Wang, Shibo; Niu, Chengchao
2016-01-01
In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324
Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.
1984-01-01
A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.
Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D.
1985-01-01
A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.
1986-01-01
The effect of inlet starvation on the hydrodynamic lubrication of lightly loaded rigid nonconformal contacts in combined rolling and normal motion is determined through a numerical solution of the Reynolds' equation for an isoviscous, incompressible lubricant. Starvation is effected by systematically reducing the fluid inlet level. The pressures are taken to be ambient at the inlet meniscus boundary and Reynolds' boundary condition is applied for film rupture in the exit region. Results are presented for the dynamic performance of the starved contacts in combined rolling and normal motion for both normal approach and separation. During normal approach the dynamic load ratio (i.e. ratio of dynamic to steady state load capacity) increases considerably with increase in the inlet starvation. The effect of starvation on the dynamic peak pressure ratio is relatively small. Further, it has been observed that with increasing starvation, film thickness effects become significant in the dynamic behavior of the nonconformal contacts. For significantly starved contacts the dynamic load ratio increases with increase in film thickness during normal approach and a similar reduction is observed during separation. A similar effect is noted for the dynamic peak pressure ratio.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1989-01-01
Results of a series of tests to determine the effects of adhesive interleaving and discontinuous plies (plies with end-to-end gaps) on the displacements, failure loads and failure modes of graphite-epoxy laminates subjected to transverse normal loads are presented. Adhesive interleaving can be used to contain local damage within a group of plies, i.e., to arrest crack propagation on the interlaminate level, and it can increase the amount of normal displacement the laminate can withstand before failure. However, the addition of adhesive interleaving to a laminate does not significantly increase its load carrying capability. A few discontinuous plies in a laminate can reduce the normal displacement and load at failure by 10 to 40 percent compared to a laminate with no discontinuous plies, but the presence of the ply discontinuities does not generally change the failure location or the failure mode of the laminate.
Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study
NASA Astrophysics Data System (ADS)
Yin, Qian; Ma, Guowei; Jing, Hongwen; Wang, Huidong; Su, Haijian; Wang, Yingchao; Liu, Richeng
2017-12-01
This study experimentally analyzed the influence of shear processes on nonlinear flow behavior through 3D rough-walled rock fractures. A high-precision apparatus was developed to perform stress-dependent fluid flow tests of fractured rocks. Then, water flow tests on rough-walled fractures with different mechanical displacements were conducted. At each shear level, the hydraulic pressure ranged from 0 to 0.6 MPa, and the normal load varied from 7 to 35 kN. The results show that (i) the relationship between the volumetric flow rate and hydraulic gradient of rough-walled fractures can be well fit using Forchheimer's law. Notably, both the linear and nonlinear coefficients in Forchheimer's law decrease during shearing; (ii) a sixth-order polynomial function is used to evaluate the transmissivity based on the Reynolds number of fractures during shearing. The transmissivity exhibits a decreasing trend as the Reynolds number increases and an increasing trend as the shear displacement increases; (iii) the critical hydraulic gradient, critical Reynolds number and equivalent hydraulic aperture of the rock fractures all increase as the shear displacement increases. When the shear displacement varies from 0 to 15 mm, the critical hydraulic gradient ranges from 0.3 to 2.2 for a normal load of 7 kN and increases to 1.8-8.6 for a normal load of 35 kN; and (iv) the Forchheimer law results are evaluated by plotting the normalized transmissivity of the fractures during shearing against the Reynolds number. An increase in the normal load shifts the fitted curves downward. Additionally, the Forchheimer coefficient β decreases with the shear displacement but increases with the applied normal load.
Strength of Gamma Rhythm Depends on Normalization
Ray, Supratim; Ni, Amy M.; Maunsell, John H. R.
2013-01-01
Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control. PMID:23393427
Microstructure and tribological properties of TiCu2Al intermetallic compound coating
NASA Astrophysics Data System (ADS)
Guo, Chun; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Chen, Jianmin; Zhou, Huidi
2011-04-01
TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.
Mullaney, John R.
2016-03-10
Loads of dissolved silica (DSi; flow-normalized and non-flow-normalized) increased slightly at most stations during the study period and were positively correlated to urbanized land in the basin and negatively correlated to area of open water. Concentrations and loads of chloride increased at 12 of the 14 sites during both periods. Increases likely are the result of an increase in the use of salt for deicing, as well as other factors related to urbanization and population growth, such as increases in wastewater discharge and discharge from septic systems.
Cytoskeletal mechanics in pressure-overload cardiac hypertrophy
NASA Technical Reports Server (NTRS)
Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D. E.; Zile, M. R.; Cooper, G. 4th
1997-01-01
We have shown that the cellular contractile dysfunction characteristic of pressure-overload cardiac hypertrophy results not from an abnormality intrinsic to the myofilament portion of the cardiocyte cytoskeleton but rather from an increased density of the microtubule component of the extramyofilament portion of the cardiocyte cytoskeleton. To determine how, in physical terms, this increased microtubule density mechanically overloads the contractile apparatus at the cellular level, we measured cytoskeletal stiffness and apparent viscosity in isolated cardiocytes via magnetic twisting cytometry, a technique by which magnetically induced force is applied directly to the cytoskeleton through integrin-coupled ferromagnetic beads coated with Arg-Gly-Asp (RGD) peptide. Measurements were made in two groups of cardiocytes from cats with right ventricular (RV) hypertrophy induced by pulmonary artery banding: (1) those from the pressure-overloaded RV and (2) those from the normally loaded same-animal control left ventricle (LV). Cytoskeletal stiffness increased almost twofold, from 8.53 +/- 0.77 dyne/cm2 in the normally loaded LV cardiocytes to 16.46 +/- 1.32 dyne/cm2 in the hypertrophied RV cardiocytes. Cytoskeletal apparent viscosity increased almost fourfold, from 20.97 +/- 1.92 poise in the normally loaded LV cardiocytes to 87.85 +/- 6.95 poise in the hypertrophied RV cardiocytes. In addition to these baseline data showing differing stiffness and, especially, apparent viscosity in the two groups of cardiocytes, microtubule depolymerization by colchicine was found to return both the stiffness and the apparent viscosity of the pressure overload-hypertrophied RV cells fully to normal. Conversely, microtubule hyperpolymerization by taxol increased the stiffness and apparent viscosity values of normally loaded LV cardiocytes to the abnormal values given above for pressure-hypertrophied RV cardiocytes. Thus, increased microtubule density constitutes primarily a viscous load on the cardiocyte contractile apparatus in pressure-overload cardiac hypertrophy.
Chow, Daniel H K; Kwok, Monica L Y; Cheng, Jack C Y; Lao, Miko L M; Holmes, Andrew D; Au-Yang, Alexander; Yao, Fiona Y D; Wong, M S
2006-10-01
Concerns have been raised regarding the effect of carrying a backpack on adolescent posture and balance, but the effect of backpack loading combined with other factors affecting balance, such as adolescent idiopathic scoliosis (AIS), has not been determined. This study examines the effects of backpack load on the posture and balance of schoolgirls with AIS and normal controls. The standing posture of 26 schoolgirls with mild AIS (mean age 13, Cobb angle 10-25 degrees ) and 20 age-matched normal schoolgirls were recorded without a backpack and while carrying a standard dual-strap backpack loaded at 7.5%, 10%, 12.5% and 15% of the subject's bodyweight (BW). Kinematics of the pelvis, trunk and head were recorded using a motion analysis system and centre of pressure (COP) data were recorded using a force platform. Reliable COP data could only be derived for 13 of the subjects with AIS. Increasing backpack load causes a significantly increased flexion of the trunk in relation to the pelvis and extension of the head in relation to the trunk, as well as increased antero-posterior range of COP motion. While backpack load appears to affect balance predominantly in the antero-posterior direction, differences between groups were more evident in the medio-lateral direction, with AIS subjects showing poor balance in this direction. Overall, carrying a backpack causes similar sagittal plane changes in posture and balance in both normal and AIS groups. Load size or subject group did not influence balance, but the additive effect of backpack carrying and AIS on postural control alters the risk of fall in this population. Therefore, load limit recommendations based on normal subjects should not be applicable to subjects with AIS.
Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.
Torcasio, Antonia; Jähn, Katharina; Van Guyse, Maarten; Spaepen, Pieter; Tami, Andrea E; Vander Sloten, Jos; Stoddart, Martin J; van Lenthe, G Harry
2014-01-01
Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.
Stuy on Fatigue Life of Aluminum Alloy Considering Fretting
NASA Astrophysics Data System (ADS)
Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali
2018-01-01
To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.
Córdoba, J; Olaso, V; Molina, J M; López Viedma, B; Argüello, L; Ortiz, V; Esteban, R J; Garijo, R; Pastor, M; Gobernado, M
2000-01-01
Two standardized techniques, Quantiplex (bDNA-2.0) and Amplicor Monitor have been evaluated for the quantification of virus load of HCV with these objectives: a) determinate the relationship between virus load and genotype, and b) evaluate the virus load in serial serum samples and in patients with normal or slightly increased liver enzymes in an area with a high prevalence of genotype 1. A significant correlation of 0.7 (p < 0.0001) in virus load has been observed by both methods, but the virus load is smaller by Monitor than by Quantiplex and does not depend on genotype. The relationship Monitor/Quantiplex is smaller in patients with non-1 genotype than in patients with genotype 1a (p = 0.01) and 1b (p = 0.005). Virus characteristics are similar in patients with normal or slightly increased enzymes than in patients with high enzymes. Virus load by both methods is not related to the age, sex, know duration of the infection, transmission manner of the infection neither to the histologic activity index. The virus load not depends on genotype. The determination of virus load in a single serum sample adequately reflects the virus load are in several serum samples in patients with chronic HCV infection. The genotype and the virus load are similar in patients with normal enzymes than in patients with high enzymes.
Ground reaction forces and plantar pressure distribution during occasional loaded gait.
Castro, Marcelo; Abreu, Sofia; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo
2013-05-01
This study compared the ground reaction forces (GRF) and plantar pressures between unloaded and occasional loaded gait. The GRF and plantar pressures of 60 participants were recorded during unloaded gait and occasional loaded gait (wearing a backpack that raised their body mass index to 30); this load criterion was adopted because is considered potentially harmful in permanent loaded gait (obese people). The results indicate an overall increase (absolute values) of GRF and plantar pressures during occasional loaded gait (p < 0.05); also, higher normalized (by total weight) values in the medial midfoot and toes, and lower values in the lateral rearfoot region were observed. During loaded gait the magnitude of the vertical GRF (impact and thrust maximum) decreased and the shear forces increased more than did the proportion of the load (normalized values). These data suggest a different pattern of GRF and plantar pressure distribution during occasional loaded compared to unloaded gait. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo
2017-08-01
This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.
Microstructure and tribological properties of TiAg intermetallic compound coating
NASA Astrophysics Data System (ADS)
Guo, Chun; Chen, Jianmin; Zhou, Jiansong; Zhao, Jierong; Wang, Linqian; Yu, Youjun; Zhou, Huidi
2011-10-01
TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.
Continuous fluidized-bed contactor with recycle of sorbent
Scott, Charles D.; Petersen, James N.; Davison, Brian H.
1996-01-01
A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.
Continuous fluidized-bed contactor with recycle of sorbent
Scott, C.D.; Petersen, J.N.; Davison, B.H.
1996-07-09
A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.
Activation energy of the low-load NaCl transition from nanoindentation loading curves.
Kaupp, Gerd
2014-01-01
Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures. © 2014 Wiley Periodicals, Inc.
Homminga, J; Van-Rietbergen, B; Lochmüller, E M; Weinans, H; Eckstein, F; Huiskes, R
2004-03-01
Osteoporotic vertebral fractures typically have a gradual onset, frequently remain clinically undetected, and do not seem to be related to traumatic events. The osteoporotic vertebrae may therefore be expected to display a less "optimal" bone architecture, leading to an uneven load distribution over the bone material. We evaluated the trabecular load distribution in an osteoporotic and a healthy vertebra under normal daily loading by combining three recent innovations: high resolution computed tomography (microCT) of entire bones, microfinite element analyses (microFEA), and parallel supercomputers. Much to our surprise, the number of highly loaded trabeculae was not higher in the osteoporotic vertebra than in the healthy one under normal daily loads (8% and 9%, respectively). The osteoporotic trabeculae were more oriented in the longitudinal direction, compensating for effects of bone loss and ensuring adequate stiffness for normal daily loading. The increased orientation did, however, make the osteoporotic structure less resistant against collateral "error" loads. In this case, the number of overloaded trabeculae in the osteoporotic vertebra was higher than in the healthy one (13% and 4%, respectively). These results strengthen the paradigm of a strong relationship between bone morphology and external loads applied during normal daily life. They also indicate that vertebral fractures result from actions like forward flexion or lifting, loads that may not be "daily" but are normally not traumatic either. If future clinical imaging techniques would enable such high-resolution images to be obtained in vivo, the combination of microCT and microFEA would produce a powerful tool to diagnose osteoporosis.
Handling of induced hypercalcaemia in hyperthyroidism
Lim, P.; Jacob, E.; Khoo, O. T.
1969-01-01
The mean serum calcium of 13 hyperthyroid patients was found to be significantly higher than that of controls matched for sex and age, though none of the patients' values were outside the normal range. Nevertheless, these patients responded very promptly to hypercalcaemia (induced by an intravenous calcium load), and their serum calcium returned to normal much more rapidly compared with the matched controls. There was also increased retention of intravenous calcium load, possibly owing to increased calcitonin production. Calcium infusion may be useful in treating bone diseases in which increased bone resorption exceeds bone accretion. PMID:5354875
Carson, Daniel W.; Myer, Gregory D.; Hewett, Timothy E.; Heidt, Robert S.; Ford, Kevin R.
2014-01-01
Background Risk of overuse injury among athletes is high due in part to repeated loading of the lower extremities. Compared to individuals with normal arch (NA) structure, those with high (HA) or low arch (LA) may be at increased risk of specific overuse injuries, including stress fractures. A high medial longitudinal arch may result in decreased shock absorbing properties due to increased rigidity in foot mechanics. While the effect of arch structure on dynamic function has been examined in straight line walking and running, the relationship between the two during multi-directional movements remains unstudied. Objective The purpose of this study was to determine if differences in plantar loading in football players occur during both walking and pivoting movements. Method Plantar loading was examined in 9 regions of the foot for 26 participants (16 NA, 10 HA). Results High arch athletes demonstrated increased maximum force in the lateral rear foot and medial forefoot, and force time integral in the medial forefoot while walking. HA athletes also demonstrated increased maximum force in the medial rear foot and medial and central forefoot during rapid pivoting. Conclusions The current findings demonstrate that loading patterns differ between football players with high and normal arch structure, which could possibly influence injury risk in this population. PMID:23141809
Investigation of Friction and Wear Properties of Electroless Ni-P-Cu Coating Under Dry Condition
NASA Astrophysics Data System (ADS)
Duari, Santanu; Mukhopadhyay, Arkadeb; Barman, Tapan Kr.; Sahoo, Prasanta
This study presents the deposition and tribological characterization of electroless Ni-P-Cu coatings deposited on AISI 1040 steel specimens. After deposition, coatings are heat treated at 500∘C for 1h. Surface morphology study of the coatings reveals its typical cauliflower like appearance. Composition study of the coatings using energy dispersive X-ray analysis indicates that the deposit lies in the high phosphorus range. The coatings undergo crystallization on heat treatment. A significant improvement in microhardness of the coatings is also observed on heat treatment due to the precipitation of hard crystalline phases. The heat-treated coatings are subjected to sliding wear tests on a pin-on-disc type tribo-tester under dry condition by varying the applied normal load, sliding speed and sliding duration. The coefficient of friction (COF) increases with an increase in the applied normal load while it decreases with an increase in the sliding speed. The wear depth on the other hand increases with an increase in applied normal load as well as sliding speed. The worn surface morphology mainly indicates fracture of the nodules.
Experimental study on ignition mechanisms of wet granulation sulfur caused by friction.
Dai, Haoyuan; Fan, Jianchun; Wu, Shengnan; Yu, Yanqiu; Liu, Di; Hu, Zhibin
2018-02-15
It is common to see fire accidents caused by friction during the storage and transportation of wet granulation sulfur. To study the sulfur ignition mechanism under friction conditions, a new rotating test apparatus is developed to reproduce friction scenes at lab scale. A series of experiments are performed under different normal loads. The SEM-EDS and the XRD were utilized to examine the morphologies and compositions of the tested specimens and the friction products. Experimental results show that these two methods are mostly in agreement with each other. The iron-sulfide compounds are produced and the proportion of iron-sulfide compounds is reduced with normal loads increasing, compared to the total number of the friction products. The facts implied by the integration analysis of friction products with the temperature changes of the near friction surface unveil an underlying mechanism that may explain sulfur ignition by friction in real scenarios. The sulfur ignition may be mainly caused by the spontaneous combustion of iron sulfide compounds produced by friction under low normal load with 200N. With the increase of normal loads, the resulting iron-sulfide compounds are decreasing and the high temperature from friction heat begins to play a major role in causing fire. Copyright © 2017 Elsevier B.V. All rights reserved.
Attention and Working Memory in Adolescents with Autism Spectrum Disorder: A Functional MRI Study.
Rahko, Jukka S; Vuontela, Virve A; Carlson, Synnöve; Nikkinen, Juha; Hurtig, Tuula M; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jussila, Katja K; Remes, Jukka J; Jansson-Verkasalo, Eira M; Aronen, Eeva T; Pauls, David L; Ebeling, Hanna E; Tervonen, Osmo; Moilanen, Irma K; Kiviniemi, Vesa J
2016-06-01
The present study examined attention and memory load-dependent differences in the brain activation and deactivation patterns between adolescents with autism spectrum disorders (ASDs) and typically developing (TD) controls using functional magnetic resonance imaging. Attentional (0-back) and working memory (WM; 2-back) processing and load differences (0 vs. 2-back) were analysed. WM-related areas activated and default mode network deactivated normally in ASDs as a function of task load. ASDs performed the attentional 0-back task similarly to TD controls but showed increased deactivation in cerebellum and right temporal cortical areas and weaker activation in other cerebellar areas. Increasing task load resulted in multiple responses in ASDs compared to TD and in inadequate modulation of brain activity in right insula, primary somatosensory, motor and auditory cortices. The changes during attentional task may reflect compensatory mechanisms enabling normal behavioral performance. The inadequate memory load-dependent modulation of activity suggests diminished compensatory potential in ASD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Bradley M.; Li, Nan; Economy, David R.
Mathematical models suggest that the strain along the film formed by parallel passes of a nanoindentation probe in contact with the film can be either homogenous or heterogeneous, depending on contact pressure and spacing between passes. Here, in this study, a 1 µm copper thin film was worn with a cono-spherical diamond probe with normal loads ranging from 25 to 800 µN and wear box edge lengths of 40, 60, and 80 µm. The nanoindenter counterface was rastered across the surface to mimic dry sliding wear. To determine potential strain field changes, 10-step quasi-static indents (200–2000 µN) were performed usingmore » nanoindentation inside the wear boxes created at various loads to determine if a strain field alteration could be observed in changes in hardness of the copper thin film. It was shown that there was a softening effect in the hardness for normal loads < 400 µN used during nanowear compared to the as-deposited copper. Normal loads ≥ 400 µN had a similar or higher hardness than the as-deposited copper. This is believed to have occurred due to a relaxation in the residual stresses created during deposition in the copper thin films at lower loads, which caused a decrease in hardness. Conversely, at the higher loads, increased deformation leads to an increase in hardness. Lastly, all of the wear boxes displayed a higher estimated strain hardening exponent than the as-deposited material.« less
Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale.
Tian, Kaiwen; Gosvami, Nitya N; Goldsby, David L; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W
2017-02-17
Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.
Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale
NASA Astrophysics Data System (ADS)
Tian, Kaiwen; Gosvami, Nitya N.; Goldsby, David L.; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W.
2017-02-01
Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.
Influence of immediate loading on provisional restoration in dental implant stability
NASA Astrophysics Data System (ADS)
Ikbal, M.; Odang, R. W.; Indrasari, M.; Dewi, R. S.
2017-08-01
The success of dental implant treatment is determined by the primary stability at placement. One factor that could influence this stability is occlusal loading through provisional restoration. Two types of loading protocols are usually used: immediate and delayed loading. However, some controversies remain about the influence of occlusal loading on implant stability. Therefore, the influence of immediate loading on implant stability must be studied. An animal study was conducted by placing nine dental implants in the mandibular jaw of three Macaca fascicularis. Provisional restorations with various occlusal contacts (no, light, and normal contact) were placed on the implant. The implant stability was measured using the Ostell ISQ three times: immediately (baseline) and at the first and second months after implant placement. The implant stability between implants with no and normal occlusal contact as well as light and normal occlusal contact showed significant differences (p < 0.05) at the first and second months after implant placement. However, no significant increase (p > 0.05) in implant stability was seen at the baseline and the first and second months after implant placement for all occlusal contact groups. Immediate loading influenced the implant stability, and provisional restoration of implant without occlusal contact showed the highest implant stability.
Changes in Gait with Anteriorly Added Mass: A Pregnancy Simulation Study
Ogamba, Maureen I.; Loverro, Kari L.; Laudicina, Natalie M.; Gill, Simone V.; Lewis, Cara L.
2016-01-01
During pregnancy, the female body experiences structural changes, such as weight gain. As pregnancy advances, most of the additional mass is concentrated anteriorly on the lower trunk. The purpose of this study is to analyze kinematic and kinetic changes when load is added anteriorly to the trunk, simulating a physical change experienced during pregnancy. Twenty healthy females walked on a treadmill while wearing a custom made pseudo-pregnancy sac (1 kg) under three load conditions: sac only, 10 pound condition (4.535 kg added anteriorly), and 20 pound condition (9.07 kg added anteriorly), used to simulate pregnancy, in the second trimester and at full term pregnancy, respectively. The increase in anterior mass resulted in kinematic changes at the knee, hip, pelvis, and trunk in the sagittal and frontal planes. Additionally, ankle, knee, and hip joint moments normalized to baseline mass increased with increased load; however, these moments decreased when normalized to total mass. These kinematic and kinetic changes may suggest that women modify gait biomechanics to reduce the effect of added load. Furthermore, the increase in joint moments increases stress on the musculoskeletal system and may contribute to musculoskeletal pain. PMID:26958743
Niedermeier, W
1993-03-01
Tooth mobility was measured mechano-electronically with the aid of quasi-static and dynamic methods in 309 patients comprising 2650 teeth being periodontally healthy. Besides, clinical and roentgenographic findings were ascertained to relate functional features to each periodontium. In general the result was that teeth loaded excessively show increased mobility parameters compared to those loaded normally. However, the mobility of teeth loaded poorly or deficiently was even greater compared to teeth stressed excessively. Moreover, follow-up studies showed that tooth mobility decreases after removal of functional disorders of the masticatory system or an immobilisation of splinted teeth. An experimental trauma of the periodontal ligament also brings on an increased tooth mobility which decreases to the original values some days after the trial.
Renal Response to Acid Load after Phenformin
Rooth, Gösta; Bandman, Ulf
1973-01-01
Normally the kidneys respond to an acid load by increased ammonia production. In six patients with adult-type diabetes this response was reduced by a mean 50% after a therapeutic dose of phenformin. The reduced ability to compensate for acid loads may be one factor leading to metabolic acidosis and lactoacidosis sometimes associated with phenformin therapy. PMID:4753235
Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.
Goldring, Mary B; Goldring, Steven R
2010-03-01
The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.
Experimental studies of breaking of elastic tired wheel under variable normal load
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.
2017-10-01
The paper analyzes the braking of a vehicle wheel subjected to disturbances of normal load variations. Experimental tests and methods for developing test modes as sinusoidal force disturbances of the normal wheel load were used. Measuring methods for digital and analogue signals were used as well. Stabilization of vehicle wheel braking subjected to disturbances of normal load variations is a topical issue. The paper suggests a method for analyzing wheel braking processes under disturbances of normal load variations. A method to control wheel baking processes subjected to disturbances of normal load variations was developed.
Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro
2015-03-01
Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. Copyright © 2014 Elsevier Inc. All rights reserved.
Laboratory observations of fault strength in response to changes in normal stress
Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David
2012-01-01
Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.
Tribological performance of monolithic copper thin films during nanowear
Schultz, Bradley M.; Li, Nan; Economy, David R.; ...
2017-10-07
Mathematical models suggest that the strain along the film formed by parallel passes of a nanoindentation probe in contact with the film can be either homogenous or heterogeneous, depending on contact pressure and spacing between passes. Here, in this study, a 1 µm copper thin film was worn with a cono-spherical diamond probe with normal loads ranging from 25 to 800 µN and wear box edge lengths of 40, 60, and 80 µm. The nanoindenter counterface was rastered across the surface to mimic dry sliding wear. To determine potential strain field changes, 10-step quasi-static indents (200–2000 µN) were performed usingmore » nanoindentation inside the wear boxes created at various loads to determine if a strain field alteration could be observed in changes in hardness of the copper thin film. It was shown that there was a softening effect in the hardness for normal loads < 400 µN used during nanowear compared to the as-deposited copper. Normal loads ≥ 400 µN had a similar or higher hardness than the as-deposited copper. This is believed to have occurred due to a relaxation in the residual stresses created during deposition in the copper thin films at lower loads, which caused a decrease in hardness. Conversely, at the higher loads, increased deformation leads to an increase in hardness. Lastly, all of the wear boxes displayed a higher estimated strain hardening exponent than the as-deposited material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ke; Euser, Bryan J.; Rougier, Esteban
Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less
Gao, Ke; Euser, Bryan J.; Rougier, Esteban; ...
2018-06-20
Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less
Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N
2015-11-01
Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D
2010-04-01
To assess contact mechanics and 3-dimensional (3-D) joint alignment in cranial cruciate ligament (CCL)-deficient stifles before and after tibial plateau leveling osteotomy (TPLO) and tibial tuberosity advancement (TTA) with the stifle in 90 degrees of flexion. In vitro biomechanical study. Cadaveric pelvic limb pairs (n=8) from dogs weighing 28-35 kg. Contralateral limbs were assigned to receive TPLO or TTA. Digital pressure sensors were used to measure femorotibial contact area, peak and mean contact pressure, and peak pressure location with the limb under a load of 30% body weight and stifle flexion angle of 90 degrees . 3-D poses were obtained using a Microscribe digitizer. Specimens were tested under normal, CCL deficient, and treatment conditions. Significant disturbances in alignment were not observed after CCL transection, although medial contact area was 10% smaller than normal (P=.003). There were no significant differences in contact mechanics or alignment between normal and TTA conditions; TPLO induced 6 degrees varus angulation (P<.001), 26% decrease in lateral peak pressure (P=.027), and 18% increase in medial mean pressure (P=.008) when compared with normal. Cranial tibial subluxation is nominal in CCL-deficient stifles loaded in flexion. Stifle alignment and contact mechanics are not altered by TTA, whereas TPLO causes mild varus and a subsequent increase in medial compartment loading. Cranial tibial subluxation of CCL-deficient stifles may not occur during postures that load the stifle in flexion. The significance of minor changes in loading patterns after TPLO is unknown.
Interim Report on Fatigue Characteristics of a Typical Metal Wing
NASA Technical Reports Server (NTRS)
Kepert, J L; Payne, A O
1956-01-01
Constant amplitude fatigue tests of seventy-two P-51D "Mustang" wings are reported. The tests were performed by a vibrational loading system and by an hydraulic loading device for conditions with and without varying amounts of pre-load. The results indicate that: (a) the frequency of occurrence of fatigue at any one location is related to the range of the loads applied, (b) the rate of propagation of visible cracks is more or less constant for a large portion of the life of the specimen, (c) the fatigue strength of the structure is similar to that of notched material having a theoretical stress concentration factor of more than 3.0, (d) the frequency distribution of fatigue life is approximately logarithmic normal, (e) the relative increase in fatigue life for a given pre-load depends on the maximum load of the loading cycle only, while the optimum pre-load value is approximately 85 percent of the ultimate failing load, and (f) that normal design procedure will not permit the determination of local stress levels with sufficient accuracy to determine the fatigue strength of an element of a redundant structure.
Akter, Shamima; Eguchi, Masafumi; Kurotani, Kayo; Kochi, Takeshi; Pham, Ngoc Minh; Ito, Rie; Kuwahara, Keisuke; Tsuruoka, Hiroko; Mizoue, Tetsuya; Kabe, Isamu; Nanri, Akiko
2015-02-01
Acid-base status has been suggested to influence blood pressure, but there is a paucity of epidemiologic evidence linking dietary acid load to hypertension. We examined cross-sectionally the association between dietary acid load and hypertension in a Japanese working population. Data were derived from health surveys from 2028 employees, ages 18 to 70 y, in two workplaces in Japan. A validated brief diet history questionnaire was used to assess diet. Two measures were used to characterize dietary acid load: potential renal acid load and estimated net endogenous acid production, which were derived from nutrient intakes. Multilevel logistic regression was used to examine the association between dietary acid load and hypertension with adjustment of potential confounding variables. High dietary acid load was suggestively associated with increased prevalence of hypertension. The multivariable adjusted odds ratios (95% confidence interval) of hypertension for the lowest through highest tertiles of net endogenous acid production were 1.00 (reference), 1.07 (0.80-1.42), and 1.33 (0.998-1.78), respectively (P for trend = 0.053). This positive association was statistically significant among normal-weight (body mass index <23 kg/m(2); P for trend = 0.03) and non-shift workers (P for trend = 0.04). Similar positive associations were observed between potential renal acid load and hypertension. The present findings suggest that high dietary acid load may be associated with increased prevalence of hypertension among those who were normal weight and non-shift workers. Copyright © 2015 Elsevier Inc. All rights reserved.
The effect of trench width on the behavior of buried rigid pipes
NASA Astrophysics Data System (ADS)
Balkaya, Müge; Saǧlamer, Ahmet
2014-12-01
In this study, in order to determine the effect of trench width (Bd) on the behavior of buried rigid pipes, a concrete pipe having an outside diameter of 150 cm and wall thickness (t) of 15 cm was analyzed using 2D PLAXIS finite element program. In the analyses, three different trench widths (Bd = 2.20 m, 3.40 m, and 4.40 m) were modeled. The results of the analyses indicated that, as the width of the trench increases, the axial force, shear force, bending moment, effective normal stress, and the earth load acting on the pipe increased. The variations of the loads acting on the pipe due to the increasing trench widths were also evaluated using the Marston load theory. When the loads calculated by the Marston Load Theory and the finite element analysis were compared with each other, it was seen that the Marston Load Theory resulted in slightly higher load values than the finite element analysis. On the other hand, for the two methods, the loads acting on the pipe increased with increasing trench width.
Santos-Greatti, Mariana Morena de Vieira; da Silva, Márcia Guimarães; Ferreira, Carolina Sanitá Tafner; Marconi, Camila
2016-11-01
Studies have shown that not only bacterial vaginosis, but also intermediate vaginal flora has deleterious effects for women's reproductive health. However, literature still lacks information about microbiological and immunological aspects of intermediate flora. To characterize intermediate flora regarding levels of Interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor-alpha, interleukin 1 receptor antagonist (IL-1ra), IL-10, sialidase; loads of Gardnerella vaginalis, total bacteria and to verify whether it is closer related to normal flora or bacterial vaginosis. This cross-sectional study enrolled 526 non-pregnant reproductive-aged women distributed in 3 groups according to pattern of vaginal flora using Nugent's system in normal, intermediate and bacterial vaginosis. Cervicovaginal levels of cytokines, sialidases, loads of G. vaginalis and total bacteria were assessed by ELISA, conversion of MUAN and quantitative real-time PCR, respectively. A principal component analysis(PCA) using all measured parameters was performed to compare the three different types of flora. Results showed that intermediate flora is associated with increased cervicovaginal IL-1beta in relation to normal flora(P<0.0001). When compared to bacterial vaginosis, intermediate flora has higher IL-8 and IL-10 levels(P<0.01). Sialidases were in significantly lower levels in normal and intermediate flora than bacterial vaginosis(P<0.0001). Loads of G. vaginalis and total bacterial differed among all groups(P<0.0001), being highest in bacterial vaginosis. PCA showed that normal and intermediate flora were closely scattered, while bacterial vaginosis were grouped separately. Although intermediate flora shows some differences in cytokines, sialidases and bacterial loads in relation to normal flora and bacterial vaginosis, when taken together, general microbiological and immunological pattern pattern of intermediate flora resembles the normal flora. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Time- & Load-Dependence of Triboelectric Effect.
Pan, Shuaihang; Yin, Nian; Zhang, Zhinan
2018-02-06
Time- and load-dependent friction behavior is considered as important for a long time, due to its time-evolution and force-driving characteristics. However, its electronic behavior, mainly considered in triboelectric effect, has almost never been given the full attention and analyses from the above point of view. In this paper, by experimenting with fcc-latticed aluminum and copper friction pairs, the mechanical and electronic behaviors of friction contacts are correlated by time and load analyses, and the behind physical understanding is provided. Most importantly, the difference of "response lag" in force and electricity is discussed, the extreme points of coefficient of friction with the increasing normal loads are observed and explained with the surface properties and dynamical behaviors (i.e. wear), and the micro and macro theories linking tribo-electricity to normal load and wear (i.e. the physical explanation between coupled electrical and mechanical phenomena) are successfully developed and tested.
Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale
NASA Astrophysics Data System (ADS)
Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.
2012-12-01
From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.
Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo
2016-01-01
As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764
Activity vs. rest in the treatment of bone, soft tissue and joint injuries.
Buckwalter, J A
1995-01-01
One of the most important advances in the treatment of musculoskeletal injuries has come from understanding that controlled early resumption of activity can promote restoration of function, and that treatment of injuries with prolonged rest may delay recovery and adversely affect normal tissues. In the last decade of the nineteenth century two widely respected orthopaedists with extensive clinical experience strongly advocated opposing treatments of musculoskeletal injuries. Hugh Owen Thomas in Liverpool believed that enforced, uninterrupted prolonged rest produced the best results. He noted that movement of injured tissues increased inflammation, and that, "It would indeed be as reasonable to attempt to cure a fever patient by kicking him out of bed, as to benefit joint disease by a wriggling at the articulation." Just Lucas-Championnier in Paris took the opposite position. He argued that early controlled active motion accelerated restoration of function, although he noted that mobility had to be given in limited doses. In general, Thomas' views met with greater acceptance in the early part of this century, but experimental studies of the last several decades generally support Lucas-Championneir. They confirm and help explain the deleterious effects of prolonged rest and the beneficial effects of activity on the musculoskeletal tissues. They have shown that maintenance of normal bone, tendon and ligament, articular cartilage and muscle structure and composition require repetitive use, and that changes in the patterns of tissue loading can strengthen or weaken normal tissues. Although all the musculoskeletal tissues can respond to repetitive loading, they vary in the magnitude and type of response to specific patterns of activity. Furthermore, their responsiveness may decline with increasing age. Skeletal muscle and bone demonstrate the most apparent response to changes in activity in individuals of any age. Cartilage and dense fibrous tissues also can respond to loading, but the responses are more difficult to measure. The effects of loading on injured tissues have been less extensively studied, but the available evidence indicates that repair tissues respond to loading and, like immature normal tissues, may be more sensitive to cyclic loading and motion than mature normal tissues. However, early motion and loading of injured tissues is not without risks. Premature or excessive loading and motion of repair tissue can inhibit or stop repair. Unfortunately, the optimal methods of facilitating healing by early application of loading and motion have not been defined.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Technical Reports Server (NTRS)
Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.
1999-01-01
Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.
Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old.
van Bergen, Jiri M G; Li, Xu; Quevenco, Frances C; Gietl, Anton F; Treyer, Valerie; Leh, Sandra E; Meyer, Rafael; Buck, Alfred; Kaufmann, Philipp A; Nitsch, Roger M; van Zijl, Peter C M; Hock, Christoph; Unschuld, Paul G
2018-04-01
The aging brain is characterized by an increased presence of neurodegenerative and vascular pathologies. However, there is substantial variation regarding the relationship between an individual's pathological burden and resulting cognitive impairment. To identify correlates of preserved cognitive functioning at highest age, the relationship between β-amyloid plaque load, presence of small vessel cerebrovascular disease (SVCD), iron-burden, and brain atrophy was investigated. Eighty cognitively unimpaired participants (44 oldest-old, aged 85-96 years; 36 younger-old, aged 55-80 years) were scanned by integrated positron emission tomography-magnetic resonance imaging for assessing beta regional amyloid plaque load (18F-flutemetamol), white matter hyperintensities as an indicator of SVCD (fluid-attenuated inversion recovery-magnetic resonance imaging), and iron load (quantitative susceptibility mapping). For the oldest-old group, lower cortical volume, increased β-amyloid plaque load, prevalence of SVCD, and lower cognitive performance in the normal range were found. However, compared to normal-old, cortical iron burden was lower in the oldest-old. Moreover, only in the oldest-old, entorhinal cortex volume positively correlated with β-amyloid plaque load. Our data thus indicate that the co-occurrence of aging-associated neuropathologies with reduced quantitative susceptibility mapping measures of cortical iron load constitutes a lower vulnerability to cognitive loss. Copyright © 2017 Elsevier Inc. All rights reserved.
Holmes, Anthony A; Taub, Cynthia C; Garcia, Mario J; Shan, Jian; Slovut, David P
2017-02-01
Patients with paradoxical low-flow severe aortic stenosis (PLF-AS) reportedly have higher left ventricular hydraulic load and more systolic strain dysfunction than patients with normal-flow aortic stenosis. This study investigates the relationship of systolic loading and strain to PLF-AS to further define its pathophysiology. One hundred and twenty patients (age 79 ± 12 years, 37% men) with an indexed aortic valve area (AVAi) of 0.6 cm/m or less and an ejection fraction of 50% or higher were divided into two groups based on indexed stroke volume (SVi): PLF-AS, SVi ≤ 35 ml/m, N = 46; normal-flow aortic stenosis, SVi > 35 ml/m, N = 74). Valvular and arterial load were assessed using multiple measurements, and strain was assessed using speckle-tracking echocardiography. Patients with PLF-AS were found to have more valvular load (lower AVAi, P = 0.028; lower energy loss coefficient, P = 0.001), more arterial load [decreased arterial compliance and increased systemic vascular resistance (SVR), both P < 0.001] and more total hydraulic load [increased valvuloarterial impedance (Zva), P < 0.001]. Transvalvular gradients and arterial pressures were similar. Longitudinal strain was lower in PLF-AS (P < 0.001), but circumferential and rotation strains were similar. On adjusted regression, AVAi, SVR and longitudinal strain were associated with PLF-AS [odds ratio (OR) = 1.34, P = 0.043; OR = 1.31, P = 0.004; OR = 1.34, P = 0.011, respectively]. When SVR and AVAi were replaced with Zva, longitudinal strain and Zva (OR = 1.38, P = 0.015; OR = 1.33, P < 0.001 for both, respectively) were associated with PLF-AS. Increased hydraulic load, from more severe valvular stenosis and increased vascular resistance, and longitudinal strain impairment are associated with PLF-AS and their interplay is likely fundamental to its pathophysiology.
Gain of postural responses increases in response to real and anticipated pain.
Hodges, Paul W; Tsao, Henry; Sims, Kevin
2015-09-01
This study tested two contrasting theories of adaptation of postural control to pain. One proposes alteration to the postural strategy including inhibition of muscles that produce painful movement; another proposes amplification of the postural adjustment to recruit strategies normally reserved for higher load. This study that aimed to determine which of these alternatives best explains pain-related adaptation of the hip muscle activity associated with stepping down from steps of increasing height adaptation of postural control to increasing load was evaluated from hip muscle electromyography (fine-wire and surface electrodes) as ten males stepped from steps of increasing height (i.e. increasing load). In one set of trials, participants stepped from a low step (5 cm) and pain was induced by noxious electrical stimulation over the sacrum triggered from foot contact with a force plate or was anticipated. Changes in EMG amplitude and onset timing were compared between conditions. Hip muscle activation was earlier and larger when stepping from higher steps. Although ground reaction forces (one of the determinants of joint load) were unchanged before, during and after pain, trials with real or anticipated noxious stimulation were accompanied by muscle activity indistinguishable from that normally reserved for higher steps (EMG amplitude increased from 9 to 17 % of peak). These data support the notion that muscle activation for postural control is augmented when challenged by real/anticipated noxious stimulation. Muscle activation was earlier and greater than that required for the task and is likely to create unnecessary joint loading. This could have long-term consequences if maintained.
NASA Astrophysics Data System (ADS)
Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang
2017-06-01
In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.
Smith, R L; Lin, J; Trindade, M C; Shida, J; Kajiyama, G; Vu, T; Hoffman, A R; van der Meulen, M C; Goodman, S B; Schurman, D J; Carter, D R
2000-01-01
The normal loading of joints during daily activities causes the articular cartilage to be exposed to high levels of intermittent hydrostatic pressure. This study quantified effects of intermittent hydrostatic pressure on expression of mRNA for important extracellular matrix constituents. Normal adult bovine articular chondrocytes were isolated and tested in primary culture, either as high-density monolayers or formed aggregates. Loaded cells were exposed to 10 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for periods of 2, 4, 8, 12, and 24 hrs. Other cells were intermittently loaded for a period of 4 hrs per day for 4 days. Semiquantitative reverse transcription polymerase chain reaction assays were used to assess mRNA signal levels for collagen types II and I and aggrecan. The results showed that type II collagen mRNA signal levels exhibited a biphasic pattern, with an initial increase of approximately five-fold at 4 and 8 hrs that subsequently decreased by 24 hrs. In contrast, aggrecan mRNA signal increased progressively up to three-fold throughout the loading period. Changing the loading profile to 4 hrs per day for 4 days increased the mRNA signal levels for type II collagen nine-fold and for aggrecan twenty-fold when compared to unloaded cultures. These data suggest that specific mechanical loading protocols may be required to optimally promote repair and regeneration of diseased joints.
NASA Astrophysics Data System (ADS)
Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.
2017-05-01
Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.
Ground reaction forces on stairs. Part II: knee implant patients versus normals.
Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar
2007-06-01
The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.
Hydromechanical effects of continental glaciation on groundwater systems
Neuzil, C.E.
2012-01-01
Hydromechanical effects of continental ice sheets may involve considerably more than the widely recognized direct compression of overridden terrains by ice load. Lithospheric flexure, which lags ice advance and retreat, appears capable of causing comparable or greater stress changes. Together, direct and flexural loading may increase fluid pressures by tens of MPa in geologic units unable to drain. If so, fluid pressures in low-permeability formations subject to glaciation may have increased and decreased repeatedly during cycles of Pleistocene glaciation and can again in the future. Being asynchronous and normally oriented, direct and flexural loading presumably cause normal and shear stresses to evolve in a complex fashion through much or all of a glacial cycle. Simulations of fractured rock predict permeability might vary by two to three orders of magnitude under similar stress changes as fractures at different orientations are subjected to changing normal and shear stresses and some become critically stressed. Uncertainties surrounding these processes and their interactions, and the confounding influences of surface hydrologic changes, make it challenging to delineate their effects on groundwater flow and pressure regimes with any specificity. To date, evidence for hydromechanical changes caused by the last glaciation is sparse and inconclusive, comprising a few pressure anomalies attributed to the removal of direct ice load. This may change as more data are gathered, and understanding of relevant processes is refined.
NASA Astrophysics Data System (ADS)
Yang, Gang; Yue, Zhenxing; Ji, Ye; Chu, Xiangcheng; Li, Longtu
2008-12-01
The influence of external compressive loads, applied along a direction perpendicular to polarization, on fatigue behaviors of multilayer lead zirconate titanate (PZT)-based ceramic actuators was investigated. Under no external mechanical load, a normal fatigue behavior was observed, demonstrating that both switching polarization (Pswitching) and remnant polarization (Pr) progressively decreased with increasing switching cycles due to domain pinning by charge point defects. However, an anomalous enhancement in both switching and remnant polarizations was observed upon application of the external compressive loads. After 5×106 cycles of polarization switching, Pswitching and Pr increase by about 13% and 6% at 40 MPa, respectively, while Pswitching and Pr increase by about 11% and 21% at 60 MPa, respectively. The improvement of fatigue resistance can be attributed to non-180° domain switching and suppression of microcracking, triggered by external mechanical loads.
Hazell, Tom J; Kenno, Kenji A; Jakobi, Jennifer M
2010-07-01
The purpose of this investigation was to examine if the addition of a light external load would enhance whole-body vibration (WBV)-induced increases in muscle activity during dynamic squatting in 4 leg muscles. Thirteen recreationally active male university students performed a series of dynamic squats (unloaded with no WBV, unloaded with WBV, loaded with no WBV, and loaded with WBV). The load was set to 30% of body mass and WBV included 25-, 35-, and 45-Hz frequencies with 4-mm amplitude. Muscle activity was recorded with surface electromyography (EMG) on the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GC) and is reported as EMGrms (root mean square) normalized to %maximal voluntary exertion. During unloaded dynamic squats, exposure to WBV (45 Hz) significantly (p < 0.05) increased baseline muscle activity in all muscles, except the TA compared with no WBV. Adding a light external load without WBV increased baseline muscle activity of the squat exercise in all muscles but decreased the TA. This loaded level of muscle activity was further increased with WBV (45 Hz) in all muscles. The WBV-induced increases in muscle activity in the loaded condition (approximately 3.5%) were of a similar magnitude to the WBV-induced increases during the unloaded condition (approximately 2.5%) demonstrating the addition of WBV to unloaded or loaded dynamic squatting results in an increase in muscle activity. These results demonstrate the potential effectiveness of using external loads with exposure to WBV.
NASA Astrophysics Data System (ADS)
Shreedharan, S.; Riviere, J.; Marone, C.
2017-12-01
We report on a suite of laboratory friction experiments conducted on saw-cut Westerly Granite surfaces to probe frictional response to step changes in normal stress and loading rate. The experiments are conducted to illuminate the fundamental processes that yield friction rate and state dependence. We quantify the microphysical frictional response of the simulated fault surfaces to normal stress steps, in the range of 1% - 600% step increases and decreases from a nominal baseline normal stress. We measure directly the fault slip rate and account for changes in slip rate with changes in normal stress and complement mechanical data acquisition by continuously probing the faults with ultrasonic pulses. We conduct the experiments at room temperature and humidity conditions in a servo controlled biaxial testing apparatus in the double direct shear configuration. The samples are sheared over a range of velocities, from 0.02 - 100 μm/s. We report observations of a transient shear stress and friction evolution with step increases and decreases in normal stress. Specifically, we show that, at low shear velocities and small increases in normal stress (<5% increase), the shear stress on the fault does not increase instantaneously with the normal stress step while the ultrasonic wave amplitude and normal displacement do. In other words, the shear stress does not follow the load point stiffness curve. At high shear velocities and larger normal stress steps (> 5% increases), the shear stress evolves immediately with normal stress. We show that the excursions in slip rate resulting from the changes in normal stress must be accounted for in order to predict fault strength evolution. Ultrasonic wave amplitudes which first increase immediately in response to normal stress steps, then decrease approximately linearly to a new steady state value, in part due to changes in fault slip rate. Previous descriptions of frictional state evolution during normal stress perturbations have not adequately accounted for the effect of large slip velocity excursions. Here, we attempt to do so by using the measured ultrasonic amplitudes as a proxy for frictional state during transient shear stress evolution. Our work aims to improve understanding of induced and triggered seismicity with focus on simulating static triggering using rate and state friction.
Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet
2010-01-01
The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.
NASA Technical Reports Server (NTRS)
Singh, D.; Shetty, D. K.
1988-01-01
Fracture toughness of polycrystalline alumina and ceria partially-stabilized tetragonal zirconia (CeO2-TZP) ceramics were assessed in combined mode I and mode II loading using precracked disk specimens in diametral compression. Stress states ranging from pure mode I, combined mode I and mode II, and pure mode II were obtained by aligning the center crack at specific angles relative to the loading diameter. The resulting mixed-mode fracture toughness envelope showed significant deviation to higher fracture toughness in mode II relative to the predictions of the linear elastic fracture mechanics theory. Critical comparison with corresponding results on soda-lime glass and fracture surface observations showed that crack surface resistance arising from grain interlocking and abrasion was the main source of the increased fracture toughness in mode II loading of the polycrystalline ceramics. The normalized fracture toughness for pure mode II loading, (KII/KIc), increased with increasing grain size for the CeO2-TZP ceramics. Quantitative fractography confirmed an increased percentage of transgranular fracture of the grains in mode II loading.
Evolution of Friction and Permeability in a Propped Fracture under Shear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fengshou; Fang, Yi; Elsworth, Derek
We explore the evolution of friction and permeability of a propped fracture under shear. We examine the effects of normal stress, proppant thickness, proppant size, and fracture wall texture on the frictional and transport response of proppant packs confined between planar fracture surfaces. The proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, the frictional response is mainly controlled by the normal stress and proppant thickness. The depth of shearing-concurrent striations on fracture surfaces suggests that the magnitude of proppant embedment is controlled by the applied normal stress. Under high normal stress, the reduced friction implies thatmore » shear slip is more likely to occur on propped fractures in deeper reservoirs. The increase in the number of proppant layers, from monolayer to triple layers, significantly increases the friction of the propped fracture due to the interlocking of the particles and jamming. Permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness, and the proppant grain size. Permeability of the propped fracture decreases during shearing due to proppant particle crushing and related clogging. Proppants are prone to crushing if the shear loading evolves concurrently with the normal loading.« less
Evolution of Friction and Permeability in a Propped Fracture under Shear
Zhang, Fengshou; Fang, Yi; Elsworth, Derek; ...
2017-12-04
We explore the evolution of friction and permeability of a propped fracture under shear. We examine the effects of normal stress, proppant thickness, proppant size, and fracture wall texture on the frictional and transport response of proppant packs confined between planar fracture surfaces. The proppant-absent and proppant-filled fractures show different frictional strength. For fractures with proppants, the frictional response is mainly controlled by the normal stress and proppant thickness. The depth of shearing-concurrent striations on fracture surfaces suggests that the magnitude of proppant embedment is controlled by the applied normal stress. Under high normal stress, the reduced friction implies thatmore » shear slip is more likely to occur on propped fractures in deeper reservoirs. The increase in the number of proppant layers, from monolayer to triple layers, significantly increases the friction of the propped fracture due to the interlocking of the particles and jamming. Permeability of the propped fracture is mainly controlled by the magnitude of the normal stress, the proppant thickness, and the proppant grain size. Permeability of the propped fracture decreases during shearing due to proppant particle crushing and related clogging. Proppants are prone to crushing if the shear loading evolves concurrently with the normal loading.« less
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete
2016-01-01
A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.
Effects of movement and work load in patients with congenital central hypoventilation syndrome.
Hager, Alfred; Koch, Walter; Stenzel, Heike; Hess, John; Schöber, Johannes
2007-04-01
Patients with congenital central hypoventilation syndrome lack ventilatory chemosensitivity and depend at least in part on the ergoreceptor function during exercise. In these patients a substantial increase of ventilation has been reported for passive movement during sleep as well as active movement on a treadmill. The aim of the study was to investigate ventilatory response to an increasing work load with constant movement. Eighteen patients and 17 healthy volunteers performed a cardiopulmonary exercise test on a bicycle pedaling at a constant rate of about 60 revolutions per minute throughout the entire test. The patients were able to exercise adequately and showed normal peak oxygen uptake. There was a steep rise in minute ventilation in both groups at the start of exercise, yet there was only a minor increase in both groups during the increase of workload up to the anaerobic threshold. After the anaerobic threshold, there was again an increase in ventilation in both groups, but the increase was less prominent in the patient group. Ventilation in patients with congenital central hypoventilation syndrome is increased during exercise caused both by movement (mechanoreceptors) and by anaerobic workload. This facilitates a normal ventilatory drive up to the anaerobic threshold and a normal exercise capacity in these patients.
Determination of stress intensity factors for interface cracks under mixed-mode loading
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.; Crews, John H., Jr.
1992-01-01
A simple technique was developed using conventional finite element analysis to determine stress intensity factors, K1 and K2, for interface cracks under mixed-mode loading. This technique involves the calculation of crack tip stresses using non-singular finite elements. These stresses are then combined and used in a linear regression procedure to calculate K1 and K2. The technique was demonstrated by calculating three different bimaterial combinations. For the normal loading case, the K's were within 2.6 percent of an exact solution. The normalized K's under shear loading were shown to be related to the normalized K's under normal loading. Based on these relations, a simple equation was derived for calculating K1 and K2 for mixed-mode loading from knowledge of the K's under normal loading. The equation was verified by computing the K's for a mixed-mode case with equal and normal shear loading. The correlation between exact and finite element solutions is within 3.7 percent. This study provides a simple procedure to compute K2/K1 ratio which has been used to characterize the stress state at the crack tip for various combinations of materials and loadings. Tests conducted over a range of K2/K1 ratios could be used to fully characterize interface fracture toughness.
Valente, Giordano; Taddei, Fulvia; Jonkers, Ilse
2013-09-03
The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, K.; Gosvami, N. N.; Goldsby, D. L.; Carpick, R. W.
2015-12-01
Rate and state friction (RSF) laws are empirical relationships that describe the frictional behavior of rocks and other materials in experiments, and reproduce a variety of observed natural behavior when employed in earthquake models. A pervasive observation from rock friction experiments is the linear increase of static friction with the log of contact time, or 'ageing'. Ageing is usually attributed to an increase in real area of contact associated with asperity creep. However, recent atomic force microscopy (AFM) experiments demonstrate that ageing of nanoscale silica-silica contacts is due to progressive formation of interfacial chemical bonds in the absence of plastic deformation, in a manner consistent with the multi-contact ageing behavior of rocks [Li et al., 2011]. To further investigate chemical bonding-induced ageing, we explored the influence of normal load (and thus contact normal stress) and contact time on ageing. Experiments that mimic slide-hold-slide rock friction experiments were conducted in the AFM for contact loads and hold times ranging from 23 to 393 nN and 0.1 to 100 s, respectively, all in humid air (~50% RH) at room temperature. Experiments were conducted by sequentially sliding the AFM tip on the sample at a velocity V of 0.5 μm/s, setting V to zero and holding the tip stationary for a given time, and finally resuming sliding at 0.5 μm/s to yield a peak value of friction followed by a drop to the sliding friction value. Chemical bonding-induced ageing, as measured by the peak friction minus the sliding friction, increases approximately linearly with the product of normal load and the log of the hold time. Theoretical studies of the roles of reaction energy barriers in nanoscale ageing indicate that frictional ageing depends on the total number of reaction sites and the hold time [Liu & Szlufarska, 2012]. We combine chemical kinetics analyses with contact mechanics models to explain our results, and develop a new approach for curve fitting ageing vs. load data which shows that the friction drop data points all fall on a master curve. The analysis yields physically reasonable values for the activation energy and activation volume of the chemical bonding process. Our study provides a basis to hypothesize that the kinetic processes in chemical bonding-induced ageing do not depend strongly on normal load.
Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites
NASA Astrophysics Data System (ADS)
Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M.
2006-12-01
The dry sliding wear behavior of Al 2219 alloy and Al 2219/SiCp/Gr hybrid composites are investigated under similar conditions. The composites are fabricated using the liquid metallurgy technique. The dry sliding wear test is carried out for sliding speeds up to 6 m/s and for normal loads up to 60 N using a pin on disc apparatus. It is found that the addition of SiCp and graphite reinforcements increases the wear resistance of the composites. The wear rate decreases with the increase in SiCp reinforcement content. As speed increases, the wear rate decreases initially and then increases. The wear rate increases with the increase in load. Scanning electron microscopy micrographs of the worn surface are used to predict the nature of the wear mechanism. Abrasion is the principle wear mechanism for the composites at low sliding speeds and loads. At higher loads, the wear mechanism changes to delamination.
Effect of stress perturbation on frictional instability: an experimental study
NASA Astrophysics Data System (ADS)
Yuanmin, H.; Shengli, M.
2017-12-01
We have performed a series of frictional experiments with direct shear configuration of three granite blocks by using a servo-controlled biaxial loading machine. In the experiments, a small- amplitude sine wave is modulated to shear and normal loading in order to study the effects of stress perturbation on stick-slip instability. The main results are as follows. Under the constant average normal stress and the constant loading point velocity in shear direction, the sample shows regular stick-slip behavior. After the stress perturbation is modulated, the correlation between the timing of stick-slip events and the perturbation increases with increasing the perturbation amplitude, and stress drop and interval time of stick-slip events tend to be discrete. This results imply that the change in Coulomb stress caused by stress perturbation may obviously change not only the occurrence time of earthquakes but also the earthquake magnitude. Both shear and normal stress perturbation can affect the stick-slip behavior, shear stress perturbation can only change the driving stress along fault, while the normal stress perturbation can change the contact state of asperities on the fault, so it's effect is more obviously. The stress perturbation can obviously affect acoustic emission (AE) activity during fault friction, which can trigger some AE events so that AE activity before stick-slip becomes stronger and occurs earlier. The perturbation in shear stress is more evident than that in normal stress in affecting AE activity, so we should not only pay attention to the magnitude of Coulomb stress changes caused by the perturbation, but also try to distinguish the stress changes are the shear stress changes or the normal stress changes, when study the effect of stress perturbation on fault friction.
Zekveld, Adriana A; Kramer, Sophia E; Festen, Joost M
2011-01-01
The aim of the present study was to evaluate the influence of age, hearing loss, and cognitive ability on the cognitive processing load during listening to speech presented in noise. Cognitive load was assessed by means of pupillometry (i.e., examination of pupil dilation), supplemented with subjective ratings. Two groups of subjects participated: 38 middle-aged participants (mean age = 55 yrs) with normal hearing and 36 middle-aged participants (mean age = 61 yrs) with hearing loss. Using three Speech Reception Threshold (SRT) in stationary noise tests, we estimated the speech-to-noise ratios (SNRs) required for the correct repetition of 50%, 71%, or 84% of the sentences (SRT50%, SRT71%, and SRT84%, respectively). We examined the pupil response during listening: the peak amplitude, the peak latency, the mean dilation, and the pupil response duration. For each condition, participants rated the experienced listening effort and estimated their performance level. Participants also performed the Text Reception Threshold (TRT) test, a test of processing speed, and a word vocabulary test. Data were compared with previously published data from young participants with normal hearing. Hearing loss was related to relatively poor SRTs, and higher speech intelligibility was associated with lower effort and higher performance ratings. For listeners with normal hearing, increasing age was associated with poorer TRTs and slower processing speed but with larger word vocabulary. A multivariate repeated-measures analysis of variance indicated main effects of group and SNR and an interaction effect between these factors on the pupil response. The peak latency was relatively short and the mean dilation was relatively small at low intelligibility levels for the middle-aged groups, whereas the reverse was observed for high intelligibility levels. The decrease in the pupil response as a function of increasing SNR was relatively small for the listeners with hearing loss. Spearman correlation coefficients indicated that the cognitive load was larger in listeners with better TRT performances as reflected by a longer peak latency (normal-hearing participants, SRT50% condition) and a larger peak amplitude and longer response duration (hearing-impaired participants, SRT50% and SRT84% conditions). Also, a larger word vocabulary was related to longer response duration in the SRT84% condition for the participants with normal hearing. The pupil response systematically increased with decreasing speech intelligibility. Ageing and hearing loss were related to less release from effort when increasing the intelligibility of speech in noise. In difficult listening conditions, these factors may induce cognitive overload relatively early or they may be associated with relatively shallow speech processing. More research is needed to elucidate the underlying mechanisms explaining these results. Better TRTs and larger word vocabulary were related to higher mental processing load across speech intelligibility levels. This indicates that utilizing linguistic ability to improve speech perception is associated with increased listening load.
Wang, Zhijie; Chen, Dongdong; Zheng, Liqiong; Huo, Linsheng; Song, Gangbing
2018-06-01
With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI)-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM), including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120) (kg/m³) were casted and the Lead Zirconate Titanate (PZT)-based Smart Aggregate (SA) was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI) was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT's EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.
Liantonio, Antonella; De Bellis, Michela; Cannone, Maria; Sblendorio, Valeriana; Conte, Elena; Mele, Antonietta; Tricarico, Domenico; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Ohira, Yoshinobu; Danieli-Betto, Daniela; Ciciliot, Stefano; Germinario, Elena; Sandonà, Dorianna; Betto, Romeo; Desaphy, Jean-François
2013-01-01
Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca2+ concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle performance. PMID:24015201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, A.L.; Kohrs, M.B.; Horwitz, D.L.
To determine the effect of glucose loading on serum zinc concentrations, 34 elderly subjects aged 60-86 y were studied. Anthropometric data, medical and dietary histories were obtained. Serum zinc and glucose concentrations were obtained fasting and 1/2, 1, 1 1/2, 2 and 3 h after 75 g oral glucose load; glycohemoglobin and fasting serum lipids were also determined. For comparison, the subjects were categorized as: normal or low serum zinc concentrations; normal or high body mass index BMI; normal or high sum of skinfolds and normal or high serum cholesterol. Results showed that low serum zinc concentrations increased significantly overmore » baseline values after the glucose load and did not return to fasting levels. On the other hand, mean serum zinc concentrations significantly declined without recovery for those with normal zinc values. For the total group, no significant differences were noted between fasting values and subsequent time periods. No correlations were noted between fasting serum zinc and area under the curve for zinc except in the high BMI group (positive correlation observed). For the high BMI group, fasting serum zinc differed significantly from the succeeding measurements except for 30 min. For the group as a whole, mean serum zinc concentration was within normal limits (76.9 +/- 2.8 mcg/ml): mean zinc intake was less than 2/3rds the RDA. They conclude that glucose ingestion may alter serum zinc and should be considered in interpreting these levels.« less
Normalization of load and clearance effects in ball-in-socket-like replacements.
Ciavarella, M; Strozzi, A; Baldini, A; Giacopini, M
2007-08-01
A normalizing loading parameter useful in summarising the mechanical response of plane pin-in-plate-like contacts is extended to axisymmetric ball-in-socket-like contacts. An example addressing a compliant layered artificial hip joint is presented, and the usefulness of the normalizing loading parameter is evidenced.
Ovalization of Tubes Under Bending and Compression
NASA Technical Reports Server (NTRS)
Demer, L J; Kavanaugh, E S
1944-01-01
An empirical equation has been developed that gives the approximate amount of ovalization for tubes under bending loads. Tests were made on tubes in the d/t range from 6 to 14, the latter d/t ratio being in the normal landing gear range. Within the range of the series of tests conducted, the increase in ovalization due to a compression load in combination with a bending load was very small. The bending load, being the principal factor in producing the ovalization, is a rather complex function of the bending moment, d/t ratio, cantilever length, and distance between opposite bearing faces. (author)
Carrasquillo, Minerva M; Crook, Julia E; Pedraza, Otto; Thomas, Colleen S; Pankratz, V Shane; Allen, Mariet; Nguyen, Thuy; Malphrus, Kimberly G; Ma, Li; Bisceglio, Gina D; Roberts, Rosebud O; Lucas, John A; Smith, Glenn E; Ivnik, Robert J; Machulda, Mary M; Graff-Radford, Neill R; Petersen, Ronald C; Younkin, Steven G; Ertekin-Taner, Nilüfer
2015-01-01
We tested association of nine late-onset Alzheimer's disease (LOAD) risk variants from genome-wide association studies (GWAS) with memory and progression to mild cognitive impairment (MCI) or LOAD (MCI/LOAD) in older Caucasians, cognitively normal at baseline and longitudinally evaluated at Mayo Clinic Rochester and Jacksonville (n>2000). Each variant was tested both individually and collectively using a weighted risk score. APOE-e4 associated with worse baseline memory and increased decline with highly significant overall effect on memory. CLU-rs11136000-G associated with worse baseline memory and incident MCI/LOAD. MS4A6A-rs610932-C associated with increased incident MCI/LOAD and suggestively with lower baseline memory. ABCA7-rs3764650-C and EPHA1-rs11767557-A associated with increased rates of memory decline in subjects with a final diagnosis of MCI/LOAD. PICALM-rs3851179-G had an unexpected protective effect on incident MCI/LOAD. Only APOE-inclusive risk scores associated with worse memory and incident MCI/LOAD. The collective influence of the nine top LOAD GWAS variants on memory decline and progression to MCI/LOAD appears limited. Discovery of biologically functional variants at these loci may uncover stronger effects on memory and incident disease. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew
2015-06-01
The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.
Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L
2018-04-01
Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (<100 nm) to submicron (<1000 nm) size range, whereas edge-loading conditions generated particles that ranged from <100 nm up to 3000-6000 nm in size. Particles isolated from normal wear were primarily chromium (98.5%) and round to oval in shape. Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.
Watabe, Tadashi; Shimosegawa, Eku; Kato, Hiroki; Isohashi, Kayako; Ishibashi, Mana; Tatsumi, Mitsuaki; Kitagawa, Kazuo; Fujinaka, Toshiyuki; Yoshimine, Toshiki; Hatazawa, Jun
2014-10-01
Paradoxical reduction of cerebral blood flow (CBF) after administration of the vasodilator acetazolamide is the most severe stage of cerebrovascular reactivity failure and is often associated with an increased oxygen extraction fraction (OEF). In this study, we aimed to reveal the mechanism underlying this phenomenon by focusing on the ratio of CBF to cerebral blood volume (CBV) as a marker of regional cerebral perfusion pressure (CPP). In 37 patients with unilateral internal carotid or middle cerebral arterial (MCA) steno-occlusive disease and 8 normal controls, the baseline CBF (CBF(b)), CBV, OEF, cerebral oxygen metabolic rate (CMRO2), and CBF after acetazolamide loading in the anterior and posterior MCA territories were measured by (15)O positron emission tomography. Paradoxical CBF reduction was found in 28 of 74 regions (18 of 37 patients) in the ipsilateral hemisphere. High CBF(b) (> 47.6 mL/100 mL/min, n = 7) was associated with normal CBF(b)/CBV, increased CBV, decreased OEF, and normal CMRO2. Low CBF(b) (< 31.8 mL/100 mL/min, n = 9) was associated with decreased CBF(b)/CBV, increased CBV, increased OEF, and decreased CMRO2. These findings demonstrated that paradoxical CBF reduction is not always associated with reduction of CPP, but partly includes high-CBF(b) regions with normal CPP, which has not been described in previous studies.
... muscles as glycogen — your energy source. Increase your energy storage Your muscles normally store only small amounts ... you may be able to store up more energy in your muscles to give you the stamina ...
Optical based tactile shear and normal load sensor
Salisbury, Curt Michael
2015-06-09
Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.
Savoie, Jennifer G.; Mullaney, John R.; Bent, Gardner C.
2017-02-21
Trends in long-term water-quality and streamflow data from six water-quality-monitoring stations within three major river basins in Massachusetts and Rhode Island that flow into Narragansett Bay and Little Narragansett Bay were evaluated for water years 1979–2015. In this study, conducted by the U.S. Geological Survey in cooperation with the Rhode Island Department of Environmental Management, the Rhode Island Water Resources Board, and the U.S. Environmental Protection Agency, water-quality and streamflow data were evaluated with a Weighted Regressions on Time, Discharge, and Season smoothing method, which removes the effects of year-to-year variation in water-quality conditions due to variations in streamflow (discharge). Trends in annual mean, annual median, annual maximum, and annual 7-day minimum flows at four continuous streamgages were evaluated by using a time-series smoothing method for water years 1979–2015.Water quality at all monitoring stations changed over the study period. Decreasing trends in flow-normalized nutrient concentrations and loads were observed during the period at most monitoring stations for total nitrogen, nitrite plus nitrate, and total phosphorus. Average flow-normalized loads for water years 1979–2015 decreased in the Blackstone River by up to 46 percent in total nitrogen, 17 percent in nitrite plus nitrate, and 69 percent in total phosphorus. The other rivers also had decreasing flow-normalized trends in nutrient concentrations and loads, except for the Pawtuxet River, which had an increasing trend in nitrite plus nitrate. Increasing trends in flow-normalized chloride concentrations and loads were observed during the study period at all of the rivers, with increases of more than 200 percent in the Blackstone River.Small increasing trends in annual mean daily streamflow were observed in 3 of the 4 rivers, with increases of 1.2 to 11 percent; however, the trends were not significant. All 4 rivers had decreases in streamflow for the annual 7-day minimums, but only 3 of the 4 rivers had decreases that were significant (34 to 54 percent). The Branch River had decreasing annual mean daily streamflow (7.5 percent) and the largest decrease in the annual 7-day minimum streamflow. The Blackstone and Pawtuxet Rivers had the largest increases in annual maximum daily flows but had decreases in the annual 7-day minimum flows.
A gravity loading countermeasure skinsuit
NASA Astrophysics Data System (ADS)
Waldie, James M.; Newman, Dava J.
2011-04-01
Despite the use of several countermeasures, significant physiological deconditioning still occurs during long duration spaceflight. Bone loss - primarily due to the absence of loading in microgravity - is perhaps the greatest challenge to resolve. This paper describes a conceptual Gravity Loading Countermeasure Skinsuit (GLCS) that induces loading on the body to mimic standing and - when integrated with other countermeasures - exercising on Earth. Comfort, mobility and other operational issues were explored during a pilot study carried out in parabolic flight for prototype suits worn by three subjects. Compared to the 1- or 2-stage Russian Pingvin Suits, the elastic mesh of the GLCS can create a loading regime that gradually increases in hundreds of stages from the shoulders to the feet, thereby reproducing the weight-bearing regime normally imparted by gravity with much higher resolution. Modelling shows that the skinsuit requires less than 10 mmHg (1.3 kPa) of compression for three subjects of varied gender, height and mass. Negligible mobility restriction and excellent comfort properties were found during the parabolic flights, which suggests that crewmembers should be able to work normally, exercise or sleep while wearing the suit. The suit may also serve as a practical 1 g harness for exercise countermeasures and vibration applications to improve dynamic loading.
Abdomino-phrenic dyssynergia in patients with abdominal bloating and distension.
Villoria, Albert; Azpiroz, Fernando; Burri, Emanuel; Cisternas, Daniel; Soldevilla, Alfredo; Malagelada, Juan-R
2011-05-01
The abdomen normally accommodates intra-abdominal volume increments. Patients complaining of abdominal distension exhibit abnormal accommodation of colonic gas loads (defective contraction and excessive protrusion of the anterior wall). However, abdominal imaging demonstrated diaphragmatic descent during spontaneous episodes of bloating in patients with functional gut disorders. We aimed to establish the role of the diaphragm in abdominal distension. In 20 patients complaining of abdominal bloating and 15 healthy subjects, we increased the volume of the abdominal cavity with a colonic gas load, while measuring abdominal girth and electromyographic activity of the anterior abdominal muscles and of the diaphragm. In healthy subjects, the colonic gas load increased girth, relaxed the diaphragm, and increased anterior wall tone. With the same gas load, patients developed significantly more abdominal distension; this was associated with paradoxical contraction of the diaphragm and relaxation of the internal oblique muscle. In this experimental provocation model, abnormal accommodation of the diaphragm is involved in abdominal distension.
Niu, Xun; Latash, Mark L.; Zatsiorsky, Vladimir M.
2010-01-01
We studied adjustments of digit forces to changes in the friction. The subjects held a handle statically in a three-digit grasp. The friction under each digit was either high or low, resulting in eight three-element friction sets (such grasps were coined the grasps with complex friction pattern). The total load was also manipulated. It was found that digit forces were adjusted not only to the supported load and local friction, but also to friction at other digits (synergic effects). When friction under a digit was low, its tangential force decreased and the normal force increased (local effects). The synergic effects were directed to maintain the equilibrium of the handle. The relation between the individual digit forces and loads agreed with the triple-product model: fin=ki(2)ki(1)L, where fin is normal force of digit i, L is the load (newtons), ki(1) is a dimensionless coefficient representing sharing the total tangential force among the digits (Σki(1)=1.0), and ki(2) is a coefficient representing the relation between the tangential and normal forces of digit i (the overall friction equivalent, OFE). At each friction set, the central controller selected the grasping template—a three-element array of ki(2)ki(1) products—and then scaled the template with the load magnitude. PMID:17493928
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Johnston, William M., Jr.
2014-01-01
Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.
Some new evidence on human joint lubrication.
Unsworth, A; Dowson, D; Wright, V
1975-01-01
Theoretical consideration has been given to the use of pendulum machines which are used to examine the frictional properties of human joints by incorporating them as fulcra. As a result, a new type of pendulum machine has been built which incorporates the facility to apply sudden loads to the joint on starting the swinging motion, and also the ability to measure directly the frictional torque experienced by the joint. The results obtained from natural hip joints indicate the presence of squeeze film lubrication under conditions of sudden loading of a joint. In addition, a self-generated fluid film process was observed at low loads while at higher loads boundary lubrication appeared to be important. These results have been used to describe the lubrication regimens occurring in a normal activity such as walking. A single experiment carried out on a hip from a patient suffering from severe rheumatoid arthritis has also been reported and the frictional resistance was seen to be increased fifteenfold compared to a normal hip. Images PMID:1190847
Brownley, Kimberly A; Heymen, Steve; Hinderliter, Alan L; Galanko, Joseph; Macintosh, Beth
2012-07-01
Alterations in appetite hormones favoring increased postprandial satiety have been implicated in both the glycemic control and potential weight-loss benefits of a low-glycemic diet. Racial differences exist in dietary glycemic load and appetite hormone concentrations. This study examined the impact of glycemic load on appetite hormones in 20 black women [10 normal weight, BMI = 22.8 ± 1.42 (mean ± SD); 10 obese, BMI = 35.1 ± 2.77] and 20 white women (10 normal weight, BMI = 22.9 ± 1.45; 10 obese, BMI = 34.3 ± 2.77). Each woman completed two 4.5-d weight-maintenance, mixed-macronutrient, high-glycemic vs. low-glycemic load diets that concluded with a test meal of identical composition. Blood samples collected before and serially for 3 h after each test meal were assayed for plasma ghrelin and serum insulin and glucose concentrations. Compared with the high-glycemic load meal, the low-glycemic load meal was associated with lower insulin(AUC) (P = 0.02), glucose(AUC) (P = 0.01), and urge to eat ratings (P = 0.05) but with higher ghrelin(AUC) (P = 0.008). These results suggest the satiating effect of a low-glycemic load meal is not directly linked to enhanced postprandial suppression of ghrelin. Notably, these effects were significant among white but not black women, suggesting that black women may be less sensitive than white women to the glucoregulatory effects of a low-glycemic load. These findings add to a growing literature demonstrating racial differences in postprandial appetite hormone responses. If reproducible, these findings have implications for individualized diet prescription for the purposes of glucose or weight control in women.
Effect of initial conditions on combustion generated loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tieszen, S.R.
1991-01-01
This analytical study examines the effect of initial thermodynamic conditions on the loads generated by the combustion of homogeneous hydrogen-air-steam mixtures. The effect of initial temperature, pressure, hydrogen concentration, and steam concentration is evaluated for two cases, (1) constant volume and (2) constant initial pressure. For each case, the Adiabatic, Isochoric, Complete Combustion (AICC), Chapman-Jouguet (CJ), and normally reflected CJ pressures are calculated for a range of hydrogen and steam concentrations representative of the entire flammable regime. For detonation loads, pressure profiles and time-histories are also evaluated in one-dimensional Cartesian geometry. The results show that to a first approximation, themore » AICC and CJ pressures are directly proportional to the initial density. Increasing the hydrogen concentration up to stoichiometric concentrations significantly increases the AICC, CJ, and reflected CJ pressures. For the constant volume case, the AICC, CJ, and reflected CJ pressures increase with increasing hydrogen concentration on the rich side of stoichiometric concentrations. For the constant initial pressure case, the AICC, CJ and reflected CJ pressures decrease with increasing hydrogen concentration on the rich side of stoichiometric values. The addition of steam decreases the AICC, CJ and reflected CJ pressures for the constant initial pressure case, but increases them for the constant volume case. For detonations, the pressure time-histories can be normalized with the AICC pressure and the reverberation time for Cartesian geometry. 35 refs., 16 figs.« less
Zhong, Xiu; Qiu, Shijun
2015-06-01
To investigate the effect of exercise load on apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of normal lumbar intervertebral discs in magnetic resonance (MR) diffusion tensor imaging (DTI). Thirty healthy volunteers (24 males and 6 females, aged 19 to 25 years) underwent examinations with MR T2WI and DTI of the lumbar intervertebral discs before and after exercise load. Pfirrmann grading was evaluated with T2WI, and the B0 map, ADC map and FA map were reconstructed based on the DTI data to investigate the changes in ADC and FA after exercise. Of the 30 volunteers (150 intervertebral discs) receiving the examination, 27 with discs of Pfirrminn grade II were included for analysis. In these 27 volunteers, the average ADC and FA before exercise were (1.99 ± 0.18)×10⁻³ mm²/s and 0.155∓0.059, respectively. After exercise, ADC was lowered significantly to (1.93 ± 0.17)×10⁻³ mm²/s (P<0.05) and FA increased slightly to 0.1623 ± 0.017 (P>0.05). DTI allows quantitatively analysis of the changes in water molecular diffusion and anisotropy of the lumbar intervertebral discs after exercise load, which can cause a decreased ADC and a increased FA value, and the change of ADC is more sensitive to exercise load.
Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.
2013-01-01
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175
Experimental investigation of the tip based micro/nano machining
NASA Astrophysics Data System (ADS)
Guo, Z.; Tian, Y.; Liu, X.; Wang, F.; Zhou, C.; Zhang, D.
2017-12-01
Based on the self-developed three dimensional micro/nano machining system, the effects of machining parameters and sample material on micro/nano machining are investigated. The micro/nano machining system is mainly composed of the probe system and micro/nano positioning stage. The former is applied to control the normal load and the latter is utilized to realize high precision motion in the xy plane. A sample examination method is firstly introduced to estimate whether the sample is placed horizontally. The machining parameters include scratching direction, speed, cycles, normal load and feed. According to the experimental results, the scratching depth is significantly affected by the normal load in all four defined scratching directions but is rarely influenced by the scratching speed. The increase of scratching cycle number can increase the scratching depth as well as smooth the groove wall. In addition, the scratching tests of silicon and copper attest that the harder material is easier to be removed. In the scratching with different feed amount, the machining results indicate that the machined depth increases as the feed reduces. Further, a cubic polynomial is used to fit the experimental results to predict the scratching depth. With the selected machining parameters of scratching direction d3/d4, scratching speed 5 μm/s and feed 0.06 μm, some more micro structures including stair, sinusoidal groove, Chinese character '田', 'TJU' and Chinese panda have been fabricated on the silicon substrate.
de Fockert, Jan W; Bremner, Andrew J
2011-12-01
An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus detection is competing for attention with a concurrent visual task. Participants were required to judge which of two lines was the longer while holding in working memory either one digit (low load) or six digits (high load). An unexpected visual stimulus was presented once alongside the line judgment task. Detection of the unexpected stimulus was significantly improved under conditions of higher working memory load. This improvement in performance prompts the striking conclusion that an effect of cognitive load is to increase attentional spread, thereby enhancing our ability to detect perceptual stimuli to which we would normally be inattentionally blind under less taxing cognitive conditions. We discuss the implications of these findings for our understanding of the relationship between working memory and selective attention. Copyright © 2011 Elsevier B.V. All rights reserved.
Jen Y. Liu; S. Cheng
1979-01-01
A plane-stress analysis of orthotropic or isotropic beams is presented. The loading conditions considered are: (1) a concentrated normal load arbitrarily located on the beam, and (2) a distributed normal load covering an arbitrary length of the beam. exhibit close agreement with existing experimental data from Sitka spruce beams. Other loading conditions can similarly...
Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique
NASA Astrophysics Data System (ADS)
Udayakumar, K.; Sujatha, N.
2015-03-01
Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.
Labonte, David; Williams, John A.; Federle, Walter
2014-01-01
Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads’ use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion. PMID:24554580
Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M; Migliaccio, Gian M; Grgantov, Zoran; Ardigò, Luca P
2016-01-01
We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads.
Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M.; Migliaccio, Gian M.; Grgantov, Zoran; Ardigò, Luca P.
2016-01-01
We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads. PMID:27378948
Experimental evidence of non-Amontons behaviour at a multi-contact interface
NASA Astrophysics Data System (ADS)
Scheibert, J.; Prevost, A.; Frelat, J.; Rey, P.; Debrégeas, G.
2008-08-01
We report on normal stress field measurements at the multicontact interface between a rough elastomeric film and a smooth glass sphere under normal load, using an original MEMS-based stress-sensing device. These measurements are compared to Finite-Elements Method (FEM) calculations with boundary conditions obeying locally Amontons' rigid-plastic-like friction law with a uniform friction coefficient. In dry contact conditions, significant deviations are observed which decrease with increasing load. In lubricated conditions, the measured profile recovers almost perfectly the predicted profile. These results are interpreted as a consequence of the finite compliance of the multicontact interface, a mechanism which is not taken into account in Amontons' law.
Baker, Brendon M.; Shah, Roshan P.; Huang, Alice H.
2011-01-01
Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications. PMID:21247342
Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L
2011-05-01
Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., equipped with passenger car tires, the vehicle normal load on the tire shall be no greater than 94 percent..., the vehicle normal load on the tire shall be no greater than 94 percent of the load rating at the... vehicle trailer load carrying capacity information for motor vehicles with a GVWR of 4,536 kilograms (10...
Creep behaviour and creep mechanisms of normal and healing ligaments
NASA Astrophysics Data System (ADS)
Thornton, Gail Marilyn
Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep. Similarly, ligament autografts had persistently abnormal creep behaviour and creep recovery after 2 years likely due to infiltration by scar tissue. Short-term immobilization of autografts had long-term detrimental consequences perhaps due to re-injury of the graft at remobilization. Treatments that restore normal properties to these mechanistic factors in order to control creep would improve joint healing by restoring joint kinematics and maintaining normal joint loading.
Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.
Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt
2015-09-01
In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. Copyright © 2015 Elsevier B.V. All rights reserved.
A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study.
Dejardin, L M; Arnoczky, S P; Cloud, G L
1999-05-01
During impact, equine hooves undergo viscoelastic deformations which may result in potentially harmful strains. Previous hoof strain studies using strain gauges have been inconclusive due to arbitrary gauge placement. Photoelastic stress analysis (PSA) is a full-field technique which visually displays strains over entire loaded surfaces. This in vitro study identifies normal hoof strain patterns using PSA. Custom-made photoelastic plastic sheets were applied to the hoof surface. The hooves were axially loaded (225 kg) under level and varus/valgus conditions. Strain patterns were video-recorded through a polariscope. Strains were concentrated between middle and distal thirds of the hoof wall regardless of the loading conditions. This strain distribution appears to result from the differential expansion of the hoof wall under load. Increasing load resulted in higher strains and asymmetric loading resulted in an ipsilateral increase in strain magnitudes without altering strain locations. This study shows that PSA is a reliable method with which to evaluate hoof strains in vitro and is sensitive enough to reflect subtle load-related strain alterations.
Aksahin, Ertugrul; Kocadal, Onur; Aktekin, Cem N; Kaya, Defne; Pepe, Murad; Yılmaz, Serdar; Yuksel, H Yalcin; Bicimoglu, Ali
2016-03-01
Anterior knee pain is a common symptom after intramedullary nailing in tibia shaft fracture. Moreover, patellofemoral malalignment is also known to be a major reason for anterior knee pain. Patellofemoral malalignment predisposes to increased loading in patellar cartilage. In the previous study, we have demonstrated the quadriceps atrophy and patellofemoral malalignment after intramedullary nailing due to tibia shaft fracture. In this study, our aim was to clarify the effects of quadriceps atrophy and patellofemoral malalignment with the pathologic loading on the joint cartilage. Mesh models of patellofemoral joint were constructed with CT images and integrated with soft tissue components such as menisci and ligaments. Physiological and sagittal tilt models during extension and flexion at 15°, 30° and 60° were created generating eight models. All the models were applied with 137 N force to present the effects of normal loading and 115.7 N force for the simulation of quadriceps atrophy. Different degrees of loading were applied to evaluate the joint contact area and pressure value with the finite element analysis. There was increased patellofemoral contact area in patellar tilt models with respect to normal models. The similar loading patterns were diagnosed in all models at 0° and 15° knee flexion when 137 N force was applied. Higher loading values were obtained at 30° and 60° knee flexions in sagittal tilt models. Furthermore, in the sagittal tilt models, in which the quadriceps atrophy was simulated, the loadings at 30° and 60° knee flexion were higher than in the physiological ones. Sagittal malalignment of the patellofemoral joint is a new concept that results in different loading patterns in the patellofemoral joint biomechanics. This malalignment in sagittal plane leads to increased loading values on the patellofemoral joint at 30° and 60° of the knee flexions. This new concept should be kept in mind during the course of diagnosis and treatment in patients with anterior knee pain. Definition of the exact biomechanical effects of the sagittal tilting will lead to the development of new treatment modalities.
Vermeij, Anouk; Kessels, Roy P C; Heskamp, Linda; Simons, Esther M F; Dautzenberg, Paul L J; Claassen, Jurgen A H R
2017-02-01
Cognitive training has been shown to result in improved behavioral performance in normal aging and mild cognitive impairment (MCI), yet little is known about the neural correlates of cognitive plasticity, or about individual differences in responsiveness to cognitive training. In this study, 21 healthy older adults and 14 patients with MCI received five weeks of adaptive computerized working-memory (WM) training. Before and after training, functional Near-Infrared Spectroscopy (fNIRS) was used to assess the hemodynamic response in left and right prefrontal cortex during performance of a verbal n-back task with varying levels of WM load. After training, healthy older adults demonstrated decreased prefrontal activation at high WM load, which may indicate increased processing efficiency. Although MCI patients showed improved behavioral performance at low WM load after training, no evidence was found for training-related changes in prefrontal activation. Whole-group analyses showed that a relatively strong hemodynamic response at low WM load was related to worse behavioral performance, while a relatively strong hemodynamic response at high WM load was related to higher training gain. Therefore, a 'youth-like' prefrontal activation pattern at older age may be associated with better behavioral outcome and cognitive plasticity.
Hua, Xijin; Li, Junyan; Jin, Zhongmin; Fisher, John
2016-06-01
The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice. Copyright © 2016. Published by Elsevier Ltd.
Respiratory load perception in overweight and asthmatic children.
MacBean, Victoria; Wheatley, Lorna; Lunt, Alan C; Rafferty, Gerrard F
2017-05-01
Overweight asthmatic children report greater symptoms than normal weight asthmatics, despite comparable airflow obstruction. This has been widely assumed to be due to heightened perception of respiratory effort. Three groups of children (healthy weight controls, healthy weight asthmatics, overweight asthmatics) rated perceived respiratory effort throughout an inspiratory resistive loading protocol. Parasternal intercostal electromyogram was used as an objective marker of respiratory load; this was expressed relative to tidal volume and reported as a ratio of the baseline value (neuroventilatory activity ratio (NVEAR)). Significant increases in perception scores (p<0.0001), and decreases in NVEAR (p<0.0001) were observed from lowest to highest resistive load. Higher BMI increased overall perception scores, with no influence of asthma or BMI-for-age percentile on the resistance-perception relationships. These data, indicating elevated overall respiratory effort in overweight asthmatic children but comparable responses to dynamic changes in load, suggest that the greater disease burden in overweight asthmatic children may be due to altered respiratory mechanics associated with increased body mass. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya
2017-06-01
For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.
Schulze, Christoph; Lindner, Tobias; Woitge, Sandra; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer
2013-01-01
The wearing of personal equipment can cause specific changes in muscle activity and posture. In the present study, we investigated the influence of differences in equipment related weight loading and load distribution on plantar pressure. In addition, we studied functional effects of wearing different equipment with a particular focus on relevant changes in foot shape. Static and dynamic pedobarography were performed on 31 male soldiers carrying increasing weights consisting of different items of equipment. The pressure acting on the plantar surface of the foot increased with higher loading, both under static and dynamic conditions (p < 0.05). We observed an increase in the contact area (p < 0.05) and an influence of load distribution through different ways to carry the rifle. The wearing of heavier weights leads to an increase in plantar pressure and contact area. This may be caused by flattening of the transverse and longitudinal arches. The effects are more evident in subjects with flat feet deformities which seem to flatten at an earlier load condition with a greater amount compared to subjects with normal arches. Improving load distribution should be a main goal in the development of military equipment in order to prevent injuries or functional disorders of the lower extremity.
Changing ecosystem response to nitrogen load into Buzzards Bay, MA
NASA Astrophysics Data System (ADS)
Williamson, S.; Rheuban, J. E.; Costa, J. E.; Glover, D. M.; Doney, S. C.
2016-02-01
Nitrogen (N) and chlorophyll-a (Chla) concentration in estuarine systems often correlate positively with increased N inputs. Evaluation of a long-term water quality data set (1992 -2013) for Buzzards Bay, MA, however reveals that ecosystem response to N inputs may be changing over time, as represented by increased yield of Chla per unit total nitrogen (TN) from 1992-2013. To determine if this change is caused by changes in nitrogen sources, we estimate nitrogen input from 28 watersheds. Combining parcel specific waste water disposal, land use, and atmospheric deposition data, we estimated N loads into Buzzards Bay from 1985-2013 using a previously verified Nitrogen Loading Model. Of the 28 watersheds analyzed, the six largest watersheds released the largest absolute N loads into receiving estuaries ranging from approximately 50,000-220,000 kg N yr-1. Normalizing N loads by watershed and estuarine areas revealed that smaller watersheds release some of the greatest relative loads into estuaries making these watersheds more vulnerable to increases in N load. A linear regression analysis of N load through time revealed decreasing N loads for most watersheds on the western side of Buzzards Bay which we believe is reflecting decreased atmospheric N from 1985-2013. Out of the ten sub-watersheds on the eastern side, increases in human waste, driven primarily by increased parcels on septic have resulted in overall N load increases for 9 watersheds. Comparison of in situ TN and Chla concentrations with N load estimates for several watersheds and adjoining estuaries suggest that varied ecosystem responses to N load may be reflecting differences in physical stressors such as estuarine morphology, residence time, and climate change. Results of this study also reveal the importance of watershed specific mitigation efforts to best accommodate dominant N sources which may be influenced regionally (atmospheric N) and locally (fertilizer and human waste).
Normalized spectral damage of a linear system over different spectral loading patterns
NASA Astrophysics Data System (ADS)
Kim, Chan-Jung
2017-08-01
Spectral fatigue damage is affected by different loading patterns; the damage may be accumulated in a different manner because the spectral pattern has an influence on stresses or strains. The normalization of spectral damage with respect to spectral loading acceleration is a novel solution to compare the accumulated fatigue damage over different spectral loading patterns. To evaluate the sensitivity of fatigue damage over different spectral loading cases, a simple notched specimen is used to conduct a uniaxial vibration test for two representative spectral patterns-random and harmonic-between 30 and 3000 Hz. The fatigue damage to the simple specimen is analyzed for different spectral loading cases using the normalized spectral damage from the measured response data for both acceleration and strain. The influence of spectral loading patterns is discussed based on these analyses.
NASA Astrophysics Data System (ADS)
Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan
2017-08-01
Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.
Effects of repeated bending load at room temperature for composite Nb3Sn wires
NASA Astrophysics Data System (ADS)
Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune
2003-09-01
In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.
NASA Astrophysics Data System (ADS)
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-19
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-01-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908
Ryu, J J; Letchuman, S; Shrotriya, P
2012-10-01
Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Generating electricity while walking with loads.
Rome, Lawrence C; Flynn, Louis; Goldman, Evan M; Yoo, Taeseung D
2005-09-09
We have developed the suspended-load backpack, which converts mechanical energy from the vertical movement of carried loads (weighing 20 to 38 kilograms) to electricity during normal walking [generating up to 7.4 watts, or a 300-fold increase over previous shoe devices (20 milliwatts)]. Unexpectedly, little extra metabolic energy (as compared to that expended carrying a rigid backpack) is required during electricity generation. This is probably due to a compensatory change in gait or loading regime, which reduces the metabolic power required for walking. This electricity generation can help give field scientists, explorers, and disaster-relief workers freedom from the heavy weight of replacement batteries and thereby extend their ability to operate in remote areas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.321 General. (a) Flight load factors represent the ratio of the aerodynamic force component (acting normal to... distribution of disposable load within the operating limitations specified in §§ 23.1583 through 23.1589. (c...
Brandon, Scott C E; Thelen, Darryl G; Smith, Colin R; Novacheck, Tom F; Schwartz, Michael H; Lenhart, Rachel L
2018-02-01
Elevated tibiofemoral and patellofemoral loading in children who exhibit crouch gait may contribute to skeletal deformities, pain, and cessation of walking ability. Surgical procedures used to treat crouch frequently correct knee extensor insufficiency by advancing the patella. However, there is little quantitative understanding of how the magnitudes of crouch and patellofemoral correction affect cartilage loading in gait. We used a computational musculoskeletal model to simulate the gait of twenty typically developing children and fifteen cerebral palsy patients who exhibited mild, moderate, and severe crouch. For each walking posture, we assessed the influence of patella alta and baja on tibiofemoral and patellofemoral cartilage contact. Tibiofemoral and patellofemoral contact pressures during the stance phase of normal gait averaged 2.2 and 1.0 MPa. Crouch gait increased pressure in both the tibofemoral (2.6-4.3 MPa) and patellofemoral (1.8-3.3 MPa) joints, while also shifting tibiofemoral contact to the posterior tibial plateau. For extended-knee postures, normal patellar positions (Insall-Salvatti ratio 0.8-1.2) concentrated contact on the middle third of the patellar cartilage. However, in flexed knee postures, both normal and baja patellar positions shifted pressure toward the superior edge of the patella. Moving the patella into alta restored pressure to the middle region of the patellar cartilage as crouch increased. This work illustrates the potential to dramatically reduce tibiofemoral and patellofemoral cartilage loading by surgically correcting crouch gait, and highlights the interaction between patella position and knee posture in modulating the location of patellar contact during functional activities. Copyright © 2017 Elsevier B.V. All rights reserved.
Uphill walking: Biomechanical demand on the lower extremities of obese adolescents.
Strutzenberger, Gerda; Alexander, Nathalie; Bamboschek, Dominik; Claas, Elisabeth; Langhof, Helmut; Schwameder, Hermann
2017-05-01
The number of obesity prevalence in adolescents is still increasing. Obesity treatment programs typically include physical activity with walking being recommended as appropriate activity, but limited information exists on the demand uphill walking places on the joint loading and power of obese adolescents. Therefore, the purpose of this study was to investigate the effect of different inclinations on step characteristics, sagittal and frontal joint angles, joint moments and joint power of obese adolescents in comparison to their normal-weight peers. Eleven obese (14.5±1.41 years, BMI: 31.1±3.5kg/m 2 ) and eleven normal-weight adolescents (14.3±1.86 years, BMI: 19.0±1.7kg/m 2 ) walked with 1.11m/s on a ramp with two imbedded force plates (AMTI, 1000Hz) at three inclinations (level, 6°, 12°). Kinematic data were collected via an infrared-camera motion system (Vicon, 250Hz). The two-way (inclination, group) ANOVA indicated a significant effect of inclination on almost all variables analysed, with the hip joint being the most affected by inclination, followed by the knee and ankle joint. The obese participants additionally spent less time in swing phase, walked with an increased knee flexion and valgus angle and an increased peak hip flexion and adduction moment. Hip joint power of obese adolescents was especially in the steepest inclination significantly increased compared to their normal-weight peers. Obese adolescents demonstrate increased joint loading compared to their normal-weight peers and in combination with a musculoskeletal malalignment they might be prone to an increased overuse injury risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Marzolini, Catia; Sabin, Caroline; Raffi, François; Siccardi, Marco; Mussini, Cristina; Launay, Odile; Burger, David; Roca, Bernardino; Fehr, Jan; Bonora, Stefano; Mocroft, Amanda; Obel, Niels; Dauchy, Frederic-Antoine; Zangerle, Robert; Gogos, Charalambos; Gianotti, Nicola; Ammassari, Adriana; Torti, Carlo; Ghosn, Jade; Chêne, Genevieve; Grarup, Jesper; Battegay, Manuel
2015-01-14
The prevalence of overweight and obesity is increasing among HIV-infected patients. Whether standard antiretroviral drug dosage is adequate in heavy individuals remains unresolved. We assessed the virological and immunological responses to initial efavirenz (EFV)-containing regimens in heavy compared to normal-weight HIV-infected patients. Observational European cohort collaboration study. Eligible patients were antiretroviral-naïve with documented weight prior to EFV start and follow-up viral loads after treatment initiation. Cox regression analyses evaluated the association between weight and time to first undetectable viral load (<50 copies/ml) after treatment initiation, and time to viral load rebound (two consecutive viral load >50 copies/ml) after initial suppression over 5 years of follow-up. Recovery of CD4 cell count was evaluated 6 and 12 months after EFV initiation. Analyses were stratified by weight (kg) group (I - <55; II - >55, <80 (reference); III - >80, <85; IV - >85, <90; V - >90, <95; VI - >95). The study included 19,968 patients, of whom 9.1, 68.3, 9.1, 5.8, 3.5, and 4.3% were in weight groups I-VI, respectively. Overall, 81.1% patients attained virological suppression, of whom 34.1% subsequently experienced viral load rebound. After multiple adjustments, no statistical difference was observed in time to undetectable viral load and virological rebound for heavier individuals compared to their normal-weight counterparts. Although heaviest individuals had significantly higher CD4 cell count at baseline, CD4 cell recovery at 6 and 12 months after EFV initiation was comparable to normal-weight individuals. Virological and immunological responses to initial EFV-containing regimens were not impaired in heavy individuals, suggesting that the standard 600 mg EFV dosage is appropriate across a wide weight range.
An adaptive density-based routing protocol for flying Ad Hoc networks
NASA Astrophysics Data System (ADS)
Zheng, Xueli; Qi, Qian; Wang, Qingwen; Li, Yongqiang
2017-10-01
An Adaptive Density-based Routing Protocol (ADRP) for Flying Ad Hoc Networks (FANETs) is proposed in this paper. The main objective is to calculate forwarding probability adaptively in order to increase the efficiency of forwarding in FANETs. ADRP dynamically fine-tunes the rebroadcasting probability of a node for routing request packets according to the number of neighbour nodes. Indeed, it is more interesting to privilege the retransmission by nodes with little neighbour nodes. We describe the protocol, implement it and evaluate its performance using NS-2 network simulator. Simulation results reveal that ADRP achieves better performance in terms of the packet delivery fraction, average end-to-end delay, normalized routing load, normalized MAC load and throughput, which is respectively compared with AODV.
Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen
2018-04-01
Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters, and recent studies have demonstrated that dosing of copper can stimulate the removal of ammonium. Here, we investigated if copper dosing could generically improve ammonium removal of biofilters, at treatment plants with different characteristics. Copper was dosed at ≤1.5 μg Cu/L to biofilters at 10 groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH 4 + /L by a factor of 2-12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification was fully established, with ammonium effluent concentrations of <0.01 mg NH 4 + -N/L at most plants, regardless of the differences in raw water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time to reach complete ammonium removal than for filters receiving prefiltered water, likely due to sorption of copper to iron oxides, at plants without prefiltration. With complete ammonium removal, we subjected two plants to short-term loading rate upshifts, to examine the filters' ability to cope with loading rate variations. After 2 months of dosing and an average loading rate of 1.0 g NH 4 + -N/m 3 filter material/h, the loading rate was upshifted by 50%. Yet, a filter managed to completely remove all the influent ammonium, showing that with copper dosing the filter had extra capacity to remove ammonium even beyond its normal loading rates. Depth sampling revealed that the ammonium removal rate of the filter's upper 10 cm increased more than 7-fold from 0.67 to 4.90 g NH 4 + -N/m 3 /h, and that nitrite produced from increased ammonium oxidation was completely oxidized further to nitrate. Hence, no problems with nitrite accumulation or breakthrough occurred. Overall, copper dosing generically enhanced nitrification efficiency and allowed a range of quite different plants to meet water quality standards, even at increased loading rates. The capacity increase is highly relevant in practice, as it makes filters more robust towards sudden ammonium loading rate variations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kulduk, Ahmet; Altun, Necdet S; Senkoylu, Alpaslan
2015-12-01
The primary purpose of dynamic stabilization is to preserve the normal range of motion (ROM) by restricting abnormal movement in the spine. Our aim was to analyze the effects of two different dynamic stabilization systems using finite element modeling (FEM). Coflex and Dynesys dynamic devices were modeled and implanted at the L4-L5 segment using virtual FEM. A 400 N compressive force combined with 6 N flexion, extension, bending and axial rotation forces was applied to the L3-4 and L4-5 segments. ROM and disc loading forces were analyzed. Both systems reduced ROM and disc loading forces at the implanted lumbar segment, with the exception of the Coflex interspinous device, which increased ROM by 19% and did not change disc-loading forces in flexion. The Coflex device prevented excessive disc loading, but increased ROM abnormally in flexion. Neither device provided satisfactory motion preservation or load sharing in other directions. Copyright © 2015 John Wiley & Sons, Ltd.
Muraca, M; Fevery, J; Blanckaert, N
1987-02-01
The pattern of serum bilirubins was determined in serum of humans and rats with unconjugated hyperbilirubinemia due to increased pigment load or defective hepatic conjugation. Bilirubin ester conjugates were present in all serum samples tested and were identified as bilirubin 1-O-acyl glucuronides. In Gilbert's syndrome, the concentration of total conjugates was comparable to the values in healthy control subjects. Because the concentration of unconjugated pigment was increased, the fraction of conjugated relative to total bilirubins was markedly decreased. Sera from patients with Crigler-Najjar disease differed from those with Gilbert's syndrome by the higher unconjugated bilirubin levels and the undetectability of diconjugated bilirubins. A striking finding was that in hemolytic disease, the concentration of both monoconjugates and diconjugates was enhanced in parallel with the increase of unconjugated pigment. Therefore, the fraction of conjugated relative to total bilirubins remained within the normal range. As in Gilbert's syndrome, heterozygote R/APfd-j/+ rats with impaired hepatic bilirubin conjugation exhibit an increased unconjugated bilirubin level in serum, whereas the concentration of total conjugates was comparable to the values in normal rats. In serum of normal rats loaded intraperitoneally with unconjugated bilirubin, both unconjugated and mono- and diconjugated bilirubins were increased in parallel so that the ratio of unconjugated to esterified pigment remained unaffected. Decreased hepatic conjugation or increased bilirubin load was associated with a lower percentage of diconjugates relative to total conjugates both in human and rat serum. The present results are consistent with a compartmental model in which there is bidirectional transfer across the sinusoidal membrane for unconjugated bilirubin as well as for the bilirubin glucuronides. Because typical patterns of serum bilirubins are found in Gilbert's syndrome and patients with hemolytic hyperbilirubinemia, determination of esterified bilirubins in serum is of value to study the pathophysiology and the differential diagnosis of unconjugated hyperbilirubinemia.
NASA Technical Reports Server (NTRS)
Onwubiko, Chin-Yere; Onyebueke, Landon
1996-01-01
Structural failure is rarely a "sudden death" type of event, such sudden failures may occur only under abnormal loadings like bomb or gas explosions and very strong earthquakes. In most cases, structures fail due to damage accumulated under normal loadings such as wind loads, dead and live loads. The consequence of cumulative damage will affect the reliability of surviving components and finally causes collapse of the system. The cumulative damage effects on system reliability under time-invariant loadings are of practical interest in structural design and therefore will be investigated in this study. The scope of this study is, however, restricted to the consideration of damage accumulation as the increase in the number of failed components due to the violation of their strength limits.
Soilemezi, Eleni; Tsagourias, Matthew; Talias, Michael A; Soteriades, Elpidoforos S; Makrakis, Vasilios; Zakynthinos, Epaminondas; Matamis, Dimitrios
2013-04-01
Diaphragmatic breathing patterns under resistive loading remain poorly documented. To our knowledge, this is the first study assessing diaphragmatic motion under conditions of inspiratory resistive loading with the use of sonography. We assessed diaphragmatic motion during inspiratory resistive loading in 40 healthy volunteers using M-mode sonography. In phase I of the study, sonography was performed during normal quiet breathing without respiratory loading. In phase II, sonography was performed after application of a nose clip and connection of the subjects to a pneumotachograph through a mouth piece. In phase III, the participants were assessed while subjected to inspiratory resistive loading of 50 cm H(2)O/L/s. Compared with baseline, the application of a mouth piece and nose clip induced a significant increase in diaphragmatic excursion (from 1.7 to 2.3 cm, P < 0.001) and a decrease in respiratory rate (from 13.4 to 12.2, P < 0.01). Inspiratory resistive loading induced a further decrease in respiratory rate (from 12.2 to 8.0, P < 0.01) and a decrease in diaphragmatic velocity contraction (from 1.2 to 0.8 cm/s, P < 0.01), and also an increase in tidal volume (from 795 to 904 mL, P < 0.01); diaphragmatic excursion, however, did not change significantly. Inspiratory resistive loading induced significant changes in diaphragmatic contraction pattern, which mainly consisted of decreased velocity of diaphragmatic displacement with no change in diaphragmatic excursion. Tidal volume, increased significantly; the increase in tidal volume, along with the unchanged diaphragmatic excursion, provides sonographic evidence of increased recruitment of extradiaphragmatic muscles under inspiratory resistive loading. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Friction and lubrication of pleural tissues.
D'Angelo, Edgardo; Loring, Stephen H; Gioia, Magda E; Pecchiari, Matteo; Moscheni, Claudia
2004-08-20
The frictional behaviour of rabbit's visceral pleura sliding against parietal pleura was assessed in vitro while oscillating at physiological velocities and amplitudes under physiological normal forces. For sliding velocities up to 3 cm s(-1) and normal compressive loads up to 12 cm H2O, the average value of the coefficient of kinetic friction (mu) was constant at 0.019 +/- 0.002 (S.E.) with pleural liquid as lubricant. With Ringer-bicarbonate solution, mu was still constant, but significantly increased (Deltamu = 0.008 +/- 0.001; P < 0.001). Under these conditions, no damage of the sliding pleural surfaces was found on light and electron microscopy. Additional measurements, performed also on peritoneum, showed that changes in nominal contact area or strain of the mesothelia, temperature in the range 19-39 degrees C, and prolonged sliding did not affect mu. Gentle application of filter paper increased mu approximately 10-fold and irreversibly, suggesting alteration of the mesothelia. With packed the red blood cells (RBC) between the sliding mesothelia, mu increased appreciably but reversibly on removal of RBC suspension, whilst no ruptures of RBC occurred. In conclusion, the results indicate a low value of sliding friction in pleural tissues, partly related to the characteristics of the pleural liquid, and show that friction is independent of velocity, normal load, and nominal contact area, consistent with boundary lubrication.
Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy
2016-01-01
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks. PMID:26938773
Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy
2016-01-01
Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks.
Lambing, John H.; Sando, Steven K.
2009-01-01
This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112 percent of the long-term mean annual peak flow (15,600 ft3/s). About 81 percent of the annual flow volume was discharged during the post-breach period. Daily loads of suspended sediment were estimated directly by using high-frequency sampling of the daily sediment monitoring. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to either streamflow or suspended-sediment discharge. Regression equations for estimating trace-element discharge in water year 2008 were developed from instantaneous streamflow and concentration data for periodic water-quality samples collected during all or part of water years 2004-08. The equations were applied to records of daily mean streamflow or daily suspended-sediment loads to produce estimated daily trace-element loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. Relatively small to moderately large daily net losses from the project area were common during the pre-breach period when low-flow conditions were prevalent. Outflow loads from the project area sharply increased immediately after the breaching of Milltown Dam and during the rising limb and peak flow of the annual hydrograph. Net losses of suspended sediment and trace elements from the project area decreased as streamflow decreased during the summer, eventually becoming small or reaching an approximate net balance between inflow and outflow. Estimated daily loads of suspended sediment and trace elements for all three stations were summed to determine cumulative inflow and outflow loads for the pre-breach and post-breach periods, as well as for the entire water year 2008. Overall, the mass balance between the combined inflow loads from two upstream source areas (upper Clark Fork and Blackfoot River basins) and the outflow loads at Clark Fork above Missoula indicates net losses
Dieterich, J.H.; Kilgore, B.D.
1996-01-01
A procedure has been developed to obtain microscope images of regions of contact between roughened surfaces of transparent materials, while the surfaces are subjected to static loads or undergoing frictional slip. Static loading experiments with quartz, calcite, soda-lime glass and acrylic plastic at normal stresses to 30 MPa yield power law distributions of contact areas from the smallest contacts that can be resolved (3.5 ??m2) up to a limiting size that correlates with the grain size of the abrasive grit used to roughen the surfaces. In each material, increasing normal stress results in a roughly linear increase of the real area of contact. Mechanisms of contact area increase are by growth of existing contacts, coalescence of contacts and appearance of new contacts. Mean contacts stresses are consistent with the indentation strength of each material. Contact size distributions are insensitive to normal stress indicating that the increase of contact area is approximately self-similar. The contact images and contact distributions are modeled using simulations of surfaces with random fractal topographies. The contact process for model fractal surfaces is represented by the simple expedient of removing material at regions where surface irregularities overlap. Synthetic contact images created by this approach reproduce observed characteristics of the contacts and demonstrate that the exponent in the power law distributions depends on the scaling exponent used to generate the surface topography.
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
46 CFR 112.30-3 - Normal source for emergency loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
....30-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Systems Having an Automatically Connected Storage Battery as the Sole Emergency Power Source § 112.30-3 Normal source for emergency loads. (a) The normal source...
Uptake of PSMA-ligands in normal tissues is dependent on tumor load in patients with prostate cancer
Ahmadzadehfar, Hojjat; Kürpig, Stefan; Eppard, Elisabeth; Kotsikopoulos, Charalambos; Liakos, Nikolaos; Bundschuh, Ralph A.; Strunk, Holger; Essler, Markus
2017-01-01
Radioligand therapy (RLT) with Lu-177-labeled PSMA-ligands is a new therapy option for prostate cancer. Biodistribution in normal tissues is of interest for therapy planning. We evaluated if the biodistribution of Ga-68-PSMA-11 is influenced by tumor load. Results In patients with high tumor load, SUVmean was reduced to 61.5% in the lacrimal glands, to 56.6% in the parotid glands, to 63.7% in the submandibular glands, to 61.3% in the sublingual glands and to 55.4% in the kidneys (p < 0.001). Further significant differences were observed for brain, mediastinum, liver, spleen and muscle. Total tracer retention was higher in patients with high tumor load (p < 0.05). SUV in lacrimal, salivary glands and kidneys correlated negatively with PSA. Materials and Methods 135 patients were retrospectively evaluated. SUV was measured in the lacrimal and salivary glands, brain, heart, liver, spleen, kidneys, muscle and bone. SUV was correlated with visual tumor load, total tracer retention and PSA. Conclusions Patients with high tumor load show a significant reduction of tracer uptake in dose-limiting organs. As similar effects might occur when performing RLT using Lu-177-labeled PSMA-ligands, individual adaptations of therapy protocols based on diagnostic PSMA PET imaging before therapy might help to further increase efficacy and safety of RLT. PMID:28903405
Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy
NASA Astrophysics Data System (ADS)
Odabas, D.
2018-01-01
In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.
A multi-purpose method for analysis of spur gear tooth loading
NASA Technical Reports Server (NTRS)
Kasuba, R.; Evans, J. W.; August, R.; Frater, J. L.
1981-01-01
A large digitized approach was developed for the static and dynamic load analysis of spur gearing. An iterative procedure was used to calculate directly the "variable-variable" gear mesh stiffness as a function of transmitted load, gear tooth profile errors, gear tooth deflections and gear hub torsional deformation, and position of contacting profile points. The developed approach can be used to analyze the loads, Hertz stresses, and PV for the normal and high contrast ratio gearing, presently the modeling is limited to the condition that for a given gear all teeth have identical spacing and profiles (with or without surface imperfections). Certain types of simulated sinusoidal profile errors and pitting can cause interruptions of the gear mesh stiffness function and, thus, increase the dynamic loads in spur gearing. In addition, a finite element stress and mesh subprogram was developed for future introduction into the main program for calculating the gear tooth bending stresses under dynamic loads.
Biomechanics of a Fixed–Center of Rotation Cervical Intervertebral Disc Prosthesis
Crawford, Neil R.; Baek, Seungwon; Sawa, Anna G.U.; Safavi-Abbasi, Sam; Sonntag, Volker K.H.; Duggal, Neil
2012-01-01
Background Past in vitro experiments studying artificial discs have focused on range of motion. It is also important to understand how artificial discs affect other biomechanical parameters, especially alterations to kinematics. The purpose of this in vitro investigation was to quantify how disc replacement with a ball-and-socket disc arthroplasty device (ProDisc-C; Synthes, West Chester, Pennsylvania) alters biomechanics of the spine relative to the normal condition (positive control) and simulated fusion (negative control). Methods Specimens were tested in multiple planes by use of pure moments under load control and again in displacement control during flexion-extension with a constant 70-N compressive follower load. Optical markers measured 3-dimensional vertebral motion, and a strain gauge array measured C4-5 facet loads. Results Range of motion and lax zone after disc replacement were not significantly different from normal values except during lateral bending, whereas plating significantly reduced motion in all loading modes (P < .002). Plating but not disc replacement shifted the location of the axis of rotation anteriorly relative to the intact condition (P < 0.01). Coupled axial rotation per degree of lateral bending was 25% ± 48% greater than normal after artificial disc replacement (P = .05) but 37% ± 38% less than normal after plating (P = .002). Coupled lateral bending per degree of axial rotation was 37% ± 21% less than normal after disc replacement (P < .001) and 41% ± 36% less than normal after plating (P = .001). Facet loads did not change significantly relative to normal after anterior plating or arthroplasty, except that facet loads were decreased during flexion in both conditions (P < .03). Conclusions In all parameters studied, deviations from normal biomechanics were less substantial after artificial disc placement than after anterior plating. PMID:25694869
Verbal working memory-related neural network communication in schizophrenia.
Kustermann, Thomas; Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte
2018-04-19
Impaired working memory (WM) in schizophrenia is associated with reduced hemodynamic and electromagnetic activity and altered network connectivity within and between memory-associated neural networks. The present study sought to determine whether schizophrenia involves disruption of a frontal-parietal network normally supporting WM and/or involvement of another brain network. Nineteen schizophrenia patients (SZ) and 19 healthy comparison subjects (HC) participated in a cued visual-verbal Sternberg task while dense-array EEG was recorded. A pair of item arrays each consisting of 2-4 consonants was presented bilaterally for 200 ms with a prior cue signaling the hemifield of the task-relevant WM set. A central probe letter 2,000 ms later prompted a choice reaction time decision about match/mismatch with the target WM set. Group and WM load effects on time domain and time-frequency domain 11-15 Hz alpha power were assessed for the cue-to-probe time window, and posterior 11-15 Hz alpha power and frontal 4-8 Hz theta power were assessed during the retention period. Directional connectivity was estimated via Granger causality, evaluating group differences in communication. SZ showed slower responding, lower accuracy, smaller overall time-domain alpha power increase, and less load-dependent alpha power increase. Midline frontal theta power increases did not vary by group or load. Network communication in SZ was characterized by temporal-to-posterior information flow, in contrast to bidirectional temporal-posterior communication in HC. Results indicate aberrant WM network activity supporting WM in SZ that might facilitate normal load-dependent and only marginally less accurate task performance, despite generally slower responding. © 2018 Society for Psychophysiological Research.
Lose-Shift Responding in Humans Is Promoted by Increased Cognitive Load
Ivan, Victorita E.; Banks, Parker J.; Goodfellow, Kris; Gruber, Aaron J.
2018-01-01
The propensity of animals to shift choices immediately after unexpectedly poor reinforcement outcomes is a pervasive strategy across species and tasks. We report here on the memory supporting such lose-shift responding in humans, assessed using a binary choice task in which random responding is the optimal strategy. Participants exhibited little lose-shift responding when fully attending to the task, but this increased by 30%–40% in participants that performed with additional cognitive load that is known to tax executive systems. Lose-shift responding in the cognitively loaded adults persisted throughout the testing session, despite being a sub-optimal strategy, but was less likely as the time increased between reinforcement and the subsequent choice. Furthermore, children (5–9 years old) without load performed similarly to the cognitively loaded adults. This effect disappeared in older children aged 11–13 years old. These data provide evidence supporting our hypothesis that lose-shift responding is a default and reflexive strategy in the mammalian brain, likely mediated by a decaying memory trace, and is normally suppressed by executive systems. Reducing the efficacy of executive control by cognitive load (adults) or underdevelopment (children) increases its prevalence. It may therefore be an important component to consider when interpreting choice data, and may serve as an objective behavioral assay of executive function in humans that is easy to measure. PMID:29568264
Model for Microcapsule Drug Release with Ultrasound-Activated Enhancement.
Tsao, Nadia H; Hall, Elizabeth A H
2017-11-14
Microbubbles and microcapsules of silane-polycaprolactone (SiPCL) have been filled with a fluorescent acridium salt (lucigenin) as a model for a drug-loaded delivery vehicle. The uptake and delivery were studied and compared with similar microbubbles and microcapsules of silica/mercaptosilica (S/M/S). Positively charged lucigenin was encapsulated through an electrostatic mechanism, following a Type I Langmuir isotherm as expected, but with an additional multilayer uptake that leads to a much higher loading for the SiPCL system (∼280 μg/2.4 × 10 9 microcapsules compared with ∼135 μg/2.4 × 10 9 microcapsules for S/M/S). Whereas the lucigenin release from the S/M/S bubbles and capsules loaded below the solubility limit is consistent with diffusion from a monolithic structure, the SiPCL structures show distinct release patterns; the Weibull function predicts a general trend for diffusion from normal Euclidean space at short times tending toward diffusion out of fractal spaces with increasing time. As a slow release system, the dissolution time (T d ) increases from 1 to 2 days for the S/M/S and for the low concentration, loaded SiPCl vehicles to ∼10 days for the high loaded microcapsules. However, T d can be reduced on insonation to 2 days, indicating the potential to gain control over the local enhanced release with ultrasound. This was tested for a docetaxel model and its effect on C4-2B prostate cancer cells, showing improved cell toxicity for concentrations below the normal EC 50 in solution.
Thomas, Kevin V; Amador, Arturo; Baz-Lomba, Jose Antonio; Reid, Malcolm
2017-10-03
Wastewater-based epidemiology is an established approach for quantifying community drug use and has recently been applied to estimate population exposure to contaminants such as pesticides and phthalate plasticizers. A major source of uncertainty in the population weighted biomarker loads generated is related to estimating the number of people present in a sewer catchment at the time of sample collection. Here, the population quantified from mobile device-based population activity patterns was used to provide dynamic population normalized loads of illicit drugs and pharmaceuticals during a known period of high net fluctuation in the catchment population. Mobile device-based population activity patterns have for the first time quantified the high degree of intraday, week, and month variability within a specific sewer catchment. Dynamic population normalization showed that per capita pharmaceutical use remained unchanged during the period when static normalization would have indicated an average reduction of up to 31%. Per capita illicit drug use increased significantly during the monitoring period, an observation that was only possible to measure using dynamic population normalization. The study quantitatively confirms previous assessments that population estimates can account for uncertainties of up to 55% in static normalized data. Mobile device-based population activity patterns allow for dynamic normalization that yields much improved temporal and spatial trend analysis.
Goodman, Ann B
2006-12-01
Vitamin A (retinoid) is required in the adult brain to enable cognition, learning, and memory. While brain levels of retinoid diminish over the course of normal ageing, retinoid deficit is greater in late onset Alzheimer disease (LOAD) brains than in normal-aged controls. This paper reviews recent evidence supporting these statements and further suggests that genes necessary for the synthesis, transport and function of retinoid to and within the ageing brain are appropriate targets for treatment of LOAD. These genes tend to be clustered with genes that have been proposed as candidates in LOAD, are found at chromosomal regions linked to LOAD, and suggest the possibility of an overall coordinated regulation. This phenomenon is termed Chromeron and is analogous to the operon mechanism observed in prokaryotes. Suggested treatment targets are the retinoic-acid inactivating enzymes (CYP26)s, the retinol binding and transport proteins, retinol-binding protein (RBP)4 and transthyretin (TTR), and the retinoid receptors. TTR as a LOAD target is the subject of active investigation. The retinoid receptors and the retinoid-inactivating enzymes have previously been proposed as targets. This is the first report to suggest that RBP4 is an amenable treatment target in LOAD. RBP4 is elevated in type-2 diabetes and obesity, conditions associated with increased risk for LOAD. Fenretinide, a novel synthetic retinoic acid (RA) analog lowers RBP4 in glucose intolerant obese mice. The feasibility of using fenretinide either as an adjunct to present LOAD therapies, or on its own as an early prevention strategy should be determined. (c) 2006 Wiley-Liss, Inc.
The effects of load carriage on joint work at different running velocities.
Liew, Bernard X W; Morris, Susan; Netto, Kevin
2016-10-03
Running with load carriage has become increasingly prevalent in sport, as well as many field-based occupations. However, the "sources" of mechanical work during load carriage running are not yet completely understood. The purpose of this study was to determine the influence of load magnitudes on the mechanical joint work during running, across different velocities. Thirty-one participants performed overground running at three load magnitudes (0%, 10%, 20% body weight), and at three velocities (3, 4, 5m/s). Three dimensional motion capture was performed, with synchronised force plate data captured. Inverse dynamics was used to quantify joint work in the stance phase of running. Joint work was normalized to a unit proportion of body weight and leg length (one dimensionless work unit=532.45J). Load significantly increased total joint work and total positive work and this effect was greater at faster velocities. Load carriage increased ankle positive work (β coefficient=rate of 6.95×10 -4 unit work per 1% BW carried), and knee positive (β=1.12×10 -3 unit) and negative work (β=-2.47×10 -4 unit), and hip negative work (β=-7.79×10 -4 unit). Load carriage reduced hip positive work and this effect was smaller at faster velocities. Inter-joint redistribution did not contribute significantly to altered mechanical work within the spectrum of load and velocity investigated. Hence, the ankle joint contributed to the greatest extent in work production, whilst that of the knee contributed to the greatest extent to work absorption when running with load. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rozhkova, E A; Ordzhonikidze, Z G; Druzhinin, A E; Seĭfulla, N R; Paniushkin, V V; Kuznetsov, Iu M
2007-01-01
The effects of a submaximum single physical load with a mixed aerobic-anaerobic character (combined rowing test) on the intensity of lipid peroxidation (LPO) processes, antioxidant state of the organism, and rheological properties of blood have been studied in a group of athletes. The administration of natural antioxidants significantly decreased the LPO stress induced by the physical load, reduced the suppression of the antioxidant system of the organism, and normalized the LPO-disturbed hemorheological parameters. Antioxidants such as carnosine, cytamine, and apilac can be used as non-doping means for the accelerated recovery and increase in the physical work capacity in athletes.
NASA Technical Reports Server (NTRS)
Machablishvili, O. G.
1980-01-01
The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.
Reif, Ullrich; Hulse, Donald A; Hauptman, Joe G
2002-01-01
To evaluate the effect of tibial plateau leveling on joint motion in canine stifle joints in which the cranial cruciate ligament (CCL) had been severed. In vitro cadaver study. Six canine cadaver hind legs. Radiographs of the stifle joints were made to evaluate the tibial plateau angle with respect to the long axis of the tibia. The specimens were mounted in a custom-made testing device to measure cranio-caudal translation of the tibia with respect to the femur. An axial load was applied to the tibia, and its position was recorded in the normal stifle, after transection of the CCL, and after tibial plateau leveling. Further, the amount of caudal tibial thrust was measured in the tibial plateau leveled specimen while series of eight linearly increasing axial tibial loads were applied. Transection of the CCL resulted in cranial tibial translation when axial tibial load was applied. After tibial plateau leveling, axial loading resulted in caudal translation of the tibia. Increasing axial tibial load caused a linear increase in caudal tibial thrust in all tibial plateau-leveled specimens. After tibial plateau leveling, axial tibial load generates caudal tibial thrust, which increases if additional axial load is applied. Tibial plateau leveling osteotomy may prevent cranial translation during weight bearing in dogs with CCL rupture by converting axial load into caudal tibial thrust. The amount of caudal tibial thrust seems to be proportional to the amount of weight bearing. Copyright 2002 by The American College of Veterinary Surgeons
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Georges, William; Frost, David L.; Higgins, Andrew J.
2017-01-01
The incidence angle of a detonation wave in a conventional high explosive influences the acceleration and terminal velocity of a metal flyer by increasing the magnitude of the material velocity imparted by the transmitted shock wave as the detonation is tilted towards normal loading. For non-ideal explosives heavily loaded with inert additives, the detonation velocity is typically subsonic relative to the flyer sound speed, leading to shockless accelerations when the detonation is grazing. Further, in a grazing detonation the particles are initially accelerated in the direction of the detonation and only gain velocity normal to the initial orientation of the flyer at later times due to aerodynamic drag as the detonation products expand. If the detonation wave in a non-ideal explosive instead strikes the flyer at normal incidence, a shock is transmitted into the flyer and the first interaction between the particle additives and the flyer occurs due to the imparted material velocity from the passage of the detonation wave. Consequently, the effect of incidence angle and additive properties may play a more prominent role in the flyer acceleration. In the present study we experimentally compared normal detonation loadings to grazing loadings using a 3-mm-thick aluminum slapper to impact-initiate a planar detonation wave in non-ideal explosive-particle admixtures, which subsequently accelerated a second 6.4-mm-thick flyer. Flyer acceleration was measured with heterodyne laser velocimetry (PDV). The explosive mixtures considered were packed beds of glass or steel particles of varying sizes saturated with sensitized nitromethane, and gelled nitromethane mixed with glass microballoons. Results showed that the primary parameter controlling changes in flyer velocity was the presence of a transmitted shock, with additive density and particle size playing only secondary roles. These results are similar to the grazing detonation experiments, however under normal loading the largest, higher density particles yielded the highest terminal flyer velocity, whereas in the grazing experiments the larger, low density particles yielded the highest terminal velocity.
NASA Astrophysics Data System (ADS)
Harea, Evghenii; Stoček, Radek; Storozhuk, Liudmyla; Sementsov, Yurii; Kartel, Nikolai
2018-04-01
Dry friction and wear properties of natural rubber (NR), containing multi-walled carbon nanotubes (MWCNT) and carbon black (CB), were investigated. Natural rubber (NR)-based composites containing all common additives and curatives, and a fixed amount (30 phr—parts per 100 rubber by weight) of hybrid fillers (MWCNT x + CB30-x ) were prepared by simple mixing procedure and tested. The main goal was to study the behaviours of composites at different tribological testing conditions, such as friction speed and normal load. It was found that with an increase of concentration of MWCNT from x = 0 phr to x = 5 phr in studied composites, there was a decrease in the coefficient of friction (COF) with no significant change in wear in the framework of each used combination of testing parameters. Generally, higher friction speed at certain normal force led to the increase of COF of all the samples and wear reflected deliberate value fluctuation. Also, it was established that considerable growth of wear and unexpected reducing of friction coefficient ensued from increasing of applied load for every fixed sliding speed.
Budoff, Jeffrey E; Lin, Cheng-Li; Hong, Chih-Kai; Chiang, Florence L; Su, Wei-Ren
2016-06-01
Coracoacromial ligament (CAL) excision and acromioplasty increase superior and anterosuperior glenohumeral translation. It is unknown how much of an increase in rotator cuff force production is required to re-establish intact glenohumeral biomechanics after these surgical procedures. We hypothesized that, after CAL excision and acromioplasty, an increase in rotator cuff force production would not be necessary to reproduce the anterosuperior and superior translations of the intact specimens. Nine cadaveric shoulders were subjected to loading in the superior and anterosuperior directions in the intact state after CAL excision, acromioplasty, and recording of the translations. The rotator cuff force was then increased to normalize glenohumeral biomechanics. After CAL excision at 150 and 200 N of loading, an increase in the rotator cuff force by 25% decreased anterosuperior translation to the point where there was no significant difference from the intact specimen's translation. After acromioplasty (and CAL excision) at 150 and 200 N, an increase in the rotator cuff force of 25% and 30%, respectively, decreased superior translation to the point where there was no significant difference from the intact specimen's translation. At 150 to 200 N of loading, CAL excision and acromioplasty increase the rotator cuff force required to maintain normal glenohumeral biomechanics by 25% to 30%. After a subacromial decompression, the rotator cuff has an increased force production requirement to maintain baseline glenohumeral mechanics. Under many circumstances, in vivo force requirements may be even greater after surgical attenuation of the coracoacromial arch. Basic Science Study; Biomechanics. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, Stephen D; Nisley, Donald L; Melfi, Michael J
A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operationmore » and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.« less
Ünübol Aypak, Serap; Aypak, Süleyman; Voyvoda, Hüseyin; Güven, Gülşen; Dereli Fidan, Evrim; Tosun, Gamze; Gültekin, Mehmet; Şimşek, Emrah; Gülçe Güler, Asude
2016-09-01
This study aimed to investigate the relationship between serum mineral levels and parasite load in Saanen (n=37) and Damascus (n=13) goats, which were all approximately 2 months pregnant and naturally infected with gastrointestinal nematodes. To determine parasite concentration individually, fecal samples were taken from each goat, and the eggs per gram (EPG) of feces was detected via a modified McMaster technique. To investigate the possible effects of parasite concentration on serum mineral levels, blood was drawn from the goats and serum calcium, phosphorus, magnesium, iron, copper, zinc, manganese, nickel, and cadmium levels were measured via the ICP-OES technique. In a correlation analysis of the individual EPG values and mineral levels performed on the basis of the species, it was seen that increased egg numbers did not cause a statistically significant increase or decrease in Saanens except for cadmium (significant moderate positive correlation, p<0.05) for both species. A comparison of the mineral element levels with the lower and upper normal limits in the published literature found that manganese and iron were below the normal range, while zinc and calcium levels were close to the lower limits. It is estimated that the effect of parasite load, which continuously increases with the progression of pregnancy and deliveries, on blood mineral levels would be much more significant.
Buckling analysis for anisotropic laminated plates under combined inplane loads
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
The buckling analysis presented considers rectangular flat or curved general laminates subjected to combined inplane normal and shear loads. Linear theory is used in the analysis. All prebuckling deformations and any initial imperfections are ignored. The analysis method can be readily extended to longitudinally stiffened structures subjected to combined inplane normal and shear loads.
46 CFR 46.15-10 - Subdivision load lines.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 and a “diamond” shall be substituted for the “disk”. No “fresh water” line will be marked. [CGFR... located in line with the highest subdivision load line. (f) One fresh water line shall be marked. When a subdivision and a normal load line are combined, the normal fresh water line only shall be used unless the...
Building with integral solar-heat storage--Starkville, Mississippi
NASA Technical Reports Server (NTRS)
1981-01-01
Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.
Tactile perception of skin and skin cream by friction induced vibrations.
Ding, Shuyang; Bhushan, Bharat
2016-11-01
Skin cream smooths, softens, and moistens skin by altering surface roughness and tribological properties of skin. Sliding generates vibrations that activate mechanoreceptors located in skin. The brain interprets tactile information to identify skin feel. Understanding the tactile sensing mechanisms of skin with and without cream treatment is important to numerous applications including cosmetics, textiles, and robotics sensors. In this study, frequency spectra of friction force and friction induced vibration signals were carried out to investigate tactile perception by an artificial finger sliding on skin. The influence of normal load, velocity, and cream treatment time were studied. Coherence between friction force and vibration signals were found. The amplitude of vibration decreased after cream treatment, leading to smoother perception. Increasing normal load or velocity between contacting surfaces generated a smoother perception with cream treatment, but rougher perception without treatment. As cream treatment time increases, skin becomes smoother. The related mechanisms are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Ultrasonic investigation of granular materials subjected to compression and crushing.
Gheibi, Amin; Hedayat, Ahmadreza
2018-07-01
Ultrasonic wave propagation measurement has been used as a suitable technique for studying the granular materials and investigating the soil fabric structure, the grain contact stiffness, frictional strength, and inter-particle contact area. Previous studies have focused on the variations of shear and compressional wave velocities with effective stress and void ratio, and lesser effort has been made in understanding the variation of amplitude and dominant frequency of transmitted compressional waves with deformation of soil packing. In this study, continuous compressional wave transmission measurements during compaction of unconsolidated quartz sand are used to investigate the impact of soil layer deformation on ultrasonic wave properties. The test setup consisted of a loading machine to apply constant loading rate to a sand layer (granular quartz) of 6 mm thickness compressed between two forcing blocks, and an ultrasonic wave measurement system to continuously monitor the soil layer during compression up to 48 MPa normal stress. The variations in compressional wave attributes such as wave velocity, transmitted amplitude, and dominant frequency were studied as a function of the applied normal stress and the measured normal strain as well as void ratio and particle size. An increasing trend was observed for P-wave velocity, transmitted amplitude and dominant frequency with normal stress. In specimen with the largest particle size (D 50 = 0.32 mm), the wave velocity, amplitude and dominant frequency were found to increase about 230%, 4700% and 320% as the normal stress reached the value of 48 MPa. The absolute values of transmitted wave amplitude and dominant frequency were greater for specimens with smaller particle sizes while the normalized values indicate an opposite trend. The changes in the transmitted amplitude were linked to the changes in the true contact area between the particles with a transitional point in the slope of normalized amplitude, coinciding with the yield stress of the granular soil layer. The amount of grain crushing as a result of increase in the normal stress was experimentally measured and a linear correlation was found between the degree of grain crushing and the changes in the normalized dominant frequency of compressional waves. Copyright © 2018 Elsevier B.V. All rights reserved.
Interface Stability Influences Torso Muscle Recruitment and Spinal Load During Pushing Tasks
LEE, P. J.; GRANATA, K. P.
2006-01-01
Handle or interface design can influence torso muscle recruitment and spinal load during pushing tasks. The objective of the study was to provide insight into the role of interface stability with regard to torso muscle recruitment and biomechanical loads on the spine. Fourteen subjects generated voluntary isometric trunk flexion force against a rigid interface and similar flexion exertions against an unstable interface, which simulated handle design in a cart pushing task. Normalized electromyographic (EMG) activity in the rectus abdominus, external oblique and internal oblique muscles increased with exertion effort. When using the unstable interface, EMG activity in the internal and external oblique muscle groups was greater than when using the rigid interface. Results agreed with trends from a biomechanical model implemented to predict the muscle activation necessary to generate isometric pushing forces and maintain spinal stability when using the two different interface designs. The co-contraction contributed to increased spinal load when using the unstable interface. It was concluded that handle or interface design and stability may influence spinal load and associated risk of musculoskeletal injury during manual materials tasks that involve pushing exertions. PMID:16540437
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Kevin P.; Sortomme, Eric; Venkata, S. S.
The increased level of demand that is associated with the restoration of service after an outage, Cold Load Pick-Up (CLPU), can be significantly higher than pre-outage levels, even exceeding the normal distribution feeder peak demand. These high levels of demand can delay restoration efforts and in extreme cases damage equipment. The negative impacts of CLPU can be mitigated with strategies that restore the feeder in sections, minimizing the load current. The challenge for utilities is to manage the current level on critical equipment while minimizing the time to restore service to all customers. Accurately modeling CLPU events is the firstmore » step in developing improved restoration strategies that minimize restoration times. This paper presents a new method for evaluating the magnitude of the CLPU peak, and its duration, using multi-state load models. The use of multi-state load models allows for a more accurate representation of the end-use loads that are present on residential distribution feeders.« less
Rose, William J.; Robertson, Dale M.; Mergener, Elizabeth A.
2004-01-01
Simulations using water-quality models within the Wisconsin Lake Model Suite (WiLMS) indicated Pike Lake's response to 13 different phosphorus-loading scenarios. These scenarios included a base 'normal' year (2000) for which lake water quality and loading were known, six different percentage increases or decreases in phosphorus loading from controllable sources, and six different loading scenarios corresponding to specific management actions. Model simulations indicate that a 50-percent reduction in controllable loading sources would be needed to achieve a mesotrophic classification with respect to phosphorus, chlorophyll a, and Secchi depth (an index of water clarity). Model simulations indicated that short-circuiting of phosphorus from the inlet to the outlet was the main reason the water quality of the lake is good relative to the amount of loading from the Rubicon River and that changes in the percentage of inlet-to-outlet short-circuiting have a significant influence on the water quality of the lake.
Load estimation from photoelastic fringe patterns under combined normal and shear forces
NASA Astrophysics Data System (ADS)
Dubey, V. N.; Grewal, G. S.
2009-08-01
Recently there has been some spurt of interests to use photoelastic materials for sensing applications. This has been successfully applied for designing a number of signal-based sensors, however, there have been limited efforts to design image-based sensors on photoelasticity which can have wider applications in term of actual loading and visualisation. The main difficulty in achieving this is the infinite loading conditions that may generate same image on the material surface. This, however, can be useful for known loading situations as this can provide dynamic and actual conditions of loading in real time. This is particularly useful for separating components of forces in and out of the loading plane. One such application is the separation of normal and shear forces acting on the plantar surface of foot of diabetic patients for predicting ulceration. In our earlier work we have used neural networks to extract normal force information from the fringe patterns using image intensity. This paper considers geometric and various other statistical parameters in addition to the image intensity to extract normal as well as shear force information from the fringe pattern in a controlled experimental environment. The results of neural network output with the above parameters and their combinations are compared and discussed. The aim is to generalise the technique for a range of loading conditions that can be exploited for whole-field load visualisation and sensing applications in biomedical field.
Combined mode I stress intensity factors of slanted cracks
NASA Astrophysics Data System (ADS)
Ismail, A. E.; Rahman, M. Q. Abdul; Ghazali, M. Z. Mohd; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Fahrul Hassan, Mohd; Nor, Nik Hisyamudin Muhd; Ariffin, A. M. T.; Zaini Yunos, Muhamad
2017-08-01
The solutions of stress intensity factors (SIFs) for slanted cracks in plain strain plate are hard to find in open literature. There are some previous solutions of SIFs available, however the studies are not completed except for the case of plain stress. The slanted cracks are modelled numerically using ANSYS finite element program. There are ten slanted angles and seven relative crack depths are used and the plate contains cracks which is assumed to fulfil the plain strain condition. The plate is then stressed under tension and bending loading and the SIFs are determined according to the displacement extrapolation method. Based on the numerical analysis, both slanted angles and relative crack length, a/L played an important role in determining the modes I and II SIFs. As expected the SIFs increased when a/L is increased. Under tension force, the introduction of slanted angles increased the SIFs. Further increment of angles reduced the SIFs however they are still higher than the SIFs obtained using normal cracks. Under bending moment, the present of slanted angles are significantly reduced the SIFs compared with the normal cracks. Under similar loading, mode II SIFs increased as function of a/L and slanted angles where increasing such parameters increasing the mode II SIFs.
Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven
2015-12-01
Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Wang, S L; Xie, S Y; Zhu, L Y; Wang, F H; Zhou, W Z
2009-12-01
Poly (lactic-co-glycolic acid) (PLGA) was used as a co-emulsifier in the preparation of insulin-loaded solid lipid nanoparticles (SLN) with hydrogenated castor oil as lipid matrix and lecithin as surfactant by double-emulsion technique. The effects of PLGA on the preparation and hypoglycaemic activity of insulin-loaded SLN were studied. The results showed that with the supplement of PLGA, the encapsulation efficiency and loading capacity were increased significantly from 79.08 +/- 1.62 to 85.57 +/- 3.21% and 1.58 +/- 0.03 to 1.71 +/- 0.06%, whereas the surface charge and particle size were changed insignificantly from -25.87 +/- 2.65 to -22.67 +/- 1.19 mv and 431.0 +/- 16.1 to 397.0 +/- 68.0 nm, respectively. In vivo studies demonstrated that PLGA increased the sustained hypoglycaemic activity from 12 to 36 h and 24 to 120 h in normal and steptozotocin-induced diabetic mice after a single intramuscular injection of the insulin-loaded SLN. These results demonstrated that PLGA could enhance the entrapment of insulin in the nanoparticles, and more importantly, prolong the time of hypoglycaemic activity of the insulin-loaded SLN.
Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years
Mueller, Steffen; Carlsohn, Anja; Mueller, Juliane; Baur, Heiner; Mayer, Frank
2016-01-01
Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1–12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0±2.9yr; 1.23±0.19m; 26.6±10.6kg; BMI: 17.1±2.4kg/m2) were included for (complete case) data analysis. Children were categorized to normal-weight (≥3rd and <90th percentile; n = 6458), overweight (≥90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid- and hindfoot. Data was analyzed descriptively (mean ± SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett’s C; α = 0.05). Results Mean walking velocity was 0.95 ± 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p<0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. PMID:26914211
NASA Technical Reports Server (NTRS)
Thornton, Stephen V.
1993-01-01
A transonic fighter-bomber aircraft, having a swept supercritical wing with smooth variable-camber flaps was fitted with a maneuver load control (MLC) system that implements a technique to reduce the inboard bending moments in the wing by shifting the spanwise load distribution inboard as load factor increases. The technique modifies the spanwise camber distribution by automatically commanding flap position as a function of flap position, true airspeed, Mach number, dynamic pressure, normal acceleration, and wing sweep position. Flight test structural loads data were obtained for loads in both the wing box and the wing root. Data from uniformly deflected flaps were compared with data from flaps in the MLC configuration where the outboard segment of three flap segments was deflected downward less than the two inboard segments. The changes in the shear loads in the forward wing spar and at the roots of the stabilators also are presented. The camber control system automatically reconfigures the flaps through varied flight conditions. Configurations having both moderate and full trailing-edge flap deflection were tested. Flight test data were collected at Mach numbers of 0.6, 0.7, 0.8, and 0.9 and dynamic pressures of 300, 450, 600, and 800 lb/sq ft. The Reynolds numbers for these flight conditions ranged from 26 x 10(exp 6) to 54 x 10(exp 6) at the mean aerodynamic chord. Load factor increases of up to 1.0 g achieved with no increase in wing root bending moment with the MLC flap configuration.
Makhsous, Mohsen; Lin, Fang; Bankard, James; Hendrix, Ronald W; Hepler, Matthew; Press, Joel
2009-01-01
Background Compared to standing posture, sitting decreases lumbar lordosis, increases low back muscle activity, disc pressure, and pressure on the ischium, which are associated with occupational LBP. A sitting device that reduces spinal load and low back muscle activities may help increase sitting comfort and reduce LBP risk. The objective of this study is to investigate the biomechanical effect of sitting with a reduced ischial support and an enhanced lumbar support (Off-Loading) on load, interface pressure and muscle activities. Methods A laboratory test in low back pain (LBP) and asymptomatic subjects was designed to test the biomechanical effect of using the Off-Loading sitting posture. The load and interface pressure on seat and the backrest, and back muscle activities associated with usual and this Off-Loading posture were recorded and compared between the two postures. Results Compared with Normal (sitting upright with full support of the seat and flat backrest) posture, sitting in Off-Loading posture significantly shifted the center of the force and the peak pressure on the seat anteriorly towards the thighs. It also significantly decreased the contact area on the seat and increased that on the backrest. It decreased the lumbar muscle activities significantly. These effects are similar in individuals with and without LBP. Conclusion Sitting with reduced ischial support and enhanced lumbar support resulted in reduced sitting load on the lumbar spine and reduced the lumbar muscular activity, which may potentially reduce sitting-related LBP. PMID:19193245
[Taurine as a regulator of fluid-electrolyte balance and arterial pressure].
Ciechanowska, B
1997-01-01
Taurine is a sulfonic beta-amino acid which occurs in the highest concentration in the brain, the retina and in the myocardium. In cardiomyocytes it presents about 50% of free amino acids and plays a role as an osmoregulator, an inotropic factor and has an antiarrhythmic property. Moreover, taurine lowers arterial pressure by extension of diuresis and by vasodilatation. Similar effect on the vascular system and arterial pressure is exerted by atrial natriuretic peptide (ANP). Increase of both ANP secretion and myocardial taurine concentration is present in the same diseases as congestive cardiac failure, hypertension and hypernatremia. The aim of the study was the evaluation of general taurine depletion, caused by making the rats drink guanidinoethyl sulfonate (GES)--an inhibitor of taurine transport affecting fluid balance and arterial pressure as well as plasma ANP concentration under normal conditions and after increase of sodium load. The 103 male Wistar rats weighing 250-300 g were used. The animals were separated into 5 groups. Control group received tap water to drink. Group II was sodium-loaded by drinking 171 mmol/l NaCl. In group III depletion of taurine was obtained by the intake of 60 mmol/l GES. Rats in group IV were drinking 60 mmol/l GES in 171 mmol/l NaCl. Group V was made to drink 200 mmol/l taurine in 171 mmol/l NaCl. All animals had standard food and were able at any time to drink. Duration of the experiment was 20 days. At the onset and after 10 and 20 days the rats were weighed and their systolic blood pressure was measured by tail plethysmography. After 10 and 20 days of the study, plasma and myocardium taurine concentration, ANP, hematocrit, plasma osmolity, natremia, kalemia, urea and creatinine concentrations were determined. Taking GES for 20 days led to 43% decrease of plasma taurine and its myocardium content about 50% as compared to control group (Tab. 2). High, statistically significant correlation (r = 0.50, p < 0.001) between myocardium taurine and plasma ANP was found. The animals with taurine depletion had significantly lower (about 30%) plasma ANP concentration (Tab. 3), higher natremia (Tab. 4) and their arterial pressure increased due to sodium load. Systolic pressure was 11 mm Hg higher in that group in comparison to control and other groups (Tab. 1). However, the sodium-loading of the rats that drank taurine solution led to an increase of hematocrit, plasma osmolity, urea concentration and body mass gain as compared to control group, but without any arterial pressure increase. The sodium-loaded rats with normal plasma and myocardium taurine concentration were affected in a similar manner. The rats with higher myocardium taurine concentration had lower heart mass index. Results of this work lead to the following conclusions: 1. Depletion of taurine in hearts of examined rats leads to a decrease of plasma atrial natriuretic peptide (ANP) concentration in plasma. 2. ANP secretion caused by salt loading is lower in animals with taurine depletion than in normal animals. 3. Sodium-loading of animals with taurine depletion leads to hypernatremia and to an increase of arterial pressure. 4. Addition of taurine to animals loaded with sodium may lead to their dehydration.
NASA Technical Reports Server (NTRS)
Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.
1997-01-01
To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.
Flexural behavior of reinforced concrete beam with polymer coated pumice
NASA Astrophysics Data System (ADS)
Nainggolan, Christin Remayanti; Wijatmiko, Indradi; Wibowo, Ari
2017-09-01
Sustainable development has become an important issue due to the increasing consideration of preserving the nature. Many alternative for coarse aggregate replacement have been investigated ranging from natural and fabricated aggregates. In this study, natural aggregate pumice was investigated since it offers lower density that give paramount benefit in reducing total building weight and hence reducing the earthquake excitation effect and optimizing the structural dimension. However, the characteristic of porous surfaces of pumice causes excessive water absorption during concrete mixing process. Therefore, to reduce the additional water, the pumice aggregates were coated with polymer. The tested specimens consisted of normal concrete beams (NCB), uncoated pumice aggregate concrete beam (UPA) and polymer coated pumice aggregate concrete beam (PCP). The objective of the research was to obtain the effect of coating on the pumice aggregate to the flexural behavior of concrete beams. The lateral load-displacement behavior, ductility and collapse mechanism were studied. The results showed that there were only marginal drop on the load-carrying capacity of the pumice aggregate beam compared to those of normal beam. Additionally, the ductility coefficient of specimens UPA and PCP decreased of 11,97% and 14,03% respectively compared to NCB, and the ultimate load capacity decreased less than 1%. Overall, the pumice aggregate showed good characteristic for replacing normal coarse aggregate.
Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Chun-Li
2014-12-13
This study investigates CAD/CAM ceramic cusp-replacing restoration resistance with and without buccal cusp replacement under static and dynamic cyclic loads, monitored using the acoustic emission (AE) technique. The cavity was designed in a typical MODP (mesial-occlusal-distal-palatal) restoration failure shape when the palatal cusp has been lost. Two ceramic restorations [without coverage (WOC) and with (WC) buccal cuspal coverage with 2.0 mm reduction in cuspal height] were prepared to perform the fracture and fatigue tests with normal (200 N) and high (600 N) occlusal forces. The load versus AE signals in the fracture and fatigue tests were recorded to evaluate the restored tooth failure resistance. The results showed that non-significant differences in load value in the fracture test and the accumulated number of AE signals under normal occlusal force (200 N) in the fatigue test were found between with and without buccal cuspal coverage restorations. The first AE activity occurring for the WOC restoration was lower than that for the WC restoration in the fracture test. The number of AE signals increased with the cyclic load number. The accumulated number of AE signals for the WOC restoration was 187, higher than that (85) for the WC restoration under 600 N in the fatigue test. The AE technique and fatigue tests employed in this study were used as an assessment tool to evaluate the resistances in large CAD/CAM ceramic restorations. Non-significant differences in the tested fracture loads and accumulated number of AE signals under normal occlusal force (200 N) between different restorations indicated that aggressive treatment (with coverage preparation) in palatal cusp-replacing ceramic premolars require more attention for preserving and protecting the remaining tooth.
Loewenstein, David A; Curiel, Rosie E; Greig, Maria T; Bauer, Russell M; Rosado, Marian; Bowers, Dawn; Wicklund, Meredith; Crocco, Elizabeth; Pontecorvo, Michael; Joshi, Abhinay D; Rodriguez, Rosemarie; Barker, Warren W; Hidalgo, Jacqueline; Duara, Ranjan
2016-10-01
To examine the utility of a novel "cognitive stress test" to detect subtle cognitive impairments and amyloid load within the brains of neuropsychologically normal community-dwelling elders. Participants diagnosed as cognitively normal (CN), subjective memory impairment (SMI), mild cognitive impairment (MCI), and preclinical mild cognitive impairment (PreMCI) were administered the Loewenstein-Acevedo Scale for Semantic Interference and Learning (LASSI-L), a sensitive test of proactive semantic interference (PSI), retroactive semantic interference, and, uniquely, the ability to recover from the effects of PSI. Ninety-three subjects (31 men and 62 women) were recruited from three academic institutions in a research consortium. A subset of these individuals underwent 18F florbetapir positron emission tomography scanning. Relative percentages of impairment for each diagnostic group on the LASSI-L were calculated by χ(2) and Fisher's exact tests. Spearman's rho was used to examine associations between amyloid load and different cognitive measures. LASSI-L deficits were identified among 89% of those with MCI, 47% with PreMCI, 33% with SMI, and 13% classified as CN. CN subjects had no difficulties with recovery from PSI, whereas SMI, preMCI, and MCI participants evidenced deficits in recovery from PSI effects. Among a subgroup of participants with normal scores on traditional neuropsychological tests, the strong associations were between the failure to recover from the effects of PSI and amyloid load in the brain. Failure to recover or compensate for the effects of PSI on the LASSI-L distinguishes the LASSI-L from other widely used neuropsychological tests and appears to be sensitive to subtle cognitive impairments and increasing amyloid load. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Optimization of doxorubicin loading for superabsorbent polymer microspheres: in vitro analysis.
Liu, David M; Kos, Sebastian; Buczkowski, Andrzej; Kee, Stephen; Munk, Peter L; Klass, Darren; Wasan, Ellen
2012-04-01
This study was designed to establish the ability of super-absorbent polymer microspheres (SAP) to actively uptake doxorubicin and to establish the proof of principle of SAP's ability to phase transfer doxorubicin onto the polymer matrix and to elute into buffer with a loading method that optimizes physical handling and elution characteristics. Phase I: 50-100 μm SAP subject to various prehydration methods (normal saline 10 cc, hypertonic saline 4 cc, iodinated contrast 10 cc) or left in their dry state, and combined with 50 mg of clinical grade lyophilized doxorubicin reconstituted with various methods (normal saline 10 cc and 25 cc, sterile water 4 cc, iodinated contrast 5 cc) were placed in buffer and assessed based on loading, handling, and elution utilizing high-performance liquid chromatography (HPLC). Phase II: top two performing methods were subject to loading of doxorubicin (50, 75, 100 mg) in a single bolus (group A) or as a serial loading method (group B) followed by measurement of loading vs. time and elution vs. time. Phase I revealed the most effective loading mechanisms and easiest handling to be dry (group A) vs. normal saline prehydrated (group B) SAP with normal saline reconstituted doxorubicin (10 mg/mL) with loading efficiencies of 83.1% and 88.4%. Phase II results revealed unstable behavior of SAP with 100 mg of doxorubicin and similar loading/elution profiles of dry and prehydrated SAP, with superior handling characteristics of group B SAP at 50 and 75 mg. SAP demonstrates the ability to load and bulk phase transfer doxorubicin at 50 and 75 mg with ease of handling and optimal efficiency through dry loading of SAP.
Optimization of Doxorubicin Loading for Superabsorbent Polymer Microspheres: in vitro Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, David M., E-mail: dave.liu@vch.ca; Kos, Sebastian; Buczkowski, Andrzej
2012-04-15
Purpose: This study was designed to establish the ability of super-absorbent polymer microspheres (SAP) to actively uptake doxorubicin and to establish the proof of principle of SAP's ability to phase transfer doxorubicin onto the polymer matrix and to elute into buffer with a loading method that optimizes physical handling and elution characteristics. Methods: Phase I: 50-100 {mu}m SAP subject to various prehydration methods (normal saline 10 cc, hypertonic saline 4 cc, iodinated contrast 10 cc) or left in their dry state, and combined with 50 mg of clinical grade lyophilized doxorubicin reconstituted with various methods (normal saline 10 cc andmore » 25 cc, sterile water 4 cc, iodinated contrast 5 cc) were placed in buffer and assessed based on loading, handling, and elution utilizing high-performance liquid chromatography (HPLC). Phase II: top two performing methods were subject to loading of doxorubicin (50, 75, 100 mg) in a single bolus (group A) or as a serial loading method (group B) followed by measurement of loading vs. time and elution vs. time. Results: Phase I revealed the most effective loading mechanisms and easiest handling to be dry (group A) vs. normal saline prehydrated (group B) SAP with normal saline reconstituted doxorubicin (10 mg/mL) with loading efficiencies of 83.1% and 88.4%. Phase II results revealed unstable behavior of SAP with 100 mg of doxorubicin and similar loading/elution profiles of dry and prehydrated SAP, with superior handling characteristics of group B SAP at 50 and 75 mg. Conclusions: SAP demonstrates the ability to load and bulk phase transfer doxorubicin at 50 and 75 mg with ease of handling and optimal efficiency through dry loading of SAP.« less
Comparison of plantar pressures and contact area between normal and cavus foot.
Fernández-Seguín, Lourdes M; Diaz Mancha, Juan Antonio; Sánchez Rodríguez, Raquel; Escamilla Martínez, Elena; Gómez Martín, Beatriz; Ramos Ortega, Javier
2014-02-01
In pes cavus, the medial longitudinal arch elevation reduces the contact surface area and consequently increases the corresponding plantar pressure measurements. This poor distribution of loads may produce associated pathology and pain in this or other areas of the body. Normal reference values need to be established in order to determine which patterns are prone to pathology. To compare the plantar pressures and weight-bearing surface in a population with pes cavus to a population with neutral feet. The sample comprised 68 adults, 34 with pes cavus and 34 with neutral feet. The Footscan USB Gait Clinical System(®) was used as a platform to measure the total contact area and plantar pressure under the forefoot, midfoot, hindfoot, each metatarsal head, and the overall metatarsal area. A statistical analysis of the data was performed using Student's t-test for independent samples. The pes cavus subjects showed a significant reduction in their weight-bearing area [neutral feet: 165.04 ( ± 20.68) cm(2); pes cavus: 118.26 ( ± 30.31) cm(2); p < 0.001] and significantly increased pressures under all zones of the forefoot except the fifth metatarsal [metatarsal pressure: in neutral feet 503,797 ( ± 9.32) kPa; in pes cavus 656.12 ( ± 22.39) kPa; p < 0.001]. Compared to neutral feet, pes cavus feet show a reduction in total contact surface and the load under the first toe. A significant increase is present in the load under the metatarsal areas, but the relative distribution of this load is similar in both groups. Copyright © 2013 Elsevier B.V. All rights reserved.
Patzer, Thilo; Habermeyer, Peter; Hurschler, Christof; Bobrowitsch, Evgenij; Wellmann, Mathias; Kircher, Joern; Schofer, Markus D
2012-11-01
Biomechanical studies have shown increased glenohumeral translation and loading of the long head biceps (LHB) tendon after superior labrum anterior to posterior (SLAP) tears. This may explain some of the typical clinical findings, including the prevalence of humeral chondral lesions, after SLAP lesions. The first hypothesis was that SLAP repair could restore the original glenohumeral translation and reduce the increased LHB load after SLAP lesions. The second hypothesis was that SLAP repair after LHB tenotomy could significantly reduce the increased glenohumeral translation. Biomechanical testing was performed on 21 fresh frozen human cadaveric shoulders with an intact shoulder girdle using a sensor-guided industrial robot to apply 20 N of compression in the joint and 50 N translational force at 0°, 30°, and 60° of abduction. LHB loading was measured by a load-cell with 5 N and 25 N preload. Type IIC SLAP lesions were created arthroscopically, and a standardized SLAP repair was done combined with or without LHB tenotomy. No significant difference of glenohumeral translation and increased LHB load in SLAP repair compared with the intact shoulder was observed under 5 N and 25 LHB preload, except for anterior translation under 25 N LHB preload. After LHB tenotomy after SLAP lesions, no significant difference of translation was observed with or without SLAP repair. SLAP repair without associated LHB tenotomy helps normalize glenohumeral translation and LHB loading. The stabilizing effect of the SLAP complex is dependent on the LHB. After biceps tenotomy, SLAP repair does not affect glenohumeral translation. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Cancel, Mathilde; Grimard, Guy; Thuillard-Crisinel, Delphine; Moldovan, Florina; Villemure, Isabelle
2009-02-01
Mechanical loads are essential to normal bone growth, but excessive loads can lead to progressive deformities. In addition, growth plate extracellular matrix remodelling is essential to regulate the normal longitudinal bone growth process and to ensure physiological bone mineralization. In order to investigate the effects of static compression on growth plate extracellular matrix using an in vivo animal model, a loading device was used to precisely apply a compressive stress of 0.2 MPa for two weeks on the seventh caudal vertebra (Cd7) of rats during the pubertal growth spurt. Control, sham and loaded groups were studied. Growth modulation was quantified based on calcein labelling, and three matrix components (type II and X collagens, and aggrecan) were assessed using immunohistochemistry/safranin-O staining. As well, extracellular matrix components and enzymes (MMP-3 and -13, ADAMTS-4 and -5) were studied by qRT-PCR. Loading reduced Cd7 growth by 29% (p<0.05) and 15% (p=0.07) when compared to controls and shams respectively. No significant change could be observed in the mRNA expression of collagens and the proteolytic enzyme MMP-13. However, MMP-3 was significantly increased in the loaded group as compared to the control group (p<0.05). No change was observed in aggrecan and ADAMTS-4 and -5 expression. Low immunostaining for type II and X collagens was observed in 83% of the loaded rats as compared to the control rats. This in vivo study shows that, during pubertal growth spurt, two-week static compression reduced caudal vertebrae growth rates; this mechanical growth modulation occurred with decreased type II and X collagen proteins in the growth plate.
Naserkhaki, Sadegh; Jaremko, Jacob L; El-Rich, Marwan
2016-09-06
There is a large, at times contradictory, body of research relating spinal curvature to Low Back Pain (LBP). Mechanical load is considered as important factor in LBP etiology. Geometry of the spinal structures and sagittal curvature of the lumbar spine govern its mechanical behavior. Thus, understanding how inter-individual geometry particularly sagittal curvature variation affects the spinal load-sharing becomes of high importance in LBP assessment. This study calculated and compared kinematics and load-sharing in three ligamentous lumbosacral spines: one hypo-lordotic (Hypo-L) with low lordosis, one normal-lordotic (Norm-L) with normal lordosis, and one hyper-lordotic (Hyper-L) with high lordosis in flexed and extended postures using 3D nonlinear Finite Element (FE) modeling. These postures were simulated by applying Follower Load (FL) combined with flexion or extension moment. The Hypo-L spine demonstrated stiffer behavior in flexion but more flexible response to extension compared to the Norm-L spine. The excessive lordosis stiffened response of the Hyper-L spine to extension but did not affect its resistance to flexion compared to the Norm-L spine. Despite the different resisting actions of the posterior ligaments to flexion moment, the increase of disc compression was similar in all the spines leading to similar load-sharing. However, resistance of the facet joints to extension was more important in the Norm- and Hyper-L spines which reduced the disc compression. The spinal curvature strongly influenced the magnitude and location of load on the spinal components and also altered the kinematics and load-sharing particularly in extension. Consideration of the subject-specific geometry and sagittal curvature should be an integral part of mechanical analysis of the lumbar spine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of hyperthyroidism on growth hormone secretion.
Valcavi, R; Dieguez, C; Zini, M; Muruais, C; Casanueva, F; Portioli, I
1993-05-01
Hyperthyroidism is associated with altered GH secretion. Whether this is due to changes of somatotroph responsiveness or reflects an alteration in negative feedback signals at the hypothalamic level is unknown. We therefore performed a series of studies to shed some light onto this issue. Study 1: GHRH (1 microgram/kg b.w.) was injected i.v. in 38 hyperthyroid patients and in 30 normal subjects; in 11 of the patients the GHRH test was repeated following methimazole-induced remission of hyperthyroidism. Study 2: hGH (2 U i.v.) or saline were administered 3 hours prior to GHRH; six hyperthyroid patients and six normal subjects were studied. Study 3: ten normal subjects and ten hyperthyroid patients were given 75 g oral glucose or water 30 minutes before GHRH. Study 4: 11 normal subjects and eight hyperthyroid patients were studied. TRH or vehicle were dissolved in 250 ml of saline solution and infused at a rate of 400 micrograms/h for 150 minutes. Thirty minutes after the beginning of the infusions, L-arginine (30 g infused over 45 min i.v.) was administered. Hyperthyroid patients were compared to normal subjects. Growth hormone was measured by RIA at 15-minute intervals. GH responses to GHRH were subnormal in hyperthyroid patients. Following antithyroid drug treatment with methimazole, GH responses to GHRH increased in these patients in comparison to pretreatment values. Serum IGF-I levels, which were elevated before treatment, decreased after methimazole administration. Exogenous GH administration induced a clear decrease of GH responses to GHRH in both control and hyperthyroid subjects. On the other hand, oral glucose load decreased the GH responses to GHRH in normal but not in hyperthyroid subjects. TRH administration did not modify the GH responses to arginine in either normal subjects or hyperthyroid patients. Hyperthyroidism is associated with increased serum IGF-I levels and marked alterations in the neuroregulation of GH secretion. These changes involve decreased GH responsiveness to GHRH at the pituitary level and, at the hypothalamic level, a lack of suppressive effect of an oral glucose load. The normal inhibitory effect of exogenous GH administration but not of an oral glucose load in hyperthyroid patients suggests that these two feedback signals act through different mechanisms. The lack of effect of a TRH infusion on GH responses to L-arginine in normal and hyperthyroid patients makes an inhibitory role for TRH in GH secretion unlikely, at least in Caucasian subjects.
Li, Wanzhong; Xu, Yingqiang; He, Huiming; Zhao, Haidan; Sun, Jian; Hou, Yue
2015-01-01
Clinical cases show that zirconia restoration could happen fracture by accident under overloading after using a period of time. The purpose of this study is to research mechanical behavior and predict lifetime of dental zirconia ceramics under cyclic normal contact loading with experiments. Cyclic normal contact loading test and three point bending test are carried on specimens made of two brands of dental zirconia ceramic to obtain flexure strength and damage degree after different number of loading cycles. By means of damage mechanics model, damage degree under different number of contact loading cycles are calculated according to flexure strength, and verified by SEM photographs of cross section morphology of zirconia ceramics specimen phenomenologically. Relation curve of damage degree and number of cycles is fitted by polynomial fitting, then the number of loading cycles can be concluded when the specimen is complete damage. Strength degradation of two brands dental zirconia ceramics are researched in vitro, and prediction method of contact fatigue lifetime is established.
The road to LOAD: late-onset Alzheimer's disease and a possible way to block it.
Whitfield, James F
2007-10-01
The ageing brain becomes increasingly less able to destroy or eject toxic amyloid (A) beta42 peptide byproducts of normal neuronal activity that consequently accumulate to induce Alzheimer's disease (AD). Therefore, the various components of the Abeta-clearing machinery are prime targets for AD therapeutics. In this connection, there are reports that taking statins to lower circulating cholesterol to prevent cardiovascular disease can also prevent late-onset AD (LOAD) the most common form of the disease. However, it seems unlikely that statins would prevent LOAD by lowering the very long-lived brain cholesterol that is controlled independently from the very much shorter-lived circulating cholesterol. In fact, reducing the ability of the brain astrocytes to make cholesterol for their closely associated neuron clients' synaptogenesis could damage the brain rather than protect it. However, a plausible way statins might prevent LOAD is to target a main component of the clearance machinery, low-density lipoprotein receptor-related protein 1 (LRP1), the brain's powerful Abeta-efflux driver. This is indicated by a reported ability of micromolar concentrations of lovastatin and simvastatin to strongly stimulate brain vascular endothelial cells to make this Abeta ejector. Therefore, if this holds up, taking a statin over the years would prevent the normal decline of LRP1 in the ageing brain and a LOAD-driving accumulation of Abeta.
Eye-Target Synchrony and Attention
NASA Astrophysics Data System (ADS)
Contreras, R.; Kolster, R.; Basu, S.; Voss, H. U.; Ghajar, J.; Suh, M.; Bahar, S.
2007-03-01
Eye-target synchrony is critical during smooth pursuit. We apply stochastic phase synchronization to human pursuit of a moving target, in both normal and mild traumatic brain injured (TBI) subjects. Smooth pursuit utilizes the same neural networks used by attention. To test whether smooth pursuit is modulated by attention, subjects tracked a target while loaded with tasks involving working memory. Preliminary results suggest that additional cognitive load increases normal subjects' performance, while the effect is reversed in TBI patients. We correlate these results with eye-target synchrony. Additionally, we correlate eye-target synchrony with frequency of target motion, and discuss how the range of frequencies for optimal synchrony depends on the shift from attentional to automatic-response time scales. Synchrony deficits in TBI patients can be correlated with specific regions of brain damage imaged with diffusion tensor imaging (DTI).
Recovery of ammonia from anaerobically digested manure using gas-permeable membranes
USDA-ARS?s Scientific Manuscript database
The gas-permeable membrane process can recover ammonia from wastewater with high nitrogen load, reducing pollution whilst converting ammonia into an ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali....
Silva, Danilo de Oliveira; Briani, Ronaldo Valdir; Pazzinatto, Marcella Ferraz; Ferrari, Deisi; Aragão, Fernando Amâncio; Azevedo, Fábio Mícolis de
2015-11-01
Stair ascent is an activity that exacerbates symptoms of individuals with patellofemoral pain. The discomfort associated with this activity usually results in gait modification such as reduced knee flexion in an attempt to reduce pain. Although such compensatory strategy is a logical approach to decrease pain, it also reduces the normal active shock absorption increasing loading rates and may lead to deleterious and degenerative changes of the knee joint. Thus, the aims of this study were (i) to investigate whether there is reduced knee flexion in adults with PFP compared to healthy controls; and (ii) to analyze loading rates in these subjects, during stair climbing. Twenty-nine individuals with patellofemoral pain and twenty-five control individuals (18-30 years) participated in this study. Each subject underwent three-dimensional kinematic and kinetic analyses during stair climbing on two separate days. Between-groups analyses of variance were performed to identify differences in peak knee flexion and loading rates. Intraclass correlation coefficient was performed to verify the reliability of the variables. On both days, the patellofemoral pain group demonstrated significantly reduced peak knee flexion and increased loading rates. In addition, the two variables obtained high to very high reliability. Reduced knee flexion during stair climbing as a strategy to avoid anterior knee pain does not seem to be healthy for lower limb mechanical distributions. Repeated loading at higher loading rates may be damaging to lower limb joints. Copyright © 2015 Elsevier Ltd. All rights reserved.
Beus, Michael J.; McCoy, William G.
1998-01-01
Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.
Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation
NASA Technical Reports Server (NTRS)
Koide, M.; Carabello, B. A.; Conrad, C. C.; Buckley, J. M.; DeFreyte, G.; Barnes, M.; Tomanek, R. J.; Wei, C. C.; Dell'Italia, L. J.; Cooper, G. 4th;
1999-01-01
Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 +/- 3 mmHg in normals to 68 +/- 4 mmHg in PAB, 65 +/- 5 mmHg in PAB plus losartan and 62 +/- 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 +/- 0.04 g/kg in normals to 1.11 +/- 0.06 g/kg in PAB, 1.06 +/- 0.06 g/kg in PAB plus losartan and 1.06 +/- 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the hypertrophic response; and 3) load, independent of the RAS, is capable of stimulating cardiac growth.
Increased Renal Iron Accumulation in Hypertensive Nephropathy of Salt-Loaded Hypertensive Rats
Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Fujii, Aya; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Morisawa, Daisuke; Ohyanagi, Mitsumasa; Tsujino, Takeshi; Masuyama, Tohru
2013-01-01
Although iron is reported to be associated with the pathogenesis of chronic kidney disease, it is unknown whether iron participates in the pathophysiology of nephrosclerosis. Here, we investigate whether iron is involved in the development of hypertensive nephropathy and the effects of iron restriction on nephrosclerosis in salt- loaded stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were given either a normal or high-salt diet for 8 weeks. Another subset of SHRSP were fed a high-salt with iron-restricted diet. SHRSP given a high-salt diet developed severe hypertension and nephrosclerosis. As a result, survival rate was decreased after 8 weeks diet. Importantly, massive iron accumulation and increased iron content were observed in the kidneys of salt-loaded SHRSP, along with increased superoxide production, urinary 8-Hydroxy-2′-deoxyguanosine excretion, and urinary iron excretion; however, these changes were markedly attenuated by iron restriction. Of interest, expression of cellular iron transport proteins, transferrin receptor 1 and divalent metal transporter 1, was increased in the tubules of salt-loaded SHRSP. Notably, iron restriction attenuated the development of severe hypertension and nephrosclerosis, thereby improving survival rate in salt-loaded SHRSP. Taken together, these results suggest a novel mechanism by which iron plays a role in the development of hypertensive nephropathy and establish the effects of iron restriction on salt-induced nephrosclerosis. PMID:24116080
Indirect evidence of calcitonin secretion in man.
Caniggia, A; Gennari, C; Vattimo, A; Nardi, P; Nuti, R
1976-09-01
1. The effect of calcitonin, a large amount of calcium given orally, pentagastrin and glucagon on plasma 47Ca radioactivity curves in subjects pretreated with 47Ca was examined. 2. A sudden increase of plasma radioactivity after intravenous administration of calcitonin and pentagastrin and after the oral calcium load was observed in normal subjects; the intravenous infusion of glucagon was less effective. 3. Two thyroparathyroidectomized patients who responded to the calcitonin infusion did not respond to the oral calcium load. 4. These data may be considered to offer indirect evidence of endogenous calcitonin secretion in man.
Raahave, Dennis
2015-03-01
The present studies explored whether faecal retention in the colon is a causative factor in functional bowel disease, appendicitis, and haemorrhoids. Faecal retention was characterized by colon transit time (CTT) after radio-opaque marker ingestion and estimation of faecal loading on abdominal radiographs at 48 h and 96 h. Specific hypotheses were tested in patients (n = 251 plus 281) and in healthy random controls (n = 44). A questionnaire was completed for each patient, covering abdominal and anorectal symptoms and without a priori grouping. Patients with functional bowel disorders, predominantly women, had a significantly increased CTT and faecal load compared to controls. The CTT was significantly and positively correlated with segmental and total faecal loading. The faecal load was equal at 48 h and 96 h, mirroring the presence of permanent faecal reservoirs. In these first clinical studies to correlate bowel symptoms with CTT and colon faecal loading, abdominal bloating was significantly correlated with faecal loading in the right colon, total faecal load, and CTT. Abdominal pain was significantly and positively correlated to distal faecal loading and significantly associated with bloating. A new phenomenon with a high faecal load and a normal CTT was observed in a subset of patients (n = 90), proving faecal retention as hidden constipation. The CTT and faecal load were significantly higher in the right-side compared to the left and distal segments. Within the control group of healthy persons, the right-sided faecal load was significantly greater than the left and distal load. The CTT and faecal load significantly positively correlated with a palpable mass in the left iliac fossa and meteorism. Cluster analysis revealed that CTT and faecal load positively correlated with a symptom factor consisting of bloating, proctalgia and infrequent defecation of solid faeces. On the other hand, CTT and faecal load negatively correlated with a symptom factor comprising frequent easy defecations, repetitiveness, and incompleteness with solid or liquid faeces. The majority of patients with a heavy faecal load but normal CTT had repetitive daily defecation, mostly with ease and with altering faecal consistence. Flue-like episodes co-existed in symptom factors with abdominal pain and meteorism, and these symptoms together with a palpable right iliac fossa mass and tenderness, and in other factors with seldom and difficult defecation, and with epigastric discomfort and halitosis. Patients with seldom and difficult defecation of solid faeces experienced abdominal pain significantly more often and presented a palpable mass in the right iliac fossa with tenderness and meteorism. The CTT was significantly prolonged and faecal load significantly increased. In patients with a normal CTT and increased faecal load, only patients with abdominal pain had a significant correlation between faecal loading and bloating. CTT and faecal load were shown for the first time to increase significantly with the number of colonic redundancies (colon length), which also resulted in significantly increased bloating and pain. Intervention with a bowel stimulation regimen combining a fibre-rich diet, fluid, physical activity, and a prokinetic drug was essential to proving that abdominal symptoms and defecation disorders are caused by faecal retention, with or without a prolonged CTT. The CTT was significantly reduced, as was faecal load. Bloating and pain were reduced significantly. The defecation became easy with solid faeces, towards one per day and with significant reductions in incompleteness and repetitiveness. Proctalgia and flue-like episodes were significantly reduced. The intervention significantly reduced the presence of a tender palpable mass in the right fossa and rectal constipation. In patients with a normal CTT but increased faecal load, the intervention did not significantly change the CTT or load, but bloating and pain were significantly reduced, just as defecation improved overall. The novel knowledge of faecal retention in the patients does not explain why faecal retention occurs. However, it may be inferred from the present results that a constipated or irritable bowel may belong to the same underlying disease dimension, where faecal retention is a common factor. Thus, measuring CTT and faecal load is suggested as a guide to a positive functional diagnosis of bowel disorders compared to the constellation of symptoms alone. Thirty-five patients underwent surgery after being refractory to the conservative treatment for constipation. They had a significantly prolonged CTT and heavy faecal loading, which was responsible for the aggravated abdominal and defaecatory symptoms. The operated patients presented with a redundant colon (dolichocolon) significantly more often. These patients also had an extremely high rate of previous appendectomy. Twenty-one patients underwent hemicolectomy, and 11 patients had a subtotal colectomy with an ileosigmoidal anastomosis; three patients received a stoma. However, some patients had to have the initial segmental colectomy converted to a final subtotal colectomy because of persisting symptoms. Six more subtotal colectomies have been performed and the leakage rate of all colectomies is then 4.9 % (one patient died). After a mean follow-up of 5 years, the vast majority of patients were without abdominal pain and bloating, having two to four defecations daily with control and their quality of life had increased considerably. A faecalith is often located in the appendix, the occlusion of which is responsible for many cases of acute appendicitis, which is infrequent in all except white populations. An effort to trace the origin of the faecalith to faecal retention in the colon was made in a case control study (56 patients and 44 random controls). The CTT was longer and faecal load greater in patients with appendicitis compared to controls, though the difference was not significant. Power calculations showed that more patients were needed to reach statistical significance for these parameters. The presence of a faecalith was most often associated with a gangrenous or perforated appendix. No significant differences were found between the CTT and faecal load of patients who had or did not have a faecalith. However, the right-sided faecal load was significantly higher than the left and distal load. Haemorrhoids are often a consequence of constipation and defaecatory disorders and were found in every second patient with functional bowel disorders. The present studies are the first Danish reports of a novel operation to cure this disease, stapled haemorrhoidopexy (n = 40 and 258 patients). The majority of patients had prolapsed haemorrhoids, and the durability of procedure was confirmed with a follow-up of up to 5 years, meaning a normal anus. The operation time was short, post-operative pain was low, and recovery was rapid. No incontinence was observed, and patient satisfaction was high and significantly correlated with the appearance of a normal anus without prolapse. The cumulative risk of re-operation was greatest in the first 2 years after the stapled haemorrhoidopexy. Patients with persisting haemorrhoidal prolapse had the procedure repeated with results as good as those obtained in the rest of the patients. It was shown in a statistical model that the preoperative severity of haemorrhoidal disease and the immediate postoperative result contributed significantly to predicting the outcome that is the durability of the operation. The most frequent post-operative complication was bleeding requiring surgical haemostasis. One serious complication occurred after an anastomotic leak from a highly placed anastomosis, resulting in retro rectal, retro- and intra-peritoneal, and mediastinal gas. The patient recovered after conservative treatment and without surgical intervention. The stapling technique now used has revolutionized the surgical treatment of prolapsing haemorrhoids. Finally, a common cause may be suspected for diseases constantly associated with one another. Epidemiological evidence has recognized that constipation, diverticulosis and IBS increase the risk of colon cancer (and adenomas), diseases exceedingly rare in communities exempt from appendicitis. Haemorrhoids are a colonic co-morbidity as well. Notably, the patients with a functional bowel disorder had a much higher rate of a previous appendectomy than the background population. In addition, the patients who had previously had an appendectomy had a significantly longer CTT compared to patients, who had not. The data points to the involvement of faecal retention in the origin of faecaliths and, thus, acute appendicitis. Faecal reservoirs were shown in the right and left colon segments in both patients and controls, which are the same areas bearing the highest incidences of adenomateous polyps and malignancies. Familial colorectal cancer occurred significantly more often in patients who had a higher faecal load than the controls. Four malignancies and 25 adenomas were identified. An increased faecal load in the colon with or without delayed transit will increase bacterial counts and create a chronic inflammation of the colonic mucosa, which is a risk factor for cancer onset. A functional bowel disorder is then likely to occur with gradually transition from a primary functional disease into specific organic diseases. A diet rich in fibre and regular physical activity have a therapeutic and preventive effect on colorectal diseases associated with faecal retention. A “common cause” was earlier proposed for constipation, colon diverticula, cancer, appendicitis, and haemorrhoids. The actual results of the present studies support this unifying theory for these diet-related diseases, in which the functional retention of faeces maybe the common cause.
A systematic experimental investigation of significant parameters affecting model tire hydroplaning
NASA Technical Reports Server (NTRS)
Wray, G. A.; Ehrlich, I. R.
1973-01-01
The results of a comprehensive parametric study of model and small pneumatic tires operating on a wet surface are presented. Hydroplaning inception (spin down) and rolling restoration (spin up) are discussed. Conclusions indicate that hydroplaning inception occurs at a speed significantly higher than the rolling restoration speed. Hydroplaning speed increases considerably with tread depth, surface roughness and tire inflation pressure of footprint pressure, and only moderately with increased load. Water film thickness affects spin down speed only slightly. Spin down speed varies inversely as approximately the one-sixth power of film thickness. Empirical equations relating tire inflation pressure, normal load, tire diameter and water film thickness have been generated for various tire tread and surface configurations.
Thiros, Susan A.
2017-03-23
The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.The flow-normalized dissolved-solids loads estimated at Duchesne River near Randlett, UT, and White River near Watson, UT, decreased by 68,000 and 55,300 tons, or 27.8 and 20.8 percent respectively, when comparing 1989 to 2013. The drainage basins for both rivers have undergone salinity-control projects since the early 1980s to reduce the dissolved-solids load entering the Colorado River. Approximately 19 percent of the net change in flow-normalized load at Green River at Green River, UT, is from changes in load modeled at Duchesne River near Randlett, UT, and 16 percent from changes in load modeled at White River near Watson, UT. The net change in flow-normalized load estimated at Green River near Greendale, UT, for WY 1989–2013 accounts for about 45 percent of the net change estimated at Green River at Green River, UT.Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites in the Duchesne River Basin show that 75,400 tons or 44 percent of the load at the Duchesne River near Randlett, UT, gaging station was not accounted for at any of the upstream gages. Most of this unmonitored load is derived from tributary inflow, groundwater discharge, unconsumed irrigation water, and irrigation tail water.A mass balance of WY 1989–2013 flow-normalized loads estimated at sites in the Duchesne River Basin indicates that the flow-normalized load of unmonitored inflow to the Duchesne River between the Myton and Randlett gaging stations decreased by 38 percent. The total net decrease in flow-normalized load calculated for unmonitored inflow in the drainage basin accounts for 94 percent of the decrease in WY 1989–2013 flow-normalized load modeled at the Duchesne River near Randlett, UT, gaging station. Irrigation improvements in the drainage basin have likely contributed to the decrease in flow-normalized load.Reductions in dissolved-solids load estimated by the Natural Resources Conservation Service (NRCS) and the Bureau of Reclamation (Reclamation) from on- and off-farm improvements in the Uinta Basin totaled about 135,000 tons in 2013 (81,900 tons from on-farm improvements and 53,300 tons from off-farm improvements). The reduction in dissolved-solids load resulting from on- and off-farm improvements facilitated by the NRCS and Reclamation in the Price River Basin from 1989 to 2013 was estimated to be 64,800 tons.The amount of sprinkler-irrigated land mapped in the drainage area or subbasin area for a gaging station was used to estimate the reduction in load resulting from the conversion from flood to sprinkler irrigation. Sprinkler-irrigated land mapped in the Uinta Basin totaled 109,630 acres in 2012. Assuming conversion to wheel-line sprinklers, a reduction in dissolved-solids load in the Uinta Basin of 95,800 tons in 2012 was calculated using the sprinkler-irrigation acreage and a pre-salinity-control project dissolved-solids yield of 1.04 tons per acre.A reduction of 72,800 tons in dissolved-solids load from irrigation improvements was determined from sprinkler-irrigated lands in the Ashley Valley and Jensen, Pelican Lake, and Pleasant Valley areas (mapped in 2012); and in the Price River Basin (mapped in 2011). This decrease in dissolved-solids load is 8,800 tons more than the decrease in unmonitored flow-normalized dissolved-solids load (-64,000 tons) determined for the Green River between the Jensen and Green River gaging stations.The net WY 1989–2013 change in flow-normalized dissolved-solids load at the Duchesne River near Randlett, UT, and the Green River between the Jensen and Green River, UT, gaging stations determined from mass-balance calculations was compared to reported reductions in dissolved-solids load from on- and off-farm improvements and estimated reductions in load determined from mapped sprinkler-irrigated areas in the Duchesne River Basin and the area draining to the Green River between the Jensen and Green River gaging stations. The combined NRCS and Reclamation estimates of reduction in dissolved-solids load from on- and off-farm improvements in the study area (200,000 tons) is more than the reduction in load estimated using the acreage with sprinkler improvements (136,000 tons) or the mass-balance of flow-normalized load (132,000 tons).
Adaptation to a cortex controlled robot attached at the pelvis and engaged during locomotion in rats
Song, Weiguo; Giszter, Simon F.
2011-01-01
Brain Machine Interfaces (BMIs) should ideally show robust adaptation of the BMI across different tasks and daily activities. Most BMIs have used over-practiced tasks. Little is known about BMIs in dynamic environments. How are mechanically body-coupled BMIs integrated into ongoing rhythmic dynamics, e.g., in locomotion? To examine this we designed a novel BMI using neural discharge in the hindlimb/trunk motor cortex in rats during locomotion to control a robot attached at the pelvis. We tested neural adaptation when rats experienced (a) control locomotion, (b) ‘simple elastic load’ (a robot load on locomotion without any BMI neural control) and (c) ‘BMI with elastic load’ (in which the robot loaded locomotion and a BMI neural control could counter this load). Rats significantly offset applied loads with the BMI while preserving more normal pelvic height compared to load alone. Adaptation occurred over about 100–200 step cycles in a trial. Firing rates increased in both the loaded conditions compared to baseline. Mean phases of cells’ discharge in the step cycle shifted significantly between BMI and the simple load condition. Over time more BMI cells became positively correlated with the external force and modulated more deeply, and neurons’ network correlations on a 100ms timescale increased. Loading alone showed none of these effects. The BMI neural changes of rate and force correlations persisted or increased over repeated trials. Our results show that rats have the capacity to use motor adaptation and motor learning to fairly rapidly engage hindlimb/trunk coupled BMIs in their locomotion. PMID:21414932
Transverse Stress Decay in a Specially Orthotropic Strip Under Localizing Normal Edge Loading
NASA Technical Reports Server (NTRS)
Fichter, W. B.
2000-01-01
Solutions are presented for the stresses in a specially orthotropic infinite strip which is subjected to localized uniform normal loading on one edge while the other edge is either restrained against normal displacement only, or completely fixed. The solutions are used to investigate the diffusion of load into the strip and in particular the decay of normal stress across the width of the strip. For orthotropic strips representative of a broad range of balanced and symmetric angle-ply composite laminates, minimum strip widths are found that ensure at least 90% decay of the normal stress across the strip. In addition, in a few cases where, on the fixed edge the peak shear stress exceeds the normal stress in magnitude, minimum strip widths that ensure 90% decay of both stresses are found. To help in putting these results into perspective, and to illustrate the influence of material properties on load 9 orthotropic materials, closed-form solutions for the stresses in similarly loaded orthotropic half-planes are obtained. These solutions are used to generate illustrative stress contour plots for several representative laminates. Among the laminates, those composed of intermediate-angle plies, i.e., from about 30 degrees to 60 degrees, exhibit marked changes in normal stress contour shape with stress level. The stress contours are also used to find 90% decay distances in the half-planes. In all cases, the minimum strip widths for 90% decay of the normal stress exceed the 90% decay distances in the corresponding half-planes, in amounts ranging from only a few percent to about 50% of the half-plane decay distances. The 90% decay distances depend on both material properties and the boundary conditions on the supported edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Bie, B. X.; Li, Q. H.
2017-06-01
In situ synchrotron x-ray imaging and diffraction are used to investigate deformation of a rolled magnesium alloy under uniaxial compression at room and elevated temperatures along two different directions. The loading axis (LA) is either perpendicular or parallel to the normal direction, and these two cases are referred to as LA⊥ and LAk loading, respectively. Multiscale measurements including stressestrain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously. Due to initial texture, f1012g extension twinning is predominant in the LA⊥ loading, while dislocation motion prevails in the LAk loading. With increasing temperature, fewer f1012g extension twins aremore » activated in the LA⊥ samples, giving rise to reduced strain homogenization, while pyramidal slip becomes readily activated, leading to more homogeneous deformation for the LAk loading. The difference in the strain hardening rates is attributed to that in strain field homogenization for these two loading directions« less
Lord, Megan S; Ellis, April L; Farrugia, Brooke L; Whitelock, John M; Grenett, Hernan; Li, Chuanyu; O'Grady, Robert L; DeCarlo, Arthur A
2017-03-28
The repair of dermal wounds, particularly in the diabetic population, poses a significant healthcare burden. The impaired wound healing of diabetic wounds is attributed to low levels of endogenous growth factors, including vascular endothelial growth factor (VEGF), that normally stimulate multiple phases of wound healing. In this study, chitosan scaffolds were prepared via freeze drying and loaded with plasmid DNA encoding perlecan domain I and VEGF189 and analyzed in vivo for their ability to promote dermal wound healing. The plasmid DNA encoding perlecan domain I and VEGF189 loaded scaffolds promoted dermal wound healing in normal and diabetic rats. This treatment resulted in an increase in the number of blood vessels and sub-epithelial connective tissue matrix components within the wound beds compared to wounds treated with chitosan scaffolds containing control DNA or wounded controls. These results suggest that chitosan scaffolds containing plasmid DNA encoding VEGF189 and perlecan domain I have the potential to induce angiogenesis and wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Probabilistic model of bridge vehicle loads in port area based on in-situ load testing
NASA Astrophysics Data System (ADS)
Deng, Ming; Wang, Lei; Zhang, Jianren; Wang, Rei; Yan, Yanhong
2017-11-01
Vehicle load is an important factor affecting the safety and usability of bridges. An statistical analysis is carried out in this paper to investigate the vehicle load data of Tianjin Haibin highway in Tianjin port of China, which are collected by the Weigh-in- Motion (WIM) system. Following this, the effect of the vehicle load on test bridge is calculated, and then compared with the calculation result according to HL-93(AASHTO LRFD). Results show that the overall vehicle load follows a distribution with a weighted sum of four normal distributions. The maximum vehicle load during the design reference period follows a type I extremum distribution. The vehicle load effect also follows a weighted sum of four normal distributions, and the standard value of the vehicle load is recommended as 1.8 times that of the calculated value according to HL-93.
Normal force and drag force in magnetorheological finishing
NASA Astrophysics Data System (ADS)
Miao, Chunlin; Shafrir, Shai N.; Lambropoulos, John C.; Jacobs, Stephen D.
2009-08-01
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, λ, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials including optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low "coefficient of friction". The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.
Normal Force and Drag Force in Magnetorheological Finishing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, C.; Shafrir, S.N.; Lambropoulos, J.C.
2010-01-13
The material removal in magnetorheological finishing (MRF) is known to be controlled by shear stress, tau, which equals drag force, Fd, divided by spot area, As. However, it is unclear how the normal force, Fn, affects the material removal in MRF and how the measured ratio of drag force to normal force Fd/Fn, equivalent to coefficient of friction, is related to material removal. This work studies, for the first time for MRF, the normal force and the measured ratio Fd/Fn as a function of material mechanical properties. Experimental data were obtained by taking spots on a variety of materials includingmore » optical glasses and hard ceramics with a spot-taking machine (STM). Drag force and normal force were measured with a dual load cell. Drag force decreases linearly with increasing material hardness. In contrast, normal force increases with hardness for glasses, saturating at high hardness values for ceramics. Volumetric removal rate decreases with normal force across all materials. The measured ratio Fd/Fn shows a strong negative linear correlation with material hardness. Hard materials exhibit a low “coefficient of friction”. The volumetric removal rate increases with the measured ratio Fd/Fn which is also correlated with shear stress, indicating that the measured ratio Fd/Fn is a useful measure of material removal in MRF.« less
Ma, Shuk-Woon; Tomlinson, Brian; Benzie, Iris F F
2005-06-01
Antioxidant defence has been reported to decrease, and oxidative stress to increase, after oral glucose loading in both normal and diabetic subjects. If confirmed in normal subjects, glucose-induced antioxidant depletion has important implications for health in relation to the modern, sugar-rich diet. To investigate changes in plasma biomarkers of oxidant:antioxidant balance in non-diabetic subjects following oral glucose loading. Baseline inter-relationships between biomarkers of glycaemic control, oxidant:antioxidant balance and inflammation were also explored. A single-blinded, placebo-controlled, crossover intervention trial involving 10 healthy, consenting subjects. Venous blood was collected after ingestion of 75 g glucose in 300 mL water, or of water alone. Blood was collected at 0 time (fasting) and 30, 60, 90, 120 min post-ingestion. Within 2 weeks the procedure was repeated with volunteers crossed-over onto the other treatment. Plasma total antioxidant capacity (as the FRAP value), ascorbic acid, alpha-tocopherol, uric acid, malondialdehyde (MDA), allantoin and high sensitivity C-reactive protein (hsCRP), glucose and insulin, were measured in all samples. Paired results post-glucose and post-water at each time interval were compared using the Wilcoxon matched-pairs signed-ranks test. Normal glucose tolerance was observed in all subjects, although, as expected, plasma glucose and insulin increased significantly (p < 0.05, n = 10) after glucose loading. Post-glucose responses in plasma FRAP and the individual antioxidants tested were not significantly different to the responses seen post-water, although both FRAP and alpha-tocopherol decreased slightly. Neither were post-glucose changes in plasma MDA and allantoin, putative biomarkers of oxidative stress, significantly different to those after intake of water alone. Plasma FRAP and alpha-tocopherol also decreased slightly, but not significantly, after intake of water. A significant direct correlation (r = 0.867, p < 0.001, n = 10) was found between fasting allantoin and (log transformed) hsCRP concentrations. These new data from a controlled intervention trial indicate that acute, transient increases in plasma glucose following oral intake of a large glucose load do not, as previously reported, cause a significant decrease in plasma antioxidants or increase oxidative stress in non-diabetic subjects. This is reassuring given the large quantities of sugar ingested by children and adolescents. However, a small decrease in plasma antioxidant capacity was seen after ingestion of water and of glucose, and it is possible that intake of glucose without concomitant intake of antioxidants in susceptible individuals may cause oxidative stress. Further work is needed in relation to diabetic subjects and a possible glucose threshold for this. The finding of a direct relationship between allantoin, a biomarker of oxidative stress, and hsCRP, a marker of inflammation and CHD predictor, in healthy subjects is interesting and indicates a link between sub-clinical inflammation and oxidative stress.
Do Integrins Mediate the Skeletal Response to Altered Loading?
NASA Technical Reports Server (NTRS)
vanderMeulen, Marjolein C. H.
2004-01-01
In vivo experiments were performed to examine the role of B1 integrin in skeletal adaptation to reduced and increased loading. Transgenic mice were generated with a dominant negative form of the B1 integrin cytoplasmic domain with expression driven by the osteocalcin promoter (pOCb1DN). This fragment consists of the transmembrane and intracellular domains and interferes with endogenous integrin signalling in vitro. This promoter targets expression of the transgene to mature bone cells. Expression of the transgene was confirmed by immunoprecipitation and western blotting. Reduced loading was generated by hindlimb suspension and increased loading the resumption of normal loading following hindlimb suspension. Two groups of female 35-day old mice were examined: poCb1DN transgenic mice (TG) and wild-type littermate controls (WT). Animals were hindlimb suspended for 1 week (HU, n = l0/gp) or 4 weeks (HU, n = 4 - 7/gp) or suspended for 4 weeks followed by reloading by normal ambulation for 4 weeks (RL, n = l0/gp). Age-matched controls (CT) were pairfed based on the HU food intake. The protocols were approved by the NASA Ames Research Center IACUC. Upon completion of the experimental protocol, body mass was recorded and tissues of interest removed and analyzed following standard procedures. Femoral whole bone structural behavior was measured in torsion to failure to obtain whole bone strength (failure torque) and torsional rigidity. Ash content (ash) and fraction (% ash) were determined for the tibia. Total ash is indicative of bone size whereas %ash is a material property. Tibial curvature was measured from microradiographs. For each experiment, the effects of genotype (TG, WT) and treatment (CT, HU/RL) were assessed by two-factor ANOVA followed by the Tukey-Kramer posthoc to identify significant differences at an alpha level of 0.05. Our goal was to understand differences resulting from altered integrin function in the adaptation to altered loading.
Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load.
Holper, L; Van Brussel, L D; Schmidt, L; Schulthess, S; Burke, C J; Louie, K; Seifritz, E; Tobler, P N
2017-01-01
Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain's capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations.
Camozzi, V; Frigo, A C; Zaninotto, M; Sanguin, F; Plebani, M; Boscaro, M; Schiavon, L; Luisetto, G
2016-08-01
After a single cholecalciferol load, peak serum 25-hydroxycholecalciferol (25OHD) is lower in individuals with a higher body mass index (BMI), probably due to it being distributed in a greater volume. Its subsequent disappearance from the serum is slower the higher the individual's BMI, probably due to the combination of a larger body volume and a slower release into the circulation of vitamin D stored in adipose tissue. The aim of the study is to examine 25-hydroxycholecalciferol (25OHD) response to a single oral load of cholecalciferol in the normal weight, overweight, and obese. We considered 55 healthy women aged from 25 to 67 years (mean ± SD, 50.8 ± 9.5) with a BMI ranging from 18.7 to 42 kg/m(2) (mean ± SD, 27.1 ± 6.0). The sample was divided into three groups by BMI: 20 were normal weight (BMI ≤ 25 kg/m(2)), 21 overweight (25.1 ≤ BMI ≤ 29.9 kg/ m(2)), and 14 obese (BMI ≥ 30 kg/m(2)). Each subject was given 300,000 IU of cholecalciferol orally during lunch. A fasting blood test was obtained before cholecalciferol loading and then 7, 30, and 90 days afterwards to measure serum 25OHD, 1,25 dihydroxyvitamin D [1,25 (OH)2D], parathyroid hormone (PTH), calcium (Ca), and phosphorus (P). Participants' absolute fat mass was measured using dual energy X-ray absorptiometry (DEXA). The fat mass of the normal weight subjects was significantly lower than that of the overweight, which in turn was lower than that of the obese participants. Serum 25OHD levels increased significantly in all groups, peaking 1 week after the cholecalciferol load. Peak serum 25OHD levels were lower the higher the individuals' BMI. After peaking, the 25OHD levels gradually decreased, following a significantly different trend in the three groups. The slope was similar for the overweight and obese, declining significantly more slowly than in the normal weight group. In the sample as a whole, there was a weakly significant negative correlation between fat mass and baseline 25OHD level, while this correlation became strongly significant at all time points after cholecalciferol loading. The lower peak 25OHD levels seen in the obese and overweight is probably due to the cholecalciferol load being distributed in a larger body volume. The longer persistence of 25OHD in their serum could be due to both their larger body volume and a slower release into the circulation of the vitamin D stored in their adipose tissue.
Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang
2017-12-01
Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.
Conformational Changes in the Carpus During Finger Traps Distraction
Leventhal, Evan L.; Moore, Douglas C.; Akelman, Edward; Wolfe, Scott W.; Crisco, Joseph J.
2010-01-01
Introduction Wrist distraction is a common treatment maneuver used clinically for the reduction of distal radial fractures and mid-carpal dislocations. Wrist distraction is also required during wrist arthroscopy to access the radiocarpal joint and has been used as a test for scapholunate ligament injury. However, the effect of a distraction load on the normal wrist has not been well studied. The purpose of this study was to measure the 3-D conformational changes of the carpal bones in the normal wrist as a result of a static distractive load. Methods The dominant wrists of 14 healthy volunteers were scanned using computed tomography at rest and during application of 98N of distraction. Load was applied using finger traps and volunteers were encouraged to relax their forearm muscles and to allow distraction of the wrist. The motions of the bones in the wrist were tracked between the unloaded and loaded trial using markerless bone registration. The average displacement vector of each bone was calculated relative to the radius as well as the interbone distances for 20 bone-bone interactions. Joint separation was estimated at the radiocarpal, midcarpal and carpal-metacarpal joints in the direction of loading using the radius, lunate, capitate and 3rd metacarpal. Results With loading, the distance between the radius and 3rd metacarpal increased an average of 3.3±3.1mm in the direction of loading. This separation was primarily located in the axial direction at the radiocarpal (1.0±1.0mm) and midcarpal (2.0±1.7mm) joints. There were minimal changes in the transverse direction within the distal row, although the proximal row narrowed by 0.98±0.7mm. Distraction between the radius and scaphoid (2.5±2.2mm) was 2.4 times greater than between the radius and lunate (1.0±1.0mm). Conclusions Carpal distraction has a significant effect on the conformation of the carpus, especially at the radiocarpal and midcarpal joints. In the normal wrist, external traction causes twice as much distraction at the lunocapitate joint than at the radiolunate joint. PMID:20141894
Conformational changes in the carpus during finger trap distraction.
Leventhal, Evan L; Moore, Douglas C; Akelman, Edward; Wolfe, Scott W; Crisco, Joseph J
2010-02-01
Wrist distraction is a common treatment maneuver used clinically for the reduction of distal radial fractures and midcarpal dislocations. Wrist distraction is also required during wrist arthroscopy to access the radiocarpal joint and has been used as a test for scapholunate ligament injury. However, the effect of a distraction load on the normal wrist has not been well studied. The purpose of this study was to measure the three-dimensional conformational changes of the carpal bones in the normal wrist as a result of a static distractive load. Using computed tomography, the dominant wrists of 14 healthy volunteers were scanned at rest and during application of 98 N of distraction. Load was applied using finger traps, and volunteers were encouraged to relax their forearm muscles and to allow distraction of the wrist. The motions of the bones in the wrist were tracked between the unloaded and loaded trial using markerless bone registration. The average displacement vector of each bone relative to the radius was calculated, as were the interbone distances for 20 bone-bone interactions. Joint separation was estimated at the radiocarpal, midcarpal, and carpometacarpal joints in the direction of loading using the radius, lunate, capitate, and third metacarpal. With loading, the distance between the radius and third metacarpal increased an average of 3.3 mm +/- 3.1 in the direction of loading. This separation was primarily in the axial direction at the radiocarpal (1.0 mm +/- 1.0) and midcarpal (2.0 mm +/- 1.7) joints. There were minimal changes in the transverse direction within the distal row, although the proximal row narrowed by 0.98 mm +/- 0.7. Distraction between the radius and scaphoid (2.5 mm +/- 2.2) was 2.4 times greater than that between the radius and lunate (1.0 mm +/- 1.0). Carpal distraction has a significant (p < .01) effect on the conformation of the carpus, especially at the radiocarpal and midcarpal joints. In the normal wrist, external traction causes twice as much distraction at the lunocapitate joint than at the radiolunate joint. Copyright 2010. Published by Elsevier Inc.
Reaction times of normal listeners to laryngeal, alaryngeal, and synthetic speech.
Evitts, Paul M; Searl, Jeff
2006-12-01
The purpose of this study was to compare listener processing demands when decoding alaryngeal compared to laryngeal speech. Fifty-six listeners were presented with single words produced by 1 proficient speaker from 5 different modes of speech: normal, tracheosophageal (TE), esophageal (ES), electrolaryngeal (EL), and synthetic speech (SS). Cognitive processing load was indexed by listener reaction time (RT). To account for significant durational differences among the modes of speech, an RT ratio was calculated (stimulus duration divided by RT). Results indicated that the cognitive processing load was greater for ES and EL relative to normal speech. TE and normal speech did not differ in terms of RT ratio, suggesting fairly comparable cognitive demands placed on the listener. SS required greater cognitive processing load than normal and alaryngeal speech. The results are discussed relative to alaryngeal speech intelligibility and the role of the listener. Potential clinical applications and directions for future research are also presented.
NASA Technical Reports Server (NTRS)
Whalley, Matthew S.
1993-01-01
A piloted simulation study was performed by the U.S. Army Aeroflighydynamics Directorate to develop insight into the maneuverability requirements for aggressive helicopter maneuvering tasks such as air-to-air combat. Both a conventional helicopter and a helicopter with auxiliary thrust were examined. The aircraft parameters of interest were the normal and longitudinal load factor envelopes. Of particular interest were the mission performance and handling qualities tradeoffs with the parameters of interest. Two air-to-air acquisition and tracking tasks and a return-to-cover task were performed to assess mission performance. Results indicate that without auxiliary thrust, the ownship normal load factor capability needs to match that of the adversary in order to provide satisfactory handling qualities. Auxiliary thrust provides significant handling qualities advantages and can be substituted to some extent for normal load factor capability. Auxiliary thrust levels as low as 0.2 thrust/weight can provide significant handling qualities advantages.
Effect of repeated passive anterior loading on human knee anterior laxity.
Vauhnik, Renata; Perme, Maja Pohar; Barcellona, Massimo G; Morrissey, Matthew C; Sevšek, France; Rugelj, Darja
2015-10-01
Increased knee anterior laxity results when the anterior cruciate ligament is injured. This increased laxity can cause knee dysfunction. Until recently this laxity was believed to be only diminished through surgery. But recent findings indicate that knee anterior laxity may be decreased with repeated loading of the knee. The purpose of this study was to test the hypothesis that regular passive anterior loading of the uninjured human knee would enhance its stiffness. Randomized controlled trial. Knee anterior laxity was tested using an arthrometer in 22 young, uninjured females before, during and after a 3 month period during which passive anterior loading was applied by a trained physiotherapist over 5 sessions per week to a randomly assigned knee. Knee anterior laxity was not affected by the passive anterior loading of the knee. Given that in this study repeated passive loading of the knee did not change knee anterior laxity, it would be easy to conclude that this training is ineffective and no further research is required. We caution against this given the relatively short duration and possibly insufficient intensity of the training and the population studied; individuals with normal joint laxity. We recommend that future research be performed that consists of individuals with lax joints who receive training for prolonged periods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Corradini, Elena; Rozier, Molly; Meynard, Delphine; Odhiambo, Adam; Lin, Herbert Y.; Feng, Qi; Migas, Mary C.; Britton, Robert S.; Babitt, Jodie L.; Fleming, Robert E.
2011-01-01
Background & Aims HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. Methods Hepatic iron concentrations and mRNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 mRNA levels were measured as markers of Bmp/Smad signaling. Results While Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also demonstrated attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. Conclusions These observations demonstrate that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver BMP6 mRNA or steady-state P-Smad1,5,8 levels. PMID:21745449
Mulavara, A P; Ruttley, T; Cohen, H S; Peters, B T; Miller, C; Brady, R; Merkle, L; Bloomberg, J J
2012-01-01
Space flight causes astronauts to be exposed to adaptation in both the vestibular and body load-sensing somatosensory systems. The goal of these studies was to examine the contributions of vestibular and body load-sensing somatosensory influences on vestibular mediated head movement control during locomotion after long-duration space flight. Subjects walked on a motor driven treadmill while performing a gaze stabilization task. Data were collected from three independent subject groups that included bilateral labyrinthine deficient (LD) patients, normal subjects before and after 30 minutes of 40% bodyweight unloaded treadmill walking, and astronauts before and after long-duration space flight. Motion data from the head and trunk segments were used to calculate the amplitude of angular head pitch and trunk vertical translation movement while subjects performed a gaze stabilization task, to estimate the contributions of vestibular reflexive mechanisms in head pitch movements. Exposure to unloaded locomotion caused a significant increase in head pitch movements in normal subjects, whereas the head pitch movements of LD patients were significantly decreased. This is the first evidence of adaptation of vestibular mediated head movement responses to unloaded treadmill walking. Astronaut subjects showed a heterogeneous response of both increases and decreases in the amplitude of head pitch movement. We infer that body load-sensing somatosensory input centrally modulates vestibular input and can adaptively modify vestibularly mediated head-movement control during locomotion. Thus, space flight may cause central adaptation of the converging vestibular and body load-sensing somatosensory systems leading to alterations in head movement control.
Kuznetsova, Tatiana; D’hooge, Jan; Kloch-Badelek, Malgorzata; Sakiewicz, Wojciech; Thijs, Lutgarde; Staessen, Jan A.
2013-01-01
Background To understand better the mechanism of left ventricular (LV) remodeling related to hypertension, it is important to evaluate LV function in relation to the changes in loading conditions. The aim of this study was to investigate changes in conventional ventricular-arterial coupling indexes, LV strain, and a new index reflecting regional myocardial work assessed noninvasively at rest and during isometric exercise in a random sample including participants with normal blood pressure and those with hypertension. Methods A total of 148 participants (53.4% women; mean age, 52.0 years; 39.2% with hypertension) underwent simultaneous echocardiographic and arterial data acquisition at rest and during increased afterload (handgrip exercise). End-systolic pressure was determined from the carotid pulse wave. Arterial elastance (Ea) and LV elastance (Ees) were calculated as end-systolic pressure/stroke volume and end-systolic pressure/end-systolic volume. Doppler tissue imaging and two-dimensional speckle tracking were used to derive LV longitudinal strain. Regional myocardial work (ejection work density [EWD]) was the area of the pressure-strain loop during ejection. Results At rest, with adjustments applied, Ees (3.06 vs 3.71 mmHg/mL,P = .0003), Ea/Ees (0.54 vs 0.47,P=.002) and EWD (670 vs 802 Pa/m2, P = .0001) differed significantly between participants with normal blood pressure and those with hypertension. During handgrip exercise, Ea and Ea/Ees significantly increased (P < .0001) in both groups. Doppler tissue imaging and two-dimensional LV strain decreased in participants with hypertension (P ≤ .008). Only in subjects with normal blood pressure EWD significantly increased (+14.7%, P = .0009). Conclusions Although patients with hypertension compared with those with normal blood pressure have increased LV systolic stiffness and regional myocardial work to match arterial load at rest, they might have diminished cardiac reserve to increase myocardial performance, as estimated by EWD during isometric exercise. PMID:22622108
Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank’s solution
NASA Astrophysics Data System (ADS)
Li, Wenting; Li, Nan; Zheng, Yufeng; Yuan, Guangyin
2016-11-01
Fretting is a significant cause for the failure of orthopedic implants. Currently, since magnesium and its alloys have been developed as promising biodegradable implant materials, the fretting behavior of the Mg alloys is of great research significance. In this study, a Mg-Nd-Zn-Zr alloy (hereafter, denoted as JDBM alloy) was selected as experimental material, and its fretting behaviors were evaluated under 5 N, 10 N and 20 N normal loads with a displacement of 200 μm under the frequency of 10 Hz at 37 °C in air and in Hank’s solution, respectively. The results indicated that while the friction coefficient decreased with the increment of the normal load, the wear volume of the alloy increased with the increment of the normal load both in air and in Hank’s solution. Both the friction coefficients and the wear volume of the fretting in Hank’s solution were much lower than those in air environment. The evolution trend of friction coefficients with time had different performance in air environment and the Hank’s solution group. Although oxidation occurred during the fretting tests in Hank’s solution, the damage of JDBM alloy was still reduced due to the lubrication effects of Hank’s solution. Moreover, the addition of Fetal bovine serum (FBS) could act as lubrication and result in the reduction of the fretting damage.
14 CFR 23.365 - Pressurized cabin loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... landing. (d) The airplane structure must be strong enough to withstand the pressure differential loads... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23... structure must be strong enough to withstand the flight loads combined with pressure differential loads from...
NASA Astrophysics Data System (ADS)
Islam, Mohammad; Khalid, Yasir; Ahmad, Iftikhar; Almajid, Abdulhakim A.; Achour, Amine; Dunn, Theresa J.; Akram, Aftab; Anwar, Saqib
2018-04-01
Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.
The propulsive capability of explosives heavily loaded with inert materials
NASA Astrophysics Data System (ADS)
Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.
2018-01-01
The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass (M/C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.
The propulsive capability of explosives heavily loaded with inert materials
NASA Astrophysics Data System (ADS)
Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.
2018-07-01
The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass ( M/ C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/ C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/ C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.
NASA Astrophysics Data System (ADS)
Islam, Mohammad; Khalid, Yasir; Ahmad, Iftikhar; Almajid, Abdulhakim A.; Achour, Amine; Dunn, Theresa J.; Akram, Aftab; Anwar, Saqib
2018-07-01
Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.
40 CFR Table 33 to Subpart G of... - Saturation Factors
Code of Federal Regulations, 2011 CFR
2011-07-01
... service 0.60 Submerged loading: dedicated vapor balance service 1.00 Splash loading of a clean cargo tank 1.45 Splash loading: dedicated normal service 1.45 Splash loading: dedicated vapor balance service 1...
40 CFR Table 33 to Subpart G of... - Saturation Factors
Code of Federal Regulations, 2014 CFR
2014-07-01
... service 0.60 Submerged loading: dedicated vapor balance service 1.00 Splash loading of a clean cargo tank 1.45 Splash loading: dedicated normal service 1.45 Splash loading: dedicated vapor balance service 1...
40 CFR Table 33 to Subpart G of... - Saturation Factors
Code of Federal Regulations, 2012 CFR
2012-07-01
... service 0.60 Submerged loading: dedicated vapor balance service 1.00 Splash loading of a clean cargo tank 1.45 Splash loading: dedicated normal service 1.45 Splash loading: dedicated vapor balance service 1...
40 CFR Table 33 to Subpart G of... - Saturation Factors
Code of Federal Regulations, 2010 CFR
2010-07-01
... service 0.60 Submerged loading: dedicated vapor balance service 1.00 Splash loading of a clean cargo tank 1.45 Splash loading: dedicated normal service 1.45 Splash loading: dedicated vapor balance service 1...
40 CFR Table 33 to Subpart G of... - Saturation Factors
Code of Federal Regulations, 2013 CFR
2013-07-01
... service 0.60 Submerged loading: dedicated vapor balance service 1.00 Splash loading of a clean cargo tank 1.45 Splash loading: dedicated normal service 1.45 Splash loading: dedicated vapor balance service 1...
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
Critical factors in displacement ductility assessment of high-strength concrete columns
NASA Astrophysics Data System (ADS)
Taheri, Ali; Moghadam, Abdolreza S.; Tasnimi, Abass Ali
2017-12-01
Ductility of high-strength concrete (HSC) columns with rectangular sections was assessed in this study by reviewing experimental data from the available literature. Up to 112 normal weights concrete columns with strength in the range of 50-130 MPa were considered and presented as a database. The data included the results of column testes under axial and reversed lateral loading. Displacement ductility of HSC columns was evaluated in terms of their concrete and reinforcement strengths, bar arrangement, volumetric ratio of transverse reinforcement, and axial loading. The results indicated that the confinement requirements and displacement ductility in HSC columns are more sensitive than those in normal strength concrete columns. Moreover, ductility is descended by increasing concrete strength. However, it was possible to obtain ductile behavior in HSC columns through proper confinement. Furthermore, this study casts doubt about capability of P/ A g f c' ratio that being inversely proportional to displacement ductility of HSC columns.
Semenova, K A; Antonova, L V
1998-01-01
Treatment-loading costume (LK-92 "Adely") was investigated in terms of its influence on functional state of neuromotor apparatus in 25 children with infantile cerebral paralysis in the form of spastic diplegia. Improvement of motor functions observed may be conditioned by a decrease of an amplitude of bioelectric activity in spastic muscles at physiologic rest and by an increase of an amplitude of agonists' biopotentials at arbitrary movements. Improvement of motor functions may be also caused by normalization of both the coefficients characterizing coordinated muscules' interactions and functional state of spinal motoneurons as well as of the mechanisms of their suprasegmental regulation. It is suggested that such effect may be, realized because of the afferentation normalization as well as by means of the influence of LK-92 "Adely" on both central and segmentary structures of motor analyzer including neuromediator systems.
Effect of variable body mass on plantar foot pressure and off-loading device efficacy.
Pirozzi, Kelly; McGuire, James; Meyr, Andrew J
2014-01-01
An increasing body of evidence has implicated obesity as having a negative effect on the development, treatment, and outcome of lower extremity pathologic entities, including diabetic foot disease. The objective of the present study was to increase the body of knowledge with respect to the effects of obesity on foot function. Specifically, we attempted to (1) describe the relationship between an increasing body mass index (BMI) on plantar foot pressures during gait, and (2) evaluate the efficacy of commonly prescribed off-loading devices with an increasing BMI. A repeated measures design was used to compare the peak plantar foot pressures under multiple test conditions, with the volunteers acting as their own controls. The primary outcome measure was the mean peak plantar pressure in the heel, midfoot, forefoot, and first metatarsal, and the 2 variables were modification of patient weight (from "normal" BMI to "overweight," "obese," and "morbidly obese") and footwear (from an athletic sneaker to a surgical shoe, controlled ankle motion walker, and total contact cast). Statistically significant increases in the peak plantar pressures were observed with increasing volunteer BMI weight class, regardless of the off-loading device used. The present investigation has provided unique and specific data with respect to the changes that occur in the peak plantar pressures with variable BMIs across different anatomic levels and with commonly used off-loading devices. From our results, we have concluded that although the plantar pressures increase with increasing weight, it appears that at least some reduction in pressure can be achieved with an off-loading device, most effectively with the total contact cast, regardless of the patient's BMI. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Honecy, Frank S.; Abel, Phillip B.; Pepper, Stephen V.; Spalvins, Talivaldis; Wheeler, Donald R.
1992-01-01
The first part of this paper describes an ultrahigh vacuum friction apparatus (tribometer). The tribometer can be used in a ball-on-disk configuration and is specifically designed to measure the friction and endurance life of solid lubricating films such as MoS(x) in vacuum at a pressure of 10 exp -7 Pa. The sliding mode is typically unidirectional at a constant rotating speed. The second part of this paper presents some representative friction and endurance life data for magnetron sputtered MoS(x) films (110 nm thick) deposited on sputter-cleaned 440 C stainless-steel disk substrates, which were slid against a 6-mm-diameter 440 C stainless-steel bearing ball. All experiments were conducted with loads of 0.49 to 3.6 N (average Hertzian contact pressure, 0.33 to 0.69 GPa), at a constant rotating speed of 120 rpm (sliding velocity ranging from 31 to 107 mm/s due to the range of wear track radii involved in the experiments), in a vacuum of 7 x 10 exp -7 Pa and at room temperature. The results indicate that there are similarities in friction behavior of MoS(x) films overs their life cycles regardless of load applied. The coefficient of friction (mu) decreases as load W increases according to mu = kW exp -1/3. The endurance life E of MoS(x) films decreases as the load W increases according to E = KW exp -1.4 for the load range. The load- (or contract-pressure-) dependent endurance life allows us to reduce the time for wear experiments and to accelerate endurance life testing of MoS(x) films. For the magnetron-sputtered MoS(x) films deposited on 440 C stainless-steel disks: the specific wear rate normalized to the load and the number of revolutions was 3 x 10 exp -8 mm exp 3/N-revolution; the specific wear rate normalized to the load and the total sliding distance was 8 x 10 exp -7 mm exp 3/N-m; and the nondimensional wear coefficient of was approximately 5 x 10 exp -6. The values are almost independent of load in the range 0.49 to 3.6 N (average Hertzian contact pressures of 0.33 to 0.69 GPa).
Krzentowski, G; Pirnay, F; Luyckx, A S; Lacroix, M; Mosora, F; Lefebvre, P J
1983-01-01
This study aimed at investigating, in six healthy, non obese, young (25 +/- 1 years) male volunteers, with strictly normal oral glucose tolerance, the influence of a six week physical training period (60 min bicycling 5 days/week at 30-40% of their individual VO2 max) on the hormonal and metabolic response to a 100 g oral 13C-naturally labeled glucose load given at rest before and 36 h after the last training session. Exogenous glucose oxidation was derived from 13CO2 measurements on expired air. Training resulted in: a 29% increase in VO2 max (2 p less than 0.002), a 27% decrease in plasma triglycerides (2 p less than 0.02). No changes were observed concerning weight, total body K, skinfold tolerance, which was strictly normal before training, remained unchanged, but the insulin response to the oral glucose load decreased by 24% (2 p less than 0.025). Exogenous glucose oxidation was similar before and after training, averaging 35.9 +/- 2.1 and 37.4 +/- 2.0 g/7 h respectively. a 6 week training period, performed on strictly healthy young males, studied at rest, induced an increase in VO2 max, a decrease in plasma triglycerides and a lower insulin response to oral glucose while glucose tolerance and exogenous glucose oxidation remained unchanged.
Load measurement system with load cell lock-out mechanism
NASA Technical Reports Server (NTRS)
Le, Thang; Carroll, Monty; Liu, Jonathan
1995-01-01
In the frame work of the project Shuttle Plume Impingement Flight Experiment (SPIFEX), a Load Measurement System was developed and fabricated to measure the impingement force of Shuttle Reaction Control System (RCS) jets. The Load Measurement System is a force sensing system that measures any combination of normal and shear forces up to 40 N (9 lbf) in the normal direction and 22 N (5 lbf) in the shear direction with an accuracy of +/- 0.04 N (+/- 0.01 lbf) Since high resolution is required for the force measurement, the Load Measurement System is built with highly sensitive load cells. To protect these fragile load cells in the non-operational mode from being damaged due to flight loads such as launch and landing loads of the Shuttle vehicle, a motor driven device known as the Load Cell Lock-Out Mechanism was built. This Lock-Out Mechanism isolates the load cells from flight loads and re-engages the load cells for the force measurement experiment once in space. With this highly effective protection system, the SPIFEX load measurement experiment was successfully conducted on STS-44 in September 1994 with all load cells operating properly and reading impingement forces as expected.
The effect of normal load on polytetrafluoroethylene tribology.
Barry, Peter R; Chiu, Patrick Y; Perry, Scott S; Sawyer, W Gregory; Phillpot, Simon R; Sinnott, Susan B
2009-04-08
The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.
Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.
2017-10-01
The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.
The effect of normal load on polytetrafluoroethylene tribology
NASA Astrophysics Data System (ADS)
Barry, Peter R.; Chiu, Patrick Y.; Perry, Scott S.; Sawyer, W. Gregory; Phillpot, Simon R.; Sinnott, Susan B.
2009-04-01
The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.321 General. (a) The flight load factor must be assumed to act normal to the longitudinal axis of the rotorcraft, and to be equal... from the design minimum weight to the design maximum weight; and (2) With any practical distribution of...
Schilaty, Nathan D.; Bates, Nathaniel A.; Nagelli, Christopher; Krych, Aaron J.; Hewett, Timothy E.
2018-01-01
Background: Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. Purpose/Hypothesis: The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Study Design: Controlled laboratory study. Methods: Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Results: Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males (F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance (F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of “maximum ACL strain” demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Conclusion: Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. Clinical Relevance: KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes. PMID:29568787
Schilaty, Nathan D; Bates, Nathaniel A; Nagelli, Christopher; Krych, Aaron J; Hewett, Timothy E
2018-03-01
Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Controlled laboratory study. Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males ( F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance ( F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of "maximum ACL strain" demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes.
The influence of schizotypal traits on attention under high perceptual load.
Stotesbury, Hanne; Gaigg, Sebastian B; Kirhan, Saim; Haenschel, Corinna
2018-03-01
Schizophrenia Spectrum Disorders (SSD) are known to be characterised by abnormalities in attentional processes, but there are inconsistencies in the literature that remain unresolved. This article considers whether perceptual resource limitations play a role in moderating attentional abnormalities in SSD. According to perceptual load theory, perceptual resource limitations can lead to attenuated or superior performance on dual-task paradigms depending on whether participants are required to process, or attempt to ignore, secondary stimuli. If SSD is associated with perceptual resource limitations, and if it represents the extreme end of an otherwise normally distributed neuropsychological phenotype, schizotypal traits in the general population should lead to disproportionate performance costs on dual-task paradigms as a function of the perceptual task demands. To test this prediction, schizotypal traits were quantified via the Schizotypal Personality Questionnaire (SPQ) in 74 healthy volunteers, who also completed a dual-task signal detection paradigm that required participants to detect central and peripheral stimuli across conditions that varied in the overall number of stimuli presented. The results confirmed decreasing performance as the perceptual load of the task increased. More importantly, significant correlations between SPQ scores and task performance confirmed that increased schizotypal traits, particularly in the cognitive-perceptual domain, are associated with greater performance decrements under increasing perceptual load. These results confirm that attentional difficulties associated with SSD extend sub-clinically into the general population and suggest that cognitive-perceptual schizotypal traits may represent a risk factor for difficulties in the regulation of attention under increasing perceptual load.
Young, Bradley; Banihashemi, Bahman; Forrest, Daina; Kennedy, Kevin; Stintzi, Alain; Delatolla, Robert
2016-03-15
This study investigates the effects of three specific moving bed biofilm reactor (MBBR) carrier types and two surface area loading rates on biofilm thickness, morphology and bacterial community structure of post carbon removal nitrifying MBBR systems along with the effects of carrier type and loading on ammonia removal rates and effluent solids settleability. The meso and micro analyses show that the AOB kinetics vary based on loading condition, but irrespective of carrier type. The meso-scale response to increases in loading was shown to be an increase in biofilm thickness with higher surface area carriers being more inclined to develop and maintain thicker biofilms. The pore spaces of these higher surface area to volume carriers also demonstrated the potential to become clogged at higher loading conditions. Although the biofilm thickness increased during higher loading conditions, the relative percentages of both the embedded viable and non-viable cells at high and conventional loading conditions remained stable; indicating that the reduced ammonia removal kinetics observed during carrier clogging events is likely due to the observed reduction in the surface area of the attached biofilm. Microbial community analyses demonstrated that the dominant ammonia oxidizing bacteria for all carriers is Nitrosomonas while the dominant nitrite oxidizing bacteria is Nitrospira. The research showed that filamentous species were abundant under high loading conditions, which likely resulted in the observed reduction in effluent solids settleability at high loading conditions as opposed to conventional loading conditions. Although the settleability of the effluent solids was correlated to increases in abundances of filamentous organisms in the biofilm, analyzed using next generation sequencing, the ammonia removal rate was not shown to be directly correlated to specific meso or micro-scale characteristics. Instead post carbon removal MBBR ammonia removal kinetics were shown to be related to the viable AOB cell coverage of the carriers; which was calculated by normalizing the surface area removal rate by the biofilm thickness, the bacterial percent abundance of ammonia oxidizing bacteria and the percentage of viable cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.
2010-01-01
The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological phosphorus removal process was not optimized until after the study was completed. Total nitrogen and phosphorus from the wastewater treatment facility contributed a relatively small percentage (14 to 15 percent) to the annual nutrient load in the upper Blue River, but contributed substantially (as much as 75 percent) to monthly loads during seasonal low-flows in winter and summer. During 2007 and 2008, annual discharge from the wastewater treatment facility was about one-half maximum capacity, and estimated potential maximum annual loads were 1.6 to 2.4 times greater than annual loads before capacity upgrades. Even when target nutrient concentrations are met, annual nutrient loads will increase when the wastewater treatment facility is operated at full capacity. Regardless of changes in annual nutrient loads, the reduction of nutrient concentrations in the Blue River Main wastewater effluent will help prevent further degradation of the upper Blue River. The Blue River Main Wastewater Treatment Facility wastewater effluent caused changes in concentrations of several water-quality constituents that may affect biological community structure and function including larger concentrations of bioavailable nutrients (nitrate and orthophosphorus) and smaller turbidities. Streambed-sediment conditions were similar along the upstream-downstream gradient and measured constituents did not exceed probable effect concentrations. Habitat conditions declined along the upstream-downstream gradient, largely because of decreased canopy cover and riparian buffer width and increased riffle-substrate fouling. Algal biomass, primary production, and the abundance of nutrient-tolerant diatoms substantially increased downstream from the wastewater treatment facility. Likewise, the abundance of intolerant macroinvertebrate taxa and Kansas Department of Health and Environment aquatic-life-support scores, derived from macroinvertebrate data, significantly decreased downstream from the wastewater
MEPDG Traffic Loading Defaults Derived from Traffic Pooled Fund Study
DOT National Transportation Integrated Search
2016-04-01
As part of traffic loading inputs, the Mechanistic-Empirical Pavement Design Guide (MEPDG), Interim Edition: A Manual of Practice requires detailed axle loading information in the form of normalized axle load spectra (NALS), number of axle per truck ...
Gómez-Novo, Miriam; Boga, José A; Álvarez-Argüelles, Marta E; Rojo-Alba, Susana; Fernández, Ana; Menéndez, María J; de Oña, María; Melón, Santiago
2018-05-01
Human respiratory syncytial virus (HRSV) is a common cause of respiratory infections. The main objective is to analyze the prediction ability of viral load of HRSV normalized by cell number in respiratory symptoms. A prospective, descriptive, and analytical study was performed. From 7307 respiratory samples processed between December 2014 to April 2016, 1019 HRSV-positive samples, were included in this study. Low respiratory tract infection was present in 729 patients (71.54%). Normalized HRSV load was calculated by quantification of HRSV genome and human β-globin gene and expressed as log10 copies/1000 cells. HRSV mean loads were 4.09 ± 2.08 and 4.82 ± 2.09 log10 copies/1000 cells in the 549 pharyngeal and 470 nasopharyngeal samples, respectively (P < 0.001). The viral mean load was 4.81 ± 1.98 log10 copies/1000 cells for patients under the age of 4-year-old (P < 0.001). The viral mean loads were 4.51 ± 2.04 cells in patients with low respiratory tract infection and 4.22 ± 2.28 log10 copies/1000 cells with upper respiratory tract infection or febrile syndrome (P < 0.05). A possible cut off value to predict LRTI evolution was tentatively established. Normalization of viral load by cell number in the samples is essential to ensure an optimal virological molecular diagnosis avoiding that the quality of samples affects the results. A high viral load can be a useful marker to predict disease progression. © 2018 Wiley Periodicals, Inc.
Friedman, Jason; Latash, Mark L.; Zatsiorsky, Vladimir M.
2009-01-01
We examined how the digit forces adjust when a load force acting on a hand-held object continuously varies. The subjects were required to hold the handle still while a linearly increasing and then decreasing force was applied to the handle. The handle was constrained, such that it could only move up and down, and rotate about a horizontal axis. In addition the moment arm of the thumb tangential force was 1.5 times the moment arm of the virtual finger (VF, an imagined finger with the mechanical action equal to that of the four fingers) force. Unlike the situation when there are equal moment arms, the experimental setup forced the subjects to choose between (a) sharing equally the increase in load force between the thumb and virtual finger but generating a moment of tangential force, which had to be compensated by negatively covarying the moment due to normal forces, or (b) sharing unequally the load force increase between the thumb and VF but preventing generation of a moment of tangential forces. We found that different subjects tended to use one of these two strategies. These findings suggest that the selection by the CNS of prehension synergies at the VF-thumb level with respect to the moment of force are non-obligatory and reflect individual subject preferences. This unequal sharing of the load by the tangential forces, in contrast to the previously observed equal sharing, suggests that the invariant feature of prehension may be a correlated increase in tangential forces rather than an equal increase. PMID:19554319
NASA Technical Reports Server (NTRS)
Zahm, A F; Crook, L H
1918-01-01
Report presents stress analysis of individual components of an airplane. Normal and abnormal loads, sudden loads, simple stresses, indirect simple stresses, resultant unit stress, repetitive and equivalent stress, maximum steady load and stress are considered.
Kyrychenko, Sergii; Poláková, Eva; Kang, Chifei; Pocsai, Krisztina; Ullrich, Nina D; Niggli, Ernst; Shirokova, Natalia
2013-03-15
Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.
Shear Adhesion of Tapered Nanopillar Arrays.
Cho, Younghyun; Minsky, Helen K; Jiang, Yijie; Yin, Kaiyang; Turner, Kevin T; Yang, Shu
2018-04-04
Tapered nanopillars with various cross sections, including cone-shaped, stepwise, and pencil-like structures (300 nm in diameter at the base of the pillars and 1.1 μm in height), are prepared from epoxy resin templated by nanoporous anodic aluminum oxide (AAO) membranes. The effect of pillar geometry on the shear adhesion behavior of these nanopillar arrays is investigated via sliding experiments in a nanoindentation system. In a previous study of arrays with the same geometry, it was shown that cone-shaped nanopillars exhibit the highest adhesion under normal loading while stepwise and pencil-like nanopillars exhibit lower normal adhesion strength due to significant deformation of the pillars that occurs with increasing indentation depth. Contrary to the previous studies, here, we show that pencil-like nanopillars exhibit the highest shear adhesion strength at all indentation depths among three types of nanopillar arrays and that the shear adhesion increases with greater indentation depth due to the higher bending stiffness and closer packing of the pencil-like nanopillar array. Finite element simulations are used to elucidate the deformation of the pillars during the sliding experiments and agree with the nanoindentation-based sliding measurements. The experiments and finite element simulations together demonstrate that the shape of the nanopillars plays a key role in shear adhesion and that the mechanism is quite different from that of adhesion under normal loading.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Gust loads. 27.341 Section 27.341 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.341 Gust loads. The rotorcraft...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Gust loads. 27.341 Section 27.341 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.341 Gust loads. The rotorcraft...
14 CFR 27.681 - Limit load static tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.681 Limit load... which— (1) The direction of the test loads produces the most severe loading in the control system; and... requirements for control system joints subject to angular motion. ...
A second mechanism of increase of cerebellar hypermetria in humans
Manto, Mario-Ubaldo; Bosse, Pierre
2003-01-01
So far, there is only one procedure known to increase hypermetria in cerebellar patients. Facing an increased inertia of the moving limb, patients presenting a lesion of the lateral cerebellum are able to increase appropriately the intensity of the agonist electromyographic (EMG) activity (the launching force), but are unable to adapt the intensity of the antagonist activity (the braking force). As a result, hypermetria is larger when the inertial load is artificially increased. Recent studies have demonstrated that hyperventilation increases hypermetria in patients presenting a spinocerebellar ataxia type 6 (SCA 6), a disorder associated with polyglutamine expansions in the α1A-voltage-dependent calcium channel. The mechanism of this increase of hypermetria has not been identified so far. In the present work, we combined kinematic, EMG and transcranial Doppler studies to understand the effects of hyperventilation on fast goal-directed movements in patients presenting a SCA 6. Both in the normal mechanical state and after increasing the inertial load of the moving hand, hyperventilation induced an increase of hypermetria. Hyperventilation increased the delay of the onset latency of the antagonist EMG activity and decreased the rate of rise of both the agonist and the antagonist EMG activities. Hyperventilation induced a marked decrease in cerebral blood flow velocities. The mechanism of this provocative test is original and is distinct from the mechanism of the load-induced increase of hypermetria. PMID:12588903
Witt, Florian; Duda, Georg N; Bergmann, Camilla; Petersen, Ansgar
2014-02-01
Bone healing is a complex process with an increased metabolic activity and consequently high demand for oxygen. In the hematoma phase, inflammatory cells and mesenchymal stromal cells (MSCs) are initially cut off from direct nutritional supply via blood vessels. Cyclic mechanical loading that occurs, for example, during walking is expected to have an impact on the biophysical environment of the cells but meaningful quantitative experimental data are still missing. In this study, the hypothesis that cyclic mechanical loading within a physiological range significantly contributes to oxygen transport into the fracture hematoma was investigated by an in vitro approach. MSCs were embedded in a fibrin matrix to mimic the hematoma phase during bone healing. Construct geometry, culture conditions, and parameters of mechanical loading in a bioreactor system were chosen to resemble the in vivo situation based on data from human studies and a well-characterized large animal model. Oxygen tension was measured before and after mechanical loading intervals by a chemical optical microsensor. The increase in oxygen tension at the center of the constructs was significant and depended on loading time with maximal values of 9.9%±5.1%, 14.8%±4.9%, and 25.3%±7.2% of normal atmospheric oxygen tension for 5, 15, and 30 min of cyclic loading respectively. Histological staining of hypoxic cells after 48 h of incubation confirmed sensor measurements by showing an increased number of normoxic cells with intermittent cyclic compression compared with unloaded controls. The present study demonstrates that moderate cyclic mechanical loading leads to an increased oxygen transport and thus to substantially enhanced supply conditions for cells entrapped in the hematoma. This link between mechanical conditions and nutrition supply in the early regenerative phases could be employed to improve the environmental conditions for cell metabolism and consequently prevent necrosis.
Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load
Burke, C. J.; Seifritz, E.; Tobler, P. N.
2017-01-01
Abstract Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain’s capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations. PMID:28462394
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...
14 CFR 23.485 - Side load conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load conditions. 23.485 Section 23.485... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Ground Loads § 23.485 Side load conditions. (a) For the side load condition, the airplane is assumed to be in a level attitude...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y.; Hawkins, R.A.; Huang, S.C.
The liver plays an important role in glucose homeostasis. PET studies with 2-[F-18]fluro-2-deoxy-D-glucose (FDG) of the liver (e.g., in neoplasms) require an understanding of the effects of dietary conditions on hepatic FDG uptake. Twenty studies were performed on 10 normal volunteers (ages 24 {+-} 4) after fasting 4 to 19 hr and again after oral consumption of 100 g of dextrose to investigate tracer kinetic model configurations of FDG in the normal liver and to evaluate the impact of oral glucose on liver in normal subjects. Dynamic PET images were acquired for about 1 hr using a Siemens/CTI 931 tomograph.more » A three-compartment model with an input function delay time parameter was the statistically preferred model configuration. The model estimated transport rate constant from plasma to liver, K{sub 1}, increased significantly (p < 0.05) from 0.864 {+-} 0.136 ml/min/g in fasting studies to 1.058 {+-} 0.269 ml/min/g in postglucose studies. Glucose loading also significantly increased (p < 0.01) the rate constant for FDG phosphorylation, k{sub 3}, from 0.005 {+-} 0.003 min{sup -1} in fasting studies to 0.013 {+-} 0.007 min{sup -1} in postglucose administration and, consequently, significantly increased both the phosphorylation fraction (k{sub 3}/(k{sub 2} + k{sub 3})) and the influx constant (K{sub 1}k{sub 3}/(k{sub 2} + k{sub 3})). No significant differences in the liver-to-plasma transport rate constant, k{sub 2}, dephosphorylation constant, k{sub 4}, or distribution volume of FDG (K{sub 1}/(k{sub 2} + k{sub 3})) were observed. Dynamic FDG-PET studies can be used to evaluate kinetics of liver glucose metabolism. The results indicate that dietary conditions have a significant effect on hepatic FDG kinetics. Because of the higher net FDG uptake by normal liver after glucose loading, fasting conditions are preferred for FDG liver tumor studies to increase the tumor-to-background contrast. 22 refs., 2 figs., 3 tabs.« less
Periodontal disease associates with higher brain amyloid load in normal elderly
Kamer, Angela R.; Pirraglia, Elizabeth; Tsui, Wai; Rusinek, Henry; Vallabhajosula, Shankar; Mosconi, Lisa; Yi, Li; McHugh, Pauline; Craig, Ronald G.; Svetcov, Spencer; Linker, Ross; Shi, Chen; Glodzik, Lidia; Williams, Schantel; Corby, Patricia; Saxena, Deepak; de Leon, Mony J.
2015-01-01
Background The accumulation of amyloid β plaques (Aβ) is a central feature of Alzheimer’s disease (AD). First reported in animal models, it remains uncertain if peripheral inflammatory/infectious conditions in humans can promote Aβ brain accumulation. Periodontal disease, a common chronic infection, has been previously reported to be associated with AD. Methods Thirty-eight cognitively normal, healthy, community residing elderly (mean age 61; 68% female) were examined in an Alzheimer’s Disease research center and a University-based Dental School. Linear regression models (adjusted for age, ApoE and smoking) were used to test the hypothesis that periodontal disease assessed by clinical attachment loss was associated with brain Aβ load using 11C-PIB PET imaging. Results After adjusting for confounders, clinical attachment loss (≥ 3mm), representing a history of periodontal inflammatory/infectious burden, was associated with increased 11C-PIB uptake in Aβ vulnerable brain regions (p=0.002). Conclusion We show for the first time in humans an association between periodontal disease and brain Aβ load. These data are consistent with prior animal studies showing that peripheral inflammation/infections are sufficient to produce brain Aβ accumulations. PMID:25491073
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.L.; Hooper, M.
This report summarizes the activities and results for the second testing phase (Phase 2) of an Innovative Clean Coal Technology (ICCT) demonstration of advanced tangentially fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. All three levels of Asea Brown Boveri Combustion Engineering Service`s (ABB CE`s) Low-NO{sub x} Concentric Firing System (LNCFS) are being demonstrated during this project. The primary goal of this project is to demonstrate the NO{sub x} emissions characteristics of these technologies when operated under normal load dispatched conditions. The equipment is being tested at Gulf Power Company`s Plant Lansing Smith Unitmore » 2 in Lynn Haven, Florida. The long-term NO{sub x} emission trends were documented while the unit was operating under normal load dispatch conditions with the LNCFS Level II equipment. Fifty-five days of long-term data were collected. The data included the effects of mill patterns, unit load, mill outages, weather, fuel variability, and load swings. Test results indicated full-load (180 MW) NO{sub x} emissions of 0.39 lb/MBtu, which is about equal to the short-term test results. At 110 MW, long-term NO{sub x} emissions increased to 0.42 lb/MBtu, which are slightly higher than the short-term data. At 75 MW, NO{sub x} emissions were 0.51 lb/MBtu, which is significantly higher than the short-term data. The annual and 30-day average achievable NOx emissions were determined to be 0.41 and 0.45 lb/MBtu, respectively, for long-term testing load scenarios. NO{sub x} emissions were reduced by a maximum of 40 percent when compared to the baseline data collected in the previous phase. The long-term NO{sub x} reduction at full load (180 MW) was 37 percent while NO{sub x} reduction at low load was minimal.« less
Song, Do Kyeong; Hong, Young Sun; Sung, Yeon-Ah; Lee, Hyejin
2017-01-01
Polycystic ovary syndrome (PCOS) is associated with insulin resistance (IR) and compensatory hyperinsulinemia. IR is recognized as a major risk factor for the development of type 2 diabetes mellitus. However, few studies have investigated IR in women with PCOS and normal glucose tolerance. The objective of this study was to evaluate IR and β-cell function in women with PCOS and normal glucose tolerance. Additionally, we sought to evaluate the usefulness of oral glucose tolerance test (OGTT)-derived IR indices in lean women with PCOS. We recruited 100 women with PCOS and normal glucose tolerance and 100 age- and BMI-matched women as controls. IR and insulin secretory indices, including the homeostasis-model assessment (HOMA)-IR, HOMA-M120, HOMA-F and the Stumvoll index, were calculated from an OGTT. Increased β-cell function was defined as>75th percentile for the HOMA-F in control women. Women with PCOS had higher values for post-load 2-hour glucose, fasting insulin, post-load 2-hour insulin, HOMA-IR, HOMA-M120, HOMA-F and lower values for the Stumvoll index than the controls (all Ps<0.05). Women with PCOS and increased β-cell function showed lower Stumvoll index values than the matched controls (P<0.05). The HOMA-F was significantly associated with the HOMA-M120 and Stumvoll index when adjusted for age and BMI in a multiple regression analysis (all Ps<0.05). The HOMA-M120 was positively correlated with triglycerides and free testosterone, and the Stumvoll index was negatively correlated with triglycerides and free testosterone in lean women with PCOS (all Ps<0.05). Women with PCOS and normal glucose tolerance showed higher IR than controls matched for age, BMI, and β-cell function. β-cell function was increased in women with PCOS when compared to the matched controls, but not when the lean subjects were compared to the matched controls separately. Therefore, early evaluation of IR in women with PCOS and normal glucose tolerance may be needed.
Hong, Young Sun; Sung, Yeon-Ah
2017-01-01
Background Polycystic ovary syndrome (PCOS) is associated with insulin resistance (IR) and compensatory hyperinsulinemia. IR is recognized as a major risk factor for the development of type 2 diabetes mellitus. However, few studies have investigated IR in women with PCOS and normal glucose tolerance. The objective of this study was to evaluate IR and β-cell function in women with PCOS and normal glucose tolerance. Additionally, we sought to evaluate the usefulness of oral glucose tolerance test (OGTT)-derived IR indices in lean women with PCOS. Methods We recruited 100 women with PCOS and normal glucose tolerance and 100 age- and BMI-matched women as controls. IR and insulin secretory indices, including the homeostasis-model assessment (HOMA)-IR, HOMA-M120, HOMA-F and the Stumvoll index, were calculated from an OGTT. Increased β-cell function was defined as>75th percentile for the HOMA-F in control women. Results Women with PCOS had higher values for post-load 2-hour glucose, fasting insulin, post-load 2-hour insulin, HOMA-IR, HOMA-M120, HOMA-F and lower values for the Stumvoll index than the controls (all Ps<0.05). Women with PCOS and increased β-cell function showed lower Stumvoll index values than the matched controls (P<0.05). The HOMA-F was significantly associated with the HOMA-M120 and Stumvoll index when adjusted for age and BMI in a multiple regression analysis (all Ps<0.05). The HOMA-M120 was positively correlated with triglycerides and free testosterone, and the Stumvoll index was negatively correlated with triglycerides and free testosterone in lean women with PCOS (all Ps<0.05). Conclusions Women with PCOS and normal glucose tolerance showed higher IR than controls matched for age, BMI, and β-cell function. β-cell function was increased in women with PCOS when compared to the matched controls, but not when the lean subjects were compared to the matched controls separately. Therefore, early evaluation of IR in women with PCOS and normal glucose tolerance may be needed. PMID:28542421
Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L
2013-02-01
The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: low
Double and multiple contacts of similar elastic materials
NASA Astrophysics Data System (ADS)
Sundaram, Narayan K.
Ongoing fretting fatigue research has focussed on developing robust contact mechanics solutions for complicated load histories involving normal, shear, moment and bulk loads. For certain indenter profiles and applied loads, the contact patch separates into two disconnected regions. Existing Singular Integral Equation (SIE) techniques do not address these situations. A fast numerical tool is developed to solve such problems for similar elastic materials for a wide range of profiles and load paths including applied moments and remote bulk-stress effects. This tool is then used to investigate two problems in double contacts. The first, to determine the shear configuration space for a biquadratic punch for the generalized Cattaneo-Mindlin problem. The second, to obtain quantitative estimates of the interaction between neighboring cylindrical contacts for both the applied normal load and partial slip problems up to the limits of validity of the halfspace assumption. In double contact problems without symmetry, obtaining a unique solution requires the satisfaction of a condition relating the contact ends, rigid-body rotation and profile function. This condition has the interpretation that a rigid-rod connecting the inner contact ends of an equivalent frictionless double contact of a rigid indenter and halfspace may only undergo rigid body motions. It is also found that the ends of stick-zones, local slips and remote-applied strains in double contact problems are related by an equation expressing tangential surface-displacement continuity. This equation is essential to solve partial-slip problems without contact equivalents. Even when neighboring cylindrical contacts may be treated as non-interacting for the purpose of determining the pressure tractions, this is not generally true if a shear load is applied. The mutual influence of neighboring contacts in partial slip problems is largest at small shear load fractions. For both the pressure and partial slip problems, the interactions are stronger with increasing strength of loading and contact proximity. A new contact algorithm is developed and the SIE method extended to tackle contact problems with an arbitrary number of contact patches with no approximations made about contact interactions. In the case of multiple contact problems determining the correct contact configuration is significantly more complicated than in double contacts, necessitating a new approach. Both the normal contact and partial slip problems are solved. The tool is then used to study contacts of regular rough cylinders, a flat with rounded punch with superimposed sinusoidal roughness and is also applied to analyze the contact of an experimental rough surface with a halfspace. The partial slip results for multiple-contacts are generally consistent with Cattaneo-Mindlin continuum scale results, in that the outermost contacts tend to be in full sliding. Lastly, the influence of plasticity on frictionless multiple contact problems is studied using FEM for two common steel and aluminum alloys. The key findings are that the plasticity decreases the peak pressure and increases both real and apparent contact areas, thus 'blunting' the sharp pressures caused by the contact asperities in pure elasticity. Further, it is found that contact plasticity effects and load for onset of first yield are strongly dependent on roughness amplitude, with higher plasticity effects and lower yield-onset load at higher roughness amplitudes.
Korte, F Steven; McDonald, Kerry S
2007-01-01
The effects of sarcomere length (SL) on sarcomeric loaded shortening velocity, power output and rates of force development were examined in rat skinned cardiac myocytes that contained either α-myosin heavy chain (α-MyHC) or β-MyHC at 12 ± 1°C. When SL was decreased from 2.3 μm to 2.0 μm submaximal isometric force decreased ∼40% in both α-MyHC and β-MyHC myocytes while peak absolute power output decreased 55% in α-MyHC myocytes and 70% in β-MyHC myocytes. After normalization for the fall in force, peak power output decreased about twice as much in β-MyHC as in α-MyHC myocytes (41%versus 20%). To determine whether the fall in normalized power was due to the lower force levels, [Ca2+] was increased at short SL to match force at long SL. Surprisingly, this led to a 32% greater peak normalized power output at short SL compared to long SL in α-MyHC myocytes, whereas in β-MyHC myocytes peak normalized power output remained depressed at short SL. The role that interfilament spacing plays in determining SL dependence of power was tested by myocyte compression at short SL. Addition of 2% dextran at short SL decreased myocyte width and increased force to levels obtained at long SL, and increased peak normalized power output to values greater than at long SL in both α-MyHC and β-MyHC myocytes. The rate constant of force development (ktr) was also measured and was not different between long and short SL at the same [Ca2+] in α-MyHC myocytes but was greater at short SL in β-MyHC myocytes. At short SL with matched force by either dextran or [Ca2+], ktr was greater than at long SL in both α-MyHC and β-MyHC myocytes. Overall, these results are consistent with the idea that an intrinsic length component increases loaded crossbridge cycling rates at short SL and β-MyHC myocytes exhibit a greater sarcomere length dependence of power output. PMID:17347271
Model for Analysis of Power Quality Index and Determination of Its Causes and Effects
NASA Astrophysics Data System (ADS)
Ballal, Makarand Sudhakar; Suryawanshi, Hiralal Murlidhar; Koshy, Subin Earecheril
2018-05-01
The Power Quality (PQ) gets affected not only because of the load but also because of the source as power electronics devices applications are widely spread in both sides. The renewable energy sources used power electronics converters and the nonlinear loads connected at consumer premises are the main causes of PQ distortions. This hampered PQ supply, when fed to equipments (or loads), affect the performance of them by increasing the energy lose, increasing the electricity bill and reducing their life expectancy. This article proposed a model for the analysis of different PQ events by means of Wavelet Transforms (WT) and Artificial Neural Network (ANN) composition. The different types of PQ events are generated in the laboratory under the source and load distortion conditions. The supply side voltage waveforms under linear load condition and load side current waveforms under normal supply conditions are considered for analysis. These waveforms are processed by WT and the scaling coefficients are determined for various PQ events. These coefficients are used to train ANNs for decision making. The proposed model is developed in MATLAB for offline and online applications. The results obtained by both the methods are compared and found satisfactory. At the end, the losses incurred in the transformer considered for performance, its efficiency and life expectancy are presented for different PQ conditions.
The effect of directional inertias added to pelvis and ankle on gait
2013-01-01
Background Gait training robots should display a minimum added inertia in order to allow normal walking. The effect of inertias in specific directions is yet unknown. We set up two experiments to assess the effect of inertia in anteroposterior (AP) direction to the ankle and AP and mediolateral (ML) direction to the pelvis. Methods We developed an experimental setup to apply inertia in forward backward and or sideways directions. In two experiments nine healthy subjects walked on a treadmill at 1.5 km/h and 4.5 km/h with no load and with AP loads of 0.3, 1.55 and 3.5 kg to the left ankle in the first experiment and combinations of AP and ML loads on the pelvis (AP loads 0.7, 4.3 and 10.2 kg; ML loads 0.6, 2.3 and 5.3 kg). We recorded metabolic rate, EMG of major leg muscles, gait parameters and kinematics. Results & discussion Adding 1.55 kg or more inertia to the ankle in AP direction increases the pelvis acceleration and decreases the foot acceleration in AP direction both at speeds of 4.5 km/h. Adding 3.5 kg of inertia to the ankle also increases the swing time as well as AP motions of the pelvis and head-arms-trunk (HAT) segment. Muscle activity remains largely unchanged. Adding 10.2 kg of inertia to the pelvis in AP direction causes a significant decrease of the pelvis and HAT segment motions, particularly at high speeds. Also the sagittal back flexion increases. Lower values of AP inertia and ML inertias up to 5.3 kg had negligible effect. In general the found effects are larger at high speeds. Conclusions We found that inertia up to 2 kg at the ankle or 6 kg added to the pelvis induced significant changes, but since these changes were all within the normal inter subject variability we considered these changes as negligible for application as rehabilitation robotics and assistive devices. PMID:23597391
Primary and coupled motions of the native knee in response to applied varus and valgus load.
Gladnick, Brian P; Boorman-Padgett, James; Stone, Kyle; Kent, Robert N; Cross, Michael B; Mayman, David J; Pearle, Andrew D; Imhauser, Carl W
2016-06-01
Knowledge of the complex kinematics of the native knee is a prerequisite for a successful reconstructive procedure. The aim of this study is to describe the primary and coupled motions of the native knee throughout the range of knee flexion, in response to applied varus and valgus loads. Twenty fresh-frozen cadaver knees were affixed to a six degree of freedom robotic arm with a universal force-moment sensor, and loaded with a 4Nm moment in varus and valgus at 0, 15, 30, 45, and 90° of knee flexion. The resulting tibiofemoral angulation, displacement, and rotation were recorded. For each parameter investigated, the knee joint demonstrated more laxity at higher flexion angles. Varus angulation increased progressively from zero (2.0° varus) to 90 (5.2° varus) degrees of knee flexion (p<0.001). Valgus angulation also increased progressively, from zero (1.5° valgus) to 90 (3.9° valgus) degrees of knee flexion (p<0.001). At all flexion angles, the magnitude of tibiofemoral angle deviation was larger with varus than with valgus loading (p<0.05). We conclude that the native knee exhibits small increases in coronal plane laxity as the flexion angle increases, and that the knee has generally more laxity under varus load than with valgus load throughout the Range of Motion (ROM). Larger differences in laxity of more than 2 to 3°, or peak laxity specifically during the range of mid-flexion, were not found in our cadaver model and are not likely to represent normal coronal plane kinematics. Level V, biomechanical cadaveric study. Copyright © 2016 Elsevier B.V. All rights reserved.
Cabrita, Marisa; Pereira, Carlos F; Rodrigues, Pedro; Cardoso, Elsa M; Arosa, Fernando A
2005-01-01
Iron overload in the liver may occur in clinical conditions such as hemochromatosis and nonalcoholic steatohepatitis, and may lead to the deterioration of the normal liver architecture by mechanisms not well understood. Although a relationship between the expression of ICAM-1, and classical major histocompatibility complex (MHC) class I molecules, and iron overload has been reported, no relationship has been identified between iron overload and the expression of unconventional MHC class I molecules. Herein, we report that parameters of iron metabolism were regulated in a coordinated-fashion in a human hepatoma cell line (HepG2 cells) after iron loading, leading to increased cellular oxidative stress and growth retardation. Iron loading of HepG2 cells resulted in increased expression of Nor3.2-reactive CD1d molecules at the plasma membrane. Expression of classical MHC class I and II molecules, ICAM-1 and the epithelial CD8 ligand, gp180 was not significantly affected by iron. Considering that intracellular lipids regulate expression of CD1d at the cell surface, we examined parameters of lipid metabolism in iron-loaded HepG2 cells. Interestingly, increased expression of CD1d molecules by iron-loaded HepG2 cells was associated with increased phosphatidylserine expression in the outer leaflet of the plasma membrane and the presence of many intracellular lipid droplets. These data describe a new relationship between iron loading, lipid accumulation and altered expression of CD1d, an unconventional MHC class I molecule reported to monitor intracellular and plasma membrane lipid metabolism, in the human hepatoma cell line HepG2.
Softened Mechanical Properties of Graphene Induced by Electric Field.
Huang, Peng; Guo, Dan; Xie, Guoxin; Li, Jian
2017-10-11
The understanding on the mechanical properties of graphene under the applications of physical fields is highly relevant to the reliability and lifetime of graphene-based nanodevices. In this work, we demonstrate that the application of electric field could soften the mechanical properties of graphene dramatically on the basis of the conductive AFM nanoindentation method. It has been found that the Young's modulus and fracture strength of graphene nanosheets suspended on the holes almost stay the same initially and then exhibit a sharp drop when the normalized electric field strength increases to be 0.18 ± 0.03 V/nm. The threshold voltage of graphene nanosheets before the onset of fracture under the fixed applied load increases with the thickness. Supported graphene nanosheets can sustain larger electric field under the same applied load than the suspended ones. The excessively regional Joule heating caused by the high electric current under the applied load is responsible for the electromechanical failure of graphene. These findings can provide a beneficial guideline for the electromechanical applications of graphene-based nanodevices.
Color vision with rapid-onset acceleration.
Balldin, U I; Derefeldt, G; Eriksson, L; Werchan, P M; Andersson, P; Yates, J T
2003-01-01
Only sporadic information exists concerning perceived color shifts at increased G-loads. The purpose of this study was to investigate whether or not color vision is affected by rapid onset high G7-loads up to +9 Gz, and specifically whether perception of hue changes. There were 10 male subjects, 9 with normal color vision and 1 with red-green protanomaly, all accustomed to Gz-loads in a human centrifuge. Each subject was tested on a total of 60 Gz-exposures with 10 s periods at +3, +5, +7, and +9 Gz in the centrifuge on three different days. G-onset rate was 6 G x s(-1). The subjects wore an anti-G suit and performed straining maneuvers if necessary to maintain vision. Five square color stimuli of medium saturation (yellow, red, blue, green, and gray) were projected one at a time on a screen in front of the subject, who gave his hue response orally. In 96.6% of exposures to various Gz-loads, the subjects responded by correctly naming colors. (The statistical analyses of the results were done for the subjects with normal color vision, with the protanomalous subject excluded.) Hue shifts occurred at the higher +Gz-levels, including 7.7% of the +9 Gz exposures. Yellow was the hue most frequently perceived as changed. Hue shifts were reported for yellow in 11% and 16% of the +7 and +9 Gz exposures, respectively. Hue shifts at +9 Gz occurred as frequently as blackout and G-LOC together. However, statistical analyses showed no significant effects for +Gz-load. Absolute identification of the color stimuli of medium saturation was stable and was not significantly affected by the rapid onset +Gz-loads up to and including +9 Gz.
Stewart analysis of apparently normal acid-base state in the critically ill.
Moviat, Miriam; van den Boogaard, Mark; Intven, Femke; van der Voort, Peter; van der Hoeven, Hans; Pickkers, Peter
2013-12-01
This study aimed to describe Stewart parameters in critically ill patients with an apparently normal acid-base state and to determine the incidence of mixed metabolic acid-base disorders in these patients. We conducted a prospective, observational multicenter study of 312 consecutive Dutch intensive care unit patients with normal pH (7.35 ≤ pH ≤ 7.45) on days 3 to 5. Apparent (SIDa) and effective strong ion difference (SIDe) and strong ion gap (SIG) were calculated from 3 consecutive arterial blood samples. Multivariate linear regression analysis was performed to analyze factors potentially associated with levels of SIDa and SIG. A total of 137 patients (44%) were identified with an apparently normal acid-base state (normal pH and -2 < base excess < 2 and 35 < PaCO2 < 45 mm Hg). In this group, SIDa values were 36.6 ± 3.6 mEq/L, resulting from hyperchloremia (109 ± 4.6 mEq/L, sodium-chloride difference 30.0 ± 3.6 mEq/L); SIDe values were 33.5 ± 2.3 mEq/L, resulting from hypoalbuminemia (24.0 ± 6.2 g/L); and SIG values were 3.1 ± 3.1 mEq/L. During admission, base excess increased secondary to a decrease in SIG levels and, subsequently, an increase in SIDa levels. Levels of SIDa were associated with positive cation load, chloride load, and admission SIDa (multivariate r(2) = 0.40, P < .001). Levels of SIG were associated with kidney function, sepsis, and SIG levels at intensive care unit admission (multivariate r(2) = 0.28, P < .001). Intensive care unit patients with an apparently normal acid-base state have an underlying mixed metabolic acid-base disorder characterized by acidifying effects of a low SIDa (caused by hyperchloremia) and high SIG combined with the alkalinizing effect of hypoalbuminemia. © 2013.
The influence of aging and attentional demands on recovery from postural instability.
Stelmach, G E; Zelaznik, H N; Lowe, D
1990-06-01
It is well known that the risk of a debilitating injury from a fall is much higher for elderly than for young individuals. In addition, it is well documented that healthy elderly subjects exhibit increased postural sway during normal stance tasks. In the present experiment, we explored the notion that control of minor postural instability in elderly subjects is attention demanding. Postural sway of eight elderly (mean age = 70.0 years) and eight young (mean age = 20.0 years) subjects was measured under two different secondary demands during stable and mildly unstable upright stance. There were two types of work loads. Either a cognitive (math task) or motor (hand-squeeze) task was performed during the second segment of a 50-second standing trial. The effect of these work loads on mean velocity, range, and variability of range of center of foot pressure was measured during the destabilizing activity of arm swinging and subsequent recovery period. Following seven seconds of 1 Hz arm-swinging activity, elderly subjects showed a marked increase in recovery time to normal stance when concurrently performing an arithmetic task. This result suggests that recovery from a posturally destabilizing activity, involving proprioceptive and vestibular information, places increased attentional demands on the postural support system of the elderly.
Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Ja Hun; Lee, Jaekyoung; Szanyi, Janos
2016-02-26
The electronic properties of oxide-modified γ Al2O3 surfaces were investigated by using ethanol TPD. Ethanol TPD showed remarkable sensitivity toward the surface structures and electronic properties of the aluminas modified by various transition metal oxides. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225 °C on non-modified γ-Al2O3. Desorption temperature of ethanol over a γ Al2O3 samples with different amounts of BaO linearly increased with increasing loading. On the contrary, ethanol desorption temperature on Pt modified γ-Al2O3 after calcined at 500 oC linearly decreased with increasing Pt loading. These results clearly suggested that themore » acid/base properties of the γ-Al2O3 surface can be strongly affected by ad-atoms. For confirming these arguments, we performed ethanol TPD experiments on various oxide modified γ-Al2O3 and normalized the maximum desorption temperatures based on the same number of oxide dopants. These normalized ethanol desorption temperatures linearly correlate with the electronegativity of the metal atom in the oxide. This linear relationship clearly demonstrates that the acidic properties of alumina surfaces can be systematically changed by ad-atoms.« less
Is Hand Selection Modulated by Cognitive-perceptual Load?
Liang, Jiali; Wilkinson, Krista; Sainburg, Robert L
2018-01-15
Previous studies proposed that selecting which hand to use for a reaching task appears to be modulated by a factor described as "task difficulty". However, what features of a task might contribute to greater or lesser "difficulty" in the context of hand selection decisions has yet to be determined. There has been evidence that biomechanical and kinematic factors such as movement smoothness and work can predict patterns of selection across the workspace, suggesting a role of predictive cost analysis in hand-selection. We hypothesize that this type of prediction for hand-selection should recruit substantial cognitive resources and thus should be influenced by cognitive-perceptual loading. We test this hypothesis by assessing the role of cognitive-perceptual loading on hand selection decisions, using a visual search task that presents different levels of difficulty (cognitive-perceptual load), as established in previous studies on overall response time and efficiency of visual search. Although the data are necessarily preliminary due to small sample size, our data suggested an influence of cognitive-perceptual load on hand selection, such that the dominant hand was selected more frequently as cognitive load increased. Interestingly, cognitive-perceptual loading also increased cross-midline reaches with both hands. Because crossing midline is more costly in terms of kinematic and kinetic factors, our findings suggest that cognitive processes are normally engaged to avoid costly actions, and that the choice not-to-cross midline requires cognitive resources. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Characterising fabric, force distributions and porosity evolution in sheared granular media
NASA Astrophysics Data System (ADS)
Mair, Karen; Abe, Steffen; Jettestuen, Espen
2014-05-01
Active faults, landslides, subglacial tills and poorly or unconsolidated sands essentially contain accumulations of granular debris that evolve under load. Both the macroscopic motions and the bulk fluid flow characteristics that result are determined by the particular grain scale processes operating in this deformed or transformed granular material. A relevant question is how the local behavior at the individual granular contacts actually sums up, and in particular how the load bearing skeleton (an important expression of connected load) and spatial distribution of pore space (and hence fluid pathways) are linked. Here we investigate the spatial distribution of porosity with granular rearrangements (specifically contact force network characteristics) produced in 3D discrete element models of granular layers under shear. We use percolation measures to identify, characterize, compare and track the evolution of strongly connected contact force networks. We show that specific topological measures used in describing the networks, such as number of contacts and coordination number, are sensitive to grain size distribution of the material as well as loading conditions. In addition we probe the 3D spatial distribution of porosity as a function of increasing strain. Two cases will be considered. The first, a non-fracture regime where configurational changes occur during shear but grain size distribution remains constant. This would be expected for a soil or granular material under relatively low normal loading. Secondly we consider a fragmentation regime where the grain size distributions of the granular material evolve with accumulated strain. This mirrors the scenario for faults or basal shear zones of slides under higher normal stress where comminution is typically a mark of increasing maturity and plays a major role in the poro-perm evolution of the system. We will present the correlated and anti-correlated features appearing in our simulations as well as discussing the triggers and relative persistence of fluid pathway creation versus destruction mechanisms. We will also demonstrate how the individual grain interactions are manifested in the macroscopic sliding behavior we observe.
Burger, Koert N. J.; Beulens, Joline W. J.; van der Schouw, Yvonne T.; Sluijs, Ivonne; Spijkerman, Annemieke M. W.; Sluik, Diewertje; Boeing, Heiner; Kaaks, Rudolf; Teucher, Birgit; Dethlefsen, Claus; Overvad, Kim; Tjønneland, Anne; Kyrø, Cecilie; Barricarte, Aurelio; Bendinelli, Benedetta; Krogh, Vittorio; Tumino, Rosario; Sacerdote, Carlotta; Mattiello, Amalia; Nilsson, Peter M.; Orho-Melander, Marju; Rolandsson, Olov; Huerta, José María; Crowe, Francesca; Allen, Naomi; Nöthlings, Ute
2012-01-01
Background Dietary fiber, carbohydrate quality and quantity are associated with mortality risk in the general population. Whether this is also the case among diabetes patients is unknown. Objective To assess the associations of dietary fiber, glycemic load, glycemic index, carbohydrate, sugar, and starch intake with mortality risk in individuals with diabetes. Methods This study was a prospective cohort study among 6,192 individuals with confirmed diabetes mellitus (mean age of 57.4 years, and median diabetes duration of 4.4 years at baseline) from the European Prospective Investigation into Cancer and Nutrition (EPIC). Dietary intake was assessed at baseline (1992–2000) with validated dietary questionnaires. Cox proportional hazards analysis was performed to estimate hazard ratios (HRs) for all-cause and cardiovascular mortality, while adjusting for CVD-related, diabetes-related, and nutritional factors. Results During a median follow-up of 9.2 y, 791 deaths were recorded, 306 due to CVD. Dietary fiber was inversely associated with all-cause mortality risk (adjusted HR per SD increase, 0.83 [95% CI, 0.75–0.91]) and CVD mortality risk (0.76[0.64–0.89]). No significant associations were observed for glycemic load, glycemic index, carbohydrate, sugar, or starch. Glycemic load (1.42[1.07–1.88]), carbohydrate (1.67[1.18–2.37]) and sugar intake (1.53[1.12–2.09]) were associated with an increased total mortality risk among normal weight individuals (BMI≤25 kg/m2; 22% of study population) but not among overweight individuals (P interaction≤0.04). These associations became stronger after exclusion of energy misreporters. Conclusions High fiber intake was associated with a decreased mortality risk. High glycemic load, carbohydrate and sugar intake were associated with an increased mortality risk in normal weight individuals with diabetes. PMID:22927948
14 CFR 23.511 - Ground load; unsymmetrical loads on multiple-wheel units.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER... distribution, to the dual wheels and tires in each dual wheel landing gear unit. (c) Deflated tire loads. For...
Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank’s solution
Li, Wenting; Li, Nan; Zheng, Yufeng; Yuan, Guangyin
2016-01-01
Fretting is a significant cause for the failure of orthopedic implants. Currently, since magnesium and its alloys have been developed as promising biodegradable implant materials, the fretting behavior of the Mg alloys is of great research significance. In this study, a Mg-Nd-Zn-Zr alloy (hereafter, denoted as JDBM alloy) was selected as experimental material, and its fretting behaviors were evaluated under 5 N, 10 N and 20 N normal loads with a displacement of 200 μm under the frequency of 10 Hz at 37 °C in air and in Hank’s solution, respectively. The results indicated that while the friction coefficient decreased with the increment of the normal load, the wear volume of the alloy increased with the increment of the normal load both in air and in Hank’s solution. Both the friction coefficients and the wear volume of the fretting in Hank’s solution were much lower than those in air environment. The evolution trend of friction coefficients with time had different performance in air environment and the Hank’s solution group. Although oxidation occurred during the fretting tests in Hank’s solution, the damage of JDBM alloy was still reduced due to the lubrication effects of Hank’s solution. Moreover, the addition of Fetal bovine serum (FBS) could act as lubrication and result in the reduction of the fretting damage. PMID:27812007
NASA Astrophysics Data System (ADS)
Chang, Dongil; Tavoularis, Stavros
2013-03-01
Unsteady numerical simulations have been conducted to investigate the effect of axial spacing between the stator vanes and the rotor blades on the performance of a transonic, single-stage, high-pressure, axial turbine. Three cases were considered, the normal case, which is based on the geometry of a commercial jet engine and has an axial spacing at 50% blade span equal to 42% of the vane axial chord, as well as two other cases with axial spacings equal to 31 and 52% vane axial chords, respectively. Present interest has focused on the effect of axial gap size on the instantaneous and time-averaged flows as well as on the blade loading and the turbine performance. Decreasing the gap size reduced the pressure and increased the Mach number in the core flows in the gap region. However, the flows near the two endwalls did not follow monotonic trends with the gap size change; instead, the Mach numbers for both the small gap and the large gap cases were lower than that for the normal case. This Mach number decrease was attributed to increased turbulence due to the increased wake strength for the small gap case and an increased wake width for the large gap case. In all considered cases, large pressure fluctuations were observed in the front region of the blade suction side. These pressure fluctuations were strongest for the smaller spacing. The turbine efficiencies of the cases with the larger and smaller spacings were essentially the same, but both were lower than that of the normal case. The stator loss for the smaller spacing case was lower than the one for the larger spacing case, whereas the opposite was true for the rotor loss.
Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D
1993-01-01
BACKGROUND--Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. METHODS--Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. RESULTS--The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. CONCLUSIONS--The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation. PMID:8511732
Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D
1993-04-01
Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation.
Optimization of enhanced biological phosphorus removal after periods of low loading.
Miyake, Haruo; Morgenroth, Eberhard
2005-01-01
Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
NASA Technical Reports Server (NTRS)
Tanner, John A.
1996-01-01
A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.
Magnetic Flux-Load Current Interactions in Ferrous Conductors
1992-06-01
the normal conducting homopolar motor , an increase in resistivity of the current carrying iron bars will increase heat production and lower the...determining the actual H that exists in the iron for any given B-radial seen by the homopolar motor for a particular axial current case. The...This is the data that was used the homopolar motor overall model. 34 RESULTS The plots in Fig. 21 and the data in Table 1 represent the final product
Jakobsen, Markus Due; Sundstrup, Emil; Persson, Roger; Andersen, Christoffer H; Andersen, Lars L
2014-02-01
To investigate associations between perceived exertion and objectively assessed muscular and cardiovascular load during a full working day among workers with manual lifting tasks. A total of 159 men and 41 women from 14 workplaces with manual lifting tasks participated. Participants reported perceived exertion (BORG-CR10) at midday and after work. Surface electromyography of the thigh, lower back and neck muscles were normalized to isometric voluntary contractions (MVC) to express relative muscle load during the day. Cardiovascular load was measured with electrocardiography and calculated as the average percentage of the heart rate reserve capacity (((heart rate during work - resting heart rate) / (maximum heart rate - resting heart rate)) * 100) during the day. Using linear regression, significant but weak associations (β < 0.23) were observed between perceived exertion and (1) high muscle activity (>60% of MVC) of the neck muscles and (2) inactivity (<1% of MVC) of the thigh muscles and (3) cardiovascular load, respectively. Using logistic regression, perceived exertion ≥4 (high exertion), referencing <4 (low-to-moderate exertion), was related to high activity of the trapezius muscle [OR 18 (95% CI 2-143)], i.e., the odds for experiencing high exertion during work increased 18-fold for each percentage increase in time above 60% MVC. During a full working day among blue-collar workers with lifting tasks, high neck muscle activity increases the odds for experiencing high perceived physical exertion. Perceived exertion of at least 4 on the BORG CR10 scale appears to be a good indicator that high muscular loading occurs.
Rupture of posterior cruciate ligament leads to radial displacement of the medial meniscus.
Zhang, Can; Deng, Zhenhan; Luo, Wei; Xiao, Wenfeng; Hu, Yihe; Liao, Zhan; Li, Kanghua; He, Hongbo
2017-07-11
To explore the association between the rupture of posterior cruciate ligament (PCL) and the radial displacement of medial meniscus under the conditions of different flexion and various axial loads. The radial displacement value of medial meniscus was measured for the specimens of normal adult knee joints, including 12 intact PCLs, 6 ruptures of the anterolateral bundle (ALB), 6 ruptures of the postmedial bundle (PMB), and 12 complete ruptures. The measurement was conducted at 0°, 30°, 60°, and 90° of knee flexion angles under 200 N, 400 N, 600 N, 800 N and 1000 N of axial loads respectively. The displacement values of medial meniscus of the ALB rupture group increased at 0° flexion under 800 N and 1000 N, and at 30°, 60° and 90° flexion under all loads in comparison with the PCL intact group. The displacement values of the PMB rupture group was higher at 0° and 90° flexion under all loads, and at 30° and 60° flexion under 800 N and 1000 N loads. The displacement of the PCL complete rupture group increased at all flexion angles under all loads. Either partial or complete rupture of the PCL can increase in the radial displacement of the medial meniscus, which may explain the degenerative changes that occuring in the medial meniscus due to PCL injury. Therefore, early reestablishment of the PCL is necessarily required in order to maintain stability of the knee joint after PCL injury.
Rock friction under variable normal stress
Kilgore, Brian D.; Beeler, Nicholas M.; Lozos, Julian C.; Oglesby, David
2017-01-01
This study is to determine the detailed response of shear strength and other fault properties to changes in normal stress at room temperature using dry initially bare rock surfaces of granite at normal stresses between 5 and 7 MPa. Rapid normal stress changes result in gradual, approximately exponential changes in shear resistance with fault slip. The characteristic length of the exponential change is similar for both increases and decreases in normal stress. In contrast, changes in fault normal displacement and the amplitude of small high-frequency elastic waves transmitted across the surface follow a two stage response consisting of a large immediate and a smaller gradual response with slip. The characteristic slip distance of the small gradual response is significantly smaller than that of shear resistance. The stability of sliding in response to large step decreases in normal stress is well predicted using the shear resistance slip length observed in step increases. Analysis of the shear resistance and slip-time histories suggest nearly immediate changes in strength occur in response to rapid changes in normal stress; these are manifested as an immediate change in slip speed. These changes in slip speed can be qualitatively accounted for using a rate-independent strength model. Collectively, the observations and model show that acceleration or deceleration in response to normal stress change depends on the size of the change, the frictional characteristics of the fault surface, and the elastic properties of the loading system.
Scott, Brendan R; Peiffer, Jeremiah J; Goods, Paul S R
2017-08-01
Scott, BR, Peiffer, JJ, and Goods, PSR. The effects of supplementary low-load blood flow restriction training on morphological and performance-based adaptations in team sport athletes. J Strength Cond Res 31(8): 2147-2154, 2017-Low-load resistance training with blood flow restriction (BFR) may be a method to enhance muscular development even in trained athletes. This study aimed to assess whether supplemental low-load BFR training can improve muscle size, strength, and physical performance characteristics in team sport athletes. Twenty-one semiprofessional Australian football athletes were assessed for 3-repetition maximum (3RM) and muscular endurance in the back squat, vastus lateralis muscle architecture, and performance in sprint and vertical jump tasks. Participants then undertook a 5-week training program, consisting of normal high-load resistance training supplemented by low-load squats with (LLBFR) or without (LL) BFR. Participants also performed regular conditioning and football training during this period. After the training intervention, participants again completed the pretraining testing battery. Squat 3RM and endurance increased from pretraining levels in both LL (3RM = 12.5% increase; endurance = 24.1% increase; p ≤ 0.007) and LLBFR (3RM = 12.3% increase; endurance = 21.2% increase; p = 0.007) groups, though there were no between-group differences. No post-training changes were observed for muscle architecture, or performance in sprinting and jumping tasks. Although squat 3RM and endurance performance increased in both groups, adding BFR during supplemental exercise did not enhance these responses. Similarly, there were no large differences in the assessments of sprint, acceleration, and jumping performance between the groups after training. These findings suggest that although LLBFR did not negatively affect adaptive responses to resistance training, this training strategy may not provide added benefit for healthy Australian football athletes already undertaking a rigorous training schedule.
NASA Astrophysics Data System (ADS)
Karamış, M. B.; Yıldızlı, K.; Çakırer, H.
2004-05-01
Surface properties of the Al-Mo-Ni coating plasma sprayed on the piston ring material and the frictional forces obtained by testing carried out under different loads, temperatures and frictional conditions were evaluated. Al-Mo-Ni composite material was deposited on the AISI 440C test steel using plasma spraying method. The coated and uncoated samples were tested by being exposed to frictional testing under dry and lubricated conditions. Test temperatures of 25, 100, 200, and 300 °C and loads of 83, 100, 200, and 300 N were applied during the tests in order to obtain the frictional response of the coating under conditions similar to real piston ring/cylinder friction conditions. Gray cast iron was used as a counterface material. All the tests were carried out with a constant sliding speed of 1 m/s. The properties of the coating were determined by using EDX and SEM analyses. Hardness distribution on the cross-section of the coating was also determined. In addition, the variations of the surface roughness after testing with test temperatures and loads under dry and lubricated conditions were recorded versus sliding distance. It was determined that the surface roughness increased with increasing loads. It increased with temperature up to 200 °C and then decreased at 300 °C under dry test conditions. Under lubricated conditions, the roughness decreased under the loads of 100 N and then increased. The roughness decreased at 200 °C but below and above this point it increased with the test temperature. Frictional forces observed under dry and lubricated test conditions increased with load at running-in period of the sliding. The steady-state period was then established with the sliding distance as a normal situation. However, the frictional forces were generally lower at a higher test temperature than those at a lower test temperature. Surprisingly, the test temperature of 200 °C was a critical point for frictional forces and surface roughness.
Production enhancement through aggressive flowback procedures in the Codell formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, A.J.; Ashton, P.J.N.; Lang, J.
1996-12-31
Proppant flowback following fracture stimulation treatments continues to be a major concern in many wells around the world. The current trend towards more tip screen out (TSO) and reverse screenout designs has increased the need for better control of proppant flowback under increasingly severe drag force conditions. Recent studies in the Codell formation have indicated a correlation between load water and polymer recovery on fracture cleanup and subsequent gas production. This paper describes a subsequent twenty-five well study of the specific effects of combining forced closure/reverse gravel packs along with varying flowback rates and choke schedules on load water recoverymore » and normalized gas and condensate production. One of the key issues addressed is the use of aggressive flowback schedules while maintaining proppant flowback control.« less
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
14 CFR 27.681 - Limit load static tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.681 Limit load... which— (1) The direction of the test loads produces the most severe loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to the main structure is included...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.681 - Limit load static tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Control Systems § 23.681 Limit load static tests. (a) Compliance with the limit load requirements of this... loading in the control system; and (2) Each fitting, pulley, and bracket used in attaching the system to...
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
14 CFR 23.521 - Water load conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Water load conditions. 23.521 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Water Loads § 23.521 Water load conditions. (a) The structure of seaplanes and amphibians must be designed for water...
The Effectiveness of Low-Level Light Therapy in Attenuating Vocal Fatigue.
Kagan, Loraine Sydney; Heaton, James T
2017-05-01
Low-level light therapy (LLLT) is effective in reducing inflammation, promoting wound healing, and preventing tissue damage, but has not yet been studied in the treatment of voice disorders. The objective of this study was to investigate the possible effectiveness of LLLT in attenuating symptoms of vocal fatigue created by a vocal loading task as measured by acoustic, aerodynamic, and self-reported vocal effort. In a randomized, prospective study, 16 vocally healthy adults divided into four groups underwent a 1-hour vocal loading procedure, followed by infrared wavelength LLLT (828 nm), red wavelength LLLT (628 nm), heat, or no heat-light (control) treatment targeting the laryngeal region of the ventral neck surface. Phonation threshold pressure (PTP), relative fundamental frequency (RFF), and the inability to produce soft voice (IPSV) self-perceptual rating scale were recorded (1) at baseline, (2) immediately after vocal loading, (3) after treatment, and (4) 1 hour after treatment. Vocal loading significantly increased PTP and IPSV and decreased onset and offset RFFs, consistent with a shift toward vocal dysfunction. Red light significantly normalized the combination of PTP, IPSV, and RFF measures compared to other conditions. RFF is sensitive to a vocal loading task in conjunction with PTP and IPSV, and red LLLT may have a normalizing effect on objective and subjective measures of vocal fatigue. The results of this study lay the groundwork and rationale for future research to optimize LLLT wavelength combinations and overall dose. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Sliding contact fracture of dental ceramics: Principles and validation
Ren, Linlin; Zhang, Yu
2014-01-01
Ceramic prostheses are subject to sliding contact under normal and tangential loads. Accurate prediction of the onset of fracture at two contacting surfaces holds the key to greater long-term performance of these prostheses. In this study, building on stress analysis of Hertzian contact and considering fracture criteria for linear elastic materials, a constitutive fracture mechanics relation was developed to incorporate the critical fracture load with the contact geometry, coefficient of friction and material fracture toughness. Critical loads necessary to cause fracture under a sliding indenter were calculated from the constitutive equation, and compared with the loads predicted from elastic stress analysis in conjunction with measured critical load for frictionless normal contact—a semi-empirical approach. The major predictions of the models were calibrated with experimentally determined critical loads of current and future dental ceramics after contact with a rigid spherical slider. Experimental results conform with the trends predicted by the models. PMID:24632538
Lefevre, Jonas; Hankins, Catherine; Money, Deborah; Rachlis, Anita; Pourreaux, Karina; Coutlée, François
2004-01-01
Human papillomavirus type 16 (HPV-16) viral load in cervicovaginal lavage samples collected from 66 human immunodeficiency virus-seropositive women was inversely correlated with blood CD4 count (P = 0.002). HPV-16 viral load was 81-fold higher in women with cervical smears suggestive of high-grade lesions (median, 4,425,883 copies/μg of DNA) than in women with normal smears (median, 54,576), controlling for age (P = 0.006). PMID:15131192
Modelling clustering of vertically aligned carbon nanotube arrays.
Schaber, Clemens F; Filippov, Alexander E; Heinlein, Thorsten; Schneider, Jörg J; Gorb, Stanislav N
2015-08-06
Previous research demonstrated that arrays of vertically aligned carbon nanotubes (VACNTs) exhibit strong frictional properties. Experiments indicated a strong decrease of the friction coefficient from the first to the second sliding cycle in repetitive measurements on the same VACNT spot, but stable values in consecutive cycles. VACNTs form clusters under shear applied during friction tests, and self-organization stabilizes the mechanical properties of the arrays. With increasing load in the range between 300 µN and 4 mN applied normally to the array surface during friction tests the size of the clusters increases, while the coefficient of friction decreases. To better understand the experimentally obtained results, we formulated and numerically studied a minimalistic model, which reproduces the main features of the system with a minimum of adjustable parameters. We calculate the van der Waals forces between the spherical friction probe and bunches of the arrays using the well-known Morse potential function to predict the number of clusters, their size, instantaneous and mean friction forces and the behaviour of the VACNTs during consecutive sliding cycles and at different normal loads. The data obtained by the model calculations coincide very well with the experimental data and can help in adapting VACNT arrays for biomimetic applications.
NASA Astrophysics Data System (ADS)
Lai, Tianmao; Meng, Yonggang
2017-10-01
The influences of contact time, normal load, piezo velocity, and measurement number of times on the adhesion force between two silicon surfaces were studied with an atomic force microscope (AFM) at low humidity (17-15%). Results show that the adhesion force is time-dependent and increases logarithmically with contact time until saturation is reached, which is related with the growing size of a water bridge between them. The contact time plays a dominant role among these parameters. The adhesion forces with different normal loads and piezo velocities can be quantitatively obtained just by figuring out the length of contact time, provided that the contact time dependence is known. The time-dependent adhesion force with repeated contacts at one location usually increases first sharply and then slowly with measurement number of times until saturation is reached, which is in accordance with the contact time dependence. The behavior of the adhesion force with repeated contacts can be adjusted by the lengths of contact time and non-contact time. These results may help facilitate the anti-adhesion design of silicon-based microscale systems working under low humidity.
Friction and Wear Behavior of Carbon Fabric-Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Şahin, Y.; De Baets, Patrick
2017-12-01
Besides intrinsic material properties, weight/energy savings and wear performance play an important role in the selection of materials for any engineering application. The tribological behavior of carbon fabric-reinforced epoxy composites produced by molding technique was investigated using a reciprocating pin-on-plate configuration. It was shown that the wear rate considerably decreased (by a factor of approx. 8) with the introduction of the reinforcing carbon fabric into the epoxy matrix. It was observed that the wear rate of the tested composites increased with an increase in normal load. Moreover, the coefficient of friction for epoxy/steel and composites/steel tribo-pairs was also determined and decreased with increasing load. By means of scanning electron microscopy of the wear tracks, different wear mechanisms such as matrix wear, matrix fatigue and cracking, matrix debris formation for neat epoxy together with fabric/fiber thinning, fabric breakage and fabric/matrix debonding for the reinforced epoxy could be distinguished.
Study on the friction of κ-carrageenan hydrogels in air and aqueous environments.
Kozbial, Andrew; Li, Lei
2014-03-01
Understanding the friction mechanism of polysaccharide hydrogels, which is the key component of human cartilage that has very low friction coefficient, is critical to develop next generation artificial joint replacement materials. In this study, the friction of the polysaccharide κ-carrageenan hydrogel was investigated to elucidate the effect of external load, cross-linking density, velocity, and environment on friction. Our experimental results show that (1) coefficient of friction (COF) decreases with normal load in air and remains constant in water, (2) increasing cross-linking density concurrently increases friction and is proportional to Young's modulus, (3) COF increases with testing velocity in both air and water, and (4) friction is reduced in aqueous environment due to the lubricating effect of water. The underlying frictional mechanism is discussed on the basis of water transport from bulk to surface and a previously proposed "repulsion-adsorption" model. Copyright © 2013 Elsevier B.V. All rights reserved.
Fuel cladding behavior under rapid loading conditions
NASA Astrophysics Data System (ADS)
Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.
2016-02-01
A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.
Li, Yan; Thijs, Lutgarde; Boggia, José; Asayama, Kei; Hansen, Tine W; Kikuya, Masahiro; Björklund-Bodegård, Kristina; Ohkubo, Takayoshi; Jeppesen, Jørgen; Torp-Pedersen, Christian; Dolan, Eamon; Kuznetsova, Tatiana; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Malyutina, Sofia; Casiglia, Edoardo; Nikitin, Yuri; Lind, Lars; Sandoya, Edgardo; Kawecka-Jaszcz, Kalina; Filipovsky, Jan; Imai, Yutaka; Ibsen, Hans; O'Brien, Eoin; Wang, Jiguang; Staessen, Jan A
2014-05-01
Experts proposed blood pressure (BP) load derived from 24-hour ambulatory BP recordings as a more accurate predictor of outcome than level, in particular in normotensive people. We analyzed 8711 subjects (mean age, 54.8 years; 47.0% women) randomly recruited from 10 populations. We expressed BP load as percentage (%) of systolic/diastolic readings ≥135/≥85 mm Hg and ≥120/≥70 mm Hg during day and night, respectively, or as the area under the BP curve (mm Hg×h) using the same ceiling values. During a period of 10.7 years (median), 1284 participants died and 1109 experienced a fatal or nonfatal cardiovascular end point. In multivariable-adjusted models, the risk of cardiovascular complications gradually increased across deciles of BP level and load (P<0.001), but BP load did not substantially refine risk prediction based on 24-hour systolic or diastolic BP level (generalized R(2) statistic ≤0.294%; net reclassification improvement ≤0.28%; integrated discrimination improvement ≤0.001%). Systolic/diastolic BP load of 40.0/42.3% or 91.8/73.6 mm Hg×h conferred a 10-year risk of a composite cardiovascular end point similar to a 24-hour systolic/diastolic BP of 130/80 mm Hg. In analyses dichotomized according to these thresholds, increased BP load did not refine risk prediction in the whole study population (R(2)≤0.051) or in untreated participants with 24-hour ambulatory normotension (R(2)≤0.034). In conclusion, BP load does not improve risk stratification based on 24-hour BP level. This also applies to subjects with normal 24-hour BP for whom BP load was proposed to be particularly useful in risk stratification.
NASA Astrophysics Data System (ADS)
Alkhatib, Mayson H.; AlBishi, Hayat M.
2013-03-01
Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.
Changing Regulations of COD Pollution Load of Weihe River Watershed above TongGuan Section, China
NASA Astrophysics Data System (ADS)
Zhu, Lei; Liu, WanQing
2018-02-01
TongGuan Section of Weihe River Watershed is a provincial section between Shaanxi Province and Henan Province, China. Weihe River Watershed above TongGuan Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a method—characteristic section load (CSLD) method is suggested and point and non-point source pollution loads of Weihe River Watershed above TongGuan Section are calculated in the rainy, normal and dry season in 2013. The results show that the monthly point source pollution loads of Weihe River Watershed above TongGuan Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above TongGuan Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the rainy, wet and normal period in turn.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Song, JinXi; Liu, WanQing
2017-12-01
Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. Weihe River Watershed above Huaxian Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load(CSLD) method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the normal, rainy and wet period in turn.
Calculating NH3-N pollution load of wei river watershed above Huaxian section using CSLD method
NASA Astrophysics Data System (ADS)
Zhu, Lei; Song, JinXi; Liu, WanQing
2018-02-01
Huaxian Section is the last hydrological and water quality monitoring section of Weihe River Watershed. So it is taken as the research objective in this paper and NH3-N is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads—characteristic section load (CSLD)method is suggested and point source pollution and non-point source pollution loads of Weihe River Watershed above Huaxian Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Huaxian Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above Huaxian Section change greatly. The non-point source pollution load proportions of total pollution load of NH3-N decrease in the normal, rainy and wet period in turn.
Ranganathan, Perungavur N.; Lu, Yan; Jiang, Lingli; Kim, Changae
2011-01-01
Increases in serum and liver copper content are noted during iron deficiency in mammals, suggesting that copper-dependent processes participate during iron deprivation. One point of intersection between the 2 metals is the liver-derived, multicopper ferroxidase ceruloplasmin (Cp) that is important for iron release from certain tissues. The current study sought to explore Cp expression and activity during physiologic states in which hepatic copper loading occurs (eg, iron deficiency). Weanling rats were fed control or low iron diets containing low, normal, or high copper for ∼ 5 weeks, and parameters of iron homeostasis were measured. Liver copper increased in control and iron-deficient rats fed extra copper. Hepatic Cp mRNA levels did not change; however, serum Cp protein was higher during iron deprivation and with higher copper consumption. In-gel and spectrophotometric ferroxidase and amine oxidase assays demonstrated that Cp activity was enhanced when hepatic copper loading occurred. Interestingly, liver copper levels strongly correlated with Cp protein expression and activity. These observations support the possibility that liver copper loading increases metallation of the Cp protein, leading to increased production of the holo enzyme. Moreover, this phenomenon may play an important role in the compensatory response to maintain iron homeostasis during iron deficiency. PMID:21768302
Sazontova, T G; Glazachev, O S; Bolotova, A V; Dudnik, E N; Striapko, N V; Bedareva, I V; Anchishkina, N A; Arkhipenko, Iu V
2012-06-01
We have conducted theoretical foundation, experimental analysis and a pilot study of a new method of adaptation to hypoxia and hyperoxia in the prevention of hypoxic and stress-induced disorders and improving the body's tolerance to physical stress. It has been shown in the experimental part that a combination of physical exercise with adaptation to hypoxia-hyperoxia significantly increased tolerance to acute physical load (APL) and its active phase. Analysis of lipid peroxidation processes, antioxidant enzymes and HSPs showed that short-term training for physical exercise by itself compensates the stressor, but not the hypoxic component of the APL, the combination of training with adaptation to hypoxia-hyperoxia completely normalizes the stressor and hypoxic components of APL. The pilot study has been performed to evaluate the effectiveness of hypoxic-hyperoxic training course in qualified young athletes with over-training syndrome. After completing the course of hypoxia-hyperoxia adaptation, 14 sessions, accompanied by light mode sports training, the athletes set the normalization of autonomic balance, increased resistance to acute hypoxia in hypoxic test, increased physical performance--increased PWC170, maximal oxygen consumption (VO2max) parameters, their relative values to body mass, diminished shift of rate pressure product in the load. Thus, we confirmed experimental findings that hypoxic-hyperoxic training optimizes hypoxic (increased athletes resistance to proper hypoxia) and stress (myocardium economy in acute physical stress testing) components in systemic adaptation and restoration of athletes' with over-training syndrome.
Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert
2015-01-01
Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Balance performance was recorded under normal loading (NL, 1 g), UL (0.16 g 0.38 g) and OL (1.8 g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5 Hz (LF), medium 0.5-2 Hz (MF), high 2-6 Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support.
NASA Astrophysics Data System (ADS)
Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori
2018-05-01
We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.
NASA Astrophysics Data System (ADS)
Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.
2017-07-01
The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.
Shear thinning in non-Brownian suspensions.
Chatté, Guillaume; Comtet, Jean; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Ducouret, Guylaine; Lequeux, François; Lenoir, Nicolas; Ovarlez, Guillaume; Colin, Annie
2018-02-14
We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.
Maskless micro/nanofabrication on GaAs surface by friction-induced selective etching
2014-01-01
In the present study, a friction-induced selective etching method was developed to produce nanostructures on GaAs surface. Without any resist mask, the nanofabrication can be achieved by scratching and post-etching in sulfuric acid solution. The effects of the applied normal load and etching period on the formation of the nanostructure were studied. Results showed that the height of the nanostructure increased with the normal load or the etching period. XPS and Raman detection demonstrated that residual compressive stress and lattice densification were probably the main reason for selective etching, which eventually led to the protrusive nanostructures from the scratched area on the GaAs surface. Through a homemade multi-probe instrument, the capability of this fabrication method was demonstrated by producing various nanostructures on the GaAs surface, such as linear array, intersecting parallel, surface mesas, and special letters. In summary, the proposed method provided a straightforward and more maneuverable micro/nanofabrication method on the GaAs surface. PMID:24495647
Improved atom number with a dual color magneto—optical trap
NASA Astrophysics Data System (ADS)
Cao, Qiang; Luo, Xin-Yu; Gao, Kui-Yi; Wang, Xiao-Rui; Chen, Dong-Min; Wang, Ru-Quan
2012-04-01
We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems.
Surface recrystallization theory of the wear of copper in liquid methane
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wisander, D. W.
1974-01-01
Copper was subjected to sliding against 440C in liquid methane. The normal load range was from 1/4 to 2 kilograms, and the sliding velocity range was from 3.1 to 25 meters per second. Over this range of experimental parameters, the wear rate of the copper rider was found to be proportional to the sliding velocity squared and to the normal load. Transmission electron microscopy was used to study the dislocation structure in the copper very near the wear scar surface. It was found that near the wear scar surface, the microstructure was characterized by a fine-cell recrystallized zone in which individual dislocations could be distinguished in the cell walls. The interiors of the cells, about 0.5 micrometer in diameter, were nearly dislocation free. Below the recrystallized layer was a zone that was intensely cold worked by the friction process. With increasing depth, this intensely cold worked zone gradually became indistinguishable from the partially cold worked bulk of the copper, representative of the initial condition of the material.
Glenohumeral Function of the Long Head of the Biceps Muscle
Chalmers, Peter N.; Cip, Johannes; Trombley, Robert; Cole, Brian J.; Wimmer, Markus A.; Romeo, Anthony A.; Verma, Nikhil N.
2014-01-01
Background: Optimal treatment of superior labral anterior-posterior (SLAP) tears is controversial, in part because the dynamic role of the long head of the biceps muscle (LHBM) in the glenohumeral joint is unclear. The aim of this study was to determine dynamic LHBM behavior during shoulder activity by studying (1) the electromyographic activity of the LHBM during shoulder motion, (2) the effect of elbow immobilization on this activity, and (3) the effect of a load applied to the distal humerus on this activity. Hypothesis: The LHBM would not play a significant role in active glenohumeral range of motion. Study Design: Controlled laboratory study. Methods: Thirteen normal volunteers underwent surface electromyography (EMG) measurement of the LHBM, short head biceps muscle (SHBM), deltoid, infraspinatus, and brachioradialis during shoulder motion from the neutral position (0° of rotation, flexion, and abduction) to 45° of flexion, 90° of flexion, 45° of abduction, and 90° of abduction. These motions were repeated both with and without splint immobilization of the forearm and elbow at 100° of flexion and neutral rotation and with and without a 1-kg weight placed on the lateral distal humerus. Results: Mean EMG activity within the LHBM and the SHBM was low (≤11.6% ± 9.1%). LHBM activity was significant increased by flexion and abduction (P < .049 in all cases), while SHBM activity was not. EMG activity from the middle head of the deltoid was significantly increased by loading with the shoulder positioned away from the body (ie, in abduction or flexion). When compared with the unloaded state, the addition of a distal humeral load significantly increased LHBM activity in 45° of abduction (P = .028) and 90° of flexion (P = .033) despite forearm and elbow immobilization. The SHBM showed similar trends. Conclusion: In normal volunteers with forearm and elbow immobilization and application of a load to the distal humerus, LHBM EMG activity is increased by both glenohumeral flexion and abduction, suggesting that this muscle plays a dynamic role in glenohumeral motion with higher demand activities. Clinical Relevance: Biceps tenodesis may result in dynamic change within the glenohumeral joint with higher demand activities. PMID:26535304
Numerical investigation of contact stresses for fretting fatigue damage initiation
NASA Astrophysics Data System (ADS)
Bhatti, N. A.; Abdel Wahab, M.
2017-05-01
Fretting fatigue phenomena occurs due to interaction between contacting bodies under application of cyclic and normal loads. In addition to environmental conditions and material properties, the response at the contact interface highly depends on the combination of applied loads. High stress concentration is present at the contact interface, which can start the damage nucleation process. At the culmination of nucleation process several micro cracks are initiated, ultimately leading to the structural failure. In this study, effect of ratio of tangential to normal load on contact stresses, slip amplitude and damage initiation is studied using finite element analysis. The results are evaluated for Ruiz parameter as it involves the slip amplitude which in an important factor in fretting fatigue conditions. It is observed that tangential to normal load ratio influences the stick zone size and damage initiation life. Furthermore, it is observed that tensile stress is the most important factor that drives the damage initiation to failure for the cases where failure occurs predominantly in mode I manner.
Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming
2015-01-01
PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
Preliminary Results of Stability and Control Investigation of the Bell X-5 Research Airplane
NASA Technical Reports Server (NTRS)
Finch, Thomas W; Briggs, Donald W
1953-01-01
During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.
Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; ...
2014-03-28
Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of frameworkmore » force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.« less
Holographic evaluation of the marginal fit of complete crowns loaded at central fossa
NASA Astrophysics Data System (ADS)
Chen, Terry Y.; Chang, Guan L.; Wu, Shih H.
1993-07-01
In dentistry, the defect of cementation on the margins of crowns accumulates bacterial plaque easily. This can result in recurrent caries and periodontal disease. In this paper holographic interferometry is applied to study the effect of masticatory force on various complete crowns. Four complete molar crowns made from different casting materials (Au, Pd-Ag, Ni-Cr, and PFM) were tested. The horizontal displacements of two points near the margin, measured by the method of multiple observations, could be as large as 15 micrometers under normal load (25 kgw). However, the marginal discrepancy of all four crowns estimated were quite small (< 0.2 micrometers ). This also indicates that the cementation between the crown and the tooth is quite good. Nevertheless, when the load was increased to 45 kgw, a defect of cementation was found on the Pd-Ag crown.
Spencer, J D; Allee, G L; Sauber, T E
2000-03-01
We conducted two studies to determine the bioavailability and apparent digestibility of P in a low-phytate corn hybrid (.28% total P, .10% phytate P) genetically modified to be homozygous for the 1pa1-1 allele and a nearly isogenic corn hybrid (normal) (.25% total P, .20% phytate P). Additionally, we conducted an in vitro assay involving a peptic and pancreatin digestion to estimate P availability. The first study used 50 individually penned pigs (initial body weight 9 kg) and 10 treatments in a randomized complete block design. A cornstarch-soybean meal basal diet (.6% Ca, .2% P) was used. Treatments consisted of the basal diet and the basal diet plus .05, .10, or .15% P from monosodium phosphate (MSP), low-phytate corn, or normal corn. After a 35-d feeding period, pigs were killed to collect the fourth metacarpal for measurements of ash and breaking load. Breaking load was regressed on added P intake, and the bioavailability of P was determined by the slope ratio method. The bioavailabilities of P (relative to MSP) for low-phytate and normal corn were 62 and 9%, respectively. These were similar to the determined in vitro values of 57 and 11% for low-phytate and normal corn, respectively. In the second study, 20 pigs (initial BW 20 kg) were used in a randomized complete block design with a 2 x 2 factorial arrangement of treatments. Two corn lines (low-phytate and normal) and two levels of supplemental P (0 and .2%) from dicalcium phosphate were used. Diets with no added P were formulated to contain .9% lysine, .6% Ca, and .34% P. Apparent nutrient digestibilities were calculated from total collection of urine and feces for 5 d. There were no differences among treatments for energy and nitrogen digestibility. Pigs fed low-phytate corn with no added P had increased digestibility and retention of P and reduced total P excretion (P < .05). We conclude that low-phytate corn contains at least five times as much available P as normal corn. The use oflow-phytate corn greatly reduced the amount of P excreted by the pig and increased the N:P ratio in the manure.
White matter lesions and the cholinergic deficit in aging and mild cognitive impairment.
Richter, Nils; Michel, Anne; Onur, Oezguer A; Kracht, Lutz; Dietlein, Markus; Tittgemeyer, Marc; Neumaier, Bernd; Fink, Gereon R; Kukolja, Juraj
2017-05-01
In Alzheimer's disease (AD), white matter lesions (WMLs) are associated with an increased risk of progression from mild cognitive impairment (MCI) to dementia, while memory deficits have, at least in part, been linked to a cholinergic deficit. We investigated the relationship between WML load assessed with the Scheltens scale, cerebral acetylcholinesterase (AChE) activity measured with [ 11 C]N-methyl-4-piperidyl acetate PET, and neuropsychological performance in 17 patients with MCI due to AD and 18 cognitively normal older participants. Only periventricular, not nonperiventricular, WML load negatively correlated with AChE activity in both groups. Memory performance depended on periventricular and total WML load across groups. Crucially, AChE activity predicted memory function better than WML load, gray matter atrophy, or age. The effects of WML load on memory were fully mediated by AChE activity. Data suggest that the contribution of WML to the dysfunction of the cholinergic system in MCI due to AD depends on WML distribution. Pharmacologic studies are warranted to explore whether this influences the response to cholinergic treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Contact area of rough spheres: Large scale simulations and simple scaling laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastewka, Lars, E-mail: lars.pastewka@kit.edu; Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218; Robbins, Mark O., E-mail: mr@pha.jhu.edu
2016-05-30
We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the wholemore » range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.« less
Valuation of coefficient of rolling friction by the inclined plane method
NASA Astrophysics Data System (ADS)
Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.
2017-05-01
A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.
Thorlund, J B; Holsgaard-Larsen, A; Creaby, M W; Jørgensen, G M; Nissen, N; Englund, M; Lohmander, L S
2016-07-01
Patients undergoing arthroscopic partial meniscectomy (APM) are at increased risk of knee osteoarthritis (OA). Meniscal damage and/or surgery may alter knee joint loading to increase OA risk. We investigated changes in knee joint loading following medial APM surgery, compared with the contra-lateral leg. We estimated indices of knee joint loading (external peak knee adduction moment (KAM), KAM impulse and peak knee flexion moment (KFM)) normalized to body size (i.e., body mass (BM) and height (HT)) using 3D gait analysis in 23 patients (17 men, mean (SD) 46.2 (6.4) years, BMI 25.8 (3.4) kg/m(2)) without radiographic knee OA before and 12 months after medial APM. Static alignment was assessed by radiography and self-reported outcomes by Knee injury and Osteoarthritis Outcome Score (KOOS). Peak KAM and KAM impulse increased in the APM leg compared to the contra-lateral leg from before to 12 months after surgery (change difference: 0.38 Nm/BM*HT% 95% CI 0.01 to 0.76 (P = 0.049) and 0.20 Nm*s/BM*HT% 95% CI 0.10 to 0.30 (P < 0.001)). Patients self-reported improvements on all KOOS subscales (KOOS pain improvement: 22.8 95% CI 14.5 to 31.0 (P < 0.01)). A relative increase in indices of medial compartment loading was observed in the leg undergoing APM compared with the contra-lateral leg from before to 12 months after surgery. This increase may contribute to the elevated risk of knee OA in these patients. Randomized trials including a non-surgical control group are needed to determine if changes in joint loading following APM are caused by surgery or by changes in symptoms. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, K. M.; Tsay, S. C.; Lau, W. K. M.; Yasunari, T. J.; Mahanama, S. P. P.; Koster, R. D.; daSilva, A.
2017-12-01
We examine the relative roles of atmospheric aerosol radiative forcing, year-to-year SST (sea surface temperature) variability, and surface radiative forcing by snow impurity on snowmelt over the Tibetan Plateau and their impacts on rainfall and circulation of South Asian summer monsoon. Five-member ensemble experiments are conducted with NASA's GEOS-5 (Goddard Earth Observing System model version 5), equipped with a snow darkening module - GOSWIM (GOddard SnoW Impurity Module), on the Water-Year 2008 (October 2007 to September 2008). Asian summer monsoon in 2008 was near normal in terms of monsoon rainfall over India subcontinent. However, rainfall was excessive in the North while the southern India suffered from the rainfall deficit. The 2008 summer monsoon was accompanied with high loading of aerosols in the Arabian Sea and La Niña condition in the tropical Pacific. To examine the roles high aerosol loading and La Niña condition on the north-south dipole in Indian monsoon rainfall, two sets of experiments, in addition to control runs (CNTRL), are conducted without SST anomalies (CSST) and aerosol radiative feedback (NRF), respectively. Results show that increased aerosol loading in early summer is associated with the increased dust transport during La Niña years. Increased aerosols over the northern India induces EHP-like (elevated heat pump) circulation and increases rainfall over the India subcontinent. Aerosol radiative forcing feedback (CNTRL-NRF) strengthens the EHP-like monsoon circulation even more. Results indicate that anomalous circulation associated with La Niña condition increases aerosol loading by enhancing dust transport as well as by increasing aerosol lifetime. Increased aerosols induces EHP-like feedback processes and increases rainfall over the India subcontinent.
Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling
Ma, Liangsuo; Steinberg, Joel L.; Hasan, Khader M.; Narayana, Ponnada A.; Kramer, Larry A.; Moeller, F. Gerard
2011-01-01
Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation. However, the mechanism through which working memory load modulates brain connectivity is still unclear. In this study, this issue was addressed using dynamic causal modeling (DCM) based on functional magnetic resonance imaging (fMRI) data. Eighteen normal healthy subjects were scanned while they performed a working memory task with variable memory load, as parameterized by two levels of memory delay and three levels of digit load (number of digits presented in each visual stimulus). Eight regions of interest, i.e., bilateral middle frontal gyrus (MFG), anterior cingulate cortex (ACC), inferior frontal cortex (IFC), and posterior parietal cortex (PPC), were chosen for DCM analyses. Analysis of the behavioral data during the fMRI scan revealed that accuracy decreased as digit load increased. Bayesian inference on model structure indicated that a bilinear DCM in which memory delay was the driving input to bilateral PPC and in which digit load modulated several parieto-frontal connections was the optimal model. Analysis of model parameters showed that higher digit load enhanced connection from L PPC to L IFC, and lower digit load inhibited connection from R PPC to L ACC. These findings suggest that working memory load modulates brain connectivity in a parieto-frontal network, and may reflect altered neuronal processes, e.g., information processing or error monitoring, with the change in working memory load. PMID:21692148
Modeling Load Dynamics to Support Resiliency-based Operations in Low-Inertia Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuffner, Francis K.; Schneider, Kevin P.; Hansen, Jacob
Microgrids have repeatedly demonstrated the ability to provide uninterrupted service to critical end-use loads during normal outages, severe weather events, and natural disasters. While their ability to provide critical services is well documented, microgrids present a more dynamic operational environment than grid-connected distribution systems. The electrodynamics of a microgrid are commonly driven by the high inertia of rotating generators, which are common in many microgrids. In such high-inertia systems, the impact of end-use load electromechanical dynamics are often not examined. However, with the increased penetration of inverter-based generation with little or no inertia, it is necessary to consider the impactmore » that the dynamics of the end-use loads have on the operations of microgrids, particularly for a resiliency-based operation. These operations include, but are not limited to, switching operations, loss of generating units, and the starting of induction motors. This paper examines the importance of including multi-state electromechanical dynamic models of the end-use load when evaluating the operations of low inertia microgrids, and shows that by properly representing their behavior, it is possible to cost effectively size equipment while supporting resilient operations of critical end-use loads.« less
Modeling Load Dynamics to Support Resiliency-based Operations in Low-Inertia Microgrids
Tuffner, Francis K.; Schneider, Kevin P.; Hansen, Jacob; ...
2018-03-07
Microgrids have repeatedly demonstrated the ability to provide uninterrupted service to critical end-use loads during normal outages, severe weather events, and natural disasters. While their ability to provide critical services is well documented, microgrids present a more dynamic operational environment than grid-connected distribution systems. The electrodynamics of a microgrid are commonly driven by the high inertia of rotating generators, which are common in many microgrids. In such high-inertia systems, the impact of end-use load electromechanical dynamics are often not examined. However, with the increased penetration of inverter-based generation with little or no inertia, it is necessary to consider the impactmore » that the dynamics of the end-use loads have on the operations of microgrids, particularly for a resiliency-based operation. These operations include, but are not limited to, switching operations, loss of generating units, and the starting of induction motors. This paper examines the importance of including multi-state electromechanical dynamic models of the end-use load when evaluating the operations of low inertia microgrids, and shows that by properly representing their behavior, it is possible to cost effectively size equipment while supporting resilient operations of critical end-use loads.« less
Effect of gravitoinertial force on ocular counterrolling.
NASA Technical Reports Server (NTRS)
Miller, E. F., II; Graybiel, A.
1971-01-01
The effect of G loading on the magnitude of ocular counterrolling at various angles of tilt up to 63 deg. was measured on normal subjects and compared with the effect on persons with severe or complete loss of vestibular function. The group of six normal subjects manifested a compensatory eye roll which increased as a direct and essentially linear function of the component of the gravitoinertial force acting laterally on the subject. This increase in response was not observed in the five deaf subjects with severe or complete bilateral loss of their vestibular organs. These findings confirmed similar results found by other authors using other measuring techniques which show that the reflex eye movement is dependent on and limited to the magnitude of the gravitoinertial stimulus (within the range used) when the otolithocular system is functioning normally. However when this function is severely impaired or lost, the magnitude of the compensatory eye roll is limited to that manifested at 1 G and possibly to nonotolithic contributions. These findings offer means for differentiation between otolithic-defective and ?normal' persons who exhibit little counterrolling.
Pennycuick, C.J.; Fuller, M.R.; McAllister, L.
1989-01-01
Two Harris' hawks were trained to fly along horizontal and climbing flight paths, while carrying loads of various masses, to provide data for estimating available muscle power during short flights. The body mass of both hawks was about 920 g, and they were able to carry loads up to 630 g in horizontal flight. The rate of climb decreased with increasing all-up mass, as also did the climbing power (product of weight and rate of climb). Various assumptions about the aerodynamic power in low-speed climbs led to estimates of the maximum power output of the flight muscles ranging from 41 to 46 W. This, in turn, would imply a stress during shortening of around 210 kPa. The effects of a radio package on a bird that is raising young should be considered in relation to the food load that the forager can normally carry, rather than in relation to its body mass.
A Baseline Load Schedule for the Manual Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.
2013-01-01
A baseline load schedule for the manual calibration of a force balance was developed that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, the aft gage location, and the balance moment center; (iv) the balance should be used in UP and DOWN orientation to get axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. Three different approaches are also reviewed that may be used to independently estimate the natural zeros of the balance. These three approaches provide gage output differences that may be used to estimate the weight of both the metric and non-metric part of the balance. Manual calibration data of NASA s MK29A balance and machine calibration data of NASA s MC60D balance are used to illustrate and evaluate different aspects of the proposed baseline load schedule design.
Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.
Dabiri, Yaghoub; Li, LePing
2015-06-01
A focal cartilage defect involves tissue loss or rupture. Altered mechanics in the affected joint may play an essential role in the onset and progression of osteoarthritis. The objective of the present study was to determine the compromised load support in the human knee joint during defect progression from the cartilage surface to the cartilage-bone interface. Ten normal and defect cases were simulated with a previously tested 3D finite element model of the knee. The focal defects were considered in both condyles within high load-bearing regions. Fluid pressurization, anisotropic fibril-reinforcement, and depth-dependent mechanical properties were considered for the articular cartilages and menisci. The results showed that a small cartilage defect could cause 25% reduction in the load support of the knee joint due to a reduced capacity of fluid pressurization in the defect cartilage. A partial-thickness defect could cause a fluid pressure decrease or increase in the remaining underlying cartilage depending on the defect depth. A cartilage defect also increased the shear strain at the cartilage-bone interface, which was more significant with a full-thickness defect. The effect of cartilage defect on the fluid pressurization also depended on the defect sites and contact conditions. In conclusion, a focal cartilage defect causes a fluid-pressure dependent load reallocation and a compromised load support in the joint, which depend on the defect depth, site, and contact condition. Copyright © 2015 John Wiley & Sons, Ltd.
Ravosa, Matthew J; López, Elisabeth K; Menegaz, Rachel A; Stock, Stuart R; Stack, M Sharon; Hamrick, Mark W
2008-09-01
Knockout mice lacking myostatin (Mstn), a negative regulator of the growth of skeletal muscle, develop significant increases in the relative mass of masticatory muscles as well as the ability to generate higher maximal muscle forces. Wild-type and Mstn-deficient mice were compared to investigate the postnatal influence of elevated masticatory loads due to increased jaw-adductor and bite forces on the biomineralization of mandibular articular and cortical bone, the internal structure of the jaw joints, and the composition of temporomandibular joint (TMJ) articular cartilage. To provide an interspecific perspective on the long-term responses of mammalian jaw joints to altered loading conditions, the findings on mice were compared to similar data for growing rabbits subjected to long-term dietary manipulation. Statistically significant differences in joint proportions and bone mineral density between normal and Mstn-deficient mice, which are similar to those observed between rabbit loading cohorts, underscore the need for a comprehensive analysis of masticatory tissue plasticity vis-à-vis altered mechanical loads, one in which variation in external and internal structure are considered. Differences in the expression of proteoglycans and type-II collagen in TMJ articular cartilage between the mouse and rabbit comparisons suggest that the duration and magnitude of the loading stimulus will significantly affect patterns of adaptive and degradative responses. These data on mammals subjected to long-term loading conditions offer novel insights regarding variation in ontogeny, life history, and the ecomorphology of the feeding apparatus.
14 CFR 27.337 - Limit maneuvering load factor.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Limit maneuvering load factor. 27.337 Section 27.337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.337...
14 CFR 27.427 - Unsymmetrical loads.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Unsymmetrical loads. 27.427 Section 27.427 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Control Surface and System Loads § 27.427...
Structural evaluation of the 2736Z Building for seismic loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giller, R.A.
The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements.
Frictional properties of single crystals HMX, RDX and PETN explosives.
Wu, Y Q; Huang, F L
2010-11-15
The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.
Agmon, Liron; Shahar, Itai; Yosufov, Danny; Pimentel, Carlos; Pina, Carlos M; Gnecco, Enrico; Berkovich, Ronen
2018-03-16
Friction force microscopy (FFM) in aqueous environments has recently proven to be a very effective method for lattice-resolution imaging of crystal surfaces. Here we demonstrate the use of ethanol for similar measurements on water-soluble materials. Lattice resolved frictional stick-slip traces of a cleaved NaCl(100) surface submerged in ethanol are compared with previous obtained FFM results in ultrahigh vacuum (UHV). We use the Prandtl-Tomlinson framework to estimate the amplitude of the corrugation potential and the contact stiffness. The surface potential amplitude scales with the applied normal loads are in good agreement with data obtained for NaCl measured under UHV conditions, but demonstrates deviations from the ideal periodic potential given by the Prandtl-Tomlinson model. An additional finding is that the use of ethanol allows us to explore higher load ranges without detectable evidence of surface wear. The contact stiffness does not vary significantly with the normal load up to 38 nN, while above it a sudden increase by almost one order of magnitude was observed. Comparing this to previous results suggests that considerable atom rearrangements may occur in the contact region, although the (100) surface structure is preserved by ethanol-assisted diffusion of Na and Cl ions.
NASA Astrophysics Data System (ADS)
Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.
2018-04-01
Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.
Effect of Test Parameters on the Friction Behaviour of Anodized Aluminium Alloy
Khalladi, A.; Elleuch, K.; De-Petris Wery, M.; Ayedi, H. F.
2014-01-01
The tribological behaviour of anodic oxide layer formed on Al5754, used in automotive applications, was investigated against test parameters. The friction coefficient under different normal loads, sliding speeds, and oxide thicknesses was studied using a pin on disc tribometer. Results show that the increase of load and sliding speed increase the friction coefficient. The rise of contact pressure and temperature seems to cause changes in wear mechanism. Glow-discharge optical emission spectroscopy (GDOES) was used to investigate the chemical composition of the oxide layer. Morphology and composition of the wear tracks were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). On the basis of these characterization techniques, a wear mechanism was proposed. The observed mechanical properties can be related to the morphology and the chemical composition of the layer. PMID:27437452
NASA Astrophysics Data System (ADS)
Zhang, Jian; Liu, Wei; Gao, Weicheng
2018-02-01
This work is carried out to study the influence of double cutouts and stiffener reinforcements on the performance of I-section Carbon Fibre/Epoxy composites beam, including buckling, post-buckling behavior and the ultimate failure. The cantilever I-section beam with two diamond-shaped cutouts in the web and three longitudinal L-shaped stiffeners bonded to one side is subjected to a shear load at free end. Both numerical modelling and Experiment of I-section CFRP beam are performed. In numerical analysis, Tsai-Wu failure criterion is utilized to detect the first-ply-failure load in nonlinear analysis by predicting the load-deflection response. Good agreements are obtained from comparison between the numerical simulations and test results. For the double-hole beam web, the two cutouts show close surface deformation amplitude, which indicates that the stiffeners make the force transformation more effective. Comparing to the numerical result of corresponding beam with single cutout and stiffener reinforcement, the longitudinal stiffeners can not only play a significant role in improving the structural stability (increase about 30%), but also take effects to improve the deformation compatibility of structure. Local buckling happened within the sub-webs partioned by the stiffener and the buckling load is different but close. With post-buckling regime, the two areas show similar deformation characteristic, while the sub-web close to fixed end bears more shear load than the sub-web close to loading end with the increase of normal deformation of structure. The catastrophic failure load is approximate 75.6% higher comparing to buckling load. Results illustrate that the tensile fracture of the fiber is the immediate cause of the ultimate failure of the structure.
Zahari, Siti Nurfaezah; Rahim, Nor Raihanah Abdull; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage. PMID:29065672
Zahari, Siti Nurfaezah; Latif, Mohd Juzaila Abd; Rahim, Nor Raihanah Abdull; Kadir, Mohammed Rafiq Abdul; Kamarul, Tunku
2017-01-01
The present study was conducted to examine the effects of body weight on intradiscal pressure (IDP) and annulus stress of intervertebral discs at lumbar spine. Three-dimensional finite element model of osseoligamentous lumbar spine was developed subjected to follower load of 500 N, 800 N, and 1200 N which represent the loads for individuals who are normal and overweight with the pure moments at 7.5 Nm in flexion and extension motions. It was observed that the maximum IDP was 1.26 MPa at L1-L2 vertebral segment. However, the highest increment of IDP was found at L4-L5 segment where the IDP was increased to 30% in flexion and it was more severe at extension motion reaching to 80%. Furthermore, the maximum annulus stress also occurred at the L1-L2 segment with 3.9 MPa in extension motion. However, the highest increment was also found at L4-L5 where the annulus stress increased to 17% in extension motion. Based on these results, the increase of physiological loading could be an important factor to the increment of intradiscal pressure and annulus fibrosis stress at all intervertebral discs at the lumbar spine which may lead to early intervertebral disc damage.
Manorama, Abinand; Meyer, Ronald; Wiseman, Robert; Bush, Tamara Reid
2013-06-01
Forces applied to the skin cause a decrease in regional blood flow. This decrease in blood flow can cause tissue necrosis and lead to the formation of deep, penetrating wounds called pressure ulcers. These wounds are detrimental to individuals with compromised health, such as the elderly and spinal-cord injured. Although surface pressure is known to be a primary risk factor for developing a pressure ulcer, a seated individual rarely experiences pressure alone but rather combined loading which includes pressure as well as shear force on the skin. However, little research has been conducted to quantify the effects of shear forces on blood flow. Fifteen men were tested in a magnetic resonance imaging scanner under no load, a normal load, and a combination of normal and shear loads. Changes in arterial and venous blood flow in the forearm were measured using magnetic resonance angiography phase-contrast imaging. The blood flow in the anterior interosseous artery and basilic vein of the forearm decreased with the application of normal loads, and decreased further with the addition of shear loads. Marginal to significant differences at a 90% confidence level (P=0.08, 0.10) were observed, and medium to high effect sizes (0.3 to 0.5) were obtained. Based on these results, shear force is an important factor to consider in relation to pressure ulcer propagation and prevention, and hence, future prevention approaches should also focus on mitigating shear loads. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wilson, D A; Keegan, K G; Carson, W L
1999-01-01
This study compared the mechanical properties of the normal intact suspensory apparatus and two methods of fixation for repair of transverse, midbody fractures of the proximal sesamoid bones of adult horses: transfixation wiring (TW) and screws placed in lag fashion (LS). An in vitro, paired study using equine cadaver limbs mounted in a loading apparatus was used to test the mechanical properties of TW and LS. Seventeen paired (13 repaired, 4 normal) equine cadaver limbs consisting of the suspensory apparatus third metacarpal bone, and first and second phalanges. The two methods of repair and normal intact specimens were evaluated in single cycle-to-failure loading. Yield failure was defined to occur at the first notable discontinuity (>50 N) in the load-displacement curve, the first visible failure as evident on the videotape, or a change in the slope of the moment-fetlock angle curve. Ultimate failure was defined to occur at the highest load resisted by the specimen. Corresponding resultant force and force per kg of body weight on the suspensory apparatus, fetlock joint moment, and angle of fetlock dorsiflexion were calculated by use of specimen dimensions and applied load. These were compared along with specimen stiffness, and ram displacement. Load on the suspensory apparatus, load on the suspensory apparatus per kg of body weight, moment, applied load, and angle of fetlock dorsiflexion at yield failure were significantly greater for the TW-repaired than for the LS-repaired specimens. A 3 to 5 mm gap was observed before yield failure in most TW-repaired osteotomies. Transfixation wiring provided greater strength to yield failure than screws placed in lag fashion in single cycle load-to-failure mechanical testing of repaired transverse osteotomized specimens of the medial proximal forelimb sesamoid bone.
Lourenço, Ruy V.
1969-01-01
Diaphragm activity during carbon dioxide breathing and total chest compliance during diaphragm relaxation were measured in eight obese subjects: four with normal blood gases and four with hypercapnia and hypoxemia. Whereas there were no significant differences in the values of total chest compliance between the two groups, there were marked differences in diaphragm activity. The increase in integrated electrical activity in the diaphragm, per millimeter increment in carbon dioxide tension in the arterial blood, averaged 66 units (range: 48-90) in the obese-normal subjects and 17 units (range: 12-22) in the obese-hypoventilation subjects. These results suggest that an incapacity to increase the activity in the respiratory muscles, to levels necessary to overcome the load caused by obesity, plays a major role in the genesis of respiratory failure in obese subjects. PMID:5822573
Mahon, Marrita M; Cox, I Jane; Dina, Roberto; Soutter, W Patrick; McIndoe, G Angus; Williams, Andreanna D; deSouza, Nandita M
2004-03-01
To compare in vivo (1)H magnetic resonance (MR) spectra of preinvasive and invasive cervical lesions with ex vivo magic angle spinning (MAS) spectra of intact biopsies from the same subjects and to establish the effects of tumor load in the tissue sampled on the findings. A total of 51 subjects (nine with normal cervix, 10 with cervical intraepithelial neoplasia [CIN], and 32 with cervical cancer) underwent endovaginal MR at 1.5 T. Single-voxel (3.4 cm(3)) (1)H MR spectra were acquired and voxel tumor load was calculated (tumor volume within voxel as a percentage of voxel volume). Resonances from triglycerides -CH(2) and -CH(3) and choline-containing compounds (Cho) were correlated with voxel tumor load. Biopsies analyzed by (1)H MAS-MR spectroscopy (MRS) had metabolite levels correlated with tumor load in the sample at histology. In vivo studies detected Cho in normal, CIN, and cancer patients with no significant differences in levels (P = 0.93); levels were independent of voxel tumor load. Triglyceride -CH(2) and -CH(3) signals in-phase with Cho were present in 77% and 29%, respectively, of cancer subjects (but not in normal women or those with CIN), but did not correlate with voxel tumor load. Ex vivo cancer biopsies showed levels of triglycerides -CH(2) and -CH(3) and of Cho that were significantly greater than in normal or CIN biopsies (P < 0.05); levels were independent of the tumor load in the sample. The presence of -CH(2) in vivo predicted the presence of cancer with a sensitivity and specificity of 77.4% and 93.8% respectively, positive (PPV) and negative (NPV) predictive values were 96% and 68.2%; for -CH(2) ex vivo, sensitivity was 100%; specificity, 69%; PPV, 82%; and NPV, 100%. Elevated lipid levels are detected by MRS in vivo and ex vivo in cervical cancer and are independent of tumor load in the volume of tissue sampled. Copyright 2004 Wiley-Liss, Inc.
Does distal tibiofibular joint mobilization decrease limitation of ankle dorsiflexion?
Fujii, Misaki; Suzuki, Daisuke; Uchiyama, Eiichi; Muraki, Takayuki; Teramoto, Atsushi; Aoki, Mitsuhiro; Miyamoto, Shigenori
2010-02-01
Limitation of ankle motion is in many cases treated by joint mobilization (JM), a kind of manual physical therapy technique. Until now, the JM approach has mainly focused on the talocrural joint, with less attention to the distal tibiofibular joint. We applied cyclic loading to the lateral malleolus as in JM in order to clarify the relationship between the dorsiflexion angle and the excursion of the lateral malleolus. Seven normal, fresh-frozen cadaver legs were used. To each specimen, cyclic loading with a 30N force was applied 1000 times to the lateral malleolus at a speed of 15N/s. The displacement of the lateral malleolus was measured with a magnetic tracking system. The maximum dorsiflexion angle was measured before and after cyclic loading. After the first 100 and 1000 times of cyclic loading, the tibia was displaced 0.44+/-0.30mm and 0.75+/-0.36mm, respectively, and the fibula was displaced 0.44+/-0.28mm and 0.92+/-0.39mm, respectively. The average dorsiflexion angle increased from 14.36+/-7.51 degrees to 16.74+/-7.21 degrees after cyclic loading (P<0.05). Movement of the distal tibiofibular joint led to a significant increase in the range of ankle dorsiflexion. These results suggest that tibiofibular JM would be effective for limitation of ankle dorsiflexion.
Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy
2013-01-01
Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (<10%) for effective normal stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.
Nonstationary Deformation of an Elastic Layer with Mixed Boundary Conditions
NASA Astrophysics Data System (ADS)
Kubenko, V. D.
2016-11-01
The analytic solution to the plane problem for an elastic layer under a nonstationary surface load is found for mixed boundary conditions: normal stress and tangential displacement are specified on one side of the layer (fourth boundary-value problem of elasticity) and tangential stress and normal displacement are specified on the other side of the layer (second boundary-value problem of elasticity). The Laplace and Fourier integral transforms are applied. The inverse Laplace and Fourier transforms are found exactly using tabulated formulas and convolution theorems for various nonstationary loads. Explicit analytical expressions for stresses and displacements are derived. Loads applied to a constant surface area and to a surface area varying in a prescribed manner are considered. Computations demonstrate the dependence of the normal stress on time and spatial coordinates. Features of wave processes are analyzed
Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading
NASA Technical Reports Server (NTRS)
Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.
Plantar pressure changes after long-distance walking.
Stolwijk, Niki M; Duysens, Jacques; Louwerens, Jan Willem K; Keijsers, Noël L W
2010-12-01
The popularity of long-distance walking (LDW) has increased in the last decades. However, the effects of LDW on plantar pressure distribution and foot complaints, in particular, after several days of walking, have not been studied. We obtained the plantar pressure data of 62 subjects who had no history of foot complaints and who walked a total distance of 199.8 km for men (n = 30) and 161.5 km for women (n = 32) during four consecutive days. Plantar pressure was measured each day after the finish (posttests I–IV) and compared with the baseline plantar pressure data, which was obtained 1 or 2 d before the march (pretest). Mean, peak, and pressure–time integral per pixel as well as the center of pressure (COP) trajectory of each foot per measurement day were calculated using the normalization method of Keijsers et al. A paired t-test with an adjusted P value was used to detect significant differences between pretest and posttest. Short-term adjustment to LDW resulted in a significant decreased loading on the toes accompanied with an increased loading on the metatarsal head III–V (P < 0.001). At all stages, particularly at later stages, there was significantly more heel loading (P < 0.001). Furthermore, the COP significantly displaced in the posterior direction but not in the mediolateral direction after marching. Contact time increased slightly from 638.5 +/- 24.2 to 675.4 +/- 22.5 ms (P < 0.001). The increased heel loading and decreased function of the toes found after marching indicate a change of walking pattern with less roll-off. It is argued that these changes reflect the effect of fatigue of the lower leg muscles and to avoid loading of the most vulnerable parts of the foot.
Ikenoue, Takashi; Trindade, Michael C D; Lee, Mel S; Lin, Eric Y; Schurman, David J; Goodman, Stuart B; Smith, R Lane
2003-01-01
This study addressed the hypothesis that duration and magnitude of applied intermittent hydrostatic pressure (IHP) are critical parameters in regulation of normal human articular chondrocyte aggrecan and type II collagen expression. Articular chondrocytes were isolated from knee cartilage and maintained as primary, high-density monolayer cultures. IHP was applied at magnitudes of 1, 5 and 10 MPa at 1 Hz for durations of either 4 h per day for one day (4 x 1) or 4 h per day for four days (4 x 4). Total cellular RNA was isolated and analyzed for aggrecan and type II collagen mRNA signal levels using specific primers and reverse transcription polymerase chain reaction (RT-PCR) nested with beta-actin primers as internal controls. With a 4x1 loading regimen, aggrecan mRNA signal levels increased 1.3- and 1.5-fold at 5 and 10 MPa, respectively, relative to beta-actin mRNA when compared to unloaded cultures. Changing the duration of loading to a 4x4 regimen increased aggrecan mRNA signal levels by 1.4-, 1.8- and 1.9-fold at loads of 1, 5 and 10 MPa, respectively. In contrast to the effects of IHP on aggrecan, type II collagen mRNA signal levels were only upregulated at loads of 5 and 10 MPa with the 4x4 loading regimen. Analysis of cell-associated protein by western blotting confirmed that IHP increased aggrecan and type II collagen in chondrocyte extracts. These data demonstrate that duration and magnitude of applied IHP differentially alter chondrocyte matrix protein expression. The results show that IHP provides an important stimulus for increasing cartilage matrix anabolism and may contribute to repair and regeneration of damaged or diseased cartilage.
Biomechanical effect of latissimus dorsi tendon transfer for irreparable massive cuff tear.
Oh, Joo Han; Tilan, Justin; Chen, Yu-Jen; Chung, Kyung Chil; McGarry, Michelle H; Lee, Thay Q
2013-02-01
The purpose of this study was to determine the biomechanical effects of latissimus dorsi transfer in a cadaveric model of massive posterosuperior rotator cuff tear. Eight cadaveric shoulders were tested at 0°, 30°, and 60° of abduction in the scapular plane with anatomically based muscle loading. Humeral rotational range of motion and the amount of humeral rotation due to muscle loading were measured. Glenohumeral kinematics and contact characteristics were measured throughout the range of motion. After testing in the intact condition, the supraspinatus and infraspinatus were resected. The cuff tear was then repaired by latissimus dorsi transfer. Two muscle loading conditions were applied after latissimus transfer to simulate increased tension that may occur due to limited muscle excursion. A repeated-measures analysis of variance was used for statistical analysis. The amount of internal rotation due to muscle loading and maximum internal rotation increased with massive cuff tear and was restored with latissimus transfer (P < .05). At maximum internal rotation, the humeral head apex shifted anteriorly, superiorly, and laterally at 0° of abduction after massive cuff tear (P < .05); this abnormal shift was corrected with latissimus transfer (P < .05). However, at 30° and 60° of abduction, latissimus transfer significantly altered kinematics (P < .05) and latissimus transfer with increased muscle loading increased contact pressure, especially at 60° of abduction. Latissimus dorsi transfer is beneficial in restoring humeral internal/external rotational range of motion, the internal/external rotational balance of the humerus, and glenohumeral kinematics at 0° of abduction. However, latissimus dorsi transfer with simulated limited excursion may lead to an overcompensation that can further deteriorate normal biomechanics, especially at higher abduction angles. Published by Mosby, Inc.
Functional Adaptation of the Calcaneus in Historical Foot Binding
Reznikov, Natalie; Phillips, Carina; Cooke, Martyn; Garbout, Amin; Ahmed, Farah
2017-01-01
ABSTRACT The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock‐dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long‐sought‐after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc. PMID:28561380
Functional Adaptation of the Calcaneus in Historical Foot Binding.
Reznikov, Natalie; Phillips, Carina; Cooke, Martyn; Garbout, Amin; Ahmed, Farah; Stevens, Molly M
2017-09-01
The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock-dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long-sought-after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto
2015-11-01
Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (P<.001). Oblique loads produced high tensile stress concentrations on the site opposite the load direction. Internal connection implants presented the most favorable biomechanical situation, whereas the least favorable situation was the biomechanical behavior of external connection implants. Parafunctional loading increased the magnitude of stress by 3 to 4 times. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Cy5 total protein normalization in Western blot analysis.
Hagner-McWhirter, Åsa; Laurin, Ylva; Larsson, Anita; Bjerneld, Erik J; Rönn, Ola
2015-10-01
Western blotting is a widely used method for analyzing specific target proteins in complex protein samples. Housekeeping proteins are often used for normalization to correct for uneven sample loads, but these require careful validation since expression levels may vary with cell type and treatment. We present a new, more reliable method for normalization using Cy5-prelabeled total protein as a loading control. We used a prelabeling protocol based on Cy5 N-hydroxysuccinimide ester labeling that produces a linear signal response. We obtained a low coefficient of variation (CV) of 7% between the ratio of extracellular signal-regulated kinase (ERK1/2) target to Cy5 total protein control signals over the whole loading range from 2.5 to 20.0μg of Chinese hamster ovary cell lysate protein. Corresponding experiments using actin or tubulin as controls for normalization resulted in CVs of 13 and 18%, respectively. Glyceraldehyde-3-phosphate dehydrogenase did not produce a proportional signal and was not suitable for normalization in these cells. A comparison of ERK1/2 signals from labeled and unlabeled samples showed that Cy5 prelabeling did not affect antibody binding. By using total protein normalization we analyzed PP2A and Smad2/3 levels with high confidence. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D
2014-08-01
Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.
A Baseline Load Schedule for the Manual Calibration of a Force Balance
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Gisler, R.
2013-01-01
A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.
[The links between learning load and well-being of high school seniors].
Petrauskiene, Ausra; Matuleviciūte, Deimante
2007-01-01
To evaluate the links between learning overload and psychoemotional well-being of 12th grade students. In April 2006, an anonymous survey of 184 high school seniors was conducted in six secondary schools and one gymnasium of Kaunas. The total learning load of students was too high and made up 54.79+/-0.98 hours on average. The learning load of 61.4% of children was too high; girls mentioned this problem two times more often than boys did. Students suffered from psychoemotional problems: about half of them felt stress at school; every fifth fell asleep with difficulties. Students whose total learning load was too high (more than 48 hours per week) felt stress, tiredness, stomach or abdominal, head or back pains, vertigo or weakness significantly more often in comparison with those who had normal learning load. The total learning load of the majority of investigated high school seniors was too high. The psychoemotional well-being of 12th graders was unsatisfactory; girls complained about worse well-being than boys more frequently, they used medicine more frequently in comparison to the students whose learning load was normal.
Active Flap Control of the SMART Rotor for Vibration Reduction
NASA Technical Reports Server (NTRS)
Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.
2009-01-01
Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.
Interference assembly and fretting wear analysis of hollow shaft.
Han, Chuanjun; Zhang, Jie
2014-01-01
Fretting damage phenomenon often appears in the interference fit assembly. The finite element model of hollow shaft and shaft sleeve was established, and the equivalent stress and contact stress were computed after interference assembly. The assembly body of hollow shaft and shaft sleeve was in whirling bending load, and the contact status (sticking, sliding, and opening) and the distribution of stress along one typical contact line were computed under different loads, interferences, hollow degrees, friction coefficient, and wear quantity. Judgment formula of contact state was fixed by introducing the corrected coefficient k. The computation results showed that the "edge effect" appears in the contact surface after interference fit. The size of slip zone is unchanged along with the increase of bending load. The greater the interference value, the bigger the wear range. The hollow degree does not influence the size of stick zone but controls the position of the junction point of slip-open. Tangential contact stress increases with the friction coefficient, which has a little effect on normal contact stress. The relationship between open size and wear capacity is approximately linear.
Koh, Y-G.; Son, J.; Kwon, S-K.; Kim, H-J.; Kang, K-T.
2017-01-01
Objectives Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. Methods We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation. Results Tibial posterior translation and internal rotation in patient-specific bicruciate-retaining prostheses preserved near-normal kinematics better than other standard off-the-shelf prostheses under gait loading conditions. Differences from normal kinematics were minimised for femoral rollback and internal-external rotation in patient-specific bicruciate-retaining, followed by standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under deep knee bend loading conditions. Moreover, the standard off-the-shelf posterior cruciate-retaining TKA in this study showed the most abnormal performance in kinematics under gait and deep knee bend loading conditions, whereas patient-specific bicruciate-retaining TKA led to near-normal kinematics. Conclusion This study showed that restoration of the normal geometry of the knee joint in patient-specific bicruciate-retaining TKA and preservation of the anterior cruciate ligament can lead to improvement in kinematics compared with the standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining TKA. Cite this article: Y-G. Koh, J. Son, S-K. Kwon, H-J. Kim, O-R. Kwon, K-T. Kang. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017;6:557–565. DOI: 10.1302/2046-3758.69.BJR-2016-0250.R1. PMID:28947604
14 CFR 23.787 - Baggage and cargo compartments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and... critical load distributions at the appropriate maximum load factors corresponding to the flight and ground...
Gulati, Shelly; Stubblefield, Ashley A; Hanlon, Jeremy S; Spier, Chelsea L; Stringfellow, William T
2014-03-01
Measuring the discharge of diffuse pollution from agricultural watersheds presents unique challenges. Flows in agricultural watersheds, particularly in Mediterranean climates, can be predominately irrigation runoff and exhibit large diurnal fluctuation in both volume and concentration. Flow and pollutant concentrations in these smaller watersheds dominated by human activity do not conform to a normal distribution and it is not clear if parametric methods are appropriate or accurate for load calculations. The objective of this study was to compare the accuracy of five load estimation methods to calculate pollutant loads from agricultural watersheds. Calculation of loads using results from discrete (grab) samples was compared with the true-load computed using in situ continuous monitoring measurements. A new method is introduced that uses a non-parametric measure of central tendency (the median) to calculate loads (median-load). The median-load method was compared to more commonly used parametric estimation methods which rely on using the mean as a measure of central tendency (mean-load and daily-load), a method that utilizes the total flow volume (volume-load), and a method that uses measure of flow at the time of sampling (instantaneous-load). Using measurements from ten watersheds in the San Joaquin Valley of California, the average percent error compared to the true-load for total dissolved solids (TDS) was 7.3% for the median-load, 6.9% for the mean-load, 6.9% for the volume-load, 16.9% for the instantaneous-load, and 18.7% for the daily-load methods of calculation. The results of this study show that parametric methods are surprisingly accurate, even for data that have starkly non-normal distributions and are highly skewed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Silicon MEMS bistable electromagnetic vibration energy harvester using double-layer micro-coils
NASA Astrophysics Data System (ADS)
Podder, P.; Constantinou, P.; Mallick, D.; Roy, S.
2015-12-01
This work reports the development of a MEMS bistable electromagnetic vibrational energy harvester (EMVEH) consisting of a silicon-on-insulator (SOI) spiral spring, double layer micro-coils and miniaturized NdFeB magnets. Furthermore, with respect to the spiral silicon spring based VEH, four different square micro-coil topologies with different copper track width and number of turns have been investigated to determine the optimal coil dimensions. The micro-generator with the optimal micro-coil generated 0.68 micro-watt load power over an optimum resistive load at 0.1g acceleration, leading to normalized power density of 3.5 kg.s/m3. At higher accelerations the load power increased, and the vibrating magnet collides with the planar micro-coil producing wider bandwidth. Simulation results show that a substantially wider bandwidth could be achieved in the same device by introducing bistable nonlinearity through a repulsive configuration between the moving and fixed permanent magnets.
Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading
NASA Astrophysics Data System (ADS)
Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva
2012-02-01
This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R2 = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.
Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading.
Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva
2012-02-01
This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R(2) = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.
Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming
2015-08-14
PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Eye-related pain induced by visually demanding computer work.
Thorud, Hanne-Mari Schiøtz; Helland, Magne; Aarås, Arne; Kvikstad, Tor Martin; Lindberg, Lars Göran; Horgen, Gunnar
2012-04-01
Eye strain during visually demanding computer work may include glare and increased squinting. The latter may be related to elevated tension in the orbicularis oculi muscle and development of muscle pain. The aim of the study was to investigate the development of discomfort symptoms in relation to muscle activity and muscle blood flow in the orbicularis oculi muscle during computer work with visual strain. A group of healthy young adults with normal vision was randomly selected. Eye-related symptoms were recorded during a 2-h working session on a laptop. The participants were exposed to visual stressors such as glare and small font. Muscle load and blood flow were measured by electromyography and photoplethysmography, respectively. During 2 h of visually demanding computer work, there was a significant increase in the following symptoms: eye-related pain and tiredness, blurred vision, itchiness, gritty eyes, photophobia, dry eyes, and tearing eyes. Muscle load in orbicularis oculi was significantly increased above baseline and stable at 1 to 1.5% maximal voluntary contraction during the working sessions. Orbicularis oculi muscle blood flow increased significantly during the first part of the working sessions before returning to baseline. There were significant positive correlations between eye-related tiredness and orbicularis oculi muscle load and eye-related pain and muscle blood flow. Subjects who developed eye-related pain showed elevated orbicularis oculi muscle blood flow during computer work, but no differences in muscle load, compared with subjects with minimal pain symptoms. Eyestrain during visually demanding computer work is related to the orbicularis oculi muscle. Muscle pain development during demanding, low-force exercise is associated with increased muscle blood flow, possible secondary to different muscle activity pattern, and/or increased mental stress level in subjects experiencing pain compared with subjects with minimal pain.
NASA Technical Reports Server (NTRS)
Westerlind, K. C.; Wronski, T. J.; Ritman, E. L.; Luo, Z. P.; An, K. N.; Bell, N. H.; Turner, R. T.
1997-01-01
Estrogen deficiency induced bone loss is associated with increased bone turnover in rats and humans. The respective roles of increased bone turnover and altered balance between bone formation and bone resorption in mediating estrogen deficiency-induced cancellous bone loss was investigated in ovariectomized rats. Ovariectomy resulted in increased bone turnover in the distal femur. However, cancellous bone was preferentially lost in the metaphysis, a site that normally experiences low strain energy. No bone loss was observed in the epiphysis, a site experiencing higher strain energy. The role of mechanical strain in maintaining bone balance was investigated by altering the strain history. Mechanical strain was increased and decreased in long bones of ovariectomized rats by treadmill exercise and functional unloading, respectively. Functional unloading was achieved during orbital spaceflight and following unilateral sciatic neurotomy. Increasing mechanical loading reduced bone loss in the metaphysis. In contrast, decreasing loading accentuated bone loss in the metaphysis and resulted in bone loss in the epiphysis. Finally, administration of estrogen to ovariectomized rats reduced bone loss in the unloaded and prevented loss in the loaded limb following unilateral sciatic neurotomy in part by reducing indices of bone turnover. These results suggest that estrogen regulates the rate of bone turnover, but the overall balance between bone formation and bone resorption is influenced by prevailing levels of mechanical strain.
Antidiabetic effect of Sida cordata in alloxan induced diabetic rats.
Shah, Naseer Ali; Khan, Muhammad Rashid
2014-01-01
Medicinal plants are efficient ameliorator of oxidative stress associated with diabetes mellitus. In this study, ethyl acetate fraction (SCEE) of Sida cordata was investigated for scientific validation of its folk use in diabetes. Antidiabetic effect of SCEE was confirmed by antihyperglycemic activity in normal glucose loaded and diabetic glucose loaded animals as well as normal off feed animals. Confirmation of antidiabetic activity and toxicity ameliorative role of S. cordata was investigated in a chronic multiple dose treatment study of fifteen days. A single dose of alloxan (120 mg/kg) produced a decrease in insulin level, hyperglycemia, elevated total lipids, triglycerides, and cholesterol and decreased the high-density lipoproteins. Concurrent with these changes, there was an increase in the concentration of lipid peroxidation (TBARS), H2O2, and nitrite in pancreas, liver, and testis. This oxidative stress was related to a decrease in glutathione content (GSH) and antioxidant enzymes. Administration of SCEE for 15 days after diabetes induction ameliorated hyperglycemia, restored lipid profile, blunted the increase in TBARS, H2O2, and nitrite content, and stimulated the GSH production in the organs of alloxan-treated rats. We suggested that SCEE could be used as antidiabetic component in case of diabetes mellitus. This may be related to its antioxidative properties.
Tactile Perception of Roughness and Hardness to Discriminate Materials by Friction-Induced Vibration
Zhao, Xuezeng
2017-01-01
The human fingertip is an exquisitely powerful bio-tactile sensor in perceiving different materials based on various highly-sensitive mechanoreceptors distributed all over the skin. The tactile perception of surface roughness and material hardness can be estimated by skin vibrations generated during a fingertip stroking of a surface instead of being maintained in a static position. Moreover, reciprocating sliding with increasing velocities and pressures are two common behaviors in humans to discriminate different materials, but the question remains as to what the correlation of the sliding velocity and normal load on the tactile perceptions of surface roughness and hardness is for material discrimination. In order to investigate this correlation, a finger-inspired crossed-I beam structure tactile tester has been designed to mimic the anthropic tactile discrimination behaviors. A novel method of characterizing the fast Fourier transform integral (FFT) slope of the vibration acceleration signal generated from fingertip rubbing on surfaces at increasing sliding velocity and normal load, respectively, are defined as kv and kw, and is proposed to discriminate the surface roughness and hardness of different materials. Over eight types of materials were tested, and they proved the capability and advantages of this high tactile-discriminating method. Our study may find applications in investigating humanoid robot perceptual abilities. PMID:29182538
14 CFR 25.683 - Operation tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.683 Operation tests. It must be shown by operation tests that when portions of the control system subject to pilot effort loads... control system are loaded to the maximum load expected in normal operation, the system is free from— (a...
14 CFR 25.683 - Operation tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.683 Operation tests. It must be shown by operation tests that when portions of the control system subject to pilot effort loads... control system are loaded to the maximum load expected in normal operation, the system is free from— (a...
14 CFR 25.683 - Operation tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.683 Operation tests. It must be shown by operation tests that when portions of the control system subject to pilot effort loads... control system are loaded to the maximum load expected in normal operation, the system is free from— (a...
14 CFR 25.683 - Operation tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.683 Operation tests. It must be shown by operation tests that when portions of the control system subject to pilot effort loads... control system are loaded to the maximum load expected in normal operation, the system is free from— (a...
Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A; Banerjee, Anjishnu
2015-01-01
Derive lower leg injury risk functions using survival analysis and determine injury reference values (IRV) applicable to human mid-size male and small-size female anthropometries by conducting a meta-analysis of experimental data from different studies under axial impact loading to the foot-ankle-leg complex. Specimen-specific dynamic peak force, age, total body mass, and injury data were obtained from tests conducted by applying the external load to the dorsal surface of the foot of postmortem human subject (PMHS) foot-ankle-leg preparations. Calcaneus and/or tibia injuries, alone or in combination and with/without involvement of adjacent articular complexes, were included in the injury group. Injury and noninjury tests were included. Maximum axial loads recorded by a load cell attached to the proximal end of the preparation were used. Data were analyzed by treating force as the primary variable. Age was considered as the covariate. Data were censored based on the number of tests conducted on each specimen and whether it remained intact or sustained injury; that is, right, left, and interval censoring. The best fits from different distributions were based on the Akaike information criterion; mean and plus and minus 95% confidence intervals were obtained; and normalized confidence interval sizes (quality indices) were determined at 5, 10, 25, and 50% risk levels. The normalization was based on the mean curve. Using human-equivalent age as 45 years, data were normalized and risk curves were developed for the 50th and 5th percentile human size of the dummies. Out of the available 114 tests (76 fracture and 38 no injury) from 5 groups of experiments, survival analysis was carried out using 3 groups consisting of 62 tests (35 fracture and 27 no injury). Peak forces associated with 4 specific risk levels at 25, 45, and 65 years of age are given along with probability curves (mean and plus and minus 95% confidence intervals) for PMHS and normalized data applicable to male and female dummies. Quality indices increased (less tightness-of-fit) with decreasing age and risk level for all age groups and these data are given for all chosen risk levels. These PMHS-based probability distributions at different ages using information from different groups of researchers constituting the largest body of data can be used as human tolerances to lower leg injury from axial loading. Decreasing quality indices (increasing index value) at lower probabilities suggest the need for additional tests. The anthropometry-specific mid-size male and small-size female mean human risk curves along with plus and minus 95% confidence intervals from survival analysis and associated IRV data can be used as a first step in studies aimed at advancing occupant safety in automotive and other environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelekis, Alexios, E-mail: akelekis@med.uoa.gr; Filippiadis, Dimitrios K., E-mail: dfilippiadis@yahoo.gr; Vergadis, Chrysovalantis, E-mail: valvergadis@yahoo.gr
PurposeThrough a prospective comparison of patients with vertebral fractures and normal population, we illustrate effect of percutaneous vertebroplasty (PV) upon projection of load distribution changes.MethodsVertebroplasty group (36 symptomatic patients with osteoporotic vertebral fractures) was evaluated on an electronic baropodometer registering projection of weight bearing areas on feet. Load distribution between right and left foot (including rear-front of the same foot) during standing and walking was recorded and compared before (group V1) and the day after (group V2) PV. Control group (30 healthy asymptomatic volunteers-no surgery record) were evaluated on the same baropodometer.ResultsMean value of load distribution difference between rear-front ofmore » the same foot was 9.45 ± 6.79 % (54.72–45.28 %) upon standing and 14.76 ± 7.09 % (57.38–42.62 %) upon walking in the control group. Respective load distribution values before PV were 16.52 ± 11.23 and 30.91 ± 19.26 % and after PV were 10.08 ± 6.26 and 14.25 ± 7.68 % upon standing and walking respectively. Mean value of load distribution variation between the two feet was 6.36 and 14.6 % before and 4.62 and 10.4 % after PV upon standing and walking respectively. Comparison of load distribution variation (group V1–V2, group V1-control group) is statistically significant. Comparison of load distribution variation (group V2-control group) is not statistically significant. Comparison of load distribution variation among the two feet is statistically significant during walking but not statistically significant during standing.ConclusionsThere is a statistically significant difference when comparing load distribution variation prior vertebroplasty and that of normal population. After vertebroplasty, this difference normalizes in a statistically significant way. PV is efficient on equilibrium-load distribution improvement as well.« less
Katz, B.G.; Sepulveda, A.A.; Verdi, R.J.
2009-01-01
A nitrogen (N) mass-balance budget was developed to assess the sources of N affecting increasing ground-water nitrate concentrations in the 960-km 2 karstic Ichetucknee Springs basin. This budget included direct measurements of N species in rainfall, ground water, and spring waters, along with estimates of N loading from fertilizers, septic tanks, animal wastes, and the land application of treated municipal wastewater and residual solids. Based on a range of N leaching estimates, N loads to ground water ranged from 262,000 to 1.3 million kg/year; and were similar to N export from the basin in spring waters (266,000 kg/year) when 80-90% N losses were assumed. Fertilizers applied to cropland, lawns, and pine stands contributed about 51% of the estimated total annual N load to ground water in the basin. Other sources contributed the following percentages of total N load to ground water: animal wastes, 27%; septic tanks, 12%; atmospheric deposition, 8%; and the land application of treated wastewater and biosolids, 2%. Due to below normal rainfall (97.3 cm) during the 12-month rainfall collection period, N inputs from rainfall likely were about 30% lower than estimates for normal annual rainfall (136 cm). Low N-isotope values for six spring waters (??15N-NO3 = 3.3 to 6.3???) and elevated potassium concentrations in ground water and spring waters were consistent with the large N contribution from fertilizers. Given ground-water residence times on the order of decades for spring waters, possible sinks for excess N inputs to the basin include N storage in the unsaturated zone and parts of the aquifer with relatively sluggish ground-water movement and denitrification. A geographical-based model of spatial loading from fertilizers indicated that areas most vulnerable to nitrate contamination were located in closed depressions containing sinkholes and other dissolution features in the southern half of the basin. ?? 2009 American Water Resources Association.
Borehole Shear Device Phase II Development.
1982-02-01
FIGURE 8 ITEM QUANTITY DESCRIPTION B1 1 Torque/Normal Load Transducer - First Extension Coupling. B2 1 Torque/Normal Load Transducer - Gauge Tube. B3 I...235, type RFN 7012. Supplier - Ringfeder Limited, Forum Drive, Midland Indus- trial Estate, Rugby , Warwickshire CV21 iNT, UK. FB 1 Expanding Friction...Midland Industrial Estate, Rugby , Warwickshire CV21 INT, UK. GF 2 Deep Groove Ball Bearing (upper support bearing), 80 x 100 x 10. Supplier - SKF ref
Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure.
He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand
2016-05-26
Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading).
Caravaggi, Paolo; Leardini, Alberto; Giacomozzi, Claudia
2016-10-03
Plantar load can be considered as a measure of the foot ability to transmit forces at the foot/ground, or foot/footwear interface during ambulatory activities via the lower limb kinematic chain. While morphological and functional measures have been shown to be correlated with plantar load, no exhaustive data are currently available on the possible relationships between range of motion of foot joints and plantar load regional parameters. Joints' kinematics from a validated multi-segmental foot model were recorded together with plantar pressure parameters in 21 normal-arched healthy subjects during three barefoot walking trials. Plantar pressure maps were divided into six anatomically-based regions of interest associated to corresponding foot segments. A stepwise multiple regression analysis was performed to determine the relationships between pressure-based parameters, joints range of motion and normalized walking speed (speed/subject height). Sagittal- and frontal-plane joint motion were those most correlated to plantar load. Foot joints' range of motion and normalized walking speed explained between 6% and 43% of the model variance (adjusted R 2 ) for pressure-based parameters. In general, those joints' presenting lower mobility during stance were associated to lower vertical force at forefoot and to larger mean and peak pressure at hindfoot and forefoot. Normalized walking speed was always positively correlated to mean and peak pressure at hindfoot and forefoot. While a large variance in plantar pressure data is still not accounted for by the present models, this study provides statistical corroboration of the close relationship between joint mobility and plantar pressure during stance in the normal healthy foot. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hashida, Yumiko; Nakajima, Kimiko; Nakajima, Hideki; Shiga, Takeo; Tanaka, Moe; Murakami, Masanao; Matsuzaki, Shigenobu; Naganuma, Seiji; Kuroda, Naoki; Seki, Yasutaka; Katano, Harutaka; Sano, Shigetoshi; Daibata, Masanori
2016-09-01
Although Merkel cell polyomavirus (MCPyV) has the potential to cause Merkel cell carcinoma (MCC), it is also found in the normal skin of healthy individuals. However, the mechanism for transformation of MCPyV to an oncogenic form is unknown. To investigate the levels of MCPyV infection in the normal skin patients with MCC compared with those in a control cohort. We studied a total of six Japanese patients with cutaneous MCC. Sun-exposed and sun-unexposed skin swabs were obtained and analyzed for MCPyV loads using quantitative real-time polymerase chain reaction. At first, we found a patient with MCC carrying an extremely high load of MCPyV DNA in normal skin. This unique case prompted us to further explore the levels of MCPyV as skin microbiota in patients with MCC. We showed that MCPyV DNA levels were significantly higher in swabs obtained from normal skin samples of six patients with MCC compared with those from 30 age-matched healthy individuals and 19 patients with other cutaneous cancers. Whereas MCPyV strains obtained from the normal skin of patients with MCC had gene sequences without structural alterations, sequences of the tumor-derived strains showed truncating mutations or deletions. Although the number of patients with MCC studied was small, our findings suggest that MCC may occur with a background of high MCPyV load in the skin, and are expected to stimulate further studies on whether such skin virome levels could be one of predictive markers for the development of MCC. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of collaborative communication for linguistic cues of cognitive load.
Khawaja, M Asif; Chen, Fang; Marcus, Nadine
2012-08-01
Analyses of novel linguistic and grammatical features, extracted from transcribed speech of people working in a collaborative environment, were performed for cognitive load measurement Prior studies have attempted to assess users' cognitive load with several measures, but most of them are intrusive and disrupt normal task flow. An effective measurement of people's cognitive load can help improve their performance by deploying appropriate output and support strategies accordingly. The authors studied 33 members of bushfire management teams working collaboratively in computerized incident control rooms and involved in complex bushfire management tasks. The participants' communication was analyzed for some novel linguistic features as potential indices of cognitive load, which included sentence length, use of agreement and disagreement phrases, and use of personal pronouns, including both singular and plural pronoun types. Results showed users' different linguistic and grammatical patterns with various cognitive load levels. Specifically, with high load, people spoke more and used longer sentences, used more words that indicated disagreement with other team members, and exhibited increased use of plural personal pronouns and decreased use of singular pronouns. The article provides encouraging evidence for the use of linguistic and grammatical analysis for measuring users' cognitive load and proposes some novel features as cognitive load indices. The proposed approach may be applied to many data-intense and safety-critical task scenarios, such as emergency management departments, for example, bushfire or traffic incident management centers; air traffic control rooms; and call centers, where speech is used as part of everyday tasks.
Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J
2015-06-01
Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating conditions. During specific idle engine operation without EGR and adjusted fueling conditions, brown carbon can be formed in significant amounts, requiring careful management tactics. Control technologies for particulate matter are very effective for light-absorbing carbon, reducing black carbon emissions to near zero for modern engines equipped with a DPF. Efforts to control atmospheric brown carbon need to focus on other sources other than modern diesel engines, such as biomass burning.
Cammarata, Martha L.; Dhaher, Yasin Y.
2012-01-01
Background Gender differences in passive frontal plane knee stiffness may contribute to the increased anterior cruciate ligament injury rate in females. Gender-based stiffness differences have been attributed to anthropometric variations, but little data exist describing this relationship. Furthermore, sex hormone levels appear to influence joint stiffness, but the differential effects of instantaneous and prior hormonal concentrations remain unknown. This study sought to explore the effect of gender, prior hormonal status, and anthropometry on passive frontal plane knee joint stiffness. Methods Twelve males and 31 females participated. Females were grouped by hormonal contraceptive use (non users [n=11], monophasic contraceptive users [n=11], and triphasic contraceptive users [n=9]) and tested at the same point in the menstrual cycle. Subjects’ right knee was passively stretched ±7° in the frontal plane at 3°/s. Stiffness was estimated at three loading levels and normalized by body size to minimize anthropometric biases. A 4 (group) × 3 (load) repeated measures analysis of variance was performed for both raw and normalized stiffness. Linear regression analyses were preformed between stiffness estimates and knee diameter and quadriceps femoris angle. Findings Males displayed significantly greater (P<0.05) frontal plane stiffness than females. When normalized, males displayed significantly greater stiffness in valgus (P<0.05), but not varus (P>0.05) than females. No significant effect (P>0.05) of prior hormonal state was found; however, when normalized, varus stiffness was significantly less for triphasic contraceptive users than the other female groups (P<0.05). Quadriceps femoris angle was negatively correlated and knee diameter was positively correlated to knee stiffness. Interpretation Consistent with earlier in vitro findings, our data may indicate that ligament material properties are gender specific. A deficit in passive knee joint stiffness may place a larger burden on the neuromuscular system to resist frontal plane loading in females. PMID:18479791
Dmitriev, Anton E; Kuklo, Timothy R; Lehman, Ronald A; Rosner, Michael K
2007-03-15
This is an in vitro biomechanical study. The current investigation was performed to evaluate the stabilizing potential of anterior, posterior, and circumferential cervical fixation on operative and adjacent segment motion following 2 and 3-level reconstructions. Previous studies reported increases in adjacent level range of motion (ROM) and intradiscal pressure following single-level cervical arthrodesis; however, no studies have compared adjacent level effects following multilevel anterior versus posterior reconstructions. Ten human cadaveric cervical spines were biomechanically tested using an unconstrained spine simulator under axial rotation, flexion-extension, and lateral bending loading. After intact analysis, all specimens were sequentially instrumented from C3 to C5 with: (1) lateral mass fixation, (2) anterior cervical plate with interbody cages, and (3) combined anterior and posterior fixation. Following biomechanical analysis of 2-level constructs, fixation was extended to C6 and testing repeated. Full ROM was monitored at the operative and adjacent levels, and data normalized to the intact (100%). All reconstructive methods reduced operative level ROM relative to intact specimens under all loading methods (P < 0.05). However, circumferential fixation provided the greatest segmental stability among 2 and 3-level constructs (P < 0.05). Moreover, anterior cervical plate fixation was least efficient at stabilizing operative segments following C3-C6 arthrodesis (P < 0.05). Supradjacent ROM was increased for all treatment groups compared to normal data during flexion-extension testing (P < 0.05). Similar trends were observed under axial rotation and lateral bending loading. At the distal level, flexion-extension and axial rotation testing revealed comparable intergroup differences (P < 0.05), while lateral bending loading indicated greater ROM following 2-level circumferential fixation (P < 0.05). Results from our study revealed greater adjacent level motion following all 3 fixation types. No consistent significant intergroup differences in neighboring segment kinematics were detected among reconstructions. Circumferential fixation provided the greatest level of segmental stability without additional significant increase in adjacent level ROM.
Friction and Wear of Iron in Corrosive Media
NASA Technical Reports Server (NTRS)
Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.
1982-01-01
Friction and wear experiments were conducted with elemental iron exposed to various corrosive media including two acids, base, and a salt. Studies involved various concentrations of nitric and sulfuric acids, sodium hydroxide, and sodium chloride. Load and reciprocating sliding speed were kept constant. With the base NaOH an increase in normality beyond 0.01 N resulted in a decrease in both friction and wear. X-ray photoelectron spectroscopy (XPS) analysis of the surface showed a decreasing concentration of ferric oxide (Fe2O3) on the iron surface with increasing NaOH concentration. With nitric acid (HNO3) friction decreased in solutions to 0.05 N, beyond which no further change in friction was observed. The concentration of Fe2O3 on the surface continued to increase with increasing normality. XPS analysis revealed the presence of sulfates in addition of Fe2O3 on surfaces exposed to sulfuric acid and iron chlorides but no sodium on surfaces exposed to NaCl.
Response and adaptation of Beagle dogs to hypergravity
NASA Technical Reports Server (NTRS)
Oyama, J.
1975-01-01
Eight male Beagle dogs, five months old, were centrifuged continuously for three months at progressively increasing loads. Heart rate and deep body temperature were monitored continuously by implant biotelemetry. Initially, centrifuged dogs showed transient decreases in heart rate and body temperature along with changes in their diurnal rhythm patterns. Compared with normal gravity controls, exposed dogs showed a slower growth rate and a reduced amount of body fat. Blood protein, total lipids, cholesterol, calcium, packed cell volume, red blood cell count, and hemoglobin were also decreased significantly. Absolute weights of the leg bones of centrifuged dogs were significantly greater than controls. Photon absorptiometry revealed significant density increases in selective regions of the femur and humerus of centrifuged dogs. In spite of the various changes noted, results from this and other studies affirm the view that dogs can tolerate and adapt to sustained loads as high as 2.5 g without serious impairment of their body structure and function.
Mathematical model of gas plasma applied to chronic wounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J. G.; Liu, X. Y.; Liu, D. W.
2013-11-15
Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model.more » The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.« less
Body mass index, immune status, and virological control in HIV-infected men who have sex with men.
Blashill, Aaron J; Mayer, Kenneth H; Crane, Heidi M; Grasso, Chris; Safren, Steven A
2013-01-01
Prior cross-sectional studies have found inconsistent relationships between body mass index (BMI) and disease progression in HIV-infected individuals. Cross-sectional and longitudinal analyses were conducted on data from a sample of 864 HIV-infected men who have sex with men (MSM) obtained from a large, nationally distributed HIV clinical cohort. Of the 864 HIV-infected MSM, 394 (46%) were of normal weight, 363 (42%) were overweight, and 107 (12%) were obese at baseline. The baseline CD4 count was 493 (standard error [SE] = 9), with viral load (log10) = 2.4 (SE = .04), and 561 (65%) were virologically suppressed. Over time, controlling for viral load, highly active antiretroviral therapy (HAART) adherence, age, and race/ethnicity, overweight and obese HIV-infected men possessed higher CD4 counts than that of normal weight HIV-infected men. Further, overweight and obese men possessed lower viral loads than that of normal weight HIV-infected men. For HIV-infected MSM, in this longitudinal cohort study, possessing a heavier than normal BMI is longitudinally associated with improved immunological health.
NASA Astrophysics Data System (ADS)
Spagnuolo, E.; Violay, M.; Nielsen, S. B.; Di Toro, G.
2013-12-01
Fluid pressure Pf has been indicated as a major factor controlling natural (e.g., L'Aquila, Italy, 2009 Mw 6.3) and induced seismicity (e.g., Wilzetta, Oklahoma, 2011 Mw 5.7). The Terzaghi's principle states that the effective normal stress σeff= σn (1- α Pf ), with α the Biot coefficient and σn the normal stress, is reduced in proportion to Pf. A value of α=1 is often used by default; however, within a complex fault core of inhomogeneous permeability, α may vary in a yet poorly understood way. To shed light on this problem, we conducted experiments on carbonate-bearing rock samples (Carrara marble) in room humidity conditions and in the presence of pore fluids (drained conditions), where a pre-cut fault is loaded by shear stress τ in a rotary apparatus (SHIVA) under constant σn=15 MPa. Two types of tests were performed with fluids: (1) the fluid pressure was kept constant at Pf=5 MPa (close to hydrostatic conditions at a depth of 0.5 km) and the fault was driven to failure instability by gradually increasing τ; (2) the fluid pressure was kept at Pf=5 MPa and τ was increased until close to instability (τ = 7 MPa): at this point Pf was raised of 0.5 MPa every 10 s up to Pf =10 MPa to induce a main (failure) instability. Assuming α=1 and an effective peak strength (τp)eff=μp σeff at failure, the experiments reveal that: 1) (τp)eff is sensitive to the shear loading rate: fast loading rates (0.5 MPa every 20 s) induce higher peak shear-stress values than slow loading rates (0.5 MPa every 40 s). Such effect is not observed (minor or inexistent) in the absence of pore fluids. 2) Under fast loading rates the (τp)eff may surpass that measured in the absence of pore fluids under identical effective normal stress σeff. 3) An increase of Pf does not necessarily induce the main instability (within the time intervals studied here, i.e. up to ~10 s) even if the effective strength threshold is largely surpassed (e.g., (τp)eff=1.3 μp σeff). We interpret these results in terms of limited permeability of the fault slip zone which reduces α. Indeed result (3) may indicate that a Pf increase did not rapidly penetrate the slip zone because a seal (thin layer of wet ultrafine calcite gouge) formed during the slip preceding the main instability. On the other hand, shearing of the slip zone probably induces dilation (not measured because below resolution) in the slip zone and results in a decrease in pore pressure. Again, due to limited permeability, the drop in pore pressure within the slip zone does not have time to re-equilibrate with the imposed Pf, provided that the hold time is short (20 s) with respect to the diffusion time, but it may re-equilibrate under longer hold times (40 s). As a consequence the Biot coefficient depends on the time interval of observation, with α~0 at short time periods and α~1 at long time periods. This yields an approximate hydraulic diffusivity κ~10-8 m2 s-1 using κ=l2/td with the half length of the contact surface l=5 mm and td=30 s. Such diffusivity is compatible, for example, with a low porosity shale.
NASA Technical Reports Server (NTRS)
Leybold, H. A.
1971-01-01
Random numbers were generated with the aid of a digital computer and transformed such that the probability density function of a discrete random load history composed of these random numbers had one of the following non-Gaussian distributions: Poisson, binomial, log-normal, Weibull, and exponential. The resulting random load histories were analyzed to determine their peak statistics and were compared with cumulative peak maneuver-load distributions for fighter and transport aircraft in flight.
A 100-kW metal wind turbine blade basic data, loads and stress analysis
NASA Technical Reports Server (NTRS)
Cherritt, A. W.; Gaidelis, J. A.
1975-01-01
A rotor loads computer program was used to define the steady state and cyclic loads acting on 60 ft long metal blades designed for the ERDA/NASA 100 kW wind turbine. Blade load and stress analysis used to support the structural design are presented. For the loading conditions examined, the metal blades are structurally adequate for use, within the normal operating range, as part of the wind turbine system.
Experimental Study for Structural Behaviour of Precast Lightweight Panel (PLP) Under Flexural Load
NASA Astrophysics Data System (ADS)
Goh, W. I.; Mohamad, N.; Tay, Y. L.; Rahim, N. H. A.; Jhatial, A. A.; Samad, A. A. A.; Abdullah, R.
2017-06-01
Precast lightweight concrete slab is first fabricated in workshop or industrial before construction and then transported to site and installed by skilled labour. It can reduce construction time by minimizing user delay and time for cast-in-situ to increase workability and efficiency. is environmental friendly and helps in resource reduction. Although the foamed concrete has low compressive strength compared to normal weight concrete but it has excellent thermal insulation and sound absorption. It is environmental friendly and helps in resource reduction. To determine the material properties of foamed concrete, nine cubes and six cylindrical specimens were fabricated and the results were recorded. In this study, structural behaviour of precast lightweight panel (PLP) with dry density of 1800 kg/m3 was tested under flexural load. The results were recorded and analysed in terms of ultimate load, crack pattern, load-deflection profiles and strain distribution. Linear Voltage Displacement Transducers (LVDT) and strain gauges were used to determine the deflection and strain distribution of PLP. The theoretical and experimental ultimate load of PLP was analysed and recorded to be 70 and 62 kN respectively, having a difference of 12.9%. Based on the results, it can be observed that PLP can resist the adequate loading. Thus, it can be used in precast industry for construction purposes.
Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites
NASA Astrophysics Data System (ADS)
Lin, C. B.; Wang, T. C.; Chang, Z. C.; Chu, H. Y.
2013-01-01
Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.
Influence of altered gait patterns on the hip joint contact forces.
Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J
2014-01-01
Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.
Meyer, Markus; Rambod, Mehdi; LeWinter, Martin
2018-07-01
Epidemiological studies have demonstrated that high resting heart rates are associated with increased mortality. Clinical studies in patients with heart failure and reduced ejection fraction have shown that heart rate lowering with beta-blockers and ivabradine improves survival. It is therefore often assumed that heart rate lowering is beneficial in other patients as well. Here, we critically appraise the effects of pharmacological heart rate lowering in patients with both normal and reduced ejection fraction with an emphasis on the effects of pharmacological heart rate lowering in hypertension and heart failure. Emerging evidence from recent clinical trials and meta-analyses suggest that pharmacological heart rate lowering is not beneficial in patients with a normal or preserved ejection fraction. This has just begun to be reflected in some but not all guideline recommendations. The detrimental effects of pharmacological heart rate lowering are due to an increase in central blood pressures, higher left ventricular systolic and diastolic pressures, and increased ventricular wall stress. Therefore, we propose that heart rate lowering per se reproduces the hemodynamic effects of diastolic dysfunction and imposes an increased arterial load on the left ventricle, which combine to increase the risk of heart failure and atrial fibrillation. Pharmacologic heart rate lowering is clearly beneficial in patients with a dilated cardiomyopathy but not in patients with normal chamber dimensions and normal systolic function. These conflicting effects can be explained based on a model that considers the hemodynamic and ventricular structural effects of heart rate changes.
Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert
2015-01-01
Introduction Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Methods Balance performance was recorded under normal loading (NL, 1g), UL (0.16g; 0.38g) and OL (1.8g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5Hz (LF), medium 0.5-2Hz (MF), high 2-6Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Results Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Conclusion Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support. PMID:26053055
The effect of transverse shear in a cracked plate under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1979-01-01
The problem of an elastic plate containing a through crack and subjected to twisting moments or transverse shear loads is considered. By using a bending theory which allows the satisfaction of the boundary conditions on the crack surface regarding the normal and the twisting moments and the transverse shear load separately, it is found that the resulting asymptotic stress field around the crack tip becomes identical to that given by the elasticity solutions of the plane strain and antiplane shear problems. The problem is solved for uniformly distributed or concentrated twisting moment or transverse shear load and the normalized Mode II and Mode III stress-intensity factors are tabulated. The results also include the effect of the Poisson's ratio and material orthotropy for specially orthotropic materials on the stress-intensity factors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Vertical Surfaces § 23.443 Gust loads. (a) Vertical surfaces must be designed to withstand, in unaccelerated flight at speed V C... computed as follows: ER09FE96.000 Where— Lvt=Vertical surface loads (lbs.); ER09FE96.001 ER09FE96.002 Ude...
Wind loading analysis and strategy for deflection reduction on HET wide field upgrade
NASA Astrophysics Data System (ADS)
South, Brian J.; Soukup, Ian M.; Worthington, Michael S.; Zierer, Joseph J.; Booth, John A.; Good, John M.
2010-07-01
Wind loading can be a detrimental source of vibration and deflection for any large terrestrial optical telescope. The Hobby-Eberly Telescope* (HET) in the Davis Mountains of West Texas is undergoing a Wide Field Upgrade (WFU) in support of the Dark Energy Experiment (HETDEX) that will greatly increase the size of the instrumentation subjected to operating wind speeds of up to 20.1 m/s (45 mph). A non-trivial consideration for this telescope (or others) is to quantify the wind loads and resulting deflections of telescope structures induced under normal operating conditions so that appropriate design changes can be made. A quasi-static computational fluid dynamics (CFD) model was generated using wind speeds collected on-site as inputs to characterize dynamic wind forces on telescope structures under various conditions. The CFD model was refined until predicted wind speed and direction inside the dome agreed with experimental data. The dynamic wind forces were then used in static loading analysis to determine maximum deflections under typical operating conditions. This approach also allows for exploration of operating parameters without impact to the observation schedule of the telescope. With optimum combinations of parameters (i.e. dome orientation, tracker position, and louver deployment), deflections due to current wind conditions can be significantly reduced. Furthermore, the upper limit for operating wind speed could be increased, provided these parameters are monitored closely. This translates into increased image quality and observing time.
Zhang, Xueyu; Zheng, Shaokui; Zhang, Hangyu; Duan, Shoupeng
2018-04-30
This study clarified the dominant nitrogen (N)-transformation pathway and the key ammonia-oxidizing microbial species at three loading levels during optimization of the anoxic/oxic (A/O) process for sewage treatment. Comprehensive N-transformation activity analysis showed that ammonia oxidization was performed predominantly by aerobic chemolithotrophic and heterotrophic ammonia oxidization, whereas N 2 production was performed primarily by anoxic denitrification in the anoxic unit. The abundances of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria, and anaerobic AOB in activated sludge reflected their activities on the basis of high-throughput sequencing data. AOB amoA gene clone libraries revealed that the predominant AOB species in sludge samples shifted from Nitrosomonas europaea (61% at the normal loading level) to Nitrosomonas oligotropha (58% and 81% at the two higher loading levels). Following isolation and sequencing, the predominant culturable heterotrophic AOB in sludge shifted from Agrobacterium tumefaciens (42% at the normal loading level) to Acinetobacter johnsonii (52% at the highest loading level). Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Castles, Walter, Jr.; Durham, Howard L., Jr.; Kevorkian, Jirair
1959-01-01
Values of the normal component of induced velocity throughout the entire field of a uniformly loaded r(rotor at high high speed are presented in the form of charts and tables. Many points were found by an electromagnetic analog, details of which are given. Comparisons of computed and analog values for the induced velocity indicate that the latter are sufficiently accurate for engineering purposes.
Static vs dynamic loads as an influence on bone remodelling.
Lanyon, L E; Rubin, C T
1984-01-01
Remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulnar preparation consisted of the 110mm section of the bone shaft between two submetaphyseal osteotomies. Each end of the preparation was transfixed by a stainless steel pin and the shaft either protected from normal functional loading with the pins joined by external fixators, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression for a single 100s period per day by engaging the pins in an Instron machine. Similar loads (525 N) were used in both static and dynamic cases. The strains engendered were determined by strain gauges, and at their maximum around the bone's midshaft were -0.002. The intermittent load was applied at a frequency of 1 Hz as a ramped square wave, with a rate of change of strain during the ramp of 0.01 s-1. Peak strain at the midshaft of the ulna during wing flapping in the intact bone was recorded from bone bonded strain gauges in vivo as -0.0033 with a maximum rate of change of strain of 0.056 s-1. Examination of bone sections from the midpoint of the preparation after an 8 week period indicated that in both non-loaded and statically loaded bones there was an increase in both endosteal diameter and intra cortical porosity. These changes produced a decrease in cross sectional area which was similar in the two groups (-13%).(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Technical Reports Server (NTRS)
DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald
2004-01-01
Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.
2011-01-01
Background Rhodium (II) citrate (Rh2(H2cit)4) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates Rh2(H2cit)4 as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh2(H2cit)4 and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh2(H2cit)4) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures. Results Treatment with free Rh2(H2cit)4 induced cytotoxicity that was dependent on dose, time, and cell line. The IC50 values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 μM Rh2(H2cit)4-loaded maghemite nanoparticles (Magh-Rh2(H2cit)4) and Rh2(H2cit)4-loaded magnetoliposomes (Lip-Magh-Rh2(H2cit)4) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh2(H2cit)4, were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh2(H2cit)4 induces cell death by apoptosis. Conclusions The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh2(H2cit)4 treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh2(H2cit)4 delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development. PMID:21443799
NASA Astrophysics Data System (ADS)
Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo
2017-06-01
We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.
Neu, C P; Hull, M L
2003-04-01
Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach a steady-state response in normal bovine articular cartilage was 49 for a total cycle duration of 5 seconds, but decreased to 33 and 27 for increasing total cycle durations of 10 and 15 seconds, respectively. Once the steady-state response was achieved, 95% of all displacements were within +/- 7.42 microns of the mean displacement, indicating that the displacement response to the cyclic loads was highly repeatable. With this performance, the MRI-loading apparatus system meets the requirements to create images of articular cartilage from which 3D deformation can be determined.
Hashemi, Mohadeseh; Yadegari, Amir; Yazdanpanah, Ghasem; Omidi, Meisam; Jabbehdari, Sayena; Haghiralsadat, Fatemeh; Yazdian, Fatemeh; Tayebi, Lobat
2017-05-01
Graphene oxide (GO) has been recently introduced as a suitable anticancer drug carrier, which could be loaded with doxorubicin (DOX) as a general chemotherapy agent. Herein, the attempts were made to optimize the effective parameters on both loading and release of DOX on GO. GO and GO-DOX were characterized using transition electron microscopy , zeta potential, Raman spectroscopy, UV-visible spectroscopy, and Fourier transform infrared spectroscopy. In addition, loading and releasing behaviors of DOX on GO were studied in terms of different temperature and pH values. The primary optimized values of pH and temperature for best-loaded amount of DOX were 8.9 and 309 K, respectively. Moreover, we found that the smallest amount of released DOX, in pH of cancer microenvironment (5.4), occurs when DOX had been previously loaded in pH 7.8 and 310 K. Although the highest amount of loaded DOX was in basic pH, the results of efficient release of DOX from the GO-DOX complex and also cellular toxicity assay revealed that the best pH for loading of DOX on GO was 7.8. Therefore, in addition to optimization of parameters for efficient loading of DOX on GO, this study suggested that normalization of a released drug compared with the amount of a loaded drug could be a new approach for optimization of drug loading on nanocarriers. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads
NASA Technical Reports Server (NTRS)
Schultz, R. A.; Zuber, M. T.
1994-01-01
Geophysical models of flexural stresses in an elastic lithosphere due to an axisymmetric surface load typically predict a transition with increased distance from the center of the load of radial thrust faults to strike-slip faults to concentric normal faults. These model predictions are in conflict with the absence of annular zones of strike-slip faults around prominent loads such as lunar maria, Martian volcanoes, and the Martian Tharsis rise. We suggest that this paradox arises from difficulties in relating failure criteria for brittle rocks to the stress models. Indications that model stresses are inappropriate for use in fault-type prediction include (1) tensile principal stresses larger than realistic values of rock tensile strength, and/or (2) stress differences significantly larger than those allowed by rock-strength criteria. Predictions of surface faulting that are consistent with observations can be obtained instead by using tensile and shear failure criteria, along with calculated stress differences and trajectories, with model stress states not greatly in excess of the maximum allowed by rock fracture criteria.
Elastic-Tether Suits for Artificial Gravity and Exercise
NASA Technical Reports Server (NTRS)
Torrance, Paul; Biesinger, Paul; Rybicki, Daniel D.
2005-01-01
Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tether-attachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.
NASA Astrophysics Data System (ADS)
Tanaka, Yoshiyuki; Klemann, Volker; Okuno, Jun'ichi
2009-09-01
Normal mode approaches for calculating viscoelastic responses of self-gravitating and compressible spherical earth models have an intrinsic problem of determining the roots of the secular equation and the associated residues in the Laplace domain. To bypass this problem, a method based on numerical inverse Laplace integration was developed by T anaka et al. (2006, 2007) for computations of viscoelastic deformation caused by an internal dislocation. The advantage of this approach is that the root-finding problem is avoided without imposing additional constraints on the governing equations and earth models. In this study, we apply the same algorithm to computations of viscoelastic responses to a surface load and show that the results obtained by this approach agree well with those obtained by a time-domain approach that does not need determinations of the normal modes in the Laplace domain. Using the elastic earth model PREM and a convex viscosity profile, we calculate viscoelastic load Love numbers ( h, l, k) for compressible and incompressible models. Comparisons between the results show that effects due to compressibility are consistent with results obtained by previous studies and that the rate differences between the two models total 10-40%. This will serve as an independent method to confirm results obtained by time-domain approaches and will usefully increase the reliability when modeling postglacial rebound.
Teipel, Stefan; Grothe, Michel J
2016-03-01
Posterior cingulate cortex (PCC) hypometabolism as measured by FDG PET is an indicator of Alzheimer's disease (AD) in prodromal stages, such as in mild cognitive impairment (MCI), and has been found to be closely associated with hippocampus atrophy in AD dementia. We studied the effects of local and remote atrophy and of local amyloid load on the PCC metabolic signal in patients with different preclinical and clinical stages of AD. We determined the volume of the hippocampus and PCC grey matter based on volumetric MRI scans, PCC amyloid load based on AV45 PET, and PCC metabolism based on FDG PET in 667 subjects participating in the Alzheimer's Disease Neuroimaging Initiative spanning the range from cognitively normal ageing through prodromal AD to AD dementia. In cognitively normal individuals and those with early MCI, PCC hypometabolism was exclusively associated with hippocampus atrophy, whereas in subjects with late MCI it was associated with both local and remote effects of atrophy as well as local amyloid load. In subjects with AD dementia, PCC hypometabolism was exclusively related to local atrophy. Our findings suggest that the effects of remote pathology on PCC hypometabolism decrease and the effects of local pathology increase from preclinical to clinical stages of AD, consistent with a progressive disconnection of the PCC from downstream cortical and subcortical brain regions.
Legut, Mateusz; Lipka, Dominik; Filipczak, Nina; Piwoni, Adriana; Kozubek, Arkadiusz; Gubernator, Jerzy
2014-01-01
This paper describes a novel formulation of antineoplastic drug: mitoxantrone loaded into liposomal carriers enriched with encapsulated anacardic acid in the liposomal bilayer using a vitamin C gradient. Anacardic acid is a potent epigenetic agent with anticancer activity. This is the first liposomal formulation to combine an actively encapsulated drug and anacardic acid. The liposomes were characterized in terms of basic parameters, such as size, zeta potential, optimal drug-to-lipid ratio, loading time and temperature, and stability at 4°C and in human plasma in vitro. The formulation was found to be stable, and the loading process was rapid and efficient (drug-to-lipid ratio of up to 0.3 with over 90% efficiency in 5 minutes). The cytotoxicity of these formulations was assessed using the human melanoma cell lines A375 and Hs294T and the normal human dermal fibroblast line. The results showed that anacardic acid and to a smaller extent vitamin C significantly increased the cytotoxicity of the drug towards melanoma compared to ammonium sulfate liposomes. On the other hand, vitamin C and anacardic acid both protected normal cells from damage caused by the drug. The formulation combining anacardic acid, vitamin C, and mitoxantrone showed promising results in terms of cytotoxicity and cytoprotection. Therefore, it has potential for anticancer treatment. PMID:24489469
Chaialo, P P
1977-02-01
Intraperitoneal injection of C14CH3COONa to normal rats aged 6--8 and 28--32 months revealed a slower dynamics of cholesterol biosynthesis in the liver of old rats at the maximum of the tracer incorporation was lower than in the young ones. Atherogenic diet (0.25 g of cholesterol per 100 g of animal weight for a period of 20 days) was accompanied by an increase in the total cholesterol content and depressio of its biosynthesis in the liver, more pronounced in the young rats. Continued cholesterol administration caused further depression of its biosynthesis, most pronounced (in this case) in the old animals.
NASA Astrophysics Data System (ADS)
Zhou, H.; Chen, B.; Han, Z. X.; Zhang, F. Q.
2009-05-01
The study on probability density function and distribution function of electricity prices contributes to the power suppliers and purchasers to estimate their own management accurately, and helps the regulator monitor the periods deviating from normal distribution. Based on the assumption of normal distribution load and non-linear characteristic of the aggregate supply curve, this paper has derived the distribution of electricity prices as the function of random variable of load. The conclusion has been validated with the electricity price data of Zhejiang market. The results show that electricity prices obey normal distribution approximately only when supply-demand relationship is loose, whereas the prices deviate from normal distribution and present strong right-skewness characteristic. Finally, the real electricity markets also display the narrow-peak characteristic when undersupply occurs.
Lower cognitive reserve in the aging human immunodeficiency virus-infected brain.
Chang, Linda; Holt, John L; Yakupov, Renat; Jiang, Caroline S; Ernst, Thomas
2013-04-01
More HIV-infected individuals are living longer; however, how their brain function is affected by aging is not well understood. One hundred twenty-two men (56 seronegative control [SN] subjects, 37 HIV subjects with normal cognition [HIV+NC], 29 with HIV-associated neurocognitive disorder [HAND]) performed neuropsychological tests and had acceptable functional magnetic resonance imaging scans at 3 Tesla during tasks with increasing attentional load. With older age, SN and HIV+NC subjects showed increased activation in the left posterior (reserve, "bottom-up") attention network for low attentional-load tasks, and further increased activation in the left posterior and anterior ("top-down") attention network on intermediate (HIV+NC only) and high attentional-load tasks. HAND subjects had only age-dependent decreases in activation. Age-dependent changes in brain activation differed between the 3 groups, primarily in the left frontal regions (despite similar brain atrophy). HIV and aging act synergistically or interactively to exacerbate brain activation abnormalities in different brain regions, suggestive of a neuroadaptive mechanism in the attention network to compensate for declined neural efficiency. While the SN and HIV+NC subjects compensated for their declining attention with age by using reserve and "top-down" attentional networks, older HAND subjects were unable to compensate which resulted in cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.
Xia, Jing; Nooraei, Nazanin; Kalluri, Sridhar; Edwards, Brent
2015-04-01
This study investigated whether spatial separation between talkers helps reduce cognitive processing load, and how hearing impairment interacts with the cognitive load of individuals listening in multi-talker environments. A dual-task paradigm was used in which performance on a secondary task (visual tracking) served as a measure of the cognitive load imposed by a speech recognition task. Visual tracking performance was measured under four conditions in which the target and the interferers were distinguished by (1) gender and spatial location, (2) gender only, (3) spatial location only, and (4) neither gender nor spatial location. Results showed that when gender cues were available, a 15° spatial separation between talkers reduced the cognitive load of listening even though it did not provide further improvement in speech recognition (Experiment I). Compared to normal-hearing listeners, large individual variability in spatial release of cognitive load was observed among hearing-impaired listeners. Cognitive load was lower when talkers were spatially separated by 60° than when talkers were of different genders, even though speech recognition was comparable in these two conditions (Experiment II). These results suggest that a measure of cognitive load might provide valuable insight into the benefit of spatial cues in multi-talker environments.
In Vitro Studies of Primary Explosive Blast Loading on Neurons
2015-09-01
blast but was significantly higher for the triple blast. Membrane permeability was also evaluated by calcein dye . Calcein is normally a membrane...impermeable dye ; however, upon damage to the plasma membrane, leakage of the dye into the cytosol can occur, causing an increase in the fluorescence of the...intensities were significantly higher for the injured cells compared with the control and sham. However, the difference in dye uptake between the singly and
The ERP research about the influence of the music of Chopin on working memory
NASA Astrophysics Data System (ADS)
Sun, C. A.; Wei, Hong-tao; Yue, Li-juan
2011-10-01
This study is to examine the effect of the music of Chopin on working memory and the electrical activity of the brain in different conditions by using event-related potentials (ERPs), adopting n-back experimental paradigm and to study the neuromechanism. Thirty adults performed behavioral experiments with three conditions of music and two levels of n-back task. Fourteen normal adults performed ERP experiments with the same program as the behavioral experiment and the EEG were recorded. Chopin music improved people's working memory and pilot music improved most effectively.P3 peak amplitude decreased as working memory load increased. Especially in high load task, P3 peak amplitude decreased gradually in pilot music, background music and free music condition.
NASA Technical Reports Server (NTRS)
1973-01-01
This user's manual describes the FORTRAN IV computer program developed to compute the total vertical load, normal concentrated pressure loads, and the center of pressure of typical SRB water impact slapdown pressure distributions specified in the baseline configuration. The program prepares the concentrated pressure load information in punched card format suitable for input to the STAGS computer program. In addition, the program prepares for STAGS input the inertia reacting loads to the slapdown pressure distributions.
NASA Astrophysics Data System (ADS)
Rahal, H. T.; Awad, R.; Abdel-Gaber, A. M.
2018-05-01
(NiO)x(Bi1.6 Pb0.4)Sr2Ca2Cu3O10-δ composite, where 0.0 ≤ x ≤ 0.2 wt%., were prepared using solid state reaction method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). Vickers microhardness measurements (HV) were carried out at room temperature under different applied loads varying from 0.49 to 9.8 N, and dwell times (40 and 59 s). It was noted that dwell time and Vickers microhardness were inversely proportional. HV values increase as x increases up to 0.1 wt%, and then they decrease with further increases in x. All samples exhibit indentation size effect (ISE) with normal trend, as Vickers microhardness decreases by increasing the applied loads. Also, Vickers microhardness measurements of the prepared samples were done during both loading forces up to 9.8 N and unloading downwards to 0.49 N. It was noted that unloading values of Vickers microhardness are slightly greater than loading values. The elastic/plastic deformation model (EPD) was used to interpret the loading and unloading Vickers microhardness results. It is clearly noted that values of do, the added elastic component the measured plastic indentation semi-diagonal (d),in the unloading results are much higher than those for loading data. The effect of liquid nitrogen immersion for 16 h on Vickers microhardness values was examined. A significant improvement in the Vickers microhardness of (Bi, Pb)-2223 samples immersed in liquid nitrogen was observed. Such behavior is attributed to the fact that nitrogen immersion increases the volume contraction of the superconductor matrix, causing the shrink of the pores and voids present in the samples. Different models were used to analyze the obtained results such as Meyer's law, Hays-Kendall (HK) approach, elastic/plastic deformation (EPD) model, and modified proportional specimen resistance (MPSR) model. The experimental results of Vickers microhardness of both samples without and with liquid nitrogen immersion are well fitted according to the MPSR model.
Citraturic response to oral citric acid load
NASA Technical Reports Server (NTRS)
Sakhaee, K.; Alpern, R.; Poindexter, J.; Pak, C. Y.
1992-01-01
It is possible that some orally administered citrate may appear in urine by escaping oxidation in vivo. To determine whether this mechanism contributes to the citraturic response to potassium citrate, we measured serum and urinary citrate for 4 hours after a single oral load of citric acid (40 mEq.) in 6 normal subjects. Since citric acid does not alter acid-base balance, the effect of absorbed citrate could be isolated from that of alkali load. Serum citrate concentration increased significantly (p less than 0.05) 30 minutes after a single oral dose of citric acid and remained significantly elevated for 3 hours after citric acid load. Commensurate with this change, urinary citrate excretion peaked at 2 hours and gradually decreased during the next 2 hours after citric acid load. In contrast, serum and urinary citrate remained unaltered following the control load (no drug). Differences of the citratemic and citraturic effects between phases were significant (p less than 0.05) at 2 and 3 hours. Urinary pH, carbon dioxide pressure, bicarbonate, total carbon dioxide and ammonium did not change at any time after citric acid load, and did not differ between the 2 phases. No significant difference was noted in serum electrolytes, arterialized venous pH and carbon dioxide pressure at any time after citric acid load and between the 2 phases. Thus, the citraturic and citratemic effects of oral citric acid are largely accountable by provision of absorbed citrate, which has escaped in vivo degradation.
Lee, Hyun-Wook; Verlander, Jill W.; Handlogten, Mary E.; Han, Ki-Hwan
2013-01-01
The Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3− were similar in control (C) and CD-Rhbg/Rhcg-KO mice. After acid-loading for 7 days, CD-Rhbg/Rhcg-KO mice developed significantly more severe metabolic acidosis than did C mice. Acid loading increased ammonia excretion, but ammonia excretion increased more slowly in CD-Rhbg/Rhcg-KO and it was significantly less than in C mice on days 1–5. Urine pH was significantly more acidic in CD-Rhbg/Rhcg-KO mice on days 1, 3, and 5 of acid loading. Metabolic acidosis increased phosphenolpyruvate carboxykinase (PEPCK) and Na+/H+ exchanger NHE-3 and decreased glutamine synthetase (GS) expression in both genotypes, and these changes were significantly greater in CD-Rhbg/Rhcg-KO than in C mice. We conclude that 1) Rhbg and Rhcg are critically important in the renal response to metabolic acidosis; 2) the significantly greater changes in PEPCK, NHE-3, and GS expression in acid-loaded CD-Rhbg/Rhcg-KO compared with acid-loaded C mice cause the role of Rhbg and Rhcg to be underestimated quantitatively; and 3) in mice with intact Rhbg and Rhcg expression, metabolic acidosis does not induce maximal changes in PEPCK, NHE-3, and GS expression despite the presence of persistent metabolic acidosis. PMID:24338819
NASA Technical Reports Server (NTRS)
Malla, Ramesh B.; Anandakumar, Ganesh
2005-01-01
Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of the bed media increased with decrease in initial compaction of the bed media. This effect could be attributed to the greater tendency for inter-particle sliding/rub bing due to smaller internal friction angles, as seen from the shear tests, at lesser initial compacted levels. Upon unloading, it was obse rved that there was no change in displacement (especially rebounding) in the bed media. This effect could be attributed to the fact that th e porous activated alumina particles fracture/break upon increase in applied load (during loading phase) and occupy void spaces in between the material grains; thereby leading to settling of the media. The lo ad-displacement curve becomes more linear with increase in initial compaction of the bed media. It is concluded that compaction considerabl y affects the load-displacement behavior of the bed media. A series of tests were also conducted on the packed bed media to determine the f orce required to mobilize the friction between the bed media and the housing cylinder. The results from these tests showed the existence of significant friction between the bed media and the encasing stainles s steel cylinder. Further, it was found that friction effects were more pronounced for media with higher initial compaction. Internal frict ion of the granular media was measured using direct shear apparatus. It was observed that the internal friction increased with increase in initial compaction of the bed media. In this study, a computational m odel (CM) is also developed using finite element software ANSYS to verify experimental results obtained for the distribution of the axial n ormal stress and axial displacement along the length of the full-scal e activated alumina bed media. In the computational model, the granular material is considered to have appropriate failure and frictional c ontact exists between the wall and the granular media. It is observed that the model predicts results closely with the experimental method. The compational results show that the axial normal stress distribution along the length of the activated alumina media decreases non-linea rly from the loading end and is negligible beyond a certain depth. Th is can be attributed to the existence of friction between the walls and the media and that the friction takes up most of the applied load.
Friction coefficient of skin in real-time.
Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I
2003-08-01
Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.
Flatness-based model inverse for feed-forward braking control
NASA Astrophysics Data System (ADS)
de Vries, Edwin; Fehn, Achim; Rixen, Daniel
2010-12-01
For modern cars an increasing number of driver assistance systems have been developed. Some of these systems interfere/assist with the braking of a car. Here, a brake actuation algorithm for each individual wheel that can respond to both driver inputs and artificial vehicle deceleration set points is developed. The algorithm consists of a feed-forward control that ensures, within the modelled system plant, the optimal behaviour of the vehicle. For the quarter-car model with LuGre-tyre behavioural model, an inverse model can be derived using v x as the 'flat output', that is, the input for the inverse model. A number of time derivatives of the flat output are required to calculate the model input, brake torque. Polynomial trajectory planning provides the needed time derivatives of the deceleration request. The transition time of the planning can be adjusted to meet actuator constraints. It is shown that the output of the trajectory planning would ripple and introduce a time delay when a gradual continuous increase of deceleration is requested by the driver. Derivative filters are then considered: the Bessel filter provides the best symmetry in its step response. A filter of same order and with negative real-poles is also used, exhibiting no overshoot nor ringing. For these reasons, the 'real-poles' filter would be preferred over the Bessel filter. The half-car model can be used to predict the change in normal load on the front and rear axle due to the pitching of the vehicle. The anticipated dynamic variation of the wheel load can be included in the inverse model, even though it is based on a quarter-car. Brake force distribution proportional to normal load is established. It provides more natural and simpler equations than a fixed force ratio strategy.
The Role of Nutrition in the Changes in Bone and Calcium Metabolism During Space Flight
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily R.; Arnaud, Sara B.
1995-01-01
On Earth, the primary purpose of the skeleton is provide structural support for the body. In space, the support function of the skeleton is reduced since, without gravity, structures have only mass and no weight. The adaptation to space flight is manifested by shifts in mineral distribution, altered bone turnover, and regional mineral deficits in weight-bearing bones. The shifts in mineral distribution appear to be related to the cephalic fluid shift. The redistribution of mineral from one bone to another or to and from areas in the same bone in response to alterations in gravitational loads is more likely to affect skeletal function than quantitative whole body losses and gains. The changes in bone turnover appear dependent upon changes in body weight with weight loss tending to increase bone resorption as well as decrease bone formation. During bedrest, the bone response to unloading varies depending upon the routine activity level of the subjects with more active subjects showing a greater suppression of bone formation in the iliac crest with inactivity. Changes in body composition during space flight are predicted by bedrest studies on Earth which show loss of lean body mass and increase tn body fat in adult males after one month. In ambulatory studies on Earth, exercising adult males of the same age, height, g weight, body mass index, and shoe size show significantly higher whole body mineral and lean body mass. than non-exercising subjects. Nutritional preference appears to change with activity level. Diet histories in exercisers and nonexercisers who maintain identical body weights show no differences in nutrients except for slightly higher carbohydrate intake in the exercisers. The absence of differences in dietary calcium in men with higher total body calcium is noteworthy. In this situation, the increased bone mineral content was facilitated by the calcium endocrine system. This regulatory system can be by-passed by raising dietary calcium. Increased calcium intake can increase the calcium content in normally loaded bone. However, bone with a higher calcium content still decreases proportionally to normal bone during unloading. Nutritional requirements in space should be reevaluated with respect to these adaptive changes to loading and physical activity.
Bennett, Hunter J; Shen, Guangping; Cates, Harold E; Zhang, Songning
2017-12-01
Increased peak external knee adduction moments exist for individuals with knee osteoarthritis and varus knee alignments, compared to healthy and neutrally aligned counterparts. Walking with increased toe-in or increased step width have been individually utilized to successfully reduce 1st and 2nd peak knee adduction moments, respectfully, but have not previously been combined or tested among all alignment groups. The purpose of this study was to compare toe-in only and toe-in with wider step width gait modifications in individuals with neutral, valgus, and varus alignments. Thirty-eight healthy participants with confirmed varus, neutral, or valgus frontal-plane knee alignment through anteroposterior radiographs, performed level walking in normal, toe-in, and toe-in with wider step width gaits. A 3×3 (group×intervention) mixed model repeated measures ANOVA compared alignment groups and gait interventions (p<0.05). The 1st peak knee adduction moment was reduced in both toe-in and toe-in with wider step width compared to normal gait. The 2nd peak adduction moment was increased in toe-in compared to normal and toe-in with wider step width. The adduction impulse was also reduced in toe-in and toe-in with wider step width compared to normal gait. Peak knee flexion and external rotation moments were increased in toe-in and toe-in with wider step width compared to normal gait. Although the toe-in with wider step width gait seems to be a viable option to reduce peak adduction moments for varus alignments, sagittal, and transverse knee loadings should be monitored when implementing this gait modification strategy. Copyright © 2017 Elsevier B.V. All rights reserved.
The Pressure Distribution over the Wings and Tail Surfaces of a PW-9 Pursuit Airplane in Flight
NASA Technical Reports Server (NTRS)
Rhode, Richard
1931-01-01
This report presents the results of an investigation to determine (1) the magnitude and distribution of aerodynamic loads over the wings and tail surfaces of a pursuit-type airplane in the maneuvers likely to impose critical loads on the various subassemblies of the airplane structure. (2) To study the phenomenon of center of pressure movement and normal force coefficient variation in accelerated flight, and (3) to measure the normal accelerations at the center of gravity, wing-tip, and tail, in order to determine the nature of the inertia forces acting simultaneously with the critical aerodynamic loads. The results obtained throw light on a number of important questions involving structural design. Some of the more interesting results are discussed in some detail, but in general the report is for the purpose of making this collection of airplane-load data obtained in flight available to those interested in airplane structures.
Signification of distal urinary acidification defects in hypocitraturic patients
Forni Ogna, Valentina; Blanchard, Anne; Vargas-Poussou, Rosa; Ogna, Adam; Baron, Stéphanie; Bertocchio, Jean-Philippe; Prot-Bertoye, Caroline; Nevoux, Jérôme; Dubourg, Julie; Maruani, Gérard; Mendes, Margarida; Garcia-Castaño, Alejandro; Treard, Cyrielle; Lepottier, Nelly; Houillier, Pascal; Courbebaisse, Marie
2017-01-01
Background and objectives Hypocitraturia has been associated with metabolic acidosis and mineral disorders. The aim of this study was to investigate the occurrence of urinary acidification defects underlying hypocitraturia. Materials and methods This retrospective observational study included 67 patients (32 men), aged 40.7±15.1 years with hypocitraturia (<1.67 mmol/24-h) and nephrolithiasis, nephrocalcinosis, and/or bone demineralization, referred to our center from 2000 to 2015. We aimed to assess renal distal acidification capacity, prevalence and mechanisms of urinary acidification defects. Patients with low baseline plasma HCO3- (<22 mmol/L) were studied by bicarbonate loading or furosemide/fludrocortisone tests. Patients with normal baseline plasma HCO3- had an ammonium-chloride challenge test. A normal response was a decrease in urinary pH <5.3 and an increase in urinary NH4+ ≥33 μmol/min and defined idiopathic hypocitraturia. Results Eleven patients (16.4%) had low HCO3- and overt distal acidification defect. Three had a mutation in the gene encoding AE1, 4 had Gougerot-Sjögren syndrome and no cause was found in the remaining 4 cases. Fifty-six patients (83.6%) had normal HCO3-; of those, 33 (58.9%) had idiopathic hypocitraturia. Among the 23 (41%) remaining patients, 12 were unable to increase urinary NH4+ excretion (among them, 8 were able to decrease urinary pH and 4 were not) whereas 11 were able to increase urinary NH4+ excretion but unable to decrease urinary pH. These 11 patients had higher fasting urinary calcium, reflecting bone resorption, than the other 12 patients: median 0.41 [0.24–0.47] vs. 0.22 [0.08–0.37] mmol/mmol creatinine (P = 0.04). Conclusions Patients with hypocitraturia and normal plasma HCO3- frequently show a latent acidification defect that can be further dissected into one of several subtypes based on urinary pH and NH4+ response to the acid load. Those patients with impaired urine acidification capacity but preserved NH4+ excretion exhibit particularly high calciuria and should be identified to optimize nephrolithiasis prevention. PMID:28542241
Skeletal stiffening in an amphibious fish out of water is a response to increased body weight.
Turko, Andy J; Kültz, Dietmar; Fudge, Douglas; Croll, Roger P; Smith, Frank M; Stoyek, Matthew R; Wright, Patricia A
2017-10-15
Terrestrial animals must support their bodies against gravity, while aquatic animals are effectively weightless because of buoyant support from water. Given this evolutionary history of minimal gravitational loading of fishes in water, it has been hypothesized that weight-responsive musculoskeletal systems evolved during the tetrapod invasion of land and are thus absent in fishes. Amphibious fishes, however, experience increased effective weight when out of water - are these fishes responsive to gravitational loading? Contrary to the tetrapod-origin hypothesis, we found that terrestrial acclimation reversibly increased gill arch stiffness (∼60% increase) in the amphibious fish Kryptolebias marmoratus when loaded normally by gravity, but not under simulated microgravity. Quantitative proteomics analysis revealed that this change in mechanical properties occurred via increased abundance of proteins responsible for bone mineralization in other fishes as well as in tetrapods. Type X collagen, associated with endochondral bone growth, increased in abundance almost ninefold after terrestrial acclimation. Collagen isoforms known to promote extracellular matrix cross-linking and cause tissue stiffening, such as types IX and XII collagen, also increased in abundance. Finally, more densely packed collagen fibrils in both gill arches and filaments were observed microscopically in terrestrially acclimated fish. Our results demonstrate that the mechanical properties of the fish musculoskeletal system can be fine-tuned in response to changes in effective body weight using biochemical pathways similar to those in mammals, suggesting that weight sensing is an ancestral vertebrate trait rather than a tetrapod innovation. © 2017. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teisseire, B.; Ropars, C.; Villereal, M.C.
1987-10-01
A continuous lysing and resealing procedure with erythrocytes permitted incorporation in these cells of inositol hexaphosphate (InsP/sub 6/), a strong allosteric effector of Hb. This leads to significant rightward shifts of the HbO/sub 2/ dissociation curves with in vitro P/sub 50/, values increasing from 32.2 +/- 1.8 torr for control erythrocytes to 86 +/- 60 torr. The shape of the dissociation curve was still sigmoidal, although the Hill coefficient was decreased. The life span of InsP/sub 6/-loaded erythrocytes equaled that of control erythrocytes. Erythrocyte-survival studies were done using /sub 51/Cr labeling of cells. The long-term physiological effects of the InsP/submore » 6/-loaded erythrocytes on piglets were increased O/sub 2/ release and reduced cardiac output. The reduced O/sub 2/ affinity of the InsP/sub 6/-loaded erythrocytes was still effective 20 days after transfusion in awake piglets. The electrolyte concentration appeared stable over the 5-day observation period except for a transient, but significant, hyperkalemia immediately after transfusion. The reductions in the O/sub 2/ affinity of Hb reported here are large compared with previously reported values. Introduction of InsP/sub 6/ into viable erythrocytes improves tissue oxygenation when, for any reason, normal blood flow is impaired.« less
Semrau, Katherine; Ghosh, Mrinal; Kankasa, Chipepo; Sinkala, Moses; Kasonde, Prisca; Mwiya, Mwiya; Thea, Donald M; Kuhn, Louise; Aldrovandi, Grace M
2008-03-01
To better understand the dynamics of breast milk HIV shedding and its relation to postnatal HIV transmission, we investigated the temporal and lateral relations of breast milk viral shedding and sodium concentrations in HIV-positive women. This was a longitudinal cohort study in Lusaka, Zambia. We examined patterns of HIV shedding in breast milk over the first 4 months of breast-feeding and their correlations with postnatal HIV transmission among 138 breast-feeding mothers. Sodium concentration in breast milk was also examined in the same samples and in breast milk from 23 HIV-negative controls. Higher breast milk viral load at 1 week, 1 month, and 4 months and consistent viral shedding in breast milk were significantly associated with increased risk of HIV transmission. Elevated breast milk sodium concentration (> or =13 mmol/L) at 4 months was associated with HIV transmission, low maternal CD4 cell count, and high maternal plasma viral load. Elevated sodium concentration at 1 week postpartum was common and was not associated with any of these parameters. Consistent viral shedding and high breast milk viral load are strong predictors of mother-to-child HIV transmission. Although sodium concentrations later in breast-feeding correlate with breast milk viral load, increased breast milk sodium is normal in early lactation and does not predict HIV transmission.
Schilling, Brian K.; Falvo, Michael J.; Chiu, Loren Z.F.
2008-01-01
The purpose of this brief review is to explain the mechanical relationship between impulse and momentum when resistance exercise is performed in a purposefully slow manner (PS). PS is recognized by ~10s concentric and ~4-10s eccentric actions. While several papers have reviewed the effects of PS, none has yet explained such resistance training in the context of the impulse-momentum relationship. A case study of normal versus PS back squats was also performed. An 85kg man performed both normal speed (3 sec eccentric action and maximal acceleration concentric action) and PS back squats over a several loads. Normal speed back squats produced both greater peak and mean propulsive forces than PS action when measured across all loads. However, TUT was greatly increased in the PS condition, with values fourfold greater than maximal acceleration repetitions. The data and explanation herein point to superior forces produced by the neuromuscular system via traditional speed training indicating a superior modality for inducing neuromuscular adaptation. Key pointsAs velocity approaches zero, propulsive force approaches zero, therefore slow moving objects only require force approximately equal to the weight of the resistance.As mass is constant during resistance training, a greater impulse will result in a greater velocity.The inferior propulsive forces accompanying purposefully slow training suggest other methods of resistance training have a greater potential for adaptation. PMID:24149464
Brain tissue volumes in the general elderly population. The Rotterdam Scan Study.
Ikram, M Arfan; Vrooman, Henri A; Vernooij, Meike W; van der Lijn, Fedde; Hofman, Albert; van der Lugt, Aad; Niessen, Wiro J; Breteler, Monique M B
2008-06-01
We investigated how volumes of cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) varied with age, sex, small vessel disease and cardiovascular risk factors in the Rotterdam Scan Study. Participants (n=490; 60-90 years) were non-demented and 51.0% had hypertension, 4.9% had diabetes mellitus, 17.8% were current smoker and 54.0% were former smoker. We segmented brain MR-images into GM, normal WM, white matter lesion (WML) and CSF. Brain infarcts were rated visually. Volumes were expressed as percentage of intra-cranial volume. With increasing age, volumes of total brain, normal WM and total WM decreased; that of GM remained unchanged; and that of WML increased, in both men and women. Excluding persons with infarcts did not alter these results. Persons with larger load of small vessel disease had smaller brain volume, especially normal WM volume. Diastolic blood pressure, diabetes mellitus and current smoking were also related to smaller brain volume. In the elderly, higher age, small vessel disease and cardiovascular risk factors are associated with smaller brain volume, especially WM volume.
Growth of contact area between rough surfaces under normal stress
NASA Astrophysics Data System (ADS)
Stesky, R. M.; Hannan, S. S.
1987-05-01
The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.
Rheological State Diagrams for Rough Colloids in Shear Flow.
Hsiao, Lilian C; Jamali, Safa; Glynos, Emmanouil; Green, Peter F; Larson, Ronald G; Solomon, Michael J
2017-10-13
To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.
Rheological State Diagrams for Rough Colloids in Shear Flow
NASA Astrophysics Data System (ADS)
Hsiao, Lilian C.; Jamali, Safa; Glynos, Emmanouil; Green, Peter F.; Larson, Ronald G.; Solomon, Michael J.
2017-10-01
To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.
Yeung, Michael K; Sze, Sophia L; Woo, Jean; Kwok, Timothy; Shum, David H K; Yu, Ruby; Chan, Agnes S
2016-01-01
Some functional magnetic resonance imaging studies have reported altered activations in the frontal cortex during working memory (WM) performance in individuals with mild cognitive impairment (MCI), but the findings have been mixed. The objective of the present study was to utilize near-infrared spectroscopy (NIRS), an alternative imaging technique, to examine neural processing during WM performance in individuals with MCI. Twenty-six older adults with MCI (7 males; mean age 69.15 years) were compared with 26 age-, gender-, handedness-, and education-matched older adults with normal cognition (NC; 7 males; mean age 68.87 years). All of the participants undertook an n-back task with a low (i.e., 0-back) and a high (i.e., 2-back) WM load condition while their prefrontal dynamics were recorded by a 16-channel NIRS system. Although behavioral results showed that the two groups had comparable task performance, neuroimaging results showed that the MCI group, unlike the NC group, did not exhibit significantly increased frontal activations bilaterally when WM load increased. Compared to the NC group, the MCI group had similar frontal activations at low load (p > 0.05 on all channels) but reduced activations at high load (p < 0.05 on 4 channels), thus failing to demonstrate WM-related frontal activations (p < 0.05 on 9 channels). In addition, we found a positive correlation between the left WM-related frontal activations and WM ability primarily in the NC group (rs = 0.42, p = 0.035), suggesting a relationship between frontal hypoactivation and WM difficulties. The present findings suggest the presence of frontal dysfunction that is dependent on WM load in individuals with MCI. © 2016 S. Karger AG, Basel.
Sclerostin antibody inhibits skeletal deterioration in mice exposed to partial weight-bearing
NASA Astrophysics Data System (ADS)
Spatz, J. M.; Ellman, R.; Cloutier, A. M.; Louis, L.; van Vliet, M.; Dwyer, D.; Stolina, M.; Ke, H. Z.; Bouxsein, M. L.
2017-02-01
Whereas much is known regarding the musculoskeletal responses to full unloading, little is known about the physiological effects and response to pharmacological agents in partial unloading (e.g. Moon and Mars) environments. To address this, we used a previously developed ground-based model of partial weight-bearing (PWB) that allows chronic exposure to reduced weight-bearing in mice to determine the effects of murine sclerostin antibody (SclAbII) on bone microstructure and strength across different levels of mechanical unloading. We hypothesize that treatment with SclAbII would improve bone mass, microarchitecture and strength in all loading conditions, but that there would be a greater skeletal response in the normally loaded mice than in partially unloaded mice suggesting the importance of combined countermeasures for exploration-class long duration spaceflight missions. Eleven-week-old female mice were assigned to one of four loading groups: normal weight-bearing controls (CON) or weight-bearing at 20% (PWB20), 40% (PWB40) or 70% (PWB70) of normal. Mice in each group received either SclAbII (25 mg/kg) or vehicle (VEH) via twice weekly subcutaneous injection for 3 weeks. In partially-unloaded VEH-treated groups, leg BMD decreased -5 to -10% in a load-dependent manner. SclAbII treatment completely inhibited bone deterioration due to PWB, with bone properties in SclAbII-treated groups being equal to or greater than those of CON, VEH-treated mice. SclAbII treatment increased leg BMD from +14 to +18% in the PWB groups and 30 ± 3% in CON (p < 0.0001 for all). Trabecular bone volume, assessed by μCT at the distal femur, was lower in all partially unloaded VEH-treated groups vs. CON-VEH (p < 0.05), and was 2-3 fold higher in SclAbII-treated groups (p < 0.001). Midshaft femoral strength was also significantly higher in SclAbII vs. VEH-groups in all-loading conditions. These results suggest that greater weight bearing leads to greater benefits of SclAbII on bone mass, particularly in the trabecular compartment. Altogether, these results demonstrate the efficacy of sclerostin antibody therapy in preventing astronaut bone loss during terrestrial solar system exploration.
Sclerostin antibody inhibits skeletal deterioration in mice exposed to partial weight-bearing.
Spatz, J M; Ellman, R; Cloutier, A M; Louis, L; van Vliet, M; Dwyer, D; Stolina, M; Ke, H Z; Bouxsein, M L
2017-02-01
Whereas much is known regarding the musculoskeletal responses to full unloading, little is known about the physiological effects and response to pharmacological agents in partial unloading (e.g. Moon and Mars) environments. To address this, we used a previously developed ground-based model of partial weight-bearing (PWB) that allows chronic exposure to reduced weight-bearing in mice to determine the effects of murine sclerostin antibody (SclAbII) on bone microstructure and strength across different levels of mechanical unloading. We hypothesize that treatment with SclAbII would improve bone mass, microarchitecture and strength in all loading conditions, but that there would be a greater skeletal response in the normally loaded mice than in partially unloaded mice suggesting the importance of combined countermeasures for exploration-class long duration spaceflight missions. Eleven-week-old female mice were assigned to one of four loading groups: normal weight-bearing controls (CON) or weight-bearing at 20% (PWB20), 40% (PWB40) or 70% (PWB70) of normal. Mice in each group received either SclAbII (25mg/kg) or vehicle (VEH) via twice weekly subcutaneous injection for 3 weeks. In partially-unloaded VEH-treated groups, leg BMD decreased -5 to -10% in a load-dependent manner. SclAbII treatment completely inhibited bone deterioration due to PWB, with bone properties in SclAbII-treated groups being equal to or greater than those of CON, VEH-treated mice. SclAbII treatment increased leg BMD from +14 to +18% in the PWB groups and 30 ± 3% in CON (p< 0.0001 for all). Trabecular bone volume, assessed by μCT at the distal femur, was lower in all partially unloaded VEH-treated groups vs. CON-VEH (p< 0.05), and was 2-3 fold higher in SclAbII-treated groups (p< 0.001). Midshaft femoral strength was also significantly higher in SclAbII vs. VEH-groups in all-loading conditions. These results suggest that greater weight bearing leads to greater benefits of SclAbII on bone mass, particularly in the trabecular compartment. Altogether, these results demonstrate the efficacy of sclerostin antibody therapy in preventing astronaut bone loss during terrestrial solar system exploration. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Knee Joint Loading during Gait in Healthy Controls and Individuals with Knee Osteoarthritis
Kumar, Deepak; Manal, Kurt T.; Rudolph, Katherine S.
2013-01-01
Objective People with knee osteoarthritis (OA) are thought to walk with high loads at the knee which are yet to be quantfied using modeling techniques that account for subject specific EMG patterns, kinematics and kinetics. The objective was to estimate medial and lateral loading for people with knee OA and controls using an approach that is sensitive to subject specific muscle activation patterns. Methods 16 OA and 12 control (C) subjects walked while kinematic, kinetic and EMG data were collected. Muscle forces were calculated using an EMG-Driven model and loading was calculated by balancing the external moments with internal muscle and contact forces Results OA subjects walked slower and had greater laxity, static and dynamic varus alignment, less flexion and greater knee adduction moment (KAM). Loading (normalized to body weight) was no different between the groups but OA subjects had greater absolute medial load than controls and maintained a greater %total load on the medial compartment. These patterns were associated with body mass, sagittal and frontal plane moments, static alignment and close to signficance for dynamic alignment. Lateral compartment unloading during mid-late stance was observed in 50% of OA subjects. Conclusions Loading for control subjects was similar to data from instrumented prostheses. Knee OA subjects had high medial contact loads in early stance and half of the OA cohort demonstared lateral compartment lift-off. Results suggest that interventions aimed at reducing body weight and dynamic malalignment might be effective in reducing medial compartment loading and establishing normal medio-lateral load sharing patterns. PMID:23182814
Rasmussen, P V; Kirk, J; Rittig, S; Djurhuus, J C
1997-01-01
Fifty-five normal children, aged between 7 and 12 years, were hospitalised for four consecutive nights. On three of these nights, the subjects received 25 ml/kg body weight of fluid prior to bedtime. Such fluid-loading provoked 28 enuresis-like episodes in 17 children, most of which occurred during the first few hours of sleep. The incidence of these enuretic events decreased with increasing age, more boys than girls were affected, there was a statistically significant correlation between total enuresis volume and nocturia volume, and the micturition was frequently incomplete, leaving large volumes of residual urine in the bladder. It was concluded that if nocturnal urine production exceeds bladder capacity, enuresis may be provoked, even in children who do not normally wet the bed. Furthermore, the definition of nocturnal enuresis as a complete emptying of the bladder during sleep may need revision.
NASA Astrophysics Data System (ADS)
Zhou, Y.-B.; Li, X.-F.
2018-07-01
The electroelastic problem related to two collinear cracks of equal length and normal to the boundaries of a one-dimensional hexagonal piezoelectric quasicrystal layer is analysed. By using the finite Fourier transform, a mixed boundary value problem is solved when antiplane mechanical loading and inplane electric loading are applied. The problem is reduce to triple series equations, which are then transformed to a singular integral equation. For uniform remote loading, an exact solution is obtained in closed form, and explicit expressions for the electroelastic field are determined. The intensity factors of the electroelastic field and the energy release rate at the inner and outer crack tips are given and presented graphically.
Size effect and cylinder test on several commercial explosives
NASA Astrophysics Data System (ADS)
Souers, P. Clark; Lauderbach, Lisa; Moua, Kou; Garza, Raul
2012-03-01
Some size (diameter) effect and the Cylinder test results for Kinepak (ammonium nitrate/nitromethane), Semtex 1, Semtex H and urea nitrate are presented. Cylinder test data appears normal despite faster sound speeds in the copper wall. Most explosives come to steady state in the Cylinder test as expected, but Kinepak shows a steadily increasing wall velocity with distance down the cylinder. Some data on powder densities as a function of loading procedure are also given.
Fernández-Repollet, E; Martínez-Maldonado, M; Opava-Stitzer, S
1980-01-01
1. The role of water balance in the hypokalaemia of rats with diabetes insipidus (DI rats) was studied. 2. After a 3-day balance study DI rats had a lower muscle potassium content, and plasma [K+], and the urinary excretion of potassium in response to oral KCl loading was reduced when compared to normal rats. The hypokalaemia was found to be associated with elevated concentrations of potassium in renal medulla and papilla when compared to values in normal Long-Evans rats. 3. During a 9-day balance study urinary potassium excretion was higher than that of normal rats on days 1-3, but not different on days 4-9; this transient elevation was observed in DI rats on normal, high and low potassium diets. On a low potassium diet the urinary potassium excretion of DI rats fell to minimal levels, making unlikely the existence of a renal defect in potassium handling. 4. Muscle potassium content and plasma [K+] were normal after 9 days in metabolism cages. This spontaneous reversal of the hypokalaemia of DI rats was associated with increased water content of renal medulla and papilla, and decreased potassium concentration in these zones. 5. The effect of acute mild dehydration on potassium handling of DI rats was evaluated. Water deprivation for 1-8 hr was sufficient to raise the urinary potassium excretion of DI rats above that of DI rats drinking ad lib. Renal tissue [K+] was significantly increased after 8 hr of dehydration. Water deprivation also enhanced the response of DI rats to an oral KCl load. Two days of chronic dehydration in the form of water rationing also significantly enhanced the urinary potassium excretion of DI rats. 6. These data suggest that chronic mild dehydration may be responsible for the modest potassium deficiency observed in DI rats via alterations in renal tissue [K+] and consequently in urinary potassium excretion. Correction of dehydration during prolonged periods in metabolism cages may account for the spontaneous reversal of the hypokelaemic condition. PMID:7441565
Sharma, Sanjeev Kumar; Yadav, Shiv Lal; Singh, U; Wadhwa, Sanjay
2017-05-01
Osteoarthritis (OA) of knee is a common joint disease. It is associated with reduced knee joint stability due to impaired quadriceps strength, pain, and an altered joint structure. There is altered muscle activation in knee OA patients, which interferes with normal load distribution around the knee and facilitates disease progression. Our primary aim was to determine activation patterns of the muscles i.e., quadriceps and hamstrings in knee OA patients during walking. We also studied co-activation of muscles around knee joint in primary OA knee patients including directed medial and lateral co-contractions. This observational study was done at Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi, India. Fourty-four patients with medial compartment primary knee OA were included in study after satisfying inclusion and exclusion criteria. All the patients were assessed for mean, peak and integrated Root Mean Square (RMS), EMG values, muscle activation patterns and co-activation of muscles around knee joint by surface Electromyography (EMG) analysis of Vastus Medialis Obliques (VMO), Vastus Lateralis (VL), Semitendinosus (SMT) and Biceps Femoris (BF) muscles during gait cycle. The EMG waveform for each muscle was amplitude normalized and time normalized to 100% of gait cycle and plotted on graph. Quantitative variables were assessed for normal distribution and accordingly mean±SD or median (range), as appropriate, was computed. For primary OA knee, mean age 61±5 years, mean weight 63.7±10.1 kg, mean height 153.9±7.2 cm, and mean Body Mass Index (BMI) 26.8±3.0 kg/m 2 was found. The muscle activity of hamstrings (SMT muscle and BF) was increased during midstance, late stance and early swing phase of gait cycle as compared to quadriceps (VMO and VL) muscle activity respectively, suggesting co-contraction of opposing muscles around knee joint. Patients with knee OA walk with increased hamstring muscle activity (during late stance and early swing phase) and reduced quadriceps recruitment. Altered neuro-muscular control around knee interferes with normal load distribution and facilitates disease progression in knee joint.
Yadav, Shiv Lal; Singh, U; Wadhwa, Sanjay
2017-01-01
Introduction Osteoarthritis (OA) of knee is a common joint disease. It is associated with reduced knee joint stability due to impaired quadriceps strength, pain, and an altered joint structure. There is altered muscle activation in knee OA patients, which interferes with normal load distribution around the knee and facilitates disease progression. Aim Our primary aim was to determine activation patterns of the muscles i.e., quadriceps and hamstrings in knee OA patients during walking. We also studied co-activation of muscles around knee joint in primary OA knee patients including directed medial and lateral co-contractions. Materials and Methods This observational study was done at Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi, India. Fourty-four patients with medial compartment primary knee OA were included in study after satisfying inclusion and exclusion criteria. All the patients were assessed for mean, peak and integrated Root Mean Square (RMS), EMG values, muscle activation patterns and co-activation of muscles around knee joint by surface Electromyography (EMG) analysis of Vastus Medialis Obliques (VMO), Vastus Lateralis (VL), Semitendinosus (SMT) and Biceps Femoris (BF) muscles during gait cycle. The EMG waveform for each muscle was amplitude normalized and time normalized to 100% of gait cycle and plotted on graph. Quantitative variables were assessed for normal distribution and accordingly mean±SD or median (range), as appropriate, was computed. Results For primary OA knee, mean age 61±5 years, mean weight 63.7±10.1 kg, mean height 153.9±7.2 cm, and mean Body Mass Index (BMI) 26.8±3.0 kg/m2 was found. The muscle activity of hamstrings (SMT muscle and BF) was increased during midstance, late stance and early swing phase of gait cycle as compared to quadriceps (VMO and VL) muscle activity respectively, suggesting co-contraction of opposing muscles around knee joint. Conclusion Patients with knee OA walk with increased hamstring muscle activity (during late stance and early swing phase) and reduced quadriceps recruitment. Altered neuro-muscular control around knee interferes with normal load distribution and facilitates disease progression in knee joint. PMID:28658860
Kim, Kyungmok; Ko, Joon Soo
2016-01-01
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating. PMID:28773873
Abramova, M A; Calas, A; Maiily, P; Thibault, J; Ugriumov, M V
1999-06-01
This study has evaluated the dynamic of intracellular vasopressin and tyrosine hydroxylase contents in the neuron cell bodies in the supraoptic nucleus and in the axons of the posterior lobe in rats drinking 2% NaCl for 1, 2, and 3 weeks. The number of vasopressin-immunoreactive neurons increased by the end of the second week of osmotic stimulation that might be explained by the onset of vasopressin synthesis in the neurons which do not synthesize this neurohormone under normal physiological conditions. The concentration of vasopressin fell down continuously during the first two weeks of salt-loading, apparently, due to predominance of the vasopressin release over its synthesis. Over the third week of salt-loading, the intracellular concentration of vasopressin was not changed significantly suggesting the establishment of the dynamic equilibrium between the vasopressin synthesis and release. The number of tyrosine hydroxylase-immunoreactive neurons and the amount of tyrosine hydroxylase in cell bodies and the large axonal swellings, Herring bodies, increased gradually showing that the rate of tyrosine hydroxylase synthesis prevailed over that of its enzymatic degradation. Thus, the chronic stimulation of vasopressin neurons is accompanied by a number of the adaptive reactions; the most important is related to the onset of vasopressin and tyrosine hydroxylase synthesis in the neurons which do not synthetize both of them under normal conditions.
Kim, Kyungmok; Ko, Joon Soo
2016-09-03
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.
Contribution of tibiofemoral joint contact to net loads at the knee in gait.
Walter, Jonathan P; Korkmaz, Nuray; Fregly, Benjamin J; Pandy, Marcus G
2015-07-01
Inverse dynamics analysis is commonly used to estimate the net loads at a joint during human motion. Most lower-limb models of movement represent the knee as a simple hinge joint when calculating muscle forces. This approach is limited because it neglects the contributions from tibiofemoral joint contact forces and may therefore lead to errors in estimated muscle forces. The aim of this study was to quantify the contributions of tibiofemoral joint contact loads to the net knee loads calculated from inverse dynamics for multiple subjects and multiple gait patterns. Tibiofemoral joint contact loads were measured in four subjects with instrumented implants as each subject walked at their preferred speed (normal gait) and performed prescribed gait modifications designed to treat medial knee osteoarthritis. Tibiofemoral contact loads contributed substantially to the net knee extension and knee adduction moments in normal gait with mean values of 16% and 54%, respectively. These findings suggest that knee-contact kinematics and loads should be included in lower-limb models of movement for more accurate determination of muscle forces. The results of this study may be used to guide the development of more realistic lower-limb models that account for the effects of tibiofemoral joint contact at the knee. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Space Station laboratory module power loading analysis
NASA Astrophysics Data System (ADS)
Fu, S. J.
1994-07-01
The electrical power system of Space Station Freedom is an isolated electrical power generation and distribution network designed to meet the demands of a large number of electrical loads. An algorithm is developed to determine the power bus loading status under normal operating conditions to ensure the supply meets demand. The probabilities of power availability for payload operations (experiments) are also derived.
NASA Technical Reports Server (NTRS)
Klein, M.; Reynolds, J.; Ricks, E.
1989-01-01
Load and stress recovery from transient dynamic studies are improved upon using an extended acceleration vector in the modal acceleration technique applied to structural analysis. Extension of the normal LTM (load transformation matrices) stress recovery to automatically compute margins of safety is presented with an application to the Hubble space telescope.
ERIC Educational Resources Information Center
de Liano, Beatriz Gil-Gomez; Umilta, Carlo; Stablum, Franca; Tebaldi, Francesca; Cantagallo, Anna
2010-01-01
A reduction in congruency effects under working memory (WM) load has been previously described using different attentional paradigms (e.g., Kim, Kim, & Chun, 2005; Smilek, Enns, Eastwood, & Merikle, 2006). One hypothesis is that different types of WM load have different effects on attentional selection, depending on whether a specific memory load…
Gil-Gómez de Liaño, Beatriz; Umiltà, Carlo; Stablum, Franca; Tebaldi, Francesca; Cantagallo, Anna
2010-12-01
A reduction in congruency effects under working memory (WM) load has been previously described using different attentional paradigms (e.g., Kim, Kim, & Chun, 2005; Smilek, Enns, Eastwood, & Merikle, 2006). One hypothesis is that different types of WM load have different effects on attentional selection, depending on whether a specific memory load demands resources in common with target or distractor processing. In particular, if information in WM is related to the distractors in the selective attention task, there is a reduction in distraction (Kim et al., 2005). However, although previous results seem to point to a decrease in interference under high WM load conditions (Kim et al., 2005), the lack of a neutral baseline for the congruency effects makes it difficult to differentiate between a decrease in interference or in facilitation. In the present work we included neutral trials in the task introduced by Kim et al. (2005) and tested normal participants and traumatic brain injury patients. Results support a reduction in the processing of distractors under WM load, at least for incongruent trials in both groups. Theoretical as well as applied implications are discussed. Copyright © 2010 Elsevier Inc. All rights reserved.
Muscular contribution to low-back loading and stiffness during standard and suspended push-ups.
Beach, Tyson A C; Howarth, Samuel J; Callaghan, Jack P
2008-06-01
Push-up exercises are normally performed to challenge muscles that span upper extremity joints. However, it is also recognized that push-ups provide an effective abdominal muscle challenge, especially when the hands are in contact with a labile support surface. The purpose of this study was to compare trunk muscle activation levels and resultant intervertebral joint (IVJ) loading when standard and suspended push-ups were performed, and to quantify and compare the contribution of trunk muscles to IVJ rotational stiffness in both exercises. Eleven recreationally trained male volunteers performed sets of standard and suspended push-ups. Upper body kinematic, kinetic, and EMG data were collected and input into a 3D biomechanical model of the lumbar torso to quantify lumbar IVJ loading and the contributions of trunk muscles to IVJ rotational stiffness. When performing suspended push-ups, muscles of the abdominal wall and the latissimus dorsi were activated to levels that were significantly greater than those elicited when performing standard push-ups (p<.05). As a direct result of these increased activation levels, model-predicted muscle forces increased and consequently led to significantly greater mean (p=.0008) and peak (p=.0012) lumbar IVJ compressive forces when performing suspended push-ups. Also directly resulting from the increased activation levels of the abdominal muscles and the latissimus dorsi during suspended push-ups was increased muscular contribution to lumbar IVJ rotational stiffness (p<.05). In comparison to the standard version of the exercise, suspended push-ups appear to provide a superior abdominal muscle challenge. However, for individuals unable to tolerate high lumbar IVJ compressive loads, potential benefits gained by incorporating suspended push-ups into their resistance training regimen may be outweighed by the risk of overloading low-back tissues.
A Domain Decomposition Parallelization of the Fast Marching Method
NASA Technical Reports Server (NTRS)
Herrmann, M.
2003-01-01
In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.
[Homocysteine after a methionine load in healthy subjects with adequate B-vitamin status].
López-Alarcón, Mardia; Chávez-Negrete, Adolfo; Montalvo-Velarde, Irene; Maldonado-Hernández, Jorge; Vital-Reyes, Víctor Saúl
2011-01-01
Plasma homocysteine (Hcy) determination at 6-8 h after an oral methionine load (OML) allows for identification of some, but not all, individuals at risk to develop cardiovascular disease. It is probable that in some cases the Hcy increases occur later, or it elevates between normal ranges but in a sustained manner. However, the entire Hcy response curve has not been described. We undertook this study to determine Hcy concentrations from baseline to 24- and 48-h after an OML in non-B-vitamin deficient adult subjects with other risk factors for high levels of Hcy such as smoking and overweight. In a cross-over, clinical design, Hcy concentrations were determined at 2-h intervals throughout 12 h and at 24 h and 48 h after an OML (0.1 g/kg). Hcy and vitamin B6 (VB6) concentrations were measured by high-performance liquid chromatography (HPLC). Folic acid (FA) and vitamin B12 (VB12) were measured by radioimmunoassay (RIA). Statistical analysis included delta values and areas under the curve. Student t-test and repeated measurement analyses were conducted to control for confounders. Twenty-nine subjects with adequate Hcy, FA, VB6 and VB12 status were included. The maximum Hcy concentration occurred 8 h after the load and returned to baseline concentrations after 24 h. All subjects presented Hcy after the load within normal ranges, but smoking and overweight synergistically influenced the response to the challenge, producing a sustained elevation after the dose. Hcy concentrations after an OML remained above baseline for at least 24 h. Smoking and overweight affected the response to the methionine challenge.
Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers
Runkel, Robert L.; Crawford, Charles G.; Cohn, Timothy A.
2004-01-01
LOAD ESTimator (LOADEST) is a FORTRAN program for estimating constituent loads in streams and rivers. Given a time series of streamflow, additional data variables, and constituent concentration, LOADEST assists the user in developing a regression model for the estimation of constituent load (calibration). Explanatory variables within the regression model include various functions of streamflow, decimal time, and additional user-specified data variables. The formulated regression model then is used to estimate loads over a user-specified time interval (estimation). Mean load estimates, standard errors, and 95 percent confidence intervals are developed on a monthly and(or) seasonal basis. The calibration and estimation procedures within LOADEST are based on three statistical estimation methods. The first two methods, Adjusted Maximum Likelihood Estimation (AMLE) and Maximum Likelihood Estimation (MLE), are appropriate when the calibration model errors (residuals) are normally distributed. Of the two, AMLE is the method of choice when the calibration data set (time series of streamflow, additional data variables, and concentration) contains censored data. The third method, Least Absolute Deviation (LAD), is an alternative to maximum likelihood estimation when the residuals are not normally distributed. LOADEST output includes diagnostic tests and warnings to assist the user in determining the appropriate estimation method and in interpreting the estimated loads. This report describes the development and application of LOADEST. Sections of the report describe estimation theory, input/output specifications, sample applications, and installation instructions.
Eken, Maaike M; Dallmeijer, Annet J; Doorenbosch, Caroline A; Dekkers, Hurnet; Becher, Jules G; Houdijk, Han
2014-10-01
To compare muscle endurance in adolescents with spastic cerebral palsy (CP) with typically developing (TD) peers using a submaximal repetitions-to-fatigue (RTF) protocol. Cross sectional. Human motion laboratory. Adolescents with spastic CP (n=16; Gross Motor Function Classification System levels I or II) and TD adolescents (n=18) within the age range of 12 to 19 years old. Not applicable. Each participant performed 3 RTF tests at different submaximal loads, ranging from 50% to 90% of their maximal voluntary knee extension torque. The relation between the number of repetitions (repetition maximum [RM]) and imposed submaximal relative (percent of maximal voluntary torque [%MVT]) and absolute (Nm/kg) torque was quantified. To compare adolescents with CP with TD adolescents, a mixed linear model was used to construct load endurance curves. Surface electromyography of quadriceps muscles was measured to assess changes in normalized amplitude and median frequency (MF) as physiological indicators of muscle fatigue. Adolescents with CP showed a larger decrease in %MVT per RM than TD adolescents (P<.05). TD adolescents showed substantial higher absolute (Nm/kg) load endurance curves than adolescents with CP (P<.001), but they did not show a difference in slope. Electromyographic normalized amplitude increased significantly (P<.05) in the quadriceps muscles in all tests for both groups. Electromyographic MF decreased significantly (P<.05) in tests with the low and medium loads. Electromyographic responses did not differ between groups, indicating that similar levels of muscle fatigue were reached. Adolescents with CP show slightly lower muscle endurance compared with TD adolescents on a submaximal RTF protocol, which is in contrast with earlier findings in a maximal voluntary fatigue protocol. Accordingly, adolescents with CP have a reduced capacity to endure activities at similar relative loads compared with TD adolescents. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L
2010-04-01
The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.
Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells.
Yoon, Sun Jung; Park, Ki Suk; Kim, Moon Suk; Rhee, John M; Khang, Gilson; Lee, Hai Bang
2007-05-01
Calcitriol (1,25(OH)2D3)-loaded porous poly(D,L-lactide-co-glycolide) (PLGA) scaffolds prepared by solvent casting/salt leaching method were used to repair a 1.5 cm diaphyseal segmental bone defect as a fully absorbable osteogenic biomaterial. The in vitro release of sulforhodamine B (SRB) from PLGA scaffold was measured using spectrophotometer, considering SRB as a model drug. The SRB released from SRB-incorporated PLGA scaffold during 3 months was with relatively low initial burst. The calcitriol-loaded PLGA scaffolds with or without marrow stromal cells (MSCs) were implanted in a critical-sized intercalated bone defect in rabbit femur. Defects were assessed by radiographs until 9 weeks. The bony union of the defect was observed only in the calcitriol-loaded groups. RT-PCR results indicated that MSCs, which were seeded into calcitriol-loaded scaffold, expressed an increased level of alkaline phosphatase, osteonectin, and type I collagen mRNA at day 10. After 2 and 4 weeks, the implanted scaffolds were evaluated by histology. New osteoid matrix and direct calcium deposits were more evident in calcitriol/PLGA/MSC group. Three-dimensional computed tomography and frontal tomographic images of repaired femur showed that normal femur anatomy had been restored with cortical bone with no implanted PLGA remnants at 20 weeks. It can be concluded that the porous calcitriol-loaded PLGA scaffold combined with MSCs may be a novel method for repairing the large loaded bone defect.
Preservation of the gut by preoperative carbohydrate loading improves postoperative food intake.
Luttikhold, Joanna; Oosting, Annemarie; van den Braak, Claudia C M; van Norren, Klaske; Rijna, Herman; van Leeuwen, Paul A M; Bouritius, Hetty
2013-08-01
A carbohydrate (CHO) drink given preoperatively changes the fasted state into a fed state. The ESPEN guidelines for perioperative care include preoperative CHO loading and re-establishment of oral feeding as early as possible after surgery. An intestinal ischaemia reperfusion (IR) animal model was used to investigate whether preoperative CHO loading increases spontaneous postoperative food intake, intestinal barrier function and the catabolic response. Male Wistar rats (n = 65) were subjected to 16 h fasting with ad libitum water and: A) sham laparotomy (Sham fasted, n = 24); B) intestinal ischaemia (IR fasted, n = 27); and C) intestinal ischaemia with preoperatively access to a CHO drink (IR CHO, n = 14). Spontaneous food intake, intestinal barrier function, insulin sensitivity, intestinal motility and plasma amino acids were measured after surgery. The IR CHO animals started eating significantly earlier and also ate significantly more than the IR fasted animals. Furthermore, preoperative CHO loading improved the intestinal barrier function, functional enterocyte metabolic mass measured by citrulline and reduced muscle protein catabolism, as indicated by normalization of the biomarker 3-methylhistidine. Preoperative CHO loading improves food intake, preserves the GI function and reduces the catabolic response in an IR animal model. These findings suggest that preoperative CHO loading preserves the intestinal function in order to accelerate recovery and food intake. If this effect is caused by overcoming the fasted state or CHO loading remains unclear. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Real-Time Assessment of Mechanical Tissue Trauma in Surgery.
Chandler, James H; Mushtaq, Faisal; Moxley-Wyles, Benjamin; West, Nicholas P; Taylor, Gregory W; Culmer, Peter R
2017-10-01
This work presents a method to assess and prevent tissue trauma in real-time during surgery. Tissue trauma occurs routinely during laparoscopic surgery with potentially severe consequences. As such, it is crucial that a surgeon is able to regulate the pressure exerted by surgical instruments. We propose a novel method to assess the onset of tissue trauma by considering the mechanical response of tissue as it is loaded in real-time. We conducted a parametric study using a lab-based grasping model and differing load conditions. Mechanical stress-time data were analyzed to characterize the tissue response to grasps. Qualitative and quantitative histological analyses were performed to inspect damage characteristics of the tissue under different load conditions. These were correlated against the mechanical measures to identify the nature of trauma onset with respect to our predictive metric. Results showed increasing tissue trauma with load and a strong correlation with the mechanical response of the tissue. Load rate and load history also showed a clear effect on tissue response. The proposed method for trauma assessment was effective in identifying damage. The metric can be normalized with respect to loading rate and history, making it feasible in the unconstrained environment of intraoperative surgery. This work demonstrates that tissue trauma can be predicted using mechanical measures in real-time. Applying this technique to laparoscopic tools has the potential to reduce unnecessary tissue trauma and its associated complications by indicating through user feedback or actively regulating the mechanical impact of surgical instruments.
Crack detection and fatigue related delamination in FRP composites applied to concrete
NASA Astrophysics Data System (ADS)
Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew
2008-03-01
Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.