1 mol% Mn{sup 2+} ions doped polymer complex (PVA+ZnO) at room temperature exhibit sextet hyperfine structure (hfs), centered at 2.01. The spin-Hamiltonian parameter values indicate that the ground state of Mn{sup 2+} ion in d{sup 5} and the site symmetry around Mn{sup 2+} ions in tetragonally distorted octa hedral site. The optical absorption spectra exhibits two bands centered at 275nm at 437nm. Themore » FTIR spectrum exhibits bands characteristic of stretching and banding vibrations of O-H, C-H and C=C groups.« less
Electron gas at the interface between two antiferromagnetic insulating manganites
NASA Astrophysics Data System (ADS)
Calderón, M. J.; Salafranca, J.; Brey, L.
2008-07-01
We study theoretically the magnetic and electric properties of the interface between two antiferromagnetic and insulating manganites: La0.5Ca0.5MnO3 , a strong correlated insulator, and CaMnO3 , a band insulator. We find that a ferromagnetic and metallic electron gas is formed at the interface between the two layers. We confirm the metallic character of the interface by calculating the in-plane conductance. The possibility of increasing the electron-gas density by selective doping is also discussed.
NASA Astrophysics Data System (ADS)
Tran, Tat-Dat; Nguyen, Duy-Hung; Pham, Thanh-Huy; Nguyen, Duy-Cuong; Duong, Thanh-Tung
2018-05-01
K2SiF6:Mn4+ (KSF:Mn) phosphor was synthesized by the one-step co-precipitation process, at different temperatures. It was found that the reaction temperature played a key role in photoluminescence performance of the product. When the reaction temperature decreased from 0°C to - 20°C, the doping concentration, Mn/Si ratio, increased from 2% to 10%. However, further decrement of temperature (to - 30°C) reduced the Mn/Si ratio to 7%. The photo-luminescence (PL) intensity was maximized at the highest Mn/Si (10%), which corresponds to a reaction temperature of - 20°C. The KSF:Mn phosphor showed excellent luminescent properties at a wide range of temperatures (from room temperature to 470 K), especially after being dispersed in a polymer matrix. When combined with a commercial white light emitting diode (WLED), KSF:Mn significantly improved luminescent properties, such as color rendering index (CRI), correlated color temperature (CCT) and luminous efficiency. In particular, CRI increased from 67.3 to 87.4, while the CCT decreased from 7800 K to 3204 K. The luminous efficiency increased from 82.0 lm/W to 95.3 lm/W. The results indicated that the high quality KSF:Mn red phosphor could be achieved by a simple one-step co-precipitation method with a fine control of reaction temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Irshad, E-mail: bhat.amu85@gmail.com; Husain, Shahid; Patil, S. I.
2015-06-24
We report the structural, morphological and magneto-transport properties of electron doped La{sub 0.85}Te{sub 0.15}MnO{sub 3} (LTMO) thin film grown on (001) LaAlO{sub 3} single crystal substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) results confirm that the film has good crystalline quality, single phase, and c-axis orientation. The atomic force microscopy (AFM) results have revealed that the film consists of grains with the average size in a range of 20–30 nm and root-mean square (rms) roughness of 0.27nm. The resistivity versus temperature measurement exhibits an insulator to metal transition (MIT). We have noticed a huge value of magnetoresistance (∼93%)more » close to MIT in presence of 8T field. X-ray photoemission spectroscopy confirms the electron doping and suggests that Te ions could be in the Te{sup 4+} state, while the Mn ions stay in the Mn{sup 2+} and Mn{sup 3+} valence state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrinskaya, N. V.; Berezovets, V. A.; Bouravlev, A.
We present our results obtained for Mn-doped GaAs quantum wells where the evidences of the ferromagnetic transition at relatively high temperatures were found at unusually small Mn concentrations. The observed values of hopping resistance at small temperatures evidenced that the samples are deep in the insulating regime. Thus the corresponding estimates of the overlapping integrals can hardly explain the large values of Curie temperatures T{sub c} ≃ 100 K. We develop a theoretical model qualitatively explaining the experimental results basing on the concept of virtual Anderson transition.
Optical properties of 3d transition-metal-doped MgAl2O4 spinels
NASA Astrophysics Data System (ADS)
Izumi, K.; Miyazaki, S.; Yoshida, S.; Mizokawa, T.; Hanamura, E.
2007-08-01
Strong emission bands in the visible region are observed in MgAl2O4 crystals doped with transition-metal ions under excitation at the band-to-band transitions. We report optical responses of Cr-, Co-, and Ni-doped MgAl2O4 and present optical models for M -doped MgAl2O4 ( M=Ti , V, Cr, Mn, Co, and Ni) to describe the charge-transfer transitions and the transitions between multiplet levels of 3d electrons, which are observed competitively or coexisting, depending on the number of 3d electrons. While the optical responses of Cr- and Ni-doped MgAl2O4 are dominated by the multiplet-multiplet transitions, those of Ti- and V-doped MgAl2O4 are governed by the charge-transfer transitions. The two kinds of transitions coexist in the Mn- and Co-doped MgAl2O4 . These behaviors are well understood based on the numerical results of unrestricted Hartree-Fock approximation.
Rice, W. D.; Liu, W.; Pinchetti, V.; ...
2017-04-07
In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, W. D.; Liu, W.; Pinchetti, V.
In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less
Optoelectronic and magnetic properties of Mn-doped indium tin oxide: A first-principles study
NASA Astrophysics Data System (ADS)
Nath Tripathi, Madhvendra; Saeed Bahramy, Mohammad; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki
2012-10-01
The manganese doped indium tin oxide (ITO) has integrated magnetics, electronics, and optical properties for next generation multifunctional devices. Our first-principles density functional theory (DFT) calculations show that the manganese atom replaces b-site indium atom, located at the second coordination shell of the interstitial oxygen in ITO. It is also found that both anti-ferromagnetic and ferromagnetic behaviors are realizable. The calculated magnetic moment of 3.95μB/Mn as well as the high transmittance of ˜80% for a 150 nm thin film of Mn doped ITO is in good agreement with the experimental data. The inclusion of on-site Coulomb repulsion corrections via DFT + U methods turns out to improve the optical behavior of the system. The optical behaviors of this system reveal its suitability for the magneto-opto-electronic applications.
Sathish, K; Thirumaran, S
2015-08-05
The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sathish, K.; Thirumaran, S.
2015-08-01
The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.
NASA Astrophysics Data System (ADS)
Sridhar, Ch. S. L. N.; Lakshmi, Ch. S.; Govindraj, G.; Bangarraju, S.; Satyanarayana, L.; Potukuchi, D. M.
2016-05-01
Nano-phased doped Mn-Zn ferrites, viz., Mn0.5-x/2Zn0.5-x/2SbXFe2O4 for x=0 to 0.3 (in steps of 0.05) prepared by hydrothermal method are characterized by X-ray diffraction, Infrared and scanning electron microscopy. XRD and SEM infer the growth of nano-crystalline cubic and hematite (α-Fe2O3) phase structures. IR reveals the ferrite phase abundance and metal ion replacement with dopant. Decreasing trend of lattice constant with dopant reflects the preferential replacement of Fe3+ions by Sb5+ion. Doping is found to cause for the decrease (i.e., 46-14 nm) of grain size. An overall trend of decreasing saturation magnetization is observed with doping. Low magnetization is attributed to the diamagnetic nature of dopant, abundance of hematite (α-Fe2O3) phase, non-stoichiometry and low temperature (800 °C) sintering conditions. Increasing Yafet-Kittel angle reflects surface spin canting to pronounce lower Ms. Lower coercivity is observed for x≤0.1, while a large Hc results for higher concentrations. High ac resistivity (~106 ohm-cm) and low dielectric loss factor (tan δ~10-2-10-3) are witnessed. Resistivity is explained on the base of a transformation in the Metal Cation-to-Oxide anion bond configuration and blockade of conductivity path. Retarded hopping (between adjacent B-sites) of carriers across the grain boundaries is addressed. Relatively higher resistivity and low dielectric loss in Sbdoped Mn-Zn ferrite systems pronounce their utility in high frequency applications.
NASA Astrophysics Data System (ADS)
Julien, C.; Ruth Mangani, I.; Selladurai, S.; Massot, M.
2002-08-01
The LiMn 2O 4 co-doped with copper and chromium forming LiMn 2- yCr y/2 Cu y/2 O 4 spinel phases have been synthesized by wet chemistry technique using an aqueous solution of metal acetates and dicarboxylic acid (succinic acid) as a complexing agent. The structural properties of the synthesized products have been investigated by X-ray powder diffraction, Raman scattering, and Fourier-transform infrared spectroscopy. To improve the rechargeable capacity of Li//LiMn 2- yCr y/2 Cu y/2 O 4 cells, the electrochemical features of LiMn 2- yCr y/2 Cu y/2 O 4 compounds have been evaluated as positive electrode materials. The structural properties of these oxides are very similar to LiMn 2O 4, their electrochemical performances show that the capacity is maintained 95% of the initial value at the 36th cycle for y=0.1, this being explained by the change of Mn 3+/Mn 4+ ratio in doped phases.
Low Temperature Specific Heat in Lightly Mn-Substituted Electron-Doped SrTiO3
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Noda, Masaaki; Kuwahara, Hideki
2017-08-01
We found large changes in the low-temperature specific heat (low-T C) in the lightly Mn-substituted electron-doped perovskites Sr0.95La0.05Ti1-yMnzO3 with y = 0.02 and 0.04 by applying magnetic fields up to 9 T. The changes in the low-T C are qualitatively well explained by the Schottky specific heat (CSch) of localized spins of the Mn 3d electrons in weak internal magnetic fields via itinerant electrons. However, the actual numbers of localized spins estimated from CSch are about 30% smaller than the expected values. Part of the localized spins of the Mn 3d electrons may disappear due to Kondo coupling with the itinerant electrons.
NASA Astrophysics Data System (ADS)
Guo, S. L.; Zhao, Y.; Man, H. Y.; Ding, C.; Gong, X.; Zhi, G. X.; Fu, L. C.; Gu, Y. L.; Frandsen, B. A.; Liu, L.; Cheung, S. C.; Munsie, T. J.; Wilson, M. N.; Cai, Y. P.; Luke, G. M.; Uemura, Y. J.; Ning, F. L.
2016-09-01
We report the successful synthesis and characterization of a new type I-II-V bulk form diluted magnetic semiconductor (DMS) Li(Zn,Mn,Cu)As, in which charge and spin doping are decoupled via (Cu,Zn) and (Mn,Zn) substitution at the same Zn sites. Ferromagnetic transition temperature up to ˜33 K has been observed with a coercive field ˜40 Oe for the 12.5% doping level. μSR measurements confirmed that the magnetic volume fraction reaches nearly 100% at 2 K, and the mechanism responsible for the ferromagnetic interaction in this system is the same as other bulk form DMSs.
Lu, Xiaomei; Zhang, Jinyi; Xie, Ya-Ni; Zhang, Xinfeng; Jiang, Xiaoming; Hou, Xiandeng; Wu, Peng
2018-02-20
Thallium (Tl) is an extremely toxic heavy metal and exists in very low concentrations in the environment, but its sensing is largely underexplored as compared to its neighboring elements in the periodic table (especially mercury and lead). In this work, we developed a ratiometric phosphorescent nanoprobe for thallium detection based on Mn-doped ZnSe quantum dots (QDs) and water-soluble carbon dots (C-dots). Upon excitation with 360 nm, Mn-doped ZnSe QDs and C-dots can emit long-lived and spectrally resolved phosphorescence at 580 and 440 nm, respectively. In the presence of thallium, the phosphorescence emission from Mn-doped ZnSe QDs could be selectively quenched, while that from C-dots retained unchanged. Therefore, a ratiometric phosphorescent probe was thus developed, which can eliminate the potential influence from both background fluorescence and other analyte-independent external environment factors. Several other heavy metal ions caused interferences to thallium detection but could be efficiently masked with EDTA. The proposed method offered a detection limit of 1 μg/L, which is among the most sensitive probes ever reported. Successful application of this method for thallium detection in biological serum as well as in environmental water and soil samples was demonstrated.
Ferromagnetic interactions in chromium (III) doped YMnO3
NASA Astrophysics Data System (ADS)
Thakur, Rajesh K.; Thakur, Rasna; Kaurav, N.; Okram, G. S.; Gaur, N. K.
2016-05-01
Both of the reported compounds with compositions YMn1-xCrxO3 (x = 0.1 and 0.2) are synthesized by using the conventional solid state reaction method and their magnetic properties are analyzed vigilantly. The XRD pattern reveals the hexagonal structure of the reported compounds with space group P63cm (25-1079). The in-depth analysis of the magnetic measurements reveals the enhancement in the ferromagnetic character with Cr doping in YMnO3 compounds. The observed enhancement in the ferromagnetism is found to be due to the increased double exchange interactions among the Cr3+ and Mn3+ ions with Cr doping.
NASA Astrophysics Data System (ADS)
Miao, Chengcheng; Zhu, Yanjuan; Huang, Liangguo; Zhao, Tengqi
2015-01-01
The multi-element doped alpha nickel hydroxide has been prepared by supersonic co-precipitation method. Three kinds of samples A, B and C are prepared by chemically coprecipitating Ni/Al, Ni/Al/Mn and Ni/Al/Mn/Yb, respectively. Inductively coupled plasma atomic emission spectroscopy (ICP-AES), Particle size distribution (PSD) measurement, X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) are used to characterize the physical properties of the synthesized α-Ni(OH)2 samples, such as chemical composition, morphology, structural stability of the crystal. The results show that all samples are nano-sized materials and the interlayer spacing becomes larger and the structural stability becomes better with the increase of doped elements and doped ratio. The prepared alpha nickel hydroxide samples are added into micro-sized beta nickel hydroxide to form biphase electrode materials for Ni-MH battery. The electrochemical characterization of the biphase electrodes, including cyclic voltammetry (CV) and charge/discharge test, are also performed. The results demonstrate that the biphase electrode with sample C exhibits better electrochemical reversibility and cyclic stability, higher charge efficient and discharge potential, larger proton diffusion coefficient (5.81 × 10-12 cm2 s-1) and discharge capacity (309.0 mAh g-1). Hence, it indicates that all doped elements can produce the synergic effect and further improve the electrochemical properties of the alpha nickel hydroxide.
The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films
Venkatesh, S.; Baras, A.; Lee, J. -S.; ...
2016-03-24
Here, we studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (~40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetismmore » in doped/un-doped ZnO.« less
Activated carbon doped with biogenic manganese oxides for the removal of indigo carmine.
Hu, Yichen; Chen, Xiao; Liu, Zhiqiang; Wang, Gejiao; Liao, Shuijiao
2016-01-15
Indigo carmine (IC) is one of the oldest, most important, and highly toxic dyes which is released from the effluents of many industries and results in serious pollution in water. In this study, the biogenic Mn oxides were activated by NaOH and then heated for 3 h at 350 °C to produce activated carbon doped with Mn oxide (Bio-MnOx-C), which were produced by culturing Mn (II)-oxidizing bacterial strain MnI7-9 in liquid A medium at 28 °C with 10 mmol/L MnCl2. Bio-MnOx-C was characterized by SEM, TEM, IR, XPS, XRD, etc. It contained C, O, and Mn which comprised Mn (IV) and Mn (III) valence states at a ratio of 3.81:1. It had poorly crystalline ε-MnO2 with a specific surface area of 130.94 m(2)/g. A total of 0.1 g Bio-MnOx-C could remove 45.95 g IC from 500 mg/L IC solution after 0.5 h contact time. IC removal by Bio-MnOx-C included a rapid oxidation reaction and the removal reaction followed second-order kinetic equation. These results confirmed that Bio-MnOx-C could be a potential material for wastewater remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shlapa, Yulia; Kulyk, Mykola; Kalita, Viktor; Polek, Taras; Tovstolytkin, Alexandr; Greneche, Jean-Marc; Solopan, Sergii; Belous, Anatolii
2016-12-01
Fe-doped La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles have been synthesized by sol-gel method, and ceramic samples based on them were sintered at 1613 K. Crystallographic and magnetic properties of obtained nanoparticles and ceramic samples have been studied. It has been established that cell volume for nanoparticles increases with growing of iron content, while this dependence displays an opposite trend in the case of ceramic samples. Mössbauer investigations have shown that in all samples, the oxidation state of iron is +3. According to magnetic studies, at room temperature, both nanoparticles and ceramic samples with y ≤ 0.06 display superparamagnetic properties and samples with y ≥ 0.08 are paramagnetic. Magnetic fluids based on La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles and aqua solution of agarose have been prepared. It has been established that heating efficiency of nanoparticles under an alternating magnetic field decreases with growing of iron content.
NASA Astrophysics Data System (ADS)
Thanh, Tran Dang; Dung, Nguyen Thi; Van Dang, Nguyen; Bau, Le Viet; Piao, Hong-Guang; Phan, The Long; Huyen Yen, Pham Duc; Hau, Kieu Xuan; Kim, Dong-Hyun; Yu, Seong-Cho
2018-05-01
In this work, we point out that the width and the nature of the magnetic phase transition, TC value, and as well as magnetocaloric effect in La0.7-xSmxCa0.3MnO3 compounds can be easily modified through Sm-doped into La-site. With an increasing Sm concentration, a systematic decrease in the magnetization, TC, and magnetic entropy change (ΔSm) are observed. The Arrott-plot proveds that the samples with x = 0 and 0.1 undergoing a first-order phase transition. Meanwhile, sample x = 0.2 undergoes a second-order phase transition, which exhibits a high value of the relative cooling power (81.5 J/kg at ΔH = 10 kOe). An analysis of the critical behavior based on the modified Arrott plots method has been done for sample x = 0.2. The results proved a coexistence of the long- and short-range interactions in La0.5Sm0.2Ca0.3MnO3 compound.
Rice, William D.; Liu, Wenyong; Baker, Thomas A.; ...
2015-11-23
Strong quantum confinement in semiconductors can compress the wavefunctions of band electrons and holes to nanometre-scale volumes, significantly enhancing interactions between themselves and individual dopants. In magnetically doped semiconductors, where paramagnetic dopants (such as Mn 2+, Co 2+ and so on) couple to band carriers via strong sp–d spin exchange, giant magneto-optical effects can therefore be realized in confined geometries using few or even single impurity spins. Importantly, however, thermodynamic spin fluctuations become increasingly relevant in this few-spin limit. In nanoscale volumes, the statistical √N fluctuations of N spins are expected to generate giant effective magnetic fields B eff, whichmore » should dramatically impact carrier spin dynamics, even in the absence of any applied field. In this paper, we directly and unambiguously reveal the large B eff that exist in Mn 2+-doped CdSe colloidal nanocrystals using ultrafast optical spectroscopy. At zero applied magnetic field, extremely rapid (300–600 GHz) spin precession of photoinjected electrons is observed, indicating B eff ~ 15-30 T for electrons. Precession frequencies exceed 2 THz in applied magnetic fields. Finally, these signals arise from electron precession about the random fields due to statistically incomplete cancellation of the embedded Mn 2+ moments, thereby revealing the initial coherent dynamics of magnetic polaron formation, and highlighting the importance of magnetization fluctuations on carrier spin dynamics in nanomaterials.« less
Zhang, Jun; Xie, Kui; Wei, Haoshan; Qin, Qingqing; Qi, Wentao; Yang, Liming; Ruan, Cong; Wu, Yucheng
2014-01-01
In this work, redox-active Mn or Cr is introduced to the B site of redox stable perovskite Sr0.95Ti0.9Nb0.1O3.00 to create oxygen vacancies in situ after reduction for high-temperature CO2 electrolysis. Combined analysis using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis confirms the change of the chemical formula from oxidized Sr0.95Ti0.9Nb0.1O3.00 to reduced Sr0.95Ti0.9Nb0.1O2.90 for the bare sample. By contrast, a significant concentration of oxygen vacancy is additionally formed in situ for Mn- or Cr-doped samples by reducing the oxidized Sr0.95Ti0.8Nb0.1M0.1O3.00 (M = Mn, Cr) to Sr0.95Ti0.8Nb0.1M0.1O2.85. The ionic conductivities of the Mn- and Cr-doped titanate improve by approximately 2 times higher than bare titanate in an oxidizing atmosphere and 3–6 times higher in a reducing atmosphere at intermediate temperatures. A remarkable chemical accommodation of CO2 molecules is achieved on the surface of the reduced and doped titanate, and the chemical desorption temperature reaches a common carbonate decomposition temperature. The electrical properties of the cathode materials are investigated and correlated with the electrochemical performance of the composite electrodes. Direct CO2 electrolysis at composite cathodes is investigated in solid-oxide electrolyzers. The electrode polarizations and current efficiencies are observed to be significantly improved with the Mn- or Cr-doped titanate cathodes. PMID:25403738
NASA Astrophysics Data System (ADS)
Kiziltas-Yavuz, Nilüfer; Yavuz, Murat; Indris, Sylvio; Bramnik, Natalia N.; Knapp, Michael; Dolotko, Oleksandr; Das, Bijoy; Ehrenberg, Helmut; Bhaskar, Aiswarya
2016-09-01
LiNi0.5-xFe2xMn1.5-xO4 (x = 0, 0.1, 0.15, 0.2) spinel cathode materials are synthesized using citric acid-assisted sol-gel method with final calcination temperature of 1000 °C. The structure and morphology of the materials are characterized by using synchrotron and neutron powder diffraction as well as scanning electron microscopy. Different from the parent LiNi0.5Mn1.5O4 (LNMO) material, the Fe-doped spinels do not contain a rock-salt type impurity phase. However, they contain additional layered (C2/m) and spinel Fe3O4 (Fd 3 bar m) phases in small amounts. The substitution of Fe into the spinel structure has been confirmed by Mössbauer spectroscopy. The Fe-doped spinels exhibit improved cycling stability (with a C/2 charge-discharge rate) and rate capability compared to the parent LNMO at room temperature in a voltage range 3.5-5.0 V. Among all these samples, the composition LiNi0.4Fe0.2Mn1.4O4 shows the best room temperature cycling stability (capacity retention of 92% after 300 cycles) as well as the highest initial discharge capacity (134 mAh g-1). The delivered capacities at high C-rates (especially at 10C and 20C) with respect to the capacity delivered at C/2 are higher for all Fe-doped samples compared to the parent LNMO. Furthermore, Fe-doping improves the thermal stability of the Ni-Mn spinels in the delithiated state.
NASA Astrophysics Data System (ADS)
Kalubarme, Ramchandra S.; Jadhav, Sarika M.; Kale, Bharat B.; Gosavi, Suresh W.; Terashima, Chiaki; Fujishima, Akira
2018-07-01
Cobalt oxide is a transition metal oxide, well studied as an electrode material for energy storage applications, especially in supercapacitors and rechargeable batteries, due to its high charge storage ability. However, it suffers from low conductivity, which effectively hampers its long-term stability. In the present work, a simple strategy to enhance the conductivity of cobalt oxide is adopted to achieve stable electrochemical performance by means of carbon coating and Mn doping, via a simple and controlled, urea-assisted glycine-nitrate combustion process. Structural analysis of carbon coated Mn-doped Co3O4 (Mn-Co3O4@C) confirms the formation of nanoparticles (∼50 nm) with connected morphology, exhibiting spinel structure. The Mn-Co3O4@C electrode displays superior electrochemical performance as a Li-ion battery anode, delivering a specific capacity of 1250 mAh g‑1. Mn-Co3O4@C demonstrates excellent performance in terms of long-term stability, keeping charge storage ability intact even at high current rates due to the synergistic effects of fast kinetics—provided by enriched electronic conductivity, which allows ions to move freely to active sites and electrons from reaction sites to substrate during redox reactions—and high surface area combined with mesoporous architecture. The fully assembled battery device using Mn-Co3O4@C and standard LiCoO2 electrode shows 90% capacity retention over 100 cycles.
Ding, Ke; Jing, Lihong; Liu, Chunyan; Hou, Yi; Gao, Mingyuan
2014-02-01
Magnetically engineered Cd-free CuInS2@ZnS:Mn quantum dots (QDs) were designed, synthesized, and evaluated as potential dual-modality probes for fluorescence and magnetic resonance imaging (MRI) of tumors in vivo. The synthesis of Mn-doped core-shell structured CuInS2@ZnS mainly comprised three steps, i.e., the preparation of fluorescent CuInS2 seeds, the particle surface coating of ZnS, and the Mn-doping of the ZnS shells. Systematic spectroscopy studies were carried out to illustrate the impacts of ZnS coating and the following Mn-doping on the optical properties of the QDs. In combination with conventional fluorescence, fluorescence excitation, and time-resolved fluorescence measurements, the structure of CuInS2@ZnS:Mn QDs prepared under optimized conditions presented a Zn gradient CuInS2 core and a ZnS outer shell, while Mn ions were mainly located in the ZnS shell, which well balanced the optical and magnetic properties of the resultant QDs. For the following in vivo imaging experiments, the hydrophobic CuInS2@ZnS:Mn QDs were transferred into water upon ligand exchange reactions by replacing the 1-dodecanethiol ligand with dihydrolipoic acid-poly(ethylene glycol) (DHLA-PEG) ligand. The MTT assays based on HeLa cells were carried out to evaluate the cytotoxicity of the current Cd-free CuInS2@ZnS:Mn QDs for comparing with that of water soluble CdTe QDs. Further in vivo fluorescence and MR imaging experiments suggested that the PEGylated CuInS2@ZnS:Mn QDs could well target both subcutaneous and intraperitoneal tumors in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.
Influence of Oxygen Stoichiometry Variations on the Properties of CaMnO3 thin films
NASA Astrophysics Data System (ADS)
Goehringer, Tyler; Yong, Grace; Otouloumougoye, Brenda; Keshavarz, Camron; Sharma, Prahash; Tanyi, E. Kevin; Schaefer, David; Kolagani, Rajeswari
2013-03-01
The family of alkaline-earth doped rare earth manganese oxides RE1-xAExMnO3 exhibit a rich variety of electronic phases depending on the cation stoichiometry. In thin films of these materials, the oxygen stoichiometry is also a variable, and together with cation stoichiometry is known to play a key role in determining the equilibrium phase. The cation and oxygen stoichiometry variations influence electrical and magnetic properties through changes in the mixed valence state of Mn, i.e. the ratio of Mn3+ to Mn4+ ions. CaMnO3 is one of the end members of this family with x =1. Stoichiometric CaMnO3 is a canted antiferromagnetic insulator with the Mn ion in the Mn4+ valence state. We will present our results on the effects of oxygen content variation on the structural, electrical, and magnetoresistive properties CaMnO3 thin films grown by Pulsed Laser Deposition. These results will be compared to the effects of oxygen stoichiometry variation in thin films of its doped counter-part La1-xCaxMnO3. We will also discuss surface morphology changes associated with variation in oxygen stoichiometry which may be associated with different surface terminations. We acknowledge support from the NSF grant ECCS 1128586 at Towson University.
Impedance analysis and dielectric response of anatase TiO2 nanoparticles codoped with Mn and Co ions
NASA Astrophysics Data System (ADS)
Kumar, Anand; Kashyap, Manish K.; Sabharwal, Namita; Kumar, Sarvesh; Kumar, Ashok; Kumar, Parmod; Asokan, K.
2017-11-01
In order to elucidate the effect of transition metal (TM) doping, the impedance and dielectric responses of Co and/or Mn-doped TiO2 nanocrystalline powder samples with 3% doping concentration synthesized via sol gel technique, have been analyzed. X-ray diffraction (XRD) analysis confirms the formation of tetragonal TiO2 anatase phase for all studied samples without any extra impurity phase peaks. The variation in the grain size measured from field emission scanning electron microscope (FESEM) measurements for all the samples are in accordance with the change in crystallite size as obtained from XRD. The DC resistivity for pure TiO2 nanoparticles is the highest while codoped samples exhibit low resistivity. The temperature dependent dielectric constant and dielectric loss possess step like enhancement and show the relaxation behavior. At room temperature, the dielectric function and dielectric loss decrease rapidly with increase in frequency and become almost constant at the higher frequencies. Such a decrease in dielectric loss is suitable for energy storage devices.
Structure, magnetic, and electrical properties of Zn1-xMnxO material
NASA Astrophysics Data System (ADS)
Sebayang, P.; Hulu, S. F.; Nasruddin, Aryanto, D.; Kurniawan, C.; Subhan, A.; Sudiro, T.; Ginting, M.
2017-07-01
ZnO and MnO2 powder were synthesized using solid state reaction method to produce Zn1-xMnxO materials. Effect of dopant concentrations at the material of Zn1-xMnxO (x = 0.015, 0.02, 0.025) to the change of crystal structure, electrical and magnetic properties was studied. The X-ray diffraction (XRD) result of the samples that were doped with Mn showed a hexagonal wurtzite polycrystalline structure. The addition of Mn dopant resulting the decrease of lattice parameters and peaks intensity. The significant increase of the peak intensity occurred at x = 0.02, which also indicated an increase in the crystal quality of ZnO. The change of the ZnO structure affected the electrical and magnetic properties of the samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furrer, Albert; Podlesnyak, Andrey A.; Pomjakushina, Ekaterina
Strontium doping transforms manganites of type La 1 - x Sr x Mn O 3 from an insulating antiferromagnet ( x = 0 ) to a metallic ferromagnet ( x > 0.16 ) due to the induced charge carriers (holes). We employed neutron scattering experiments in order to investigate the effect of Sr doping on a tailor-made compound of composition La 0.7 S r 0.3 M n 0.1 Ti 0.3 G a 0.6 O 3 . By the simultaneous doping with S r 2 + and Ti 4 + ions, the compound remains in the insulating state so thatmore » the magnetic interactions for large Sr doping can be studied in the absence of charge carriers. At T C = 215 K , there is a first-order reconstructive phase transition from the trigonal R - 3 c structure to the orthorhombic Pnma structure via an intermediate virtual configuration described by the common monoclinic subgroup P2 1 / c . The magnetic excitations associated with Mn 3 + dimers give evidence for two different nearest-neighbor ferromagnetic exchange interactions, in contrast to the undoped compound LaM n y A 1 - y O 3 where both ferromagnetic and antiferromagnetic interactions are present. Furthemore, the doping-induced changes of the exchange coupling originates from different Mn-O-Mn bond angles determined by neutron diffraction. The large fourth-nearest-neighbor interaction found for metallic manganites is absent in the insulating state. Here, we argue that the Ruderman-Kittel-Kasuya-Yosida interaction reasonably accounts for all the exchange couplings derived from the spin-wave dispersion in metallic manganites.« less
Furrer, Albert; Podlesnyak, Andrey A.; Pomjakushina, Ekaterina; ...
2017-03-14
Strontium doping transforms manganites of type La 1 - x Sr x Mn O 3 from an insulating antiferromagnet ( x = 0 ) to a metallic ferromagnet ( x > 0.16 ) due to the induced charge carriers (holes). We employed neutron scattering experiments in order to investigate the effect of Sr doping on a tailor-made compound of composition La 0.7 S r 0.3 M n 0.1 Ti 0.3 G a 0.6 O 3 . By the simultaneous doping with S r 2 + and Ti 4 + ions, the compound remains in the insulating state so thatmore » the magnetic interactions for large Sr doping can be studied in the absence of charge carriers. At T C = 215 K , there is a first-order reconstructive phase transition from the trigonal R - 3 c structure to the orthorhombic Pnma structure via an intermediate virtual configuration described by the common monoclinic subgroup P2 1 / c . The magnetic excitations associated with Mn 3 + dimers give evidence for two different nearest-neighbor ferromagnetic exchange interactions, in contrast to the undoped compound LaM n y A 1 - y O 3 where both ferromagnetic and antiferromagnetic interactions are present. Furthemore, the doping-induced changes of the exchange coupling originates from different Mn-O-Mn bond angles determined by neutron diffraction. The large fourth-nearest-neighbor interaction found for metallic manganites is absent in the insulating state. Here, we argue that the Ruderman-Kittel-Kasuya-Yosida interaction reasonably accounts for all the exchange couplings derived from the spin-wave dispersion in metallic manganites.« less
NASA Astrophysics Data System (ADS)
Minamizawa, Yuto; Kitazawa, Tomohiro; Hidaka, Shiro; Toyota, Hideyuki; Nakamura, Shin-ichi; Uchitomi, Naotaka
2018-04-01
The conduction type in (Zn,Sn,Mn)As2 thin films grown by molecular beam epitaxy (MBE) on InP substrates was found to be controllable from p-type to n-type as a function of Mn content. n-type (Zn,Sn,Mn)As2 thin films were obtained by Mn doping of more than approximately 11 cat.%. It is likely that Mn interstitials (MnI) incorporated by excess Mn doping are located at tetrahedral hollow spaces surrounded by Zn and Sn cation atoms and four As atoms, which are expected to act as donors in (Zn,Sn,Mn)As2, resulting in n-type conduction. The effect of annealing on the structural, electrical and magnetic properties of n-type (Zn,Sn,Mn)As2 thin films was investigated as functions of annealing temperature and time. It was revealed that even if the annealing temperature is considerably higher than the growth temperature of 320 °C, the magnetic properties of the thin films remain stable. This suggests that a MnI complex surrounded by Zn and Sn atoms is thermally stable during high-temperature annealing. The n-type (Zn,Sn,Mn)As2 thin films may be suitable for application as n-type spin-polarized injectors.
Enhancement in electrical and magnetic properties with Ti-doping in Bi0.5La0.5Fe0.5Mn0.5O3
NASA Astrophysics Data System (ADS)
Singh, Rahul; Gupta, Prince Kumar; Kumar, Shiv; Joshi, Amish G.; Ghosh, A. K.; Patil, S.; Chatterjee, Sandip
2017-04-01
In this investigation, we have synthesized Bi0.5La0.5Fe0.5Mn0.5-xTixO3 (where x = 0 and 0.05) samples. The Rietveld refinement of X-ray diffraction (XRD) patterns shows that the systems crystallize in the orthorhombic phase with the Pnma space group. The observed Raman modes support the XRD results. The appearance of prominent A1-3 and weak E-2 modes in Bi0.5La0.5Fe0.5Mn0.45Ti0.05O3 indicates the presence of chemically more active Bi-O covalent bonds. Ferromagnetism of Bi0.5La0.5Fe0.5Mn0.5O3 is enhanced by Ti doping at the Mn-site, indicating that these particular samples might be interesting for device applications.
Influence of thermal history on the electrochemical properties of Li[Ni0.5Mn1.5]O4
NASA Astrophysics Data System (ADS)
Liu, Guoqiang; Park, Kyu-Sung; Song, Jie; Goodenough, John B.
2013-12-01
The oxygen-stoichiometric spinel Li[Ni0.5Mn1.5]O4 is an insulator with ordered Ni(II) and Mn(IV). Although it delivers 4.7 V versus Li, the ordered phase gives poor performance as the cathode of a Li-ion battery. Here we demonstrate control of the degree of cation order by adjusting the oxygen stoichiometry with thermal history of the synthesis rather than by doping 2M(III) for Ni(II) + Mn(IV) (M = Cr, Mn, Fe, Co, Al, Ga). We report retention of capacity near 100 mAh g-1 at room temperature at 10C/10C charge/discharge rate with little capacity fade; at 55 °C, a capacity fade occurs as a result of reaction with the electrolyte, but it is reduced to a level comparable to that obtained by doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basha, Md. Hussain; Gopal, N. O., E-mail: nogopal@yahoo.com; Rao, J. L.
2015-06-24
Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å{sup 3}. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn{sup 2+} ions with S=I=5/2.The observedmore » g value and the hyperfine value reveal the ionic bonding between Mn{sup 2+} and its surroundings.« less
Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive.
Tu, Renyong; Liu, Bianhua; Wang, Zhenyang; Gao, Daming; Wang, Feng; Fang, Qunling; Zhang, Zhongping
2008-05-01
Mn2+-doped ZnS nanocrystals with an amine-capping layer have been synthesized and used for the fluorescence detection of ultratrace 2,4,6-trinitrotoluene (TNT) by quenching the strong orange Mn2+ photoluminescence. The organic amine-capped nanocrystals can bind TNT species from solution and atmosphere by the acid-base pairing interaction between electron-rich amino ligands and electron-deficient aromatic rings. The resultant TNT anions bound onto the amino monolayer can efficiently quench the Mn2+ photoluminescence through the electron transfer from the conductive band of ZnS to the lowest unoccupied molecular orbital (LUMO) of TNT anions. The amino ligands provide an amplified response to the binding events of nitroaromatic compounds by the 2- to approximately 5-fold increase in quenching constants. Moreover, a large difference in quenching efficiency was observed for different types of nitroaromatic analytes, dependent on the affinity of nitro analytes to the amino monolayer and their electron-accepting abilities. The amine-capped nanocrystals can sensitively detect down to 1 nM TNT in solution or several parts-per-billion of TNT vapor in atmosphere. The ion-doped nanocrystal sensors reported here show a remarkable air/solution stability, high quantum yield, and strong analyte affinity and, therefore, are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.
Interaction of multiferroic properties and interfaces in hexagonal LuMnO3 ceramics
NASA Astrophysics Data System (ADS)
Baghizadeh, A.; Vieira, J. M.; Stroppa, D. G.; Mirzadeh Vaghefi, P.; Graça, M. P.; Amaral, J. S.; Willinger, M.-G.; Amaral, V. S.
2017-02-01
A study on the underlying interaction mechanisms between lattice constants, magnetic and dielectric properties with inhomogeneities or internal interfaces in hexagonal, off-stoichiometric LuMnO3 oxide is presented. By increasing Mn content the a-axis constant and volume of the unit cell, the antiferromagnetic (AFM) Néel temperature, T N, and frustration factor of the frustrated Mn3+ trimmers in basal plane show decreasing trends. It was found that increasing the annealing time improves the properties of the lattices and progressively eliminates secondary phases for compositions within the solid solution stability limits. A magnetic contribution below T N is observed for all samples. Two regimes of magnetization below and above 45 K were observed in the AFM state. The magnetic contribution below T N is assigned to either the secondary phase or internal interfaces like ferroelectric (FE) domain walls. Magneto-dielectric coupling at T N is preserved in off-stoichiometric ceramics. The presence of a low temperature anomaly of the dielectric constant is correlated to the composition of the solid solution in off-stoichiometric ceramics. Large FE domains are observed in piezoresponse force microscopy (PFM) images of doped and un-doped ceramics, whereas atomic structure analysis indicates the parallel formation of nano-sized FE domains. A combination of measured properties and microscopy images of micron- and nano-sized domains ascertain the role of lattice distortion and stability of solid solution on multiferroic properties.
Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles.
Li, Xiyan; Liu, Xiaowang; Chevrier, Daniel M; Qin, Xian; Xie, Xiaoji; Song, Shuyan; Zhang, Hongjie; Zhang, Peng; Liu, Xiaogang
2015-11-02
We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core-shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core-shell nanoparticles, we have realized upconversion emission of Mn(2+) at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn(2+) emission, enabled by trapping the excitation energy through a Gd(3+) lattice, was validated by the observation of a decreased lifetime from 941 to 532 μs in the emission of Gd(3+) at 310 nm ((6)P(7/2)→(8)S(7/2)). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn(2+) doping in the lanthanide-based host lattice arising from the formation of F(-) vacancies around Mn(2+) ions to maintain charge neutrality in the shell layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ansari, Mohd Mohsin Nizam; Khan, Shakeel; Bhargava, Richa; Ahmad, Naseem
2018-05-01
Manganese substituted cobalt ferrites, Co1-xMnxFe2O4 (0.0, 0.1, 0.2, 0.3 and 0.4) were successfully synthesized by sol-gel method. XRD analysis confirmed the formation of a single-phase cubic spinel structures having Fd-3m space group and crystallite size is found to be in the range of 12.9 - 15.5 nm. The lattice parameter increased from 8.4109 Å to 8.4531 Å with increasing Mn2+ ion doping. Dielectric constant (ɛ'), dielectric loss (tanδ) and ac conductivity (σac) were analyzed at room temperature as a function of frequency (42 Hz to 5 MHz) and the behavior is explained on the basis of Maxwell-Wagner interfacial polarization. DC electrical resistivity measurements were carried out by two-probe method. DC electrical resistivity decreases with increase in temperature confirms the semiconducting nature of the samples. Impedance spectroscopy method has been used to understand the conduction mechanism and the effect of grains and grain boundary on the electrical properties of the materials.
Li, Ying; Mei, Yuan; Zhang, Lin-Qun; Wang, Jian-Hai; Liu, An-Ran; Zhang, Yuan-Jian; Liu, Song-Qin
2015-10-01
In this study, manganese oxide nanowires wrapped by nitrogen-doped carbon layers (MnO(x)@NCs) were prepared by carbonization of poly(o-phenylenediamine) layer coated onto MnO2 nanowires for high performance supercapacitors. The component and structure of the MnO(x)@NCs were controlled through carbonization procedure under different temperatures. Results demonstrated that this composite combined the high conductivity and high specific surface area of nitrogen-doped carbon layers with the high pseudo-capacitance of manganese oxide nanowires. The as-prepared MnO(x)@NCs exhibited superior capacitive properties in 1 M Na2SO4 aqueous solution, such as high conductivity (4.167×10(-3) S cm(-1)), high specific capacitance (269 F g(-1) at 10 mV s(-1)) and long cycle life (134 F g(-1) after 1200 cycles at a scan rate of 50 mV s(-1)). It is reckoned that the present novel hybrid nanowires can serve as a promising electrode material for supercapacitors and other electrochemical devices. Copyright © 2015 Elsevier Inc. All rights reserved.
Synthesis of fluorescent core-shell nanomaterials and strategies to generate white light
NASA Astrophysics Data System (ADS)
Singh, Amandeep; Kaur, Ramanjot; Pandey, O. P.; Wei, Xueyong; Sharma, Manoj
2015-07-01
In this work, cadmium free core-shell ZnS:X/ZnS (X = Mn, Cu) nanoparticles have been synthesized and used for white light generation. First, the doping concentration of Manganese (Mn) was varied from 1% to 4% to optimize the dopant related emission and its optimal value was found to be 1%. Then, ZnS shell was grown over ZnS:Mn(1%) core to passivate the surface defects. Similarly, the optimal concentration of Copper (Cu) was found to be 0.8% in the range varied from 0.6% to 1.2%. In order to obtain an emission in the whole visible spectrum, dual doping of Mn and Cu was done in the core and the shell, respectively. A solid-solid mixing in different ratios of separately doped quantum dots (QDs) emitting in the blue green and the orange region was performed. Results show that the optimum mixture of QDs excited at 300 nm gives Commission Internationale del'Éclairage color coordinates of (0.35, 0.36), high color rendering index of 88, and correlated color temperature of 4704 K with minimum self-absorption.
Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites
NASA Astrophysics Data System (ADS)
Panwar, Neeraj; Joby, Jostin P.; Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Kumar, Nitu; Palai, Ratnakar; Singhal, Rahul; Katiyar, Ram S.
2018-05-01
Impact of co-doping (Gd and Mn) on the magnetic properties has been systematically investigated in SmCrO3 compound. For the synthesized compound Sm0.9Gd0.1Cr0.85Mn0.15O3 (SGCMO), below the Neel transition temperature and under low applied magnetic field, temperature induced magnetization reversal at 105 K (crossover temperature) was noticed in the field cooled magnetization curve. Magnetization reversal attained maximum value of -1.03 emu/g at 17 K where spin reorientation occurred. The magnetization reversal disappeared under higher applied field. From the M-H plots an enhancement in the magnetization was observed due to Gd doping. Magnetocaloric effect at low temperatures measured through the magnetic entropy change was found sixteen times higher for this compound as compared to pristine SmCrO3 and twice to that of SmCr0.85Mn0.15O3 compound. The study reveals the importance of co-doping in tailoring the magnetic properties of rare-earth chromites.
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Verma, Narendra Kumar; Singh, Chandra Bhal; Singh, Akhilesh Kumar
2018-04-01
The nanocrystalline Sr-doped LaMnO3 (La0.7Sr0.3MnO3 = LSMO) perovskite manganites having different crystallite size were synthesized using the nitrate-glycine auto-combustion method. The phase purity of the manganites was checked by X-ray diffraction (XRD) measurement. The XRD patterns of the sample reveal that La0.7S0.3MnO3 crystallizes into rhombohedral crystal structure with space group R-3c. The size-dependence of structural lattice parameters have been investigated with the help of Rietveld refinement. The structural parameters increase as a function of crystallite size. The crystallite-size and internal strain as a function of crystallite-size have been calculated using Williamson-Hall plot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, R.; Xu, H. C.; Xia, M.
The dead-layer behavior, deterioration of the bulk properties in near-interface layers, restricts the applications of many oxide heterostructures. We present the systematic study of the dead-layer in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3} grown by ozone-assisted molecular beam epitaxy. Dead-layer behavior is systematically tuned by varying the interfacial doping, while unchanged with varied doping at any other atomic layers. In situ photoemission and low energy electron diffraction measurements suggest intrinsic oxygen vacancies at the surface of ultra-thin La{sub 0.67}Sr{sub 0.33}MnO{sub 3}, which are more concentrated in thinner films. Our results show correlation between interfacial doping, oxygen vacancies, and the dead-layer, whichmore » can be explained by a simplified electrostatic model.« less
NASA Astrophysics Data System (ADS)
Thanh, Tran Dang; Nanto, Dwi; Tuyen, Ngo Thi Uyen; Nan, Wen-Zhe; Yu, YiKyung; Tartakovsky, Daniel M.; Yu, S. C.
2015-11-01
In this work, we prepared nanocrystalline Fe2Mn1-xCuxAl (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic-paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe2Mn1-xCuxAl powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order.
Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers
NASA Astrophysics Data System (ADS)
Sharma, Venus; Srivastava, Sunita
2018-04-01
Graphene-like two-dimensional (2D) monolayer structures GaN has gained enormous amount of interest due to high thermal stability and inherent energy band gap for practical applications. First principles calculations are performed to investigate the electronic structure and strain-mediated electronic properties of pristine and Mn-doped GaN monolayer. Binding energy of Mn dopant at various adsorption site is found to be nearly same indicating these sites to be equally favorable for adsorption of foreign atom. Depending on the adsorption site, GaN monolayer can act as p-type or n-type magnetic semiconductor. The tensile strength of both pristine and doped GaN monolayer (∼24 GPa) at ultimate tensile strain of 34% is comparable with the tensile strength of graphene. The in-plane biaxial strain modulate the energy band gap of both pristine and doped-monolayer from direct to indirect gap semiconductor and finally retendered theme into metal at critical value of applied strain. These characteristics make GaN monolayer to be potential candidate for the future applications in tunable optoelectronics.
Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells.
Pimachev, Artem; Poudyal, Uma; Proshchenko, Vitaly; Wang, Wenyong; Dahnovsky, Yuri
2016-09-29
We find a large enhancement in the efficiency of CdSe quantum dot sensitized solar cells by doping with manganese. In the presence of Mn impurities in relatively small concentrations (2.3%) the photoelectric current increases by up to 190%. The average photocurrent enhancement is about 160%. This effect cannot be explained by a light absorption mechanism because the experimental and theoretical absorption spectra demonstrate that there is no change in the absorption coefficient in the presence of the Mn impurities. To explain such a large increase in the injection current we propose a tunneling mechanism of electron injection from the quantum dot LUMO state to the Zn 2 SnO 4 (ZTO) semiconductor photoanode. The calculated enhancement is approximately equal to 150% which is very close to the experimental average value of 160%. The relative discrepancy between the calculated and experimentally measured ratios of the IPCE currents is only 6.25%. For other mechanisms (such as electron trapping, etc.) the remaining 6.25% cannot explain the large change in the experimental IPCE. Thus we have indirectly proved that electron tunneling is the major mechanism of photocurrent enhancement. This work proposes a new approach for a significant improvement in the efficiency of quantum dot sensitized solar cells.
NASA Astrophysics Data System (ADS)
Azab, A. A.; Ateia, Ebtesam E.; Esmail, S. A.
2018-07-01
Nano-crystalline of TM-doped ZnO with general formula Zn0.97TM0.03O (TM: Mn, Fe, Co, and Ni) was prepared using sol-gel method. The dependence of crystal structure, morphology, and optical and magnetic properties on the type of transition metals was investigated. The XRD investigation of pure and TM-doped ZnO nanoparticles samples confirms the formation of single-phase hexagonal wurtzite structure. The estimated crystallite sizes are found in the range of 17 and 38 nm for the doped and pure samples, respectively. The obtained data suggest that the dopant type plays a vital role in the physical properties of the investigated samples. The optical band-gap energy Eg has been calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function. Minimum value of 2.398 eV and maximum one of 3.29 eV were obtained for Manganese-doped ZnO and pure ZnO, respectively. The analysis of XRD and VSM of the samples confirms that the observed room-temperature (RT) ferromagnetism can be attributed to an intrinsic property of doped material sample and not due to formation of any secondary phase. The magnetic results show that Mn is the most effective dopant for producing ferromagnetism in nanoparticles of ZnO.
NASA Technical Reports Server (NTRS)
Seltzer, M. S.; Wright, I. G.; Wilcox, B. A.
1973-01-01
The surface regions of a DSNiCrAl alloy have been doped, by a pack diffusion process, with small amounts of Mn, Fe, or Co, and the effect of these dopants on the total normal emissivity of the scales produced by subsequent high temperature oxidation has been measured. While all three elements lead to a modest increase in emissivity, (up to 23% greater than the undoped alloy) only the change caused by manganese is thermally stable. However, this increased emissivity is within 85 percent of that of TDNiCr oxidized to form a chromia scale. The maganese-doped alloy is some 50 percent weaker than undoped DSNiCrAl after the doping treatment, and approximately 30 percent weaker after oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pawan; Kar, Manoranjan, E-mail: mano@iitp.ac.in; Shankhwar, Nisha
2015-05-21
The co-doping of Ca and Mn in respective Bi and Fe-sites of BiFeO{sub 3} lattice leads to structural transition from rhombohedral (R3c space group) to orthorhombic (Pbnm space group) crystal symmetry. The tilt angle for anti-phase rotation of the oxygen octahedra of BiFeO{sub 3} at room temperature is observed to be ∼13.8°. It decreases with the increase in the co-doping percentage which suggests the composition-driven structural phase transition. The remnant magnetization for sample with 15% of co-doping becomes about 16 times that of BiFeO{sub 3}. It may be attributed to the suppression of cycloid spin structure and uncompensated spins atmore » the surface of nanocrystallites. Further increase in co-doping percentage results in the sharp reduction of remnant magnetization due to the dominant contribution from the collinear antiferromagnetic ordering in the Pbnm space group. The Arrott plot analysis clearly indicates the composition-driven crossover from the antiferromagnetic to weak ferromagnetic ordering and vice versa. Electron spin resonance results provide the evidence for the composition-driven phase transitions from an incommensurate spin cycloidal modulated state to one with nearly homogeneous spin order. The band gap (2.17 eV) of BiFeO{sub 3} measured using UV-Vis spectra was supported by the resonance Raman spectra.« less
NASA Astrophysics Data System (ADS)
Zhu, Yupeng; Liang, Xiao; Qin, Jun; Deng, Longjiang; Bi, Lei
2018-05-01
In this article, a systematic study on the magnetic properties and strain tunability of 3d transition metal ions (Mn, Fe, Co, Ni) doped MoS2 using first-principles calculations is performed. Antiferromagnetic coupling is observed between Mn, Fe ions and the nearest neighbor Mo ions; whereas ferromagnetic coupling is observed in Co and Ni systems. It is also shown that by applying biaxial tensile strain, a significant change of the magnetic moment is observed in all transition metal doped MoS2 materials with a strain threshold. The changes of total magnetic moment have different mechanisms for different doping systems including an abrupt change of the bond lengths, charge transfer and strain induced structural anisotropy. These results demonstrate applying strain as a promising method for tuning the magnetic properties in transition metal ion doped monolayer MoS2.
NASA Astrophysics Data System (ADS)
Murzakhanov, F.; Mamin, G.; Voloshin, A.; Klimashina, E.; Putlyaev, V.; Doronin, V.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.
2018-05-01
Powders of synthetic hydroxyapatite doped with Mn2+ ions in concentrations from 0.05 till 5 wt. % were investigated by conventional electron paramagnetic resonance (EPR). The parameters of the spin-Hamiltonian are derived. Partially resolved hyperfine structure in the magnetic fields corresponding to g ≈ 4.3 and g ≈ 9.4 is observed. The narrowing of the central peak with concentration is reported. A possibility to use the linewidth and intensity of the central peak for concentration measurements are discussed. The results could be used for the identification and qualification of Mn2+ in oil, mining and ore formations.
Investigation of Room temperature Ferromagnetism in Mn doped Ge
NASA Astrophysics Data System (ADS)
Colakerol Arslan, Leyla; Toydemir, Burcu; Onel, Aykut Can; Ertas, Merve; Doganay, Hatice; Gebze Inst of Tech Collaboration; Research Center Julich Collaboration
2014-03-01
We present a systematic investigation of structural, magnetic and electronic properties of MnxGe1 -x single crystals. MnxGe1-x films were grown by sequential deposition of Ge and Mn by molecular-beam epitaxy at low substrate temperatures in order to avoid precipitation of ferromagnetic Ge-Mn intermetallic compounds. Reflected high energy electron diffraction and x-ray diffraction observations revealed that films are epitaxially grown on Si (001) substrates from the initial stage without any other phase formation. Magnetic measurements carried out using a physical property measurement system showed that all samples exhibited ferromagnetism at room temperature. Electron spin resonance indicates the presence of magnetically ordered localized spins of divalent Mn ions. X-ray absorption measurements at the Mn L-edge confirm significant substitutional doping of Mn into Ge-sites. The ferromagnetism was mainly induced by Mn substitution for Ge site, and indirect exchange interaction of these magnetic ions with the intrinsic charge carriers is the origin of ferromagnetism. The magnetic interactions were better understood by codoping with nonmagnetic impurities. This work was supported by Marie-Curie Reintegration Grant (PIRG08-GA-2010-276973).
Charge and magnetic ordering in the electron-doped magnetoresistive materials CaMnO3-δ (δ=0.06,0.11)
NASA Astrophysics Data System (ADS)
Wiebe, C. R.; Greedan, J. E.; Gardner, J. S.; Zeng, Z.; Greenblatt, M.
2001-08-01
The magnetoresistive ``electron''-doped materials CaMnO3-δ (δ=0.06,0.11) have been investigated using powder neutron diffraction. The two materials are n-type semiconductors which exhibit antiferromagnetic ordering at TN~125 K, but they have different magnetic structures. The CaMnO2.94 sample orders in a simple G-type antiferromagnetic structure, which is also observed in CaMnO3. The CaMnO2.89 sample, on the other hand, exhibits two magnetic features: the G-type reflections as noted above, and a set of reflections that can be indexed on a k=(0,0,14) ordering wave vector. A model for the magnetic structure is proposed which involves Mn3+/Mn4+ charge ordering concomitant with the magnetic ordering. The presence of a set of weak, temperature independent structural reflections which can also be indexed on a k=(0,0,14) supercell suggests an oxygen vacancy ordering which may play a role in the charge ordering.
Wang, Junjie; Tian, Pei; Li, Kexun; Ge, Baochao; Liu, Di; Liu, Yi; Yang, Tingting; Ren, Rong
2016-12-01
This study investigated the performance of nano spinel nest-like oxygen-deficient Cu 1.5 Mn 1.5 O 4 doping activated carbon (AC) as air cathode in microbial fuel cell (MFC). The Cu 1.5 Mn 1.5 O 4 was synthesized via hydrothermal method and subsequent annealed. The maximum power density (MPD) of MFC with oxygen-deficient Cu 1.5 Mn 1.5 O 4 modified cathode was 1928±18mWm -2 , which was 1.53 times higher than the bare cathode. The electrochemical studies showed that Cu 1.5 Mn 1.5 O 4 doping AC exhibited higher kinetic activity and lower resistance. The mechanism of oxygen reduction for the catalyst was a four electron pathway. The oxygen deficient of Cu 1.5 Mn 1.5 O 4 played an important role in catalytic activity. So Cu 1.5 Mn 1.5 O 4 would be an excellent promising catalyst for ORR in MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nitrogen-doped carbon coated MnO nanopeapods as superior anode materials for lithium ion batteries
NASA Astrophysics Data System (ADS)
Ding, Yu; Chen, Lihui; Pan, Pei; Du, Jun; Fu, Zhengbing; Qin, Caiqin; Wang, Feng
2017-11-01
High performance nitrogen-doped carbon (NC) materials decorated with MnO hybrid (MnO@NC) composites with a nanopeapod appearance were synthesized by with a simple hydrothermal method and insuit-polymeric route. As an anode material for lithium ion batteries (LIBs), the nanopeapod structure of MnO@NC composites with internal void spaces exhibits good rate capability, high conductivity and excellent cycling stability. After 200 cycles, the nanopeapod composites yield a specific capacity of 775.4 mAh g-1 at 100 mA g-1 and a high-rate capacity of 559.7 mAh g-1 at 1000 mA g-1. The proposed synthesis of nanopeapod structure composites with an internal room is an efficient design with excellent electrode materials for rechargeable LIBs.
Magnetic ordering in intermetallic La1-xTbxMn2Si2 compounds
NASA Astrophysics Data System (ADS)
Korotin, Dm. M.; Streltsov, S. V.; Gerasimov, E. G.; Mushnikov, N. V.; Zhidkov, I. S.; Kukharenko, A. I.; Finkelstein, L. D.; Cholakh, S. O.; Kurmaev, E. Z.
2018-05-01
The magnetic structures and magnetic phase transitions in intermetallic layered La1-xTbxMn2Si2 compounds (the ThCr2Si2-type structure) are investigated using the first-principles method and XPS measurements. The experimentally observed transition from ferromagnetic (FM) to antiferromagnetic (AFM) ordering of Mn sublattice with increase of terbium concentration is successfully reproduced in calculations for collinear magnetic moments model. The FM →AFM change of interplane magnetic ordering at small x is irrelevant to the number of f-electrons of the rare-earth ion. In contrast it was shown to be related to the Mn-Mn in-plane distance. Calculated Tb critical concentration for this transition x ≈ 0.14 corresponds to the Mn-Mn in-plane distance 0.289 nm, very close to the experimentally observed transition distance 0.287 nm. The crystal cell compression due to substitution increases an overlap between Mndxz,yz and the rare-earth ion d orbitals. Resulting hybridized states manifest themselves as an additional peak in the density of states. We suggest that a corresponding interlayer Mn-R-Mn superexchange interaction stabilizes AFM magnetic ordering in these compounds with Tb doping level x > 0.2 . The results of DFT calculations are in agreement with X-ray photoemission spectra for La1-xTbxMn2Si2 .
NASA Astrophysics Data System (ADS)
Trukhanov, S. V.; Lobanovski, L. S.; Bushinsky, M. V.; Khomchenko, V. A.; Pushkarev, N. V.; Troyanchuk, I. O.; Maignan, A.; Flahaut, D.; Szymczak, H.; Szymczak, R.
2004-11-01
The crystal structure, magnetization and electrical transport depending on the temperature and magnetic field for the doped stoichiometric La_{1-x}^{3 + } Sr_x^{2 + } Mn_{1-x}^{3 + } Mn_x^{4 + } O_3^{2-} as well as anion-deficient La_{1-x}^{3 + } Sr_x^{2 + } Mn^{3 + }O_{3-x/2}^{2-} (0le x le 0.30) ortomanganite systems have been experimentally studied. It is established that the stochiometric samples in the region of the 0 le x le 0.125 are an O'-orthorhombic perovskites whereas in the 0.175 le x le 0.30 - a rhombohedric. For the anion-deficient system the symmetry type of the unit cell is similar to the stoichiometric one. As a doping level increases the samples in the ground state undergo a number of the magnetic transitions. It is assumed that the samples with the large amount of oxygen vacancies are a cluster spin glasses (0.175 < x le 0.30) and temperature of the magnetic moment freezing is 40 K. All the anion-deficient samples are semiconductors and show considerable magnetoresistance over a wide temperature range with a peak for the x = 0.175 only. Concentration dependences of the spontaneous magnetization and magnetic ordering temperature for the anion-deficient La_{1-x}^{3 + } Sr_x^{2 + } Mn^{3 + }O_{3-x/2}^{2-} system have been established by the magnetic measurements and compared with those for the stoichiometric La_{1-x}^{3 + } Sr_x^{2 + } Mn_{1-x}^{3 + } Mn_x^{4 + } O_3^{2-} one. The magnetic propeprties of the anion-deficient samples may be interpreted on the base of the superexchange interaction and phase separation (chemical disorder) models.
Electronic band structure of LaCoO3/Y/Mn compounds
NASA Astrophysics Data System (ADS)
Rahnamaye Aliabad, H. A.; Hesam, V.; Ahmad, Iftikhar; Khan, Imad
2013-02-01
Spin polarization effects on electronic properties of pure LaCoO3 and doped compounds (La0.5Y0.5CoO3, LaCo0.5Mn0.5O3) in the rhombohedral phase have been studied. We have employed the full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA+U) under density functional theory (DFT). The calculated band structures along with total as well as partial densities of states reveal that Y and Mn impurities have a significant effect on the structural and electronic properties of LaCoO3. It is found that Mn alters insulating behavior of this compound to the half metallic for spin up state. Obtained results show that the magnetic moment for the Co-3d state is near 3.12μB in LaCoO3 compound which increases and decreases with addition of Y and Mn dopants respectively.
Thermoelectric properties of Ca(1-x-y)Dy(x)CeyMnO3 for power generation.
Park, K; Lee, G W; Jung, J; Kim, S-J; Lim, Y-S; Choi, S-M; Seo, W-S
2011-08-01
The sintered Ca(1-x-y)Dy(x)CeyMnO3 bodies were a single phase with a perovskite structure without any impurity phases. The calculated crystallite sizes of the Ca(1-x-y)Dy(x)CeyMnO3 were in the range of 43.3 to 63.3 nm. The composition significantly affected their microstructural and thermoelectric characteristics. The doped Dy led to both an increase in the electrical conductivity as well as the absolute value of the Seebeck coefficient, resulting in an enhanced power factor. The highest power factor (5.1 x 10(-4) Wm(-1) K(-2)) was obtained for Ca(0.8)Dy(0.2)MnO3 at 800 degrees C. In this study, we systematically discussed the thermoelectric properties of the Ca(1-x-y)Dy(x)CeyMnO3, with respect to the substitution of Dy and/or Ce for Ca.
Growth and characterization of manganese doped gallium nitride nanowires.
Kumar, V Suresh; Kesavamoorthy, R; Kumar, J
2008-08-01
Manganese doped GaN nanowires have been grown by chemical vapour transport method on sapphire (0001) substrates in the temperature range of 800-1050 degrees C. The surface features of nanowires have been investigated using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDAX), Raman scattering studies and Electron Paramagnetic Resonance (EPR). SEM images showed that the morphology of the one dimensional materials included straight nanorods and nanowires around 70-80 nm. Raman spectrum showed the GaMnN vibrational modes at 380, 432 and 445 cm(-1). EPR measurements were performed on Mn doped GaN nanowires in order to evaluate the magnetic behaviour.
NASA Astrophysics Data System (ADS)
Van, Hoang Nhu; Hoan, Bui Thi; Nguyen, Khoi Thi; Tam, Phuong Dinh; Huy, Pham Thanh; Pham, Vuong-Hung
2018-03-01
Tunable light emission from europium (Eu2+)/manganese (Mn2+)-codoped beta-tricalcium phosphate [β-Ca3(PO4)2 (TCP)] has been investigated as a function of the Mn2+ and Eu2+ concentrations and annealing temperature. Eu2+/Mn2+-doped TCP phosphor (Eu/Mn-TCP) was synthesized by coprecipitation method followed by thermal annealing at temperature up to 1100°C. The Eu2+/Mn2+-doped TCP particles have diameter of about 1 μm. The light emission from TCP is enhanced in the sample with 7.5 mol.% Mn2+ and 0.3 mol.% Eu2+ annealed in Ar + 5% H2 atmosphere at 1100°C. The blue band at 430 nm is attributed to the 4f 6 5d 1-4f 7 transition of Eu2+. The sharp peak at 660 nm is ascribed to the 4T1-6A1 transition of Mn2+ in TCP. These results suggest codoping of Eu2+/Mn2+ to TCP phosphor to obtain β-Ca3(PO4)2:Eu2+,Mn2+ phosphors with tunable luminescence, having potential applications in agricultural lighting.
Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition.
Wang, Jian; Ciucci, Francesco
2017-04-01
The addition of transition metals, even in a trace amount, into heteroatom-doped carbon (M-N/C) is intensively investigated to further enhance oxygen reduction reaction (ORR) activity. However, the influence of metal decoration on the electrolysis of the reverse reaction of ORR, that is, oxygen evolution reaction (OER), is seldom reported. Moreover, further improving the bifunctional activity and corrosion tolerance for carbon-based materials remains a big challenge, especially in OER potential regions. Here, bimetal-decorated, pyridinic N-dominated large-size carbon tubes (MM'-N/C) are proposed for the first time as highly efficient and durable ORR and OER catalysts. FeFe-N/C, CoCo-N/C, NiNi-N/C, MnMn-N/C, FeCo-N/C, NiFe-N/C, FeMn-N/C, CoNi-N/C, MnCo-N/C, and NiMn-N/C are systematically investigated in terms of their structure, composition, morphology, surface area, and active site densities. In contrast to conventional monometal and N-decorated carbon, small amounts of bimetal (≈2 at%) added during the one-step template-free synthesis contribute to increased pyridinic N content, much longer and more robust carbon tubes, reduced metal particle size, and stronger coupling between the encapsulated metals and carbon support. The synergy of those factors accounts for the dramatically improved ORR and OER activity and stability. By comparison, NiFe-N/C and MnCo-N/C stand out and achieve superior bifunctional oxygen catalytic performance, exceeding most of state-of-the-art catalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Drastic effect of the Mn-substitution in the strongly correlated semiconductor FeSb2.
NASA Astrophysics Data System (ADS)
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2017-06-01
We report the effects of Mn substitution, corresponding to hole doping, on the electronic properties of the narrow gap semiconductor, FeSb2, using single crystals of Fe1- x Mn x Sb2 grown by the Sb flux method. The orthorhombic Pnnm structure was confirmed by powder X-ray diffraction (XRD) for the pure and Mn-substituted samples. Their crystal structure parameters were refined using the Rietveld method. The chemical composition was investigated by wavelength-dispersive X-ray spectroscopy (WDX). The solubility limit of Mn in FeSb2 is x max ˜ 0.05 and the lattice constants change monotonically with increasing the actual Mn concentration. A drastic change from semiconducting to metallic electronic transports was found at very low Mn concentration at x ˜ 0.01. Our experimental results and analysis indicate that the substitution of a small amount of Mn changes drastically the electronic state in FeSb2 as well as the Co-substitution does: closing of the narrow gap and emergence of the density of states (DOS) at the Fermi level.
NASA Astrophysics Data System (ADS)
Yin, Hui; Kwon, Kideok D.; Lee, Jin-Yong; Shen, Yi; Zhao, Huaiyan; Wang, Xiaoming; Liu, Fan; Zhang, Jing; Feng, Xionghan
2017-07-01
Hexagonal turbostratic birnessite, one of the most reactive Mn oxide minerals, is ubiquitous throughout the ocean floor to the surface environment. During its crystallization, birnessite may coexist with Al3+, which is the third most abundant crustal element. However, interactions of Al3+ with birnessite compared to the transition metal (TM) ions have rarely been explored thus far. This study examines the structure and properties of Al3+-doped hexagonal turbostratic birnessite to obtain insights into the interaction of metal cations with birnessite-like minerals in natural environments. For Al3+-incorporated birnessite, the crystal chemistry of Al3+, as well as alteration in the mineral structure, physicochemical properties, and reactivity toward the sorption of Pb2+/Zn2+ is investigated by powder X-ray diffraction, chemical analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. Electronic structure calculations based on density functional theory (DFT) are further combined to aid in the experimental interpretation of Al3+ incorporation. As a comparative system, Fe3+-coprecipitated birnessite is also examined. Under the experimental conditions used, only a small amount of Al3+ is incorporated into birnessite, with a final Al/(Al + Mn) molar ratio of ∼0.07, whereas Fe3+ is incorporated into birnessite with a final Fe/(Fe + Mn) molar ratio of up to ∼0.21. Irrespective of metal type, the incorporation of a metal cation significantly alters the physicochemical properties of birnessite, such as decrease in the thickness of crystals along the c∗ axis and coherent scattering domain sizes in the a-b plane and the Mn average oxidation state, increase in the specific surface area and the total amount of hydroxyl groups, in which the contents of hydroxyl groups around vacancies are decreased. The lattice parameters in the a-b plane tend to decrease in Al-incorporated birnessites but first significantly decrease and then increase in Fe-incorporated birnessites. In Fe-incorporated birnessites, ∼32-50% of the total Fe3+ is located inside the Mn octahedral sheets (INC species). In Al-incorporated birnessites, the edge- and corner-sharing Mn-Mn distances gradually decrease. Density function theory (DFT) computation results support that the dominant species in Al-birnessite is a triple-corner-sharing complex on vacancies. The DFT geometry optimization further demonstrates that the in-plane cell size experimentally observed for these birnessites depends on not only the metal type but also its position in the mineral. The Al- or Fe-birnessites exhibit significantly increased adsorption capacities for Pb2+ but reduced capacities for Zn2+. The metal incorporation effects on the chemical reactivity are discussed with the observed changes in the particle size and available vacancy sites.
NASA Astrophysics Data System (ADS)
Pargoletti, E.; Cappelletti, G.; Minguzzi, A.; Rondinini, S.; Leoni, M.; Marelli, M.; Vertova, A.
2016-09-01
Nanostructured MnO2 has unique electrocatalytic properties towards the Oxygen Reduction Reaction (ORR, the main cathodic reaction in metal-air devices), representing an excellent alternative to the expensive platinum. Herein, we report the hydrothermal synthesis of bare and 5% Ti-doped α-MnO2 nanoparticles using two different oxidizing agents, namely ammonium persulfate for MH_N samples and potassium permanganate for MH_K ones. The physico-chemical characterizations show that oxidant cations induce different structural, morphological and surface properties of the final powders. Hence, correlations between the different α-MnO2 characteristics and their electrocatalytic performances towards the ORR are drawn, highlighting the diverse effect even on the kinetic point of view. The ORR activity in alkaline media is examined by means of Staircase - Linear Sweep Voltammetry (S-LSV), using Gas Diffusion Electrode (GDE) as the air-cathode. The presence of these nanoparticles in the GDEs leads to a significant shift of the ORR onset potential (∼100 mV) towards less cathodic values, underlining the electrocatalytic efficiency of all the nanopowders. Furthermore, high exchange current densities (j0) are determined for GDEs with Ti-doped MnO2, comparable to the well-performing Pd45Pt5Sn50, and making it a promising material for the ORR.
Ferromagnetism in Fe-doped transition metal nitrides
NASA Astrophysics Data System (ADS)
Sharma, Ramesh; Sharma, Yamini
2018-04-01
Early transition metal mononitrides ScN and YN are refractory compounds with high hardness and melting points as well semiconducting properties. The presence of nitrogen vacancies in ScN/YN introduces asymmetric peaks in the density of states close to Fermi level, the same effects can be achieved by doping by Mn or Fe-atoms. Due to the substitution of TM atoms at Sc/Y sites, it was found that the p-d hybridization induces small magnetic moments at both Sc/Y and N sites giving rise to magnetic semiconductors (MS). From the calculated temperature dependent transport properties, the power factor and ZT is found to be lowered for doped ScN whereas it increases for doped YN. It is proposed that these materials have promising applications as spintronics and thermoelectric materials.
Ferromagnetism induced by oxygen-vacancy complex in (Mn, in) codoped ZnO
NASA Astrophysics Data System (ADS)
Wu, Kongping; Gu, Shulin; Tang, Kun; Zhu, Shunming; Zhou, Mengran; Huang, Yourui; Xu, Mingxiang; Zhang, Rong; Zheng, Youdou
2012-07-01
Mn doped Zinc oxide (ZnO) thin films were prepared by metal organic chemical vapor deposition (MOCVD) technique. Structural characterizations by X-ray diffraction technique (XRD) and photoluminescence (PL) indicate the crystal quality of ZnO films. PL and Raman show a large fraction of oxygen vacancies (VO2+) are generated by vacuum annealed the film. The enhancement of ferromagnetism in post-annealed (Mn, In) codoped ZnO could result from VO2+ incorporation. The effect of VO2+ on the magnetic properties of (Mn, In) codoped ZnO has been studied by first-principles calculations. It is found that only In donor cannot induce ferromagnetism (FM) in Mn-doped ZnO. Besides, the presence of VO2+ makes the Mn empty 3d-t2g minority state broadened, and a t2g-VO2+ hybrid level at the conduction band minimum forms. The presence of VO2+ can lead to strong ferromagnetic coupling with the nearest neighboring Mn cation by BMP model based on defects reveal that the ferromagnetic exchange is mediated by the donor impurity state, which mainly consists of Mn 3d electrons trapped in oxygen vacancies.
Intrinsic Local Distortions and charge carrier behavior in CMR manganites and cobaltites
NASA Astrophysics Data System (ADS)
Bridges, Frank
2010-03-01
We compare and contrast the local structure and electronic configurations in two oxide systems La1-xSrxCoO3 (LSCO) and La1-yCayMnO3 (LCMO). Although these oxides may appear quite similar they have rather different properties. At x=0, LaCoO3 (LCO) has unusual magnetic properties - diamagnetic at low T but developing a moment near 100K. The Sr doped LSCO materials show ferromagnetism for x > 0.2. For LCO, one of the possible spin state configurations called the intermediate spin (IS) state (S=1), should be Jahn-Teller (JT) active, while the low spin (S=0) and high spin (S=2) states have no JT distortion. Early local structure measurements suggested a JT distortion was present in LCO and therefore supported an IS spin model. However we find no evidence for any significant JT distortion (and hence no support for the IS model) for a range of bulk and nanoparticle cobaltites La1-xSrxCoO3, x = 0 - 0.35. In contrast there are large JT distortions in the manganites LCMO, 0.2 < x < 0.5 (Mn-O bonds), for which CMR behavior is observed. We have shown that the JT distortions in the manganites depend on both temperature T and magnetic field B, and from the B-field dependence, propose the size and nature of the polarons in LCMO. We also present Co K-edge XANES data that shown no significant shift of the edge for the cobaltites as the Sr concentration increases from x =0 to 0.35 indicating essentially no change in the electronic configuration about Co; consequently, the holes introduced via Sr doping appear to go primarily into the O bands. In contrast there is a large shift of the Mn K-edge with Ca doping indicating a change in the average Mn valence, and a corresponding change in the Mn electronic configuration. We briefly discuss some possible models.
NASA Astrophysics Data System (ADS)
Sadu, Rakesh Babu
Dependency of technology has been increasing radically through cellular phones for communication, data storage devices for education, drinking water purifiers for healthiness, antimicrobial-coated textiles for cleanliness, nanomedicines for deadliest diseases, solar cells for natural power, nanorobots for engineering and many more. Nanotechnology develops many unprecedented products and methodologies with its adroitness in this modern scientific world. Syntheses of nanomaterials play a significant role in the development of technology. Solution combustion and hydrothermal syntheses produce many nanomaterials with different structures and pioneering applications. Nanometal oxides, like titania, silver oxide, manganese oxide and iron oxide have their unique applications in engineering, chemistry and biochemistry. Likewise, this study talks about the syntheses and applications of nanomaterials such as magnetic graphene nanoplatelets (M-Gras) decorated with uniformly dispersed NPs, manganese doped titania nanotubes (Mn-TNTs), and silver doped titania nanopartcles (nAg-TNPs) and their polyurethane based polymer nanocomposite coating (nAg-TiO2 /PU). Basically, M-Gras, and Mn-TNTs were applied for the treatment of arsenic contaminated water, and nAg- TiO2/PU applied for antimicrobial coatings on textiles. Adsorption of arsenic over Mn- TNTs, and M-Gras was discussed while considering all the regulations of arsenic contamination in drinking water and oxidation of arsenic over Mn-TNTs also discussed with the possible surface reactions. Silver doped titania and its polyurethane nanocomposite was coated on polyester fabric and examined the coated fabric for bactericidal activity for gram-negative (E. coli) and gram-positive ( S. epidermidis) bacteria. This study elucidates the development of suitable nanomaterials and their applications to treat or rectify the environmental hazards while following the scientific standards and regulations.
Chen, Ting-Ru; Sheng, Tian; Wu, Zhen-Guo; Li, Jun-Tao; Wang, En-Hui; Wu, Chun-Jin; Li, Hong-Tai; Guo, Xiao-Dong; Zhong, Ben-He; Huang, Ling; Sun, Shi-Gang
2018-03-28
Sodium-ion batteries (SIBs) have been regarded as a promising candidate for large-scale renewable energy storage system. Layered manganese oxide cathode possesses the advantages of high energy density, low cost and natural abundance while suffering from limited cycling life and poor rate capacity. To overcome these weaknesses, layer-tunnel hybrid material was developed and served as the cathode of SIB, which integrated high capacity, superior cycle ability, and rate performance. In the current work, the doping of copper was adopted to suppress the Jahn-Teller effect of Mn 3+ and to affect relevant structural parameters. Multifunctions of the Cu 2+ doping were carefully investigated. It was found that the structure component ratio is varied with the Cu 2+ doping amount. Results demonstrated that Na + /vacancy rearrangement and phase transitions were suppressed during cycling without sacrificing the reversible capacity and enhanced electrochemical performances evidenced with 96 mA h g -1 retained after 250 cycles at 4 C and 85 mA h g -1 at 8 C. Furthermore, ex situ X-ray diffraction has demonstrated high reversibility of the Na 0.6 Mn 0.9 Cu 0.1 O 2 cathode during Na + extraction/insertion processes and superior air stability that results in better storage properties. This study reveals that the Cu 2+ doping could be an effective strategy to tune the properties and related performances of Mn-based layer-tunnel hybrid cathode.
NASA Astrophysics Data System (ADS)
Lawson, Bridget; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Ferrone, Natalie; Houston, David; Yong, Grace; Kolagani, Rajeswari
Magnetoresistance properties of the epitaxial thin films of doped rare earth manganites are known to be influenced by the effect of bi-axial strain induced by lattice mismatch with the substrate. In hole-doped manganites, the effect of both compressive and tensile strain is qualitatively consistent with the expected changes in unit cell symmetry from cubic to tetragonal, leading to Jahn-Teller strain fields that affect the energy levels of Mn3 + energy levels. Recent work in our laboratory on CaMnO3 thin films has pointed out that tetragonal distortions introduced by tensile lattice mismatch strain may also have the effect of modulating the oxygen content of the films in agreement with theoretical models that propose such coupling between strain and oxygen content. Our research focuses on comparing the magneto-transport properties of hole-doped manganite LaCaMnO3 thin films with that of its electron doped counter parts, in an effort to delineate the effects of oxygen stoichiometry changes on magneto-transport from the effects of Jahn-Teller type strain. Towson University Office of Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grant from the Fisher College of Science and Mathematics, Seed Funding Grant from the School of Emerging technologies and the NSF Grant ECCS 112856.
Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo
2013-03-01
Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.
Influence of the dynamic lattice strain on the transport behavior of oxide heterojunctions
NASA Astrophysics Data System (ADS)
Wang, J.; Hu, F. X.; Chen, L.; Zhao, Y. Y.; Lu, H. X.; Sun, J. R.; Shen, B. G.
2013-01-01
All-perovskite oxide heterojunctions composed of electron-doped titanate LaxSr1 - xTiO3 (x = 0.1, 0.15) and hole-doped manganite La0.67Ca0.33MnO3 films were fabricated on piezoelectric substrate of (001)-0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT). Taking advantage of the excellent converse piezoelectric effect of PMN-PT, we investigated the influence of the dynamic lattice strain on transport properties of the heterojunctions by applying external bias electric fields on the PMN-PT substrate. Photovoltaic experiments were carried out to characterize the interfacial barrier of the heterojunction. A linear reduction in the barrier height was observed with the increase of the bias field applied on PMN-PT. The value of the barrier height reduces from ˜1.55 (˜1.30) to 1.02 (1.08) eV as the bias field increases from 0 to 12 kV/cm for the junction of La0.10Sr0.9TiO3/La0.67Ca0.33MnO3 (La0.15Sr0.85TiO3/La0.67Ca0.33MnO3). The observed dependency of barrier height on external field can be ascribed to the increasing release of trapped carriers by strain modulation, which results in a suppression of the depletion layer and increases the opportunity for electron tunneling across the depletion area.
Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites.
K, Nila Nandha; Nag, Angshuman
2018-05-17
Metal halide double perovskites (DPs) are being explored as stable and non-toxic alternatives of Pb-halide perovskites. Typically DPs exhibit a wide (>2.5 eV) and/or indirect bandgap, limiting their applications in the visible region. Here we impart the visible-light emission property in direct bandgap Cs2AgInCl6 DPs by doping Mn2+ ions. Synthesis, characterization and luminescence of metal halide double perovskites are reported.