Foglia, Robert P; Alder, Adam C; Ruiz, Gardito
2013-01-01
Perioperative services require the orchestration of multiple staff, space and equipment. Our aim was to identify whether the implementation of operations management and an electronic health record (EHR) improved perioperative performance. We compared 2006, pre operations management and EHR implementation, to 2010, post implementation. Operations management consisted of: communication to staff of perioperative vision and metrics, obtaining credible data and analysis, and the implementation of performance improvement processes. The EHR allows: identification of delays and the accountable service or person, collection and collation of data for analysis in multiple venues, including operational, financial, and quality. Metrics assessed included: operative cases, first case on time starts; reason for delay, and operating revenue. In 2006, 19,148 operations were performed (13,545 in the Main Operating Room (OR) area, and 5603, at satellite locations); first case on time starts were 12%; reasons for first case delay were not identifiable; and operating revenue was $115.8M overall, with $78.1M in the Main OR area. In 2010, cases increased to 25,856 (+35%); Main OR area increased to 13,986 (+3%); first case on time starts improved to 46%; operations outside the Main OR area increased to 11,870 (112%); case delays were ascribed to nurses 7%, anesthesiologists 22%, surgeons 33%, and other (patient, hospital) 38%. Five surgeons (7%) accounted for 29% of surgical delays and 4 anesthesiologists (8%) for 45% of anesthesiology delays; operating revenue increased to $177.3M (+53%) overall, and in the Main OR area rose to $101.5M (+30%). The use of operations management and EHR resulted in improved processes, credible data, promptly sharing the metrics, and pinpointing individual provider performance. Implementation of these strategies allowed us to shift cases between facilities, reallocate OR blocks, increase first case on time starts four fold and operative cases by 35%, and these changes were associated with a 53% increase in operating revenue. The fact that revenue increase was greater than case volume (53% vs. 35%) speaks for improved performance. Copyright © 2013 Elsevier Inc. All rights reserved.
Leach, D J; Jackson, P R; Wall, T D
2001-07-15
An empowerment initiative involving enhanced fault-management responsibility for operators of complex technology had not led to expected increases in performance, and investigations suggested that this was due to a lack of appropriate feedback. Thus, a feedback intervention was designed to provide specific, timely feedback on operator-correctable faults. It was hypothesized that the intervention would increase operator self-reliance in operating complex technology and promote system performance. Moreover, given the feedback was continuous from the point of intervention, it was predicted that gains would increase over time. Time series analysis of data on engineer call-outs (self-reliance) and machine utilization (performance) showed clear positive effects of the feedback intervention, with call-outs also showing progressive improvement. Self-report data showed no change over time in motivation, but an increase in knowledge dissemination and a reduction in the likelihood of making expensive mistakes. There were no detrimental effects on operator well being. Implications for theory and practice in the management of complex technology are discussed.
Pilot workload, performance and aircraft control automation
NASA Technical Reports Server (NTRS)
Hart, S. G.; Sheridan, T. B.
1984-01-01
Conceptual and practical issues associated with the design, operation, and performance of advanced systems and the impact of such systems on the human operators are reviewed. The development of highly automated systems is driven by the availability of new technology and the requirement that operators safely and economically perform more and more activities in increasingly difficult and hostile environments. It is noted that the operators workload may become a major area of concern in future design considerations. Little research was done to determine how automation and workload relate to each other, although it is assumed that the abstract, supervisory, or management roles that are performed by operators of highly automated systems will impose increased mental workload. The relationship between performance and workload is discussed in relation to highly complex and automated environments.
Berg, Regan J; Inaba, Kenji; Sullivan, Maura; Okoye, Obi; Siboni, Stefano; Minneti, Michael; Teixeira, Pedro G; Demetriades, Demetrios
2015-01-01
Increasing ambient temperature to prevent intraoperative patient hypothermia remains widely advocated despite unconvincing evidence of efficacy. Heat stress is associated with decreased cognitive and psychomotor performance across multiple tasks but remains unexamined in an operative context. We assessed the impact of increased ambient temperature on laparoscopic operative performance and surgeon cognitive stress. Forty-two performance measures were obtained from 21 surgery trainees participating in the counter-balanced, within-subjects study protocol. Operative performance was evaluated with adaptations of the validated, peg-transfer, and intracorporeal knot-tying tasks from the Fundamentals of Laparoscopic Surgery program. Participants trained to proficiency before enrollment. Task performance was measured at two ambient temperatures, 19 and 26°C (66 and 79°F). Participants were randomly counterbalanced to initial hot or cold exposure before crossing over to the alternate environment. Cognitive stress was measured using the validated Surgical Task Load Index (SURG-TLX). No differences in performance of the peg-transfer and intracorporeal knot-tying tasks were seen across ambient conditions. Assessed via use of the six bipolar scales of the SURG-TLX, we found differences in task workload between the hot and cold conditions in the areas of physical demands (hot 10 [3-12], cold 5 [2.5-9], P = .013) and distractions (hot 8 [3.5-15.5], cold 3 [1.5-5.5], P = .001). Participant perception of distraction remained greater in the hot condition on full scoring of the SURG-TLX. Increasing ambient temperature to levels advocated for prevention of intraoperative hypothermia does not greatly decrease technical performance in short operative tasks. Surgeons, however, do report increased perceptions of distraction and physical demand. The impact of these findings on performance and outcomes during longer operative procedures remains unclear. Copyright © 2015 Elsevier Inc. All rights reserved.
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
14 CFR 121.198 - Cargo service airplanes: Increased zero fuel and landing weights.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cargo service airplanes: Increased zero... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.198 Cargo service airplanes: Increased zero fuel and landing weights...
The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.
2012-01-01
This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.
Factors related to teamwork performance and stress of operating room nurses.
Sonoda, Yukio; Onozuka, Daisuke; Hagihara, Akihito
2018-01-01
To evaluate operating room nurses' perception of teamwork performance and their level of mental stress and to identify related factors. Little is known about the factors affecting teamwork and the mental stress of surgical nurses, although the performance of the surgical team is essential for patient safety. The questionnaire survey for operation room nurses consisted of simple questions about teamwork performance and mental stress. Multivariate analyses were used to identify factors causing a sense of teamwork performance or mental stress. A large number of surgical nurses had a sense of teamwork performance, but 30-40% of operation room nurses were mentally stressed during surgery. Neither the patient nor the operation factors were related to the sense of teamwork performance in both types of nurses. Among scrub nurses, endoscopic and abdominal surgery, body mass index, blood loss and the American Society of Anesthesiologists physical status class were related to their mental stress. Conversely, circulating nurses were stressed about teamwork performance. The factors related to teamwork performance and mental stress during surgery differed between scrub and circulating nurses. Increased support for operation room nurses is necessary. The increased support leads to safer surgical procedures and better patient outcomes. © 2017 John Wiley & Sons Ltd.
Operative experience of surgery residents: trends and challenges.
Malangoni, Mark A; Biester, Thomas W; Jones, Andrew T; Klingensmith, Mary E; Lewis, Frank R
2013-01-01
To evaluate trends in operative experience and to determine the effect of establishing the Surgical Council on Resident Education (SCORE) operative classification system on changes in operative volume among graduating surgery residents. The general surgery operative logs of graduating surgery residents from 2005 were retrospectively compared with residents who completed training in 2010 and 2011. Nonparametric statistical analyses were used (Mann-Whitney and median test) with significance set at p<0.01. A total of 1022 residents completing residency in 2005 were compared with 1923 residents completing training in 2010-2011. Total operations reported increased from a median of 1023 to 1238 (21%) between 2005 and 2010-2011 (p<0.001). Cases increased in most SCORE categories. The median numbers of total, basic, and complex laparoscopic operations increased by 49%, 37%, and 82%, respectively, over the 5-year interval (p<0.001). Open cavitary (thoracic + abdominal) operations decreased by 5%, whereas other major operations increased by 35% (both p<0.001). The frequency of discrete operations done at least 10 times during residency did not change. The median number of SCORE essential-common operations performed ranged from 1 to 107, whereas essential-uncommon operations ranged from 0 to 4. Twenty-three of 67 SCORE essential-common operations (34%) had a median of less than 5 and 4 had a median of 0. The operative volume of graduating surgical residents has increased by 21% since 2005; however, the number of operations done 10 times or greater has not changed. Although open cavitary procedures continue to decline, there has been a large increase in endoscopy, complex laparoscopic, and other major operations. Some essential-common operations continue to be performed infrequently. These results suggest that education in the operating room must improve and alternate methods for teaching infrequently performed procedures are needed. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.
Graduating general surgery resident operative confidence: perspective from a national survey.
Fonseca, Annabelle L; Reddy, Vikram; Longo, Walter E; Gusberg, Richard J
2014-08-01
General surgical training has changed significantly over the last decade with work hour restrictions, increasing subspecialization, the expanding use of minimally invasive techniques, and nonoperative management for solid organ trauma. Given these changes, this study was undertaken to assess the confidence of graduating general surgery residents in performing open surgical operations and to determine factors associated with increased confidence. A survey was developed and sent to general surgery residents nationally. We queried them regarding demographics and program characteristics, asked them to rate their confidence (rated 1-5 on a Likert scale) in performing open surgical procedures and compared those who indicated confidence with those who did not. We received 653 responses from the fifth year (postgraduate year 5) surgical residents: 69% male, 68% from university programs, and 51% from programs affiliated with a Veterans Affairs hospital; 22% from small programs, 34% from medium programs, and 44% from large programs. Anticipated postresidency operative confidence was 72%. More than 25% of residents reported a lack of confidence in performing eight of the 13 operations they were queried about. Training at a university program, a large program, dedicated research years, future fellowship plans, and training at a program that performed a large percentage of operations laparoscopically was associated with decreased confidence in performing a number of open surgical procedures. Increased surgical volume was associated with increased operative confidence. Confidence in performing open surgery also varied regionally. Graduating surgical residents indicated a significant lack of confidence in performing a variety of open surgical procedures. This decreased confidence was associated with age, operative volume as well as type, and location of training program. Analyzing and addressing this confidence deficit merits further study. Copyright © 2014 Elsevier Inc. All rights reserved.
Weigl, Matthias; Stefan, Philipp; Abhari, Kamyar; Wucherer, Patrick; Fallavollita, Pascal; Lazarovici, Marc; Weidert, Simon; Euler, Ekkehard; Catchpole, Ken
2016-02-01
Surgical flow disruptions occur frequently and jeopardize perioperative care and surgical performance. So far, insights into subjective and cognitive implications of intra-operative disruptions for surgeons and inherent consequences for performance are inconsistent. This study aimed to investigate the effect of surgical flow disruption on surgeon's intra-operative workload and technical performance. In a full-scale OR simulation, 19 surgeons were randomly allocated to either of the two disruption scenarios (telephone call vs. patient discomfort). Using a mixed virtual reality simulator with a computerized, high-fidelity mannequin, all surgeons were trained in performing a vertebroplasty procedure and subsequently performed such a procedure under experimental conditions. Standardized measures on subjective workload and technical performance (trocar positioning deviation from expert-defined standard, number, and duration of X-ray acquisitions) were collected. Intra-operative workload during simulated disruption scenarios was significantly higher compared to training sessions (p < .01). Surgeons in the telephone call scenario experienced significantly more distraction compared to their colleagues in the patient discomfort scenario (p < .05). However, workload tended to be increased in surgeons who coped with distractions due to patient discomfort. Technical performance was not significantly different between both disruption scenarios. We found a significant association between surgeons' intra-operative workload and technical performance such that surgeons with increased mental workload tended to perform worse (β = .55, p = .04). Surgical flow disruptions affect surgeons' intra-operative workload. Increased mental workload was associated with inferior technical performance. Our simulation-based findings emphasize the need to establish smooth surgical flow which is characterized by a low level of process deviations and disruptions.
The costs and quality of operative training for residents in tympanoplasty type I.
Wang, Mao-Che; Yu, Eric Chen-Hua; Shiao, An-Suey; Liao, Wen-Huei; Liu, Chia-Yu
2009-05-01
A teaching hospital would incur more operation room costs on training surgical residents. To evaluate the increased operation time and the increased operation room costs of operations performed by surgical residents. As a model we used a very common surgical otology procedure -- tympanoplasty type I. From January 1, 2004 to December 31, 2004, we included in this study 100 patients who received tympanoplasty type I in Taipei Veterans General Hospital. Fifty-six procedures were performed by a single board-certified surgeon and 44 procedures were performed by residents. We analyzed the operation time and surgical outcomes in these two groups of patients. The operation room cost per minute was obtained by dividing the total operation room expenses by total operation time in the year 2004. The average operation time of residents was 116.47 min, which was significantly longer (p<0.0001) than that of the board-certified surgeon (average 81.07 min). It cost USD $40.36 more for each operation performed by residents in terms of operation room costs. The surgical success rate of residents was 81.82%, which was significantly lower (p=0.016) than that of the board-certified surgeon (96.43%).
Operator learning effects in teleoperated rendezvous & docking
NASA Astrophysics Data System (ADS)
Wilde, M.; Harder, J.; Purschke, R.
Teleoperation of spacecraft proximity operations and docking requires delicate timing and coordination of spacecraft maneuvers. Experience has shown that human operators show large performance fluctuations in these areas, which are a major factor to be addressed in operator training. In order to allow the quantification of the impact of these human fluctuations on control system performance and the human perception of this performance, a learning curve study was conducted with teleoperated final approach and docking scenarios. Over a period of ten experiment days, three test participants were tasked with repeatedly completing a set of three training scenarios. The scenarios were designed to contain different combinations of the major elements of any final approach and docking situation, and to feature an increasing difficulty level. The individual difficulty levels for the three operators furthermore differed in the level of operator support functions available in their human-machine interfaces. Operator performance in the test scenarios were evaluated in the fields approach success and precision, docking safety, and approach efficiency by a combination of recorded maneuver data and questionnaires. The results show that operator experience and the associated learning curves increase operator performance substantially, regardless of the support system used. The paper also shows that the fluctuations in operator performance and self-perception are substantial between as well as within experiment days, and must be reckoned with in teleoperation system design and mission planning.
Status quo and current trends of operating room management in Germany.
Baumgart, André; Schüpfer, Guido; Welker, Andreas; Bender, Hans-Joachim; Schleppers, Alexander
2010-04-01
Ongoing healthcare reforms in Germany have required strenuous efforts to adapt hospital and operating room organizations to the needs of patients, new technological developments, and social and economic demands. This review addresses the major developments in German operating room management research and current practice. The introduction of the diagnosis-related group system in 2003 has changed the incentive structure of German hospitals to redesign their operating room units. The role of operating room managers has been gradually changing in hospitals in response to the change in the reimbursement system. Operating room managers are today specifically qualified and increasingly externally hired staff. They are more and more empowered with authority to plan and control operating rooms as profit centers. For measuring performance, common perioperative performance indicators are still scarcely implemented in German hospitals. In 2008, a concerted time glossary was established to enable consistent monitoring of operating room performance with generally accepted process indicators. These key performance indicators are a consistent way to make a procedure or case - and also the effectiveness of the operating room management - more transparent. In the presence of increasing financial pressure, a hospital's executives need to empower an independent operating room management function to achieve the hospital's economic goals. Operating room managers need to adopt evidence-based methods also from other scientific fields, for example management science and information technology, to further sustain operating room performance.
Energy harvesting influences electrochemical performance of microbial fuel cells
NASA Astrophysics Data System (ADS)
Lobo, Fernanda Leite; Wang, Xin; Ren, Zhiyong Jason
2017-07-01
Microbial fuel cells (MFCs) can be effective power sources for remote sensing, wastewater treatment and environmental remediation, but their performance needs significant improvement. This study systematically analyzes how active harvesting using electrical circuits increased MFC system outputs as compared to passive resistors not only in the traditional maximal power point (MPP) but also in other desired operating points such as the maximum current point (MCP) and the maximum voltage point (MVP). Results show that active harvesting in MPP increased power output by 81-375% and active harvesting in MCP increased Coulombic efficiency by 207-805% compared with resisters operated at the same points. The cyclic voltammograms revealed redox potential shifts and supported the performance data. The findings demonstrate that active harvesting is a very effective approach to improve MFC performance across different operating points.
Operator performance evaluation using multi criteria decision making methods
NASA Astrophysics Data System (ADS)
Rani, Ruzanita Mat; Ismail, Wan Rosmanira; Razali, Siti Fatihah
2014-06-01
Operator performance evaluation is a very important operation in labor-intensive manufacturing industry because the company's productivity depends on the performance of its operators. The aims of operator performance evaluation are to give feedback to operators on their performance, to increase company's productivity and to identify strengths and weaknesses of each operator. In this paper, six multi criteria decision making methods; Analytical Hierarchy Process (AHP), fuzzy AHP (FAHP), ELECTRE, PROMETHEE II, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) are used to evaluate the operators' performance and to rank the operators. The performance evaluation is based on six main criteria; competency, experience and skill, teamwork and time punctuality, personal characteristics, capability and outcome. The study was conducted at one of the SME food manufacturing companies in Selangor. From the study, it is found that AHP and FAHP yielded the "outcome" criteria as the most important criteria. The results of operator performance evaluation showed that the same operator is ranked the first using all six methods.
NASA Astrophysics Data System (ADS)
Chen, Rong
This thesis presents both experimental and theoretical investigations of coupled heat/mass transfer and electrochemical characteristics in the passive DMFC. Unlike active fuel cells, which can be operated under stabilized operating conditions, the discharging behavior of the passive DMFC usually varies with time, as the methanol concentration in the fuel reservoir decreases with time. This poses a difficulty in characterizing the performance of the passive DMFC under relatively stable operating conditions. In this work, we found that the performance of the passive DMFC became relatively stable as the cell operating temperature rose to a relatively stable value. This finding indicates that the performance of the passive DMFC can be characterized by collecting polarization data at the instance when the cell operating temperature under the open-circuit condition rises to a relatively stable value. With this proposed standard of passive DMFC performance characterization, the effects of two important parameters, including methanol concentration and cell orientation, on the passive DMFC performance were then investigated. It is found that the cell performance increased with methanol concentration. Unlike previous studies that attributed the improved performance as a result of increasing methanol concentration to the reduced anode mass transport polarization, our experimental results revealed that the improved cell performance was primarily due to the increased cell operating temperature as a result of the increased rate of methanol crossover with high methanol concentration operation. We also found that the performance was sensitive to the cell orientation. The vertical operation always yielded better performance than did the horizontal operation. This can be attributed to the increased operating temperature as a result of a higher rate of methanol crossover, which resulted from the stronger natural convection in the vertical orientation. These parametric studies indicated that the thermal management is a key factor for improving the performance of the passive DMFC. To enhance oxygen transport on the air-breathing cathode and to reduce the heat loss from the cathode, a porous current collector for the passive DMFC was proposed to replace conventional perforated-plate current collectors. Because of its high specific area of transport and effectiveness in removing the liquid water as a result of the capillary action in the porous structure, the porous current collector enables a significant enhancement of oxygen supply to the fuel cell. In addition, because of the lower effective thermal conductivity of the porous structure, the heat loss from the fuel cell to ambient air can be reduced. The experimental results showed that the passive DMFC having the porous current collector yielded much higher and much more stable performance than did the cell having the conventional perforated-plate current collector with high methanol concentration operation. As a following up to oxygen transport enhancement, a new design of membrane electrode assembly (MEA) was proposed, in which the conventional cathode gas diffusion layer (CGDL) is eliminated while utilizing a porous metal structure for transporting oxygen and collecting current. We show theoretically that the new MEA enables a higher mass transfer rate of oxygen and thus better performance. Moreover, the measured polarization and constant-current discharging behavior showed that the passive DMFC with the new MEA yielded higher and much more stable performance than did the cell having the conventional MEA. Besides the experimental investigations, to further theoretically study the thermal effect on the cell performance, a one-dimension single-phase model is developed by considering inherently coupled heat and mass transport along with the electrochemical reactions occurring in passive DMFCs. The analytical solutions predicting the performance of this type of fuel cell operating with different methanol concentrations are obtained. It was further revealed that the improved performance with higher methanol concentrations is due primarily to the increased operating temperature resulting from the exothermic reaction between the permeated methanol and oxygen on the cathode. In addition, to further reflect the effect of two-phase heat and mass transport on the performance of the passive DMFC, we then developed a two-phase two-dimensional thermal model. With this model, the effects of methanol concentration, open ratio and channel and rib width on cell performance were investigated. It was found that although the larger open ratio and smaller channel and rib width exhibit the lower cell operating temperature as a result of the lower heat generation rate, the cell performance is still higher as a result of the increased mass transfer rate on both the anode and cathode. Keywords: Passive Direct Methanol Fuel Cell; Cell Performance; Thermal Effect; Open-circuit Condition; Methanol Concentration; Cell Orientation; Metal Foam, Effective Thermal Conductivity; Oxygen Transport; Mass Transfer Resistance; Two-phase Transport; Open Ratio; Channel and Rib Width.
Computer support for cooperative tasks in Mission Operations Centers
NASA Technical Reports Server (NTRS)
Fox, Jeffrey; Moore, Mike
1994-01-01
Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively: (1) ensures that payload(s) on spacecraft perform their work; and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft's subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.
Sebok, Angelia; Wickens, Christopher D
2017-03-01
The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.
Impact of the European Working Time Directive on exposure to operative cardiac surgical training.
Lim, Eric; Tsui, Steven
2006-10-01
To evaluate the impact of the reduced working hours, an anticipated decline in case load and increasing patient risk profile, we performed a cohort study to determine the factors that influenced operative surgical training. A historic cohort study design was utilised, and data were acquired from a prospective operative surgical database a year before, and a year after the introduction of the European Working Time Directive (EWTD) compliant rota (1st August 2004). Logistic regression was used to determine the predictors of operative surgical training, and individual variables were ranked by likelihood ratio. In total, 3312 cardiac surgical operations were performed over a 2-year period between 3rd August 2003 and 31st July 2005. The proportion of cases performed by trainees was 39% (626/1587) in the year before and 40% (695/1725) in the year after the introduction of WTD compliant rota. There were no differences in operative risk (logistic EuroSCORE of 8, P=0.853). Independent predictors for surgery performed by a trainee (in descending order of influence) were the consultant in charge (chi11(2) 273.1; P<0.001), procedure performed (chi5(2) 163.5; P<0.001), increasing seniority of trainee (chi2(2) 142.3; P<0.001), revision surgery (chi1(2) 45.9; P<0.001), lower EuroSCORE (chi1(2) 17.6; P<0.001), and better ventricular function (chi2(2) 7.8; P=0.020). The odds ratio of an operation performed by a trainee increased after the introduction of the EWTD compliant rota to 1.19 (95% CI 1.00-1.41; P=0.045). With a successful institution-specific training module and a commitment to training, exposure to operative surgical training can be sustained despite shortening of working hours.
The Efficiency and the Scalability of an Explicit Operator on an IBM POWER4 System
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present an evaluation of the efficiency and the scalability of an explicit CFD operator on an IBM POWER4 system. The POWER4 architecture exhibits a common trend in HPC architectures: boosting CPU processing power by increasing the number of functional units, while hiding the latency of memory access by increasing the depth of the memory hierarchy. The overall machine performance depends on the ability of the caches-buses-fabric-memory to feed the functional units with the data to be processed. In this study we evaluate the efficiency and scalability of one explicit CFD operator on an IBM POWER4. This operator performs computations at the points of a Cartesian grid and involves a few dozen floating point numbers and on the order of 100 floating point operations per grid point. The computations in all grid points are independent. Specifically, we estimate the efficiency of the RHS operator (SP of NPB) on a single processor as the observed/peak performance ratio. Then we estimate the scalability of the operator on a single chip (2 CPUs), a single MCM (8 CPUs), 16 CPUs, and the whole machine (32 CPUs). Then we perform the same measurements for a chache-optimized version of the RHS operator. For our measurements we use the HPM (Hardware Performance Monitor) counters available on the POWER4. These counters allow us to analyze the obtained performance results.
The role of human-automation consensus in multiple unmanned vehicle scheduling.
Cummings, M L; Clare, Andrew; Hart, Christin
2010-02-01
This study examined the impact of increasing automation replanning rates on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Futuristic unmanned vehicles systems will invert the operator-to-vehicle ratio so that one operator can control multiple dissimilar vehicles connected through a decentralized network. Significant human-automation collaboration will be needed because of automation brittleness, but such collaboration could cause high workload. Three increasing levels of replanning were tested on an existing multiple unmanned vehicle simulation environment that leverages decentralized algorithms for vehicle routing and task allocation in conjunction with human supervision. Rapid replanning can cause high operator workload, ultimately resulting in poorer overall system performance. Poor performance was associated with a lack of operator consensus for when to accept the automation's suggested prompts for new plan consideration as well as negative attitudes toward unmanned aerial vehicles in general. Participants with video game experience tended to collaborate more with the automation, which resulted in better performance. In decentralized unmanned vehicle networks, operators who ignore the automation's requests for new plan consideration and impose rapid replans both increase their own workload and reduce the ability of the vehicle network to operate at its maximum capacity. These findings have implications for personnel selection and training for futuristic systems involving human collaboration with decentralized algorithms embedded in networks of autonomous systems.
Kendig, Claire; Tyson, Anna; Young, Sven; Mabedi, Charles; Cairns, Bruce; Charles, Anthony
2014-01-01
Background Improved access to surgical care could prevent a significant burden of disease and disability-adjusted life years (DALYs), and workforce shortages are the biggest obstacle to surgical care. To address this shortage, a 5-year surgical residency program was established at Kamuzu Central Hospital (KCH) in July 2009. As the residency enters its fourth year, we hypothesized that the initiation of a general surgical residency program would result in an increase in the overall case volume and complexity at KCH. Methods We conducted a retrospective analysis of operated cases at KCH during the three years prior to and the third year after the implementation of the KCH- Surgical residency program, from July 2006 to July 2009, and the calendar year 2012, respectively. Results During the three years prior to the initiation of the surgical residency, an average of 2317 operations were performed per year, while in 2012, 2773 operations were performed, representing a 20% increase. Pre-residency, an average of 1191 major operations per year were performed, and in 2012, 1501 major operations were performed, representing a 26% increase. Conclusion Our study demonstrates that operative case volume and complexity increases following the initiation of a surgical residency program in a sub Saharan tertiary hospital. We believe that by building on established partnerships and emphasizing education, research, and clinical care, we can start to tackle the issues of surgical access and care. PMID:25456410
The Role of International Volunteers in the Growth of Surgical Capacity in Post-earthquake Haiti.
Derenoncourt, Max Herby; Carré, Roselaine; Condé-Green, Alexandra; Rodnez, Alain; Sifri, Ziad C; Baltazar, Gerard A
2016-04-01
The 2010 Haiti earthquake severely strained local healthcare infrastructure. In the wake of this healthcare crisis, international organizations provided volunteer support. Studies demonstrate that this support improved short-term recovery; however, it is unclear how long-term surgical capacity has changed and what role volunteer surgical relief efforts have played. Our goal was to investigate the role of international surgical volunteers in the increase of surgical capacity following the 2010 Haiti earthquake. We retrospectively analyzed the operative reports of 3208 patients at a general, trauma and critical care hospital in Port-au-Prince from June 2010 through December 2013. We collected data on patient demographics and operation subspecialty. Surgeons and anesthesiologists were categorized by subspecialty training and as local healthcare providers or international volunteers. We performed analysis of variance to detect changes in surgical capacity over time and to estimate the role volunteers play in these changes. Overall number of monthly operations increased over the 2.5 years post-earthquake. The percentage of orthopedic operations declined while the percentage of other subspecialty operations increased (p = 0.0003). The percentage of operations performed by international volunteer surgeons did not change (p = 0.51); however, the percentage of operations staffed by volunteer anesthesiologists declined (p = 0.058). The percentage of operations performed by matching specialty- and subspecialty-trained international volunteers has not changed (p = 0.54). Haitian post-earthquake local and overall surgical capacity has steadily increased, particularly for provision of subspecialty operations. Surgical volunteers have played a consistent role in the recovery of surgical capacity. An increased focus on access to surgical services and resource-allocation for long-term surgical efforts particularly in the realm of subspecialty surgery may lead to full recovery of surgical capacity after a large and devastating natural disaster.
Performance of a low-power subsonic-arc-attachment arcjet thruster
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Berns, Darren H.
1993-01-01
A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.
Temperature stable oxide-confined 850-nm VCSELs operating at bit rates up to 25 Gbit/s at 150°C
NASA Astrophysics Data System (ADS)
Ledentsov, N.; Agustin, M.; Kropp, J.-R.; Shchukin, V. A.; Kalosha, V. P.; Chi, K. L.; Khan, Z.; Shi, J. W.; Ledentsov, N. N.
2018-02-01
New applications in industrial, automotive and datacom applications require vertical-cavity surface-emitting lasers (VCSELs) operating at very high ambient temperatures at ultrahigh speed. We discuss issues related to high temperature performance of the VCSELs including temperature response and spectral properties. The influence of the gain-to-cavity wavelength detuning on temperature performance and spectral width of the VCSELs is discussed. Performance of the oxide-confined 850 nm VCSELs with increased temperature stability capable of operating at bit rates up to 25 Gbit/s at heat sink temperature of 150°C and 35Gbit/s at 130°C. Furthermore, opposite to previous studies of VCSELs with large gain-to-cavity detuning, which demonstrated strongly increased spectral width and a strong redistribution of the mode intensities upon current increase. VCSELs demonstrated in this work show good reproducibility of a narrow spectrum in a wide range of currents and temperatures. Such performance strongly improves the transmission distance over multi-mode fiber and can reduce mode partition noise during high speed operation.
ERIC Educational Resources Information Center
Cox, James F., III; Walker, Edward D., II
2005-01-01
Production planning and control (PPC) systems and operations performance measures are topics that students generally find both boring and difficult to understand. In the article, the authors present a production line game that they have found to be an effective tool to increase student interest in the topics as well as student comprehension. The…
Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
1994-01-01
Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.
Effect of Gas Pressure on Polarization of SOFC Cathode Prepared by Plasma Spray
NASA Astrophysics Data System (ADS)
Li, Cheng-Xin; Wang, Zhun-Zhun; Liu, Shuai; Li, Chang-Jiu
2013-06-01
A cermet-supported tubular SOFC was fabricated using thermal spray. The cell performance was investigated at temperatures from 750 to 900 °C and pressures from 0.1 to 0.5 MPa to examine the effect of operating gas pressure on the cell performance. The influence of gas pressure on the cathodic polarization was studied through the electrochemical impedance approach to examine the controlling electrochemical processes during cell operation. Results show that increasing the operating gas pressure improves the power output performance significantly. When the gas pressure is increased from 0.1 to 0.3 MPa, the maximum power density is increased by a factor of 32% at a temperature of 800 °C. The cathode polarization decreases significantly with the increase of the gas pressure. The electrochemical analysis shows that the main control processes of the cathode reaction are the oxygen species transfer at the three-phase boundary and oxygen diffusion on the surface or in the bulk of the cathode, which are enhanced with increasing gas pressure.
Waeschle, R M; Sliwa, B; Jipp, M; Pütz, H; Hinz, J; Bauer, M
2016-08-01
The difficult financial situation in German hospitals requires measures for improvement in process quality. Associated increases in revenues in the high income field "operating room (OR) area" are increasingly the responsibility of OR management but it has not been shown that the introduction of an efficiency-oriented management leads to an increase in process quality and revenues in the operating theatre. Therefore the performance in the operating theatre of the University Medical Center Göttingen was analyzed for working days in the core operating time from 7.45 a.m. to 3.30 p.m. from 2009 to 2014. The achievement of process target times for the morning surgery start time and the turnover times of anesthesia and OR-nurses were calculated as indicators of process quality. The number of operations and cumulative incision-suture time were also analyzed as aggregated performance indicators. In order to assess the development of revenues in the operating theatre, the revenues from diagnosis-related groups (DRG) in all inpatient and occupational accident cases, adjusted for the regional basic case value from 2009, were calculated for each year. The development of revenues was also analyzed after deduction of revenues resulting from altered economic case weighting. It could be shown that the achievement of process target values for the morning surgery start time could be improved by 40 %, the turnover times for anesthesia reduced by 50 % and for the OR-nurses by 36 %. Together with the introduction of central planning for reallocation, an increase in operation numbers of 21 % and cumulative incision-suture times of 12% could be realized. Due to these additional operations the DRG revenues in 2014 could be increased to 132 % compared to 2009 or 127 % if the revenues caused by economic case weighting were excluded. The personnel complement in anesthesia (-1.7 %) and OR-nurses (+2.6 %) as well as anesthetists (+6.7 %) increased less compared to the revenues or were slightly reduced. This improvement in process quality and cumulative incision-suture times as well as the increase in revenues, reflect the positive impact of an efficiency-oriented central OR management. The OR management releases due to measures of process optimization the necessary personnel and time resources and therefore achieves the basic prerequisites for increased revenues of surgical disciplines. The method presented can be used by other hospitals as a guideline to analyze performance development.
Kasagi, Yoshihiro; Okutani, Ryu; Oda, Yutaka
2015-02-01
We have opened an operating room in the perinatal care unit (PNCU), separate from our existing central operating rooms, to be used exclusively for cesarean sections. The purpose is to meet the increasing need for both emergency cesarean sections and non-obstetric surgeries. It is equipped with the same surgical instruments, anesthesia machine, monitoring system, rapid infusion system and airway devices as the central operating rooms. An anesthesiologist and a nurse from the central operating rooms trained the nurses working in the new operating room, and discussed solutions to numerous problems that arose before and after its opening. Currently most of the elective and emergency cesarean sections carried out during the daytime on weekdays are performed in the PNCU operating room. A total of 328 and 347 cesarean sections were performed in our hospital during 2011 and 2012, respectively, of which 192 (55.5 %) and 254 (73.2 %) were performed in the PNCU operating room. The mean occupancy rate of the central operating rooms also increased from 81 % in 2011 to 90 % in 2012. The PNCU operating room was built with the support of motivated personnel and multidisciplinary teamwork, and has been found to be beneficial for both surgeons and anesthesiologists, while it also contributes to hospital revenue.
Nagy, Paul G; Warnock, Max J; Daly, Mark; Toland, Christopher; Meenan, Christopher D; Mezrich, Reuben S
2009-11-01
Radiology departments today are faced with many challenges to improve operational efficiency, performance, and quality. Many organizations rely on antiquated, paper-based methods to review their historical performance and understand their operations. With increased workloads, geographically dispersed image acquisition and reading sites, and rapidly changing technologies, this approach is increasingly untenable. A Web-based dashboard was constructed to automate the extraction, processing, and display of indicators and thereby provide useful and current data for twice-monthly departmental operational meetings. The feasibility of extracting specific metrics from clinical information systems was evaluated as part of a longer-term effort to build a radiology business intelligence architecture. Operational data were extracted from clinical information systems and stored in a centralized data warehouse. Higher-level analytics were performed on the centralized data, a process that generated indicators in a dynamic Web-based graphical environment that proved valuable in discussion and root cause analysis. Results aggregated over a 24-month period since implementation suggest that this operational business intelligence reporting system has provided significant data for driving more effective management decisions to improve productivity, performance, and quality of service in the department.
The effects of syntactic complexity on the human-computer interaction
NASA Technical Reports Server (NTRS)
Chechile, R. A.; Fleischman, R. N.; Sadoski, D. M.
1986-01-01
Three divided-attention experiments were performed to evaluate the effectiveness of a syntactic analysis of the primary task of editing flight route-way-point information. For all editing conditions, a formal syntactic expression was developed for the operator's interaction with the computer. In terms of the syntactic expression, four measures of syntactic were examined. Increased syntactic complexity did increase the time to train operators, but once the operators were trained, syntactic complexity did not influence the divided-attention performance. However, the number of memory retrievals required of the operator significantly accounted for the variation in the accuracy, workload, and task completion time found on the different editing tasks under attention-sharing conditions.
Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination
NASA Astrophysics Data System (ADS)
El-Gendi, Ayman; Abdallah, Heba; Amin, Ashraf; Amin, Shereen Kamel
2017-10-01
The pollution of water resources, severe climate changes, rapid population growth, increasing agricultural demands, and rapid industrialization insist the development of innovative technologies for generating potable water. Polyvinylchloride/cellulose acetate (PVC/CA) membranes were prepared using phase inversion technique for seawater reverse osmosis (SWRO). The membrane performance was investigated using Red Sea water (El-Ein El-Sokhna-Egypt). The membrane performance indicated that the prepared membranes were endowed to work under high pressure; increasing in feeding operating pressure led to increase permeate flux and rejection. Increasing feed operating pressure from zero to 40 bar led to increase in the salt rejection percent. Salt rejection percent reached to 99.99% at low feed concentration 5120 ppm and 99.95% for Red Sea water (38,528 ppm). The prepared membranes were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, and mechanical properties. SEM, FTIR and mechanical results were used to distinguish the best membrane for desalination. According to characterization results, one prepared membrane was selected to run performance test in desalination testing unit. The membrane (M3) showed excellent performance and stability under different operating conditions and during the durability test for 36 days.
Objective assessment of operator performance during ultrasound-guided procedures.
Tabriz, David M; Street, Mandie; Pilgram, Thomas K; Duncan, James R
2011-09-01
Simulation permits objective assessment of operator performance in a controlled and safe environment. Image-guided procedures often require accurate needle placement, and we designed a system to monitor how ultrasound guidance is used to monitor needle advancement toward a target. The results were correlated with other estimates of operator skill. The simulator consisted of a tissue phantom, ultrasound unit, and electromagnetic tracking system. Operators were asked to guide a needle toward a visible point target. Performance was video-recorded and synchronized with the electromagnetic tracking data. A series of algorithms based on motor control theory and human information processing were used to convert raw tracking data into different performance indices. Scoring algorithms converted the tracking data into efficiency, quality, task difficulty, and targeting scores that were aggregated to create performance indices. After initial feasibility testing, a standardized assessment was developed. Operators (N = 12) with a broad spectrum of skill and experience were enrolled and tested. Overall scores were based on performance during ten simulated procedures. Prior clinical experience was used to independently estimate operator skill. When summed, the performance indices correlated well with estimated skill. Operators with minimal or no prior experience scored markedly lower than experienced operators. The overall score tended to increase according to operator's clinical experience. Operator experience was linked to decreased variation in multiple aspects of performance. The aggregated results of multiple trials provided the best correlation between estimated skill and performance. A metric for the operator's ability to maintain the needle aimed at the target discriminated between operators with different levels of experience. This study used a highly focused task model, standardized assessment, and objective data analysis to assess performance during simulated ultrasound-guided needle placement. The performance indices were closely related to operator experience.
Performance modelling of plasma microthruster nozzles in vacuum
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Rod
2018-05-01
Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera, W.; Moreno-Quintanar, G.; Best, R.
2011-01-15
A novel solar intermittent refrigeration system for ice production developed in the Centro de Investigacion en Energia of the Universidad Nacional Autonoma de Mexico is presented. The system operates with the ammonia/lithium nitrate mixture. The system developed has a nominal capacity of 8 kg of ice/day. It consists of a cylindrical parabolic collector acting as generator-absorber. Evaporator temperatures as low as -11 C were obtained for several hours with solar coefficients of performance up to 0.08. It was found that the coefficient of performance increases with the increment of solar radiation and the solution concentration. A dependency of the coefficientmore » of performance was not founded against the cooling water temperature. Also it was found that the maximum operating pressure increases meanwhile the generation temperature decreases with an increase of the solution concentration. (author)« less
Intelligent Agent Transparency in Human-Agent Teaming for Multi-UxV Management.
Mercado, Joseph E; Rupp, Michael A; Chen, Jessie Y C; Barnes, Michael J; Barber, Daniel; Procci, Katelyn
2016-05-01
We investigated the effects of level of agent transparency on operator performance, trust, and workload in a context of human-agent teaming for multirobot management. Participants played the role of a heterogeneous unmanned vehicle (UxV) operator and were instructed to complete various missions by giving orders to UxVs through a computer interface. An intelligent agent (IA) assisted the participant by recommending two plans-a top recommendation and a secondary recommendation-for every mission. A within-subjects design with three levels of agent transparency was employed in the present experiment. There were eight missions in each of three experimental blocks, grouped by level of transparency. During each experimental block, the IA was incorrect three out of eight times due to external information (e.g., commander's intent and intelligence). Operator performance, trust, workload, and usability data were collected. Results indicate that operator performance, trust, and perceived usability increased as a function of transparency level. Subjective and objective workload data indicate that participants' workload did not increase as a function of transparency. Furthermore, response time did not increase as a function of transparency. Unlike previous research, which showed that increased transparency resulted in increased performance and trust calibration at the cost of greater workload and longer response time, our results support the benefits of transparency for performance effectiveness without additional costs. The current results will facilitate the implementation of IAs in military settings and will provide useful data to the design of heterogeneous UxV teams. © 2016, Human Factors and Ergonomics Society.
Aircraft Engine-Monitoring System And Display
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Person, Lee H., Jr.
1992-01-01
Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.
Real-Time Assessment of Robot Performance during Remote Exploration Operations
2009-03-01
degraded instruments (i.e., instrument performance) and to improve plant performance (e.g., increase thermal efficiency). Such degraded instrument...activities. Lidar is used for 3D terrain mapping. During reconnaissance, the rover acquires multiple scans to construct a panorama at specified...Metric Interpretation Operational Use Panorama in Progress Should be true while taking a panorama RO: indicates whether Lidar is functioning
Evaluation of methods for freeway operational analysis.
DOT National Transportation Integrated Search
2001-10-01
The ability to estimate accurately the operational performance of roadway segments has become increasingly critical as we move from a period of new construction into one of operations, maintenance, and, in some cases, reconstruction. In addition to m...
Innovative UK Approaches to Acquisition Management
2009-05-01
Financial and Operational Imperatives Size of UK armed forces UK Industry ? Political influence PFI / PPP Increased Scrutiny - NAO “ Commercialisation “ of the...acquisition KNOWLEDGE (EXPERIENCE – Lessons learned) KNOWLEDGE (Training) KNOWLEDGE ( Education ) OPTIMAL OPERATIONAL PERFORMANCE Operational Capability UK
Su, Y C; Huang, C P; Pan, Jill R; Lee, H C
2008-01-01
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.
Thermodynamic Analysis of Dual-Mode Scramjet Engine Operation and Performance
NASA Technical Reports Server (NTRS)
Riggins, David; Tacket, Regan; Taylor, Trent; Auslender, Aaron
2006-01-01
Recent analytical advances in understanding the performance continuum (the thermodynamic spectrum) for air-breathing engines based on fundamental second-law considerations have clarified scramjet and ramjet operation, performance, and characteristics. Second-law based analysis is extended specifically in this work to clarify and describe the performance characteristics for dual-mode scramjet operation in the mid-speed range of flight Mach 4 to 7. This is done by a fundamental investigation of the complex but predictable interplay between heat release and irreversibilities in such an engine; results demonstrate the flow and performance character of the dual mode regime and of dual mode transition behavior. Both analytical and computational (multi-dimensional CFD) studies of sample dual-mode flow-fields are performed in order to demonstrate the second-law capability and performance and operability issues. The impact of the dual-mode regime is found to be characterized by decreasing overall irreversibility with increasing heat release, within the operability limits of the system.
NAPS as an Alertness Management Strategy
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Smith, Roy M.; Miller, Donna L.; Co, Elizabeth L.; Gregory, Kevin B.; Gander, Philippa H.; Lebacqz, J. Victor
2001-01-01
Today, 24-hour operations are necessary to meet the demands of our society and the requirements of our industrialized global economy. These around-the-clock demands pose unique physiological challenges for the humans who remain central to safe and productive operations. Optimal alertness and performance are critical factors that are increasingly challenged by unusual, extended, or changing work/rest schedules. Technological advancements and automated systems can exacerbate the challenges faced by the human factor in these environments. Shift work, transportation demands, and continuous operations engender sleep loss and circadian disruption. Both of these physiological factors can lead to increased sleepiness, decreased performance, and a reduced margin of safety. These factors can increase vulnerability to incidents and accidents in operational settings. The consequences can have both societal effects (e.g., major destructive accidents such as Three Mile Island, Exxon Valdez, Bhopal) and personal effects (e.g., an accident driving home after a night shift).
We still need to operate at night!
Faiz, Omar; Banerjee, Saswata; Tekkis, Paris; Papagrigoriadis, Savvas; Rennie, John; Leather, Andrew
2007-01-01
Introduction In the past the National Confidential Enquiry into Peri-operative deaths (NCEPOD) have advocated a reduction in non-essential night-time operating in NHS hospitals. In this study a retrospective analysis of the emergency general surgical operative workload at a London Teaching centre was performed. Methods All general surgical and vascular emergency operations recorded prospectively on the theatre database between 1997 and 2004 were included in the study. Operations were categorised according to whether they commenced during the daytime(08:01–18:00 hours), evening(18:01–00:00 hours) or night-time(00:01–08:00 hours). The procedure type and grade of the participating surgical personnel were also recorded. Bivariate correlation was used to analyse changing trends in the emergency workload. Results In total 5,316 emergency operations were performed over the study period. The numbers of daytime, evening and night-time emergency procedures performed were 2,963(55.7%), 1,832(34.5%), and 521(9.8%) respectively. Laparotomies and complex vascular procedures collectively accounted for half of all cases performed after midnight whereas they represented only 30% of the combined daytime and evening emergency workload. Thirty-two percent (n = 166) of all night-time operations were supervised or performed by a consultant surgeon. The annual volume of emergency cases performed increased significantly throughout the study period. Enhanced daytime (r = 0.741, p < 0.01) and evening (r = 0.548, p < 0.01) operating absorbed this increase in workload. There was no significant change in the absolute number of cases performed at night but the proportion of the emergency workload that took place after midnight decreased significantly throughout the study (r = -0.742, p < 0.01). Conclusion A small but consistent volume of complex cases require emergency surgery after midnight. Provision of an emergency general surgical service must incorporate this need. PMID:17973987
Frequency and complications after operative fixation of clavicular fractures.
Navarro, Ronald A; Gelber, Jonathan D; Harrast, John J; Seiler, John G; Jackson, Kent R; Garcia, Ivan A
2016-05-01
The purpose of this study was to analyze whether a recent trend in evidence supporting operative treatment of clavicular fractures is matched with an increase in operative fixation and complication rates in the United States. The American Board of Orthopaedic Surgery database was reviewed for cases with Current Procedural Terminology (American Medical Association, Chicago, IL, USA) code 23515 (clavicle open reduction internal fixation [ORIF]) from 1999 to 2010. The procedure rate for each year and the number of procedures for each candidate performing clavicle ORIF were calculated to determine if a change had occurred in the frequency of ORIF for clavicular fractures. Complication and outcome data were also reviewed. In 2010 vs, 1999, there were statistically significant increases in the mean number of clavicle ORIF performed among all candidates (0.89 vs. 0.13; P < .0001) and in the mean number of clavicle ORIF per candidate performing clavicle ORIF (2.47 vs. 1.20, P < .0473). The difference in the percentage of part II candidates performing clavicle ORIF from the start to the end of the study (11% vs. 36%) was significant (P < .0001). There was a significant increase in the clavicle ORIF percentage of total cases (0.11% vs. 0.74%, P < .0001). The most common complication was hardware failure (4%). The rate of ORIF of clavicular fractures has increased in candidates taking part II of the American Board of Orthopaedic Surgery, with a low complication rate. The increase in operative fixation during this interval may have been influenced by literature suggesting improved outcomes in patients treated with operative stabilization of their clavicular fracture. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Opportunistic tri-band carrier aggregation in licensed spectrum for multi-operator 5G hetnet
NASA Astrophysics Data System (ADS)
Maksymuk, Taras; Kyryk, Maryan; Klymash, Mykhailo; Jo, Minho; Romaniuk, Ryszard; Kotyra, Andrzej; Zhanpeisova, Aizhan; Kozbekova, Ainur
2017-08-01
Increasing capacity of mobile networks is a real challenge due to rapid increasing of traffic demands and spectrum scarcity. Carrier aggregation technology is aimed to increase the user data rate by combining the throughput of few spectrum bands, even if they are not physically collocated. Utilization of unlicensed Wi-Fi 5 GHz band for mobile transmission opens new perspectives for carrier aggregation due to vast amount of spectrum range, which can be available for aggregation to supplement data rates for end users. There are many solutions proposed to enable mobile data transmission in unlicensed band without disturbing interference for the existing Wi-Fi users. The paper presents a new approach for opportunistic carrier aggregation in licensed and unlicensed band for multi-operator 5G network. It allows multiple network operators to utilize unlicensed spectrum opportunistically if it is not currently used by Wi-Fi or other mobile network operators. Performance of the proposed approach has been simulated in case of two competing operators. Simulation results reveal that applying the proposed method ensures achieving satisfactory performance of carrier aggregation for the case of two network operators.
Beecher, S; O'Leary, D P; McLaughlin, R
2015-09-01
The pressures on tertiary hospitals with increased volume and complexity related to regionalization and specialization has impacted upon availability of operating theatres with consequent displacement of emergencies to high risk out of hours settings. A retrospective review of an electronic emergency theatre list prospectively maintained database was performed over a two year period. Data gathered included type of operation performed, Time to Theatre (TTT), operation start time and length of stay (LOS). Of 7041 emergency operations 25% were performed out of hours. 2949 patient had general surgical emergency procedures with 910 (30%) performed out of hours. 53% of all emergency laparotomies and 54% of appendicectomies were out of hours. 57% of cases operated on out of hours had been awaiting surgery during the day. Mean TTT was shorter for those admitted at the weekend compared to those admitted during the week (15.6 vs 24.9 h) (p < 0.0001). The majority of major emergency surgery is performed out of hours in a way unfavorable to good clinical outcomes. It is of concern that more than half of the most life threating procedures involving laparotomy, take place out of hours. Regionalization needs to be accompanied by infrastructure planning to accommodate emergency surgery. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
Zarebczan, Barbara; Rajamanickam, Victoria; Leverson, Glen; Chen, Herbert; Sippel, Rebecca S
2010-01-01
Background Over the last 10 years the number of endocrine procedures performed in the US has increased significantly. We sought to determine if this has translated into an increase in operative volume for general surgery and otolaryngology residents. Method We evaluated records from the Resident Statistic Summaries of the RRC for US general surgery and otolaryngology residents for the years 2004-2008, specifically examining data on thyroidectomies and parathyroidectomies. Results Between 2004 and 2008, the average endocrine case volume of US general surgery and otolaryngology residents increased by approximately 15%, but otolaryngology residents performed over twice as many operations as US general surgery residents. The growth in case volume was mostly due to increases in the number of thyroidectomies performed by US general surgery and otolaryngology residents (17.9 to 21.8, p=0.007 and 46.5 to 54.4, p=0.04). Overall, otolaryngology residents also performed more parathyroidectomies than their general surgery counterparts (11.6 vs. 8.8, p=0.007). Conclusion Although there has been an increase in the number of endocrine cases performed by graduating US general surgery residents, this is significantly smaller than that of otolaryngology residents. In order to remain competitive, general surgery residents wishing to practice endocrine surgery may need to pursue additional fellowship training. PMID:21134536
Zarebczan, Barbara; McDonald, Robert; Rajamanickam, Victoria; Leverson, Glen; Chen, Herbert; Sippel, Rebecca S
2010-12-01
During the last 10 years, the number of endocrine procedures performed in the United States has increased significantly. We sought to determine whether this has translated into an increase in operative volume for general surgery and otolaryngology residents. We evaluated records from the Resident Statistic Summaries of the Residency Review Committee (RRC) for U.S. general surgery and otolaryngology residents for the years 2004-2008, specifically examining data on thyroidectomies and parathyroidectomies. Between 2004 and 2008, the average endocrine case volume of U.S. general surgery and otolaryngology residents increased by approximately 15%, but otolaryngology residents performed more than twice as many operations as U.S. general surgery residents. The growth in case volume was mostly from increases in the number of thyroidectomies performed by U.S. general surgery and otolaryngology residents (17.9 to 21.8, P = .007 and 46.5 to 54.4, P = .04). Overall, otolaryngology residents also performed more parathyroidectomies than their general surgery counterparts (11.6 vs 8.8, P = .007). Although there has been an increase in the number of endocrine cases performed by graduating U.S. general surgery residents, this is significantly smaller than that of otolaryngology residents. To remain competitive, general surgery residents wishing to practice endocrine surgery may need to pursue additional fellowship training. Copyright © 2010 Mosby, Inc. All rights reserved.
Lynch, J R; McCue, M J
1990-11-01
The financial and operating performance of independent not-for-profit hospitals acquired by US for-profit multi-hospital systems in 10 Southern states between the years 1978 and 1982 was explored. The impact of system ownership on acquired hospitals was investigated by comparing the average financial performance of hospitals in the two years immediately prior to acquisition to the average for 1984 and 1985 and by comparing changes in the performance of acquired hospitals with changes in matched independent facilities. Findings suggest that for-profit multi-hospital systems were able to improve many of the financial and operating problems of acquired facilities. In comparison to independent not-for-profit hospitals, acquired hospitals were found to increase access to long-term debt, make improvements to plant and equipment, improve profitability, and increase efficiency to a greater extent. Prices in acquired hospitals rose more than those in independents and liquidity decreased to a greater extent.
Aircraft Wake Vortex Spacing System (AVOSS) Performance Update and Validation Study
NASA Technical Reports Server (NTRS)
Rutishauser, David K.; OConnor, Cornelius J.
2001-01-01
An analysis has been performed on data generated from the two most recent field deployments of the Aircraft Wake VOrtex Spacing System (AVOSS). The AVOSS provides reduced aircraft spacing criteria for wake vortex avoidance as compared to the FAA spacing applied under Instrument Flight Rules (IFR). Several field deployments culminating in a system demonstration at Dallas Fort Worth (DFW) International Airport in the summer of 2000 were successful in showing a sound operational concept and the system's potential to provide a significant benefit to airport operations. For DFW, a predicted average throughput increase of 6% was observed. This increase implies 6 or 7 more aircraft on the ground in a one-hour period for DFW operations. Several studies of performance correlations to system configuration options, design options, and system inputs are also reported. The studies focus on the validation performance of the system.
Performance analysis of a SOFC under direct internal reforming conditions
NASA Astrophysics Data System (ADS)
Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf
This paper presents the performance analysis of a planar solid-oxide fuel cell (SOFC) under direct internal reforming conditions. A detailed solid-oxide fuel cell model is used to study the influences of various operating parameters on cell performance. Significant differences in efficiency and power density are observed for isothermal and adiabatic operational regimes. The influence of air number, specific catalyst area, anode thickness, steam to carbon (s/c) ratio of the inlet fuel, and extend of pre-reforming on cell performance is analyzed. In all cases except for the case of pre-reformed fuel, adiabatic operation results in lower performance compared to isothermal operation. It is further discussed that, though direct internal reforming may lead to cost reduction and increased efficiency by effective utilization of waste heat, the efficiency of the fuel cell itself is higher for pre-reformed fuel compared to non-reformed fuel. Furthermore, criteria for the choice of optimal operating conditions for cell stacks operating under direct internal reforming conditions are discussed.
A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Spielman, Zach; Hill, Rachael
Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to addressmore » the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.« less
Kim, Steven C; Fisher, Jeremy G; Delman, Keith A; Hinman, Johanna M; Srinivasan, Jahnavi K
Surgical simulation is an important adjunct in surgical education. The majority of operative procedures can be simplified to core components. This study aimed to quantify a cadaver-based simulation course utility in improving exposure to fundamental maneuvers, resident and attending confidence in trainee capability, and if this led to earlier operative independence. A list of fundamental surgical procedures was established by a faculty panel. Residents were assigned to a group led by a chief resident. Residents performed skills on cadavers appropriate for PGY level. A video-recorded examination where they narrated and demonstrated a task independently was then graded by attendings using standardized rubrics. Participants completed surveys regarding improvements in knowledge and confidence. The course was conducted at the Emory University School of Medicine and the T3 Laboratories in Atlanta, GA. A total of 133 residents and 41 attendings participated in the course. 133 (100%) participating residents and 32 (78%) attendings completed surveys. Resident confidence in completing the assigned skill independently increased from 3 (2-3) to 4 (3-4), p < 0.01. Residents stated that a median of 40% (interquartile range: 20%-60%) of procedures were performed for the first time in the course, and the same number had been performed only in the course. The percentage of skills attendings believed residents could perform independently increased from 40% (40%-60%) to 60% (60%->80%), p < 0.04. Attendings were more likely to grant autonomy in the operating room after this exercise (4 [3-5]). A cadaveric skills course focused on fundamental maneuvers with objective confirmation of success is a viable adjunct to clinical operative experience. Residents were formally exposed to fundamental surgical maneuvers earlier as a result of this course. This activity improved both resident and attending confidence in trainee operative skill, resulting in increased attending willingness to grant a higher level of autonomy in the operating room. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hill, Randall W., Jr.; Cooper, Lynne P.
1993-01-01
For complex operational systems, help needs to come from the inside out. It is often not realistic to call a help desk for problems that need immediate attention, especially for tasks that put a heavy cognitive load on the system operator. This session addresses the issues associated with providing electronic performance support for operational systems, including situations where the system is already fielded and can only change through evolution rather than revolution. We present a case study based on our experiences in developing the Link Monitor and Control Operator Assistant for NASA's Deep Space Network (DSN). The goals of the Operator Assistant are to improve the operability of the system and increase the efficiency of mission operations.
Reducing high-order perineal laceration during operative vaginal delivery.
Hirsch, Emmet; Haney, Elaine I; Gordon, Trent E J; Silver, Richard K
2008-06-01
This study was undertaken to assess the impact of a focused intervention on reducing high-order (third and fourth degree) perineal lacerations during operative vaginal delivery. The following recommendations for clinical management were promulgated by departmental lectures, distribution of pertinent articles and manuals, training of physicians, and prominent display of an instructional poster: (1) increased utilization of vacuum extraction over forceps delivery; (2) conversion of occiput posterior to anterior positions before delivery; (3) performance of mediolateral episiotomy if episiotomy was deemed necessary; (4) flexion of the fetal head and maintenance of axis traction; (5) early disarticulation of forceps; and (6) reduced maternal effort at expulsion. Peer comparison was encouraged by provision of individual and departmental statistics. Clinical data were extracted from the labor and delivery database and the medical record. One hundred fifteen operative vaginal deliveries occurred in the 3 quarters preceding the intervention, compared with 100 afterward (P = .36). High-order laceration with operative vaginal delivery declined from 41% to 26% (P = .02), coincident with increased use of vacuum (16% vs 29% of operative vaginal deliveries, P = .02); fewer high-order lacerations after episiotomy (63% vs 22%, P = .003); a nonsignificant reduction in performance of episiotomy (30% vs 23%, P = .22); and a nonsignificant increase in mediolateral episiotomy (14% vs 30% of episiotomies, P = .19). Introduction of formal practice recommendations and performance review was associated with diminished high-order perineal injury with operative vaginal delivery.
Solid polymer electrolyte (SPE) fuel cell technology program, phase 2/2A. [testing and evaluations
NASA Technical Reports Server (NTRS)
1976-01-01
Test evaluations were performed on a fabricated single solid polymer electrolyte cell unit. The cell operated at increased current density and at higher performance levels. This improved performance was obtained through a combination of increased temperature, increased reactant pressures, improved activation techniques and improved thermal control over the baseline cell configuration. The cell demonstrated a higher acid content membrane which resulted in increased performance. Reduced catalyst loading and low cost membrane development showed encouraging results.
Do absorption and realistic distraction influence performance of component task surgical procedure?
Pluyter, Jon R; Buzink, Sonja N; Rutkowski, Anne-F; Jakimowicz, Jack J
2010-04-01
Surgeons perform complex tasks while exposed to multiple distracting sources that may increase stress in the operating room (e.g., music, conversation, and unadapted use of sophisticated technologies). This study aimed to examine whether such realistic social and technological distracting conditions may influence surgical performance. Twelve medical interns performed a laparoscopic cholecystectomy task with the Xitact LC 3.0 virtual reality simulator under distracting conditions (exposure to music, conversation, and nonoptimal handling of the laparoscope) versus nondistracting conditions (control condition) as part of a 2 x 2 within-subject experimental design. Under distracting conditions, the medical interns showed a significant decline in task performance (overall task score, task errors, and operating time) and significantly increased levels of irritation toward both the assistant handling the laparoscope in a nonoptimal way and the sources of social distraction. Furthermore, individual differences in cognitive style (i.e., cognitive absorption and need for cognition) significantly influenced the levels of irritation experienced by the medical interns. The results suggest careful evaluation of the social and technological sources of distraction in the operation room to reduce irritation for the surgeon and provision of proper preclinical laparoscope navigation training to increase security for the patient.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav
2014-01-01
The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.
Deep Space Spaceflight: The Challenge of Crew Performance in Autonomous Operations
NASA Astrophysics Data System (ADS)
Thaxton, S. S.; Williams, T. J.; Norsk, P.; Zwart, S.; Crucian, B.; Antonsen, E. L.
2018-02-01
Distance from Earth and limited communications in future missions will increase the demands for crew autonomy and dependence on automation, and Deep Space Gateway presents an opportunity to study the impacts of these increased demands on human performance.
Effect of present technology on airship capabilities
NASA Technical Reports Server (NTRS)
Madden, R. T.
1975-01-01
The effect is presented of updating past airship designs using current materials and propulsion systems to determine new airship performance and productivity capabilities. New materials and power plants permit reductions in the empty weights and increases in the useful load capabilities of past airship designs. The increased useful load capability results in increased productivity for a given range, i.e., either increased payload at the same operating speed or increased operating speed for the same payload weight or combinations of both. Estimated investment costs and operating costs are presented to indicate the significant cost parameters in estimating transportation costs of payloads in cents per ton mile. Investment costs are presented considering production lots of 1, 10 and 100 units. Operating costs are presented considering flight speeds and ranges.
Pollei, Taylor R; Barrs, David M; Hinni, Michael L; Bansberg, Stephen F; Walter, Logan C
2013-06-01
Describe the procedure length difference between surgeries performed by an attending surgeon alone compared with the resident surgeon supervised by the same attending surgeon. Case series with chart review. Tertiary care center and residency program. Six common otolaryngologic procedures performed between August 1994 and May 2012 were divided into 2 cohorts: attending surgeon alone or resident surgeon. This division coincided with our July 2006 initiation of an otolaryngology-head and neck surgery residency program. Operative duration was compared between cohorts with confounding factors controlled. In addition, the direct result of increased surgical length on operating room cost was calculated and applied to departmental and published resident case log report data. Five of the 6 procedures evaluated showed a statistically significant increase in surgery length with resident involvement. Operative time increased 6.8 minutes for a cricopharyngeal myotomy (P = .0097), 11.3 minutes for a tonsillectomy (P < .0001), 27.4 minutes for a parotidectomy (P = .028), 38.3 minutes for a septoplasty (P < .0001), and 51 minutes for tympanomastoidectomy (P < .0021). Thyroidectomy showed no operative time difference. Cost of increased surgical time was calculated per surgery and ranged from $286 (cricopharyngeal myotomy) to $2142 (mastoidectomy). When applied to reported national case log averages for graduating residents, this resulted in a significant increase of direct training-related costs. Resident participation in the operating room results in increased surgical length and additional system cost. Although residency is a necessary part of surgical training, associated costs need to be acknowledged.
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; McCormick, John; Paul, Heather L.; Jennings, Mallory A.
2012-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. The blower includes a custom-designed motor that has significantly improved its efficiency. We have measured the blower s head/flow performance and power consumption under conditions that simulate both the normal and buddy mode operating points. We have operated the blower for TBD hours and demonstrated safe operation in an oxygen test loop at prototypical pressures. We also demonstrated operation with simulated lunar dust.
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Mike; Chen, Weibo; Paul, Heather L.; Jennings, Mallory A.
2011-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in a future space suit Portable Life Support Systems (PLSS). The blower assembly includes a custom-designed motor that has significantly improved in efficiency during this development effort. The blower was tested at both nominal and buddy mode operating points and head/flow performance and power consumption were measured. The blower was operated for over 1000 hours to demonstrate safe operation in an oxygen test loop at prototypical pressures. In addition, the blower demonstrated operation with the introduction of simulated lunar dust.
Optical Measurements for Intelligent Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.
2003-01-01
There is growing interest in applying intelligent technologies to aerospace propulsion systems to reap expected benefits in cost, performance, and environmental compliance. Cost benefits span the engine life cycle from development, operations, and maintenance. Performance gains are anticipated in reduced fuel consumption, increased thrust-toweight ratios, and operability. Environmental benefits include generating fewer pollutants and less noise. Critical enabling technologies to realize these potential benefits include sensors, actuators, logic, electronics, materials, and structures. For propulsion applications, the challenge is to increase the robustness of these technologies so that they can withstand harsh temperatures, vibrations, and grime while providing extremely reliable performance. This paper addresses the role that optical metrology is playing in providing solutions to these challenges. Optics for ground-based testing (development cycle), flight sensing (operations), and inspection (maintenance) are described. Opportunities for future work are presented.
The Use of Human Factors Simulation to Conserve Operations Expense
NASA Technical Reports Server (NTRS)
Hamilton, George S.; Dischinger, H. Charles, Jr.; Wu, Hsin-I.
1999-01-01
In preparation for on-orbit operations, NASA performs experiments aboard a KC-135 which performs parabolic maneuvers, resulting in short periods of microgravity. While considerably less expensive than space operations, the use of this aircraft is costly. Simulation of tasks to be performed during the flight can allow the participants to optimize hardware configuration and crew interaction prior to flight. This presentation will demonstrate the utility of such simulation. The experiment simulated is the fluid dynamics of epoxy components which may be used in a patch kit in the event of meteoroid damage to the International Space Station. Improved configuration and operational efficiencies were reflected in early and increased data collection.
Lee, Robert J.; Smithson, Hannah E.
2016-01-01
We tested whether surface specularity alone supports operational color constancy – the ability to discriminate changes in illumination or reflectance. Observers viewed short animations of illuminant or reflectance changes in rendered scenes containing a single spherical surface, and were asked to classify the change. Performance improved with increasing specularity, as predicted from regularities in chromatic statistics. Peak performance was impaired by spatial rearrangements of image pixels that disrupted the perception of illuminated surfaces, but was maintained with increased surface complexity. The characteristic chromatic transformations that are available with non-zero specularity are useful for operational color constancy, particularly if accompanied by appropriate perceptual organisation. PMID:26974938
NASA Technical Reports Server (NTRS)
Hart, S. G.
1975-01-01
Variation in the length of time productions and verbal estimates of duration was investigated to determine the influence of concurrent activity on operator time perception. The length of 10-, 20-, and 30-sec intervals produced while performing six different compensatory tracking tasks was significantly longer, 23% on the average, than those produced while performing no other task. Verbal estimates of session duration, taken at the end of each of 27 experimental sessions, reflected a parallel increase in subjective underestimation of the passage of time as the difficulty of the task performed increased. These data suggest that estimates of duration made while performing a manual control task provide stable and sensitive measures of the workload imposed by the primary task, with minimal interference.
The Endurance of Children's Working Memory: A Recall Time Analysis
ERIC Educational Resources Information Center
Towse, John N.; Hitch, Graham J.; Hamilton, Z.; Pirrie, Sarah
2008-01-01
We analyze the timing of recall as a source of information about children's performance in complex working memory tasks. A group of 8-year-olds performed a traditional operation span task in which sequence length increased across trials and an operation period task in which processing requirements were extended across trials of constant sequence…
Karamlou, Tara; Diggs, Brian S; Person, Thomas; Ungerleider, Ross M; Welke, Karl F
2008-12-02
Surgery for grown-up (age > or = 18 years) patients with congenital heart disease (GUCH) is frequently performed by surgeons without specialization in pediatric heart surgery. We sought to define national practice patterns and to determine whether outcomes for GUCH patients are improved if they are treated by specialized pediatric heart surgeons (PHSs) compared with non-PHSs. We identified index cardiac procedures in patients with 12 congenital heart disease diagnostic groups using the Nationwide Inpatient Sample 1988 to 2003. PHSs were defined as surgeons whose annual practice volumes were made of >75% annual pediatric heart cases. GUCH operations were defined as operations within these 12 diagnoses occurring in patients > or =18 years of age. We identified 30,250 operations, yielding a national estimate of 152,277 +/- 7,875 operations. Of these, 111,816 +/- 7,456 (73%) were pediatric operations, and 40,461 +/- 1,365 (27%) were GUCH operations. PHSs performed 68% of pediatric operations in all diagnostic groups, whereas non-PHSs performed 95% of GUCH operations within the same diagnostic groups (P<0.0001). In-hospital death rates for GUCH patients operated on by PHSs were lower than death rates for GUCH patients operated on by non-PHSs (1.87% [95% CI, 0.62 to 3.13] versus 4.84% [95% CI, 4.30 to 5.38%]; P<0.0001). Survival advantage increased with increasing surgeon annual pediatric volume (P=0.0031). Pediatric patients within specific diagnostic groups are more likely to undergo operation by PHSs, whereas GUCH patients within the same diagnostic groups are more likely to undergo operation by non-PHSs. In-hospital death rates are lower for GUCH patients operated on by PHSs. GUCH patients should be encouraged to obtain surgical operation by PHS.
NASA Astrophysics Data System (ADS)
Jiming, Li; Xing, Sun
The purpose of this paper is to investigates whether the large shareholders of small and medium firms (SMEs) take advantage of the inside information and decrease their shares before their operation performance begins to decline after the Initial Public Offerings (IPOs). By using the data from annual reports of SMEs listed on Shenzhen Stock Exchange in China from 2004 to 2006, this study explores both the relationship and the interaction effects between the change of operation performance and the ownership concentration of SMEs around their IPOs. The statistic analysis indicates that there is a significantly positive relationship between the ownership concentration and their operation performance after IPOs during the sample period. Moreover, the companies with higher ownership decreasing encounter more severe operation performance decline, which sugests that the listed companies intend to package their book profits before IPOs for the sake of increasing their issuing prices and enlarge their financing scales.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav
2014-01-01
The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.
Economic optimization of operations for hybrid energy systems under variable markets
Chen, Jen; Garcia, Humberto E.
2016-05-21
We prosed a hybrid energy systems (HES) which is an important element to enable increasing penetration of clean energy. Our paper investigates the operations flexibility of HES, and develops a methodology for operations optimization for maximizing economic value based on predicted renewable generation and market information. A multi-environment computational platform for performing such operations optimization is also developed. In order to compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulationmore » results of two specific HES configurations are included to illustrate the proposed methodology and computational capability. These results demonstrate the economic viability of HES under proposed operations optimizer, suggesting the diversion of energy for alternative energy output while participating in the ancillary service market. Economic advantages of such operations optimizer and associated flexible operations are illustrated by comparing the economic performance of flexible operations against that of constant operations. Sensitivity analysis with respect to market variability and prediction error, are also performed.« less
Economic optimization of operations for hybrid energy systems under variable markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jen; Garcia, Humberto E.
We prosed a hybrid energy systems (HES) which is an important element to enable increasing penetration of clean energy. Our paper investigates the operations flexibility of HES, and develops a methodology for operations optimization for maximizing economic value based on predicted renewable generation and market information. A multi-environment computational platform for performing such operations optimization is also developed. In order to compensate for prediction error, a control strategy is accordingly designed to operate a standby energy storage element (ESE) to avoid energy imbalance within HES. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value. Simulationmore » results of two specific HES configurations are included to illustrate the proposed methodology and computational capability. These results demonstrate the economic viability of HES under proposed operations optimizer, suggesting the diversion of energy for alternative energy output while participating in the ancillary service market. Economic advantages of such operations optimizer and associated flexible operations are illustrated by comparing the economic performance of flexible operations against that of constant operations. Sensitivity analysis with respect to market variability and prediction error, are also performed.« less
NASA Astrophysics Data System (ADS)
Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong
2018-01-01
In order to quantitatively analyze the influence of the variable operating parameters on the cooling performance of natural draft wet cooling towers (NDWCTs), a hot model test system was set up with adjustable ambient temperature and humidity, circulating water flowrate and temperature. In order to apply the hot model test results to the real tower, the crosswind Froude number is defined. The results show that the crosswind has a negative effect on the thermal performance of the cooling tower, and there is a critical crosswind velocity corresponding to the lowest cooling efficiency. According to the crosswind Froude number similarity, when the ambient temperature decreases, or the circulating water flowrate and temperature increase, the cooling tower draft force will increase, and the critical crosswind velocity will increase correspondingly.
Joining of Silicon Carbide-Based Ceramics for MEMS-LDI Fuel Injector Applications
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Singh, Mrityunjay
2012-01-01
Deliver the benefits of ceramics in turbine engine applications- increased efficiency, performance, horsepower, range, operating temperature, and payload and reduced cooling and operation and support costs for future engines.
Andrew Taylor, R; Venkatesh, Arjun; Parwani, Vivek; Chekijian, Sharon; Shapiro, Marc; Oh, Andrew; Harriman, David; Tarabar, Asim; Ulrich, Andrew
2018-01-04
Emergency Department (ED) leaders are increasingly confronted with large amounts of data with the potential to inform and guide operational decisions. Routine use of advanced analytic methods may provide additional insights. To examine the practical application of available advanced analytic methods to guide operational decision making around patient boarding. Retrospective analysis of the effect of boarding on ED operational metrics from a single site between 1/2015 and 1/2017. Times series were visualized through decompositional techniques accounting for seasonal trends, to determine the effect of boarding on ED performance metrics and to determine the impact of boarding "shocks" to the system on operational metrics over several days. There were 226,461 visits with the mean (IQR) number of visits per day was 273 (258-291). Decomposition of the boarding count time series illustrated an upward trend in the last 2-3 quarters as well as clear seasonal components. All performance metrics were significantly impacted (p<0.05) by boarding count, except for overall Press Ganey scores (p<0.65). For every additional increase in boarder count, overall length-of-stay (LOS) increased by 1.55min (0.68, 1.50). Smaller effects were seen for waiting room LOS and treat and release LOS. The impulse responses indicate that the boarding shocks are characterized by changes in the performance metrics within the first day that fade out after 4-5days. In this study regarding the use of advanced analytics in daily ED operations, time series analysis provided multiple useful insights into boarding and its impact on performance metrics. Copyright © 2018. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Jones, Thomas C.; Doggett, William R.; Roithmayr, Carlos M.; King, Bruce D.; Mikulas, Marting M.
2009-01-01
The objective of this paper is to describe and summarize the results of the development efforts for the Lunar Surface Manipulation System (LSMS) with respect to increasing the performance, operational versatility, and automation. Three primary areas of development are covered, including; the expansion of the operational envelope and versatility of the current LSMS test-bed, the design of a second generation LSMS, and the development of automation and remote control capability. The first generation LSMS, which has been designed, built, and tested both in lab and field settings, is shown to have increased range of motion and operational versatility. Features such as fork lift mode, side grappling of payloads, digging and positioning of lunar regolith, and a variety of special end effectors are described. LSMS operational viability depends on bei nagble to reposition its base from an initial position on the lander to a mobility chassis or fixed locations around the lunar outpost. Preliminary concepts are presented for the second generation LSMS design, which will perform this self-offload capability. Incorporating design improvements, the second generation will have longer reach and three times the payload capability, yet it will have approximately equivalent mass to the first generation. Lastly, this paper covers improvements being made to the control system of the LSMS test-bed, which is currently operated using joint velocity control with visual cues. These improvements include joint angle sensors, inverse kinematics, and automated controls.
Tracking control of a spool displacement in a direct piezoactuator-driven servo valve system
NASA Astrophysics Data System (ADS)
Han, Chulhee; Hwang, Yong-Hoon; Choi, Seung-Bok
2017-03-01
This paper presents tracking control performances of a piezostack direct drive valve (PDDV) operated at various temperatures. As afirst step, a spool valve and valve system are designed operated by the piezoactuator. After briefly describing about operating principle, an experimental apparatus to investigate the effect of temperaturs on the performances is set up. Subsequently, the PDDV is installed in a large-size heat chamber equipped with electric circuits and sensors. A classical proportional-integral-derivative (PID) controller is designed and applied to control the spool displacement. In addition, a fuzzt algorithm is integrated with the PID controller to enhace performance of the proposed valve system. The tracking performance of a spool displacement is tested by increasing the teperature and exciting frequency up to 150°C and 200 Hz, respectively. It is shown that the tracking performance heavily depends on both the operating temperature and the excitation frequency.
Tocco, Nikki; Brunsvold, Melissa; Kabbani, Loay; Lin, Jules; Stansfield, Brent; Mueller, Dean; Minter, Rebecca M
2013-08-01
An operative anatomy course was developed within the construct of a surgical internship preparatory curriculum. This course provided fourth-year medical students matching into a surgical residency the opportunity to perform intern-level procedures on cadavers under the guidance of surgical faculty members. Senior medical students performed intern-level procedures on cadavers with the assistance of faculty surgeons. Students' confidence, anxiety, and procedural knowledge were evaluated both preoperatively and postoperatively. Preoperative and postoperative data were compared both collectively and based on individual procedures. Student confidence and procedural knowledge significantly increased and anxiety significantly decreased when preoperative and postoperative data were compared (P < .05). Students reported moderate to significant improvement in their ability to perform a variety of surgical tasks. The consistent improvement in confidence, knowledge, and anxiety justifies further development of an operative anatomy course, with future assessment of the impact on performance in surgical residency. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ramins, P.; Fox, T. A.
1979-01-01
An axisymmetric, multistage depressed collector of fixed geometric design was evaluated in conjunction with an octave-bandwidth, dual-mode TWT. The TWT was operated over a wide range of conditions to simulate different applications. The collector was operated in three-, four-, and five-stage configurations, and its performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the dual-mode TWT at and near saturation, the collectors increased the TWT overall efficiency by a factor of 2 1/2 to 3 1/2. Collector performance was relatively constant for both the high and low TWT modes and for operation of the TWT across an octave bandwidth. For operation of the TWT in the linear, low-distortion range, collector efficiencies of 90 percent and greater were obtained, leading to a five- to twelvefold increase in the TWT overall efficiency for the range of operating conditions covered and reasonably high (greater than 25 percent) overall efficiencies well below saturation.
Application of data mining in performance measures
NASA Astrophysics Data System (ADS)
Chan, Michael F. S.; Chung, Walter W.; Wong, Tai Sun
2001-10-01
This paper proposes a structured framework for exploiting data mining application for performance measures. The context is set in an airline company is illustrated for the use of such framework. The framework takes in consideration of how a knowledge worker interacts with performance information at the enterprise level to support them to make informed decision in managing the effectiveness of operations. A case study of applying data mining technology for performance data in an airline company is illustrated. The use of performance measures is specifically applied to assist in the aircraft delay management process. The increasingly dispersed and complex operations of airline operation put much strain on the part of knowledge worker in using search, acquiring and analyzing information to manage performance. One major problem faced with knowledge workers is the identification of root causes of performance deficiency. The large amount of factors involved in the analyze the root causes can be time consuming and the objective of applying data mining technology is to reduce the time and resources needed for such process. The increasing market competition for better performance management in various industries gives rises to need of the intelligent use of data. Because of this, the framework proposed here is very much generalizable to industries such as manufacturing. It could assist knowledge workers who are constantly looking for ways to improve operation effectiveness through new initiatives and the effort is required to be quickly done to gain competitive advantage in the marketplace.
Performance of Radiant Heating Systems of Low-Energy Buildings
NASA Astrophysics Data System (ADS)
Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel
2017-10-01
After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.
NASA Astrophysics Data System (ADS)
Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng
2018-04-01
In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.
Turrentine, Florence E; Wang, Hongkun; Young, Jeffrey S; Calland, James Forrest
2010-08-01
Ever-increasing numbers of in-house acute care surgeons and competition for operating room time during normal daytime business hours have led to an increased frequency of nonemergent general and vascular surgery procedures occurring at night when there are fewer residents, consultants, nurses, and support staff available for assistance. This investigation tests the hypothesis that patients undergoing such procedures after hours are at increased risk for postoperative morbidity and mortality. Clinical data for 10,426 operative procedures performed over a 5-year period at a single academic tertiary care hospital were obtained from the American College of Surgeons National Surgical Quality Improvement Program Database. The prevalence of preoperative comorbid conditions, postoperative length of stay, morbidity, and mortality was compared between two cohorts of patients: one who underwent nonemergent operative procedures at night and other who underwent similar procedures during the day. Subsequent statistical comparisons utilized chi tests for comparisons of categorical variables and F-tests for continuous variables. Patients undergoing procedures at night had a greater prevalence of serious preoperative comorbid conditions. Procedure complexity as measured by relative value unit did not differ between groups, but length of stay was longer after night procedures (7.8 days vs. 4.3 days, p < 0.0001). Patients undergoing nonemergent general and vascular surgery procedures at night in an academic medical center do not seem to be at increased risk for postoperative morbidity or mortality. Performing nonemergent procedures at night seems to be a safe solution for daytime overcrowding of operating rooms.
On the effect of emotional states on operator thinking. [psychological test for operator selection
NASA Technical Reports Server (NTRS)
Solodkova, A. V.
1975-01-01
A combination sonic and electrical skin stimuli stress test is reported that is suitable for the psychological selection of individuals to perform operator functions. The behavior of these people is characterized by a fighting spirit, increased work capacity, minimum expenditure of strength and insignificant fatigue.
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
49 CFR 192.620 - Alternative maximum allowable operating pressure for certain steel pipelines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of a maximum allowable operating pressure based on higher stress levels in the following areas: Take... pipeline at the increased stress level under this section with conventional operation; and (ii) Describe... targeted audience; and (B) Include information about the integrity management activities performed under...
ERIC Educational Resources Information Center
Klein, David C.
2014-01-01
As advancements in automation continue to alter the systemic behavior of computer systems in a wide variety of industrial applications, human-machine interactions are increasingly becoming supervisory in nature, with less hands-on human involvement. This maturing of the human role within the human-computer relationship is relegating operations…
On channel interactions in nested Hall thrusters
NASA Astrophysics Data System (ADS)
Cusson, S. E.; Georgin, M. P.; Dragnea, H. C.; Dale, E. T.; Dhaliwal, V.; Boyd, I. D.; Gallimore, A. D.
2018-04-01
Nested Hall thrusters use multiple, concentric discharge channels to increase thrust density. They have shown enhanced performance in multi-channel operation relative to the superposition of individual channels. The X2, a two-channel nested Hall thruster, was used to investigate the mechanism behind this improved performance. It is shown that the local pressure near the thruster exit plane is an order of magnitude higher in two-channel operation. This is due to the increased neutral flow inherent to the multi-channel operation. Due to the proximity of the discharge channels in nested Hall thrusters, these local pressure effects are shown to be responsible for the enhanced production of thrust during multi-channel operation via two mechanisms. The first mechanism is the reduction of the divergence angle due to an upstream shift of the acceleration region. The displacement of the acceleration region was detected using laser induced fluorescence measurements of the ion velocity profile. Analysis of the change in beam divergence indicates that, at an operating condition of 150 V and 30 A, this effect increases the thrust by 8.7 ± 1.2 mN. The second mechanism is neutral ingestion from the adjacent channel resulting in a 2.0 + 0/-0.2 mN increase in thrust. Combined, these mechanisms are shown to explain, within uncertainty, the 17 ± 6.2 mN improvement in thrust during dual channel operation of the X2.
Sułko, Jerzy; Radło, Wojciech
2005-01-01
The group of 141 children with osteogenesis imperfecta was treated in Orthopaedic Department of the University Children Hospital in Krakow, Poland. In 77 (54.6%) children from this group, we operated on lower extremities. Prophylactic operations, that were intramedullary Rush rodding, we performed in 19 cases (14 femurs and 11 tibias). Sofield-Millar procedures we performed in 58 children. We operated 321 times - there are 4 operations on average in one child. Average follow-up period was 6.7 years. We operated 473 long bones: 234 femurs and 239 tibias. We did 479 osteotomies. First operations were done at the age of 9 years on average (1.5-21 years). Further operations, 3 in each patient on average, we performed in period 37 months from one to another on tibias and 49 months on femurs. In all operated children we achieved full axis correction and their activity after operation improved. In order to assess that, we used the Bleck scale. In general, before operation, 54 (70%) children did not walk, and, in contrast, after operations 53 (69%) started walking. Operative treatment of the lower extremities in children with osteogenesis imperfecta improves their clinical physical abilities, quality of life and allows increase in activities.
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.
2015-06-01
Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.
NASA Astrophysics Data System (ADS)
Liu, Mingliang; Lü, Zhe; Wei, Bo; Huang, Xiqiang; Zhang, Yaohui; Su, Wenhui
An annular micro-stack array consisting of four fuel cells has been fabricated and operated successfully in single-chamber conditions using a nitrogen-diluted oxygen-methane mixture as the operating gas. The single cells consist of a state-of-the-art porous NiO/Y 2O 3-stabilized ZrO 2 (YSZ) anode support, a YSZ electrolyte membrane and a modified La 0.7Sr 0.3MnO 3 (LSM) cathode. The annular configuration of the array is favorable for utilizing the heating effect. The maximum power output of the annular stack decreases with increasingCH 4/O 2 ratio. Its performance increases with increasing CH 4 flow rate and decreases with increasing N 2 flow rate. The power output of the stack is ∼380 mW at CH 4/O 2 = 1 and an N 2 flow rate of 100 sccm and the average maximum power density of each cell is ∼190 mW cm -2. The average performance of each cell in the annular micro-stack array is higher than that of an additional single cell placed next to the stack.
Ergonomics Climate Assessment: A measure of operational performance and employee well-being.
Hoffmeister, Krista; Gibbons, Alyssa; Schwatka, Natalie; Rosecrance, John
2015-09-01
Ergonomics interventions have the potential to improve operational performance and employee well-being. We introduce a framework for ergonomics climate, the extent to which an organization emphasizes and supports the design and modification of work to maximize both performance and well-being outcomes. We assessed ergonomics climate at a large manufacturing facility twice during a two-year period. When the organization used ergonomics to promote performance and well-being equally, and at a high level, employees reported less work-related pain. A larger discrepancy between measures of operational performance and employee well-being was associated with increased reports of work-related pain. The direction of this discrepancy was not significantly related to work-related pain, such that it didn't matter which facet was valued more. The Ergonomics Climate Assessment can provide companies with a baseline assessment of the overall value placed on ergonomics and help prioritize areas for improving operational performance and employee well-being. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.
1998-01-01
The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.
Extended operating range of the 30-cm ion thruster with simplified power processor requirements
NASA Technical Reports Server (NTRS)
Rawlin, V. K.
1981-01-01
A two grid 30 cm diameter mercury ion thruster was operated with only six power supplies over the baseline J series thruster power throttle range with negligible impact on thruster performance. An analysis of the functional model power processor showed that the component mass and parts count could be reduced considerably and the electrical efficiency increased slightly by only replacing power supplies with relays. The input power, output thrust, and specific impulse of the thruster were then extended, still using six supplies, from 2660 watts, 0.13 newtons, and 2980 seconds to 9130 watts, 0.37 newtons, and 3820 seconds, respectively. Increases in thrust and power density enable reductions in the number of thrusters and power processors required for most missions. Preliminary assessments of the impact of thruster operation at increased thrust and power density on the discharge characteristics, performance, and lifetime of the thruster were also made.
Group interaction and flight crew performance
NASA Technical Reports Server (NTRS)
Foushee, H. Clayton; Helmreich, Robert L.
1988-01-01
The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.
Jones, K I; Amawi, F; Bhalla, A; Peacock, O; Williams, J P; Lund, J N
2015-04-01
Performance in the operating room is affected by a combination of individual, patient and environmental factors amongst others. Stress has a potential negative impact on performance with the quality of surgical practice and patient safety being affected as a result. In order to appreciate the level of stress encountered during surgical procedures both objective and subjective methods can be used. This study reports the use of a combined objective (physiological) and subjective (psychological) method for evaluating stress experienced by the operating surgeon. Six consultant colorectal surgeons were evaluated performing eighteen anterior resections. Heart rate was recorded using a wireless chest strap at eight pre-determined operative steps. Heart Rate Variability indices were calculated offline using computerized software. Surgeon reported stress was collected using the State Trait Anxiety Inventory, a validated clinical stress scale. A significant increase in stress was demonstrated in all surgeons whilst operating as indicated by sympathetic tone (control: 4.02 ± 2.28 vs operative: 11.42 ± 4.63; P < 0.0001). Peaks in stress according to operative step were comparable across procedures and surgeons. There was a significant positive correlation with subjective reporting of stress across procedures (r = 0.766; P = 0.0005). This study demonstrates a significant increase in sympathetic tone in consultant surgeons measured using heart rate variability during elective colorectal resections. A significant correlation can be demonstrated between HRV measurements and perceived stress using the State Trait Anxiety Inventory. A combined approach to assessing operative stress is required to evaluate any effect on performance and outcomes. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.
Unmanned Aircraft System (UAS) Delegation of Separation in NextGen Airspace
NASA Technical Reports Server (NTRS)
Kenny, Caitlin A.; Shively, Robert J.; Jordan, Kevin
2014-01-01
The purpose of this study was to determine the feasibility of unmanned aircraft systems (UAS) performing delegated separation in the national airspace system (NAS). Delegated separation is the transfer of responsibility for maintaining separation between aircraft or vehicles from air navigation service providers to the relevant pilot or flight operator. The effects of delegated separation and traffic display information level were collected through performance, workload, and situation awareness measures. The results of this study show benefits related to the use of conflict detection alerts being shown on the UAS operator's cockpit situation display (CSD), and to the use of full delegation. Overall, changing the level of separation responsibility and adding conflict detection alerts on the CSD was not found to have an adverse effect on performance as shown by the low amounts of losses of separation. The use of conflict detection alerts on the CSD and full delegation responsibilities given to the UAS operator were found to create significantly reduced workload, significantly increased situation awareness and significantly easier communications between the UAS operator and air traffic controller without significantly increasing the amount of losses of separation.
Unmanned aircraft system (UAS) delegation of separation in NextGen airspace
NASA Astrophysics Data System (ADS)
Kenny, Caitlin A.
The purpose of this thesis was to determine the feasibility of unmanned aircraft systems (UAS) performing delegated separation in the national airspace system (NAS). Delegated separation is the transfer of responsibility for maintaining separation between aircraft or vehicles from air navigation service providers to the relevant pilot or flight operator. The effects of delegated separation and traffic display information level were collected through performance, workload, and situation awareness measures. The results of this study showed benefits related to the use of conflict detection alerts being shown on the UAS operator's cockpit situation display (CSD) and to the use of full delegation. Overall, changing the level of separation responsibility and adding conflict detection alerts on the CSD were not found to have an adverse effect on performance as shown by the low amounts of losses of separation. The use of conflict detection alerts on the CSD and full delegation responsibilities given to the UAS operator were found to create significantly reduced workload, significantly increased situation awareness and significantly easier communications between the UAS operator and air traffic controller without significantly increasing the amount of losses of separation.
The effects of extended work under sleep deprivation conditions on team-based performance.
Pilcher, June J; Vander Wood, Melissa A; O'Connell, Kristina L
2011-07-01
Teamwork is becoming increasingly common in today's workplaces; however, little research has examined how well teams perform under sleep deprivation conditions. The purpose of the current study was to examine the effect of extended work under sleep deprivation conditions on team performance. A total of 24 participants were sleep deprived for 30 h and completed 16 h of sustained operations during the last portion of the sleep deprivation period. The participants completed the Wombat, a complex task including vigilance and cognitive components, with a partner in four 24-min testing sessions during the sustained operations period. The results indicated that team performance increased during the work period while, within each testing session, team performance on vigilance tasks remained stable and overall performance decreased. The current results suggest that performance on two-person teams results in improved performance but does not fully counteract the decreases in performance within each work period. Performance in two-person teams increased across an extended work shift under sleep deprivation conditions. However, vigilance performance remained stable while overall performance decreased when examining performance in 8-min segments. These results suggest that averaging team-based performance over a longer testing period may mask the negative effects of sleep deprivation. STATEMENT OF RELEVANCE: Performance in two-person teams increased across an extended work shift under sleep deprivation conditions. However, vigilance performance remained stable while overall performance decreased when examining performance in 8-min segments. These results suggest that averaging team-based performance over a longer testing period may mask the negative effects of sleep deprivation.
Altitude Performance of Modified J71 Afterburner with Revised Engine Operating Conditions
NASA Technical Reports Server (NTRS)
Useller, James W.; Russey, Robert E.
1955-01-01
An investigation was conducted in an altitude test chamber at the NACA Lewis laboratory to determine the effect of a revision of the rated engine operating conditions and modifications to the afterburner fue1 system, flameholder, and shell cooling on the augmented performance of the J71-A-2 (x-29) turbo jet engine operating at altitude . The afterburner modifications were made by the manufacturer to improve the endurance at sea-level, high-pressure conditions and to reduce the afterburner shell temperatures. The engine operating conditions of rated rotational speed and turbine-outlet gas temperature were increased. Data were obtained at conditions simulating flight at a Mach number of 0.9 and at altitudes from 40,000 to 60,000 feet. The afterburner modifications caused a reduction in afterburner combustion efficiency. The increase in rated engine speed and turbine-outlet temperature coupled with the afterburner modifications resulted in the over-all thrust of the engine and afterburner being unchanged at a given afterburner equivalence ratio, while the specific fuel consumption was increased slightly. A moderate shift in the range of equivalence ratios over which the afterburner would operate was encountered, but the maximum operable altitude remained unaltered. The afterburner-shell temperatures were also slightly reduced because of the modifications to the afterburner.
NASA Technical Reports Server (NTRS)
Fatig, Michael
1993-01-01
Flight operations and the preparation for it has become increasingly complex as mission complexities increase. Further, the mission model dictates that a significant increase in flight operations activities is upon us. Finally, there is a need for process improvement and economy in the operations arena. It is therefore time that we recognize flight operations as a complex process requiring a defined, structured, and life cycle approach vitally linked to space segment, ground segment, and science operations processes. With this recognition, an FOT Tool Kit consisting of six major components designed to provide tools to guide flight operations activities throughout the mission life cycle was developed. The major components of the FOT Tool Kit and the concepts behind the flight operations life cycle process as developed at NASA's GSFC for GSFC-based missions are addressed. The Tool Kit is therefore intended to increase productivity, quality, cost, and schedule performance of the flight operations tasks through the use of documented, structured methodologies; knowledge of past lessons learned and upcoming new technology; and through reuse and sharing of key products and special application programs made possible through the development of standardized key products and special program directories.
Surveillance Range and Interference Impacts on Self-Separation Performance
NASA Technical Reports Server (NTRS)
Idris, Husni; Consiglio, Maria C.; Wing, David J.
2011-01-01
Self-separation is a concept of flight operations that aims to provide user benefits and increase airspace capacity by transferring traffic separation responsibility from ground-based controllers to the flight crew. Self-separation is enabled by cooperative airborne surveillance, such as that provided by the Automatic Dependent Surveillance-Broadcast (ADSB) system and airborne separation assistance technologies. This paper describes an assessment of the impact of ADS-B system performance on the performance of self-separation as a step towards establishing far-term ADS-B performance requirements. Specifically, the impacts of ADS-B surveillance range and interference limitations were analyzed under different traffic density levels. The analysis was performed using a batch simulation of aircraft performing self-separation assisted by NASA s Autonomous Operations Planner prototype flight-deck tool, in two-dimensional airspace. An aircraft detected conflicts within a look-ahead time of ten minutes and resolved them using strategic closed trajectories or tactical open maneuvers if the time to loss of separation was below a threshold. While a complex interaction was observed between the impacts of surveillance range and interference, as both factors are physically coupled, self-separation performance followed expected trends. An increase in surveillance range resulted in a decrease in the number of conflict detections, an increase in the average conflict detection lead time, and an increase in the percentage of conflict resolutions that were strategic. The majority of the benefit was observed when surveillance range was increased to a value corresponding to the conflict detection look-ahead time. The benefits were attenuated at higher interference levels. Increase in traffic density resulted in a significant increase in the number of conflict detections, as expected, but had no effect on the conflict detection lead time and the percentage of conflict resolutions that were strategic. With surveillance range corresponding to ADS-B minimum operational performance standards for Class A3 equipment and without background interference, a significant portion of conflict resolutions, 97 percent, were achieved in the preferred strategic mode. The majority of conflict resolutions, 71 percent, were strategic even with very high interference (over three times that expected in 2035).
Surgical Burn Care by Médecins Sans Frontières-Operations Center Brussels: 2008 to 2014.
Stewart, Barclay T; Trelles, Miguel; Dominguez, Lynette; Wong, Evan; Fiozounam, Hervé Tribunal; Hassani, Ghulam Hiadar; Akemani, Clemence; Naseer, Aemer; Ntawukiruwabo, Innocent Bagura; Kushner, Adam L
Humanitarian organizations care for burns during crisis and while supporting healthcare facilities in low-income and middle-income countries. This study aimed to define the epidemiology of burn-related procedures to aid humanitarian response. In addition, operational data collected from humanitarian organizations are useful for describing surgical need otherwise unmet by national health systems. Procedures performed in operating theatres run by Médecins Sans Frontières-Operations Centre Brussels (MSF-OCB) from July 2008 through June 2014 were reviewed. Surgical specialist missions were excluded. Burn procedures were quantified, related to demographics and reason for humanitarian response, and described. A total of 96,239 operations were performed at 27 MSF-OCB projects in 15 countries between 2008 and 2014. Of the 33,947 general surgical operations, 4,280 (11%) were for burns. This proportion steadily increased from 3% in 2008 to 24% in 2014. People receiving surgical care from conflict relief missions had nearly twice the odds of having a burn operation compared with people requiring surgery in communities affected by natural disaster (adjusted odds ratio, 1.94; 95% confidence interval, 1.46-2.58). Nearly 70% of burn procedures were planned serial visits to the theatre. A diverse skill set was required. Unmet humanitarian assistance needs increased US$400 million dollars in 2013 in the face of an increasing number of individuals affected by crisis and a growing surgical burden. Given the high volume of burn procedures performed at MSF-OCB projects and the resource intensive nature of burn management, requisite planning and reliable funding are necessary to ensure quality for burn care in humanitarian settings.
NASA Technical Reports Server (NTRS)
Stephens, Chad; Kennedy, Kellie; Napoli, Nicholas; Demas, Matthew; Barnes, Laura; Crook, Brenda; Williams, Ralph; Last, Mary Carolyn; Schutte, Paul
2017-01-01
Human-autonomous systems have the potential to mitigate pilot cognitive impairment and improve aviation safety. A research team at NASA Langley conducted an experiment to study the impact of mild normobaric hypoxia induction on aircraft pilot performance and psychophysiological state. A within-subjects design involved non-hypoxic and hypoxic exposures while performing three 10-minute tasks. Results indicated the effect of 15,000 feet simulated altitude did not induce significant performance decrement but did produce increase in perceived workload. Analyses of psychophysiological responses evince the potential of biomarkers for hypoxia onset. This study represents on-going work at NASA intending to add to the current knowledge of psychophysiologically-based input to automation to increase aviation safety. Analyses involving coupling across physiological systems and wavelet transforms of cortical activity revealed patterns that can discern between the simulated altitude conditions. Specifically, multivariate entropy of ECG/Respiration components were found to be significant predictors (p< 0.02) of hypoxia. Furthermore, in EEG, there was a significant decrease in mid-level beta (15.19-18.37Hz) during the hypoxic condition in thirteen of sixteen sites across the scalp. Task performance was not appreciably impacted by the effect of 15,000 feet simulated altitude. Analyses of psychophysiological responses evince the potential of biomarkers for mild hypoxia onset.The potential for identifying shifts in underlying cortical and physiological systems could serve as a means to identify the onset of deteriorated cognitive state. Enabling such assessment in future flightdecks could permit increasingly autonomous systems-supported operations. Augmenting human operator through assessment of cognitive impairment has the potential to further improve operator performance and mitigate human error in safety critical contexts. This study represents ongoing work at NASA intending to add to the current knowledge of psychophysiologically-based input to automation to increase aviation safety.
NASA Astrophysics Data System (ADS)
Cevik, Mert
Tip clearance is the necessary small gap left between the moving rotor tip and stationary shroud of a turbomachine. In a compressor, the pressure driven flow through this gap, called tip clearance flow, has a major and generally detrimental impact on compressor performance (pressure ratio and efficiency) and aerodynamic stability (stall margin). The increase in tip clearance, either temporary during transient engine operations or permanent from wear, leads to a drop in compressor performance and aerodynamic stability which results in a fuel consumption increase and a reduced operating envelope for a gas turbine engine. While much research has looked into increasing compressor performance and stall margin at the design (minimum or nominal) tip clearance, very little attention has been paid for reducing the sensitivity of these parameters to tip clearance size increase. The development of technologies that address this issue will lead to aircraft engines whose performance and operating envelope are more robust to operational demands and wear. The current research is the second phase of a research programme to develop design strategies to reduce the sensitivity of axial compressor performance and aerodynamic stability to tip clearance. The first phase had focused on blade design strategies and had led to the discovery and explanation of two flow features that reduces tip sensitivity, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double leakage. Double leakage is the flow that exits one tip clearance and enters the tip clearance of the adjacent blade instead of convecting downstream out of the rotor passage. This flow was shown to be very detrimental to compressor performance and stall margin. Two rotor design strategies involving sweep and tip stagger reduction were proposed and shown by CFD simulations to exploit these features to reduce sensitivity. As the second phase, the objectives of the current research project are to develop gas path design strategies for axial compressors to achieve the same goal, to assess their ability to be combined with desensitizing axial compressor blade design strategies and to be applied to non-axial compressors. The search for gas path design strategies was based on the exploitation of the two flow desensitizing features listed above. Two gas path design strategies were proposed and analyzed. The first was gas path contouring in the form of a concave gas path to increase incoming tip meridional momentum.
NASA Technical Reports Server (NTRS)
Milne, R.
1995-01-01
This paper examines the vehicle antenna requirements for mobile satellite systems. The antenna parameters are discussed in the light of the requirements and the limitations in performance imposed by the physical constraints of antenna and by vehicle geometries. Measurements of diffraction and antenna noise temperature in an operational environment are examined, as well as their effects on system margins. Mechanical versus electronic designs are compared with regards to performance, cost, reliability, and design complexity. Comparisons between open-loop and close-loop tracking systems are made and the effects of bandwidth, sidelobe levels, operational constraints, vehicle angular velocity, and acceleration are discussed. Some consideration is given to the use of hybrid systems employing both open and closed-loop tracking. Changes to antenna/terminal specifications are recommended which will provide greater design flexibility and increase the likelihood of meeting the performance and operational requirements.
Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart A. Ragsdale; Roger Lew; Ronald L. Boring
2014-09-01
This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed bettermore » and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.« less
Enhanced operator interface for hand-held landmine detector
NASA Astrophysics Data System (ADS)
Herman, Herman; McMahill, Jeffrey D.; Kantor, George
2001-10-01
As landmines get harder to detect, the complexity of landmine detectors has also been increasing. To increase the probability of detection and decrease the false alarm rate of low metallic landmines, many detectors employ multiple sensing modalities, which include radar and metal detector. Unfortunately, the operator interface for these new detectors stays pretty much the same as for the older detectors. Although the amount of information that the new detectors acquire has increased significantly, the interface has been limited to a simple audio interface. We are currently developing a hybrid audiovisual interface for enhancing the overall performance of the detector. The hybrid audiovisual interface combines the simplicity of the audio output with the rich spatial content of the video display. It is designed to optimally present the output of the detector and also to give the proper feedback to the operator. Instead of presenting all the data to the operator simultaneously, the interface allows the operator to access the information as needed. This capability is critical to avoid information overload, which can significantly reduce the performance of the operator. The audio is used as the primary notification signal, while the video is used for further feedback, discrimination, localization and sensor fusion. The idea is to let the operator gets the feedback that he needs and enable him to look at the data in the most efficient way. We are also looking at a hybrid man-machine detection system which utilizes precise sweeping by the machine and powerful human cognitive ability. In such a hybrid system, the operator is free to concentrate on discriminant task, such as manually fusing the output of the different sensing modalities, instead of worrying about the proper sweep technique. In developing this concept, we have been using the virtual mien lane to validate some of these concepts. We obtained some very encouraging results form our preliminary test. It clearly shows that with the proper feedback, the performance of the operator can be improved significantly in a very short time.
Numerical prediction of micro-channel LD heat sink operated with antifreeze based on CFD method
NASA Astrophysics Data System (ADS)
Liu, Gang; Liu, Yang; Wang, Chao; Wang, Wentao; Wang, Gang; Tang, Xiaojun
2014-12-01
To theoretically study the feasibility of antifreeze coolants applied as cooling fluids for high power LD heat sink, detailed Computational Fluid Dynamics (CFD) analysis of liquid cooled micro-channels heat sinks is presented. The performance operated with antifreeze coolant (ethylene glycol aqueous solution) compared with pure water are numerical calculated for the heat sinks with the same micro-channels structures. The maximum thermal resistance, total pressure loss (flow resistance), thermal resistance vs. flow-rate, and pressure loss vs. flow-rate etc. characteristics are numerical calculated. The results indicate that the type and temperature of coolants plays an important role on the performance of heat sinks. The whole thermal resistance and pressure loss of heat sinks increase significantly with antifreeze coolants compared with pure water mainly due to its relatively lower thermal conductivity and higher fluid viscosity. The thermal resistance and pressure loss are functions of the flow rate and operation temperature. Increasing of the coolant flow rate can reduce the thermal resistance of heat sinks; meanwhile increase the pressure loss significantly. The thermal resistance tends to a limit with increasing flow rate, while the pressure loss tends to increase exponentially with increasing flow rate. Low operation temperature chiefly increases the pressure loss rather than thermal resistance due to the remarkable increasing of fluid viscosity. The actual working point of the cooling circulation system can be determined on the basis of the pressure drop vs. flow rate curve for the micro-channel heat sink and that for the circulation system. In the same system, if the type or/and temperature of the coolant is changed, the working point is accordingly influenced, that is, working flow rate and pressure is changed simultaneously, due to which the heat sink performance is influenced. According to the numerical simulation results, if ethylene glycol aqueous solution is applied instead of pure water as the coolant under the same or a higher working temperature, the available output of optical power will decrease due to the worse heat sink performance; if applied under a lower working temperature(0 °C, -20 °C), although the heat sink performance become worse, however the temperature difference of heat transfer rises more significantly, the available output of optical power will increase on the contrary.
Sosa, Julie Ann; Hanna, John W; Robinson, Karen A; Lanman, Richard B
2013-12-01
To provide population-based estimates of trends in thyroid nodule fine-needle aspirations (FNA) and operative volumes, we used multiple claims databases to quantify rates of these procedures and their association with the increasing incidence of thyroid cancer in the United States. Private and public insurance claims databases were used to estimate procedure volumes from 2006 to 2011. Rates of FNA and thyroid operations related to thyroid nodules were defined by CPT4 codes associated with International Classification of Diseases, Ninth Revision Clinical Modification codes for nontoxic uni- or multinodular goiter and thyroid neoplasms. Use of thyroid FNA more than doubled during the 5-year study period (16% annual growth). The number of thyroid operations performed for thyroid nodules increased by 31%. Total thyroidectomies increased by 12% per year, whereas lobectomies increased only 1% per year. In 2011, total thyroidectomies accounted for more than half (56%) of the operations for thyroid neoplasms in the United States. Thyroid operations became increasingly (62%) outpatient procedures. Thyroid FNA and operative procedures have increased rapidly in the United States, with an associated increase in the incidence of thyroid cancer. The more substantial increase in number of total versus partial thyroid resections suggests that patients undergoing thyroid operation are perceived to have a greater risk of cancer as determined by preoperative assessments, but this trend could also increase detection of incidental microcarcinomas. Copyright © 2013 Mosby, Inc. All rights reserved.
Relationship between hospital financial performance and publicly reported outcomes.
Nguyen, Oanh Kieu; Halm, Ethan A; Makam, Anil N
2016-07-01
Hospitals that have robust financial performance may have improved publicly reported outcomes. To assess the relationship between hospital financial performance and publicly reported outcomes of care, and to assess whether improved outcome metrics affect subsequent hospital financial performance. Observational cohort study. Hospital financial data from the Office of Statewide Health Planning and Development in California in 2008 and 2012 were linked to data from the Centers for Medicare and Medicaid Services Hospital Compare website. Hospital financial performance was measured by net revenue by operations, operating margin, and total margin. Outcomes were 30-day risk-standardized mortality and readmission rates for acute myocardial infarction (AMI), congestive heart failure (CHF), and pneumonia (PNA). Among 279 hospitals, there was no consistent relationship between measures of financial performance in 2008 and publicly reported outcomes from 2008 to 2011 for AMI and PNA. However, improved hospital financial performance (by any of the 3 measures) was associated with a modest increase in CHF mortality rates (ie, 0.26% increase in CHF mortality rate for every 10% increase in operating margin [95% confidence interval: 0.07%-0.45%]). Conversely, there were no significant associations between outcomes from 2008 to 2011 and subsequent financial performance in 2012 (P > 0.05 for all). Robust financial performance is not associated with improved publicly reported outcomes for AMI, CHF, and PNA. Financial incentives in addition to public reporting, such as readmissions penalties, may help motivate hospitals with robust financial performance to further improve publicly reported outcomes. Reassuringly, improved mortality and readmission rates do not necessarily lead to loss of revenue. Journal of Hospital Medicine 2016;11:481-488. © 2016 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevallier, J.J.; Quetier, F.P.; Marshall, D.W.
Sedco Forex has developed an integrated computer system to enhance the technical performance of the company at various operational levels and to increase the understanding and knowledge of the drill crews. This paper describes the system and how it is used for recording and processing drilling data at the rig site, for associated technical analyses, and for well design, planning, and drilling performance studies at the operational centers. Some capabilities related to the statistical analysis of the company's operational records are also described, and future development of rig computing systems for drilling applications and management tasks is discussed.
Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.
The NASA Ames Fatigue Countermeasures Program: The Next Generation
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Neri, David F.; Miller, Donna L.; Gregory, Kevin B.; Webbon, Lissa L.; Oyung, Ray L.
1997-01-01
Twenty-four hour, global aviation operations pose unique challenges to humans. Physiological requirements related to sleep, the internal circadian clock, and human fatigue are critical factors that are known to affect safety, performance, and productivity. Understanding the human operators' physiological capabilities, and limitations, will be important to address these issues as global demand for aviation activities continues to increase. In 1980, in response to a Congressional request, the National Aeronautics and Space Administration (NASA) Ames Research Center initiated a Fatigue/Jet Lag Program to examine the role of fatigue in flight operations. Originally established by Dr. John K. Lauber and Dr. Charles E. Billings, the Program was designed to address three objectives: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine how fatigue affected flight crew performance; and (3) develop strategies to maximize performance and alertness during flight operations.
Jiang, Luhua; Liu, Yunguo; Hu, Xinjiang; Zeng, Guangming; Wang, Hui; Zhou, Lu; Tan, Xiaofei; Huang, Binyan; Liu, Shaobo; Liu, Simian
2016-01-01
With the unique advantages of lower operational and maintenance cost, the use of microbial-earthworm ecofilters (MEEs) for the wastewater treatment has been increasing rapidly in the recent years. This paper provided an overview of the research activities on the use of MEEs for removing pollutants from various wastewater throughout the world. However, the long-term effective treatment performance and sustainable operation of this system still remain a challenge since the treatment performance would be affected by design parameters, operational conditions, and environmental factors. In order to promote the treatment performance, therefore, this paper also provided and summarized the influencing factors of pollutants removal in MEEs. The design parameters and operational conditions of MEEs include earthworm species and load, filter media type, hydraulic loading rate, nutrient load, packing bed height, chemical factors and temperature. Lastly, this review highlighted the further research on these issues to improve performance and sustainability of MEEs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Beatty, T. G.; Millan, P. P.
1984-01-01
The conventional means of improving gas turbine engine performance typically involves increasing the turbine inlet temperature; however, at these higher operational temperatures the high pressure turbine blades require air-cooling to maintain durability. Air-cooling imposes design, material, and economic constraints not only on the turbine blades but also on engine performance. The use of uncooled turbine blades at increased operating temperatures can offer significantly improved performance in small gas turbine engines. A program to demonstrate uncooled MA6000 high pressure turbine blades in a GTEC TFE731 turbofan engine is being conducted. The project goals include demonstration of the advantages of using uncooled MA6000 turbine blades as compared with cast directionally solidified MAR-M 247 blades.
Expert systems and advanced automation for space missions operations
NASA Technical Reports Server (NTRS)
Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas
1990-01-01
Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.
Free-Mass and Interface Configurations of Hammering Mechanisms
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Askins, Steve (Inventor); Ostlund, Patrick (Inventor)
2015-01-01
The design of the free-mass in an ultrasonic driller/corer (USDC) has been refined in order to improve the performance and operational reliability of the system. In one embodiment, the improvements in performance and operational reliability include decreasing the impact surface area of the free-mass to increase the transfer of impact energy from the piezoelectric transducer and reductions in the likelihood that the system will jam.
Human Performance in Continuous Operations. Volume 3. Technical Documentation
1980-03-01
completed for the U. S. Commander, V Corps. Artillery, by Manning (1978). Manning collected information which bears on the following three questions: 0 Can...performance data were not collected in these pre- liminary studies. Field Studies of Continuous Tank OperationsLI __ _ _ __ _ _ _ To simulate a combat...on routine, monotonous tasks tends A show rapid and severe decrement after peri- odk of more than 24 hours without sleep. I Increasing task complexity
Man-machine interface requirements - advanced technology
NASA Technical Reports Server (NTRS)
Remington, R. W.; Wiener, E. L.
1984-01-01
Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.
Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1992-01-01
The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.
The Surgeon Volume-outcome Relationship: Not Yet Ready for Policy.
Modrall, J Gregory; Minter, Rebecca M; Minhajuddin, Abu; Eslava-Schmalbach, Javier; Joshi, Girish P; Patel, Shivani; Rosero, Eric B
2018-05-01
Increasing surgeon volume may improve outcomes for index operations. We hypothesized that there may be surrogate operative experiences that yield similar outcomes for surgeons with a low-volume experience with a specific index operation, such as esophagectomy. The relationship between surgeon volume and outcomes has potential implications for credentialing of surgeons. Restrictions of privileges based on surgeon volume are only reasonable if there is no substitute for direct experience with the index operation. This study was aimed at determining whether there are valid surrogates for direct experience with a sample index operation-open esophagectomy. The Nationwide Inpatient Sample (2003-2009) was utilized. Surgeons were stratified into low and high-volume groups based on annual volume of esophagectomy. Surrogate volume was defined as the aggregate annual volume per surgeon of upper gastrointestinal operations including excision of esophageal diverticulum, gastrectomy, gastroduodenectomy, and repair of diaphragmatic hernia. In all, 26,795 esophagectomies were performed nationwide (2003-2009), with a crude inhospital mortality rate of 5.2%. Inhospital mortality decreased with increasing volume of esophagectomies performed annually: 7.7% and 3.8% for low and high-volume surgeons, respectively (P < 0.0001). Among surgeons with a low-volume esophagectomy experience, increasing volume of surrogate operations improved the outcomes observed for esophagectomy: 9.7%, 7.1%, and 4.3% for low, medium, and high-surrogate-volume surgeons, respectively (P = 0.016). Both operation-specific volume and surrogate volume are significant predictors of inhospital mortality for esophagectomy. Based on these observations, it would be premature to limit hospital privileges based solely on operation-specific surgeon volume criteria.
Increased protein intake in military special operations.
Ferrando, Arny A
2013-11-01
Special operations are so designated for the specialized military missions they address. As a result, special operations present some unique metabolic challenges. In particular, soldiers often operate in a negative energy balance in stressful and demanding conditions with little opportunity for rest or recovery. In this framework, findings inferred from the performance literature suggest that increased protein intake may be beneficial. In particular, increased protein intake during negative caloric balance maintains lean body mass and blood glucose production. The addition of protein to mixed macronutrient supplements is beneficial for muscle endurance and power endpoints, and the use of amino acids improves gross and fine motor skills. Increasing protein intake during periods of intense training and/or metabolic demand improves subsequent performance, improves muscular recovery, and reduces symptoms of psychological stress. Consumption of protein before sleep confers the anabolic responses required for the maintenance of lean mass and muscle recovery. A maximal response in muscle protein synthesis is achieved with the consumption of 20-25 g of protein alone. However, higher protein intakes in the context of mixed-nutrient ingestion also confer anabolic benefits by reducing protein breakdown. Restricted rations issued to special operators provide less than the RDA for protein ( ∼ 0.6 g/kg), and these soldiers often rely on commercial products to augment their rations. The provision of reasonable alternatives and/or certification of approved supplements by the U.S. Department of Defense would be prudent.
Productivity Analysis of Public and Private Airports: A Causal Investigation
NASA Technical Reports Server (NTRS)
Vasigh, Bijan; Gorjidooz, Javad
2007-01-01
Around the world, airports are being viewed as enterprises, rather than public services, which are expected to be managed efficiently and provide passengers with courteous customer services. Governments are, increasingly, turning to the private sectors for their efficiency in managing the operation, financing, and development, as well as providing security for airports. Operational and financial performance evaluation has become increasingly important to airport operators due to recent trends in airport privatization. Assessing performance allows the airport operators to plan for human resources and capital investment as efficiently as possible. Productivity measurements may be used as comparisons and guidelines in strategic planning, in the internal analysis of operational efficiency and effectiveness, and in assessing the competitive position of an airport in transportation industry. The primary purpose of this paper is to investigate the operational and financial efficiencies of 22 major airports in the United States and Europe. These airports are divided into three groups based on private ownership (7 British Airport Authority airports), public ownership (8 major United States airports), and a mix of private and public ownership (7 major European Union airports. The detail ownership structures of these airports are presented in Appendix A. Total factor productivity (TFP) model was utilized to measure airport performance in terms of financial and operational efficiencies and to develop a benchmarking tool to identify the areas of strength and weakness. A regression model was then employed to measure the relationship between TFP and ownership structure. Finally a Granger causality test was performed to determine whether ownership structure is a Granger cause of TFP. The results of the analysis presented in this paper demonstrate that there is not a significant relationship between airport TFP and ownership structure. Airport productivity and efficiency is, however dependent upon the level of competition, choice of the market, and regulatory control.
Augmenting Human Performance in Remotely Piloted Aircraft.
Gruenwald, Christina M; Middendorf, Matthew S; Hoepf, Michael R; Galster, Scott M
2018-02-01
An experiment in a program of research supporting the sense-assess-augment (SAA) framework is described. The objective is to use physiological measures to assess operator cognitive workload in remotely piloted aircraft (RPA) operations, and provide augmentation to assist the operator in times of high workload. In previous experiments, physiological measures were identified that demonstrate sensitivity to changes in workload. The current research solely focuses on the augmentation component of the SAA paradigm. This line of research uses a realistic RPA simulation with varying levels of workload. Recruited from the Midwest region were 12 individuals (6 women) to participate in the experiment. The subjects were trained to perform a surveillance task and a tracking task using RPAs. There was also a secondary task in which subjects were required to answer cognitive probes. A within subjects factorial design was employed with three factors per task. Subjective workload estimates were acquired using the NASA-TLX. Performance data were calculated using a composite scoring algorithm. Augmentation significantly improved performance and reduced workload in both tasks. In the surveillance task, augmentation increased performance from 573.78 to 679.04. Likewise, augmentation increased performance in the tracking task from 749.39 to 791.81. Augmentation was more beneficial in high workload conditions than low workload conditions. The increase in performance and decrease in workload associated with augmentation is an important and anticipated finding. This suggests that augmentation should only be provided when it is truly needed, especially if the augmentation requires additional assets and/or resources.Gruenwald CM, Middendorf MS, Hoepf MR, Galster SM. Augmenting human performance in remotely piloted aircraft. Aerosp Med Hum Perform. 2018; 89(2):115-121.
Improved high operating temperature MCT MWIR modules
NASA Astrophysics Data System (ADS)
Lutz, H.; Breiter, R.; Figgemeier, H.; Schallenberg, T.; Schirmacher, W.; Wollrab, R.
2014-06-01
High operating temperature (HOT) IR-detectors are a key factor to size, weight and power (SWaP) reduced IR-systems. Such systems are essential to provide infantrymen with low-weight handheld systems with increased battery lifetimes or most compact clip-on weapon sights in combination with high electro-optical performance offered by cooled IR-technology. AIM's MCT standard n-on-p technology with vacancy doping has been optimized over many years resulting in MWIR-detectors with excellent electro-optical performance up to operating temperatures of ~120K. In the last years the effort has been intensified to improve this standard technology by introducing extrinsic doping with Gold as an acceptor. As a consequence the dark current could considerably be suppressed and allows for operation at ~140K with good e/o performance. More detailed investigations showed that limitation for HOT > 140K is explained by consequences from rising dark current rather than from defective pixel level. Recently, several crucial parameters were identified showing great promise for further optimization of HOT-performance. Among those, p-type concentration could successfully be reduced from the mid 1016 / cm3 to the lower 1015/ cm3 range. Since AIM is one of the leading manufacturers of split linear cryocoolers, an increase in operating temperature will directly lead to IR-modules with improved SWaP characteristics by making use of the miniature members of its SX cooler family with single piston and balancer technology. The paper will present recent progress in the development of HOT MWIR-detector arrays at AIM and show electro-optical performance data in comparison to focal plane arrays produced in the standard technology.
Recovery Act: Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javers, Jeremy
DOE EE002875 Technical Report Public Release. The objective was to leverage ICM’s pre-existing corn to ethanol pilot plant to build and to commission a fully functional pilot integrated cellulosic biorefinery. ICM’s Integrated Biorefinery (IBR) project was designed to achieve four major objectives. These primary goals were achieved during the performance period from December 2009 – August 2015. The design and construction phase took place from December 2009 until August 2011, with an increase in budget of nearly 4 million dollars. This increased cost was offset by operational changes, so the amount spent for the overall project increased by less thanmore » $500,000. There were three 1,000-hour performance test conducted, which produced cellulosic feedstock.« less
Strategies of performance self-monitoring in automotive production.
Faye, Hélène; Falzon, Pierre
2009-09-01
Production in the automotive industry, based on assembly line work, is now characterized by lean manufacturing and customization. This results in greater flexibility and increased quality demands, including worker performance self-monitoring. The objectives of this study are to refine the concept of performance self-monitoring and to characterize the strategies developed by operators to achieve it. Data were collected based on the method of individual auto-confrontation, consisting of two steps: eleven assembly-line operators of a French automotive company were individually observed and video-taped while they were working; an interview then allowed each operator to discuss his/her activity based on the video-tape. This study expands the concept of performance self-monitoring by highlighting three types of strategies directly oriented toward quality: prevention, feedback control and control action strategies.
The chief nurse executive role in large healthcare systems.
Englebright, Jane; Perlin, Jonathan
2008-01-01
Community hospitals are most frequently led by nonclinicians. Although some may have employed physician leaders, most often clinical leadership is provided by a chief nurse executive (CNE) or chief nursing officer. Clinical leadership of community hospital and health systems may similarly be provided by a system-level nursing executive or, often, by a council of facility CNEs. The increasingly competitive healthcare environment in which value-based purchasing of healthcare and pay-for-performance programs demand improved clinical performance for financial success has led to reconsideration of whether a council model can provide either the leadership or adequate attention to clinical (and operational) improvement. In turn, community hospitals and health systems look to CNE or chief nursing officer roles at the highest level of the organization as resources that are able to segue between the clinical and operational domains, translating clinical performance demands into operating strategies and tactics. This article explores CNE characteristics required for success in these increasingly responsible and visible roles.
Henriksen, Mikael Johannes Vuokko; Wienecke, Troels; Kristiansen, Jesper; Park, Yoon Soo; Ringsted, Charlotte; Konge, Lars
2018-05-22
To quantify physician stress levels when performing lumbar puncture (LP) and explore operator stress effect on patient outcomes. This was a cross-sectional, multicenter study. Novices, intermediates, and experts in performing LP were recruited from 4 departments of neurology and emergency medicine. Stress was measured before and during performance of the LP using cognitive appraisal (CA), State-Trait Anxiety Inventory-Short (STAI-S) questionnaire, and the heart rate variability measure low frequency/high frequency index (LF/HF ratio). Patient-related outcomes were pain, confidence in the operator, and postdural puncture headache (PDPH). Forty-six physicians were included in the study: 22 novices, 12 intermediates, and 12 experts. Novices had the highest stress level and experts the lowest measured by cognitive appraisal and STAI-S before and during LP performance ( p < 0.001 for all comparisons). Novices had the highest sympathetic tonus indicated by the highest LF/HF ratio before ( p = 0.004) and during ( p = 0.056) LP performance. Physician stress level was not significantly related to patients' pain. However, there was a significant relationship between STAI-S during the procedure and patient confidence in the operator (regression coefficient = -0.034, p = 0.008). High physician heart rate during the procedure significantly increased the odds of PDPH (odds ratio = 1.17, p = 0.036). Novice stress levels were high before and during performance of LP. Stress was significantly related to patient confidence in the operator and risk of PDPH. Simulation-based training should be considered to reduce novice residents' stress levels and increase patient safety. © 2018 American Academy of Neurology.
Clinical laboratory as an economic model for business performance analysis
Buljanović, Vikica; Patajac, Hrvoje; Petrovečki, Mladen
2011-01-01
Aim To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Methods Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. Conclusion The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by implementing changes in the next fiscal period. PMID:21853546
Clinical laboratory as an economic model for business performance analysis.
Buljanović, Vikica; Patajac, Hrvoje; Petrovecki, Mladen
2011-08-15
To perform SWOT (strengths, weaknesses, opportunities, and threats) analysis of a clinical laboratory as an economic model that may be used to improve business performance of laboratories by removing weaknesses, minimizing threats, and using external opportunities and internal strengths. Impact of possible threats to and weaknesses of the Clinical Laboratory at Našice General County Hospital business performance and use of strengths and opportunities to improve operating profit were simulated using models created on the basis of SWOT analysis results. The operating profit as a measure of profitability of the clinical laboratory was defined as total revenue minus total expenses and presented using a profit and loss account. Changes in the input parameters in the profit and loss account for 2008 were determined using opportunities and potential threats, and economic sensitivity analysis was made by using changes in the key parameters. The profit and loss account and economic sensitivity analysis were tools for quantifying the impact of changes in the revenues and expenses on the business operations of clinical laboratory. Results of simulation models showed that operational profit of €470 723 in 2008 could be reduced to only €21 542 if all possible threats became a reality and current weaknesses remained the same. Also, operational gain could be increased to €535 804 if laboratory strengths and opportunities were utilized. If both the opportunities and threats became a reality, the operational profit would decrease by €384 465. The operational profit of the clinical laboratory could be significantly reduced if all threats became a reality and the current weaknesses remained the same. The operational profit could be increased by utilizing strengths and opportunities as much as possible. This type of modeling may be used to monitor business operations of any clinical laboratory and improve its financial situation by implementing changes in the next fiscal period.
technologies and operational practices which increase fuel efficiency and reduce emissions from goods movement . EPA provides partners with performance benchmarking tools, fleet management best practices, technology is working with partners to test and verify advanced technologies and operational practices that save
Assessing performance in complex team environments.
Whitmore, Jeffrey N
2005-07-01
This paper provides a brief introduction to team performance assessment. It highlights some critical aspects leading to the successful measurement of team performance in realistic console operations; discusses the idea of process and outcome measures; presents two types of team data collection systems; and provides an example of team performance assessment. Team performance assessment is a complicated endeavor relative to assessing individual performance. Assessing team performance necessitates a clear understanding of each operator's task, both at the individual and team level, and requires planning for efficient data capture and analysis. Though team performance assessment requires considerable effort, the results can be very worthwhile. Most tasks performed in Command and Control environments are team tasks, and understanding this type of performance is becoming increasingly important to the evaluation of mission success and for overall system optimization.
Downsizing a database platform for increased performance and decreased costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.M.; Tolendino, L.F.
Technological advances in the world of microcomputers have brought forth affordable systems and powerful software than can compete with the more traditional world of minicomputers. This paper describes an effort at Sandia National Laboratories to decrease operational and maintenance costs and increase performance by moving a database system from a minicomputer to a microcomputer.
Enlarging the operation range of a centrifugal compressor by cutting vanes based on CFD
NASA Astrophysics Data System (ADS)
Mo, J. T.; Gu, C. H.; Pan, X. H.; Y Zheng, S.
2013-12-01
Many centrifugal compressors are liable to insufficient operation range. The purpose of this paper is to enlarge the operation range of a centrifugal compressor used in turbocharger by cutting vanes. Some numerical works have been done based on CFD. The comparison of the calculated and measured results shows good agreement. The overall performance characteristics of the centrifugal compressor with different cutted vanes are observed and analyzed. The performance characteristic curves show that cutting vanes can increase the operation range by more than 50% with the loss of the highest efficiency limited in 1%. The flow fields are also shown in this paper and related explanations about the change of the performance characteristics curves are given. Shock wave is also detected in the simulation, and some related characteristics are summed up.
[Microbial air monitoring in operating theatre: active and passive samplings].
Pasquarella, C; Masia, M D; Nnanga, Nga; Sansebastiano, G E; Savino, A; Signorelli, C; Veronesi, L
2004-01-01
Microbial air contamination was evaluated in 11 operating theatres using active and passive samplings. SAS (Surface Air System) air sampling was used to evaluate cfu/m3 and settle plates were used to measure the index of microbial air contamination (IMA). Samplings were performed at the same time on three different days, at three different times (before, during and after the surgical activity). Two points were monitored (patient area and perimeter of the operating theatre). Moreover, the cfu/m3 were evaluated at the air inlet of the conditioner system. 74.7% of samplings performed at the air inlet and 66.7% of the samplings performed at the patient area before the beginning of the surgical activity (at rest) exceeded the 35 cfu/m3 used as threshold value. 100% of IMA values exceeded the threshold value of 5. Using both active and passive sampling, the microbial contamination was shown to increase significantly during activity. The cfu values were higher at the patient area than at the perimeter of the operating theatre. Mean values of the cfu/m3 during activity at the patient area ranged from a minimum of 61+/-41 cfu/m3 to a maximum of 242+/-136 cfu/m3; IMA values ranged from a minimum of 19+/-10 to a maximum of 129+/-60. 15.2% of samplings performed at the patient area using SAS and 75.8% of samplings performed using settle plates exceeded the threshold values of 180 cfu/m3 and 25 respectively, with a significant difference of the percentages. The highest values were found in the operating theatre with inadequate structural and managerial conditions. These findings confirm that the microbiological quality of air may be considered a mirror of the hygienic conditions of the operating theatre. Settle plates proved to be more sensitive in detecting the increase of microbial air contamination related to conditions that could compromise the quality of the air in operating theatres.
The Evolution of an Adult Congenital Heart Surgery Program: The Emory System.
Kogon, Brian; Rosenblum, Joshua; Alsoufi, Bahaaldin; Shashidharan, Subhadra; Book, Wendy
2017-01-01
The Emory Adult Congenital Heart (Emory University, Atlanta, GA) program was founded in 2001. In 2004, the surgical component transitioned from a pediatric facility to an adult facility. The aim of this article is characterize the program as a whole, outline changes in the program, and discuss the challenges of the transition process. Between 2001 and 2015, changes in program structure and personnel were evaluated. There has been significant growth of the program between 2001 and 2015. There are currently 19 half-day clinics per week, with 2,700 clinic visits per year. There are six cardiologists, three congenital cardiac surgeons, two sonographers, one advanced practice provider, and one social worker dedicated to the program. There are Accreditation Council for Graduate Medical Education-accredited adult congenital cardiology and congenital cardiac surgery fellowships. One thousand forty-four operations were performed between 2001 and 2015. There were 828 open-heart operations, of which 581 (70%) were re-operations. Over the study period, the number of yearly operations increased from 30 to 119, and the mean age at surgery increased from 22 to 35 years. Over time, more of the operations were performed at the adult hospital: increasing from 3% in 2001 to 82% in 2015, and more of the operations were performed by congenital cardiac surgeons: 87% (114 of 131) before the 2004 transition to 97% (881 of 913) afterward. The Emory Adult Congenital Heart program has undergone significant growth and change, including transition of the surgical component from the pediatric to the adult facility. While numerous obstacles have been overcome and great progress has been made, additional challenges remain. Copyright © 2017 Elsevier Inc. All rights reserved.
Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines
NASA Technical Reports Server (NTRS)
Gerrish, Harold C; Foster, H
1936-01-01
An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.
Pauw, Ruben De; Degreef, Bart; Ritchie, Harald; Eeltink, Sebastiaan; Desmet, Gert; Broeckhoven, Ken
2014-06-20
The increase of the operating pressure in Liquid Chromatography, has been one of the crucial steps toward faster and more efficient separations. In the present contribution, it was investigated if the pressure limits for narrow-bore columns (2.1mm ID) could be increased beyond those of commercially available (1300bar) instrumentation without performance loss. Whereas previous studies applying pressures higher than 2000bar were limited to the use of columns with a diameter smaller or equal to 1mm, it is a difficult feat to expand this to 2.1mm ID given that viscous-heating effects increase according to the fifth power of the column radius. A prototype LC set-up was realized, allowing to operate at pressures up to 2600bar (260MPa) for large separation volumes (>5mL). The performance of an in-house-built injector was compared at 800bar to commercially available injectors, yielding equal performance but twice the maximum pressure rating. The performance of (coupled) custom columns packed with fully porous and superficially porous particles were assessed at ultra-high-pressure conditions. Increasing the inlet pressure from 800 to 2400bar and scaling the column length proportionally (from 150mm to 450mm), resulted in the theoretically expected linear increase in plate count from 20,000 to 59,000. A maximum plate number of 81,000 was realized using a 600mm long (coupled) column at 2600bar. Viscous-heating effects were diminished by insulating coupled columns and applying an intermediate-cooling strategy in a forced-air oven. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparative analysis of 2D and 3D model of a PEMFC in COMSOL
NASA Astrophysics Data System (ADS)
Lakshmi, R. Bakiya; Harikrishnan, N. P.; Juliet, A. Vimala
2017-10-01
In this article, 2D and 3D model of a PEMFC has been simulated in order to study their performance when subjected to similar operating conditions. The comparison reveals interesting phenomena of performance enhancement of the fuel cell. Design of fuel cell channel and stationary studies were done in COMSOL. Variations in current density and electrolyte potential from simulation results were observed when operated at a temperature of 120 °C. The electrolyte potential was found to have increased from 1 to 2.5 V and the surface pressure due to fluid flow was found to have increased from 3 to 9.58 Pa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamminger, Michael; Sevik, James; Scarcelli, Riccardo
Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed onmore » a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking combustion by using the Livengood-Wu knock integral. For most of the fueling strategies and operating conditions, the mathematical correlations show good agreement when compared to experimental data.« less
Sachs, Teviah E.; Ejaz, Aslam; Weiss, Matthew; Spolverato, Gaya; Ahuja, Nita; Makary, Martin A.; Wolfgang, Christopher L.; Hirose, Kenzo; Pawlik, Timothy M.
2015-01-01
Introduction Resident operative autonomy and case volume is associated with posttraining confidence and practice plans. Accreditation Council for Graduate Medical Education requirements for graduating general surgery residents are four liver and three pancreas cases. We sought to evaluate trends in resident experience and autonomy for complex hepatopancreatobiliary (HPB) surgery over time. Methods We queried the Accreditation Council for Graduate Medical Education General Surgery Case Log (2003–2012) for all cases performed by graduating chief residents (GCR) relating to liver, pancreas, and the biliary tract (HPB); simple cholecystectomy was excluded. Mean (±SD), median [10th–90th percentiles] and maximum case volumes were compared from 2003 to 2012 using R2 for all trends. Results A total of 252,977 complex HPB cases (36% liver, 43% pancreas, 21% biliary) were performed by 10,288 GCR during the 10-year period examined (Mean = 24.6 per GCR). Of these, 57% were performed during the chief year, whereas 43% were performed as postgraduate year 1–4. Only 52% of liver cases were anatomic resections, whereas 71% of pancreas cases were major resections. Total number of cases increased from 22,516 (mean = 23.0) in 2003 to 27,191 (mean = 24.9) in 2012. During this same time period, the percentage of HPB cases that were performed during the chief year decreased by 7% (liver: 13%, pancreas 8%, biliary 4%). There was an increasing trend in the mean number of operations (mean ± SD) logged by GCR on the pancreas (9.1 ± 5.9 to 11.3 ± 4.3; R2 = .85) and liver (8.0 ± 5.9 to 9.4 ± 3.4; R2 = .91), whereas those for the biliary tract decreased (5.9 ± 2.5 to 3.8 ± 2.1; R2 = .96). Although the median number of cases [10th:90th percentile] increased slightly for both pancreas (7.0 [4.0:15] to 8.0 [4:20]) and liver (7.0 [4:13] to 8.0 [5:14]), the maximum number of cases preformed by any given GCR remained stable for pancreas (51 to 53; R2 = .18), but increased for liver (38 to 45; R2 = .32). The median number of HPB cases that GCR performed as teaching assistants (TAs) remained at zero during this time period. The 90th percentile of cases performed as TA was less than two for both pancreas and liver. Conclusion Roughly one-half of GCR have performed fewer than 10 cases in each of the liver, pancreas, or biliary categories at time of completion of residency. Although the mean number of complex liver and pancreatic operations performed by GCR increased slightly, the median number remained low, and the number of TA cases was virtually zero. Most GCR are unlikely to be prepared to perform complex HPB operations. PMID:24953270
Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711
Operations Studies of the Gyrotrons on DIII-D
NASA Astrophysics Data System (ADS)
Storment, Stephen; Lohr, John; Cengher, Mirela; Gorelov, Yuri; Ponce, Dan; Torrezan, Antonio
2017-10-01
The gyrotrons are high power vacuum tubes used in fusion research to provide high power density heating and current drive in precisely localized areas of the plasma. Despite the increasing experience with both the manufacture and operation of these devices, individual gyrotrons with similar design and manufacturing processes can exhibit important operational differences in terms of generated rf power, efficiency and lifetime. This report discusses differences in the performance of several gyrotrons in operation at DIII-D and presents the results of a series of measurements that could lead to improved the performance of single units based on a better understanding of the causes of these differences. The rf power generation efficiency can be different from gyrotron to gyrotron. In addition, the power loading of the collector can feature localized hot spots, where the collector can locally be close to the power deposition limits. Measurements of collector power loading provide maps of the power deposition and can provide understanding of the effect of modulation of the output rf beam on the total loading, leading to improved operational rules increasing the safety margins for the gyrotrons under different operational scenarios. Work supported by US DOE under DE-FC02-04ER54698.
DAG-TM Concept Element 11 CNS Performance Assessment: ADS-B Performance in the TRACON
NASA Technical Reports Server (NTRS)
Raghavan, Rajesh S.
2004-01-01
Distributed Air/Ground (DAG) Traffic Management (TM) is an integrated operational concept in which flight deck crews, air traffic service providers and aeronautical operational control personnel use distributed decision-making to enable user preferences and increase system capacity, while meeting air traffic management (ATM) safety requirements. It is a possible operational mode under the Free Flight concept outlined by the RTCA Task Force 3. The goal of DAG-TM is to enhance user flexibility/efficiency and increase system capacity, without adversely affecting system safety or restricting user accessibility to the National Airspace System (NAS). DAG-TM will be accomplished with a human-centered operational paradigm enabled by procedural and technological innovations. These innovations include automation aids, information sharing and Communication, Navigation, and Surveillance (CNS) / ATM technologies. The DAG-TM concept is intended to eliminate static restrictions to the maximum extent possible. In this paradigm, users may plan and operate according to their preferences - as the rule rather than the exception - with deviations occurring only as necessary. The DAG-TM concept elements aim to mitigate the extent and impact of dynamic NAS constraints, while maximizing the flexibility of airspace operations
Siregar, Sabrina; de Heer, Frederiek; Groenwold, Rolf H H; Versteegh, Michel I M; Bekkers, Jos A; Brinkman, Emile S; Bots, Michiel L; van der Graaf, Yolanda; van Herwerden, Lex A
2014-09-01
The aim was to describe procedural volumes, patient risk profile and outcomes of heart valve surgery in the past 16 years in Netherlands. The Dutch National Database for Cardio-Thoracic Surgery includes approximately 200 000 cardiac operations performed between 1995 and 2010. Information on all valve surgeries (56 397 operations) was extracted. We determined trends for changes in procedural volume, demographics, risk profile and in-hospital mortality of valve operations. Because of incomplete data in the first years of registration, the total number of operations in those years was estimated using Poisson regression. For a subset from 2007 to 2010, follow-up data were available. Survival status was obtained through linkage with the national Cause of Death Registry, and survival analysis was performed using Kaplan-Meier method. Information on discharge and readmissions was obtained from the National Hospital Discharge Registry. The annual volume of heart valve operations increased by more than 100% from an estimated 2431 in 1995 to 5906 in 2010. Adjusted for population size in Netherlands, the number of operations per 100 000 adults increased from 20 in 1995 to 43 in 2010. In 2010, frequently performed valve surgery included the following: 34.6% isolated aortic valve (AoV) replacement, 21.8% AoV replacement and coronary artery bypass grafting (CABG), 14.6% isolated mitral valve surgery (repair or replacement) and 9.1% mitral valve and CABG. In AoV surgery, an increasing use of bioprostheses in all age categories is observed. In mitral valve surgery, 75.4% was performed by repair rather than replacement in 2010. In-hospital mortality for all valve surgery decreased significantly from 4.6% in 2007 to 3.6% in 2010, whereas the mean logistic EuroSCORE remained stable (median 5.8, P = 1.000). Thirty-day mortality after all valve surgery was 3.9% and 120-day mortality was 6.5%. At 1 year, survival after all valve surgery was 91.6% and a reoperation had been performed in 1.6%. The median postoperative length of stay was 7 days (interquartile range (IQR) 5-11) in the primary hospital and 11 days (IQR 8-16), including subsequent stay, in the secondary hospital. The results of this study provide a comprehensive overview of valve surgery trends and outcomes in Netherlands. The number of heart valve operations performed in Netherlands has increased since 1995. The significant decrease in mortality and unchanged EuroSCORE between 2007 and 2010 might reflect a general improvement of the safety of valve surgery. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Advanced laparoscopic bariatric surgery Is safe in general surgery training.
Kuckelman, John; Bingham, Jason; Barron, Morgan; Lallemand, Michael; Martin, Matthew; Sohn, Vance
2017-05-01
Bariatric surgery makes up an increasing percentage of general surgery training. The safety of resident involvement in these complex cases has been questioned. We evaluated patient outcomes in resident performed laparoscopic bariatric procedures. Retrospective review of patients undergoing a laparoscopic bariatric procedure over seven years at a tertiary care single center. Procedures were primarily performed by a general surgery resident and proctored by an attending surgeon. Primary outcomes included operative volume, operative time and leak rate with perioperative outcomes evaluated as secondary outcomes. A total of 1649 bariatric procedures were evaluated. Operations included laparoscopic bypass (690) and laparoscopic sleeve gastrectomy (959). Average operating time was 136 min. Eighteen leaks (0.67%) were identified. Graduating residents performed an average of 89 laparoscopic bariatric cases during their training. There were no significant differences between resident levels with concern to operative time or leak rate (p 0.97 and p = 0.54). General surgery residents can safely perform laparoscopic bariatric surgery. When proctored by a staff surgeon, a resident's level of training does not significantly impact leak rate. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...
NASA Astrophysics Data System (ADS)
Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang
2017-08-01
The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.
Robotic Assisted Microsurgery - RAMS FY'97
NASA Technical Reports Server (NTRS)
1997-01-01
JPL and Microdexterity Systems collaborated to develop new surgical capabilities. They developed a Robot Assisted Microsurgery (RAM) tool for surgeons to use for operating on the eye, ear, brain, and blood vessels with unprecedented dexterity. A surgeon can hold the surgical instrument with motions of 6 degrees of freedom with an accuracy of 25 microns in a 70 cu cm workspace. In 1996 a demonstration was performed to remove a microscopic particle from a simulated eyeball. In 1997, tests were performed at UCLA to compare telerobotics with mechanical operations. In 5 out of 7 tests, the RAM tool performed with a significant improvement of preciseness over mechanical operation. New design features include: (1) amplified forced feedback; (2) simultaneous slave robot instrumentation; (3) index control switch on master handle; and (4) tool control switches. Upgrades include: (1) increase in computational power; and (2) installation of hard disk memory storage device for independent operation and independent operation of forceps. In 1997 a final demonstration was performed using 2 telerobotics simultaneously in a microsurgery suture procedure to close a slit in a thin sheet of latex rubber which extended the capabilities of microsurgery procedures. After completing trials and demonstrations for the FDA the potential benefits for thousands of operations will be exposed.
Training for single port video assisted thoracoscopic surgery lung resections.
McElnay, Philip J; Lim, Eric
2015-11-01
With many surgical training programmes providing less time for training it can be challenging for trainees to acquire the necessary surgical skills to perform complex video assisted thoracoscopic surgery (VATS) lung resections. Indeed as the utilization of single port operations increases the need to approach the operating theatre with already-existing excellent hand-eye coordination skills increases. We suggest that there are a number of ways that trainees can begin to develop these necessary skills. Firstly, using computer games that involve changing horizons and orientations. Secondly, utilizing box-trainers to practice using the thoracoscopic instruments. Thirdly, learning how essential tools such as the stapler work. Trainees will then be able to progress to meaningfully assisting in theatre and indeed learning how to perform the operation themselves. At this stage is useful to observe expert surgeons whilst they operate-to watch both their technical and non-technical skills. Ultimately, surgery is a learned skill and requires implementation of these techniques over a sustained period of time.
Optimization design and performance analysis of a miniature stirling engine
NASA Astrophysics Data System (ADS)
You, Zhanping; Yang, Bo; Pan, Lisheng; Hao, Changsheng
2017-10-01
Under given operation conditions, a stirling engine of 2 kW is designed which takes hydrogen as working medium. Through establishment of adiabatic model, the ways are achieved about performance improving. The ways are raising the temperature of hot terminal, lowering the temperature of cold end, increasing the average cycle pressure, speeding up the speed, phase angle being 90°, stroke volume ratio approximating to 1 and increasing the performance of regenerator.
Continuous-variable measurement-device-independent quantum key distribution with photon subtraction
NASA Astrophysics Data System (ADS)
Ma, Hong-Xin; Huang, Peng; Bai, Dong-Yun; Wang, Shi-Yu; Bao, Wan-Su; Zeng, Gui-Hua
2018-04-01
It has been found that non-Gaussian operations can be applied to increase and distill entanglement between Gaussian entangled states. We show the successful use of the non-Gaussian operation, in particular, photon subtraction operation, on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol. The proposed method can be implemented based on existing technologies. Security analysis shows that the photon subtraction operation can remarkably increase the maximal transmission distance of the CV-MDI-QKD protocol, which precisely make up for the shortcoming of the original CV-MDI-QKD protocol, and one-photon subtraction operation has the best performance. Moreover, the proposed protocol provides a feasible method for the experimental implementation of the CV-MDI-QKD protocol.
NASA Technical Reports Server (NTRS)
Kenny, Caitlin; Fern, Lisa
2012-01-01
Continuing demand for the use of Unmanned Aircraft Systems (UAS) has put increasing pressure on operations in civil airspace. The need to fly UAS in the National Airspace System (NAS) in order to perform missions vital to national security and defense, emergency management, and science is increasing at a rapid pace. In order to ensure safe operations in the NAS, operators of unmanned aircraft, like those of manned aircraft, may be required to maintain separation assurance and avoid loss of separation with other aircraft while performing their mission tasks. This experiment investigated the effects of varying levels of automation on UAS operator performance and workload while responding to conflict resolution instructions provided by the Tactical Collision Avoidance System II (TCAS II) during a UAS mission in high-density airspace. The purpose of this study was not to investigate the safety of using TCAS II on UAS, but rather to examine the effect of automation on the ability of operators to respond to traffic collision alerts. Six licensed pilots were recruited to act as UAS operators for this study. Operators were instructed to follow a specified mission flight path, while maintaining radio contact with Air Traffic Control and responding to TCAS II resolution advisories. Operators flew four, 45 minute, experimental missions with four different levels of automation: Manual, Knobs, Management by Exception, and Fully Automated. All missions included TCAS II Resolution Advisories (RAs) that required operator attention and rerouting. Operator compliance and reaction time to RAs was measured, and post-run NASA-TLX ratings were collected to measure workload. Results showed significantly higher compliance rates, faster responses to TCAS II alerts, as well as less preemptive operator actions when higher levels of automation are implemented. Physical and Temporal ratings of workload were significantly higher in the Manual condition than in the Management by Exception and Fully Automated conditions.
DOT National Transportation Integrated Search
2014-11-01
To meet the increasingly stringent design and performance requirements due to increasing cumulative : gross tonnages from heavy-haul freight operations, along with increased high-speed inter-city passenger : rail development, improvements in concrete...
Hopmans, Cornelis J; den Hoed, Pieter T; van der Laan, Lijckle; van der Harst, Erwin; van der Elst, Maarten; Mannaerts, Guido H H; Dawson, Imro; Timman, Reinier; Wijnhoven, Bas P L; IJzermans, Jan N M
2015-04-01
In Europe and the United States, work hour restrictions are considered to be particularly burdensome for residents in surgery specialties. The aim of this study was to examine whether reduction of the work week to 48 hours resulting from the implementation of the European Working Time Directive has affected the operative experience of surgery residents. This study was conducted in a general surgery training region in the Netherlands, consisting of 1 university hospital and 6 district training hospitals. Operating records summarizing the surgical procedures performed as "primary surgeon" in the operating theater for different grades of surgeons were retrospectively analyzed for the period 2005-2012 by the use of linear regression models. Operative procedures performed by residents were considered the main outcome measure. In total, 235,357 operative procedures were performed, including 47,458 (20.2%) in the university hospital and 187,899 (79.8%) in the district training hospitals (n = 5). For residents in the university hospital, the mean number of operative procedures performed per 1.0 full-time equivalent increased from 128 operations in 2005 to 204 operations in 2012 (P = .001), whereas for residents in district training hospitals, no substantial differences were found over time. The mean (±SD) operative caseload of 64 residents who completed the 6-year training program between 2005 and 2012 was 1,391 ± 226 (range, 768-1856). A comparison of the operative caseload according to year of board-certification showed no difference. Implementation of the European Working Time Directive has not affected adversely the number of surgical procedures performed by residents within a general surgical training region in the Netherlands. Copyright © 2015 Elsevier Inc. All rights reserved.
Functional Quality Criterion of Rock Handling Mechanization at Open-pit Mines
NASA Astrophysics Data System (ADS)
Voronov, Yuri; Voronov, Artyoni
2017-11-01
Overburden and mining operations at open-pit mines are performed mainly by powerful shovel-truck systems (STSs). One of the main problems of the STSs is a rather low level of their operating quality, mainly due to unjustified over-trucking. In this article, a functional criterion for assessing the qualify of the STS operation at open-pit mines is formulated, derived and analyzed. We introduce the rationale and general principles for the functional criterion formation, its general form, as well as variations for various STS structures: a mixed truck fleet and a homogeneous shovel fleet, a mixed shove! fleet and a homogeneous truck fleet, mixed truck and shovel fleets. The possibility of assessing the quality of the STS operation is of great importance for identifying the main directions for improving their operational performance and operating quality, optimizing the main performance indicators by the qualify criterion, and. as a result, for possible saving of material and technical resources for open-pit mining. Improvement of the quality of the STS operation also allows increasing the mining safety and decreasing the atmosphere pollution - by means of possible reducing of the number of the operating trucks.
Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites
NASA Technical Reports Server (NTRS)
Blume, Jennifer L.
2010-01-01
Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.
Uprated OMS Engine Status-Sea Level Testing Results
NASA Technical Reports Server (NTRS)
Bertolino, J. D.; Boyd, W. C.
1990-01-01
The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.
A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2010-01-01
Most jet airliner conceptual designs adhere to conventional takeoff and landing performance. Given this predominance, takeoff and landing performance has not been critical, since it has not been an active constraint in the design. Given that the demand for air travel is projected to increase dramatically, there is interest in operational concepts, such as Metroplex operations that seek to unload the major hub airports by using underutilized surrounding regional airports, as well as using underutilized runways at the major hub airports. Both of these operations require shorter takeoff and landing performance than is currently available for airliners of approximately 100-passenger capacity. This study examines the issues of modeling performance in this now critical flight regime as well as the impact of progressively reducing takeoff and landing field length requirements on the aircraft s characteristics.
Long-term effect of the insoluble thread-lifting technique.
Fukaya, Mototsugu
2017-01-01
Although the thread-lifting technique for sagging faces has become more common and popular, medical literature evaluating its effects is scarce. Studies on its long-term prognosis are particularly uncommon. One hundred individuals who had previously undergone insoluble thread-lifting were retrospectively investigated. Photos in frontal and oblique views from the first and last visits were evaluated by six female individuals by guessing the patients' ages. The mean guessed age was defined as the apparent age, and the difference between the real and apparent ages was defined as the youth value. The difference between the youth values before and after the thread-lift was defined as the rejuvenation effect and analyzed in relation to the time since the operation, the number of threads used and the number of thread-lift operations performed. The rejuvenation effect decreased over the first year after the operation, but showed an increasing trend thereafter. The rejuvenation effect increased with the number of threads used and the number of thread-lift operations performed. The insoluble thread-lifting technique appears to be associated with both early and late effects. The rejuvenation effect appeared to decrease during the first year, but increased thereafter. A multicenter trial is necessary to confirm these findings.
Maroney, Justin; Khan, Saba; Powell, Wayne; Klein, Lloyd W
2013-01-01
We seek to assess the per-operator volume of diagnostic catheterizations and percutaneous coronary interventions (PCI) among US cardiologists, and its implication for future manpower needs in the catheterization laboratory. The number of annual Medicare PCIs peaked in 2004 and has trended downward since, however the total number of catheterization laboratories nationwide has increased. It is unknown whether these trends have resulted in a dilution of per-operator volumes, and whether the current supply of interventional cardiologists is appropriate to meet future needs. We analyzed the Centers for Medicare and Medicaid Services 2008 Medicare 5% sample file, and extracted the total number of Medicare fee-for-service (Medicare FFS) diagnostic catheterizations and PCIs performed in 2008. We then determined per-physician procedure volumes using National Provider Identifier numbers. There were 1,198,610 Medicare FFS diagnostic catheterizations performed by 11,029 diagnostic cardiologists, and there were 378,372 Medicare FFS PCIs performed by 6,443 interventional cardiologists in 2008. The data reveal a marked difference in the 2008 distribution of diagnostic catheterizations and PCIs among operators. Just over 10% of diagnostic catheterizations were performed by operators performing 40 or fewer Medicare FFS diagnostic catheterizations, contrasted with almost 30% of PCIs performed by operators with 40 of fewer Medicare FFS PCIs. A significant majority of interventional cardiologists (61%) performed 40 or fewer Medicare FFS PCIs in 2008. There is a high percentage of low-volume operators performing PCI, raising questions regarding annual volume recommendations for procedural skill maintenance, and the future manpower requirements in the catheterization laboratory. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Orme, John S.
1995-01-01
The performance seeking control algorithm optimizes total propulsion system performance. This adaptive, model-based optimization algorithm has been successfully flight demonstrated on two engines with differing levels of degradation. Models of the engine, nozzle, and inlet produce reliable, accurate estimates of engine performance. But, because of an observability problem, component levels of degradation cannot be accurately determined. Depending on engine-specific operating characteristics PSC achieves various levels performance improvement. For example, engines with more deterioration typically operate at higher turbine temperatures than less deteriorated engines. Thus when the PSC maximum thrust mode is applied, for example, there will be less temperature margin available to be traded for increasing thrust.
NASA Technical Reports Server (NTRS)
Gilyard, Glenn; Espana, Martin
1994-01-01
Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2015-01-01
This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.
Streamlining: Reducing costs and increasing STS operations effectiveness
NASA Technical Reports Server (NTRS)
Petersburg, R. K.
1985-01-01
The development of streamlining as a concept, its inclusion in the space transportation system engineering and operations support (STSEOS) contract, and how it serves as an incentive to management and technical support personnel is discussed. The mechanics of encouraging and processing streamlining suggestions, reviews, feedback to submitters, recognition, and how individual employee performance evaluations are used to motivation are discussed. Several items that were implemented are mentioned. Information reported and the methodology of determining estimated dollar savings are outlined. The overall effect of this activity on the ability of the McDonnell Douglas flight preparation and mission operations team to support a rapidly increasing flight rate without a proportional increase in cost is illustrated.
Cyclone performance by velocity
USDA-ARS?s Scientific Manuscript database
Cyclones are used almost exclusively in the US cotton ginning industry for emission abatement on pneumatic conveying system exhausts because of their high efficiency, and low capital and operating cost.. Cyclone performance is improved by increasing collection effectiveness or decreasing energy cons...
Investigation of human-robot interface performance in household environments
NASA Astrophysics Data System (ADS)
Cremer, Sven; Mirza, Fahad; Tuladhar, Yathartha; Alonzo, Rommel; Hingeley, Anthony; Popa, Dan O.
2016-05-01
Today, assistive robots are being introduced into human environments at an increasing rate. Human environments are highly cluttered and dynamic, making it difficult to foresee all necessary capabilities and pre-program all desirable future skills of the robot. One approach to increase robot performance is semi-autonomous operation, allowing users to intervene and guide the robot through difficult tasks. To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support fine motion control without overwhelming the operator. In this study we evaluate the performance of several interfaces that balance autonomy and teleoperation of a mobile manipulator for accomplishing several household tasks. Our proposed HMI framework includes teleoperation devices such as a tablet, as well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile manipulation experiments were performed with a sensorized KUKA youBot, an omnidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place tasks involved navigation and manipulation of objects in household environments. Performance metrics included time for task completion and position accuracy.
Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?
Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter
2006-01-01
To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Vogel, Matt R.; Watts, Carly
2011-01-01
A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Fei; Shen, Shengqiang
2009-12-15
A novel solar bi-ejector refrigeration system was investigated, whose difference compared to the traditional system is that the circulation pump is replaced by a thermal injector. The new system works more stably and needs less maintenance work than the old one, and the whole system can more fully utilize the solar energy. The mathematical models for calculating the performance of the injector and the whole solar refrigeration system were established. The pressure rise performance of injector under different structure and operation parameters and the performance of solar bi-ejector refrigeration system were studied with R123. The results show that the dischargedmore » pressure of injector is affected by structure dimensions of injector and operation conditions. With increasing generation temperature, the entrainment ratio of ejector becomes better while that of injector becomes worse and the overall thermal efficiency of the solar bi-ejector refrigeration system first increases and then decreases with an optimum value of 0.132 at generation temperature of 105 C, condensation temperature of 35 C and evaporation temperature of 10 C. (author)« less
Development of porous carbon foam polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Kim, Jin; Cunningham, Nicolas
In order to prove the feasibility of using porous carbon foam material in a polymer electrolyte membrane fuel cell (PEMFC), a single PEMFC is constructed with a piece of 80PPI (pores per linear inch) Reticulated Vitreous Carbon (RVC) foam at a thickness of 3.5 mm employed in the cathode flow-field. The cell performance of such design is compared with that of a conventional fuel cell with serpentine channel design in the cathode and anode flow-fields. Experimental results show that the RVC foam fuel cell not only produces comparative power density to, but also offers interesting benefits over the conventional fuel cell. A 250 h long term test conducted on a RVC foam fuel cell shows that the durability and performance stability of the material is deemed to be acceptable. Furthermore, a parametric study is conducted on single RVC foam fuel cells. Effect of geometrical and material parameters of the RVC foam such as PPI and thickness and operating conditions such as pressure, temperature, and stoichiometric ratio of the reactant gases on the cell performance is experimentally investigated in detail. The single cell with the 80PPI RVC foam exhibits the best performance, especially if the thinnest foam (3.5 mm) is used. The cell performance improves with increasing the operating gauge pressure from 0 kPa to 80 kPa and the operating temperature from 40 °C to 60 °C, but deteriorates as it further increases to 80 °C. The cell performance improves as the stoichiometric ratio of air increases from 1.5 to 4.5; however, the improvement becomes marginal when it is raised above 3.0. On the other hand, changing the stoichiometric ratio of hydrogen does not have a significant impact on the cell performance.
Yang, Z; Wu, Q; Wu, K; Fan, D
2010-02-15
Infliximab was approved for use in ulcerative colitis in recent years. It has been debated if infliximab increases the risk of post-operative complications in patients with ulcerative colitis. To perform a meta-analysis that examines the relationship between preoperative infliximab treatment and short-term post-operative complications in patients with ulcerative colitis. We searched the PubMed and MEDLINE databases to identify observational studies on the impact of pre-operative infliximab use on short-term post-operative complications in ulcerative colitis. Infectious complications mainly included wound infection, sepsis and abscess, whereas non-infectious complications included intestinal obstruction, thromboembolism and gastrointestinal haemorrhage. Pooled odds ratios (ORs) were calculated for each relationship. A total of 5 studies and 706 patients were included in our meta-analysis. Overall, we did not find a strong association between pre-operative treatment of infliximab and short-term infectious [OR 2.24, 95% confidence interval (CI) 0.63-7.95] or non-infectious (OR 0.85, 95% CI 0.50-1.45) post-operative complications in ulcerative colitis patients. On the contrary, we discovered that pre-operative infliximab use increased short-term total post-operative complications (OR 1.80, 95% CI 1.12-2.87). Pre-operative infliximab use increased the risk of short-term post-operative complications. Subgroup analysis is underpowered to assess the nature of these complications but shows a trend towards increased post-operative infection.
Roving UAV IED Interdiction System
2011-03-01
instances, nails, ball bearings, and other similar hardware have been used to increase the potential for damage and injury to the forces. The uses of... Dragon Eye. UAS (Cat II). Nonstandard aircraft that perform special purpose operations. Operators must provide evidence of airworthiness and operator...100 (proposed) Dragon Eye, Raven (none) Nonstandard Aircraft/UAS (Cat II) 14 CFR 91, 101, 103 Class E, G, & non-joint-use Class D
Plug cluster module demonstration
NASA Technical Reports Server (NTRS)
Rousar, D. C.
1978-01-01
The low pressure, film cooled rocket engine design concept developed during two previous ALRC programs was re-evaluated for application as a module for a plug cluster engine capable of performing space shuttle OTV missions. The nominal engine mixture ratio was 5.5 and the engine life requirements were 1200 thermal cycles and 10 hours total operating life. The program consisted of pretest analysis; engine tests, performed using residual components; and posttest analysis. The pretest analysis indicated that operation of the operation of the film cooled engine at O/F = 5.5 was feasible. During the engine tests, steady state wall temperature and performance measurement were obtained over a range of film cooling flow rates, and the durability of the engine was demonstrated by firing the test engine 1220 times at a nominal performance ranging from 430 - 432 seconds. The performance of the test engine was limited by film coolant sleeve damage which had occurred during previous testing. The post-test analyses indicated that the nominal performance level can be increased to 436 seconds.
Deuchler, Svenja; Wagner, Clemens; Singh, Pankaj; Müller, Michael; Al-Dwairi, Rami; Benjilali, Rachid; Schill, Markus; Ackermann, Hanns; Bon, Dimitra; Kohnen, Thomas; Schoene, Benjamin; Koss, Michael; Koch, Frank
2016-01-01
Purpose To evaluate the efficacy of the virtual reality training simulator Eyesi to prepare surgeons for performing pars plana vitrectomies and its potential to predict the surgeons’ performance. Methods In a preparation phase, four participating vitreoretinal surgeons performed repeated simulator training with predefined tasks. If a surgeon was assigned to perform a vitrectomy for the management of complex retinal detachment after a surgical break of at least 60 hours it was randomly decided whether a warmup training on the simulator was required (n = 9) or not (n = 12). Performance at the simulator was measured using the built-in scoring metrics. The surgical performance was determined by two blinded observers who analyzed the video-recorded interventions. One of them repeated the analysis to check for intra-observer consistency. The surgical performance of the interventions with and without simulator training was compared. In addition, for the surgeries with simulator training, the simulator performance was compared to the performance in the operating room. Results Comparing each surgeon’s performance with and without warmup trainingshowed a significant effect of warmup training onto the final outcome in the operating room. For the surgeries that were preceeded by the warmup procedure, the performance at the simulator was compared with the operating room performance. We found that there is a significant relation. The governing factor of low scores in the simulator were iatrogenic retinal holes, bleedings and lens damage. Surgeons who caused minor damage in the simulation also performed well in the operating room. Conclusions Despite the large variation of conditions, the effect of a warmup training as well as a relation between the performance at the simulator and in the operating room was found with statistical significance. Simulator training is able to serve as a warmup to increase the average performance. PMID:26964040
SARTINI, M.; PANATTO, D.; PERDELLI, F.; CRISTINA, M.L.
2013-01-01
Summary An experimental study was conducted in a hospital in Liguria (northern Italy) on two groups of patients with the same disease severity who were undergoing the same type of surgery (primary hemiarthroplasty). Our aim was to assessing the results of a quality- improvement scheme implemented in the operating room. The quality-improvement protocol involved analyzing a set of parameters concerning the operating team's behavior and environmental conditions that could be attributed to the operating team itself. A program of training and sanitary education was carried to rectify any improper behavior of the operating staff. Two hundred and six hip-joint replacement operations (primary hip hemiarthroplasty - ICD9-CM 81.51) all conducted in the same operating room were studied: 103 patients, i.e. operations performed before the quality-improvement scheme and 103 patients, i.e. operations performed after the quality improvement scheme; all were comparable in terms of type of surgery and severity. The scheme resulted in an improvement in both behavioral and environmental parameters and an 80% reduction in the level of microbial air contamination (p < 0.001). Patient outcomes improved in terms of average postoperative hospitalization time, the occurrence and duration of fever (>37.5°C) and microbiological contamination of surgical wounds. From an economic point of view, facility efficiency increased by 28.57%, average hospitalization time decreased (p<0.001) and a theoretical increase of € 1,441,373.58 a year in revenues was achieved. PMID:24396985
No Fatigue Effect on Blink Rate
NASA Technical Reports Server (NTRS)
Kim, W.; Zangemeister, W.; Stark, L.
1984-01-01
Blink rate is reported to vary dependent upon ongoing task performance, perceptual, attentional and cognitive factors, and fatigue. Five levels of task difficulty were operationally defined and task performance as lines read aloud per minute were measured. A single noninvasive infrared TV eyetracker was modified to measure blinking and an on-line computer program identified and counted blinks while the subject performed the tasks. Blink rate decreased by 50% when either task performance increased (fast reading) or visual difficulty increased (blurred text); blink rate increased greatly during rest breaks. There was no change in blink rate during one hour experiments even though subjects complained of severe fatigue.
Novel application of simultaneous multi-image display during complex robotic abdominal procedures
2014-01-01
Background The surgical robot offers the potential to integrate multiple views into the surgical console screen, and for the assistant’s monitors to provide real-time views of both fields of operation. This function has the potential to increase patient safety and surgical efficiency during an operation. Herein, we present a novel application of the multi-image display system for simultaneous visualization of endoscopic views during various complex robotic gastrointestinal operations. All operations were performed using the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) with the assistance of Tilepro, multi-input display software, during employment of the intraoperative scopes. Three robotic operations, left hepatectomy with intraoperative common bile duct exploration, low anterior resection, and radical distal subtotal gastrectomy with intracorporeal gastrojejunostomy, were performed by three different surgeons at a tertiary academic medical center. Results The three complex robotic abdominal operations were successfully completed without difficulty or intraoperative complications. The use of the Tilepro to simultaneously visualize the images from the colonoscope, gastroscope, and choledochoscope made it possible to perform additional intraoperative endoscopic procedures without extra monitors or interference with the operations. Conclusion We present a novel use of the multi-input display program on the da Vinci Surgical System to facilitate the performance of intraoperative endoscopies during complex robotic operations. Our study offers another potentially beneficial application of the robotic surgery platform toward integration and simplification of combining additional procedures with complex minimally invasive operations. PMID:24628761
The Impact of Pictorial Display on Operator Learning and Performance. M.S. Thesis
NASA Technical Reports Server (NTRS)
Miller, R. A.; Messing, L. J.; Jagacinski, R. J.
1984-01-01
The effects of pictorially displayed information on human learning and performance of a simple control task were investigated. The controlled system was a harmonic oscillator and the system response was displayed to subjects as either an animated pendulum or a horizontally moving dot. Results indicated that the pendulum display did not effect performance scores but did significantly effect the learning processes of individual operators. The subjects with the pendulum display demonstrated more vertical internal models early in the experiment and the manner in which their internal models were tuned with practice showed increased variability between subjects.
ICRH system performance during ITER-Like Wall operations at JET and the outlook for DT campaign
NASA Astrophysics Data System (ADS)
Monakhov, Igor; Blackman, Trevor; Dumortier, Pierre; Durodié, Frederic; Jacquet, Philippe; Lerche, Ernesto; Noble, Craig
2017-10-01
Performance of JET ICRH system since installation of the metal ITER-Like Wall (ILW) has been assessed statistically. The data demonstrate steady increase of the RF power coupled to plasmas over recent years with the maximum pulse-average and peak values exceeding respectively 6MW and 8MW in 2016. Analysis and extrapolation of power capabilities of conventional JET ICRH antennas is provided and key performance-limiting factors are discussed. The RF plant operational frequency options are presented highlighting the issues of efficient ICRH application within a foreseeable range of DT plasma scenarios.
Analysis on logistic company action toward the access restriction policy on freight vehicle
NASA Astrophysics Data System (ADS)
Nur, Muhammad; Hadiwardoyo, Sigit P.; Nahry, Nahdalina
2017-06-01
The high volume of freight vehicles that enters, leaves or passes through the urban areas, especially Jakarta, has caused traffic congestion. Local authority plans to perform the access restriction on freight vehicles on the Jakarta Outer Ring Road (JORR) to reduce the congestion on that toll road. The study aims to analyze the alternative solutions of the logistics companies to overcome the impact of such policy. The data collection is done by interviewing 102 truck drivers and 7 staffs of logistic companies that use JORR. The results show that the most preferred action is shifting the operating time. Based on the open test, access restriction policy on JORR may cause a significant impact on the operational costs of delivery. Shifting the operational time will increase the operating cost by 1.71%, while turning the route will increase the operating costs by 4.35%. Moreover, changing the mode will reduce the operating expenses by 50%, and the combination action of shifting the route and the time will increase the operating costs by 5.39%.
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Watts, Carly A.; Vogel, Matt
2012-01-01
A multi-year effort has been carried out at the Johnson Space Center to develop an advanced EVA PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off-the-shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). PLSS 1.0 was tested from June 17th through September 30th, 2011. Testing accumulated 233 hours over 45 days, while executing 119 test points. An additional 164 hours of operational time were accrued during the test series, bringing the total operational time for PLSS 1.0 testing to 397 hours. Specific PLSS 1.0 test objectives assessed during this testing include: (1) Confirming prototype components perform in a system level test as they have performed during component level testing, (2) Identifying unexpected system-level interactions (3) Operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions (4) Simulating nominal transient EVA operational scenarios (5) Simulating contingency EVA operational scenarios (6) Further evaluating prototype technology development components Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected. Documented anomalies and observations include: (1) Ventilation loop fan controller issues at high fan speeds (near 70,000 rpm, whereas the fan speed during nominal operations would be closer to 35,000 rpm) (2) RCA performance at boundary conditions, including carbon dioxide and water vapor saturation events, as well as reduced vacuum quality (3) SWME valve anomalies (4 documented cases where the SWME failed to respond to a control signal or physically jammed, preventing SWME control) (4) Reduction of SWME hollow fiber hydrophobicity and significant reduction of the SWME degassing capability after significant accumulated test time.
van Veen-Berkx, Elizabeth; Elkhuizen, Sylvia G; Kuijper, Bart; Kazemier, Geert
2016-01-01
Two approaches prevail for reserving operating room (OR) capacity for emergency surgery: (1) dedicated emergency ORs and (2) evenly allocating capacity to all elective ORs, thereby creating a virtual emergency team. Previous studies contradict which approach leads to the best performance in OR utilization. Quasi-experimental controlled time-series design with empirical data from 3 university medical centers. Four different time periods were compared with analysis of variance with contrasts. Performance was measured based on 467,522 surgical cases. After closing the dedicated emergency OR, utilization slightly increased; overtime also increased. This was in contrast to earlier simulated results. The 2 control centers, maintaining a dedicated emergency OR, showed a higher increase in utilization and a decrease in overtime, along with a smaller ratio of case cancellations because of emergency surgery. This study shows that in daily practice a dedicated emergency OR is the preferred approach in performance terms regarding utilization, overtime, and case cancellations. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kassanos, Ioannis; Chrysovergis, Marios; Anagnostopoulos, John; Papantonis, Dimitris; Charalampopoulos, George
2016-06-01
In this paper the effect of impeller design variations on the performance of a centrifugal pump running as turbine is presented. Numerical simulations were performed after introducing various modifications in the design for various operating conditions. Specifically, the effects of the inlet edge shape, the meridional channel width, the number of blades and the addition of splitter blades on impeller performance was investigated. The results showed that, an increase in efficiency can be achieved by increasing the number of blades and by introducing splitter blades.
Site operator program final report for fiscal years 1992 through 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francfort, J.E.; Bassett, R.R.; Birasco, S.
The Site Operator Program was an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed at the Idaho National Engineering and Environmental Laboratory. The Program`s goals included the field evaluation of electric vehicles in real-world applications and environments; the support of electric vehicle technology advancement; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles. This report covers Program activities from 1992 to 1996. The Site Operator Program ended in September 1996, when it was superseded by the Field Operations Program. Electric vehicle testingmore » included baseline performance testing, which was performed in conjunction with EV America. The baseline performance parameters included acceleration, braking, range, energy efficiency, and charging time. The Program collected fleet operations data on electric vehicles operated by the Program`s thirteen partners, comprising electric utilities, universities, and federal agencies. The Program`s partners had over 250 electric vehicles, from vehicle converters and original equipment manufacturers, in their operating fleets. Test results are available via the World Wide Web site at http://ev.inel.gov/sop.« less
Dual antiplatelet treatment in patients candidates for abdominal surgery.
Illuminati, Giulio; Ceccanei, Gianluca; Pacilè, Maria A; Pizzardi, Giulia; Palumbo, Piergaspare; Vietri, Francesco
2013-01-01
With the increasing diffusion of percutaneous interventions (PCI), surgeons are often faced with the problem of operating on patients under dual antiplatelet treatment. Replacing dual antiplatelet regiment with low molecular weight heparin may expose to the abrupt thrombosis of coronary stent and massive myocardial infarction. The purpose of this study was to test the hypothesis that abdominal operations can be safely performed under dual antiplatelet treatment. Eleven patients underwent 5 colectomies, 3 nefrectomies, 2 gastrectomies and 1 hysterectomy under aspirin and plavix without any significant perioperative hemorrhage. These preliminary results show that abdominal operations can be safely performed under dual antiplatelet regimen. Abdominal surgery, Dual antiplatelet treatment.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; To, Wai-Ming; Chen, Jen-Ping
2003-01-01
Blade row interaction effects on loss generation in compressors have received increased attention as compressor work-per-stage and blade loading have increased. Two dimensional Laser Doppler Velocimeter measurements of the velocity field in a NASA transonic compressor stage show the magnitude of interactions in the velocity field at the peak efficiency and near stall operating conditions. The experimental data are presented along with an assessment of the velocity field interactions. In the present study the experimental data are used to confirm the fidelity of a three-dimensional, time-accurate, Navier Stokes calculation of the stage using the MSU-TURBO code at the peak efficiency and near stall operating conditions. The simulations are used to quantify the loss generation associated with interaction phenomena. At the design point the stator pressure field has minimal effect on the rotor performance. The rotor wakes do have an impact on loss production in the stator passage at both operating conditions. A method for determining the potential importance of blade row interactions on performance is presented.
Focal plane arrays based on Type-II indium arsenide/gallium antimonide superlattices
NASA Astrophysics Data System (ADS)
Delaunay, Pierre-Yves
The goal of this work is to demonstrate that Type-II InAs/GaSb superlattices can perform high quality infrared imaging from the middle (MWIR) to the long (LWIR) wavelength infrared range. Theoretically, focal plane arrays (FPAs) based on this technology could be operated at higher temperatures, with lower dark currents than the leading HgCdTe platform. This effort will focus on the fabrication of MWIR and LWIR FPAs with performance similar to existing infrared cameras. Some applications in the MWIR require fast, sensitive imagers able to sustain frame rates up to 100Hz. Such speed can only be achieved with photon detectors. However, these cameras need to be operated below 170K. Current research in this spectral band focuses on increasing the operating temperature of the FPA to a point where cooling could be performed with compact and reliable thermoelectric coolers. Type-II superlattice was used to demonstrate a camera that presented similar performance to HgCdTe and that could be operated up to room temperature. At 80K, the camera could detect temperature differences as low as 10 mK for an integration time shorter than 25 ms. In the LWIR, the electric performance of Type-II photodiodes is mainly limited by surface leakage. Aggressive processing steps such as hybridization and underfill can increase the dark current of the devices by several orders of magnitude. New cleaning and passivation techniques were used to reduce the dark current of FPA diodes by two orders of magnitudes. The absorbing GaSb substrate was also removed to increase the quantum efficiency of the devices up to 90%. At 80K, a FPA with a 9.6 microm 50%-cutoff in responsivity was able to detect temperature differences as low as 19 mK, only limited by the performance of the testing system. The non-uniformity in responsivity reached 3.8% for a 98.2% operability. The third generation of infrared cameras is based on multi-band imaging in order to improve the recognition capabilities of the imager. Preliminary detectors based on back to back diodes presented similar performance to single colors devices; the quantum efficiency was measured higher than 40% for both bands. Preliminary imaging results were demonstrated in the LWIR.
NASA Astrophysics Data System (ADS)
Dachyar, M.; Risky, S. A.
2014-06-01
Telecommunications company have to improve their business performance despite of the increase customers every year. In Indonesia, the telecommunication company have provided best services, improving operational systems by designing a framework for operational systems of the Internet of Things (IoT) other name of Machine to Machine (M2M). This study was conducted with expert opinion which further processed by the Analytic Hierarchy Process (AHP) to obtain important factor for organizations operational systems, and the Interpretive Structural Modeling (ISM) to determine factors of organization which found drives the biggest power. This study resulted, the greatest weight of SLA & KPI handling problems. The M2M current dashboard and current M2M connectivity have power to affect other factors and has important function for M2M operations roomates system which can be effectively carried out.
NASA Astrophysics Data System (ADS)
Kim, S. H.; Casper, T. A.; Snipes, J. A.
2018-05-01
ITER will demonstrate the feasibility of burning plasma operation by operating DT plasmas in the ELMy H-mode regime with a high ratio of fusion power gain Q ~ 10. 15 MA ITER baseline operation scenario has been studied using CORSICA, focusing on the entry to burn, flat-top burning plasma operation and exit from burn. The burning plasma operation for about 400 s of the current flat-top was achieved in H-mode within the various engineering constraints imposed by the poloidal field coil and power supply systems. The target fusion gain (Q ~ 10) was achievable in the 15 MA ITER baseline operation with a moderate amount of the total auxiliary heating power (~50 MW). It has been observed that the tungsten (W) concentration needs to be maintained low level (n w/n e up to the order of 1.0 × 10-5) to avoid the radiative collapse and uncontrolled early termination of the discharge. The dynamic evolution of the density can modify the H-mode access unless the applied auxiliary heating power is significantly higher than the H-mode threshold power. Several qualitative sensitivity studies have been performed to provide guidance for further optimizing the plasma operation and performance. Increasing the density profile peaking factor was quite effective in increasing the alpha particle self-heating power and fusion power multiplication factor. Varying the combination of auxiliary heating power has shown that the fusion power multiplication factor can be reduced along with the increase in the total auxiliary heating power. As the 15 MA ITER baseline operation scenario requires full capacity of the coil and power supply systems, the operation window for H-mode access and shape modification was narrow. The updated ITER baseline operation scenarios developed in this work will become a basis for further optimization studies necessary along with the improvement in understanding the burning plasma physics.
Embedded Multiprocessor Technology for VHSIC Insertion
NASA Technical Reports Server (NTRS)
Hayes, Paul J.
1990-01-01
Viewgraphs on embedded multiprocessor technology for VHSIC insertion are presented. The objective was to develop multiprocessor system technology providing user-selectable fault tolerance, increased throughput, and ease of application representation for concurrent operation. The approach was to develop graph management mapping theory for proper performance, model multiprocessor performance, and demonstrate performance in selected hardware systems.
Cross-industry benchmarking: is it applicable to the operating room?
Marco, A P; Hart, S
2001-01-01
The use of benchmarking has been growing in nonmedical industries. This concept is being increasingly applied to medicine as the industry strives to improve quality and improve financial performance. Benchmarks can be either internal (set by the institution) or external (use other's performance as a goal). In some industries, benchmarking has crossed industry lines to identify breakthroughs in thinking. In this article, we examine whether the airline industry can be used as a source of external process benchmarking for the operating room.
Performance of a Splittered Transonic Rotor with Several Tip Clearances
2015-06-15
θ Ratio of inlet to reference pressure and γ [-] ρ Density [kg/m3] ω Humidity ratio [-] Subscripts 1 Inlet 3 Outlet a Air gas l Water liquid ...has a large influence on the performance and efficiency of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to...of compressors and fans during operation. In a gas turbine engine the ratio of tip-gap to blade height or span usually increases in the direction of
NASA Astrophysics Data System (ADS)
Flores, Robert Joseph
Distributed generation can provide many benefits over traditional central generation such as increased reliability and efficiency while reducing emissions. Despite these potential benefits, distributed generation is generally not purchased unless it reduces energy costs. Economic dispatch strategies can be designed such that distributed generation technologies reduce overall facility energy costs. In this thesis, a microturbine generator is dispatched using different economic control strategies, reducing the cost of energy to the facility. Several industrial and commercial facilities are simulated using acquired electrical, heating, and cooling load data. Industrial and commercial utility rate structures are modeled after Southern California Edison and Southern California Gas Company tariffs and used to find energy costs for the simulated buildings and corresponding microturbine dispatch. Using these control strategies, building models, and utility rate models, a parametric study examining various generator characteristics is performed. An economic assessment of the distributed generation is then performed for both the microturbine generator and parametric study. Without the ability to export electricity to the grid, the economic value of distributed generation is limited to reducing the individual costs that make up the cost of energy for a building. Any economic dispatch strategy must be built to reduce these individual costs. While the ability of distributed generation to reduce cost depends of factors such as electrical efficiency and operations and maintenance cost, the building energy demand being serviced has a strong effect on cost reduction. Buildings with low load factors can accept distributed generation with higher operating costs (low electrical efficiency and/or high operations and maintenance cost) due to the value of demand reduction. As load factor increases, lower operating cost generators are desired due to a larger portion of the building load being met in an effort to reduce demand. In addition, buildings with large thermal demand have access to the least expensive natural gas, lowering the cost of operating distributed generation. Recovery of exhaust heat from DG reduces cost only if the buildings thermal demand coincides with the electrical demand. Capacity limits exist where annual savings from operation of distributed generation decrease if further generation is installed. For low operating cost generators, the approximate limit is the average building load. This limit decreases as operating costs increase. In addition, a high capital cost of distributed generation can be accepted if generator operating costs are low. As generator operating costs increase, capital cost must decrease if a positive economic performance is desired.
Man-machine interactive imaging and data processing using high-speed digital mass storage
NASA Technical Reports Server (NTRS)
Alsberg, H.; Nathan, R.
1975-01-01
The role of vision in teleoperation has been recognized as an important element in the man-machine control loop. In most applications of remote manipulation, direct vision cannot be used. To overcome this handicap, the human operator's control capabilities are augmented by a television system. This medium provides a practical and useful link between workspace and the control station from which the operator perform his tasks. Human performance deteriorates when the images are degraded as a result of instrumental and transmission limitations. Image enhancement is used to bring out selected qualities in a picture to increase the perception of the observer. A general purpose digital computer, an extensive special purpose software system is used to perform an almost unlimited repertoire of processing operations.
Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400
NASA Technical Reports Server (NTRS)
Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.
Potential operating orbits for fission electric propulsion systems driven by the SAFE-400
NASA Astrophysics Data System (ADS)
Houts, Mike; Kos, Larry; Poston, David
2002-01-01
Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp>3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially non-radioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified. .
Higgins, Matthew J; Beightol, Steven; Mandahar, Ushma; Suzuki, Ryu; Xiao, Steven; Lu, Hung-Wei; Le, Trung; Mah, Joshua; Pathak, Bipin; DeClippeleir, Haydee; Novak, John T; Al-Omari, Ahmed; Murthy, Sudhir N
2017-10-01
A study was performed to evaluate the effect of thermal hydrolysis pretreatment (THP) temperature on subsequent digestion performance and operation, as well as downstream parameters such as dewatering and cake quality. A blend of primary and secondary solids from the Blue Plains treatment plant in Washington, DC was dewatered to about 16% total solids (TS), and thermally hydrolyzed at five different temperatures 130, 140, 150, 160, 170 °C. The thermally hydrolyzed solids were then fed to five separate, 10 L laboratory digesters using the same feed concentration, 10.5% TS and a solids retention time (SRT) of 15 days. The digesters were operated over a six month period to achieve steady state conditions. The higher thermal hydrolysis temperatures generally improved the solids reduction and methane yields by about 5-6% over the temperature range. The increased temperature reduced viscosity of the solids and increased the cake solids after dewatering. The dissolved organic nitrogen and UV absorbance generally increased at the higher THP temperatures. Overall, operating at a higher temperature improved performance with a tradeoff of higher dissolved organic nitrogen and UV adsorbing materials in the return liquor. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mastropasqua, L.; Campanari, S.; Brouwer, J.
2017-12-01
The need to experimentally understand the performance of Solid Oxide Fuel Cells (SOFC) stacks under Carbon Capture and Storage (CCS) mode operating conditions, hence with anode recirculation, has prompted this two-part study. The steady state performance of a 6-cell short stack of Y2O3 stabilised Zirconia (YSZ) with Ni/YSZ anodes and composite Sr-doped LaMnO3 (LSM)/YSZ cathodes is experimentally evaluated. In Part A, the electrical and environmental performance are assessed and the results are compared with the commercial full-scale micro-Combined Heat and Power system, which comprises the same cells. In Part B of this work, a specific set of stack operating conditions important to CCS applications is explored. The experimental inlet composition is changed in order to reproduce a simulated syngas in CCS mode operation for different fuel utilisation factors. Operation with the simulated anode recycle syngas leads to lower voltage when the anode recycle is lower, mainly due to higher internal reforming and polarisation losses. A clear voltage trend is observed when the amount of CO content in the inlet fuel is increased, signalling an improvement of the polarisation performance at constant current density and fixed inlet equivalent hydrogen content. Stack degradation is measured and results in line with manufacturer's data.
NASA Astrophysics Data System (ADS)
Heitzman, Nicholas
There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this study, it is recommended that air carriers increase focus on defining policies like load scheduling, CG management, reduction in zero fuel weight, inclusion of performance measurement systems, and adapting to the regulations to best optimize the spirit of the requirement.. As well, air carriers should create a larger drive to implement the FAA's NextGen system and move the industry into the future.
Flight experience of Solar Mesosphere Explorer's two nickel-cadmium batteries
NASA Technical Reports Server (NTRS)
Faber, J.
1985-01-01
The performance of the power system on the solar mesosphere explorer (SME) since launch is discussed. Predictions for continued operation for the rest of the project mission are also discussed. The SME satellite's power system was characterized by both insufficient loading and excessive battery charging during the first year of the mission. These conditions affected battery performance and jeopardized the long-term mission. Increased loading on selected orbits has improved battery performance. Long term projections indicate steadily increasing temperatures for the remainder of the mission.
Preliminary study of the pilot's workload during emergency procedures in helicopters air operations.
Bezerra, Flávio G V; Ribeiro, Selma L O
2012-01-01
Military air operations and law enforcement operations in helicopters are examples of activities that require high performance of the operator. This article aimed at presenting a preliminary analysis of data obtained in the initial study in order to validate the instruments and the research protocol that focuses on the analysis of the workload imposed on helicopter pilots in emergency situations. The research was conducted in an environment of real flight training and used the NASA-TLX Scale to assess the workload and an interview guide to obtain reports on the main tasks performed. Preliminary data obtained is related to the participation of 10 (ten) volunteer pilots with experience in different types of helicopters. Four scenarios involving helicopter emergency procedures of HB-350 "Squirrel" were outlined. For this article, the analysis used only the data regarding the Physical and Mental Demands of the NASA-TLX Scale. Preliminarily, the results indicate that the "time pressure" as a factor contributing to increase mental requirement in emergency situations in flight, and that this increase was reflected in the request of mental processes such as: identification of the breakdown, attention and monitoring parameters. Future steps include extending the sample and adding physiological tools to better understand the effects of these types of emergencies on pilot performance and flight safety.
Fallahi, Majid; Motamedzade, Majid; Heidarimoghadam, Rashid; Soltanian, Ali Reza; Miyake, Shinji
2016-01-01
The present study aimed to evaluate the operators' mental workload (MW) of cement, city traffic control and power plant control centers using subjective and objective measures during system vital parameters monitoring. This cross-sectional study was conducted from June 2014 to February 2015 at the cement, city traffic control and power plant control centers. Electrocardiography and electroencephalography data were recorded from forty males during performing their daily working in resting, low mental workload (LMW), high mental workload (HMW) and recovery conditions (each block 5 minutes). The NASA-Task Load Index (TLX) was used to evaluate the subjective workload of the operators. The results showed that increasing MW had a significant effect on the operators subjective responses in two conditions ([1,53] = 216.303, P < 0.001, η2 = 0.803). Also,the Task-MW interaction effect on operators subjective responses was significant (F [3, 53] = 12.628,P < 0.001, η2 = 0.417). Analysis of repeated measures analysis of variance (ANOVA) indicated that increasing mental demands had a significant effect on heart rate, low frequency/high frequency ratio, theta and alpha band activity. The results suggested that when operators' mental demands especially in traffic control and power plant tasks increased, their mental fatigue and stress level increased and their mental health deteriorated. Therefore, it may be necessary to implement an ergonomic program or administrative control to manage mental probably health in these control centers. Furthermore, by evaluating MW, the control center director can organize the human resources for each MW condition to sustain the appropriate performance as well as improve system functions.
Aziz, Faisal
2015-01-01
Vascular surgery represents one of the most rapidly evolving specialties in the field of surgery. It was merely 100 years ago when Dr. Alexis Carrel described vascular anastomosis. Over the course of next several decades, vascular surgeons distinguished themselves from general surgeons by horning the techniques of vascular surgery operations. In the era of minimally invasive interventions, the number of endovascular interventions performed by vascular surgeons has increased exponentially. Vascular surgery trainees in the current times spend considerable time in mastering the techniques of endovascular operations. Unfortunately, the reduction in number of open surgical operations has lead to concerns in regards to adequacy of learning open surgical techniques. In future, majority of vascular interventions will be done with minimally invasive techniques. Combination of poor training in open operations and increasing complexity of open surgical operations may lead to poor surgical outcomes. It is the need of the hour for vascular surgery trainees to realize the importance of learning and mastering open surgical techniques. One of the most distinguishing features of contemporary vascular surgeons is their ability to perform both endovascular and open vascular surgery operations, and we should strive to maintain our excellence in both of these arenas.
The effect of operating conditions on the performance of soil slurry-SBRs.
Cassidy, D P; Irvine, R L
2001-01-01
Biological treatment of a silty clay loam with aged diesel fuel contamination was conducted in 8 L Soil Slurry-Sequencing Batch Reactors (SS-SBRs). The purpose was to monitor slurry conditions and evaluate reactor performance for varying solids concentration (5%, 25%, 40%, 50%), mixing speed (300 rpm, 700 rpm, 1200 rpm), retention time (8 d, 10 d, 20 d), and volume replaced per cycle (10%, 50%, 90%). Diesel fuel was measured in slurry and in filtered aqueous samples. Oxygen uptake rate (OUR) was monitored. Aggregate size was measured with sieve analyses. Biosurfactant production was quantified with surface tension measurements. Increasing solids concentration and decreasing mixing speed resulted in increased aggregate size, which in turn increased effluent diesel fuel concentrations. Diesel fuel removal was unaffected by retention time and volume replaced per cycle. Biosurfactant production occurred with all operating strategies. Foam thickness was related to surfactant concentration and mixing speed. OUR, surfactant concentration, and foam thickness increased with increasing diesel fuel added per cycle.
Fitness characteristics of a suburban special weapons and tactics team.
Pryor, Riana R; Colburn, Deanna; Crill, Matthew T; Hostler, David P; Suyama, J
2012-03-01
Special Weapons and Tactics (SWAT) operators are specialized law enforcement officers who traditionally perform their duties with higher anticipated workloads because of additional body armor, weapons, and equipment used for enhanced operations and protection. This elevated workload increases the need for SWAT operators to improve or maintain their physical fitness to consistently perform routine operations. Typical tasks require trunk rotation, overhead upper extremity use, upper and lower body strength use, and long waiting periods followed by explosive movements while wearing additional equipment. Eleven male SWAT operators from 1 SWAT team performed flexibility, strength, power, and aerobic capacity tests and a variety of job-related tasks. Data were compared with age- and gender-based normative data. Fitness testing revealed that officers ranked high on tests of muscular strength (leg strength, 90th percentile; bench press, 85th percentile); however, body composition (55th percentile), core body strength, and flexibility ranked lower. Furthermore, aerobic capacity and muscular power had a wide range of scores and were also not ideal to support maximal performance during routine operations. These data can assist exercise specialists choose fitness programs specifically for job-related tasks of SWAT operators when creating fitness programs. Fitness programming for law enforcement should focus on improving aerobic fitness, flexibility, core strength, and muscular power while maintaining muscular strength to meet the needs of these specialized officers.
Timing considerations of Helmet Mounted Display performance
NASA Technical Reports Server (NTRS)
Tharp, Gregory; Liu, Andrew; French, Lloyd; Lai, Steve; Stark, Lawrence
1992-01-01
The Helmet Mounted Display (HMD) system developed in our lab should be a useful teleoperator systems display if it increases operator performance of the desired task; it can, however, introduce degradation in performance due to display update rate constraints and communication delays. Display update rates are slowed by communication bandwidth and/or computational power limitations. We used simulated 3D tracking and pick-and-place tasks to characterize performance levels for a range of update rates. Initial experiments with 3D tracking indicate that performance levels plateau at an update rate between 10 and 20 Hz. We have found that using the HMD with delay decreases performance as delay increases.
Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Chin, Jeffrey C.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2011-01-01
Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance.
Browns Ferry-1 single-loop operation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.; Wood, R.T.; Otaduy, P.J.
1985-09-01
This report documents the results of the stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operating conditions. The observed increase in neutron noise during single-loop operation is solely due to an increase in flow noise. The Browns Ferry-1 reactor has been found to be stable in all modes of operation attained during the present tests. The most unstable test plateau corresponded to minimum recirculation pump speed in single-loop operation (test BFTP3). This operating condition had the minimum flow and maximum power-to-flow ratio. The estimated decay ratio in this plateau ismore » 0.53. The decay ratio decreased as the flow was increased during single-loop operation (down to 0.34 for test plateau BFTP6). This observation implies that the core-wide reactor stability follows the same trends in single-loop as it does in two-loop operation. Finally, no local or higher mode instabilities were found in the data taken from local power range monitors. The decay ratios estimated from the local power range monitors were not significantly different from those estimated from the average power range monitors.« less
Operating experience with 100% pellet burden on Amanda blast furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keaton, D.E.; Minakawa, T.
1993-01-01
A number of significant changes in operations at the Ashland Works of the Armco Steel Company occurred in 1992 which directly impacted the Amanda Blast Furnace operation. These changes included the shutdown of the hot strip mill which resulted in coke oven gas enrichment of the Amanda stoves and an increase of 75 C in hot blast temperature, transition to 100% continuous cast operation which resulted in increased variation of the hot metal demand, and the July idling of the sinter plant. Historically, the Amanda Blast Furnace burden was 30% fluxed sinter and 70% acid pellet. It was anticipated thatmore » the change to 100% pellet burden would require changes in charging practice and alter furnace performance. The paper gives a general furnace description and then describes the burden characteristics, operating practice with 30% sinter/70% acid pellet burden, preparations for the 100% acid pellet burden operation, the 100% acid pellet operation, and the 100% fluxed pellet burden operation.« less
Luo, Haiping; Xu, Pei; Ren, Zhiyong
2012-09-01
Microbial desalination cell represents a new technology for simultaneous wastewater treatment, water desalination, and energy production. This study characterized the long-term performance of MDC during wastewater treatment and identified the key factors that caused performance decline. The 8-month operation shows that MDC performance decreased over time, as indicated by a 47% decline in current density, a 46% drop in Columbic efficiency, and a 27% decrease in desalination efficiency. Advanced electrochemical, microscopy, and spectroscopy analyses all confirmed biofouling on the anion exchange membrane, which increased system resistance and reduced ionic transfer and energy conversion efficiency. Minor chemical scaling was found on the cation exchange membrane surface. Microbial communities became less diverse at the end of operation, and Proteobacteria spp. was dominant on both anode and AEM fouling layer surface. These results provide insights into the viability of long-term MDC operation on reactor performance and direct system development through membrane optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.
The second “time-out”: a surgical safety checklist for lengthy robotic surgeries
2013-01-01
Robotic surgeries of long duration are associated with both increased risks to patients as well as distinct challenges for care providers. We propose a surgical checklist, to be completed during a second “time-out”, aimed at reducing peri-operative complications and addressing obstacles presented by lengthy robotic surgeries. A review of the literature was performed to identify the most common complications of robotic surgeries with extended operative times. A surgical checklist was developed with the goal of addressing these issues and maximizing patient safety. Extended operative times during robotic surgery increase patient risk for position-related complications and other adverse events. These cases also raise concerns for surgical, anesthesia, and nursing staff which are less common in shorter, non-robotic operations. Key elements of the checklist were designed to coordinate operative staff in verifying patient safety while addressing the unique concerns within each specialty. As robotic surgery is increasingly utilized, operations with long surgical times may become more common due to increased case complexity and surgeons overcoming the learning curve. A standardized surgical checklist, conducted three to four hours after the start of surgery, may enhance perioperative patient safety and quality of care. PMID:23731776
On-Orbit Performance of the TES Pulse Tube Cryocooler System and the Instrument - Six Years in Space
NASA Technical Reports Server (NTRS)
Rodriguez, J. I.; Na-Nakornpanom, A.
2011-01-01
The Tropospheric Emission Spectrometer (TES) instrument pulse tube cryocoolers began operation 36 days after launch of the NASA Earth Observing System (EOS) Aura spacecraft on July 15, 2004. TES is designed with four infrared Mercury Cadmium Telluride focal plane arrays in two separate housings cooled by a pair of Northrup Grumman Aerospace Systems (NGAS) single-stage pulse tube cryocoolers. The instrument also makes use of a two-stage passive cooler to cool the optical bench. The instrument is a high-resolution infrared imaging Fourier transform spectrometer with 3.3-15.4 micron spectral coverage. After four weeks of outgassing, the instrument optical bench and focal planes were cooled to their operating temperatures to begin science operations. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. After a highly successful 5 years of continuous in-space operations, TES was granted a 2 year extension. This paper reports on the TES cryogenic system performance including the two-stage passive cooler. After a brief overview of the cryogenic design, the paper presents detailed data on the highly successful space operation of the pulse tube cryocoolers and instrument thermal design over the past six years since the original turn-on in 2004. The data shows the cryogenic contamination decreased substantially to where decontamination cycles are now performed every six months. The cooler stroke required for constant-temperature operation has not increased indicating near-constant cooler efficiency and the instrument's thermal design has also provided a nearly constant heat rejection sink. At this time TES continues to operate in space providing important Earth science data.
Machine cost analysis using the traditional machine-rate method and ChargeOut!
E. M. (Ted) Bilek
2009-01-01
Forestry operations require ever more use of expensive capital equipment. Mechanization is frequently necessary to perform cost-effective and safe operations. Increased capital should mean more sophisticated capital costing methodologies. However the machine rate method, which is the costing methodology most frequently used, dates back to 1942. CHARGEOUT!, a recently...
An Analysis of the Billing and Bookkeeping Machine Operator Occupation.
ERIC Educational Resources Information Center
Six, Joseph E., Jr.
The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the billing and bookkeeping machine operating occupation. The analysis was written in general terms due to the diversity in bookkeeping machines on the market, increasing number and variation of the tasks…
Yang, W; Paetkau, M; Cicek, N
2010-01-01
Effects of powdered activated carbon (PAC) dosing on the overall performance of membrane bioreactors (MBR) were investigated in two bench-scale submerged MBRs. Positive impacts of PAC dosing on membrane fouling and the removal of 17beta-estradiol (E2) and 17alpha-ethyinylestradiol (EE2) were demonstrated over a six-month stable operational period. PAC dosing in the MBR increased the removal rates of E2 and EE2 by 3.4% and 15.8%, respectively. The average soluble extracellular polymeric substances (EPS) and colloidal total organic carbon (TOC) concentrations in the PAC-MBR sludge was 60.1% and 61.8% lower than the control MBR sludge, respectively. Lower soluble EPS and colloidal TOC concentrations in the PAC-MBR sludge resulted in a slower rate of trans-membrane pressure (TMP) increase during MBRs operation, which could prolong the lifespan of membranes. Cost assessment showed that PAC dosing could reduce the operating cost for membrane cleaning and/or membrane replacement by about 25%. The operating cost for PAC dosing could be offset by the benefit from its reducing the cost for membrane maintenance.
Multi-Spacecraft Autonomous Positioning System
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2015-01-01
As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.
[Radical resection of a hilar cholangiocarcinoma. Indications and results].
Lladó, Laura; Ramos, Emilio; Torras, Jaume; Fabregat, Joan; Jorba, Rosa; Valls, Carles; Julià, David; Serrano, Teresa; Figueras, Joan; Rafecas, Antoni
2008-03-01
The objective of the study is to review our experience in the surgical treatment of Klatskin tumours, after the systematic application of the current concepts of radicalism. Sixty-one patients resected using these criteria are presented. We have studied 154 patients. Surgery was ruled out in 59 (41%) of them, and a liver transplant was performed on 9; of the 86 patients operated on, 25 were resectable. Resectability was 71% (of the 86 patients operated on) and was 39% of the total patients. The results during two periods are compared, 1989-1998 (pre-99) and 1999-2007 (post-99). On comparing the two periods, resectability increased from 26% to 53% (p = 0.01), the percentage of exploratory laparotomies decreasing (pre: 45% vs post: 22%; p = 0.04). Hepatectomy was performed in 53 cases (87%), being most frequent post-99 (pre: 66% vs post: 91%; p = 0.02). Resection of the caudate was performed in 48 cases (90%), being most frequent in the post-99 period (pre: 40% vs pos: 89%; p = 0.005). Post-operative morbidity was 77%, with 28% the patients being re-operated on, and the post-operative mortality was 16.4%, with no significant differences between the periods. Actuarial survival at 5 years increases in the post-99 period (pre: 26% vs post: 51%; p = 0.06). Adequate staging, associated with an aggressive surgical strategy can achieve a greater than 50% resectability rate. The post-operative morbidity and mortality of this strategy is high, but the survival that it achieves justifies this.
Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Puleo, Bernadette J.
2008-01-01
An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.
McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja
2014-05-01
Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.
[Surgical treatment of colonic and rectal tumors].
Verushkin, I I; Ratmanov, A M; Kotomin, S V; Sharnov, V A; Verushkina, N I
1996-01-01
The study included three groups of patients with rectal and colonic tumors operated on under emergency and routine conditions. The percentage of emergency operations proved rather high, surgery being performed under both hospital and field conditions. Causes for calls have been evaluated and extent of surgery versus operating conditions and immediate results in each group assessed. Operating under hospital conditions is recommended for carrying out procedures like that of Hartman involving obligatory removal of tumor and verification of diagnosis. Reconstructive surgery should be performed in specialized wards of a regional clinic. Higher expertise of rural surgeons as well as increased competence of general practitioners in oncopathology, timely inclusion of oncologists into on-call teams of doctors and hospitalization of patients into specialized wards contribute to higher effectiveness of treatment of bowel pathologies.
Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots
NASA Technical Reports Server (NTRS)
Hartwig, Jason W.; McQuillen, John B.; Chato, David J.
2013-01-01
This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Steinmetz, G. G.
1983-01-01
Vertical-motion cues supplied by a g-seat to augment platform motion cues in the other five degrees of freedom were evaluated in terms of their effect on objective performance measures obtained during simulated transport landings under visual conditions. In addition to evaluating the effects of the vertical cueing, runway width and magnification effects were investigated. The g-seat was evaluated during fixed base and moving-base operations. Although performance with the g-seat only improved slightly over that with fixed-base operation, combined g-seat platform operation showed no improvement over improvement over platform-only operation. When one runway width at one magnification factor was compared with another width at a different factor, the visual results indicated that the runway width probably had no effect on pilot-vehicle performance. The new performance differences that were detected may be more readily attributed to the extant (existing throughout) increase in vertical velocity induced by the magnification factor used to change the runway width, rather than to the width itself.
NASA Technical Reports Server (NTRS)
Rebeske, John J , Jr; Rohlik, Harold E
1953-01-01
An analytical investigation was made to determine from component performance characteristics the effect of air bleed at the compressor outlet on the acceleration characteristics of a typical high-pressure-ratio single-spool turbojet engine. Consideration of several operating lines on the compressor performance map with two turbine-inlet temperatures showed that for a minimum acceleration time the turbine-inlet temperature should be the maximum allowable, and the operating line on the compressor map should be as close to the surge region as possible throughout the speed range. Operation along such a line would require a continuously varying bleed area. A relatively simple two-step area bleed gives only a small increase in acceleration time over a corresponding variable-area bleed. For the modes of operation considered, over 84 percent of the total acceleration time was required to accelerate through the low-speed range ; therefore, better low-speed compressor performance (higher pressure ratios and efficiencies) would give a significant reduction in acceleration time.
2011-01-24
Performance Metrics Community Based Medical Homes Slide 8 of 10 2011 MHS Conference Increase our primary care market share Net increase in primary... Sharing Knowledge: Achieving Breakthrough Performance 2011 Military Health System Conference Army Incentives for the PCMH 24 January 2011 Mr. Ken...enroll as soon as fully staffed Operate at economic advantage to DoD Improve ER/ UCC usage rates Improve utilization rates Business Rules Army
Integrated Design of a Telerobotic Workstation
NASA Technical Reports Server (NTRS)
Rochlis, Jennifer L.; Clarke, John-Paul
2001-01-01
The experiments described in this paper are part of a larger joint MIT/NASA research effort that focuses on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multi-functional telerobots. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The exploratory research experiments presented here took an integrated approach and assessed how subjects operating a full-immersion telerobot perform during the transitions between sub-tasks of two common EVA tasks. Preliminary results show that up to 30% of total task time is spent gaining and maintaining Situation Awareness (SA) of their task space and environment during transitions. Although task performance improves over the two trial days, the percentage of time spent on SA remains the same. This method identifies areas where workstation displays and feedback mechanisms are most needed to increase operator performance and decrease operator workload - areas that previous research methods have not been able to address.
Operating characteristics of 120-millimeter-bore ball bearings at 3 million DN
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Bamberger, E. N.; Signer, H.
1974-01-01
A parametric study was performed with split inner-race 120-mm-bore angular-contact ball bearings at a speed of 25,000 rpm (3 million DN) at initial contact angles of 20 deg and 24 deg. Provisions were made for outer- and inner-race cooling and for injection of lubricant into the bearing through a number of radial holes in the split inner-race of the bearing. Oil flow and coolant rate to the bearing was controlled and varied for a total up to approximately 3.2 gal/min. Bearing temperature was found to decrease as the total lubricant flow to the bearing increased. However, at intermediate flow rates temperature began to increase with increasing flow. Power consumption increased with increasing flow rate. Bearing operating temperature, differences in temperatures between the inner and outer races, and bearing power consumption can be tuned to any desirable operating requirement. Cage speed increased by not more than 2 percent with increasing oil flow to the inner race.
Improvement of force health protection through preventive medicine oversight of contractor support.
Mower, Scott A
2009-01-01
Unprecedented numbers of contractors are used throughout the Iraq theater of operations to alleviate military manpower shortages. At virtually every major forward operating base, US-based contractors perform the preponderance of essential life support services. At more remote sites, local national contractors are increasingly relied upon to maintain chemical latrines, remove trash, deliver bulk water, and execute other janitorial functions. Vigorous oversight of contractor performance is essential to ensure services are delivered according to specified standards. Poor oversight can increase the risk of criminal activities, permit substandard performance, elevate disease and nonbattle injury rates, degrade morale, and diminish Soldier readiness. As the principal force health protection proponents in the Department of Defense, preventive medicine units must be tightly integrated into the oversight processes. This article defines the force health protection implications associated with service contracts and provide recommendations for strengthening preventive medicine's oversight role.
Analysis of photovoltaic with water pump cooling by using ANSYS
NASA Astrophysics Data System (ADS)
Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Shobry, M. Z.; Majid, M. S. A.
2017-10-01
Almost all regions in the world are facing with problem of increasing electricity cost from time to time. Besides, with the mankind’s anxiety about global warming, it has infused an ideology to rapidly move towards renewable energy sources since it is believed to be more reliable and safer. One example of the best alternatives to replace the fossil fuels sourced is solar energy. Photovoltaic (PV) panel is used to convert the sunlight into electricity. Unfortunately, the performance of PV panel can be affected by its operating temperature. With the increment of ambient temperature, the PV panel operating temperature also increase and will affect the performance of PV panel (in terms of power generated). With this concern, a water cooling system was installed on top of PV panel to help reduce the PV panel’s temperature. Five different water mass flow rate is tested due to investigate their impact towards the thermal performance and heat transfer rate.
Extended Performance 8-cm Mercury Ion Thruster
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.
1981-01-01
A slightly modified 8-cm Hg ion thruster demonstrated significant increase in performance. Thrust was increased by almost a factor of five over that of the baseline thruster. Thruster operation with various three grid ion optics configurations; thruster performance as a function of accelerator grid open area, cathode baffle, and cathode orifice size; and a life test of 614 hours at a beam current of 250 mA (17.5 mN thrust) are discussed. Highest thruster efficiency was obtained with the smallest open area accelerator grid. The benefits in efficiency from the low neutral loss grids were mitigated, however, by the limitation such grids place on attainable ion beam current densities. The thruster components suffered negligible weight losses during a life test, which indicated that operation of the 8-cm thruster at extended levels of thrust and power is possible with no significant loss of lifetime.
The carbon footprint of laparoscopic surgery: should we offset?
Gilliam, A D; Davidson, B; Guest, J
2008-02-01
The aim of this study was to estimate the effect that the expansion of laparoscopic surgery has had on global warming. Laparoscopic procedures performed in a hospital over a 10-year period were analysed. The number of CO(2) cylinders (size C) used over a 2.5-year period and the "carbon footprint" of each cylinder was calculated. There was a fourfold increase of in the number of laparoscopic procedures performed over the past 10 years (n = 174-688). Median operative time for the laparoscopic procedures performed over the past 2.5-years (n = 1629) was 1.01 h (range 0.3-4.45 h) with 415 cylinders used in this period giving an operative time per cylinder of 3.96 h. Each cylinder produces only 0.0009 of tonnes of CO(2). Despite increasing frequency of the laparoscopic approach in general surgery, its impact on global warming is negligible.
Predicting the Operational Acceptability of Route Advisories
NASA Technical Reports Server (NTRS)
Evans, Antony; Lee, Paul
2017-01-01
NASA envisions a future Air Traffic Management system that allows safe, efficient growth in global operations, enabled by increasing levels of automation and autonomy. In a safety-critical system, the introduction of increasing automation and autonomy has to be done in stages, making human-system integrated concepts critical in the foreseeable future. One example where this is relevant is for tools that generate more efficient flight routings or reroute advisories. If these routes are not operationally acceptable, they will be rejected by human operators, and the associated benefits will not be realized. Operational acceptance is therefore required to enable the increased efficiency and reduced workload benefits associated with these tools. In this paper, the authors develop a predictor of operational acceptability for reroute advisories. Such a capability has applications in tools that identify more efficient routings around weather and congestion and that better meet airline preferences. The capability is based on applying data mining techniques to flight plan amendment data reported by the Federal Aviation Administration and data on requested reroutes collected from a field trial of the NASA developed Dynamic Weather Routes tool, which advised efficient route changes to American Airlines dispatchers in 2014. 10-Fold cross validation was used for feature, model and parameter selection, while nested cross validation was used to validate the model. The model performed well in predicting controller acceptance or rejection of a route change as indicated by chosen performance metrics. Features identified as relevant to controller acceptance included the historical usage of the advised route, the location of the maneuver start point relative to the boundaries of the airspace sector containing the maneuver start (the maneuver start sector), the reroute deviation from the original flight plan, and the demand level in the maneuver start sector. A random forest with forty trees was the best performing of the five models evaluated in this paper.
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.;
2007-01-01
This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.
A Comprehensive Comparison of Current Operating Reserve Methodologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krad, Ibrahim; Ibanez, Eduardo; Gao, Wenzhong
Electric power systems are currently experiencing a paradigm shift from a traditionally static system to a system that is becoming increasingly more dynamic and variable. Emerging technologies are forcing power system operators to adapt to their performance characteristics. These technologies, such as distributed generation and energy storage systems, have changed the traditional idea of a distribution system with power flowing in one direction into a distribution system with bidirectional flows. Variable generation, in the form of wind and solar generation, also increases the variability and uncertainty in the system. As such, power system operators are revisiting the ways in whichmore » they treat this evolving power system, namely by modifying their operating reserve methodologies. This paper intends to show an in-depth analysis on different operating reserve methodologies and investigate their impacts on power system reliability and economic efficiency.« less
Numerical Modeling and Optimization of Warm-water Heat Sinks
NASA Astrophysics Data System (ADS)
Hadad, Yaser; Chiarot, Paul
2015-11-01
For cooling in large data-centers and supercomputers, water is increasingly replacing air as the working fluid in heat sinks. Utilizing water provides unique capabilities; for example: higher heat capacity, Prandtl number, and convection heat transfer coefficient. The use of warm, rather than chilled, water has the potential to provide increased energy efficiency. The geometric and operating parameters of the heat sink govern its performance. Numerical modeling is used to examine the influence of geometry and operating conditions on key metrics such as thermal and flow resistance. This model also facilitates studies on cooling of electronic chip hot spots and failure scenarios. We report on the optimal parameters for a warm-water heat sink to achieve maximum cooling performance.
A new vertical axis wind turbine design for urban areas
NASA Astrophysics Data System (ADS)
Frunzulica, Florin; Cismilianu, Alexandru; Boros, Alexandru; Dumitrache, Alexandru; Suatean, Bogdan
2016-06-01
In this paper we aim at developing the model of a Vertical Axis Wind Turbine (VAWT) with the short-term goal of physically realising this turbine to operate at a maximmum power of 5 kW. The turbine is designed for household users in the urban or rural areas and remote or isolated residential areas (hardly accsessible). The proposed model has a biplane configuration on each arm of the VAWT (3 × 2 = 6 blades), allowing for increased performance of the turbine at TSR between 2 and 2.5 (urban area operation) compared to the classic vertical axis turbines. Results that validate the proposed configuration as well as passive control methods to increase the performance of the classic VAWTs are presented.
Principles and Guidelines for Duty and Rest Scheduling in Commercial Aviation
NASA Technical Reports Server (NTRS)
Dinges, David F.; Graeber, R. Curtis; Rosekind, Mark R.; Samel, Alexander
1996-01-01
The aviation industry requires 24-hour activities to meet operational demands. Growth in global long-haul, regional, overnight cargo, and short-haul domestic operations will continue to increase these round-the-clock requirements. Flight crews must be available to support 24-hour-a-day operations to meet these industry demands. Both domestic and international aviation can also require crossing multiple time zones. Therefore, shift work, night work, irregular work schedules, unpredictable work schedules, and dm zone changes will continue to be commonplace components of the aviation industry. These factors pose known challenges to human physiology, and because they result in performance-impairing fatigue, they pose a risk to safety. It is critical to acknowledge and, whenever possible, incorporate scientific information on fatigue, human sleep, and circadian physiology into 24-hour aviation operations. Utilization of such scientific information can help promote crew performance and alertness during flight operations and thereby maintain and improve the safety margin.
Video Guidance Sensor for Surface Mobility Operations
NASA Technical Reports Server (NTRS)
Fernandez, Kenneth R.; Fischer, Richard; Bryan, Thomas; Howell, Joe; Howard, Ricky; Peters, Bruce
2008-01-01
Robotic systems and surface mobility will play an increased role in future exploration missions. Unlike the LRV during Apollo era which was an astronaut piloted vehicle future systems will include teleoperated and semi-autonomous operations. The tasks given to these vehicles will run the range from infrastructure maintenance, ISRU, and construction to name a few. A common task that may be performed would be the retrieval and deployment of trailer mounted equipment. Operational scenarios may require these operations to be performed remotely via a teleoperated mode,or semi-autonomously. This presentation describes the on-going project to adapt the Automated Rendezvous and Capture (AR&C) sensor developed at the Marshall Space Flight Center for use in an automated trailer pick-up and deployment operation. The sensor which has been successfully demonstrated on-orbit has been mounted on an iRobot/John Deere RGATOR autonomous vehicle for this demonstration which will be completed in the March 2008 time-frame.
Land Ahoy! Understanding Submarine Command and Control During the Completion of Inshore Operations.
Roberts, Aaron P J; Stanton, Neville A; Fay, Daniel
2017-12-01
The aim of this study was to use multiple command teams to provide empirical evidence for understanding communication flow, information pertinence, and tasks undertaken in a submarine control room when completing higher- and lower-demand inshore operation (INSO) scenarios. The focus of submarine operations has changed, and submarines are increasingly required to operate in costal littoral zones. However, submarine command team performance during INSO is not well understood, particularly from a sociotechnical systems perspective. A submarine control-room simulator was built. The creation of networked workstations allowed a team of nine operators to perform tasks completed by submarine command teams during INSO. The Event Analysis of Systematic Teamwork method was used to model the social, task, and information networks and to describe command team performance. Ten teams were recruited for the study, affording statistical comparisons of how command-team roles and level of demand affected performance. Results indicated that the submarine command-team members are required to rapidly integrate sonar and visual data as the periscope is used, periodically, in a "duck-and-run" fashion, to maintain covertness. The fusion of such information is primarily completed by the operations officer (OPSO), with this operator experiencing significantly greater demand than any other operator. The OPSO was a bottleneck in the command team when completing INSO, experiencing similar load in both scenarios, suggesting that the command team may benefit from data synthesis tasks being more evenly distributed within the command team. The work can inform future control-room design and command-team ways of working by identifying bottlenecks in terms of information and task flow between operators.
Experiences in teleoperation of land vehicles
NASA Technical Reports Server (NTRS)
Mcgovern, Douglas E.
1989-01-01
Teleoperation of land vehicles allows the removal of the operator from the vehicle to a remote location. This can greatly increase operator safety and comfort in applications such as security patrol or military combat. The cost includes system complexity and reduced system performance. All feedback on vehicle performance and on environmental conditions must pass through sensors, a communications channel, and displays. In particular, this requires vision to be transmitted by close-circuit television with a consequent degradation of information content. Vehicular teleoperation, as a result, places severe demands on the operator. Teleoperated land vehicles have been built and tested by many organizations, including Sandia National Laboratories (SNL). The SNL fleet presently includes eight vehicles of varying capability. These vehicles have been operated using different types of controls, displays, and visual systems. Experimentation studying the effects of vision system characteristics on off-road, remote driving was performed for conditions of fixed camera versus steering-coupled camera and of color versus black and white video display. Additionally, much experience was gained through system demonstrations and hardware development trials. The preliminary experimental findings and the results of the accumulated operational experience are discussed.
NASA Astrophysics Data System (ADS)
Parker, Steve C. J.; Hickman, Duncan L.; Smith, Moira I.
2015-05-01
Effective reconnaissance, surveillance and situational awareness, using dual band sensor systems, require the extraction, enhancement and fusion of salient features, with the processed video being presented to the user in an ergonomic and interpretable manner. HALO™ is designed to meet these requirements and provides an affordable, real-time, and low-latency image fusion solution on a low size, weight and power (SWAP) platform. The system has been progressively refined through field trials to increase its operating envelope and robustness. The result is a video processor that improves detection, recognition and identification (DRI) performance, whilst lowering operator fatigue and reaction times in complex and highly dynamic situations. This paper compares the performance of HALO™, both qualitatively and quantitatively, with conventional blended fusion for operation in degraded visual environments (DVEs), such as those experienced during ground and air-based operations. Although image blending provides a simple fusion solution, which explains its common adoption, the results presented demonstrate that its performance is poor compared to the HALO™ fusion scheme in DVE scenarios.
Wang, Ke; Zhang, Jieming; Wei, Yi-Ming
2017-05-01
The trend toward a more fiercely competitive and strictly environmentally regulated electricity market in several countries, including China has led to efforts by both industry and government to develop advanced performance evaluation models that adapt to new evaluation requirements. Traditional operational and environmental efficiency measures do not fully consider the influence of market competition and environmental regulations and, thus, are not sufficient for the thermal power industry to evaluate its operational performance with respect to specific marketing goals (operational effectiveness) and its environmental performance with respect to specific emissions reduction targets (environmental effectiveness). As a complement to an operational efficiency measure, an operational effectiveness measure not only reflects the capacity of an electricity production system to increase its electricity generation through the improvement of operational efficiency, but it also reflects the system's capability to adjust its electricity generation activities to match electricity demand. In addition, as a complement to an environmental efficiency measure, an environmental effectiveness measure not only reflects the capacity of an electricity production system to decrease its pollutant emissions through the improvement of environmental efficiency, but it also reflects the system's capability to adjust its emissions abatement activities to fulfill environmental regulations. Furthermore, an environmental effectiveness measure helps the government regulator to verify the rationality of its emissions reduction targets assigned to the thermal power industry. Several newly developed effectiveness measurements based on data envelopment analysis (DEA) were utilized in this study to evaluate the operational and environmental performance of the thermal power industry in China during 2006-2013. Both efficiency and effectiveness were evaluated from the three perspectives of operational, environmental, and joint adjustments to each electricity production system. The operational and environmental performance changes over time were also captured through an effectiveness measure based on the global Malmquist productivity index. Our empirical results indicated that the performance of China's thermal power industry experienced significant progress during the study period and that policies regarding the development and regulation of the thermal power industry yielded the expected effects. However, the emissions reduction targets assigned to China's thermal power industry are loose and conservative. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; D'Souza, Sarah N.; Johnson, Marcus A.; Ishihara, Abraham K.; Modi, Hemil C.; Nikaido, Ben; Hasseeb, Hashmatullah
2016-01-01
In anticipation of a rapid increase in the number of civil Unmanned Aircraft System(UAS) operations, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that will investigate airspace integration requirements for enabling safe, efficient low-altitude operations. One aspect a UTM system must consider is the correlation between UAS operations (such as vehicles, operation areas and durations), UAS performance requirements, and the risk to people and property in the operational area. This paper investigates the potential application of the International Civil Aviation Organizations (ICAO) Required Navigation Performance (RNP) concept to relate operational risk with trajectory conformance requirements. The approach is to first define a method to quantify operational risk and then define the RNP level requirement as a function of the operational risk. Greater operational risk corresponds to more accurate RNP level, or smaller tolerable Total System Error (TSE). Data from 19 small UAS flights are used to develop and validate a formula that defines this relationship. An approach to assessing UAS-RNP conformance capability using vehicle modeling and wind field simulation is developed to investigate how this formula may be applied in a future UTM system. The results indicate the modeled vehicles flight path is robust to the simulated wind variation, and it can meet RNP level requirements calculated by the formula. The results also indicate how vehicle-modeling fidelity may be improved to adequately verify assessed RNP level.
The new design of final optics assembly on SG-III prototype facility
NASA Astrophysics Data System (ADS)
Li, Ping; Zhao, Runchang; Wang, Wei; Jia, Huaiting; Chen, Liangmin; Su, Jingqin
2014-09-01
To improve the performance of SG-III prototype facility (TIL-Technical Integration Line), final optics assembly (FOA) is re-designed. It contains that stray light and focusing ghosts are optimized, operational performance and environments are improved and the total thickness of optics is reduced. With the re-designed FOA, Some performance advantages are achieved. First, the optics damages are mitigated obviously, especially crystals and Focus lens; Second, stray light and focusing ghosts are controlled better that organic contamination sources inside FOA are eliminated; Third, maintenance and operation are more convenient for the atoms environment; Fourth, the focusable power on target is increased for lower B-integral.
Debs, Tarek; Petrucciani, Niccolo; Kassir, Radwan; Iannelli, Antonio; Amor, Imed Ben; Gugenheim, Jean
During the past decade, the field of bariatric surgery has changed dramatically. The study aims to summarize and perform a periodic assessment of the current trends in the use of bariatric surgery in France and review findings on the long-term progression of bariatric surgery. The data were extracted from the national registry Programme de Médicalisation des Systèmes d׳Information from 2005 to 2014. National health system and private practice in France. We identified all hospitalizations during which a bariatric procedure was performed for the treatment of morbid obesity from 2005 to 2014 in France. Data were reviewed for patient characteristics and the number and types of bariatric procedures. We also analyzed the setting and the characteristics of the centers and the difference of the activity between the public and private sector. Between 2005 and 2014, the number of bariatric operations increased fourfold. Sleeve gastrectomy became the most performed bariatric intervention, representing 60.7% of bariatric activity in 2014. There was a concomitant steep increase in sleeve gastrectomy, with Roux-en-Y gastric bypass increasing slightly overall and a substantial decrease in adjustable gastric banding. In 2014, 481 centers performed bariatric surgery. Among them, one third performed<30 operations/yr. We observed an overall in-hospital mortality ranging from .038% to .05% during the last 3 years. Bariatric surgery is increasing in France, with a fourfold augmentation of interventions in the last 10 years. The number of sleeve gastrectomies has increased considerably. This activity is performed in numerous centers, one third of them performing<30 interventions/yr. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Use of optimization to predict the effect of selected parameters on commuter aircraft performance
NASA Technical Reports Server (NTRS)
Wells, V. L.; Shevell, R. S.
1982-01-01
An optimizing computer program determined the turboprop aircraft with lowest direct operating cost for various sets of cruise speed and field length constraints. External variables included wing area, wing aspect ratio and engine sea level static horsepower; tail sizes, climb speed and cruise altitude were varied within the function evaluation program. Direct operating cost was minimized for a 150 n.mi typical mission. Generally, DOC increased with increasing speed and decreasing field length but not by a large amount. Ride roughness, however, increased considerably as speed became higher and field length became shorter.
Single-stage experimental evaluation of compressor blading with slots and vortex generators, part 5
NASA Technical Reports Server (NTRS)
Brent, J. A.
1972-01-01
An experimental investigation was conducted to determine the extent that slots and vortex generators can increase the efficiency and stable operating range of highly loaded compressor stages. With slots in the rotor and stator, the stage performance both with and without vortex generators was inferior to that achieved with the unslotted blading. However, with vortex generators, stator slots, and an unslotted rotor, the stable operating range increased 25% and the stage peak efficiency increased 2.1% over the values achieved with the unslotted rotor and stator without vortex generators, at design equivalent rotor speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelin, Timothy J; Ho, Clifford K.; Horstman, Luke
This paper presents a study of alternative heliostat standby aiming strategies and their impact on avian flux hazards and operational performance of a concentrating solar power plant. A mathematical model was developed that predicts the bird-feather temperature as a function of solar irradiance, thermal emittance, convection, and thermal properties of the feather. The irradiance distribution in the airspace above the Ivanpah Unit 2 heliostat field was simulated using a ray-trace model for two different times of the day, four days of the year, and nine different standby aiming strategies. The impact of the alternative aiming strategies on operational performance wasmore » assessed by comparing the heliostat slew times from standby position to the receiver for the different aiming strategies. Increased slew times increased a proxy start-up time that reduced the simulated annual energy production. Results showed that spreading the radial aim points around the receiver to a distance of ~150 m or greater reduced the hazardous exposure times that the feather temperature exceeded the hazard metric of 160 degrees C. The hazardous exposure times were reduced by ~23% and 90% at a radial spread of aim points extending to 150 m and 250 m, respectively, but the simulated annual energy production decreased as a result of increased slew times. Single point-focus aiming strategies were also evaluated, but these strategies increased the exposure hazard relative to other aiming strategies.« less
An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions
Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David; ...
2017-04-30
Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less
An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David
Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less
Abich, Julian; Reinerman-Jones, Lauren; Matthews, Gerald
2017-06-01
The present study investigated how three task demand factors influenced performance, subjective workload and stress of novice intelligence, surveillance, and reconnaissance operators within a simulation of an unmanned ground vehicle. Manipulations were task type, dual-tasking and event rate. Participants were required to discriminate human targets within a street scene from a direct video feed (threat detection [TD] task) and detect changes in symbols presented in a map display (change detection [CD] task). Dual-tasking elevated workload and distress, and impaired performance for both tasks. However, with increasing event rate, CD task deteriorated, but TD improved. Thus, standard workload models provide a better guide to evaluating the demands of abstract symbols than to processing realistic human characters. Assessment of stress and workload may be especially important in the design and evaluation of systems in which human character critical signals must be detected in video images. Practitioner Summary: This experiment assessed subjective workload and stress during threat and CD tasks performed alone and in combination. Results indicated an increase in event rate led to significant improvements in performance during TD, but decrements during CD, yet both had associated increases in workload and engagement.
NASA Astrophysics Data System (ADS)
Wajszczyk, Bronisław; Biernacki, Konrad
2018-04-01
The increase of interoperability of radio electronic systems used in the Armed Forces requires the processing of very large amounts of data. Requirements for the integration of information from many systems and sensors, including radar recognition, electronic and optical recognition, force to look for more efficient methods to support information retrieval in even-larger database resources. This paper presents the results of research on methods of improving the efficiency of databases using various types of indexes. The data structure indexing technique is a solution used in RDBMS systems (relational database management system). However, the analysis of the performance of indices, the description of potential applications, and in particular the presentation of a specific scale of performance growth for individual indices are limited to few studies in this field. This paper contains analysis of methods affecting the work efficiency of a relational database management system. As a result of the research, a significant increase in the efficiency of operations on data was achieved through the strategy of indexing data structures. The presentation of the research topic discussed in this paper mainly consists of testing the operation of various indexes against the background of different queries and data structures. The conclusions from the conducted experiments allow to assess the effectiveness of the solutions proposed and applied in the research. The results of the research indicate the existence of a real increase in the performance of operations on data using indexation of data structures. In addition, the level of this growth is presented, broken down by index types.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Wilson, Ernest E
1929-01-01
This report presents the results of an analytical investigation on the practicability of using mechanically operated discharge valves in conjunction with a manually operated intake control for improving the performance of N. A. C. A. Roots type superchargers. These valves, which may be either of the oscillating or rotating type, are placed in the discharge opening of the supercharger and are so shaped and synchronized with the supercharger impellers that they do not open until the air has been compressed to the delivery pressure. The intake control limits the quantity of air compressed to engine requirements by permitting the excess air to escape from the compression chamber before compression begins. The percentage power saving and the actual horsepower saved were computed for altitudes from 0 to 20,000 feet. These computations are based on the pressure-volume cards for the conventional and the modified roots type superchargers and on the results of laboratory tests of the conventional type. The use of discharge valves shows a power saving of approximately 26 per cent at a critical altitude of 20,000 feet. In addition, these valves reduce the amplitude of the discharge pulsations and increase the volumetric efficiency. With slow-speed roots blowers operating at high-pressure differences even better results would be expected. For aircraft engine superchargers operating at high speeds these discharge valves increase the performance as above, but have the disadvantages of increasing the weight and of adding a high-speed mechanism to a simple machine. (author)
Performance Increase Verification for a Bipropellant Rocket Engine
NASA Technical Reports Server (NTRS)
Alexander, Leslie; Chapman, Jack; Wilson, Reed; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott; England, Chris
2008-01-01
Component performance assessment testing for a, pressure-fed earth storable bipropellant rocket engine was successfully completed at Aerojet's Redmond test facility. The primary goal of the this development project is to increase the specific impulse of an apogee class bi-propellant engine to greater than 330 seconds with nitrogen tetroxide and monomethylhydrazine propellants and greater than 335 seconds with nitrogen tetroxide and hydrazine. The secondary goal of the project is to take greater advantage of the high temperature capabilities of iridium/rhenium chambers. In order to achieve these goals, the propellant feed pressures were increased to 400 psia, nominal, which in turn increased the chamber pressure and temperature, allowing for higher c*. The tests article used a 24-on-24 unlike doublet injector design coupled with a copper heat sink chamber to simulate a flight configuration combustion chamber. The injector is designed to produce a nominal 200 lbf of thrust with a specific impulse of 335 seconds (using hydrazine fuel). Effect of Chamber length on engine C* performance was evaluated with the use of modular, bolt-together test hardware and removable chamber inserts. Multiple short duration firings were performed to characterize injector performance across a range of thrust levels, 180 to 220 lbf, and mixture ratios, from 1.1 to 1.3. During firing, ignition transient, chamber pressure, and various temperatures were measured in order to evaluate the performance of the engine and characterize the thermal conditions. The tests successfully demonstrated the stable operation and performance potential of a full scale engine with a measured c* of XXXX ft/sec (XXXX m/s) under nominal operational conditions.
Thermal Characterization of a NASA 30-cm Ion Thruster Operated up to 5 kW
NASA Technical Reports Server (NTRS)
SarverVerhey, Timothy R.; Domonkos, Matthew T.; Patterson, Michael J.
2001-01-01
A preliminary thermal characterization of a newly-fabricated NSTAR-derived test-bed thruster has recently been performed. The temperature behavior of the rare-earth magnets are reported because of their critical impact on thruster operation. The results obtained to date showed that the magnet temperatures did not exceed the stabilization Emit during thruster operation up to 4.6 kW. Magnet temperature data were also obtained for two earlier NSTAR Engineering Model Thrusters and are discussed in this report. Comparison between these thrusters suggests that the test-bed engine in its present condition is able to operate safely at higher power because of the lower discharge losses over the entire operating power range of this engine. However, because of the 'burn-in' behavior of the NSTAR thruster, magnet temperatures are expected to increase as discharge losses increase with accumulated thruster operation. Consequently, a new engineering solution may be required to achieve 5-kW operation with acceptable margin.
Cima, Robert R; Brown, Michael J; Hebl, James R; Moore, Robin; Rogers, James C; Kollengode, Anantha; Amstutz, Gwendolyn J; Weisbrod, Cheryl A; Narr, Bradly J; Deschamps, Claude
2011-07-01
Operating rooms (ORs) are resource-intense and costly hospital units. Maximizing OR efficiency is essential to maintaining an economically viable institution. OR efficiency projects often focus on a limited number of ORs or cases. Efforts across an entire OR suite have not been reported. Lean and Six Sigma methodologies were developed in the manufacturing industry to increase efficiency by eliminating non-value-added steps. We applied Lean and Six Sigma methodologies across an entire surgical suite to improve efficiency. A multidisciplinary surgical process improvement team constructed a value stream map of the entire surgical process from the decision for surgery to discharge. Each process step was analyzed in 3 domains, ie, personnel, information processed, and time. Multidisciplinary teams addressed 5 work streams to increase value at each step: minimizing volume variation; streamlining the preoperative process; reducing nonoperative time; eliminating redundant information; and promoting employee engagement. Process improvements were implemented sequentially in surgical specialties. Key performance metrics were collected before and after implementation. Across 3 surgical specialties, process redesign resulted in substantial improvements in on-time starts and reduction in number of cases past 5 pm. Substantial gains were achieved in nonoperative time, staff overtime, and ORs saved. These changes resulted in substantial increases in margin/OR/day. Use of Lean and Six Sigma methodologies increased OR efficiency and financial performance across an entire operating suite. Process mapping, leadership support, staff engagement, and sharing performance metrics are keys to enhancing OR efficiency. The performance gains were substantial, sustainable, positive financially, and transferrable to other specialties. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Regression analysis of traction characteristics of traction fluids
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Rohn, D. A.
1983-01-01
Traction data for Santotrac 50 and TDF-88 over a wide range of operating conditions were analyzed. An eight term correlation equation to predict the maximum traction coefficient and a six term correlation equation to predict the initial slope of the traction curve were developed. The slope correlation was corrected for size effect considering the compliance of the disks. The effects of different operating conditions on the traction performance of each traction fluid were studied. Both fluids exhibited a loss in traction with increases in spin, but the losses with the TDF-88 fluid were not as severe as those with Santotrac 50. Overall, both fluids exhibited similar performance, showing an increase in traction with contact pressure up to about 2.0 GPa, and a reduction in traction with higher surface speeds up to about 100 m/sec. The apparent stiffness of the traction contact, that is, film disk combination, increases with contact pressure and decreases with speed.
Surgical mortality - an analysis of all deaths within a general surgical department.
Heeney, A; Hand, F; Bates, J; Mc Cormack, O; Mealy, K
2014-06-01
Post-operative mortality is one of the most universal and important outcomes that can be measured in surgical practice and is increasingly used to measure quality of care. The aim of this study was to evaluate overall mortality within a surgical department and to analyse factors associated with operative and non-operative death. We analysed prospectively collected data detailing all surgical admissions, procedures and mortalities over a twelve year period (2000-2012) from a regional Irish hospital. We evaluated type of operation, patient factors and cause of death. A total of 62 085 patients were admitted under surgical care between the 1st of January 2000 and the 31st of December 2011. There were a total of 578 deaths during this period (0.93% overall mortality rate). 415 deaths (71.8%) occurred in non-operative patients in which advanced cancer (36.5%), sepsis (14.9%), cardiorespiratory failure (13.2%) and trauma (11%) were the primary causes. A total of 22 788 surgical procedures were performed with an operative mortality rate of 0.71%. Mortality rate following elective surgery was 0.17% and following emergency surgery was 10-fold higher (1.7%). The main cause of post-operative death was sepsis (30.02%). Emergency operations, increasing age and major procedures significantly increased mortality risk (p < 0.001). Post-operative deaths comprise a small proportion of overall deaths within a surgical service. Mortality figures alone are not an accurate representation of surgical performance but in the absence of other easily available quality outcome measures they can be used as a surrogate marker when all confounding factors are accounted for. Copyright © 2013 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
An Implementation Study of Performance Driven Budgeting in the New York City Public Schools.
ERIC Educational Resources Information Center
Siegel, Dorothy E.; Fruchter, Norm
School-based planning for instructional improvement has been a major national education reform focus for over 2 decades. However, many efforts proposed to put schools in charge of their own instructional operations delivered only increased discretion rather than real autonomy over internal operations, such as budgeting. In 1997, New York City…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan
This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Thiagarajan; Kundu, Soumya; Chen, Yan
This paper develops and utilizes an optimization based framework to investigate the maximal energy efficiency potentially attainable by HVAC system operation in a non-predictive context. Performance is evaluated relative to the existing state of the art set-point reset strategies. The expected efficiency increase driven by operation constraints relaxations is evaluated.
NASA Astrophysics Data System (ADS)
Niaz, Mansoor
It has been shown that student performance in chemistry problems decreases as the M demand of the problem increases, thus emphasizing the role of information processing in problem solving. It was hypothesized that manipulation (increase or decrease) of the M demand of a problem can affect student performance. Increasing the M demand of a problem would affect more the performance of subjects with a limited functional M capacity. The objective of this study is to investigate the effect of manipulation (increase) of the M demand of chemistry problems, having the same logical structure, on performance of students having different functional M capacity, cognitive style, and formal operational reasoning patterns. As predicted the performance of one group of students was lower after the manipulation (increase) in the M demand of the problem. This shows how even small changes in the amount of information required for processing can lead to working memory overload, as a consequence of a poor capacity for mobilization of M power.
Noise generated by a propeller in a wake
NASA Technical Reports Server (NTRS)
Block, P. J. W.
1984-01-01
Propeller performance and noise were measured on two model scale propellers operating in an anechoic flow environment with and without a wake. Wake thickness of one and three propeller chords were generated by an airfoil which spanned the full diameter of the propeller. Noise measurements were made in the relative near field of the propeller at three streamwise and three azimuthal positions. The data show that as much as 10 dB increase in the OASPL results when a wake is introduced into an operating propeller. Performance data are also presented for completeness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Myles A; Perl, Emmett; Simon, John D
We demonstrate dual junction (Al)GaInP/GaAs solar cells that are designed to operate at 400 degrees C and 1000X concentration in a hybrid photovoltaic-solar thermal concentrator system. The cells have a front metallization and anti-reflection coating that are stable under 400 degrees C operation. We show how the cell performance degrades with increasing aluminum compositions in the top cell. Our best cell is a GaInP/GaAs tandem that demonstrated 15+/-1% efficiency at 400 degrees C over a concentration range of 300-1000 suns, with several pathways to improved performance.
Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes.
Coday, Bryan D; Heil, Dean M; Xu, Pei; Cath, Tzahi Y
2013-03-05
Forward osmosis (FO) is an emerging membrane separation process that continues to be tested and implemented in various industrial water and wastewater treatment applications. The growing interests in the technology have prompted laboratories and manufacturers to adopt standard testing methods to ensure accurate comparison of membrane performance under laboratory-controlled conditions; however, standardized methods might not capture specific operating conditions unique to industrial applications. Experiments with cellulose triacetate (CTA) and polyamide thin-film composite (TFC) FO membranes demonstrated that hydraulic transmembrane pressure (TMP), common in industrial operation of FO membrane elements, could affect membrane performance. Experiments were conducted with three FO membranes and with increasing TMP up to a maximum of 50 psi (3.45 bar). The feed solution was a mixture of salts and the draw solution was either a NaCl solution or concentrated seawater at similar osmotic pressure. Results revealed that TMP minimally affected water flux, reverse salt flux (RSF), and solute rejection of the CTA membrane. However, water flux through TFC membranes might slightly increase with increasing TMP, and RSF substantially declines with increasing TMP. It was observed that rejection of feed constituents was influenced by TMP and RSF.
NASA Astrophysics Data System (ADS)
Cacouris, Theodore; Rao, Rajasekhar; Rokitski, Rostislav; Jiang, Rui; Melchior, John; Burfeindt, Bernd; O'Brien, Kevin
2012-03-01
Deep UV (DUV) lithography is being applied to pattern increasingly finer geometries, leading to solutions like double- and multiple-patterning. Such process complexities lead to higher costs due to the increasing number of steps required to produce the desired results. One of the consequences is that the lithography equipment needs to provide higher operating efficiencies to minimize the cost increases, especially for producers of memory devices that experience a rapid decline in sales prices of these products over time. In addition to having introduced higher power 193nm light sources to enable higher throughput, we previously described technologies that also enable: higher tool availability via advanced discharge chamber gas management algorithms; improved process monitoring via enhanced on-board beam metrology; and increased depth of focus (DOF) via light source bandwidth modulation. In this paper we will report on the field performance of these technologies with data that supports the desired improvements in on-wafer performance and operational efficiencies.
Impact of Operating Rules on Planning Capacity Expansion of Urban Water Supply Systems
NASA Astrophysics Data System (ADS)
de Neufville, R.; Galelli, S.; Tian, X.
2017-12-01
This study addresses the impact of operating rules on capacity planning of urban water supply systems. The continuous growth of metropolitan areas represents a major challenge for water utilities, which often rely on industrial water supply (e.g., desalination, reclaimed water) to complement natural resources (e.g., reservoirs). These additional sources increase the reliability of supply, equipping operators with additional means to hedge against droughts. How do their rules for using industrial water supply impact the performance of water supply system? How might it affect long-term plans for capacity expansion? Possibly significantly, as demonstrated by the analysis of the operations and planning of a water supply system inspired by Singapore. Our analysis explores the system dynamics under multiple inflow and management scenarios to understand the extent to which alternative operating rules for the use of industrial water supply affect system performance. Results first show that these operating rules can have significant impact on the variability in system performance (e.g., reliability, energy use) comparable to that of hydro-climatological conditions. Further analyses of several capacity expansion exercises—based on our original hydrological and management scenarios—show that operating rules significantly affect the timing and magnitude of critical decisions, such as the construction of new desalination plants. These results have two implications: Capacity expansion analysis should consider the effect of a priori uncertainty about operating rules; and operators should consider how their flexibility in operating rules can affect their perceived need for capacity.
NASA Technical Reports Server (NTRS)
Mavroidis, Constantinos; Pfeiffer, Charles; Paljic, Alex; Celestino, James; Lennon, Jamie; Bar-Cohen, Yoseph
2000-01-01
For many years, the robotic community sought to develop robots that can eventually operate autonomously and eliminate the need for human operators. However, there is an increasing realization that there are some tasks that human can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robot can be employed to perform these tasks. Remotely performing these types of tasks requires operating robots as human surrogates. While current "hand master" haptic systems are able to reproduce the feeling of rigid objects, they present great difficulties in emulating the feeling of remote/virtual stiffness. In addition, they tend to be heavy, cumbersome and usually they only allow limited operator workspace. In this paper a novel haptic interface is presented to enable human-operators to "feel" and intuitively mirror the stiffness/forces at remote/virtual sites enabling control of robots as human-surrogates. This haptic interface is intended to provide human operators intuitive feeling of the stiffness and forces at remote or virtual sites in support of space robots performing dexterous manipulation tasks (such as operating a wrench or a drill). Remote applications are referred to the control of actual robots whereas virtual applications are referred to simulated operations. The developed haptic interface will be applicable to IVA operated robotic EVA tasks to enhance human performance, extend crew capability and assure crew safety. The electrically controlled stiffness is obtained using constrained ElectroRheological Fluids (ERF), which changes its viscosity under electrical stimulation. Forces applied at the robot end-effector due to a compliant environment will be reflected to the user using this ERF device where a change in the system viscosity will occur proportionally to the force to be transmitted. In this paper, we will present the results of our modeling, simulation, and initial testing of such an electrorheological fluid (ERF) based haptic device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Steven; Valera-Leon, Carlos; Dechev, Damian
The vector is a fundamental data structure, which provides constant-time access to a dynamically-resizable range of elements. Currently, there exist no wait-free vectors. The only non-blocking version supports only a subset of the sequential vector API and exhibits significant synchronization overhead caused by supporting opposing operations. Since many applications operate in phases of execution, wherein each phase only a subset of operations are used, this overhead is unnecessary for the majority of the application. To address the limitations of the non-blocking version, we present a new design that is wait-free, supports more of the operations provided by the sequential vector,more » and provides alternative implementations of key operations. These alternatives allow the developer to balance the performance and functionality of the vector as requirements change throughout execution. Compared to the known non-blocking version and the concurrent vector found in Intel’s TBB library, our design outperforms or provides comparable performance in the majority of tested scenarios. Over all tested scenarios, the presented design performs an average of 4.97 times more operations per second than the non-blocking vector and 1.54 more than the TBB vector. In a scenario designed to simulate the filling of a vector, performance improvement increases to 13.38 and 1.16 times. This work presents the first ABA-free non-blocking vector. Finally, unlike the other non-blocking approach, all operations are wait-free and bounds-checked and elements are stored contiguously in memory.« less
Feldman, Steven; Valera-Leon, Carlos; Dechev, Damian
2016-03-01
The vector is a fundamental data structure, which provides constant-time access to a dynamically-resizable range of elements. Currently, there exist no wait-free vectors. The only non-blocking version supports only a subset of the sequential vector API and exhibits significant synchronization overhead caused by supporting opposing operations. Since many applications operate in phases of execution, wherein each phase only a subset of operations are used, this overhead is unnecessary for the majority of the application. To address the limitations of the non-blocking version, we present a new design that is wait-free, supports more of the operations provided by the sequential vector,more » and provides alternative implementations of key operations. These alternatives allow the developer to balance the performance and functionality of the vector as requirements change throughout execution. Compared to the known non-blocking version and the concurrent vector found in Intel’s TBB library, our design outperforms or provides comparable performance in the majority of tested scenarios. Over all tested scenarios, the presented design performs an average of 4.97 times more operations per second than the non-blocking vector and 1.54 more than the TBB vector. In a scenario designed to simulate the filling of a vector, performance improvement increases to 13.38 and 1.16 times. This work presents the first ABA-free non-blocking vector. Finally, unlike the other non-blocking approach, all operations are wait-free and bounds-checked and elements are stored contiguously in memory.« less
Performance monitoring can boost turboexpander efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntire, R.
1982-07-05
This paper discusses ways of improving the productivity of the turboexpander/refrigeration system's radial expander and radial compressor through systematic review of component performance. It reviews several techniques to determine the performance of an expander and compressor. It suggests that any performance improvement program requires quantifying the performance of separate components over a range of operating conditions; estimating the increase in performance associated with any hardware change; and developing an analytical (computer) model of the entire system by using the performance curve of individual components. The model is used to quantify the economic benefits of any change in the system, eithermore » a change in operating procedures or a hardware modification. Topics include proper ways of using antisurge control valves and modifying flow rate/shaft speed (Q/N). It is noted that compressor efficiency depends on the incidence angle of blade at the rotor leading edge and the angle of the incoming gas stream.« less
Changes in activities performed in leisure time after open heart surgery.
Bunzel, B; Eckersberger, F
1989-06-01
To assess any changes made in the leisure activities performed after open heart surgery, 94 patients (48 with aortocoronary bypass operation, 46 with valve replacements) were asked exactly one year postoperatively whether activities, collected in a list of 21 items, had increased, decreased or remained equal since their operation. In spite of the fact that most leisure activities seemed to have remained unchanged, after operation patients seem to undertake activities quite contrary to their motivations for undergoing surgery in the first place: active participation (such as involvement in some kind of sport, going out to cinema, theatre, restaurants,...) decreases, whereas passive activities (such as watching sports on television, listening to music,...) increases significantly. Although 90% of the patients stated their physical, and 67% their emotional status, as being clearly improved compared to preoperative values, the experience of body limitations as well as of fear and anxiety seems to be so durable that the patients, now in good condition, become passive onlookers and cease to participate in social life.
Numerical simulation of proton exchange membrane fuel cells at high operating temperature
NASA Astrophysics Data System (ADS)
Peng, Jie; Lee, Seung Jae
A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.
Surgery for failed cervical spine reconstruction.
Helgeson, Melvin D; Albert, Todd J
2012-03-01
Review article. To review the indications, operative strategy, and complications of revision cervical spine reconstruction. With many surgeons expanding their indications for cervical spine surgery, the number of patients being treated operatively has increased. Unfortunately, the number of patients requiring revision procedures is also increasing, but very little literature exists reviewing changes in the indications or operative planning for revision reconstruction. Narrative and review of the literature. In addition to the well-accepted indications for primary cervical spine surgery (radiculopathy, myelopathy, instability, and tumor), we have used the following indications for revision surgery: pseudarthrosis, adjacent segment degeneration, inadequate decompression, iatrogenic instability, and deformity. Our surgical goal for pseudarthrosis is obviously to obtain a fusion, which can usually be performed with an approach not done previously. Our surgical goals for instability and deformity are more complex, with a focus on decompression of any neurologic compression, correction of deformity, and stability. Revision cervical spine reconstruction is safe and effective if performed for the appropriate indications and with proper planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krad, Ibrahim; Gao, David Wenzhong; Ibanez, Eduardo
2016-12-01
The electric power system has continuously evolved in order to accommodate new technologies and operating strategies. As the penetration of integrated variable generation in the system increases, it is beneficial to develop strategies that can help mitigate their effect on the grid. Historically, power system operators have held excess capacity during the commitment and dispatch process to allow the system to handle unforeseen load ramping events. As variable generation resources increase, sufficient flexibility scheduled in the system is required to ensure that system performance is not deteriorated in the presence of additional variability and uncertainty. This paper presents a systematicmore » comparison of various flexibility reserve strategies. Several of them are implemented and applied in a common test system, in order to evaluate their effect on the economic and reliable operations. Furthermore, a three stage reserve modifier algorithm is proposed and evaluated for its ability to improve system performance.« less
ERIC Educational Resources Information Center
Steinberg, Matthew P.
2014-01-01
School districts throughout the United States are increasingly providing greater autonomy to local public (non-charter) school principals. In 2005-06, Chicago Public Schools initiated the Autonomous Management and Performance Schools program, granting academic, programmatic, and operational freedoms to select principals. This paper provides…
NASA Astrophysics Data System (ADS)
Muir, D. M.; Akeredolu, F.
The high collection efficiencies that are required nowadays to meet the stricter pollution control standards necessitate the use of high-energy scrubbers, such as the venturi scrubber, for the arrestment of fine particulate matter from exhaust gas streams. To achieve more energy-efficient particle collection, several venturi stages may be used in series. This paper is principally a theoretical investigation of the performance of a multiple-stage venturi scrubber, the main objective of the study being to establish the best venturi design configuration for any given set of operating conditions. A mathematical model is used to predict collection efficiency vs pressure drop relationships for particle sizes in the range 0.2-5.0 μm for one-, two-, three- and four-stage scrubbers. The theoretical predictions are borne out qualitatively by experimental work. The paper shows that the three-stage venturi produces the highest collection efficiencies over the normal operating range except for the collection of very fine particles at low pressure drops, when the single-stage venturi is best. The significant improvement in performance achieved by the three-stage venturi when compared with conventional single-stage operation increases as both the particle size and system pressure drop increase.
Wilson, L Paige; Sharvelle, Sybil E; De Long, Susan K
2016-11-01
Suboptimal conditions in anaerobic digesters (e.g., presence of common inhibitors ammonia and salinity) limit waste hydrolysis and lead to unstable performance and process failures. Application of inhibitor-tolerant inocula improves hydrolysis, but approaches are needed to establish and maintain these desired waste-hydrolyzing bacteria in high-solids reactors. Herein, performance was compared for leach bed reactors (LBRs) seeded with unacclimated or acclimated inoculum (0-60% by mass) at start-up and over long-term operation. High quantities of inoculum (∼60%) increase waste hydrolysis and are beneficial at start-up or when inhibitors are increasing. After start-up (∼112days) with high inoculum quantities, leachate recirculation leads to accumulation of inhibitor-tolerant hydrolyzing bacteria in leachate. During long-term operation, low inoculum quantities (∼10%) effectively increase waste hydrolysis relative to without solids-derived inoculum. Molecular analyses indicated that combining digested solids with leachate-based inoculum doubles quantities of Bacteria contacting waste over a batch and supplies additional desirable phylotypes Bacteriodes and Clostridia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measured Performance of a Low Temperature Air Source Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.K. Johnson
2013-09-01
A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.
Coordinated crew performance in commercial aircraft operations
NASA Technical Reports Server (NTRS)
Murphy, M. R.
1977-01-01
A specific methodology is proposed for an improved system of coding and analyzing crew member interaction. The complexity and lack of precision of many crew and task variables suggest the usefulness of fuzzy linguistic techniques for modeling and computer simulation of the crew performance process. Other research methodologies and concepts that have promise for increasing the effectiveness of research on crew performance are identified.
NASA Astrophysics Data System (ADS)
Garma, Rey Jan D.
The trade between detector and optics performance is often conveyed through the Q metric, which is defined as the ratio of detector sampling frequency and optical cutoff frequency. Historically sensors have operated at Q ≈ 1, which introduces aliasing but increases the system modulation transfer function (MTF) and signal-to-noise ratio (SNR). Though mathematically suboptimal, such designs have been operationally ideal when considering system parameters such as pointing stability and detector performance. Substantial advances in read noise and quantum efficiency of modern detectors may compensate for the negative aspects associated with balancing detector/optics performance, presenting an opportunity to revisit the potential for implementing Nyquist-sampled (Q ≈ 2) sensors. A digital image chain simulation is developed and validated against a laboratory testbed using objective and subjective assessments. Objective assessments are accomplished by comparison of the modeled MTF and measurements from slant-edge photographs. Subjective assessments are carried out by performing a psychophysical study where subjects are asked to rate simulation and testbed imagery against a DeltaNIIRS scale with the aid of a marker set. Using the validated model, additional test cases are simulated to study the effects of increased detector sampling on image quality with operational considerations. First, a factorial experiment using Q-sampling, pointing stability, integration time, and detector performance is conducted to measure the main effects and interactions of each on the response variable, DeltaNIIRS. To assess the fidelity of current models, variants of the General Image Quality Equation (GIQE) are evaluated against subject-provided ratings and two modified GIQE versions are proposed. Finally, using the validated simulation and modified IQE, trades are conducted to ascertain the feasibility of implementing Q ≈ 2 designs in future systems.
Dilber, Daniel; Malcic, Ivan
2010-08-01
The Aristotle basic complexity score and the risk adjustment in congenital cardiac surgery-1 method were developed and used to compare outcomes of congenital cardiac surgery. Both methods were used to compare results of procedures performed on our patients in Croatian cardiosurgical centres and results of procedures were taken abroad. The study population consisted of all patients with congenital cardiac disease born to Croatian residents between 1 October, 2002 and 1 October, 2007 undergoing a cardiovascular operation during this period. Of the 556 operations, the Aristotle basic complexity score could be assigned to 553 operations and the risk adjustment in congenital cardiac surgery-1 method to 536 operations. Procedures were performed in two institutions in Croatia and seven institutions abroad. The average complexity for cardiac procedures performed in Croatia was significantly lower. With both systems, along with the increase in complexity, there is also an increase in mortality before discharge and postoperative length of stay. Only after the adjustment for complexity there are marked differences in mortality and occurrence of postoperative complications. Both, the Aristotle basic complexity score and the risk adjustment in congenital cardiac surgery-1 method were predictive of in-hospital mortality as well as prolonged postoperative length to stay, and can be used as a tool in our country to evaluate a cardiosurgical model and recognise potential problems.
Azzi, Alain Joe; Shah, Karan; Seely, Andrew; Villeneuve, James Patrick; Sundaresan, Sudhir R; Shamji, Farid M; Maziak, Donna E; Gilbert, Sebastien
2016-05-01
Health care resources are costly and should be used judiciously and efficiently. Predicting the duration of surgical procedures is key to optimizing operating room resources. Our objective was to identify factors influencing operative time, particularly surgical team turnover. We performed a single-institution, retrospective review of lobectomy operations. Univariate and multivariate analyses were performed to evaluate the impact of different factors on surgical time (skin-to-skin) and total procedure time. Staff turnover within the nursing component of the surgical team was defined as the number of instances any nurse had to leave the operating room over the total number of nurses involved in the operation. A total of 235 lobectomies were performed by 5 surgeons, most commonly for lung cancer (95%). On multivariate analysis, percent forced expiratory volume in 1 second, surgical approach, and lesion size had a significant effect on surgical time. Nursing turnover was associated with a significant increase in surgical time (53.7 minutes; 95% confidence interval, 6.4-101; P = .026) and total procedure time (83.2 minutes; 95% confidence interval, 30.1-136.2; P = .002). Active management of surgical team turnover may be an opportunity to improve operating room efficiency when the surgical team is engaged in a major pulmonary resection. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
A Framework for Adaptable Operating and Runtime Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterling, Thomas
The emergence of new classes of HPC systems where performance improvement is enabled by Moore’s Law for technology is manifest through multi-core-based architectures including specialized GPU structures. Operating systems were originally designed for control of uniprocessor systems. By the 1980s multiprogramming, virtual memory, and network interconnection were integral services incorporated as part of most modern computers. HPC operating systems were primarily derivatives of the Unix model with Linux dominating the Top-500 list. The use of Linux for commodity clusters was first pioneered by the NASA Beowulf Project. However, the rapid increase in number of cores to achieve performance gain throughmore » technology advances has exposed the limitations of POSIX general-purpose operating systems in scaling and efficiency. This project was undertaken through the leadership of Sandia National Laboratories and in partnership of the University of New Mexico to investigate the alternative of composable lightweight kernels on scalable HPC architectures to achieve superior performance for a wide range of applications. The use of composable operating systems is intended to provide a minimalist set of services specifically required by a given application to preclude overheads and operational uncertainties (“OS noise”) that have been demonstrated to degrade efficiency and operational consistency. This project was undertaken as an exploration to investigate possible strategies and methods for composable lightweight kernel operating systems towards support for extreme scale systems.« less
Trends in Utilization of Vocal Fold Injection Procedures.
Rosow, David E
2015-11-01
Office-based vocal fold injections have become increasingly popular over the past 15 years. Examination of trends in procedure coding for vocal fold injections in the United States from 2000 to 2012 was undertaken to see if they reflect this shift. The US Part B Medicare claims database was queried from 2000 through 2012 for multiple Current Procedural Terminology codes. Over the period studied, the number of nonoperative laryngoscopic injections (31513, 31570) and operative medialization laryngoplasties (31588) remained constant. Operative vocal fold injection (31571) demonstrated marked linear growth over the 12-year study period, from 744 procedures in 2000 to 4788 in 2012-an increase >640%. The dramatic increased incidence in the use of code 31571 reflects an increasing share of vocal fold injections being performed in the operating room and not in an office setting, running counter to the prevailing trend toward awake, office-based injection procedures. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Radiation Performance of Commercial SiGe HBT BiCMOS-High Speed Operational Amplifiers
NASA Technical Reports Server (NTRS)
Chen, Dakai; Pellish, Jonathan; Phan, Anthony; Kim, Hak; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; LaBel, Kenneth
2010-01-01
We present results on heavy-ion and proton irradiations for commercial SiGe BiCMOS operational amplifiers: LTC6400-20 from Linear Technology and THS4304 from Texas Instruments. We found that the devices are susceptible to heavy-ion-induced SETs. The SET cross-sections increase with increasing operating frequency. The LTC6400 exhibits a LET(sub th) < 7.4 MeV·sq cm/mg for frequencies ranging from 10 to 1000 MHz. The THS4304 exhibits a LET(sub th) < 4.4 MeV·sq cm/mg at 200 MHz; the LET(sub th) decreases with increasing frequency. The significance of the SETs also increases with frequency. The SETs at 1000 MHz can erase several signal cycles. We al.so found that the LTC6400 is relatively robust against 198 and 54 MeV protons. We did not observe angular sensitivity from the proton irradiations.
Wagner, Justin P; Chen, David C; Donahue, Timothy R; Quach, Chi; Hines, O Joe; Hiatt, Jonathan R; Tillou, Areti
2014-01-01
To satisfy trainees' operative competency requirements while improving feedback validity and timeliness using a mobile Web-based platform. The Southern Illinois University Operative Performance Rating Scale (OPRS) was embedded into a website formatted for mobile devices. From March 2013 to February 2014, faculty members were instructed to complete the OPRS form while providing verbal feedback to the operating resident at the conclusion of each procedure. Submitted data were compiled automatically within a secure Web-based spreadsheet. Conventional end-of-rotation performance (CERP) evaluations filed 2006 to 2013 and OPRS performance scores were compared by year of training using serial and independent-samples t tests. The mean CERP scores and OPRS overall resident operative performance scores were directly compared using a linear regression model. OPRS mobile site analytics were reviewed using a Web-based reporting program. Large university-based general surgery residency program. General Surgery faculty used the mobile Web OPRS system to rate resident performance. Residents and the program director reviewed evaluations semiannually. Over the study period, 18 faculty members and 37 residents logged 176 operations using the mobile OPRS system. There were 334 total OPRS website visits. Median time to complete an evaluation was 45 minutes from the end of the operation, and faculty spent an average of 134 seconds on the site to enter 1 assessment. In the 38,506 CERP evaluations reviewed, mean performance scores showed a positive linear trend of 2% change per year of training (p = 0.001). OPRS overall resident operative performance scores showed a significant linear (p = 0.001), quadratic (p = 0.001), and cubic (p = 0.003) trend of change per year of clinical training, reflecting the resident operative experience in our training program. Differences between postgraduate year-1 and postgraduate year-5 overall performance scores were greater with the OPRS (mean = 0.96, CI: 0.55-1.38) than with CERP measures (mean = 0.37, CI: 0.34-0.41). Additionally, there were consistent increases in each of the OPRS subcategories. In contrast to CERPs, the OPRS fully satisfies the Accreditation Council for Graduate Medical Education and American Board of Surgery operative assessment requirements. The mobile Web platform provides a convenient interface, broad accessibility, automatic data compilation, and compatibility with common database and statistical software. Our mobile OPRS system encourages candid feedback dialog and generates a comprehensive review of individual and group-wide operative proficiency in real time. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Ziylan-Yavas, Asu; Ince, Nilsun H
2018-01-01
The study is about the assessment of single and multi-frequency operations for the overall degradation of a widely consumed analgesic pharmaceutical-ibuprofen (IBP). The selected frequencies were in the range of 20-1130kHz emissions coming from probes, baths and piezo-electric transducers attached to plate-type devices. Multi-frequency operations were applied either simultaneously as "duals", or sequentially at fixed time intervals; and the total reaction time in all operations was 30-min. The work also covers evaluation of the effect of zero-valent iron (ZVI) on the efficiency of the degradation process and the performance of the reaction systems. It was found that low-frequency probe type devices especially at 20kHz were ineffective when applied singly and without ZVI, and relatively more effective in combined-frequency operations in the presence of ZVI. The power efficiencies of the reactors and/or reaction systems showed that 20-kHz probe was considerably more energy intensive than all others, and was therefore not used in multi-frequency operations. The most efficient reactor in terms of power consumption was the bath (200kHz), which however provided insufficient mineralization of the test chemical. The highest percentage of TOC decay (37%) was obtained in a dual-frequency operation (40/572kHz) with ZVI, in which the energy consumption was neither low nor exceptionally too high. A sequential operation (40+200kHz) in that respect was more efficient, because it required much less energy for a similar TOC decay performance (30%). In general, the degradation of IBP increased with increased power consumption, which in turn reduced the sonochemical yield. The study also showed that advanced Fenton reactions with ZVI were faster in the presence of ultrasound, and the metal was very effective in improving the performance of low-frequency operations. Copyright © 2017 Elsevier B.V. All rights reserved.
Predictive displays for a process-control schematic interface.
Yin, Shanqing; Wickens, Christopher D; Helander, Martin; Laberge, Jason C
2015-02-01
Our objective was to examine the extent to which increasing precision of predictive (rate of change) information in process control will improve performance on a simulated process-control task. Predictive displays have been found to be useful in process control (as well as aviation and maritime industries). However, authors of prior research have not examined the extent to which predictive value is increased by increasing predictor resolution, nor has such research tied potential improvements to changes in process control strategy. Fifty nonprofessional participants each controlled a simulated chemical mixture process (honey mixer simulation) that simulated the operations found in process control. Participants in each of five groups controlled with either no predictor or a predictor ranging in the resolution of prediction of the process. Increasing detail resolution generally increased the benefit of prediction over the control condition although not monotonically so. The best overall performance, combining quality and predictive ability, was obtained by the display of intermediate resolution. The two displays with the lowest resolution were clearly inferior. Predictors with higher resolution are of value but may trade off enhanced sensitivity to variable change (lower-resolution discrete state predictor) with smoother control action (higher-resolution continuous predictors). The research provides guidelines to the process-control industry regarding displays that can most improve operator performance.
NASA Astrophysics Data System (ADS)
Giuliani, M.; Pianosi, F.; Castelletti, A.
2015-11-01
Advances in Environmental monitoring systems are making a wide range of data available at increasingly higher temporal and spatial resolution. This creates an opportunity to enhance real-time understanding of water systems conditions and to improve prediction of their future evolution, ultimately increasing our ability to make better decisions. Yet, many water systems are still operated using very simple information systems, typically based on simple statistical analysis and the operator's experience. In this work, we propose a framework to automatically select the most valuable information to inform water systems operations supported by quantitative metrics to operationally and economically assess the value of this information. The Hoa Binh reservoir in Vietnam is used to demonstrate the proposed framework in a multiobjective context, accounting for hydropower production and flood control. First, we quantify the expected value of perfect information, meaning the potential space for improvement under the assumption of exact knowledge of the future system conditions. Second, we automatically select the most valuable information that could be actually used to improve the Hoa Binh operations. Finally, we assess the economic value of sample information on the basis of the resulting policy performance. Results show that our framework successfully select information to enhance the performance of the operating policies with respect to both the competing objectives, attaining a 40% improvement close to the target trade-off selected as potentially good compromise between hydropower production and flood control.
Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.
2005-01-01
The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.
Demonstration of Four Operating Capabilities to Enable a Small Aircraft Transportation System
NASA Technical Reports Server (NTRS)
Viken, Sally A.; Brooks, Frederick M.
2005-01-01
The Small Aircraft Transportation System (SATS) project has been a five-year effort fostering research and development that could lead to the transformation of our country s air transportation system. It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand keeps steadily increasing. The SATS vision is to increase mobility in our nation s transportation system by expanding access to more than 3400 small community airports that are currently under-utilized. The SATS project has focused its efforts on four key operating capabilities that have addressed new emerging technologies and procedures to pave the way for a new way of air travel. The four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. These four capabilities are key to enabling low-cost, on-demand, point-to-point transportation of goods and passengers utilizing small aircraft operating from small airports. The focus of this paper is to discuss the technical and operational feasibility of the four operating capabilities and demonstrate how they can enable a small aircraft transportation system.
Ejaz, Aslam; Sachs, Teviah; He, Jin; Spolverato, Gaya; Hirose, Kenzo; Ahuja, Nita; Wolfgang, Christopher L.; Makary, Martin A.; Weiss, Matthew; Pawlik, Timothy M.
2015-01-01
Background The use of minimally invasive surgery (MIS) techniques for pancreatic and liver operations remains ill defined. We sought to compare inpatient outcomes among patients undergoing open versus MIS pancreas and liver operations using a nationally representative cohort. Methods We queried the Nationwide Inpatient Sample database for all major pancreatic and hepatic resections performed between 2000 and 2011. Appropriate International Classification of Diseases, 9th Revision (ICD-9) coding modifiers for laparoscopy and robotic assist were used to categorize procedures as MIS. Demographics, comorbidities, and inpatient outcomes were compared between the open and MIS groups. Results A total of 65,033 resections were identified (pancreas, n = 36,195 [55.7%]; liver, n = 28,035 [43.1%]; combined pancreas and liver, n = 803 [1.2%]). The overwhelming majority of operations were performed open (n = 62,192, 95.6%), whereas 4.4% (n = 2,841) were MIS. The overall use of MIS increased from 2.3% in 2000 to 7.5% in 2011. Compared with patients undergoing an open operation, MIS patients were older and had a greater incidence of multiple comorbid conditions. After operation, the incidence of complications for MIS (pancreas, 35.4%; liver, 29.5%) was lower than for open (pancreas, 41.6%; liver, 33%) procedures (all P < .05) resulting in a shorter median length of stay (8 vs 7 days; P = .001) as well as a lower in-hospital mortality (5.1% vs 2.8%; P = .001). Conclusion During the last decade, the number of MIS pancreatic and hepatic operations has increased, with nearly 1 in 13 HPB cases now being performed via an MIS approach. Despite MIS patients tending to have more preoperative medical comorbidities, postoperative morbidity, mortality, and duration of stay compared favorably with open surgery. PMID:25017135
Costa, Altair da Silva; Leão, Luiz Eduardo Villaça; Novais, Maykon Anderson Pires de; Zucchi, Paola
2015-01-01
To assess the operative time indicators in a public university hospital. A descriptive cross-sectional study was conducted using data from operating room database. The sample was obtained from January 2011 to January 2012. The operations performed in sequence in the same operating room, between 7:00 am and 5:00 pm, elective or emergency, were included. The procedures with incomplete data in the system were excluded, as well as the operations performed after 5:00 pm or on weekends or holidays. We measured the operative and non-operative time of 8,420 operations. The operative time (mean and standard deviation) of anesthesias and operations were 177.6 ± 110 and 129.8 ± 97.1 minutes, respectively. The total time of the patient in operative room (mean and standard deviation) was 196.8 ± 113.2. The non-operative time, e.g., between the arrival of the patient and the onset of anesthesia was 14.3 ± 17.3 minutes. The time to set the next patient in operating room was 119.8 ± 79.6 minutes. Our total non-operative time was 155 minutes. Delays frequently occurred in our operating room and had a major effect on patient flow and resource utilization. The non-operative time was longer than the operative time. It is possible to increase the operating room capacity by management and training of the professionals involved. The indicators provided a tool to improve operating room efficiency.
Tomov, Toma E; Tsukanov, Roman; Glick, Yair; Berger, Yaron; Liber, Miran; Avrahami, Dorit; Gerber, Doron; Nir, Eyal
2017-04-25
Realization of bioinspired molecular machines that can perform many and diverse operations in response to external chemical commands is a major goal in nanotechnology, but current molecular machines respond to only a few sequential commands. Lack of effective methods for introduction and removal of command compounds and low efficiencies of the reactions involved are major reasons for the limited performance. We introduce here a user interface based on a microfluidics device and single-molecule fluorescence spectroscopy that allows efficient introduction and removal of chemical commands and enables detailed study of the reaction mechanisms involved in the operation of synthetic molecular machines. The microfluidics provided 64 consecutive DNA strand commands to a DNA-based motor system immobilized inside the microfluidics, driving a bipedal walker to perform 32 steps on a DNA origami track. The microfluidics enabled removal of redundant strands, resulting in a 6-fold increase in processivity relative to an identical motor operated without strand removal and significantly more operations than previously reported for user-controlled DNA nanomachines. In the motor operated without strand removal, redundant strands interfere with motor operation and reduce its performance. The microfluidics also enabled computer control of motor direction and speed. Furthermore, analysis of the reaction kinetics and motor performance in the absence of redundant strands, made possible by the microfluidics, enabled accurate modeling of the walker processivity. This enabled identification of dynamic boundaries and provided an explanation, based on the "trap state" mechanism, for why the motor did not perform an even larger number of steps. This understanding is very important for the development of future motors with significantly improved performance. Our universal interface enables two-way communication between user and molecular machine and, relying on concepts similar to that of solid-phase synthesis, removes limitations on the number of external stimuli. This interface, therefore, is an important step toward realization of reliable, processive, reproducible, and useful externally controlled DNA nanomachines.
Laparoscopic pancreaticoduodenectomy: a descriptive and comparative review.
Merkow, Justin; Paniccia, Alessandro; Edil, Barish H
2015-08-01
Laparoscopic pancreaticoduodenectomy (LPD) is an extremely challenging surgery. First described in 1994, it has been slow to gain in popularity. Recently, however, we have seen an increase in the number of centers performing this operation, including our own institution, as well as an increase in the quantity of published data. The purpose of this review is to describe the current status of LPD as described in the literature. We performed a literature search in the PubMed database using MeSH terms "laparoscopy" and "pancreaticoduodenectomy". We then identified articles in the English language with over 20 patients that focused on LPD only. Review articles were excluded and only one article per institution was used for descriptive analysis in order to avoid overlap. There were a total of eight articles meeting review criteria, consisting of 492 patients. On descriptive analysis we found that percent of LPD due to high-grade malignancy averaged 47% over all articles. Average operative time was 452 minutes, blood loss 369 cc's, pancreatic leak rate 15%, delayed gastric emptying 8.6%, length of hospital stay 9.4 days, and short term mortality 2.3%. Comparison studies between open pancreaticoduodenectomy (OPD) and LPD suggested decreased blood loss, longer operative time, similar post-operative complication rate, decreased pain, and shorter hospital length of stay for LPD. There was also increased number of lymph nodes harvested and similar margin free resections with LPD in the majority of studies. LPD is a safe surgery, providing many of the advantages typically associated with laparoscopic procedures. We expect this operation to continue to gain in popularity as well as be offered in increasingly more complex cases. In future studies, it will be beneficial to look further at the oncologic outcome data of LPD including survival.
Laparoscopic pancreaticoduodenectomy: a descriptive and comparative review
Merkow, Justin; Paniccia, Alessandro
2015-01-01
Laparoscopic pancreaticoduodenectomy (LPD) is an extremely challenging surgery. First described in 1994, it has been slow to gain in popularity. Recently, however, we have seen an increase in the number of centers performing this operation, including our own institution, as well as an increase in the quantity of published data. The purpose of this review is to describe the current status of LPD as described in the literature. We performed a literature search in the PubMed database using MeSH terms “laparoscopy” and “pancreaticoduodenectomy”. We then identified articles in the English language with over 20 patients that focused on LPD only. Review articles were excluded and only one article per institution was used for descriptive analysis in order to avoid overlap. There were a total of eight articles meeting review criteria, consisting of 492 patients. On descriptive analysis we found that percent of LPD due to high-grade malignancy averaged 47% over all articles. Average operative time was 452 minutes, blood loss 369 cc’s, pancreatic leak rate 15%, delayed gastric emptying 8.6%, length of hospital stay 9.4 days, and short term mortality 2.3%. Comparison studies between open pancreaticoduodenectomy (OPD) and LPD suggested decreased blood loss, longer operative time, similar post-operative complication rate, decreased pain, and shorter hospital length of stay for LPD. There was also increased number of lymph nodes harvested and similar margin free resections with LPD in the majority of studies. LPD is a safe surgery, providing many of the advantages typically associated with laparoscopic procedures. We expect this operation to continue to gain in popularity as well as be offered in increasingly more complex cases. In future studies, it will be beneficial to look further at the oncologic outcome data of LPD including survival. PMID:26361406
Fronza, Jeffrey Scott; Prystowsky, Jay P; DaRosa, Debra; Fryer, Jonathan P
2012-01-01
General surgery residents maintain a case log throughout residency in order to achieve a targeted number of designated operations. Program directors must certify that each graduate is competent to enter general surgery practice without direct supervision. Our purpose was twofold, to determine: 1) graduates' perception of competence and relevance of specific operations to their practice; and 2) if case volume is related to competence. Six classes from a general surgery residency program (n=26) were surveyed one year after graduation. The survey was piloted and revised base on findings. It listed 67 operations encompassing all facets of general surgery. Each operation corresponded to two four-point scales (strongly agree to strongly disagree). One scale was headed with "I was well prepared to work-up, independently perform the operation, and effectively care for the patient post-operatively" and the other "This operation is relevant to my current practice profile". A linear regression analysis was utilized to study the relationship between total case volume and overall competence. An unpaired T-test was utilized to study the relationship between volume of specific operations and perceptions of competence. Twenty-two graduates completed the survey (85% response rate). All respondents felt prepared to perform 24% (16/67) of the operations. Fifty percent or more of respondents felt prepared to perform 91% (61/67) of the operations. Fifty percent or more did not feel competent performing the surgical treatment of necrotizing enterocolitis, orchiopexy, transhiatal esophagectomy, adrenalectomy, and open/endovascular abdominal aortic aneurysm repair. Twenty-six operations were felt to be irrelevant to the practice of 50% or more of graduates. No operation was unanimously felt to be relevant. For 12% of operations (8/67) at least 10% of graduates felt the operation was relevant to their practice but were not comfortable performing it. These operations (abdominoperineal resection, transanal excision of tumor, transhiatal esophagectomy, superficial inguinal lymph node dissection, right hepatectomy, whipple, colonoscopy, and adrenalectomy) were considered to be in need of educational improvement at a program level. After analyzing individual case logs, increased case volume only correlated with competence for esophagectomy (5 vs. 1 p = .014), EGD (32 vs. 9 p = .018), orchiopexy (2.5 vs. 0 p = .03), and adrenalectomy (3 vs. 1 p = .001). Total major operations performed did not correlate with overall competence (p = .12). As program directors must document graduates' competency they must do so with confidence. Our results suggest graduates to not feel competent performing many operations, and several are relevant to their practice. Competence in all aspects of general surgery may be unrealistic, even with robust volume. These findings might help in the restructuring curricula of residency. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Models for 31-Mode PVDF Energy Harvester for Wearable Applications
Zhao, Jingjing; You, Zheng
2014-01-01
Currently, wearable electronics are increasingly widely used, leading to an increasing need of portable power supply. As a clean and renewable power source, piezoelectric energy harvester can transfer mechanical energy into electric energy directly, and the energy harvester based on polyvinylidene difluoride (PVDF) operating in 31-mode is appropriate to harvest energy from human motion. This paper established a series of theoretical models to predict the performance of 31-mode PVDF energy harvester. Among them, the energy storage one can predict the collected energy accurately during the operation of the harvester. Based on theoretical study and experiments investigation, two approaches to improve the energy harvesting performance have been found. Furthermore, experiment results demonstrate the high accuracies of the models, which are better than 95%. PMID:25114981
Prospective Evaluation of Operating Room Inefficiency.
Madni, Tarik D; Imran, Jonathan B; Clark, Audra T; Cunningham, Holly B; Taveras, Luis; Arnoldo, Brett D; Phelan, Herb A; Wolf, Steven E
2018-04-06
Previously, we identified that 60% of our facility's total operative time is nonoperative. We performed a review of our operating room to determine where inefficiencies exist in nonoperative time. Live video of operations performed in a burn operating room from 6/23/17 to 8/16/17 were prospectively reviewed. Preparation (end of induction to procedure start) and turnover (patient out of room to next patient in room) were divided into the following activities: 1) Preparation: remove dressing, position patient, clean patient, drape patient, and 2) Turnover: clean operating room, scrub tray set-up, anesthesia set-up. Ideal preparation time was calculated as the sum of time needed to perform preparation activities consecutively. Ideal turnover time was calculated as the sum of time needed to clean the operating room and to set up either the scrub tray or anesthesia (the larger of the two times as these can be done in parallel). We reviewed 101 consecutive operations. An average of 2.4±0.8 cases/day were performed. Ideal preparation and turnover time were 16.6 and 30.1 minutes, a 38.3% and 32.5% reduction compared to actual times. Attending surgeon presence in the operating room within 10 minutes of a patient's arrival was found to significantly decrease time to incision by 33% (52.7±14.3 minutes down to 35.7±20.4, p<0.0001). A reduction in preparation and turnover time could save $1.02 million and generate $1.76 million in additional revenue annually. Reducing preparation and turnover to ideal times could increase caseload to 4/day, leading to millions of dollars of savings annually.
Simien, Christopher; Holt, Kathleen D; Richter, Thomas H; Whalen, Thomas V; Coburn, Michael; Havlik, Robert J; Miller, Rebecca S
2010-08-01
Resident duty hour restrictions were implemented in 2002-2003. This study examines changes in resident surgical experience since these restrictions were put into place. Operative log data for 3 specialties were examined: general surgery, urology, and plastic surgery. The academic year immediately preceding the duty hour restrictions, 2002-2003, was used as a baseline for comparison to subsequent academic years. Operative log data for graduating residents through 2007-2008 were the primary focus of the analysis. Examination of associated variables that may moderate the relationship between fewer duty hours and surgical volume was also included. Plastic surgery showed no changes in operative volume following duty hour restrictions. Operative volume increased in urology programs. General surgery showed a decrease in volume in some operative categories but an increase in others. Specifically the procedures in vascular, plastic, and thoracic areas showed a consistent decrease. There was no increase in the percentage of programs' graduates falling below minimum requirements. Procedures in pancreas, endocrine, and laparoscopic areas demonstrated an increase in volume. Graduates in larger surgical programs performed fewer procedures than graduates in smaller programs; this was not the case for urology or plastic surgery programs. The reduction of duty hours has not resulted in an across the board decrease in operative volume. Factors other than duty hour reforms may be responsible for some of the observed findings.
[Penile augmentation using acellular dermal matrix].
Zhang, Jin-ming; Cui, Yong-yan; Pan, Shu-juan; Liang, Wei-qiang; Chen, Xiao-xuan
2004-11-01
Penile enhancement was performed using acellular dermal matrix. Multiple layers of acellular dermal matrix were placed underneath the penile skin to enlarge its girth. Since March 2002, penile augmentation has been performed on 12 cases using acellular dermal matrix. Postoperatively all the patients had a 1.3-3.1 cm (2.6 cm in average) increase in penile girth in a flaccid state. The penis had normal appearance and feeling without contour deformities. All patients gained sexual ability 3 months after the operation. One had a delayed wound healing due to tight dressing, which was repaired with a scrotal skin flap. Penile enlargement by implantation of multiple layers of acellular dermal matrix was a safe and effective operation. This method can be performed in an outpatient ambulatory setting. The advantages of the acellular dermal matrix over the autogenous dermal fat grafts are elimination of donor site injury and scar and significant shortening of operation time.
Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector
2017-01-01
Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 μm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength. PMID:28540324
International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.
2008-01-01
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.
Designing Security-Hardened Microkernels For Field Devices
NASA Astrophysics Data System (ADS)
Hieb, Jeffrey; Graham, James
Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.
Hospital financial condition and the quality of patient care.
Bazzoli, Gloria J; Chen, Hsueh-Fen; Zhao, Mei; Lindrooth, Richard C
2008-08-01
Concerns about deficiencies in the quality of care delivered in US hospitals grew during a time period when an increasing number of hospitals were experiencing financial problems. Our study examines a six-year longitudinal database of general acute care hospitals in 11 states to assess the relationship between hospital financial condition and quality of care. We evaluate two measures of financial performance: operating margin and a broader profitability measure that encompasses both operating and non-operating sources of income. Our model specification allows for gradual adjustments in quality-enhancing activities and recognizes that current realizations of patient quality may affect future financial performance. Empirical results suggest that there is a relationship between financial performance and quality of care, but not as strong as suggested in earlier research. Overall, our results suggest that deep financial problems that go beyond the patient care side of business may be important to prompting quality problems. Copyright (c) 2007 John Wiley & Sons, Ltd.
Survey of practicing urologists: robotic versus open radical prostatectomy.
Lee, Eugene K; Baack, Janet; Duchene, David A
2010-04-01
The robotic assisted radical prostatectomy (RARP) has become the most common operative choice for localized prostate cancer. At our institution, we have also seen a substantial increase in the proportion of RARP. Possible patient factors may include marketing, increased Internet usage by patients, and patient-to-patient communication. We surveyed urologists from the central United States to determine possible surgeon factors for the popularity of the RARP. We mailed a survey to all urologists in the South Central Section of the American Urological Association. After demographic information was obtained, participants were asked to choose an operation for themselves based on two prostate cancer scenarios; low risk and high risk. For the low risk prostate cancer scenario, 54.3% chose RARP while 32.9% chose a radical retropubic prostatectomy (RRP). In the high risk scenario, 32.3% chose a RARP while 58.8% chose the RRP. The top reasons for choosing robotics included decreased blood loss, better pain control, and visualization of the apex. The most popular reasons for an open operation included improved lymph node dissection, better tactile sensation, and easier operation for the surgeon. The two most important factors for choosing a particular operation were cancer control and the urologist performing the operation. Also, urologists favored the operative choice in which he or she performed. Robotic assisted radical prostatectomy has become the favored operative approach for low risk prostate cancer. However, many urologists still feel an oncologic difference may exist between open and robotic surgery as evidenced by more urologists favoring an open approach for high risk prostate cancer.
Radiation Exposure and Vascular Access in Acute Coronary Syndromes: The RAD-Matrix Trial.
Sciahbasi, Alessandro; Frigoli, Enrico; Sarandrea, Alessandro; Rothenbühler, Martina; Calabrò, Paolo; Lupi, Alessandro; Tomassini, Francesco; Cortese, Bernardo; Rigattieri, Stefano; Cerrato, Enrico; Zavalloni, Dennis; Zingarelli, Antonio; Calabria, Paolo; Rubartelli, Paolo; Sardella, Gennaro; Tebaldi, Matteo; Windecker, Stephan; Jüni, Peter; Heg, Dik; Valgimigli, Marco
2017-05-23
It remains unclear whether radial access increases the risk of operator or patient radiation exposure compared to transfemoral access when performed by expert operators. This study sought to determine whether radial access increases radiation exposure. A total of 8,404 patients, with or without ST-segment elevation acute coronary syndrome, were randomly assigned to radial or femoral access for coronary angiography and percutaneous intervention, and collected fluoroscopy time and dose-area product (DAP). RAD-MATRIX is a radiation sub-study of the MATRIX (Minimizing Adverse Haemorrhagic Events by Transradial Access Site and Systemic Implementation of AngioX) trial. We anticipated that 13 or more operators, each wearing a thorax (primary endpoint), wrist, and head (secondary endpoints) lithium fluoride thermoluminescent dosimeter, and randomizing at least 13 patients per access site, were needed to establish noninferiority of radial versus femoral access. Among 18 operators, performing 777 procedures in 767 patients, the noninferiority primary endpoint was not achieved (p value for noninferiority = 0.843). Operator equivalent dose at the thorax (77 μSv) was significantly higher with radial than femoral access (41 μSv; p = 0.02). After normalization of operator radiation dose by fluoroscopy time or DAP, the difference remained significant. Radiation dose at wrist or head did not differ between radial and femoral access. Thorax operator dose did not differ for right radial (84 μSv) compared to left radial access (52 μSv; p = 0.15). In the overall MATRIX population, fluoroscopy time and DAP were higher with radial compared to femoral access: 10 min versus 9 min (p < 0.0001) and 65 Gy·cm 2 versus 59 Gy·cm 2 (p = 0.0001), respectively. Compared to femoral access, radial access is associated with greater operator and patient radiation exposure when performed by expert operators in current practice. Radial operators and institutions should be sensitized towards radiation risks and adopt adjunctive radioprotective measures. (Minimizing Adverse Haemorrhagic Events by Transradial Access Site and Systemic Implementation of AngioX; NCT101433627). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Restorative dentistry productivity of senior students engaged in comprehensive care.
Blalock, John S; Callan, Richard S; Lazarchik, David A; Frank Caughman, W; Looney, Stephen
2012-12-01
In dental education, various clinical delivery models are used to educate dental students. The quantitative and qualitative measures used to assess the outcomes of these models are varied. Georgia Health Sciences University College of Dental Medicine has adopted a version of a general dentistry comprehensive care dental education hybrid model. Outcome assessments were developed to evaluate the effectiveness of this delivery model. The aim of this study was to compare the number of restorative procedures performed by senior dental students under a discipline-based model versus senior student productivity engaged in comprehensive care as part of a hybrid model. The rate of senior students' productivity in performing various restorative procedures was tracked over four years, and a comparison was made. In the first two years, the seniors operated in a discipline-based model, while in the last two years the seniors operated in a comprehensive care hybrid model. The results showed that there was a significant increase in productivity by the students in terms of direct and indirect restorations. This increase in productivity may indicate that the comprehensive care model may be a more productive model, thereby enhancing clinical experiences for the students, improving operating efficiency for the schools, and ultimately increasing clinical income.
TARDEC's Intelligent Ground Systems overview
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2009-05-01
The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.
Winkler-Schwartz, Alexander; Bajunaid, Khalid; Mullah, Muhammad A S; Marwa, Ibrahim; Alotaibi, Fahad E; Fares, Jawad; Baggiani, Marta; Azarnoush, Hamed; Zharni, Gmaan Al; Christie, Sommer; Sabbagh, Abdulrahman J; Werthner, Penny; Del Maestro, Rolando F
Current selection methods for neurosurgical residents fail to include objective measurements of bimanual psychomotor performance. Advancements in computer-based simulation provide opportunities to assess cognitive and psychomotor skills in surgically naive populations during complex simulated neurosurgical tasks in risk-free environments. This pilot study was designed to answer 3 questions: (1) What are the differences in bimanual psychomotor performance among neurosurgical residency applicants using NeuroTouch? (2) Are there exceptionally skilled medical students in the applicant cohort? and (3) Is there an influence of previous surgical exposure on surgical performance? Participants were instructed to remove 3 simulated brain tumors with identical visual appearance, stiffness, and random bleeding points. Validated tier 1, tier 2, and advanced tier 2 metrics were used to assess bimanual psychomotor performance. Demographic data included weeks of neurosurgical elective and prior operative exposure. This pilot study was carried out at the McGill Neurosurgical Simulation Research and Training Center immediately following neurosurgical residency interviews at McGill University, Montreal, Canada. All 17 medical students interviewed were asked to participate, of which 16 agreed. Performances were clustered in definable top, middle, and bottom groups with significant differences for all metrics. Increased time spent playing music, increased applicant self-evaluated technical skills, high self-ratings of confidence, and increased skin closures statistically influenced performance on univariate analysis. A trend for both self-rated increased operating room confidence and increased weeks of neurosurgical exposure to increased blood loss was seen in multivariate analysis. Simulation technology identifies neurosurgical residency applicants with differing levels of technical ability. These results provide information for studies being developed for longitudinal studies on the acquisition, development, and maintenance of psychomotor skills. Technical abilities customized training programs that maximize individual resident bimanual psychomotor training dependant on continuously updated and validated metrics from virtual reality simulation studies should be explored. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Hoon; Oh, Sae-Eun, E-mail: saeun@hanbat.ac.kr
2011-09-15
Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) ismore » attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.« less
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.
2001-01-01
The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.
Metal-supported solid oxide fuel cells operated in direct-flame configuration
Tucker, Michael C.; Ying, Andrew S.
2017-08-19
Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s -1. In this region, performance is most strongly correlated to flow velocity and open circuit voltage. Themore » highest peak power density achieved is 633 mW cm -2 at 833°C, for equivalence ratio of 1.8 and flow velocity of 300 cm s -1. The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for >20 h of semi-continuous operation.« less
Szasz, Peter; Louridas, Marisa; Harris, Kenneth A; Grantcharov, Teodor P
2017-08-01
Competency-based education necessitates assessments that determine whether trainees have acquired specific competencies. The evidence on the ability of internal raters (staff surgeons) to provide accurate assessments is mixed; however, this has not yet been directly explored in the operating room. This study's objective is to compare the ratings given by internal raters vs an expert external rater (independent to the training process) in the operating room. Raters assessed general surgery residents during a laparoscopic cholecystectomy for their technical and nontechnical performance. Fifteen cases were observed. There was a moderately positive correlation (r s = .618, P = .014) for technical performance and a strong positive correlation (r s = .731, P = .002) for nontechnical performance. The internal raters were less stringent for technical (mean rank 3.33 vs 8.64, P = .007) and nontechnical (mean rank 3.83 vs 8.50, P = .01) performances. This study provides evidence to help operationalize competency-based assessments. Copyright © 2016 Elsevier Inc. All rights reserved.
Raskovic, Dejan; Giessel, David
2009-11-01
The goal of the study presented in this paper is to develop an embedded biomedical system capable of delivering maximum performance on demand, while maintaining the optimal energy efficiency whenever possible. Several hardware and software solutions are presented allowing the system to intelligently change the power supply voltage and frequency in runtime. The resulting system allows use of more energy-efficient components, operates most of the time in its most battery-efficient mode, and provides means to quickly change the operation mode while maintaining reliable performance. While all of these techniques extend battery life, the main benefit is on-demand availability of computational performance using a system that is not excessive. Biomedical applications, perhaps more than any other application, require battery operation, favor infrequent battery replacements, and can benefit from increased performance under certain conditions (e.g., when anomaly is detected) that makes them ideal candidates for this approach. In addition, if the system is a part of a body area network, it needs to be light, inexpensive, and adaptable enough to satisfy changing requirements of the other nodes in the network.
Review of performance, medical, and operational data on pilot aging issues
NASA Technical Reports Server (NTRS)
Stoklosa, J. H.
1992-01-01
An extensive review of the literature and studies relating to performance, medical, operational, and legal data regarding pilot aging issues was performed in order to determine what evidence there is, if any, to support mandatory pilot retirement. Popular misconceptions about aging, including the failure to distinguish between the normal aging process and disease processes that occur more frequently in older individuals, continue to contribute to much of the misunderstanding and controversy that surround this issue. Results: Review of medical data related to the pilot aging issue indicate that recent improvement in medical diagnostics and treatment technology have made it possible to identify to a high degree individuals who are at risk for developing sudden incapacitating illness and for treating those with disqualifying medical conditions. Performance studies revealed that after controlling for the presence of disease states, older pilots are able to perform as well as younger pilots on many performance tasks. Review of accident data showed that older, healthy pilots do not have higher accident rates than younger pilots, and indeeed, evidence suggests that older pilots have an advantage in the cockpit due to higher experience levels. The Man-Machine-Mission-Environment interface of factors can be managed through structured, supervised, and enhanced operations, maintenance, flight reviews, and safety procedures in order to ensure safe and productive operations by reducing the margin of error and by increasing the margin of safety. Conclusions: There is no evidence indicating any specific age as an arbitrary cut-off point for pilots to perform their fight duties. A combination of regular medical screening, performance evaluation, enhanced operational maintenance, and safety procedures can most effectively ensure a safe pilot population than can a mandatory retirement policy based on arbitrary age restrictions.
Replacing the CCSDS Telecommand Protocol with Next Generation Uplink
NASA Technical Reports Server (NTRS)
Kazz, Greg; Burleigh, Scott; Greenberg, Ed
2012-01-01
Better performing Forward Error Correction on the forward link along with adequate power in the data open an uplink operations trade space that enable missions to: Command to greater distances in deep space (increased uplink margin) Increase the size of the payload data (latency may be a factor) Provides space for the security header/trailer of the CCSDS Space Data Link Security Protocol Note: These higher rates could be used for relief of emergency communication margins/rates and not limited to improving top-end rate performance. A higher performance uplink could also reduce the requirements on flight emergency antenna size and/or the performance required from ground stations. Use of a selective repeat ARQ protocol may increase the uplink design requirements but the resultant development is deemed acceptable, due the factor of 4 to 8 potential increase in uplink data rate.
NAND Flash Qualification Guideline
NASA Technical Reports Server (NTRS)
Heidecker, Jason
2012-01-01
Better performing Forward Error Correction on the forward link along with adequate power in the data open an uplink operations trade space that enable missions to: Command to greater distances in deep space (increased uplink margin). Increase the size of the payload data (latency may be a factor). Provides space for the security header/trailer of the CCSDS Space Data Link Security Protocol. Note: These higher rates could be used for relief of emergency communication margins/rates and not limited to improving top-end rate performance. A higher performance uplink could also reduce the requirements on flight emergency antenna size and/or the performance required from ground stations. Use of a selective repeat ARQ protocol may increase the uplink design requirements but the resultant development is deemed acceptable, due the factor of 4 to 8 potential increase in uplink data rate.
A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations
Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; ...
2017-06-01
As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less
A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel
As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less
Houssami, Nehmat; Turner, Robin M; Morrow, Monica
2017-09-01
Although there is no consensus on whether pre-operative MRI in women with breast cancer (BC) benefits surgical treatment, MRI continues to be used pre-operatively in practice. This meta-analysis examines the association between pre-operative MRI and surgical outcomes in BC. A systematic review was performed to identify studies reporting quantitative data on pre-operative MRI and surgical outcomes (without restriction by type of surgery received or type of BC) and using a controlled design. Random-effects logistic regression calculated the pooled odds ratio (OR) for each surgical outcome (MRI vs. no-MRI groups), and estimated ORs stratified by study-level age. Subgroup analysis was performed for invasive lobular cancer (ILC). Nineteen studies met eligibility criteria: 3 RCTs and 16 comparative studies that included newly diagnosed BC of any type except for three studies restricted to ILC. Primary analysis (85,975 subjects) showed that pre-operative MRI was associated with increased odds of receiving mastectomy [OR 1.39 (1.23, 1.57); p < 0.001]; similar findings were shown in analyses stratified by study-level median age. Secondary analyses did not find statistical evidence of an effect of MRI on the rates of re-excision, re-operation, or positive margins; however, MRI was significantly associated with increased odds of receiving contralateral prophylactic mastectomy [OR 1.91 (1.25, 2.91); p = 0.003]. Subgroup analysis for ILC did not find any association between MRI and the odds of receiving mastectomy [OR 1.00 (0.75, 1.33); p = 0.988] or the odds of re-excision [OR 0.65 (0.35, 1.24); p = 0.192]. Pre-operative MRI is associated with increased odds of receiving ipsilateral mastectomy and contralateral prophylactic mastectomy as surgical treatment in newly diagnosed BC patients.
NASA Astrophysics Data System (ADS)
Kondrashov, V. P.; Pogrebisskiy, M. Ya; Lykov, A. G.; Rabinovich, V. L.; Bulgakov, A. S.
2018-02-01
Ways of increase of ore-heating electric furnaces, used for production of silicomanganese, engineering-and-economical performance are analyzed. Questions of data of the electric, thermal and technological modes of the furnace functioning collecting and processing for use in operation of an advanced control system of the furnace providing increase in technical and economic efficiency of technological process and an adaptability to quality of burden stock are considered.
Rasner, P I; Pushkar', D Iu; Kolontarev, K B; Kotenkov, D V
2014-01-01
The appearance of new surgical technique always requires evaluation of its effectiveness and ease of acquisition. A comparative study of the results of the first three series of successive robot-assisted radical prostatectomy (RARP) performed on at time by three surgeons, was conducted. The series consisted of 40 procedures, and were divided into 4 groups of 10 operations for the analysis. When comparing data, statistically significant improvement of intra- and postoperative performance in each series was revealed, with increase in the number of operations performed, and in each subsequent series compared with the preceding one. We recommend to perform the planned conversion at the first operation. In our study, previous laparoscopic experience did not provide any significant advantages in the acquisition of robot-assisted technology. To characterize the individual learning curve, we recommend the use of the number of operations that the surgeon looked in the life-surgery regimen and/or in which he participated as an assistant before his own surgical activity, as well as the indicator "technical defect". In addition to the term "individual learning curve", we propose to introduce the terms "surgeon's individual training phase", and "clinic's learning curve".
Performance profiles of major energy producers, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-01-01
The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to themore » FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.« less
Keogh, Brad; Culliford, David; Guerrero-Ludueña, Richard; Monks, Thomas
2018-05-24
To quantify the effect of intrahospital patient flow on emergency department (ED) performance targets and indicate if the expectations set by the National Health Service (NHS) England 5-year forward review are realistic in returning emergency services to previous performance levels. Linear regression analysis of routinely reported trust activity and performance data using a series of cross-sectional studies. NHS trusts in England submitting routine nationally reported measures to NHS England. 142 acute non-specialist trusts operating in England between 2012 and 2016. The primary outcome measures were proportion of 4-hour waiting time breaches and cancelled elective operations. Univariate and multivariate linear regression models were used to show relationships between the outcome measures and various measures of trust activity including empty day beds, empty night beds, day bed to night bed ratio, ED conversion ratio and delayed transfers of care. Univariate regression results using the outcome of 4-hour breaches showed clear relationships with empty night beds and ED conversion ratio between 2012 and 2016. The day bed to night bed ratio showed an increasing ability to explain variation in performance between 2015 and 2016. Delayed transfers of care showed little evidence of an association. Multivariate model results indicated that the ability of patient flow variables to explain 4-hour target performance had reduced between 2012 and 2016 (19% to 12%), and had increased in explaining cancelled elective operations (7% to 17%). The flow of patients through trusts is shown to influence ED performance; however, performance has become less explainable by intratrust patient flow between 2012 and 2016. Some commonly stated explanatory factors such as delayed transfers of care showed limited evidence of being related. The results indicate some of the measures proposed by NHS England to reduce pressure on EDs may not have the desired impact on returning services to previous performance levels. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Siddiquee, Abu Nayem Md. Asraf
A parametric modeling study has been carried out to assess the impact of change in operating parameters on the performance of Vanadium Redox Flow Battery (VRFB). The objective of this research is to develop a computer program to predict the dynamic behavior of VRFB combining fluid mechanics, reaction kinetics, and electric circuit. The computer program was developed using Maple 2015 and calculations were made at different operating parameters. Modeling results show that the discharging time increases from 2.2 hours to 6.7 hours when the concentration of V2+ in electrolytes increases from 1M to 3M. The operation time during the charging cycle decreases from 6.9 hours to 3.3 hours with the increase of applied current from 1.85A to 3.85A. The modeling results represent that the charging and discharging time were found to increase from 4.5 hours to 8.2 hours with the increase in tank to cell ratio from 5:1 to 10:1.
Beyond NextGen: AutoMax Overview and Update
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal; Alexandrov, Natalia
2013-01-01
Main Message: National and Global Needs - Develop scalable airspace operations management system to accommodate increased mobility needs, emerging airspace uses, mix, future demand. Be affordable and economically viable. Sense of Urgency. Saturation (delays), emerging airspace uses, proactive development. Autonomy is Needed for Airspace Operations to Meet Future Needs. Costs, time critical decisions, mobility, scalability, limits of cognitive workload. AutoMax to Accommodate National and Global Needs. Auto: Automation, autonomy, autonomicity for airspace operations. Max: Maximizing performance of the National Airspace System. Interesting Challenges and Path Forward.
[Shoulder surgery using only regional anaesthesia].
Tilbury, Claire; van Kampen, Paulien M; Offenberg, Tom A M M; Hogervorst, Tom; Huijsmans, Pol E
2011-01-01
Effective intra-operative anaesthesia and peri-operative analgesia are important aspects of patient care in orthopaedic surgery. The interscalene regional anaesthetic block technique, performed with the patient lying in a lateral decubitus position, is new for arthroscopic shoulder surgery conducted in the Netherlands. The combination of the interscalene block (without general anaesthesia) and the lateral decubitus position results in better peri-operative conditions for the patient. Better analgesia, increased patient satisfaction and fewer complications in comparison to general anaesthesia have been reported for these types of surgery.
Effects of elevated carbon dioxide concentrations on broiler chicken performance from 28 to 49 days
USDA-ARS?s Scientific Manuscript database
Improvements in modern broiler housing have substantially reduced air leakage, making proper operation of ventilation systems critical to maintaining a suitable environment. Fuel prices have increased in recent years, leading to reduced minimum ventilation in order to conserve fuel which increases ...
Pipe rehabilitation and trenchless pipe replacement technologies have seen a steady increase in use over the past 30 to 40 years and represent an increasing proportion of the approximately $25 billion annual expenditure on operations and maintenance of the nation’s water and wast...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2001-08-08
The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less
Nittami, Tadashi; Oi, Hiroshi; Matsumoto, Kanji; Seviour, Robert J
2011-12-15
Previous research has suggested that enhanced biological phosphorus removal (EBPR) from wastewater can be achieved under continuous aerobic conditions over the short term. However, little is known how environmental conditions might affect aerobic EBPR performance. Consequently we have investigated the impact of temperature, pH and dissolved oxygen (DO) concentrations on EBPR performance under strictly aerobic conditions. A sequencing batch reactor (SBR) was operated for 108 days on a six-hour cycle (four cycles a day). The SBR ran under alternating anaerobic-aerobic conditions as standard and then operated under strictly aerobic conditions for one cycle every three or four days. SBR operational temperature (10, 15, 20, 25 and 30°C), pH (6, 7, 8 and 9) and DO concentration (0.5, 2.0 and 3.5mg/L) were changed consecutively during the aerobic cycle. Recorded increases in mixed liquor phosphorus (P) concentrations during aerobic carbon source uptake (P release) were affected by the biomass P content rather than the imposed changes in the operational conditions. Thus, P release levels increased with biomass P content. By contrast, subsequent aerobic P assimilation (P uptake) levels were both affected by changes in operational temperature and pH, and peaked at 20-25°C and pH 7-8. Highest P uptake detected under these SBR operating conditions was 15.4 mg Pg-MLSS(-1) (at 25°C, pH 7 and DO 2.0mg/L). The ability of the community for linked aerobic P release and P uptake required the presence of acetate in the medium, a finding which differs from previous data, where these are reported to occur in the absence of any exogenous carbon source. Fluorescence in situ hybridization was performed on samples collected from the SBR, and Candidatus 'Accumulibacter phosphatis' cells were detected with PAOmix probes through the operational periods. Thus, Candidatus 'Accumulibacter phosphatis' seemed to perform P removal in the SBR as shown in previous studies on P removal under strictly aerobic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.
Mont, Michael A; McElroy, Mark J; Johnson, Aaron J; Pivec, Robert
2013-08-01
The purpose of this prospective controlled trial was to determine if efficiency increases could be achieved in non-navigated and navigated total knee arthroplasties by replacing traditional saws, cutting blocks, and trials with specialized saws and single-use cutting blocks and trials. Various timing metrics during total knee arthroplasty, including operating room preparation times and specific intra-operative times, were measured in 400 procedures performed by eight different surgeons at 6 institutions. Efficiency increases were the result of statistically significant reductions in combined instrument setup and cleanup times as well as in adjusted surgical episode times in navigated total knee arthroplasties. Single-use instruments show promising benefits, but adequate patient follow-up is needed to confirm safety and efficacy before they can be widely adopted. Nevertheless, the authors believe that the use of single-use instruments, cutting guides, and trial implants for total knee arthroplasty will play an increasing role in improving operating room efficiency. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Landry, K.
2005-01-01
Studies were performed in order to characterize the thrust augmentation potential of an ejector in a Pulse Detonation Engine application. A 49-mm diameter tube of 0.914-m length was constructed with one open end and one closed end. Ethylene, oxygen, and nitrogen were introduced into the tube at the closed end through the implementation of a fast mixing injector. The tube was completely filled with a stoichiometric mixture containing a one to one molar ratio of nitrogen to oxygen. Ethylene was selected as the fuel due to its detonation sensitivity and the molar ratio of the oxidizer was chosen for heat transfer purposes. Detonations were initiated in the tube through the use of a spark ignition system. The PDE was operated in a multi-cycle mode at frequencies ranging from 20-Hz to 50-Hz. Baseline thrust measurements with no ejector present were performed while operating the engine at various frequencies and compared to theoretical estimates. The baseline values were observed to agree with the theoretical model at low operating frequencies and proved to be increasingly lower than the predicted values as the operating frequency was increased. The baseline thrust measurements were observed to agree within 15 percent of the model for all operating frequencies. A straight 152-mm diameter ejector was installed and thrust augmentation percentages were measured. The length of the ejector was varied while the overlap percentage (percent of the ejector length which overlapped the tube) was maintained at 25 percent for all tests. In addition, the effect of ejector inlet geometry was investigated by comparing results with a straight inlet to those of a 38-mm inlet diameter. The thrust augmentation of the straight inlet ejector proved to be independent of engine operating frequency, augmenting thrust by 40 percent for the 0.914-m length ejector. In contrast, the rounded lip ejector of the same length seemed to be highly dependent on the engine operating frequency. An optimum operating frequency observed with the rounded inlet occurred at an operating frequency of 30-Hz, resulting in thrust augmentation percentages greater than 100 percent. The effect that the engine operating frequency had on thrust augmentation levels attained with an ejector was characterized and optimum performance parameters were established. Insight into the frequency dependent nature of the ejector performance was pursued. Suggestions for future experiments which are needed to fully understand the means in which thrust augmentation is achieved in a PDE-ejector configuration were noted.
Extraction Strings for Ureteric Stents: Is There an Increased Risk for Urinary Tract Infections?
Fröhlich, Maryna; Fehr, Jan; Sulser, Tullio; Eberli, Daniel; Mortezavi, Ashkan
To evaluate urinary tract infections associated with placement of ureteric stents, we performed a retrospective study and compared rates between patients with and patients without an extraction string attached to the ureteric stent. Indwelling ureteric stents are routinely removed by cystoscopy. If an extraction string has been connected to the stent at the time of placement, however, the removal can be performed without an invasive procedure. Concerns exist regarding the risk for an unintentional dislocation, increased stent-related discomfort, or an increase of the post-operative urinary tract infection rate. All elective transurethral ureteric stent placements performed between November 2011 and December 2012 in our department were included for this investigation. Urinary tract infection was defined according to the Centers for Disease Control and Prevention (CDC)/National Healthcare Safety Network (NHSN) surveillance definition of health-care-associated infections. Patients with an existing urinary tract infection at the time of admission were excluded from the analysis. A total of 342 patients receiving ureteric stents were evaluated regarding post-operative urinary tract infections. Of these patients, 127 (37.1%) had an extraction string and 215 (62.9%) a stent without a string. The total urinary tract infection rate was 6.4% with no significant difference between the two groups (7.9% vs. 5.6%, p = 0.49). In the present study, we did not observe an increased rate of post-operative urinary tract infections in patients with an extraction string attached to the ureteral stent. Extraction string is a good option for patients to avoid cystoscopic stent removal.
Chen, Yue; Gao, Qin; Song, Fei; Li, Zhizhong; Wang, Yufan
2017-08-01
In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures. Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants' performance and increased the probability of detecting unexpected system failures.
Gaillard, Romain; Cerciello, Simone; Lustig, Sebastien; Servien, Elvire; Neyret, Philippe
2017-04-01
Total knee arthroplasty (TKA) malalignment may result in pain and limited range of motion. The present study assessed the influence of different surgeon's and patient's related factors on the post-operative tibial tray coronal alignment. The charts and the x-rays of a continuous prospective series of 1417 TKAs operated upon between 1987 and 2015 were retrospectively reviewed. The long-leg AP views were performed at two months post-op and the tibial mechanical angle of the tibial tray was measured. Three groups were defined: varus (≤87° n = 167), valgus (≥93° n = 55) and well alignment (88° to 92° n = 1195). The influence of several pre-operative and peri-operative factors was investigated: surgeon handedness and experience (junior or senior), previous tibial osteotomies, Ahlbäck stage of osteoarthritits, pre-operative alignment, height and weight, age at surgery, approach (medial, lateral or tibial tubercle osteotomy), generation of implants, tray fixation, size of the tray and stem lenght. Univariate then multivariate analysis were performed to find out any correlation. Multivariate analysis showed a strong correlation between varus alignment of the tibial tray and pre-operative varus of the lower limb (p = 0.037), increased BMI (p = 0.016) and operated side opposite to the dominant surgeon's arm (p = 0.006). In a similar way a strong correlation was found between valgus alignment and pre-operative valgus of the limb (p = 0.026). Poor alignment of the tibial tray after TKA was associated with pre-operative malalignment of the lower limb, increased BMI and an index knee which was opposite to surgeon's dominant arm.
Effect of operating temperature on styrene mass transfer characteristics in a biotrickling filter.
Parnian, Parham; Zamir, Seyed Morteza; Shojaosadati, Seyed Abbas
2017-05-01
To study the effect of operating temperature on styrene mass transfer from gas to liquid phase in biotrickling filters (BTFs), overall mass transfer coefficient (K L a) was calculated through fitting test data to a general mass balance model under abiotic conditions. Styrene was used as the volatile organic compound and the BTF was packed with a mixture of pall rings and pumice. Operating temperature was set at 30°C and 50°C for mesophilic and thermophilic conditions, respectively. K L a values increased from 54 to 70 h -1 at 30°C and from 60 to 90 h -1 at 50°C, respectively, depending on the countercurrent gas to liquid flow ratio that varied in the range of 7.5-32. Evaluation of styrene mass transfer capacity (MTC) showed that liquid-phase mass transfer resistance decreased as the flow ratio increased at constant temperature. MTC also decreased with an increase in operating temperature. Both gas-liquid partition coefficient and K L a increased with increasing temperature; however the effect on gas-liquid partition coefficient was more significant and served to increase mass transfer limitations. Thermophilic biofiltration on the one hand increases mass transfer limitations, but on the other hand may enhance the biodegradation rate in favor of enhancing BTFs' performance.
Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.
2012-01-01
Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.
Ultra-Compact Neuroprocessor for Automotive Diagnostic and Control
NASA Technical Reports Server (NTRS)
Tawel, R.; Aranki, N.; Feldkamp, L. A.; Marko, K. A.
1998-01-01
Demands on the performance of vehicle control and diagnostic systems are steadily increasing as a consequence of stiff global competition and government mandates. In the United States, light trucks and passenger cars are required both to meet strict emission standards and to perform continuous diagnostics of all emissions systems operating in the vehicle.
The Efficacy of Strategy in Higher Education--A Methodology. Professional File. Number 27
ERIC Educational Resources Information Center
Litwin, Jeffrey
2006-01-01
All research intensive universities (RIU's) want to expand their scope of operations. Research performance is a key driver of institutional reputation which underpins a university's ability to generate revenues from all sources. Achieving an accelerating rate of growth of the virtuous cycle, in which increasing research performance enhances…
ERIC Educational Resources Information Center
Sasson, Joseph R.; Austin, John
2005-01-01
Eleven computer terminal operators participated in an experiment that assessed effects of several interventions aimed at increasing safe ergonomic performance. All participants received ergonomics training and performance feedback while six of them collected observations of safe behavior among the remaining five participants. Effects of…
2010 Neuroscience Director’s Strategic Initiative
2011-02-01
distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Understanding how Soldiers’ cognitive abilities meet the increasing demands of dynamic...In order to acquire, monitor, and assess Soldier sensory, perceptual, emotional, cognitive , and physical performance within realistic operational...brain state classification algorithm from EEG data acquired from participants performing tasks with varied cognitive demands. Third, Kaleb McDowell
Organizational Learning and Performance: Understanding Indian Scenario in Present Global Context
ERIC Educational Resources Information Center
Khandekar, Aradhana; Sharma, Anuradha
2006-01-01
Purpose: The purpose of this paper is to show that the role of organizational learning is increasingly becoming crucial for organizational performance. Based on the study of three Indian global firms operating in National Capital Region of Delhi, India, this study explores the correlation of organizational learning with organizational performance…
NASA Astrophysics Data System (ADS)
Tan, Yingying; Chen, Youming; Wang, Lin
2018-06-01
A mixed refrigerant ejector refrigeration cycle operating with two-stage vapor-liquid separators (MRERC2) is proposed to obtain refrigeration temperature at -40°C. The thermodynamic investigations on performance of MRERC2 using zeotropic mixture refrigerant R23/R134a are performed, and the comparisons of cycle performance between MRERC2 and MRERC1 (MRERC with one-stage vapor-liquid separator) are conducted. The results show that MRERC2 can achieve refrigeration temperature varying between -23.9°C and -42.0°C when ejector pressure ratio ranges from 1.6 to 2.3 at the generation temperature of 57.3-84.9°C. The parametric analysis indicates that increasing condensing temperature decreases coefficient of performance ( COP) of MRERC2, and increasing ejector pressure ratio and mass fraction of the low boiling point component in the mixed refrigerant can improve COP of MRERC2. The MRERC2 shows its potential in utilizing low grade thermal energy as driving power to obtain low refrigeration temperature for the ejector refrigeration cycle.
NASA Technical Reports Server (NTRS)
Moore, C S; Collins, J H
1932-01-01
Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage.
NASA Astrophysics Data System (ADS)
Lee, Ken Voon
2013-04-01
The purpose of this action research was to increase the mastery level of Form Five Social Science students in Tawau II National Secondary School in the operations of addition, subtraction and multiplication of matrices in Mathematics. A total of 30 students were involved. Preliminary findings through the analysis of pre-test results and questionnaire had identified the main problem faced in which the students felt confused with the application of principles of the operations of matrices when performing these operations. Therefore, an action research was conducted using an intervention programme called "G.P.S Matrices" to overcome the problem. This programme was divided into three phases. 'Gift of Matrices' phase aimed at forming matrix teaching aids. The second and third phases were 'Positioning the Elements of Matrices' and 'Strenghtening the Concept of Matrices'. These two phases were aimed at increasing the level of understanding and memory of the students towards the principles of matrix operations. Besides, this third phase was also aimed at creating an interesting learning environment. A comparison between the results of pre-test and post-test had shown a remarkable improvement in students' performances after implementing the programme. In addition, the analysis of interview findings also indicated a positive feedback on the changes in students' attitude, particularly in the aspect of students' understanding level. Moreover, the level of students' memory also increased following the use of the concrete matrix teaching aids created in phase one. Besides, teachers felt encouraging when conducive learning environment was created through students' presentation activity held in third phase. Furthermore, students were voluntarily involved in these student-centred activities. In conclusion, this research findings showed an increase in the mastery level of students in these three matrix operations and thus the objective of the research had been achieved.
Recent Stirling Conversion Technology Developments and Operational Measurements
NASA Technical Reports Server (NTRS)
Oriti, Salvatore; Schifer, Nicholas
2009-01-01
Under contract to the Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC) has been developing the Advanced Stirling Radioisotope Generator (ASRG). The use of Stirling technology introduces a four-fold increase in conversion efficiency over Radioisotope Thermoelectric Generators (RTGs), and thus the ASRG in an attractive power system option for future science missions. In August of 2008, the ASRG engineering unit (EU) was delivered to NASA Glenn Research Center (GRC). The engineering unit design resembles that of a flight unit, with the exception of electrical heating in place of a radioisotope source. Prior to delivery, GRC personnel prepared a test station continuous, unattended operation of the engineering unit. This test station is capable of autonomously monitoring the unit's safe operation and recording. , .. , .... performance data. Generator parameters recorded include temperatures, electrical power output, and thelmal power input. Convertor specific parameters are also recorded such as alternator voltage, current, piston amplitude, and frequency. Since November 2008, the ASRG EU has accumulated over 4,000 hours of operation. Initial operation was conducted using the AC bus control method in lieu of the LMSSC active power factor connecting controller. Operation on the LMSSC controller began in February 2009. This paper discusses the entirety of ASRG EU operation thus far, as well as baseline performance data at GRC and LMSSC, and comparison of performance using each control method.
Effect of Resident Involvement on Operative Time and Operating Room Staffing Costs.
Allen, Robert William; Pruitt, Mark; Taaffe, Kevin M
The operating room (OR) is a major driver of hospital costs; therefore, operative time is an expensive resource. The training of surgical residents must include time spent in the OR, but that experience comes with a cost to the surgeon and hospital. The objective of this article is to determine the effect of surgical resident involvement in the OR on operative time and subsequent hospital labor costs. The Kruskal-Wallis statistical test is used to determine whether or not there is a difference in operative times between 2 groups of cases (with residents and without residents). This difference leads to an increased cost in associated hospital labor costs for the group with the longer operative time. Cases were performed at Greenville Memorial Hospital. Greenville Memorial Hospital is part of the larger healthcare system, Greenville Health System, located in Greenville, SC and is a level 1 trauma center with up to 33 staffed ORs. A total of 84,997 cases were performed at the partnering hospital between January 1st, 2011 and July 31st, 2015. Cases were only chosen for analysis if there was only one CPT code associated with the case and there were more than 5 observations for each group being studied. This article presents a comprehensive retrospective analysis of 29,134 cases covering 246 procedures. The analysis shows that 45 procedures took significantly longer with a resident present in the room. The average increase in operative time was 4.8 minutes and the cost per minute of extra operative time was determined to be $9.57 per minute. OR labor costs at the partnering hospital was found to be $2,257,433, or $492,889 per year. Knowing the affect on operative time and OR costs allows managers to make smart decisions when considering alternative educational and training techniques. In addition, knowing the connection between residents in the room and surgical duration could help provide better estimates of surgical time in the future and increase the predictability of procedure duration. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.
2014-03-01
At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.
McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary
2015-01-01
Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.
Low-dose aspirin before spinal surgery: results of a survey among neurosurgeons in Germany.
Korinth, Marcus C; Gilsbach, Joachim M; Weinzierl, Martin R
2007-03-01
The main problem faced by the increasing numbers of patients presenting for spinal surgery are receiving concurrent medication with low-dose aspirin, leading to dysfunctional circulating platelets. The contribution of low-dose aspirin to increased peri-operative risk of bleeding and blood loss is a contentious issue with conflicting published results from different surgical groups. Data from neurosurgical spine patients is sparse, but aspirin has been identified as an important risk factor in the development of post-operative hematoma following intracranial surgery. We surveyed the opinions and working practices of the neurosurgical facilities performing spinal operations in Germany regarding patients who present for elective spinal surgery. Identical questionnaires were sent to 210 neurosurgical facilities and proffered five main questions: (1) the adherence of any policy of stopping aspirin pre-operatively, (2) the personal risk assessment for patients with spinal surgery under low-dose aspirin medication, (3) the preferred method of treatment for excessive bleeding in this context, (4) personal knowledge of hemorrhagic complications in this group of patients, and (5) the characteristics of the neurosurgical units concerned. There were 145 (69.1%) responses of which 142 (67.6%) were valid. Of the respondents, 114 (80.3%) had a (written) departmental policy for the discontinuation of pre-operative aspirin treatment, 28 (19.7%) were unaware of such a policy. The mean time suggested for discontinuation of aspirin pre-operatively was 6.9 days (range: 0-21 days), with seven respondents who perform the operations despite the ongoing aspirin medication. Ninety-four respondents (66.2%) considered that patients taking low-dose aspirin were at increased risk for excessive peri-operative hemorrhage or were indetermined (8.6%), and 73 (51.4%) reported having personal experience of such problems. Ninety-two respondents (65.5%) would use special medical therapy, preferably Desmopressin alone or in combination with other blood products or prohemostatic agents (46.1%), if hemorrhagic complications developed intra- or post-operatively. The average number of spinal operations per year in each service was 607.9 (range: 40-1,500). Despite the existence of distinct departmental policies concerning the discontinuation of low-dose aspirin pre-operatively in the majority of neurosurgical facilities performing spinal operations, there is a wide range of the moment of this interruption with an average of 7 days. Two-thirds of the respondents felt that aspirin was a risk factor for hemorrhagic complications associated with spinal procedures, and more than half of the interviewees reported having personal experience of such problems. Finally, various medicamentous methods of counteracting aspirin-induced platelet dysfunction and excessive bleeding in this context are elicited, discussed and evaluated.
A touch probe method of operating an implantable RFID tag for orthopedic implant identification.
Liu, Xiaoyu; Berger, J Lee; Ogirala, Ajay; Mickle, Marlin H
2013-06-01
The major problem in operating an implantable radio-frequency identification (RFID) tag embedded on an orthopedic implant is low efficiency because of metallic interference. To improve the efficiency, this paper proposes a method of operating an implantable passive RFID tag using a touch probe at 13.56 MHz. This technology relies on the electric field interaction between two pairs of electrodes, one being a part of the touch probe placed on the surface of tissue and the other being a part of the tag installed under the tissue. Compared with using a conventional RFID antenna such as a loop antenna, this method has a better performance in the near field operation range to reduce interference with the orthopedic implant. Properly matching the touch probe and the tag to the tissue and the implant reduces signal attenuation and increases the overall system efficiency. The experiments have shown that this method has a great performance in the near field transcutaneous operation and can be used for orthopedic implant identification.
Durability of symmetric-structured metal-supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Tucker, Michael C.
2017-11-01
Symmetric-structure metal-supported solid oxide fuel cells (MS-SOFC) with YSZ electrolyte are fabricated with porous YSZ backbone electrodes, stainless steel supports, and infiltrated catalysts on both anode and cathode side. Durability towards aggressive thermal and redox cycling, and long-term operation is assessed. Many sealing material candidates are screened for compatibility with the cell materials and operating conditions, and a commercial sealing glass, GM31107, is selected. LSM/SDCN cells are then subjected to 200 very fast thermal cycles and 20 complete redox cycles, with minimal impact to cell performance. LSM/SDCN and SDCN/SDCN cells are operated for more than 1200 h at 700 °C. The seal and cell hermeticity is maintained, and cell ohmic impedance does not change significantly during operation. Electrode polarization increases during operation, leading to significant degradation of the cell performance. In-operando EIS and post-mortem SEM/EDS analysis suggest that catalyst coarsening and cathode Cr deposition are the dominant degradation modes.
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Guo, J. W.; Cao, Y.; Li, J. Y.; Guo, X. H.; Sha, S.; Sun, L. T.; Xie, D. Z.
2012-02-01
SECRAL (superconducting ECR ion source with advanced design in Lanzhou) ion source has been in routine operation for Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex since May 2007. To further enhance the SECRAL performance in order to satisfy the increasing demand for intensive highly charged ion beams, 3-5 kW high power 24 GHz single frequency and 24 GHz +18 GHz double frequency with an aluminum plasma chamber were tested, and some exciting results were produced with quite a few new record highly charged ion beam intensities, such as 129Xe35+ of 64 eμA, 129Xe42+ of 3 eμA, 209Bi41+ of 50 eμA, 209Bi50+ of 4.3 eμA and 209Bi54+ of 0.2 eμA. In most cases SECRAL is operated at 18 GHz to deliver highly charged heavy ion beams for the HIRFL accelerator, only for those very high charge states and very heavy ion beams such as 209Bi36+ and 209Bi41+, SECRAL has been operated at 24 GHz. The total operation beam time provided by SECRAL up to July 2011 has exceeded 7720 hours. In this paper, the latest performance, development, and operation status of SECRAL ion source are presented. The latest results and reliable long-term operation for the HIRFL accelerator have demonstrated that SECRAL performance for production of highly charged heavy ion beams remains improving at higher RF power with optimized tuning.
Early Australian experience in robotic sleeve gastrectomy: a single site series.
Silverman, Candice D; Ghusn, Michael A
2017-05-01
The use of robotic platforms in bariatric surgery has recently gained relevance. With an increased use of this technology come concerns regarding learning curve effects during the initial implementation phase. The sleeve gastrectomy though may represent an ideal training procedure for introducing the robot into bariatric surgical practice. The present review of the first 10 consecutive robotic sleeve gastrectomy procedures performed in an Australian bariatric programme by a single surgeon describes the evolution of the technique, learning curve and initial patient outcomes. Between 2014 and 2015, robotic sleeve gastrectomies were performed as primary and revisional procedures by a consistent surgeon-assistant team. Technique evolution and theatre set-up were documented. Patient demographics, operative time (robot docking and total operation time), additional operative procedures performed, operative and post-operative complications at 1, 3 and 6 months post-procedure and weight loss achieved at 6 months were retrospectively reviewed from a prospectively maintained database. Ten robotic sleeve gastrectomies were performed without significant operative complications. One patient was treated as an outpatient with oral antibiotics for a superficial wound infection. The median total operative time was 123 min (interquartile range (IQR) 108.8-142.5), with a median incision to docking time of 19 min (IQR 15.0-31.8). Length of stay in hospital was 2-3 days. Median excess weight loss achieved at 6 months was 50% (IQR 33.9-66.5). This study describes a method of safely introducing the da Vinci robot into bariatric surgical practice. © 2016 Royal Australasian College of Surgeons.
Turbomachinery for Low-to-High Mach Number Flight
NASA Technical Reports Server (NTRS)
Tan, Choon S.; Shah, Parthiv N.
2004-01-01
The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed. The approach is based upon CFD computations and mean line analysis. Figures of merit that characterize the bulk performance of blade passage flows with and without cooling are extracted from CFD solutions. Such performance characterization is then applied to a preliminary compressor design framework (mean line). The generic nature of this approach makes it suitable for assessing the effect of different types of compressor cooling schemes, such as heat exchange or evaporative cooling (mass injection). Future work will focus on answering system level questions regarding the feasibility of compressor cooling. Specifically, we wish to determine the operational parametric space in which compressor cooling would be advantageous over other high flight Mach number propulsion concepts. In addition, we will explore the design requirements of cooled compressor turbomachinery, as well as the flow phenomena that limit and control its operation, and the technology barriers that must be crossed for its implementation.
Liu, Weihua; Yang, Yi; Xu, Haitao; Liu, Xiaoyan; Wang, Yijia; Liang, Zhicheng
2014-01-01
In mass customization logistics service, reasonable scheduling of the logistics service supply chain (LSSC), especially time scheduling, is benefit to increase its competitiveness. Therefore, the effect of a customer order decoupling point (CODP) on the time scheduling performance should be considered. To minimize the total order operation cost of the LSSC, minimize the difference between the expected and actual time of completing the service orders, and maximize the satisfaction of functional logistics service providers, this study establishes an LSSC time scheduling model based on the CODP. Matlab 7.8 software is used in the numerical analysis for a specific example. Results show that the order completion time of the LSSC can be delayed or be ahead of schedule but cannot be infinitely advanced or infinitely delayed. Obtaining the optimal comprehensive performance can be effective if the expected order completion time is appropriately delayed. The increase in supply chain comprehensive performance caused by the increase in the relationship coefficient of logistics service integrator (LSI) is limited. The relative concern degree of LSI on cost and service delivery punctuality leads to not only changes in CODP but also to those in the scheduling performance of the LSSC.
The performance of a centrifugal compressor with high inlet prewhirl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, A.; Abdullah, A.H.
1998-07-01
The performance requirements of centrifugal compressors usually include a broad operating range between surge and choke. This becomes increasingly difficult to achieve as increased pressure ratio is demanded. In order to suppress the tendency to surge and extend the operating range at low flow rates, inlet swirl is often considered through the application of inlet guide vanes. To generate high inlet swirl angles efficiently, an inlet volute has been applied as the swirl generator, and a variable geometry design developed in order to provide zero swirl. The variable geometry approach can be applied to increase the swirl progressively or tomore » switch rapidly from zero swirl to maximum swirl. The variable geometry volute and the swirl conditions generated are described. The performance of a small centrifugal compressor is presented for a wide range of inlet swirl angles. In addition to the basic performance characteristics of the compressor, the onsets of flow reversals at impeller inlet are presented, together with the development of pressure pulsations, in the inlet and discharge ducts, through to full surge. The flow rate at which surge occurred was shown, by the shift of the peak pressure condition and by the measurement of the pressure pulsations, to be reduced by over 40%.« less
Yang, Yi; Xu, Haitao; Liu, Xiaoyan; Wang, Yijia; Liang, Zhicheng
2014-01-01
In mass customization logistics service, reasonable scheduling of the logistics service supply chain (LSSC), especially time scheduling, is benefit to increase its competitiveness. Therefore, the effect of a customer order decoupling point (CODP) on the time scheduling performance should be considered. To minimize the total order operation cost of the LSSC, minimize the difference between the expected and actual time of completing the service orders, and maximize the satisfaction of functional logistics service providers, this study establishes an LSSC time scheduling model based on the CODP. Matlab 7.8 software is used in the numerical analysis for a specific example. Results show that the order completion time of the LSSC can be delayed or be ahead of schedule but cannot be infinitely advanced or infinitely delayed. Obtaining the optimal comprehensive performance can be effective if the expected order completion time is appropriately delayed. The increase in supply chain comprehensive performance caused by the increase in the relationship coefficient of logistics service integrator (LSI) is limited. The relative concern degree of LSI on cost and service delivery punctuality leads to not only changes in CODP but also to those in the scheduling performance of the LSSC. PMID:24715818
Robotic surgery: current perceptions and the clinical evidence.
Ahmad, Arif; Ahmad, Zoha F; Carleton, Jared D; Agarwala, Ashish
2017-01-01
It appears that a discrepancy exists between the perception of robotic-assisted surgery (RAS) and the current clinical evidence regarding robotic-assisted surgery among patients, healthcare providers, and hospital administrators. The purpose of this study was to assess whether or not such a discrepancy exists. We administered survey questionnaires via face-to-face interviews with surgical patients (n = 101), healthcare providers (n = 58), and senior members of hospital administration (n = 6) at a community hospital that performs robotic surgery. The respondents were asked about their perception regarding the infection rate, operative time, operative blood loss, incision size, cost, length of hospital stay (LOS), risk of complications, precision and accuracy, tactile sensation, and technique of robotic-assisted surgery as compared with conventional laparoscopic surgery. We then performed a comprehensive literature review to assess whether or not these perceptions could be corroborated with clinical evidence. The majority of survey respondents perceived RAS as modality to decrease infection rate, increase operative time, decrease operative blood loss, smaller incision size, a shorter LOS, and a lower risk of complications, while increasing the cost. Respondents also believed that robotic surgery provides greater precision, accuracy, and tactile sensation, while improving intra-operative access to organs. A comprehensive literature review found little-to-no clinical evidence that supported the respondent's favorable perceptions of robotic surgery except for the increased costs, and precision and accuracy of the robotic-assisted technique. There is a discrepancy between the perceptions of robotic surgery and the clinical evidence among patients, healthcare providers, and hospital administrators surveyed.
NASA Astrophysics Data System (ADS)
Bachche, Shivaji; Oka, Koichi
2013-03-01
This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.
Characterization of the Ternary Compound Pd5Pt3Ni2 for PEMFC Cathode Electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Karalee; Zhao, J; Allard Jr, Lawrence Frederick
2010-01-01
Research on proton exchange membrane fuel cells (PEMFC) has increased over the last decade due to an increasing demand for alternative energy solutions. Most PEMFCs use Pt on carbon support as electrocatalysts for oxygen reduction reactions (ORR) [1]. Due to the high cost of Pt, there is a strong drive to develop less expensive catalysts that meet or exceed the performance of Pt. Binary and ternary Pt alloys with less expensive metals are a possible route [1]. In this work, a ternary alloy with composition Pd5Pt3Ni2 was studied as a potential cathode material. Preliminary results showed similar catalytic performance tomore » pure Pt in single-cell tests. However, to enhance its performance, it is necessary to understand how this ternary catalyst behaves during fuel cell operation. Various electron microscopy techniques were used to characterize the ternary Pd5Pt3Ni2 catalysts within the membrane-electrode assembly (MEA) both before and after fuel cell operation.« less
Organizational Characteristics Associated With Fundraising Performance of Nonprofit Hospitals.
Erwin, Cathleen Owens; Landry, Amy Yarbrough
2015-01-01
Fundraising has become increasingly important to nonprofit hospitals as access to capital has grown more difficult and reimbursement for services more complex. This study analyzes the variation in organizational characteristics and fundraising performance among nonprofit acute care hospitals in the United States to identify and measure critical factors related to one key fundraising performance indicator: public support. Results indicate that the presence of an endowment, along with its value, investments in fundraising, and the geographic location of the organization, account for approximately 46% of variance in public support among nonprofit hospitals. The use of a separate foundation for the fundraising operation is not necessarily associated with measures of fundraising success; however, a majority of hospitals do use a foundation, signaling a strategic choice that may be made for numerous reasons. The study results and limitations are discussed and recommendations are made for maximizing the effectiveness of the fundraising enterprise within nonprofit hospitals. Increasing awareness of challenges associated with fundraising success will enhance the strategic management of fundraising operations by hospital executives and board members.
An Apparatus for High-Pressure Thermogravimetry.
sulfate pentahydrate to show relatively unchanged decomposition rates with increased pressure. (Author)...Thermograms are presented to show typical operation and performance of the apparatus, using aniline to demonstrate retardation of evaporation and copper
Physician practice management organizations: their prospects and performance.
Conrad, D A; Koos, S; Harney, A; Haase, M
1999-09-01
As physician organizations adapt their incentives, processes, and structures to accommodate the demands of an increasingly competitive and performance-sensitive external environment, the development of more effective administrative and managerial mechanisms becomes critical to success. The emergence of physician practice management companies (PPMCs) represents a potentially positive step for physician practices seeking increased economies of scale through consolidation, as well as enhanced access to financial capital. However, economic and finance theory, coupled with some empirical "arithmetic" regarding the financial and operational performance of leading publicly traded PPMCs, suggest caution in one's forecasts of the future prospects for these evolving corporate forms.
The Resident-Run Minor Surgery Clinic: A Pilot Study to Safely Increase Operative Autonomy.
Wojcik, Brandon M; Fong, Zhi Ven; Patel, Madhukar S; Chang, David C; Petrusa, Emil; Mullen, John T; Phitayakorn, Roy
General surgery training has evolved to align with changes in work hour restrictions, supervision regulations, and reimbursement practices. This has culminated in a lack of operative autonomy, leaving residents feeling inadequately prepared to perform surgery independently when beginning fellowship or practice. A resident-run minor surgery clinic increases junior resident autonomy, but its effects on patient outcomes have not been formally established. This pilot study evaluated the safety of implementing a resident-run minor surgery clinic within a university-based general surgery training program. Single institution case-control pilot study of a resident-run minor surgery clinic from 9/2014 to 6/2015. Rotating third-year residents staffed the clinic once weekly. Residents performed operations independently in their own procedure room. A supervising attending surgeon staffed each case prior to residents performing the procedure and viewed the surgical site before wound closure. Postprocedure patient complications and admissions to the hospital because of a complication were analyzed and compared with an attending control cohort. Massachusetts General Hospital General in Boston, MA; an academic tertiary care general surgery residency program. Ten third-year general surgery residents. Overall, 341 patients underwent a total of 399 procedures (110 in the resident clinic vs. 289 in the attending clinic). Minor surgeries included soft tissue mass excision (n = 275), abscess incision and drainage (n = 66), skin lesion excision (n = 37), skin tag removal (n = 15), and lymph node excision (n = 6). There was no significant difference in the overall rate of patients developing a postprocedure complication within 30 days (3.6% resident vs. 2.8% attending; p = 0.65); which persisted on multivariate analysis. Similar findings were observed for the rate of hospital admission resulting from a complication. Resident evaluations overwhelmingly supported the rotation, citing increased operative autonomy as the greatest strength. Implementation of a resident-run minor surgery clinic is a safe and effective method to increase trainee operative autonomy. The rotation is well suited for mid-level residents, as it provides an opportunity for realistic self-evaluation and focused learning that may enhance their operative experience during senior level rotations. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominick, F.; Lockwood, R.A.
1986-07-01
The US Army Aviation Engineering Flight Activity conducted an evaluation of Flight Management Calculator for the UH-1H. The calculator was a Hewlett-Packard HP-41CV. The performance calculator was evaluated for flight planning and in-flight use during 14 mission flights simulating operational conditions. The calculator was much easier to use in-flight than the operator's manual data. The calculator program needs improvement in the areas of pre-flight planning and execution speed. The mission flights demonstrated a 19% fuel saving using optimum over normal flight profiles in warm temperatures (15/sup 0/C above standard). Savings would be greater at colder temperatures because of increasing compressibilitymore » effects. Acceptable accuracy for individual aircraft under operational conditions may require a regressive analog model in which individual aircraft data are used to update the program. The performance data base for the UH-1H was expanded with level flight and hover data to thrust coefficients and Mach numbers to the practical limits of aircraft operation.« less
Constraint-based semi-autonomy for unmanned ground vehicles using local sensing
NASA Astrophysics Data System (ADS)
Anderson, Sterling J.; Karumanchi, Sisir B.; Johnson, Bryan; Perlin, Victor; Rohde, Mitchell; Iagnemma, Karl
2012-06-01
Teleoperated vehicles are playing an increasingly important role in a variety of military functions. While advantageous in many respects over their manned counterparts, these vehicles also pose unique challenges when it comes to safely avoiding obstacles. Not only must operators cope with difficulties inherent to the manned driving task, but they must also perform many of the same functions with a restricted field of view, limited depth perception, potentially disorienting camera viewpoints, and significant time delays. In this work, a constraint-based method for enhancing operator performance by seamlessly coordinating human and controller commands is presented. This method uses onboard LIDAR sensing to identify environmental hazards, designs a collision-free path homotopy traversing that environment, and coordinates the control commands of a driver and an onboard controller to ensure that the vehicle trajectory remains within a safe homotopy. This system's performance is demonstrated via off-road teleoperation of a Kawasaki Mule in an open field among obstacles. In these tests, the system safely avoids collisions and maintains vehicle stability even in the presence of "routine" operator error, loss of operator attention, and complete loss of communications.
Odor, Peter M; Chis Ster, Irina; Wilkinson, Iain; Sage, Frederic
2017-01-05
Post-operative cognitive impairment is common in elderly patients following surgery for hip fracture, with undertreated pain being an important etiological factor. Non-opioid based analgesic techniques, such as nerve blocks, may help reduce the risk of cognitive complications. The aim of this study was to investigate whether receiving a fascia iliaca compartment block (FICB) as part of a pre-operative analgesic regime increased the odds of high post-operative abbreviated mental test scores (AMTS) when compared with conventional analgesia without a nerve block. A retrospective data analysis of a cohort of 959 patients, aged ≥ 65 years with a diagnosis of hip fracture and admitted to a single hospital over a two-year period was performed. A standardized analgesic regime was used on all patients, and 541/959 (56.4%) of included patients received a FICB. Provision of the FICB was primarily determined by availability of an anesthetist, rather than by patient status and condition. Post-operative cognitive ordinal outcomes were defined by AMTS severity as high (score of ≥9/10), moderate, (score of 7-8) and low (score of ≤6). A multivariable ordinal logistic regression analysis was performed on patient status and clinical care factors, including admission AMTS, age, gender, source of admission, time to surgery, type of anesthesia and ASA score. Admission FICB was associated with higher adjusted odds for a high AMTS (score of ≥9) relative to lower AMTS (score of ≤8) than conventional analgesia only (OR = 1.80, 95% CI 1.27-2.54; p = 0.001). Increasing age, lower AMTS on admission to hospital, and being admitted from a residential or nursing home were associated with worse cognitive outcomes. Mode of anesthesia or surgery did not significantly influence post-operative AMTS. Post-operative AMTS is influenced by pre-operative analgesic regimes in elderly patients with hip fracture. Provision of a FICB to patients on arrival to hospital may improve early post-operative cognitive performance in this population.
Study on the micro direct ethanol fuel cell (Micro-DEFC) performance
NASA Astrophysics Data System (ADS)
Saisirirat, Penyarat; Joommanee, Bordindech
2018-01-01
The direct ethanol fuel cell (DEFC) is selected for this research. DEFC uses ethanol in the fuel cell instead of the more toxic methanol. Ethanol is more attractive than methanol by many reasons. Ethanol is a hydrogen-rich liquid and it has a higher specific energy (8.0 kWh/kg) compared to that of methanol (6.1 kWh/kg). Ethanol can be obtained in great quantity from biomass through a fermentation process from renewable resources such as sugar cane, wheat, corn, and even straw. The use of ethanol would also overcome both the storage and infrastructure challenge of hydrogen for fuel cell applications. The experimental apparatus on the micro direct ethanol fuel cell for measuring the cell performance has been set for this research. The objective is to study the micro direct ethanol fuel cell performance for applying with the portable electronic devices. The cell performance is specified in the terms of cell voltage, cell current and power of the cell at room operating temperature and 1 atm for the pressure and also includes the ethanol fuel consumption. The effect of operating temperature change on the electrical production performance is also studied. The steady-state time for collecting each data value is about 5-10 minutes. The results show that with the increase of concentrations of ethanol by volume, the reactant concentration at the reaction sites increases so the electrochemical rate also increases but when it reaches the saturated point the performance gradually drops.
Timing of intra-aortic balloon pump support and 1-year survival.
Ramnarine, Ian R; Grayson, Antony D; Dihmis, Walid C; Mediratta, Neeraj K; Fabri, Brian M; Chalmers, John A C
2005-05-01
The relationship between the timing of intra-aortic balloon pump (IABP) support and surgical outcome remains a subject of debate. Peri-operative mechanical circulatory support is commenced either prophylactically or after increasing inotropic support has proved inadequate. This study evaluates the effect timing of IABP support on the 1-year survival of patients undergoing cardiac surgery. From April 1997 to September 2002, 7698 consecutive cardiac surgical procedures were performed. This included 5678 isolated coronary artery bypasses (CABGs), 1245 isolated valve procedures and 775 simultaneous CABG and valve procedures. IABP support was required in 237 patients (3.1%). Twenty-seven patients (0.35%) were classed as high-risk and received preoperative IABP support, 25 patients (0.32%) were haemodynamically compromised and required preoperative IABP support, 120 patients (1.56%) required intra-operative IABP support, and 65 patients (0.84%) required post-operative IABP support. Multiple variables were offered to a Cox proportional hazards model and significant predictors of 1-year survival were identified. These were used to risk adjust Kaplan-Meier survival curves. 1-year follow-up was complete and 450 deaths (5.8%) were recorded. The significant independent predictors of increased mortality at 1-year (P<0.05, HR=hazard ratio) were post-operative renal failure (HR=3.5), increasing EuroSCORE (HR=1.2), post-operative myocardial infarction (HR=3.7), post-operative IABP (HR=4.1) intra-operative IABP (HR=2.8), post-operative stroke (HR=2.5), increasing number of valves (HR=1.6), ejection fraction <30% (HR=1.3) and triple-vessel disease (HR=1.3). After risk-adjustment, 1-year survival for patients who required intra-operative IABP support was significantly greater than for those patients who required IABP support in the post-operative period. Patients who warrant IABP support in the post-operative setting have a significantly increased mortality at 1-year when compared to any other group. Therefore, earlier IABP support as part of surgical strategy may help to improve the outcome.
Costa, Altair da Silva; Leão, Luiz Eduardo Villaça; de Novais, Maykon Anderson Pires; Zucchi, Paola
2015-01-01
ABSTRACT Objective To assess the operative time indicators in a public university hospital. Methods A descriptive cross-sectional study was conducted using data from operating room database. The sample was obtained from January 2011 to January 2012. The operations performed in sequence in the same operating room, between 7:00 am and 5:00 pm, elective or emergency, were included. The procedures with incomplete data in the system were excluded, as well as the operations performed after 5:00 pm or on weekends or holidays. Results We measured the operative and non-operative time of 8,420 operations. The operative time (mean and standard deviation) of anesthesias and operations were 177.6±110 and 129.8±97.1 minutes, respectively. The total time of the patient in operative room (mean and standard deviation) was 196.8±113.2. The non-operative time, e.g., between the arrival of the patient and the onset of anesthesia was 14.3±17.3 minutes. The time to set the next patient in operating room was 119.8±79.6 minutes. Our total non-operative time was 155 minutes. Conclusion Delays frequently occurred in our operating room and had a major effect on patient flow and resource utilization. The non-operative time was longer than the operative time. It is possible to increase the operating room capacity by management and training of the professionals involved. The indicators provided a tool to improve operating room efficiency. PMID:26761557
Rantz, William G; Van Houten, Ron
2011-01-01
This study examined whether pilots operating a flight simulator completed digital or paper flight checklists more accurately after receiving postflight graphic and verbal feedback. The dependent variable was the number of checklist items completed correctly per flight. Following treatment, checklist completion with paper and digital checklists increased from 38% and 39%, respectively, to nearly 100% and remained close to 100% after feedback and praise for improvement were withdrawn. Performance was maintained at or near 100% during follow-up probes.
Pre-operative imaging of rectal cancer and its impact on surgical performance and treatment outcome.
Beets-Tan, R G H; Lettinga, T; Beets, G L
2005-08-01
To discuss the ability of pre-operative MRI to have a beneficial effect on surgical performance and treatment outcome in patients with rectal cancer. A description on how MRI can be used as a tool so select patients for differentiated neoadjuvant treatment, how it can be used as an anatomical road map for the resection of locally advanced cases, and how it can serve as a tool for quality assurance of both the surgical procedure and overall patient management. As an illustration the proportion of microscopically complete resections of the period 1993-1997, when there was no routine pre-operative imaging, is compared to that of the period 1998-2002, when pre-operative MR imaging was standardized. The proportion of R0 resections increased from 92.5 to 97% (p=0.08) and the proportion of resections with a lateral tumour free margin of >1mm increased from 84.4 to 92.1% (p=0.03). The incomplete resections in the first period were mainly due to inadequate surgical management of unsuspected advanced or bulky tumours, whereas in the second period insufficient consideration was given to extensive neoadjuvant treatment when the tumour was close to or invading the mesorectal fascia on MR. There are good indications that in our setting pre-operative MR imaging, along with other improvements in rectal cancer management, had a beneficial effect on patient outcome. Audit and discussion of the incomplete resections can lead to an improved operative and perioperative management.
ERIC Educational Resources Information Center
Wood, Lonnie
1998-01-01
A dozen schools in Colorado opened their doors to professional performance auditors to evaluate their effectiveness and efficiency. The audit reports recommended finding precise costs of functions, programs, and operations; minimizing duplication; and increasing accountability. (MLF)
Vehicle automation and weather : challenges and opportunities.
DOT National Transportation Integrated Search
2016-12-25
Adverse weather has major impacts on the safety and operations of all roads, from signalized arterials to Interstate highways. Weather affects driver behavior, vehicle performance, pavement friction, and roadway infrastructure, thereby increasing the...
NASA Astrophysics Data System (ADS)
Pezeshki, Alan M.; Clement, Jason T.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.
2015-10-01
The roundtrip electrochemical energy efficiency is improved from 63% to 76% at a current density of 200 mA cm-2 in an all-vanadium redox flow battery (VRFB) by utilizing modified carbon paper electrodes in the high-performance no-gap design. Heat treatment of the carbon paper electrodes in a 42% oxygen/58% nitrogen atmosphere increases the electrochemically wetted surface area from 0.24 to 51.22 m2 g-1, resulting in a 100-140 mV decrease in activation overpotential at operationally relevant current densities. An enriched oxygen environment decreases the amount of treatment time required to achieve high surface area. The increased efficiency and greater depth of discharge doubles the total usable energy stored in a fixed amount of electrolyte during operation at 200 mA cm-2.
186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design
NASA Technical Reports Server (NTRS)
Kumar, Sushil; Hu, Qing; Reno, John L.
2009-01-01
Resonant-phonon terahertz quantum-cascade lasers operating up to a heat-sink temperature of 186 K are demonstrated. This record temperature performance is achieved based on a diagonal design, with the objective to increase the upper-state lifetime and therefore the gain at elevated temperatures. The increased diagonality also lowers the operating current densities by limiting the flow of parasitic leakage current. Quantitatively, the diagonality is characterized by a radiative oscillator strength that is smaller by a factor of two from the least of any previously published designs. At the lasing frequency of 3.9 THz, 63 mW of peak optical power was measured at 5 K, and approximately 5 mW could still be detected at 180 K.
Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...
2015-05-26
For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevik, James; Wallner, Thomas; Pamminger, Michael
The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coilmore » ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.« less
A method of calculating the performance of controllable propellers with sample computations
NASA Technical Reports Server (NTRS)
Hartman, Edwin P
1934-01-01
This paper contains a series of calculations showing how the performance of controllable propellers may be derived from data on fixed-pitch propellers given in N.A.C.A. Technical Report No. 350, or from similar data. Sample calculations are given which compare the performance of airplanes with fixed-pitch and with controllable propellers. The gain in performance with controllable propellers is shown to be largely due to the increased power available, rather than to an increase in efficiency. Controllable propellers are of particular advantage when used with geared and with supercharged engines. A controllable propeller reduces the take-off run, increases the rate of climb and the ceiling, but does not increase the high speed, except when operating above the design altitude of the previously used fixed-pitch propeller or when that propeller was designed for other than high speed.
[Effects of electromagnetic radiation on health and immune function of operators].
Li, Yan-zhong; Chen, Shao-hua; Zhao, Ke-fu; Gui, Yun; Fang, Si-xin; Xu, Ying; Ma, Zi-jian
2013-08-01
To investigate the effects of electromagnetic radiation on the physiological indices and immune function of operators. The general conditions and electromagnetic radiation awareness rate of 205 operators under electromagnetic radiation were evaluated using a self-designed questionnaire. Physical examination, electrocardiography, and routine urine test were performed in these operators. Peripheral blood was collected from the operators under electromagnetic radiation for blood cell counting and biochemical testing, and their peripheral blood lymphocytes were cultured for determination of chromosomal aberrant frequency and micronucleus frequency. The data from these operators (exposure group) were compared with those of 95 ordinary individuals (control group). The chief complaint of giddiness, tiredness, dizziness, and amnesia showed significant differences between the exposure group and control group (P < 0.01), and the difference in headache became larger with an increase in working years. The awareness rate of electromagnetic radiation damage was significantly higher in the exposure group than in the control group. The difference in bradycardia was significant between the two groups (P <0.01), and the incidence was higher with longer working years. Significant differences between the two groups were also found in the numbers of individuals with elevated alanine aminotransferase, total bilirubin, and direct bilirubin (P < 0.01), populations with increased lymphocyte ratio and decreased neutrophil ratio (P < 0.01), populations with positive occult blood, urobilinogen, and bilirubin tests, and the number of individuals with increased micronucleus frequency of cultured peripheral blood lymphocytes (P < 0.01). In addition, the exposure group had significantly increased complement C3 and C4 (P < 0.01), significantly increased IgG (P < 0.05), and significantly decreased IgM (P < 0.01), as compared with the control group. Electromagnetic radiation may lead to the changes in physiological indices, genetic effects, and immune function and affect the health and immune function in operators. The adverse effects are increased as the working years increase. So it is important to strengthen occupational protection of operators under electromagnetic radiation.
NASA Technical Reports Server (NTRS)
Meyer, Carl L; Johnson, Lavern A
1952-01-01
The performance and operational characteristics of a Python turbine-propeller engine were investigated at simulated altitude conditions in the NACA Lewis altitude wind tunnel. In the performance phase, data were obtained over a range of engine speeds and exhaust nozzle areas at altitudes from 10,000 to 40,000 feet at a single cowl-inlet ram pressure ratio; independent control of engine speed and fuel flow was used to obtain a range of powers at each engine speed. Engine performance data obtained at a given altitude could not be used to predict performance accurately at other altitudes by use of the standard air pressure and temperature generalizing factors. At a given engine speed and turbine-inlet total temperature, a greater portion of the total available energy was converted to propulsive power as the altitude increased.
High density fuel qualification for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macleod, J.D.; Orbanski, B.; Hastings, P.R.
1992-01-01
A program for the evaluation of gas turbine engine performance, carried out in the Engine Laboratory of the National Research Council of Canada, is described. Problems under consideration include performance alteration between JP-4 fuel and a high energy density fuel, called strategic military fuel (SMF); performance deterioration during the accelerated endurance test; and emission analysis. The T56 fuel control system is found to be capable of operation on the higher energy density fuel with no detrimental effects regarding control of the engine's normal operating regime. The deterioration of the engine performance during 150-hour endurance tests on SMF was very high,more » which was caused by an increase in turbine nozzle effective flow area and turbine blade untwist. The most significant performance losses during the endurance tests were on corrected output power, fuel flow, specific fuel consumption and compressor and turbine presure ratio. 9 refs.« less
Allergy medical care network: a new model of care for specialties.
Ferré-Ybarz, L; Salinas Argente, R; Nevot Falcó, S; Gómez Galán, C; Franquesa Rabat, J; Trapé Pujol, J; Oliveras Alsina, P; Pons Serra, M; Corbella Virós, X
2015-01-01
In 2005 the Althaia Foundation Allergy Department performed its daily activity in the Hospital Sant Joan de Deu of Manresa. Given the increasing demand for allergy care, the department's performance was analysed and a strategic plan (SP) for 2005-2010 was designed. The main objective of the study was to assess the impact of the application of the SP on the department's operations and organisational level in terms of profitability, productivity and quality of care. Descriptive, retrospective study which evaluated the operation of the allergy department. The baseline situation was analysed and the SP was designed. Indicators were set to perform a comparative analysis after application of the SP. The indicators showed an increase in medical care activity (first visits, 34%; successive visits, 29%; day hospital treatments, 51%), high rates of resolution, reduced waiting lists. Economic analysis indicated an increase in direct costs justified by increased activity and territory attended. Cost optimisation was explained by improved patient accessibility, minimised absenteeism in the workplace and improved cost per visit. After application of the SP a networking system was established for the allergy speciality that has expanded the territory for which it provides care, increased total activity and the ability to resolve patients, optimised human resources, improved quality of care and streamlined medical costs. Copyright © 2013 SEICAP. Published by Elsevier Espana. All rights reserved.
Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs
NASA Astrophysics Data System (ADS)
Chen, Kongfa; Lü, Zhe; Ai, Na; Chen, Xiangjun; Hu, Jinyan; Huang, Xiqiang; Su, Wenhui
Sm 0.2Ce 0.8O 1.9 (SDC)-impregnated La 0.7Sr 0.3MnO 3 (LSM) composite cathodes were fabricated on anode-supported yttria-stabilized zirconia (YSZ) thin films. Electrochemical performances of the solid oxide fuel cells (SOFCs) were investigated in the present study. Four single cells, i.e., Cell-1, Cell-2, Cell-3 and Cell-4 were obtained after the fabrication of four different cathodes, i.e., pure LSM and SDC/LSM composites in the weight ratios of 25/75, 36/64 and 42/58, respectively. Impedance spectra under open-circuit conditions showed that the cathode performance was gradually improved with the increasing SDC loading. Similarly, the maximum power densities (MPD) of the four cells were increased with the SDC amount below 700 °C. Whereas, the cell performance of Cell-4 was lower than that of Cell-3 at 800 °C, arising from the increased concentration polarization at high current densities. This was caused by the lowered porosity with the impregnation cycle. This disadvantage could be suppressed by lowering the operating temperature or by increasing the oxygen concentration at the cathode side. The ratio of electrode polarization loss in the total voltage drop versus current density showed that the cell performance was primarily determined by the electrode polarization. The contribution of the ohmic resistance was increased when the operating temperature was lowered. When a 100 ml min -1 oxygen flow was introduced to the cathode side, Cell-3 produced MPDs of 1905, 1587 and 1179 mW cm -2 at 800, 750 and 700 °C, respectively. The high cell outputs demonstrated the merits of the novel and effective SDC-impregnated LSM cathodes.
Temperature-dependent performance of all-NbN DC-SQUID magnetometers
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen
2017-05-01
Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.
Measures and Interpretations of Vigilance Performance: Evidence Against the Detection Criterion
NASA Technical Reports Server (NTRS)
Balakrishnan, J. D.
1998-01-01
Operators' performance in a vigilance task is often assumed to depend on their choice of a detection criterion. When the signal rate is low this criterion is set high, causing the hit and false alarm rates to be low. With increasing time on task the criterion presumably tends to increase even further, thereby further decreasing the hit and false alarm rates. Virtually all of the empirical evidence for this simple interpretation is based on estimates of the bias measure Beta from signal detection theory. In this article, I describe a new approach to studying decision making that does not require the technical assumptions of signal detection theory. The results of this new analysis suggest that the detection criterion is never biased toward either response, even when the signal rate is low and the time on task is long. Two modifications of the signal detection theory framework are considered to account for this seemingly paradoxical result. The first assumes that the signal rate affects the relative sizes of the variances of the information distributions; the second assumes that the signal rate affects the logic of the operator's stopping rule. Actual or potential applications of this research include the improved training and performance assessment of operators in areas such as product quality control, air traffic control, and medical and clinical diagnosis.
Laparoscopic pyloromyotomy: effect of resident training on complications.
Haricharan, Ramanath N; Aprahamian, Charles J; Celik, Ahmet; Harmon, Carroll M; Georgeson, Keith E; Barnhart, Douglas C
2008-01-01
The purpose of this study was to characterize the safety of laparoscopic pyloromyotomy and examine the effect of resident training on the occurrence of complications. Five hundred consecutive infants who underwent laparoscopic pyloromyotomy between January 1997 and December 2005 were reviewed and analyzed. Laparoscopic pyloromyotomy was successfully completed in 489 patients (97.8%). Four hundred seventeen patients were boys (83%). Intraoperative complication occurred in 8 (1.6%) patients (mucosal perforation, 7; serosal injury to the duodenum, 1). All were immediately recognized and uneventfully repaired. Six patients (1.2%) required revision pyloromyotomy for persistent or recurrent gastric outlet obstruction. There were 7 wound complications (1.4%) and no deaths. Pediatric surgery residents performed 81% of the operations, whereas 16% were done by general surgery residents (postgraduate years 3-4). There was a 5.4-fold increased risk of mucosal perforation or incomplete pyloromyotomy when a general surgery resident rather than a pediatric surgery resident performed the operation (95% confidence interval, 1.8-15.8; P = .003). These effects persisted even after controlling for weight, age, and attending experience. The laparoscopic pyloromyotomy has an excellent success rate with low morbidity. The occurrence of complications is increased when the operation is performed by a general surgery resident, even when directly supervised by pediatric surgical faculty.
Acoustic systems for the measurement of streamflow
Laenen, Antonius; Smith, Winchell
1982-01-01
Very little information is available concerning acoustic velocity meter (AVM) operation, performance, and limitations. This report provides a better understanding about the application of AVM instrumentation to streamflow measurment. Operational U.S. Geological Survey systems have proven that AVM equipment is accurate and dependable. AVM equipment has no practical upper limit of measureable velocity if sonic transducers are securely placed and adequately protected, and will measure velocitites as low as 0.1 meter per second which is normally less than the threshold level for mechanical or head-loss meters. In some situations the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Smaller, less-expensive, more conveniently operable microprocessor equipment is now available which should increase use of AVM systems in streamflow applications. (USGS)
Development of an Extreme High Temperature n-type Ohmic Contact to Silicon Carbide
NASA Technical Reports Server (NTRS)
Evans, Laura J.; Okojie, Robert S.; Lukco, Dorothy
2011-01-01
We report on the initial demonstration of a tungsten-nickel (75:25 at. %) ohmic contact to silicon carbide (SiC) that performed for up to fifteen hours of heat treatment in argon at 1000 C. The transfer length method (TLM) test structure was used to evaluate the contacts. Samples showed consistent ohmic behavior with specific contact resistance values averaging 5 x 10-4 -cm2. The development of this contact metallization should allow silicon carbide devices to operate more reliably at the present maximum operating temperature of 600 C while potentially extending operations to 1000 C. Introduction Silicon Carbide (SiC) is widely recognized as one of the materials of choice for high temperature, harsh environment sensors and electronics due to its ability to survive and continue normal operation in such environments [1]. Sensors and electronics in SiC have been developed that are capable of operating at temperatures of 600 oC. However operating these devices at the upper reliability temperature threshold increases the potential for early degradation. Therefore, it is important to raise the reliability temperature ceiling higher, which would assure increased device reliability when operated at nominal temperature. There are also instances that require devices to operate and survive for prolonged periods of time above 600 oC [2, 3]. This is specifically needed in the area of hypersonic flight where robust sensors are needed to monitor vehicle performance at temperature greater than 1000 C, as well as for use in the thermomechanical characterization of high temperature materials (e.g. ceramic matrix composites). While SiC alone can withstand these temperatures, a major challenge is to develop reliable electrical contacts to the device itself in order to facilitate signal extraction
A practical guide to the design and construction of a single wire beverage antenna
NASA Astrophysics Data System (ADS)
Spong, H. L.
1980-09-01
Theoretical results are presented which show the performance likely to result from using differing antenna heights, lengths and wire sizes and from operating with different ground conductivities. These studies were undertaken to provide practical advice for constructors and operators. Design parameters can be easily obtained with the aid of computer programs and an antenna can be rapidly constructed from readily available materials. Directivity can be increased by adding more elements, either in parallel or on a radial basis. A particular performance can be achieved with great latitude in the parameters. Good low angle performance can be achieved without large ground screens. A directional array can be made by switching between a number of elements set up on different bearings.
Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.
2015-12-08
A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.
On the implementation of an auxiliary pantograph for speed increase on existing lines
NASA Astrophysics Data System (ADS)
Liu, Zhendong; Jönsson, Per-Anders; Stichel, Sebastian; Rønnquist, Anders
2016-08-01
The contact between pantograph and catenary at high speeds suffers from high dynamic contact force variation due to stiffness variations and wave propagation. To increase operational speed on an existing catenary system, especially for soft catenary systems, technical upgrading is usually necessary. Therefore, it is desirable to explore a more practical and cost-saving method to increase the operational speed. Based on a 3D pantograph-catenary finite element model, a parametric study on two-pantograph operation with short spacing distances at high speeds shows that, although the performance of the leading pantograph gets deteriorated, the trailing pantograph feels an improvement if pantographs are spaced at a proper distance. Then, two main positive effects, which can cause the improvement, are addressed. Based on a discussion on wear mechanisms, this paper suggests to use the leading pantograph as an auxiliary pantograph, which does not conduct any electric current, to minimise additional wear caused by the leading pantograph. To help implementation and achieve further improvement under this working condition, this paper investigates cases with optimised uplift force on the leading pantograph and with system parameter deviations. The results show that the two positive effects still remain even with some system parameter deviations. About 30% of speed increase should be possibly achieved still sustaining a good dynamic performance with help of the optimised uplift force.
11 Years of experience in vitreoretinal surgery training in Nairobi, Kenya, from 2000 to 2010.
Schönfeld, Carl-Ludwig; Kollmann, Martin; Nyaga, Patrick; Onyango, Oskar; Klauss, Volker; Kampik, Anselm
2013-08-01
We aim to demonstrate that vitreoretinal surgery can be established in Nairobi, Kenya, by intermittent short visits of experienced surgeons combined with clinical/surgical observerships over a longer period of cooperation. This strategy might be a model for other developing countries. Time series over 11 years. 685 operations were performed over 11 years. After the 1998 al-Qaeda bomb assault on the U.S. embassy in Nairobi, Kenya, the Ludwig-Maximilians-University München (Germany) provided materials for surgery of 42 victims with eye injuries. From the year 2000 onward, this equipment has been used to establish a training unit at the Kenyatta Hospital in Nairobi. In 1 annual "project week," 1 author (C-L.S.) performed vitreoretinal surgery at the University of Nairobi in cooperation with the Kenyatta National Hospital and supervised resident eye surgeons. After 7 years of training in Nairobi, clinical/surgical observerships of vitreoretinal surgeons and operating theatre staff were commenced in Munich by 4- to 12-week visits. The project week in Nairobi was carried on. Number, indications, operating surgeons, kind, difficulty, duration of operations, and preparation were recorded and evaluated. The percentage of operations by resident surgeons increased from 29% (in 2000) via 80% (in 2009) to 73% (in 2010) with a partial failure of the laser device. The learning curve of local surgeons is also reflected by an increase of the operations' difficulty with only a moderate increase in operation time and marked decrease of preparation time. A vitreoretinal unit has been established in Nairobi using our training model. This unit has the potential to train colleagues from other sub-Saharan countries. This strategy has advantages over long-term aid deployment of foreign physicians such as avoiding financial burden for the surgeons to be trained and improving the home facility, but it requires commitment for long-term cooperation. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Personal Skills, Job Satisfaction, and Productivity in Members of High Performance Teams
ERIC Educational Resources Information Center
Valdes-Flores, Patricia; Campos-Rodriguez, Javier Arturo
2008-01-01
The intention of the study is to identify the development of personal skills, as well as the increase of job satisfaction and productivity of the employee, as a result of their participation in high performance teams. Volunteered in the study 139 members of self-managed teams belonging to the Production Area, 39 of Operational Administrative…
Ferrer-Polonio, E; Fernández-Navarro, J; Alonso-Molina, J L; Amorós-Muñoz, I; Bes-Piá, A; Mendoza-Roca, J A
2017-12-01
Sludge production in wastewater treatment plants is nowadays a big concern due to the high produced amounts and their characteristics. Consequently, the study of techniques that reduce the sludge generation in wastewater treatment plants is becoming of great importance. In this work, four laboratory sequencing batch reactors (SBRs), which treated municipal wastewater, were operated to study the effect of adding the metabolic uncoupler 3,3',4',5-tetrachlorosalicylanilide (TCS) on the sludge reduction, the SBRs performance and the microbial hydrolytic enzymatic activities (MHEA). In addition, different operating conditions of the SBRs were tested to study the effect of the TCS on the process: two dissolved oxygen (DO) concentrations (2 and 9 mg L -1 ) and two F/M ratio (0.18 and 0.35 g COD·g MLVSS -1 ·d -1 ). The sludge production decreased under high DO concentrations. At the same time, the DNA and EPS production increased in the four SBRs. After these stress conditions, the performance of the reactors were recovered when DO was around 2 mg L -1 . From that moment on, results showed that TCS addition implied a reduction of the adenosine triphosphate (ATP) production, which implied a decrease in the sludge production. In spite of this reduction, the SBRs performances did not decay due to the increase in the global MHEA. Additionally, the sludge reduction was enhanced by the increase of the F/M ratio, achieving 28% and 60% of reduction for the low and the high F/M ratio, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Shillito, T B; Nakanishi, Shigeo
1952-01-01
The results of an altitude test-chamber investigation of the effects of a number of design changes and operating conditions on altitude peformance of a 28-inch diameter ram jet engine are presented. Most of the investigation was for a simulated flight Mach number of 2.0 above the tropopause. Fuel-air distribution, gutter width, the presence of a pilot flame, cimbustion-chamber-inlet temperature, and exhaust-nozzle throat area were found to have significant effects on limits of combustion. Combustion efficiency increased with increasing combustion-chamber-inlet temperature and was adversely affected by an increase in the exhaust-nozzld area. Similiar lean limits of combustion were obtained for both Diesel fuel and normal heptane, but combustion efficiences obtained with Diesel fuel were lower than those obtained with normal heptane.
In-situ plasma processing to increase the accelerating gradients of SRF cavities
Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; ...
2015-12-31
A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less
Voice measures of workload in the advanced flight deck: Additional studies
NASA Technical Reports Server (NTRS)
Schneider, Sid J.; Alpert, Murray
1989-01-01
These studies investigated acoustical analysis of the voice as a measure of workload in individual operators. In the first study, voice samples were recorded from a single operator during high, medium, and low workload conditions. Mean amplitude, frequency, syllable duration, and emphasis all tended to increase as workload increased. In the second study, NASA test pilots performed a laboratory task, and used a flight simulator under differing work conditions. For two of the pilots, high workload in the simulator brought about greater amplitude, peak duration, and stress. In both the laboratory and simulator tasks, high workload tended to be associated with more statistically significant drop-offs in the acoustical measures than were lower workload levels. There was a great deal of intra-subject variability in the acoustical measures. The results suggested that in individual operators, increased workload might be revealed by high initial amplitude and frequency, followed by rapid drop-offs over time.
NASA Astrophysics Data System (ADS)
Tsui, Lok-kun; Zafferoni, Claudio; Lavacchi, Alessandro; Innocenti, Massimo; Vizza, Francesco; Zangari, Giovanni
2015-10-01
Direct alkaline ethanol fuel cells (DEFCs) are usually run with Pd anodic catalysts, but their performance can be improved by utilizing alloys of Pd and Co. The oxyphilic Co serves to supply ample -OH to the ethanol oxidation reaction, accelerating the rate limiting step at low overpotential under alkaline conditions. Pd-Co films with compositions between 20 and 80 at% Co can be prepared by electrodeposition from a NH3 complexing electrolyte. Cyclic voltammetry studies show that the ethanol oxidation peak exhibits increasing current density with increasing Co content, reaching a maximum at 77% Co. In contrast, potentiostatic measurements under conditions closer to fuel cell operating conditions show that a 50 at% Co alloy has the highest performance. Importantly, the Co-Pd film is also found to undergo phase and morphological transformations during ethanol oxidation, resulting in a change from a compact film to high surface area flake-like structures containing Co3O4 and CoOOH; such a transformation instead is not observed when operating at a constant potential of 0.7 VRHE.
Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiuhua, E-mail: xhwang@mail.ahnu.edu.cn; Shi, Zhijie; Yao, Shangwu
2014-11-15
AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiationmore » improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.« less
[Malignant tumors of the female genital track in the elderly].
Gottwald, Leszek; Akoel, Kindah Mo; Wójcik-Krowiranda, Katarzyna; Bieńkiewicz, Andrzej
2003-09-01
In senium the increase in the incidence of most malignant neoplasms, as well as gynecological cancers is found. In this period of life the vast number of women do not apply for the preventive and follow-up examinations, which increases the number of malignant diseases diagnosed at advanced clinical stages. The coexisting another diseases often limits the possibility of the operative treatment in those cases. To assess the profile of malignant tumors of the genital tract and their treatment in women above 70 year old. 61 women aged from 71 yrs. to 88 yrs. treated operatively between 1997-2001 due to gynecological cancers were included into the study. The structure and detectability of the neoplasms, as well as the type of performed surgical procedures were analysed. 30 endometrial cancers (49.2%), 16 ovarian cancers (26.2%), 14 vulvar cancers (22.9%) and 1 cervical cancer were diagnosed and surgically treated. The endometrial cancer stage I was detected in 18 cases, stage II in 4 cases and stage III in 8 cases. In each case the radical operation was done (total hysterectomy, lymphadenectomy and appendectomy). The ovarian cancer stage I was detected in 3 cases, stage II in 2 cases, stage III in 5 cases, and stage IV in 6 cases. Only in 5 cases out of this group the radical surgery was performed (total hysterectomy, omentectomy and appendectomy). The vulvar cancer stage I was detected in 2 cases, stage II in 11 cases, and FIGO stage III in 4 cases. In each of these women the vulva and bilateral inguinal lymph nodes were resected, and in 2 cases additionally at the same time the Miles operation was performed. The cervical cancer clinical stage I was detected, and the Wertheim operation was performed. The most often diagnosed malignant neoplasm in women above 70 yrs. was the endometrial cancer. The worst first-time diagnosis structure was observed in the ovarian cancer, what significantly decreased the ability of surgical treatment in this group.
Gillis, Joshua A; Williams, Jason G
2017-08-01
To date, there have been no studies identifying the cost differential for performing closed reduction internal fixation (CRIF) of hand fractures in the operating room (OR) versus an ambulatory setting. Our goal was to analyse the cost and efficiency of performing CRIF in these two settings and to investigate current practice trends in Canada. A detailed analysis of the costs involved both directly and indirectly in the CRIF of a hand fracture was conducted. Hospital records were used to calculate efficiency. A survey was distributed to practicing plastic surgeons across Canada regarding their current practice of managing hand fractures. In an eight-hour surgical block we are able to perform five CRIF in the OR versus eight in an ambulatory setting. The costs of performing a CRIF in the OR under local anaesthetic, not including surgeon compensation, is $461.27 Canadian (CAD) compared to $115.59 CAD in the ambulatory setting, a 299% increase. The use of a regional block increases the cost to $665.49 CAD, a 476% increase. The main barrier to performing CRIFs in an outpatient setting is the absence of equipment necessary to perform these cases effectively, based on survey results. The use of the OR for CRIF of hand fractures is associated with a significant increase in cost and hospital resources with decreased efficiency. For appropriately selected hand fractures, CRIF in an ambulatory setting is less costly and more efficient compared to the OR and resources should be allocated to facilitate CRIF in this setting. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Demonstration of a Nano-Enabled Space Power System
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne; Hunter, Roger C.; Baker, Christopher
2017-01-01
The Nano-Enabled Space Power System will demonstrate power systems with nanomaterial-enhanced components as are placement for CubeSat power generation, transmission, and storage. Successful flights of these nano-power systems will accelerate the use of this revolutionary technology in the aerospace industry. The use of nano materials in solar cells, wire harnesses,and lithium ion batteries can increase the device performance without significantly altering the devices physical dimensions or the devices operating range (temperature,voltage, current). In many cases, the use of nanomaterials widens the viable range of operating conditions, such as increased depth of discharge of lithium ion batteries, tunable bandgaps in solar cells, and increased flexure tolerance of wire harnesses.
Weiniger, Carolyn F; Kabiri, Doron; Ginosar, Yehuda; Ezra, Yossef; Shachar, BatZion; Lyell, Deirdre J
2016-03-01
Planned cesarean hysterectomy (CH) is recommended to minimize morbidity for suspected placenta accreta (PA), yet this ends fertility. We examined CH frequency and post-operative morbidities for suspected PA cases when an intra-operative decision strategy to perform CH was used. Suspected PA cases were pre-operatively identified in one tertiary care center. Women were assessed intra-operatively, prior to uterine incision, for immediate CH or for attempted placental separation. We compared outcomes among women with versus without PA (surgical and/or pathologic diagnosis), and examined outcomes following immediate CH versus attempted placental separation. Our cohort, from 2002 to 2012, comprised 99 women with suspected PA; 54 (54.5%) had PA diagnosed by surgery/pathology, and 45 (45.5%) did not. Among women diagnoses surgically or pathologically with PA, CH was performed for 46/54 (85%); 8 women with suspected PA had successful placental separation. 27 of the 46 CH were performed immediately following uterine wall examination and 19 were performed following attempted placental separation. We received histological confirmation of the clinical placenta accreta diagnosis for 24/46 (52.2%) cases, and in 22/46 (47.8%) cases the histology did not confirm the clinical diagnosis. Surgery duration, packed cell transfusion requirement and postoperative outcomes were similar among women with PA regardless of immediate CH versus attempted placental separation, except for a higher cystotomy rates following attempted placental separation. Emergency deliveries were performed at significantly earlier gestational ages. Among women with suspected PA, an intra-operative CH decision allows some women to avoid CH. Consideration of attempted placental separation did not increase blood transfusion or post-operative complications, but was associated with a higher rate of cystotomy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The razor's edge: Australian rock music impairs men's performance when pretending to be a surgeon.
Fancourt, Daisy; Burton, Thomas Mw; Williamon, Aaron
2016-12-12
Over the past few decades there has been interest in the role of music in the operating theatre. However, despite many reported benefits, a number of potentially harmful effects of music have been identified. This study aimed to explore the effects of rock and classical music on surgical speed, accuracy and perceived distraction when performing multiorgan resection in the board game Operation. Single-blind, three-arm, randomised controlled trial. Imperial Festival, London, May 2016. Members of the public (n = 352) aged ≥ 16 years with no previous formal surgical training or hearing impairments. Participants were randomised to listen through noise-cancelling headphones to either the sound of an operating theatre, rock music or classical music. Participants were then invited to remove three organs from the board game patient, Cavity Sam, using surgical tweezers. Time taken (seconds) to remove three organs from Cavity Sam; the number of mistakes made in performing the surgery; and perceived distraction, rated on a five-point Likert-type scale from 1 (not at all distracting) to 5 (very distracting). Rock music impairs the performance of men but not women when undertaking complex surgical procedures in the board game Operation, increasing the time taken to operate and showing a trend towards more surgical mistakes. In addition, classical music was associated with lower perceived distraction during the game, but this effect was attenuated when factoring in how much people liked the music, with suggestions that only people who particularly liked the music of Mozart found it beneficial. Rock music (specifically Australian rock music) appears to have detrimental effects on surgical performance. Men are advised not to listen to rock music when either operating or playing board games.
Kamali, Dariush; Illing, Jan
2018-01-01
Objective To identify the perception of positive feedback (PF) and negative feedback (NF) provided by trainers in the operating theatre on surgical trainees' confidence and well-being. Design Narrative interview study. Setting Twelve hospitals that form part of one deanery within the UK. Participants Maximum variation sampling of 15 higher general surgical trainees provided insight into how PF and NF from trainers in the operating theatre affect confidence and well-being. Methods Narrative telephone interviews were conducted with general surgical trainees between April and June 2016. All interviews were recorded, transcribed and anonymised. Transcriptions were analysed using the five-step framework analysis by two independent researchers. Results Fifteen trainees (age 28–38 years) were interviewed (median interview time: 29 min). Thematic framework analysis identified nine themes within the data. PF, which included corrective feedback, helped the trainees to relax and seemed to enhance their operative performance. All trainees reported significant and unjustified NF, some of which would be defined as undermining and bullying. Many believed this to have a negative impact on their training with minimal educational benefit. Many trainees felt NF adversely affected their performance in the operating theatre with some expressing a wish to leave the profession as a consequence. Conclusion Both PF and NF exist in the operating theatre. Both have an important influence on the trainee, their performance and career. PF, if specific, helped aid progression of learning, increased motivation and performance of surgical trainees. In contrast, NF was perceived to have detrimental effects on trainees’ performance and their well-being and, in some, introduced a desire to pursue an alternative career. PMID:29440141
Determination of the Proper Rest Time for a Cyclic Mental Task Using ACT-R Architecture.
Atashfeshan, Nooshin; Razavi, Hamideh
2017-03-01
Objective Analysis of the effect of mental fatigue on a cognitive task and determination of the right start time for rest breaks in work environments. Background Mental fatigue has been recognized as one of the most important factors influencing individual performance. Subjective and physiological measures are popular methods for analyzing fatigue, but they are restricted to physical experiments. Computational cognitive models are useful for predicting operator performance and can be used for analyzing fatigue in the design phase, particularly in industrial operations and inspections where cognitive tasks are frequent and the effects of mental fatigue are crucial. Method A cyclic mental task is modeled by the ACT-R architecture, and the effect of mental fatigue on response time and error rate is studied. The task includes visual inspections in a production line or control workstation where an operator has to check products' conformity to specifications. Initially, simulated and experimental results are compared using correlation coefficients and paired t test statistics. After validation of the model, the effects are studied by human and simulated results, which are obtained by running 50-minute tests. Results It is revealed that during the last 20 minutes of the tests, the response time increased by 20%, and during the last 12.5 minutes, the error rate increased by 7% on average. Conclusion The proper start time for the rest period can be identified by setting a limit on the error rate or response time. Application The proposed model can be applied early in production planning to decrease the negative effects of mental fatigue by predicting the operator performance. It can also be used for determining the rest breaks in the design phase without an operator in the loop.
Parenchymal-sparing hepatectomy for deep-placed colorectal liver metastases.
Matsuki, Ryota; Mise, Yoshihiro; Saiura, Akio; Inoue, Yosuke; Ishizawa, Takeaki; Takahashi, Yu
2016-11-01
The feasibility of parenchymal-sparing hepatectomy has yet to be assessed based on the tumor location, which affects the choice of treatment in patients with colorectal liver metastases. Sixty-three patients underwent first curative hepatectomy for deep-placed colorectal liver metastases whose center was located >30 mm from the liver surface. Operative outcomes were compared among patients who underwent parenchymal-sparing hepatectomy or major hepatectomy (≥3 segments). Parenchymal-sparing hepatectomy and major hepatectomy were performed for deep-placed colorectal liver metastases in 40 (63%) and 23 (37%) patients, respectively. Resection time was longer in the parenchymal-sparing hepatectomy than in the major hepatectomy group (57 vs 39 minutes) (P = .02) and cut-surface area was wider (120 vs 86 cm 2 ) (P < .01). Resected volume was smaller in the parenchymal-sparing hepatectomy than in the major hepatectomy group (251 vs 560 g) (P < .01). No differences were found between the 2 groups for total operation time (306 vs 328 minutes), amount of blood loss (516 vs 400 mL), rate of major complications (10% vs 13%), and positive operative margins (5% vs 4%). Overall, recurrence-free, and liver recurrence-free survivals did not differ between the 2 groups. Direct major hepatectomy without portal venous embolization could not have been performed in 40% of the parenchymal-sparing hepatectomy group (16/40) because of the small liver remnant volume. Parenchymal-sparing hepatectomy for deep-placed colorectal liver metastases was performed safely without compromising oncologic radicality. Parenchymal-sparing hepatectomy can increase the number of patients eligible for an operation by halving the resection volume and by increasing the chance of direct operative treatment in patients with ill-located colorectal liver metastases. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburn, Bryan M.; Bishop, Sean; Gore, Colin
In this project, we improved the power output and voltage efficiency of our intermediate temperature solid oxide fuel cells (IT-SOFCs) with a focus on ~600 °C operation. At these temperatures and with the increased power density (i.e., fewer cells for same power output), the stack cost should be greatly reduced while extending durability. Most SOFC stacks operate at temperatures greater than 800 °C. This can greatly increase the cost of the system (stacks and BOP) as well as maintenance costs since the most common degradation mechanisms are thermally driven. Our approach uses no platinum group metal (PGM) materials and themore » lower operating temperature allows use of simple stainless steel interconnects and commercial off-the-shelf gaskets in the stack. Furthermore, for combined heating and power (CHP) applications the stack exhaust still provides “high quality” waste heat that can be recovered and used in a chiller or boiler. The anticipated performance, durability, and resulting cost improvements (< $700/kWe) will also move us closer to reaching the full potential of this technology for distributed generation (DG) and residential/commercial CHP. This includes eventual extension to cleaner, more efficient portable generators, auxiliary power units (APUs), and range extenders for transportation. The research added to the understanding of the area investigated by exploring various methods for increasing power density (Watts/square centimeter of active area in each cell) and increasing cell efficiency (increasing the open circuit voltage, or cell voltage with zero external electrical current). The results from this work demonstrated an optimized cell that had greater than 1 W/cm2 at 600 °C and greater than 1.6 W/cm2 at 650 °C. This was demonstrated in large format sizes using both 5 cm by 5 cm and 10 cm by 10 cm cells. Furthermore, this work demonstrated that high stability (no degradation over > 500 hours) can be achieved together with high performance in large format cells as large as 10 cm by 10 cm when operated at ~600 °C. The project culminated in the demonstration of a 12-cell stack using the porous anode-based SOFC technology.« less
NASA Technical Reports Server (NTRS)
Fournelle, John; Carpenter, Paul
2006-01-01
Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.
CFDP Evolutions and File Based Operations
NASA Astrophysics Data System (ADS)
Valverde, Alberto; Taylor, Chris; Magistrati, Giorgio; Maiorano, Elena; Colombo, Cyril; Haddow, Colin
2015-09-01
The complexity of the scientific ESA missions in terms of data handling requirements has been steadily increasing in the last years. The availability of high speed telemetry links to ground, the increase on the data storage capacity, as well as the processing performance of the spacecraft avionics have enabled this process. Nowadays, it is common to find missions with hundreds of gigabytes of daily on-board generated data, with terabytes of on-board mass memories and with downlinks of several hundreds of megabits per second. This technological trends push an upgrade on the spacecraft data handling and operation concept, smarter solutions are needed to sustain such high data rates and volumes, while improving the on-board autonomy and easing operations. This paper describes the different activities carried out to adapt to the new data handling scenario. It contains an analysis of the proposed operations concept for file-based spacecrafts, including the updates on the PUS and CFDP standards.
Autonomous System Technologies for Resilient Airspace Operations
NASA Technical Reports Server (NTRS)
Houston, Vincent E.; Le Vie, Lisa R.
2017-01-01
Increasing autonomous systems within the aircraft cockpit begins with an effort to understand what autonomy is and developing the technology that encompasses it. Autonomy allows an agent, human or machine, to act independently within a circumscribed set of goals; delegating responsibility to the agent(s) to achieve overall system objective(s). Increasingly Autonomous Systems (IAS) are the highly sophisticated progression of current automated systems toward full autonomy. Working in concert with humans, these types of technologies are expected to improve the safety, reliability, costs, and operational efficiency of aviation. IAS implementation is imminent, which makes the development and the proper performance of such technologies, with respect to cockpit operation efficiency, the management of air traffic and data communication information, vital. A prototype IAS agent that attempts to optimize the identification and distribution of "relevant" air traffic data to be utilized by human crews during complex airspace operations has been developed.
Performance analysis of radiation cooled dc transmission lines for high power space systems
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1985-01-01
As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.
Review of biased solar arraay. Plasma interaction studies
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1981-01-01
The Solar Electric Propulsion System (SEPS) is proposed for a variety of space missions. Power for operating SEPS is obtained from large solar array wings capable of generating tens of kilowatts of power. To minimize resistive losses in the solar array bus lines, the array is designed to operate at voltages up to 400 volts. This use of high voltage can increase interactions between the biased solar cell interconnects and plasma environments. With thrusters operating, the system ground is maintained at space plasma potential which exposes large areas of the arrays at the operating voltages. This can increase interactions with both the natural and enhanced charged particle environments. Available data on interactions between biased solar array surfaces and plasma environments are summarized. The apparent relationship between collection phenomena and solar cell size and effects of array size on interactions are discussed. The impact of these interactions on SEPS performance is presented.
Air STAR Beyond Visual Range UAS Description and Preliminary Test Results
NASA Technical Reports Server (NTRS)
Cunningham, Kevin; Cox, David E.; Foster, John V.; Riddick, Stephen E.; Laughter, Sean A.
2016-01-01
The NASA Airborne Subscale Transport Aircraft Research Unmanned Aerial System project's capabilities were expanded by updating the system design and concept of operations. The new remotely piloted airplane system design was flight tested to assess integrity and operational readiness of the design to perform flight research. The purpose of the system design is to improve aviation safety by providing a capability to validate, in high-risk conditions, technologies to prevent airplane loss of control. Two principal design requirements were to provide a high degree of reliability and that the new design provide a significant increase in test volume (relative to operations using the previous design). The motivation for increased test volume is to improve test efficiency and allow new test capabilities that were not possible with the previous design and concept of operations. Three successful test flights were conducted from runway 4-22 at NASA Goddard Space Flight Center's Wallops Flight Facility.
Effect of fabrication technique on direct methanol fuel cells designed to operate at low airflow
NASA Technical Reports Server (NTRS)
Valdez, T. I.; Narayanan, S. R.
2002-01-01
This study investigates the effects of catalyst ink constituents and MEA fabrication techniques on improving cell performance. Particular attention was focused on increasing the overall cell efficiency.
NASA Astrophysics Data System (ADS)
Meng, X. T.; Levin, D. S.; Chapman, J. W.; Li, D. C.; Yao, Z. E.; Zhou, B.
2017-02-01
The High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by the CERN Microelectronics group, has been proposed for the digitization of the thin-Resistive Plate Chambers (tRPC) in the ATLAS Muon Spectrometer Phase-1 upgrade project. These chambers, to be staged for higher luminosity LHC operation, will increase trigger acceptance and reduce or eliminate the fake muon trigger rates in the barrel-endcap transition region, corresponding to pseudo-rapidity range 1<|η|<1.3. Low level trigger candidates must be flagged within a maximum latency of 1075 ns, thus imposing stringent signal processing time performance requirements on the readout system in general, and on the digitization electronics in particular. This paper investigates the HPTDC signal latency performance based on a specially designed evaluation board coupled with an external FPGA evaluation board, when operated in triggerless mode, and under hit rate conditions expected in Phase-I. This hardware based study confirms previous simulations and demonstrates that the HPTDC in triggerless operation satisfies the digitization timing requirements in both leading edge and pair modes.
Lloyd, Kelsey R; Yaghoubi, Sarah K; Makinson, Ryan A; McKee, Sarah E; Reyes, Teresa M
2018-04-01
Operant behavior tasks are widely used in neuroscience research, but little is known about how variables such as housing and testing conditions affect rodent operant performance. We have previously observed differences in operant performance in male and female mice depending on whether mice were housed and tested in rooms containing only one sex versus rooms containing both sexes. Here, male and female mice in either single-sex or mixed sex housing rooms were trained on fixed ratio 1 (FR1) and progressive ratio (PR) tasks. For both sexes, animals in the mixed sex room had more accurate performance in FR1 and were more motivated in the PR task. We then moved the single sex housed animals to the mixed sex room and vice versa. Animals that started in mixed sex housing had no change to PR, but both sexes who started in single sex housing were more motivated after the switch. Additionally, the females that moved into single-sex housing performed less accurately in FR1. We conclude that housing and testing conditions can affect performance on FR1 and PR tasks. As these tasks are commonly used as training steps to more complex tasks, housing and testing conditions should be carefully considered during experiment design and reported in publications. Copyright © 2018 Elsevier Inc. All rights reserved.
Delivery of Operative Pediatric Surgical Care by Physicians and Non-Physician Clinicians in Malawi
Tyson, Anna F; Msiska, Nelson; Kiser, Michelle; Samuel, Jonathan C; Mclean, Sean; Varela, Carlos; Charles, Anthony G
2014-01-01
Background Specialized pediatric surgeons are unavailable in much of sub-Saharan Africa. Delegating some surgical tasks to non-physician clinical officers can mitigate the dependence of a health system on highly skilled clinicians for specific services. Methods We performed a case-control study examining pediatric surgical cases over a 12 month period. Operating surgeon was categorized as physician or clinical officer. Operative acuity, surgical subspecialty, and outcome were then compared between the two groups, using physicians as the control. Results A total of 1186 operations were performed on 1004 pediatric patients. Mean age was 6 years (±5) and 64% of patients were male. Clinical officers performed 40% of the cases. Most general surgery, urology and congenital cases were performed by physicians, while most ENT, neurosurgery, and burn surgery cases were performed by clinical officers. Reoperation rate was higher for patients treated by clinical officers (17%) compared to physicians (7.1%), although this was attributable to multiple burn surgical procedures. Physician and clinical officer cohorts had similar complication rates (4.5% and 4.0%, respectively) and mortality rates (2.5% and 2.1%, respectively). Discussion Fundamental changes in health policy in Africa are imperative as a significant increase in the number of surgeons available in the near future is unlikely. Task-shifting from surgeons to clinical officers may be useful to provide coverage of basic surgical care. PMID:24560846
Fron Chabouis, Hélène; Chabouis, Francis; Gillaizeau, Florence; Durieux, Pierre; Chatellier, Gilles; Ruse, N Dorin; Attal, Jean-Pierre
2014-01-01
Operative clinical trials are often small and open-label. Randomization is therefore very important. Stratification and minimization are two randomization options in such trials. The first aim of this study was to compare stratification and minimization in terms of predictability and balance in order to help investigators choose the most appropriate allocation method. Our second aim was to evaluate the influence of various parameters on the performance of these techniques. The created software generated patients according to chosen trial parameters (e.g., number of important prognostic factors, number of operators or centers, etc.) and computed predictability and balance indicators for several stratification and minimization methods over a given number of simulations. Block size and proportion of random allocations could be chosen. A reference trial was chosen (50 patients, 1 prognostic factor, and 2 operators) and eight other trials derived from this reference trial were modeled. Predictability and balance indicators were calculated from 10,000 simulations per trial. Minimization performed better with complex trials (e.g., smaller sample size, increasing number of prognostic factors, and operators); stratification imbalance increased when the number of strata increased. An inverse correlation between imbalance and predictability was observed. A compromise between predictability and imbalance still has to be found by the investigator but our software (HERMES) gives concrete reasons for choosing between stratification and minimization; it can be downloaded free of charge. This software will help investigators choose the appropriate randomization method in future two-arm trials.
NASA Technical Reports Server (NTRS)
James, John T.; Meyers, Valerie E.; Sipes, Walter; Scully, Robert R.; Matty, Christopher M.
2011-01-01
Carbon dioxide (CO2) removal is one of the primary functions of the International Space Station (ISS) atmosphere revitalization systems. Primary CO2 removal is via the ISS s two Carbon Dioxide Removal Assemblies (CDRAs) and the Russian carbon dioxide removal assembly (Vozdukh); both of these systems are regenerable, meaning that their CO2 removal capacity theoretically remains constant as long as the system is operating. Contingency CO2 removal capability is provided by lithium hydroxide (LiOH) canisters, which are consumable, meaning that their CO2 removal capability disappears once the resource is used. With the advent of 6 crew ISS operations, experience showing that CDRA failures are not uncommon, and anecdotal association of crew symptoms with CO2 values just above 4 mmHg, the question arises: How much lower do we keep CO2 levels to minimize the risk to crew health and performance, and what will the operational cost to the CDRAs be to do it? The primary crew health concerns center on the interaction of increased intracranial pressure from fluid shifts and the increased intracranial blood flow induced by CO2. Typical acute symptoms include headache, minor visual disturbances, and subtle behavioral changes. The historical database of CO2 exposures since the beginning of ISS operations has been compared to the incidence of crew symptoms reported in private medical conferences. We have used this database in an attempt to establish an association between the CO2 levels and the risk of crew symptoms. This comparison will answer the question of the level needed to protect the crew from acute effects. As for the second part of the question, operation of the ISS s regenerable CO2 removal capability reduces the limited life of constituent parts. It also consumes limited electrical power and thermal control resources. Operation of consumable CO2 removal capability (LiOH) uses finite consumable materials, which must be replenished in the long term. Therefore, increased CO2 removal means increased resource use, with increased logistical capability to maintain necessary resources on board ISS. We must strike a balance between sufficiently low CO2 levels to maintain crew health and CO2 levels which are operationally feasible for the ISS program
Xu, Xiang-Yang; Feng, Li-Juan; Zhu, Liang; Xu, Jing; Ding, Wei; Qi, Han-Ying
2012-06-01
The start-up pattern of biofilm remediation system affects the biofilm characteristics and operating performances. The objective of this study was to evaluate the performances of the contaminated source water remediation systems with different start-up patterns in view of the pollutants removal performances and microbial community succession. The operating performances of four lab-scale simulated river biofilm reactors were examined which employed different start-up methods (natural enrichment and artificial enhancement via discharging sediment with influent velocity gradient increase) and different bio-fillers (Elastic filler and AquaMats® ecobase). At the same time, the microbial communities of the bioreactors in different phases were analyzed by polymerase chain reaction, denaturing gradient gel electrophoresis, and sequencing. The pollutants removal performances became stable in the four reactors after 2 months' operation, with ammonia nitrogen and permanganate index (COD(Mn)) removal efficiencies of 84.41-94.21% and 69.66-76.60%, respectively. The biomass of mature biofilm was higher in the bioreactors by artificial enhancement than that by natural enrichment. Microbial community analysis indicated that elastic filler could enrich mature biofilm faster than AquaMats®. The heterotrophic bacteria diversity of biofilm decreased by artificial enhancement, which favored the ammonia-oxidizing bacteria (AOB) developing on the bio-fillers. Furthermore, Nitrosomonas- and Nitrosospira-like AOB coexisted in the biofilm, and Pseudomonas sp., Sphaerotilus sp., Janthinobacterium sp., Corynebacterium aurimucosum were dominant in the oligotrophic niche. Artificial enhancement via the combination of sediment discharging and influent velocity gradient increasing could enhance the biofilm formation and autotrophic AOB enrichment in oligotrophic niche.
Chen, Zhi-Hua; Lin, Su-Yong; Dai, Qi-Bao; Hua, Jin; Chen, Shao-Qin
2017-04-10
We examined gastric outlet obstruction (GOO) patients who received two weeks of strengthening pre-operative enteral nutrition therapy (pre-EN) through a nasal-jejenal feeding tube placed under a gastroscope to evaluate the feasibility and potential benefit of pre-EN compared to parenteral nutrition (PN). In this study, 68 patients confirmed to have GOO with upper-gastrointestinal contrast and who accepted the operation were randomized into an EN group and a PN group. The differences in nutritional status, immune function, post-operative complications, weight of patients, first bowel sound and first flatus time, pull tube time, length of hospital stay (LOH), and cost of hospitalization between pre-operation and post-operation were all recorded. Statistical analyses were performed using the chi square test and t -test; statistical significance was defined as p < 0.05. The success rate of the placement was 91.18% (three out of 31 cases). After pre-EN, the levels of weight, albumin (ALB), prealbumin (PA), and transferrin (TNF) in the EN group were significantly increased by pre-operation day compared to admission day, but were not significantly increased in the PN group; the weights in the EN group were significantly increased compared to the PN group by pre-operation day and day of discharge; total protein (TP), ALB, PA, and TNF of the EN group were significantly increased compared to the PN group on pre-operation and post-operative days one and three. The levels of CD3+, CD4+/CD8+, IgA, and IgM in the EN group were higher than those of the PN group at pre-operation and post-operation; the EN group had a significantly lower incidence of poor wound healing, peritoneal cavity infection, pneumonia, and a shorter first bowel sound time, first flatus time, and post-operation hospital stay than the PN group. Pre-EN through a nasal-jejunum feeding tube and placed under a gastroscope in GOO patients was safe, feasible, and beneficial to the nutrition status, immune function, and gastrointestinal function, and sped up recovery, while not increasing the cost of hospitalization.
Simulated Altitude Performance of Combustor of Westinghouse 19XB-1 Jet-Propulsion Engine
NASA Technical Reports Server (NTRS)
Childs, J. Howard; McCafferty, Richard J.
1948-01-01
A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.
NASA Technical Reports Server (NTRS)
Pfyl, Frank A.
1955-01-01
An experimental investigation was conducted to determine the performance characteristics an underslung nose-scoop air-induction system for a supersonic airplane. Five different nose shapes, three lip shapes, and two internal diffusers were investigated. Tests were made at Mach numbers from 0 to 1.9, angles of attack from 0 deg to approximately l5 deg, and mass-flow ratios from 0 to maximum obtainable. It was found that the underslung nose-scoop inlet was able to operate at Mach numbers from 0.6 to 1.9 over a large positive angle-of-attack range without adverse effects on the pressure recovery. Although there was no one inlet configuration that was markedly superior over the entire range of operating variables, the arrangement having a nose designed to give increased supersonic compression at low angles of attack, and a sharp lip (configuration designated N3L3) showed the most favorable performance characteristics over the supersonic Mach number range. Inlets with sizable lip radii gave satisfactory performance up to a Mach number of 1.5; however, as a result of an increase in drag, the performance of such inlets was markedly inferior to the sharp-lip configuration above Mach numbers of 1.5. Throughout the range of test Mach numbers all inlet configurations evidenced stable air-flow characteristics over the mass-flow range for normal engine operation. Analysis of the inlet performance on the basis of a propulsive thrust parameter showed that a fixed inlet area could be used for Mach numbers up to 1.5 with only a small sacrifice in performance.
The engineered biofiltration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pisotti, D.A.
1997-12-31
For years, biofiltration has meant compost, peat, bark, leave mulch, or any combination of these as the substrate to house microorganisms. This has lead to a number of operational and maintenance problems, including: compaction, channeling, anaerobic zones, dry spots, pressure drop, and media degradation. All of these cause reduced efficiency and increased maintenance and increased operational costs. For these reasons inert media, including plastic beads and low grade carbons have been added to the media for buffering capacity, resists compaction, channeling and to increase efficiency. This has led to search for a more reliable and sturdy media. The media themore » authors chose was activated carbon. Pelletized activated carbon was the ideal candidate due to its uniform size and shape, its inherent hardness, adsorptive capacity, and its ability to withstand microbial degradation. The pressure drop of the system will remain constant after microbial growth occurs, due to the ability to wash the media bed. Carbon allows for the removal of excess biomass which can not be performed on organic media, this is one of the problems leading to media degradation, too many microbes and not enough food (i.e. VOCs). Carbon also allows for spike or increased loads to be treated without performance suffering. Carbon also has tremendous surface area, which allows more microorganisms to be present in a smaller volume, therefore reducing the overall size of the biofilter vessel. This paper will discuss further the findings of a pilot test that was performed using activated carbon as the media for microbial growth. This paper will show the performance of the carbon based biofilter system with respect to pressure drop, residence time, removal efficiency, microbial populations, temperature, moisture, and water requirements. The pilot unit is 350 acfm and operated for 4 months on an air stream in which the contaminant concentrations varied greatly every few minutes.« less
Improving operating room productivity via parallel anesthesia processing.
Brown, Michael J; Subramanian, Arun; Curry, Timothy B; Kor, Daryl J; Moran, Steven L; Rohleder, Thomas R
2014-01-01
Parallel processing of regional anesthesia may improve operating room (OR) efficiency in patients undergoes upper extremity surgical procedures. The purpose of this paper is to evaluate whether performing regional anesthesia outside the OR in parallel increases total cases per day, improve efficiency and productivity. Data from all adult patients who underwent regional anesthesia as their primary anesthetic for upper extremity surgery over a one-year period were used to develop a simulation model. The model evaluated pure operating modes of regional anesthesia performed within and outside the OR in a parallel manner. The scenarios were used to evaluate how many surgeries could be completed in a standard work day (555 minutes) and assuming a standard three cases per day, what was the predicted end-of-day time overtime. Modeling results show that parallel processing of regional anesthesia increases the average cases per day for all surgeons included in the study. The average increase was 0.42 surgeries per day. Where it was assumed that three cases per day would be performed by all surgeons, the days going to overtime was reduced by 43 percent with parallel block. The overtime with parallel anesthesia was also projected to be 40 minutes less per day per surgeon. Key limitations include the assumption that all cases used regional anesthesia in the comparisons. Many days may have both regional and general anesthesia. Also, as a case study, single-center research may limit generalizability. Perioperative care providers should consider parallel administration of regional anesthesia where there is a desire to increase daily upper extremity surgical case capacity. Where there are sufficient resources to do parallel anesthesia processing, efficiency and productivity can be significantly improved. Simulation modeling can be an effective tool to show practice change effects at a system-wide level.
Brackney, Ryan J; Cheung, Timothy H. C; Neisewander, Janet L; Sanabria, Federico
2011-01-01
Dissociating motoric and motivational effects of pharmacological manipulations on operant behavior is a substantial challenge. To address this problem, we applied a response-bout analysis to data from rats trained to lever press for sucrose on variable-interval (VI) schedules of reinforcement. Motoric, motivational, and schedule factors (effort requirement, deprivation level, and schedule requirements, respectively) were manipulated. Bout analysis found that interresponse times (IRTs) were described by a mixture of two exponential distributions, one characterizing IRTs within response bouts, another characterizing intervals between bouts. Increasing effort requirement lengthened the shortest IRT (the refractory period between responses). Adding a ratio requirement increased the length and density of response bouts. Both manipulations also decreased the bout-initiation rate. In contrast, food deprivation only increased the bout-initiation rate. Changes in the distribution of IRTs over time showed that responses during extinction were also emitted in bouts, and that the decrease in response rate was primarily due to progressively longer intervals between bouts. Taken together, these results suggest that changes in the refractory period indicate motoric effects, whereas selective alterations in bout initiation rate indicate incentive-motivational effects. These findings support the use of response-bout analyses to identify the influence of pharmacological manipulations on processes underlying operant performance. PMID:21765544
Magaril, Elena
2016-04-01
The environmental and operational characteristics of motor transport, one of the main consumers of motor fuel and source of toxic emissions, soot, and greenhouse gases, are determined to a large extent by the fuel quality which is characterized by many parameters. Fuel density is one of these parameters and it can serve as an indicator of fuel quality. It has been theoretically substantiated that an increased density of motor fuel has a negative impact both on the environmental and operational characteristics of motor transport. The use of fuels with a high density leads to an increase in carbonization within the engine, adversely affecting the vehicle performance and increasing environmental pollution. A program of technological measures targeted at reducing the density of the fuel used was offered. It includes a solution to the problem posed by changes in the refining capacities ratio and the temperature range of gasoline and diesel fuel boiling, by introducing fuel additives and adding butanes to the gasoline. An environmental tax has been developed which allows oil refineries to have a direct impact on the production of fuels with improved environmental performance, taking into account the need to minimize the density of the fuel within a given category of quality.
Usability Operations on Touch Mobile Devices for Users with Autism.
Quezada, Angeles; Juárez-Ramírez, Reyes; Jiménez, Samantha; Noriega, Alan Ramírez; Inzunza, Sergio; Garza, Arnulfo Alanis
2017-10-14
The Autistic Spectrum Disorder is a cognitive disorder that affects the cognitive and motor skills; due that, users cannot perform digital and fine motor tasks. It is necessary to create software applications that adapt to the abilities of these users. In recent years has been an increase in the research of the use of technology to support autistic users to develop their communication skills and to improve learning. However, the applications' usability for disable users is not assessed objectively as the existing models do not consider interaction operators for disable users. This article focuses on identifying the operations that can easily be performed by autistic users following the metrics of KML-GOMS, TLM and FLM. In addition, users of typical development were included in order to do a comparison between both types of users. The experiment was carried out using four applications designed for autistic users. Participants were subjects divided in two groups: level 1 and level 2 autistic users, and a group of users of typical development. During the experimentation, users performed a use case for each application; the time needed to perform each task was measured. Results show that the easiest operations for autistic users are K (Keystroke), D (Drag), Initial Act (I) and Tapping (T).
An Efficient Power Saving Mechanism for Delay-Guaranteed Services in IEEE 802.16e
NASA Astrophysics Data System (ADS)
Park, Yunju; Hwang, Gang Uk
As the IEEE 802.16e Wireless Metropolitan Access Network (WMAN) supports the mobility of a mobile station (MS), increasing MS power efficiency has become an important issue. In this paper, we analyze the sleep-mode operation for an efficient power saving mechanism for delay-guaranteed services in the IEEE 802.16e WMAN and observe the effects of the operating parameters related to this operation. For the analysis we use the M/GI/1/K queueing system with multiple vacations, exhaustive services and setup times. In the analysis, we consider the power consumption during the wake-mode period as well as the sleep-mode period. As a performance measure for the power consumption, we propose the power consumption per unit time per effective arrival which considers the power consumption and the packet blocking probability simultaneously. In addition, since we consider delay-guaranteed services, the average packet response delay is also considered as a performance measure. Based on the performance measures, we obtain the optimal sleep-mode operation which minimizes the power consumption per unit time per effective arrival with a given delay requirement. Numerical studies are also provided to investigate the system performance and to show how to achieve our objective.
Investigating the Usefulness of Soldier Aids for Autonomous Unmanned Ground Vehicles, Part 2
2015-03-01
distribution is unlimited. 13. SUPPLEMENTARY NOTES DCS Corporation, Alexandria, VA 14. ABSTRACT In the past, robot operation has been a high-cognitive...increase performance and reduce perceived workload. The aids were overlays displaying what an autonomous robot perceived in the environment and the...subsequent course of action planned by the robot . Eight active-duty, US Army Soldiers completed 16 scenario missions using an operator interface
Performance monitoring can boost turboexpander efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntire, R.
1982-07-05
Focuses on the turboexpander/refrigeration system's radial expander and radial compressor. Explains that radial expander efficiency depends on mass flow rate, inlet pressure, inlet temperature, discharge pressure, gas composition, and shaft speed. Discusses quantifying the performance of the separate components over a range of operating conditions; estimating the increase in performance associated with any hardware change; and developing an analytical (computer) model of the entire system by using the performance curve of individual components. Emphasizes antisurge control and modifying Q/N (flow rate/ shaft speed).
Diagnosis of incidental gallbladder cancer after laparoscopic cholecystectomy: our experience
2013-01-01
Background Gallbladder carcinoma is a rare high malignancy neoplasm. The incidence of intra or post-operative incidental gallbladder carcinoma diagnosis is estimated between 0,2 and 2,8%. Primary aim of our study is to evaluate incidental gallbladder carcinoma's incidence in our experience. Methods We retrospectively reviewed our Surgery Division's experience about the totality of laparoscopic cholecystectomies with post-operative histological evidence of incidental gallbladder cancer. We evaluated patients' characteristics, surgical related variables, histological response, surgivcal radicalization characteristics and surgical outcome. Results In the considered sample we observed 7 accidental gallbladder adenocarcinomas in post-operative histological examination. Pathological results were:1 pT1b N0 (G1), 2 pT2 N0 (G2), 2 pT2 N1 (G3b), 2 pT3 N1 (G3b) (Table 1). In 5 cases we performed neoplasm radicalization surgery with standard procedure revision. Two patients died before radicalization. Median global survival was 34 months. Conclusion With the increase of laparoscopic cholecystectomies both elective and urgent performed in our centre we observed also an increase of incidentally diagnosed gallbladder neoplasms. Early diagnosis, meticulous peri-operative study and accurate surgical strategy are essential factors to obtain good results in incidental gallbladder cancer. PMID:24268097
LRO-LAMP failsafe door-open performance: improving FUV measurements of dayside lunar hydration
NASA Astrophysics Data System (ADS)
Davis, Michael W.; Greathouse, Thomas K.; Kaufmann, David E.; Retherford, Kurt D.; Versteeg, Maarten H.
2017-08-01
The Lunar Reconnaissance Orbiter's (LRO) Lyman Alpha Mapping Project (LAMP) is a lightweight (6.1 kg), lowpower (4.5 W), ultraviolet spectrograph based on the Alice instruments aboard the European Space Agency's Rosetta spacecraft and NASA's New Horizons spacecraft. Its primary job is to identify and localize exposed water frost in permanently shadowed regions (PSRs) near the Moon's poles, and to characterize landforms and albedos in PSRs. LRO launched on June 18, 2009 and reached lunar orbit four days later. LAMP operated with its failsafe door closed for its first seven years in flight. The failsafe door was opened in October 2016 to increase light throughput during dayside operations at the expense of no longer having the capacity to take further dark observations and slightly more operational complexity to avoid saturating the instrument. This one-time irreversible operation was approved after extensive review, and was conducted flawlessly. The increased throughput allows measurement of dayside hydration in one orbit, instead of averaging multiple orbits together to reach enough signal-to-noise. The new measurement mode allows greater time resolution of dayside water migration for improved investigations into the source and loss processes on the lunar surface. LAMP performance and optical characteristics after the failsafe door opening are described herein, including the new effective area, wavelength solution, and resolution.
Lenaert, Bert; Jansen, Rebecca; van Heugten, Caroline M
2018-04-01
Chronic fatigue is highly prevalent in the general population as well as in multiple chronic diseases and psychiatric disorders. Its etiology however remains poorly understood and cannot be explained by biological factors alone. Occurring in a psychosocial context, the experience and communication of fatigue may be shaped by social interactions. In particular, interpersonal operant conditioning may strengthen and perpetuate fatigue complaints. In this experiment, individuals (N = 44) repeatedly rated their currently experienced fatigue while engaging in cognitive effort (working memory task). Subtle social reward was given when fatigue increased relative to the previous rating; or disapproval when fatigue decreased. In the control condition, only neutral feedback was given. Although all participants became more fatigued during cognitive effort, interpersonal operant conditioning led to increased fatigue reporting relative to neutral feedback. This effect occurred independently of conscious awareness. Interestingly, the experimental condition also performed worse on the working memory task. Results suggest that fatigue complaints (and cognitive performance) may become controlled by their consequences such as social reward, and not exclusively by their antecedents such as effort. Results have implications for treatment development and suggest that interpersonal operant conditioning may contribute to fatigue becoming a chronic symptom. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Ying; Liao, Qin; Wang, Yijun; Huang, Duan; Huang, Peng; Zeng, Guihua
2017-03-01
A suitable photon-subtraction operation can be exploited to improve the maximal transmission of continuous-variable quantum key distribution (CVQKD) in point-to-point quantum communication. Unfortunately, the photon-subtraction operation faces solving the improvement transmission problem of practical quantum networks, where the entangled source is located in the third part, which may be controlled by a malicious eavesdropper, instead of in one of the trusted parts, controlled by Alice or Bob. In this paper, we show that a solution can come from using a non-Gaussian operation, in particular, the photon-subtraction operation, which provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that CVQKD with an entangled source in the middle (ESIM) from applying photon subtraction can well increase the secure transmission distance in both direct and reverse reconciliations of the EB-CVQKD scheme, even if the entangled source originates from an untrusted part. Moreover, it can defend against the inner-source attack, which is a specific attack by an untrusted entangled source in the framework of ESIM.
King, Ashley B; Klausner, Adam P; Johnson, Corey M; Moore, Blake W; Wilson, Steven K; Grob, B Mayer
2011-10-01
The challenge of resident education in urologic surgery programs is to overcome disparity imparted by diverse patient populations, limited training times, and inequalities in the availability of expert surgical educators. Specifically, in the area of prosthetic urology, only a small proportion of programs have full-time faculty available to train residents in this discipline. To examine whether a new model using yearly training sessions from a recognized expert can establish a successful penile prosthetics program and result in better outcomes, higher case volumes, and willingness to perform more complex surgeries. A recognized expert conducted one to two operative training sessions yearly to teach standardized technique for penile prosthetics to residents. Each session consisted of three to four operative cases performed under the direct supervision of the expert. Retrospective data were collected from all penile prosthetic operations before (February, 2000 to June, 2004: N = 44) and after (July, 2004 to October, 2007: N = 79) implementation of these sessions. Outcomes reviewed included patient age, race, medical comorbidities, operative time, estimated blood loss, type of prosthesis, operative approach, drain usage, length of stay, and complications including revision/explantation rates. Statistical analysis was performed using Student's t-tests, Fisher's tests, and survival curves using the Kaplan-Meier technique (P value ≤ 0.05 to define statistical significance). Patient characteristics were not significantly different pre- vs. post-training. Operative time and estimated blood loss significantly decreased. Inflatable implants increased from 19/44 (43.2%, pre-training) to 69/79 (87.3%, post-training) (P < 0.01). Operations per year increased from 9.96 (pre-training) to 24 (post-training) (P < 0.01). Revision/explantation occurred in 11/44 patients (25%, pre-training) vs. 7/79 (8.9%, post-training) (P < 0.05). These data demonstrate that yearly sessions with a recognized expert can improve surgical outcomes, type, and volume of implants and can reduce explantation/revision rates. This represents an excellent model for improved training of urologic residents in penile prosthetics surgery. © 2011 International Society for Sexual Medicine.
A Modernized Approach to Meet Diversified Earth Observing System (EOS) AM-1 Mission Requirements
NASA Technical Reports Server (NTRS)
Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.
1998-01-01
From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, "lights out" operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(trademark) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result. In addition, the fuzzy logic engine .enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.
A modernized approach to meet diversified earth observing system (EOS) AM-1 mission requirements
NASA Technical Reports Server (NTRS)
Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.
1998-01-01
From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, 'lights out' operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(TM) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result In addition, the fuzzy logic engine enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.
Liu, Weihua; Yang, Yi; Wang, Shuqing; Liu, Yang
2014-01-01
Order insertion often occurs in the scheduling process of logistics service supply chain (LSSC), which disturbs normal time scheduling especially in the environment of mass customization logistics service. This study analyses order similarity coefficient and order insertion operation process and then establishes an order insertion scheduling model of LSSC with service capacity and time factors considered. This model aims to minimize the average unit volume operation cost of logistics service integrator and maximize the average satisfaction degree of functional logistics service providers. In order to verify the viability and effectiveness of our model, a specific example is numerically analyzed. Some interesting conclusions are obtained. First, along with the increase of completion time delay coefficient permitted by customers, the possible inserting order volume first increases and then trends to be stable. Second, supply chain performance reaches the best when the volume of inserting order is equal to the surplus volume of the normal operation capacity in mass service process. Third, the larger the normal operation capacity in mass service process is, the bigger the possible inserting order's volume will be. Moreover, compared to increasing the completion time delay coefficient, improving the normal operation capacity of mass service process is more useful.
Brakoniecki, Katrina; Tam, Sophia; Chung, Paul; Smith, Michael; Alfonso, Antonio; Sugiyama, Gainosuke
2017-02-01
The prevalence of end-stage renal disease (ESRD) has increased, and there is limited data on the risks faced by this patient population undergoing surgery. Using American College of Surgeons National Surgical Quality Improvement Program, we identified common surgical procedures undergone by patients with ESRD. These patients were compared with a matched-control group. A subanalysis was performed to determine the risk factors for returning to the operating room in patients with ESRD. Of the 195,585 patients identified, 1,163 had ESRD. ESRD was associated with increased mortality (odds ratio [OR] 9.05, confidence interval [CI] 4.09 to 20.00) and rates of return to the operating room (OR 2.97, CI 1.99 to 4.46). Returning to the OR was associated with increased operation times (98.9 vs 130.2 minutes, P < .05), mortality (OR 4.35, CI 2.11 to 8.99), and morbidity (OR 7.6, CI 4.68 to 12.41). Patients with ESRD face greater risks when entering the operating room, and further study is needed to elucidate preventable risk factors. Copyright © 2016 Elsevier Inc. All rights reserved.
Evisceration as fetal destructive operation: an art revisited.
Rohilla, Minakshi; Aggarwal, Neelam; Singh, Purnima; Jain, Vanita
2015-03-01
Fetal destructive operation is a vanishing art today. In an era of increasing cesarean deliveries it has become a historic event. Incidence of destructive operation has varied from various Indian hospitals 0.09-0.28%. Evisceration is one of the rarest of all destructive operations, performed in cases of cephalopelvic disproportion with large fetal abdominal or thoracic tumors and fetal malformations, which are incompatible with life. Less than 50 cases of fetal evisceration have been reported in the literature so far. We are presenting a case of gross fetal abdominal malformation in a multigravida woman, which necessitated internal podalic version followed by evisceration and breech extraction.
Sosada, Krystyn; Piecuch, Jerzy
2014-01-01
Splenic injuries constitute the most common injuries accompanying blunt abdominal traumas. Non-operative treatment is currently the standard for treating hemodynamically stable patients with blunt splenic injuries. The introduction of splenic angiography has increased the possibility of non-operative treatment for patients who, in the past, would have qualified for surgery. This cohort includes mainly patients with severe splenic injuries and with active bleeding. The results have indicated that applying splenic angioembolization reduces the frequency of non-operative treatment failure, especially in severe splenic injuries; however, it is still necessary to perform prospective, randomized clinical investigations. PMID:25337151
Sosada, Krystyn; Wiewióra, Maciej; Piecuch, Jerzy
2014-09-01
Splenic injuries constitute the most common injuries accompanying blunt abdominal traumas. Non-operative treatment is currently the standard for treating hemodynamically stable patients with blunt splenic injuries. The introduction of splenic angiography has increased the possibility of non-operative treatment for patients who, in the past, would have qualified for surgery. This cohort includes mainly patients with severe splenic injuries and with active bleeding. The results have indicated that applying splenic angioembolization reduces the frequency of non-operative treatment failure, especially in severe splenic injuries; however, it is still necessary to perform prospective, randomized clinical investigations.
Park, Seong Yong; Kang, Won Jun; Cho, Arthur; Chae, Ju Ri; Cho, Ye Lim; Kim, Jung Young; Lee, Ji Woong; Chung, Kyung Young
2015-01-01
We designed a hypoxia-imaging modality to detect ischemia of the gastric conduit after esophagectomy. A rat esophagectomy model was created using 12-16-week-old, 300-350 g male Sprague-Dawley rats. In the operation group (n=6), partial gastric devascularization was performed by ligating the left gastric artery and the short gastric arteries and an esophagogastric anastomosis was performed. In the control group (n=6), the esophageal-gastric junction was incised and suturing was performed without gastric devascularization. Positron emission tomography (PET) images were taken using a microPET rodent model scanner, 24 h after the initial operation, after injection of 200 μCi 64Cu-diacetyl-bis (N4-methylsemicarbazone) (64Cu-ATSM) and pimonidazole 120 mg/kg. After microPET imaging, autoradiography and immunohistochemistry were performed. The PET image revealed 64Cu-ATSM uptake at the fundus in the operation group 3 h after 64Cu-ATSM injection. The maximum percentage of the injected dose per gram of tissue was higher in the operation group (0.047±0.015 vs. 0.026±0.006, p=0.021). The fundus/liver ratio was also higher in the operation group (0.541±0.126 vs. 0.278±0.049, p=0.002). Upon autoradiography, 64Cu-ATSM uptake was observed in the fundus in the operation group, and was well-correlated to that observed on the PET image. Upon immunohistochemistry, expression of hypoxia-inducible factor 1a and pimonidazole were significantly increased at the fundus and lesser curvature compared to the greater curvature in the operation group. Hypoxia PET imaging with 64Cu-ATSM can detect ischemia in a rat esophagectomy model. Further clinical studies are needed to verify whether hypoxia imaging may be useful in humans.
Daci, Armond; Bozalija, Adnan; Cavolli, Raif; Alaj, Rame; Beretta, Giangiacomo; Krasniqi, Shaip
2018-01-01
BACKGROUND: Coronary Artery Bypass Grafting (CABG) is realised in patients with critical or advanced disease of coronary arteries. There are different pharmacotherapeutic approaches which are used as management, treatment and preventive therapy in cardiovascular disease or related comorbidities. Performing a successful surgery, pharmacotherapy, and increase of bypass patency rate remains a serious challenge. AIM: This study aims to analyse the patient characteristics undergoing CABG and evaluation of their drug utilisation rate and daily dosages in the perioperative period. MATERIAL AND METHODS: Data were collected from 102 patients in the period 2016-2017 and detailed therapeutic prescription and dosages, patient characteristics were analysed before the operation, after the operation and visit after operation in the Clinic of Cardiac surgery-University Clinical Center of Kosovo. RESULTS: Our findings had shown that patients provided to have normal biochemical parameters in the clinic before the operation, and were related to cardiovascular diseases and comorbidities and risk factors with mainly elective intervention. The, however, higher utilisation of cardiovascular drugs such as beta blockers, diuretics, anticoagulants, statins and lower calcium blockers, ACEi, ARBs, hydrochlorothiazide, amiodarone were founded. ARBs, beta blockers, statins, nitrates and nadroparin utilisation decreased after operation and visit after the operation, whereas amiodarone only in the visit after the operation. Diuretics are increased after the operation which decreases in the visit after the operation. Regarding the daily dosage, only metoprolol was increased in the visit after operation (P < 0.001) and visit after operation (P < 0.05) whereas losartan and furosemide were increased (P < 0.01) and (P < 0.05) respectively. CONCLUSION: The study showed that beta blockers, statins, aspirin, nitrates (before the operation), furosemide and spironolactone are the most utilised drugs. However, we found low utilisation rate for ACEi, ARBs, clopidogrel, nadroparin, warfarin, xanthines, amiodarone, calcium blockers. Daily dosages were different compared to before CABG only in metoprolol, losartan, and furosemide. PMID:29610608
High operation temperature of HgCdTe photodiodes by bulk defect passivation
NASA Astrophysics Data System (ADS)
Boieriu, Paul; Velicu, S.; Bommena, R.; Buurma, C.; Blisset, C.; Grein, C.; Sivananthan, S.; Hagler, P.
2013-01-01
Spatial noise and the loss of photogenerated current due material non-uniformities limit the performance of long wavelength infrared (LWIR) HgCdTe detector arrays. Reducing the electrical activity of defects is equivalent to lowering their density, thereby allowing detection and discrimination over longer ranges. Infrared focal plane arrays (IRFPAs) in other spectral bands will also benefit from detectivity and uniformity improvements. Larger signal-to-noise ratios permit either improved accuracy of detection/discrimination when an IRFPA is employed under current operating conditions, or provide similar performance with the IRFPA operating under less stringent conditions such as higher system temperature, increased system jitter or damaged read out integrated circuit (ROIC) wells. The bulk passivation of semiconductors with hydrogen continues to be investigated for its potential to become a tool for the fabrication of high performance devices. Inductively coupled plasmas have been shown to improve the quality and uniformity of semiconductor materials and devices. The retention of the benefits following various aging conditions is discussed here.
Guo, Cheng-Long; Cao, Hong-Xia; Pei, Hong-Shan; Guo, Fei-Qiang; Liu, Da-Meng
2015-04-01
A multiphase mixture model was developed for revealing the interaction mechanism between biochemical reactions and transfer processes in the entrapped-cell photobioreactor packed with gel granules containing Rhodopseudomonas palustris CQK 01. The effects of difference operation parameters, including operation temperature, influent medium pH value and porosity of packed bed, on substrate concentration distribution characteristics and photo-hydrogen production performance were investigated. The results showed that the model predictions were in good agreement with the experimental data reported. Moreover, the operation temperature of 30 °C and the influent medium pH value of 7 were the most suitable conditions for photo-hydrogen production by biodegrading substrate. In addition, the lower porosity of packed bed was beneficial to enhance photo-hydrogen production performance owing to the improvement on the amount of substrate transferred into gel granules caused by the increased specific area for substrate transfer in the elemental volume. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, Tony; Metcalfe, Jason; Brewster, Benjamin; Manteuffel, Christopher; Jaswa, Matthew; Tierney, Terrance
2010-04-01
The proliferation of intelligent systems in today's military demands increased focus on the optimization of human-robot interactions. Traditional studies in this domain involve large-scale field tests that require humans to operate semiautomated systems under varying conditions within military-relevant scenarios. However, provided that adequate constraints are employed, modeling and simulation can be a cost-effective alternative and supplement. The current presentation discusses a simulation effort that was executed in parallel with a field test with Soldiers operating military vehicles in an environment that represented key elements of the true operational context. In this study, "constructive" human operators were designed to represent average Soldiers executing supervisory control over an intelligent ground system. The constructive Soldiers were simulated performing the same tasks as those performed by real Soldiers during a directly analogous field test. Exercising the models in a high-fidelity virtual environment provided predictive results that represented actual performance in certain aspects, such as situational awareness, but diverged in others. These findings largely reflected the quality of modeling assumptions used to design behaviors and the quality of information available on which to articulate principles of operation. Ultimately, predictive analyses partially supported expectations, with deficiencies explicable via Soldier surveys, experimenter observations, and previously-identified knowledge gaps.
Liu, Jason B; Berian, Julia R; Ban, Kristen A; Liu, Yaoming; Cohen, Mark E; Angelos, Peter; Matthews, Jeffrey B; Hoyt, David B; Hall, Bruce L; Ko, Clifford Y
2017-09-01
To determine whether concurrently performed operations are associated with an increased risk for adverse events. Concurrent operations occur when a surgeon is simultaneously responsible for critical portions of 2 or more operations. How this practice affects patient outcomes is unknown. Using American College of Surgeons' National Surgical Quality Improvement Program data from 2014 to 2015, operations were considered concurrent if they overlapped by ≥60 minutes or in their entirety. Propensity-score-matched cohorts were constructed to compare death or serious morbidity (DSM), unplanned reoperation, and unplanned readmission in concurrent versus non-concurrent operations. Multilevel hierarchical regression was used to account for the clustered nature of the data while controlling for procedure and case mix. There were 1430 (32.3%) surgeons from 390 (77.7%) hospitals who performed 12,010 (2.3%) concurrent operations. Plastic surgery (n = 393 [13.7%]), otolaryngology (n = 470 [11.2%]), and neurosurgery (n = 2067 [8.4%]) were specialties with the highest proportion of concurrent operations. Spine procedures were the most frequent concurrent procedures overall (n = 2059/12,010 [17.1%]). Unadjusted rates of DSM (9.0% vs 7.1%; P < 0.001), reoperation (3.6% vs 2.7%; P < 0.001), and readmission (6.9% vs 5.1%; P < 0.001) were greater in the concurrent operation cohort versus the non-concurrent. After propensity score matching and risk-adjustment, there was no significant association of concurrence with DSM (odds ratio [OR] 1.08; 95% confidence interval [CI] 0.96-1.21), reoperation (OR 1.16; 95% CI 0.96-1.40), or readmission (OR 1.14; 95% CI 0.99-1.29). In these analyses, concurrent operations were not detected to increase the risk for adverse outcomes. These results do not lessen the need for further studies, continuous self-regulation and proactive disclosure to patients.
Hawkins, Alexander T; Um, Jun W; M'Koma, Amosy E
2017-01-01
Restorative proctocolectomy (RPC) with ileal pouch-anal anastomosis (IPAA) is the standard surgical treatment for ulcerative colitis (UC). Emergency colectomies are performed for fulminant colitis (ie, toxic megacolon, profuse bleeding, perforation, or sepsis). The RPC and IPAA involve manipulation of the proximal ileum, which may influence the essential physiological function of gut-associated lymphoid tissues. Circulating plasma immunoglobulin G (p-IgG) deficiency is observed in patients with fulminant UC. In addition, increased levels have been reported in colonic tissues of active UC compared with quiescent disease. We aimed to examine levels of p-IgG for clinical evaluation following emergency colectomies in patients with fulminant UC compared with patients with quiescent disease having elective RPC operations. In total 45 patients received an ileoanal pouch (IAP) due to UC. In all, 27 patients were men and 18 were women. The mean age was 34 years (range: 18-55). Because of fulminant UC, 26 patients had emergency subtotal colectomies with terminal ileostomy (TI). During second operation, the rectum was excised, and an IAP with diverting loop ileostomy (DLI) was performed. Nineteen patients had elective operations and had colectomies performed in conjunction with the pouch operation. Mucosectomy was performed in all groups. As a last procedure, the DLI was closed. Blood samples for immunoglobulin G (IgG) analyses were collected from each patient before the colectomy, after the colectomy with TI (before construction of the pouch), during the period with pouches (prior to DLI closure), and at 1, 2, and 3 years and at mean 13.7 years (range: 10-20) after DLI closure. Immunoglobulin G was determined by immunonephelometric assay technique. The statistics were analyzed by analysis of variance and linear regression. Preoperatively, p-IgG was significantly lower in the patients who had emergency operations compared with the group that had elective operations, 9.9 ± 3.0 vs 11.5 ± 3.3 g/L ( P < .03). During the manipulative period with TI and/or DLI, the p-IgG levels were increased in both points, but the increase was not statistically significant ( P = .26 and P = .19). During functional IAP at 1, 2, and 3 years and at mean 13.7 years (range: 10-20), there was a statistical increase in p-IgG levels ( P < .002, P < .005, P < .005, and P < .0001) compared with preoperative levels. These changes did not correlate with episodes of pouchitis ( P = .51). In patients having elective operations, p-IgG did not change preoperatively. After 12 months with functional pouches, the p-IgG levels were similar in both groups to the elective patient group preoperatively. In conclusion, p-IgG was found to be significantly lower in the emergency surgery patients compared with the elective surgery group preoperatively. This difference was probably due to increased losses and impaired gut lymphoid tissue production of IgG in the acute fulminant phase of UC. After 12 months of DLI closure, significant differences were no longer found between the emergency and elective surgery groups. Restoration and increased p-IgG levels after RPC would be due to an exaggerated response to make up for lower precolectomy values and may be interpreted as a rehabilitation biomarker.
Decreased salivary alpha-amylase levels are associated with performance deficits during sleep loss.
Pajcin, Maja; Banks, Siobhan; White, Jason M; Dorrian, Jill; Paech, Gemma M; Grant, Crystal; Johnson, Kayla; Tooley, Katie; Fidock, Justin; Kamimori, Gary H; Della Vedova, Chris B
2017-04-01
During sleep deprivation, neurobehavioral functions requiring sustained levels of attention and alertness are significantly impaired. Discrepancies between subjective measures of sleepiness and objective performance during sustained operations have led to interest in physiological monitoring of operator performance. Alertness, vigilance, and arousal are modulated by the wake-promoting actions of the central noradrenergic system. Salivary alpha-amylase (sAA) has been proposed as a sensitive peripheral measure of noradrenergic activity, but limited research has investigated the relationship between sAA and performance. In a laboratory-controlled environment, we investigated the relationship between sAA levels, subjective sleepiness, and performance during two days (50h) of total sleep deprivation. Beginning at 09:00, twelve healthy participants (5 females) aged 22.5±2.5years (mean±SD) provided saliva samples, recorded ratings of subjective sleepiness, completed a brief 3-min psychomotor vigilance task (PVT-B) and performed a 40-min simulated driving task, at regular 3h intervals during wakefulness. Ratings of subjective sleepiness exhibited a constant linear increase (p<0.001) during sleep deprivation. In contrast, sAA levels showed a marked diurnal profile, with levels increasing during the day (p<0.001) and steadily declining in the evening and early-morning (p<0.001). PVT-B (mean reaction time and mean slowest 10% reaction time) and simulated driving performance (speed deviation and lane deviation) also exhibited diurnal profiles across the two days of sleep deprivation. Performance peaked in the afternoon (p<0.001) and then steadily worsened as wakefulness continued into the evening and early-morning (p<0.001). Further analysis revealed that higher sAA levels in the hour preceding each performance assessment were associated with better PVT-B and driving performance (p<0.001). These findings suggest that sAA measures may be suitable indicators of performance deficits during sustained wakefulness and highlight the potential for sAA to be considered for physiological monitoring of performance. In operational environments sAA levels, as part of a panel of physiological measures, may be useful for assessing fitness-for-duty prior to safety being compromised or when performance deficits are unknown. Copyright © 2017 Elsevier Ltd. All rights reserved.
Extending Validated Human Performance Models to Explore NextGen Concepts
NASA Technical Reports Server (NTRS)
Gore, Brian Francis; Hooey, Becky Lee; Mahlstedt, Eric; Foyle, David C.
2012-01-01
To meet the expected increases in air traffic demands, NASA and FAA are researching and developing Next Generation Air Transportation System (NextGen) concepts. NextGen will require substantial increases in the data available to pilots on the flight deck (e.g., weather,wake, traffic trajectory predictions, etc.) to support more precise and closely coordinated operations (e.g., self-separation, RNAV/RNP, and closely spaced parallel operations, CSPOs). These NextGen procedures and operations, along with the pilot's roles and responsibilities, must be designed with consideration of the pilot's capabilities and limitations. Failure to do so will leave the pilots, and thus the entire aviation system, vulnerable to error. A validated Man-machine Integration and design Analysis System (MIDAS) v5 model was extended to evaluate anticipated changes to flight deck and controller roles and responsibilities in NextGen approach and Land operations. Compared to conditions when the controllers are responsible for separation on decent to land phase of flight, the output from these model predictions suggest that the flight deck response time to detect the lead aircraft blunder will decrease, pilot scans to the navigation display will increase, and workload will increase.
Power Electronics Development for the SPT-100 Thruster
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.; Sankovic, John M.
1994-01-01
Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.
Why measure patient satisfaction?
Riskind, Patty; Fossey, Leslie; Brill, Kari
2011-01-01
A practice that consistently and continuously measures patient perceptions will be more efficient and effective in its daily operations. With pay-for-performance requirements on the horizon and consumer rating sites already publicizing impressions from physician encounters, a practice needs to know how it is performing through the eyes of the patients. Azalea Orthopedics has used patient feedback to coach its physicians on better patient communication. The Orthopaedic Institute has used patient satisfaction results to reduce wait times and measure the return on investment from its marketing efforts. Patient survey results that are put to work can enhance the efficiency and effectiveness of practice operations as well as position the practice for increased profitability.
Vitale, Salvatore Giovanni; Marilli, Ilaria; Cignini, Pietro; Padula, Francesco; D’Emidio, Laura; Mangiafico, Lucia; Rapisarda, Agnese Maria Chiara; Gulino, Ferdinando Antonio; Cianci, Stefano; Biondi, Antonio; Giorlandino, Claudio
2014-01-01
In the last decades cesarean section rates increased in many countries becoming the most performed intraperitoneal surgical procedure. Despite its worldwide spread, a general consensus on the most appropriate technique to use has not yet been reached. The operative technique performed is made chiefly on the basis of the individual experience and preference of operators, the characteristics of patients, timing and urgency of intervention. We compared the two most known and used techniques, modified Misgav-Ladach and traditional Pfannenstiel-Kerr, and analyzed their impact on primary, short- and long-term outcomes and outcome related to health service use. PMID:26265999
Vitale, Salvatore Giovanni; Marilli, Ilaria; Cignini, Pietro; Padula, Francesco; D'Emidio, Laura; Mangiafico, Lucia; Rapisarda, Agnese Maria Chiara; Gulino, Ferdinando Antonio; Cianci, Stefano; Biondi, Antonio; Giorlandino, Claudio
2014-01-01
In the last decades cesarean section rates increased in many countries becoming the most performed intraperitoneal surgical procedure. Despite its worldwide spread, a general consensus on the most appropriate technique to use has not yet been reached. The operative technique performed is made chiefly on the basis of the individual experience and preference of operators, the characteristics of patients, timing and urgency of intervention. We compared the two most known and used techniques, modified Misgav-Ladach and traditional Pfannenstiel-Kerr, and analyzed their impact on primary, short- and long-term outcomes and outcome related to health service use.
Apply TQM to E-Government Outsourcing Management
NASA Astrophysics Data System (ADS)
Huai, Jinmei
This paper developed an approach to e-government outsourcing quality management. E-government initiatives have rapidly increased in the last decades and the success of these activities will largely depend on their operation quality. As an instrument to improve operation quality, outsourcing can be applied to e-government. This paper inspected process of e-government outsourcing and discussed how to improve the outsourcing performance through total quality management (TQM). The characteristics and special requirements of e-government outsourcing were analyzed as the basis for discussion. Then the principles and application of total quality management were interpreted. Finally the process of improving performance of e-government was analyzed in the context of outsourcing.
Performance capabilities of the 8-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.
1981-01-01
A preliminary characterization of the performance capabilities of the 8-cm thruster in order to initiate an evaluation of its application to LSS propulsion requirements is presented. With minor thruster modifications, the thrust was increased by about a factor of four while the discharge voltage was reduced from 39 to 22 volts. The thruster was operated over a range of specific impulse of 1950 to 3040 seconds and a maximum total efficiency of about 54 percent was attained. Preliminary analysis of component lifetimes, as determined by temperature and spectroscopic line intensity measurements, indicated acceptable thruster lifetimes are anticipated at the high power level operation.
Sternotomy for substernal goiter: retrospective study of 52 operations.
Rolighed, Lars; Rønning, Hanne; Christiansen, Peer
2015-04-01
Surgical treatment of substernal goiter occasionally involves sternotomy. Classification and handling of these operations are widely discussed. We aimed to review surgical results after thyroid operations including median sternotomy. A retrospective review of all thyroid operations performed in the department from 01.01.95 to 31.12.12. In 55 of 2065 thyroid operations (2.7 %), median sternotomy was performed. All hospital journals of the patients were collected and carefully reviewed. We included 52 of 55 identified patients. Pathologic examinations discovered malignant disease in 4 patients (8 %) and multinodular goiter in 48 patients (92 %). Mean operation time was 4 h and 5 min (n = 48). Mean estimated blood loss was 464 ml (n = 48). Blood transfusion was given in nine operations (17 %). Median duration of postoperative hospitalization was 7 days (range 4-27 days). Pulmonary complications occurred in 11 patients (21 %): six with pneumonia or atelectasis, three with pneumothorax, and two with pleural effusion. Three patients (6 %) had postoperative hypocalcaemia (permanent in two patients (4 %)). Three patients (6 %) had transient voice changes. Permanent vocal cord paresis was not observed in this series of patients. Thyroid operations with sternotomy are complicated procedures accompanied with considerable pulmonary complications. In spite of a large invasive procedure, the risk of hypoparathyroidism or recurrent laryngeal nerve injury was not increased.
Bai, Lu; Chan, Ching-Yao; Liu, Pan; Xu, Chengcheng
2017-10-03
Electric bikes (e-bikes) have been one of the fastest growing trip modes in Southeast Asia over the past 2 decades. The increasing popularity of e-bikes raised some safety concerns regarding urban transport systems. The primary objective of this study was to identify whether and how the generalized linear regression model (GLM) could be used to relate cyclists' safety with various contributing factors when riding in a mid-block bike lane. The types of 2-wheeled vehicles in the study included bicycle-style electric bicycles (BSEBs), scooter-style electric bicycles (SSEBs), and regular bicycles (RBs). Traffic conflict technology was applied as a surrogate measure to evaluate the safety of 2-wheeled vehicles. The safety performance model was developed by adopting a generalized linear regression model for relating the frequency of rear-end conflicts between e-bikes and regular bikes to the operating speeds of BSEBs, SSEBs, and RBs in mid-block bike lanes. The frequency of rear-end conflicts between e-bikes and bikes increased with an increase in the operating speeds of e-bikes and the volume of e-bikes and bikes and decreased with an increase in the width of bike lanes. The large speed difference between e-bikes and bikes increased the frequency of rear-end conflicts between e-bikes and bikes in mid-block bike lanes. A 1% increase in the average operating speed of e-bikes would increase the expected number of rear-end conflicts between e-bikes and bikes by 1.48%. A 1% increase in the speed difference between e-bikes and bikes would increase the expected number of rear-end conflicts between e-bikes/bikes by 0.16%. The conflict frequency in mid-block bike lanes can be modeled using generalized linear regression models. The factors that significantly affected the frequency of rear-end conflicts included the operating speeds of e-bikes, the speed difference between e-bikes and regular bikes, the volume of e-bikes, the volume of bikes, and the width of bike lanes. The safety performance model can help better understand the causes of crash occurrences in mid-block bike lanes.
Herron, Jonathan Blair Thomas; French, Rachel; Gilliam, Andrew Douglas
2018-01-01
Current public sector austerity measures necessitate efficiency savings throughout the NHS. Performance targets have resulted in activity being performed in the private sector, waiting list initiative lists and requests for staff to work overtime. This has resulted in staff fatigue and additional agency costs. Adoption of extended operating theatre times (0800-1800 hours) may improve productivity and efficiency, with potentially significant financial savings; however, implementation may adversely affect staff morale and patient compliance. A pilot period of four months of extended operating times (4.5 hour sessions) was completed and included all theatre surgical specialties. Outcome measures included: the number of cases completed, late starts, early finishes, cancelled operations, theatre overruns, preoperative assessment and 18-week targets. The outcomes were then compared to pre-existing normal working day operating lists (0900-1700). Theatre staff, patient and surgical trainee satisfaction with the system were also considered by use of an anonymous questionnaire. The study showed that in-session utilisation time was unchanged by extended operating hours 88.7% (vs 89.2%). The service was rated as 'good' or 'excellent' by 87.5% of patients. Over £345,000 was saved by reducing premium payments. Savings of £225,000 were made by reducing privately outsourced operation and a further £63,000 by reviewing staff hours. Day case procedures increased from 2.8 to 3.2 cases/day with extended operating. There was no significant increase in late starts (5.1% vs 6.8%) or cancellation rates (0.75% vs 1.02%). Theatre over-runs reduced from 5% to 3.4%. The 18 weeks target for surgery was achieved in 93.7% of cases (vs 88.3%). The number of elective procedures increased from 4.1 to 4.89 cases/day. Only 13.33% of trainees (n = 33) surveyed felt that extended operating had a negative impact on training. The study concludes that extended operating increased productivity from 2.8 patients per session to 3.2 patients per session with potential savings of just over £2.4 million per financial year. Extrapolating this to the other 155 trusts in England could be a potential saving of £372 million per year. Staff, trainee and patient satisfaction was unaffected. An improved 18 weeks target position was achieved with a significant reduction in private sector work. However, some staff had difficulty with arranging childcare and taking public transport and this may prevent full implementation.
Reusable single-port access device shortens operative time and reduces operative costs.
Shussman, Noam; Kedar, Asaf; Elazary, Ram; Abu Gazala, Mahmoud; Rivkind, Avraham I; Mintz, Yoav
2014-06-01
In recent years, single-port laparoscopy (SPL) has become an attractive approach for performing surgical procedures. The pitfalls of this approach are technical and financial. Financial concerns are due to the increased cost of dedicated devices and prolonged operating room time. Our aim was to calculate the cost of SPL using a reusable port and instruments in order to evaluate the cost difference between this approach to SPL using the available disposable ports and standard laparoscopy. We performed 22 laparoscopic procedures via the SPL approach using a reusable single-port access system and reusable laparoscopic instruments. These included 17 cholecystectomies and five other procedures. Operative time, postoperative length of stay (LOS) and complications were prospectively recorded and were compared with similar data from our SPL database. Student's t test was used for statistical analysis. SPL was successfully performed in all cases. Mean operative time for cholecystectomy was 72 min (range 40-116). Postoperative LOS was not changed from our standard protocols and was 1.1 days for cholecystectomy. The postoperative course was within normal limits for all patients and perioperative morbidity was recorded. Both operative time and length of hospital stay were shorter for the 17 patients who underwent cholecystectomy using a reusable port than for the matched previous 17 SPL cholecystectomies we performed (p < 0.001). Prices of disposable SPL instruments and multiport access devices as well as extraction bags from different manufacturers were used to calculate the cost difference. Operating with a reusable port ended up with an average cost savings of US$388 compared with using disposable ports, and US$240 compared with standard laparoscopy. Single-port laparoscopic surgery is a technically challenging and expensive surgical approach. Financial concerns among others have been advocated against this approach; however, we demonstrate herein that using a reusable port and instruments reduces operative time and overall operative costs, even beyond the cost of standard laparoscopy.
NASA Astrophysics Data System (ADS)
Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.
2015-06-01
Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2) energy harvesting to extend operational time and autonomy, and (3) sensing of an aerodynamic force associated with wing deformation.
NASA Astrophysics Data System (ADS)
Rovey, Joshua Lucas
Ion thrusters are high-efficiency, high-specific impulse space propulsion systems proposed for deep space missions requiring thruster operational lifetimes of 7--14 years. One of the primary ion thruster components is the discharge cathode assembly (DCA). The DCA initiates and sustains ion thruster operation. Contemporary ion thrusters utilize one molybdenum keeper DCA that lasts only ˜30,000 hours (˜3 years), so single-DCA ion thrusters are incapable of satisfying the mission requirements. The aim of this work is to develop an ion thruster that sequentially operates multiple DCAs to increase thruster lifetime. If a single-DCA ion thruster can operate 3 years, then perhaps a triple-DCA thruster can operate 9 years. Initially, a multiple-cathode discharge chamber (MCDC) is designed and fabricated. Performance curves and grid-plane current uniformity indicate operation similar to other thrusters. Specifically, the configuration that balances both performance and uniformity provides a production cost of 194 W/A at 89% propellant efficiency with a flatness parameter of 0.55. One of the primary MCDC concerns is the effect an operating DCA has on the two dormant cathodes. Multiple experiments are conducted to determine plasma properties throughout the MCDC and near the dormant cathodes, including using "dummy" cathodes outfitted with plasma diagnostics and internal plasma property mapping. Results are utilized in an erosion analysis that suggests dormant cathodes suffer a maximum pre-operation erosion rate of 5--15 mum/khr (active DCA maximum erosion is 70 mum/khr). Lifetime predictions indicate that triple-DCA MCDC lifetime is approximately 2.5 times longer than a single-DCA thruster. Also, utilization of new keeper materials, such as carbon graphite, may significantly decrease both active and dormant cathode erosion, leading to a further increase in thruster lifetime. Finally, a theory based on the near-DCA plasma potential structure and propellant flow rate effects is developed to explain active DCA erosion. The near-DCA electric field pulls ions into the DCA such that they bombard and erode the keeper. Charge-exchange collisions between bombarding ions and DCA-expelled neutral atoms reduce erosion. The theory explains ion thruster long-duration wear-test results and suggests increasing propellant flow rate may eliminate or reduce DCA erosion.
Geometric effects in applied-field MPD thrusters
NASA Technical Reports Server (NTRS)
Myers, R. M.; Mantenieks, M.; Sovey, J.
1990-01-01
Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I (sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).
Geometric effects in applied-field MPD thrusters
NASA Technical Reports Server (NTRS)
Myers, R. M.; Mantenieks, M.; Sovey, James S.
1990-01-01
Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I(sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).
45 CFR 2522.640 - Under what circumstances may I change my performance measures?
Code of Federal Regulations, 2010 CFR
2010-10-01
... tutoring adults in English, as opposed to operating an after-school program for third-graders; (4... tutoring (increased attendance at school) with another (percentage of students who are promoted to the next...
US Green Building Council's Leadership in Energy and Environmental Design (LEED®)
A series of rating systems aimed at increasing the environmental and health performance of buildings' sites and structures and of neighborhoods. LEED® covers the design, construction, and operations of all types of buildings.
A Comprehensive Survey of Emerging Technologies for the New York Metropolitan Area
DOT National Transportation Integrated Search
2008-11-01
The increasing challenges in managing and operating transportation systems have behooved transportation agencies to consider innovative alternative technology solutions to improve transportation system performance. The goal of this project is to cond...
Overview of Research Transition Products
NASA Technical Reports Server (NTRS)
Robinson, John
2014-01-01
Demonstrate increased, more consistent use of Performance- Based Navigation (PBN). Accelerate transfer of NASA scheduling and spacing technologies for inclusion in late mid-term NAS. During high-fidelity human-in-the-loop simulations of Terminal Sequencing and Spacing, air traffic controllers have significantly improved their use of PBN procedures during busy traffic periods without increased workload. Executed an aggressive, short timeframe development schedule. Developed TSS prototype based upon FAA operational systems. Conducted multiple joint FAA/NASA human-in-the-loop simulations. Performed repeated incremental deliveries of tech transfer material to non-traditional RTT stakeholders. Will continue to participate in later phases of FAA acquisition process. ATD-1 transferred Terminal Sequencing and Spacing (TSS) technologies to the FAA. TSS enables routine use of underutilized advanced avionics and PBN procedures. Potential benefits to airlines operating at initial TSS sites estimated to be $300-400M/year. FAA is planning for an initial capability in the NAS in 2018.
State of science: mental workload in ergonomics.
Young, Mark S; Brookhuis, Karel A; Wickens, Christopher D; Hancock, Peter A
2015-01-01
Mental workload (MWL) is one of the most widely used concepts in ergonomics and human factors and represents a topic of increasing importance. Since modern technology in many working environments imposes ever more cognitive demands upon operators while physical demands diminish, understanding how MWL impinges on performance is increasingly critical. Yet, MWL is also one of the most nebulous concepts, with numerous definitions and dimensions associated with it. Moreover, MWL research has had a tendency to focus on complex, often safety-critical systems (e.g. transport, process control). Here we provide a general overview of the current state of affairs regarding the understanding, measurement and application of MWL in the design of complex systems over the last three decades. We conclude by discussing contemporary challenges for applied research, such as the interaction between cognitive workload and physical workload, and the quantification of workload 'redlines' which specify when operators are approaching or exceeding their performance tolerances.
NASA Technical Reports Server (NTRS)
1996-01-01
Because of their superior high-temperature properties, gas generator turbine airfoils made of single-crystal, nickel-base superalloys are fast becoming the standard equipment on today's advanced, high-performance aerospace engines. The increased temperature capabilities of these airfoils has allowed for a significant increase in the operating temperatures in turbine sections, resulting in superior propulsion performance and greater efficiencies. However, the previously developed methodologies for life-prediction models are based on experience with polycrystalline alloys and may not be applicable to single-crystal alloys under certain operating conditions. One of the main areas where behavior differences between single-crystal and polycrystalline alloys are readily apparent is subcritical fatigue crack growth (FCG). The NASA Lewis Research Center's work in this area enables accurate prediction of the subcritical fatigue crack growth behavior in single-crystal, nickel-based superalloys at elevated temperatures.
Parametric analyses of planned flowing uranium hexafluoride critical experiments
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.
1976-01-01
Analytical investigations were conducted to determine preliminary design and operating characteristics of flowing uranium hexafluoride (UF6) gaseous nuclear reactor experiments in which a hybrid core configuration comprised of UF6 gas and a region of solid fuel will be employed. The investigations are part of a planned program to perform a series of experiments of increasing performance, culminating in an approximately 5 MW fissioning uranium plasma experiment. A preliminary design is described for an argon buffer gas confined, UF6 flow loop system for future use in flowing critical experiments. Initial calculations to estimate the operating characteristics of the gaseous fissioning UF6 in a confined flow test at a pressure of 4 atm, indicate temperature increases of approximately 100 and 1000 K in the UF6 may be obtained for total test power levels of 100 kW and 1 MW for test times of 320 and 32 sec, respectively.
Flutter suppression by active control and its benefits
NASA Technical Reports Server (NTRS)
Doggett, R. V., Jr.; Townsend, J. C.
1976-01-01
A general discussion of the airplane applications of active flutter suppression systems is presented with focus on supersonic cruise aircraft configurations. Topics addressed include a brief historical review; benefits, risks, and concerns; methods of application; and applicable configurations. Results are presented where the direct operating costs and performance benefits of an arrow wing supersonic cruise vehicle equipped with an active flutter suppression system are compared with corresponding costs and performance of the same baseline airplane where the flutter deficiency was corrected by passive methods (increases in structural stiffness). The design, synthesis, and conceptual mechanization of the active flutter suppression system are discussed. The results show that a substantial weight savings can be accomplished by using the active system. For the same payload and range, airplane direct operating costs are reduced by using the active system. The results also indicate that the weight savings translates into increased range or payload.
Engine component improvement: Performance improvement, JT9D-7 3.8 AR fan
NASA Technical Reports Server (NTRS)
Gaffin, W. O.
1980-01-01
A redesigned, fuel efficient fan for the JT9D-7 engine was tested. Tests were conducted to determine the effect of the 3.8 AR fan on performance, stability, operational characteristics, and noise of the JT9D-7 engine relative to the current 4.6 AR Bill-of-Material fan. The 3.8 AR fan provides increased fan efficiency due to a more advanced blade airfoil with increased chord, eliminating one part span shroud and reducing the number of fan blades and fan exit guide vanes. Engine testing at simulated cruise conditions demonstrated the predicted 1.3 percent improvement in specific fuel consumption with the redesigned 3.8 AR fan. Flight testing and sea level stand engine testing demonstrated exhaust gas temperature margins, fan and low pressure compressor stability, operational suitability, and noise levels comparable to the Bill-of-Material fan.
Heat Pipes Reduce Engine-Exhaust Emissions
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1986-01-01
Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.
Design of Omni Directional Remotely Operated Vehicle (ROV)
NASA Astrophysics Data System (ADS)
Rahimuddin; Hasan, Hasnawiya; Rivai, Haryanti A.; Iskandar, Yanu; Claudio, P.
2018-02-01
Nowadays, underwater activities are increased with the increase of oil resources finding. The gap between demand and supply of oil and gas cause engineers to find oil and gas resources in deep water. In other side, high risk of working in deep underwater environment can cause a dangerous situation for human. Therefore, many research activities are developing an underwater vehicle to replace the human’s work such as ROV or Remotely Operated Vehicles. The vehicle operated using tether to transport the signals and electric power from the surface vehicle. Arrangements of weight, buoyancy, and the propeller placements are significant aspect in designing the vehicle’s performance. This paper presents design concept of ROV for survey and observation the underwater objects with interaction vectored propellers used for vehicle’s motions.
Computational analysis of aircraft pressure relief doors
NASA Astrophysics Data System (ADS)
Schott, Tyler
Modern trends in commercial aircraft design have sought to improve fuel efficiency while reducing emissions by operating at higher pressures and temperatures than ever before. Consequently, greater demands are placed on the auxiliary bleed air systems used for a multitude of aircraft operations. The increased role of bleed air systems poses significant challenges for the pressure relief system to ensure the safe and reliable operation of the aircraft. The core compartment pressure relief door (PRD) is an essential component of the pressure relief system which functions to relieve internal pressure in the core casing of a high-bypass turbofan engine during a burst duct over-pressurization event. The successful modeling and analysis of a burst duct event are imperative to the design and development of PRD's to ensure that they will meet the increased demands placed on the pressure relief system. Leveraging high-performance computing coupled with advances in computational analysis, this thesis focuses on a comprehensive computational fluid dynamics (CFD) study to characterize turbulent flow dynamics and quantify the performance of a core compartment PRD across a range of operating conditions and geometric configurations. The CFD analysis was based on a compressible, steady-state, three-dimensional, Reynolds-averaged Navier-Stokes approach. Simulations were analyzed, and results show that variations in freestream conditions, plenum environment, and geometric configurations have a non-linear impact on the discharge, moment, thrust, and surface temperature characteristics. The CFD study revealed that the underlying physics for this behavior is explained by the interaction of vortices, jets, and shockwaves. This thesis research is innovative and provides a comprehensive and detailed analysis of existing and novel PRD geometries over a range of realistic operating conditions representative of a burst duct over-pressurization event. Further, the study provides aircraft manufacturers with valuable insight into the impact that operating conditions and geometric configurations have on PRD performance and how the information can be used to assist future research and development of PRD design.
Off-Design Performance of a Streamline-Traced, External-Compression Supersonic Inlet
NASA Technical Reports Server (NTRS)
Slater, John W.
2017-01-01
A computational study was performed to explore the aerodynamic performance of a streamline-traced, external-compression inlet designed for Mach 1.664 at off-design conditions of freestream Mach number, angle-of-attack, and angle-of-sideslip. Serious degradation of the inlet performance occurred for negative angles-of-attack and angles-of-sideslip greater than 3 degrees. At low subsonic speeds, the swept leading edges of the inlet created a pair of vortices that propagated to the engine face. Increasing the bluntness of the cowl lip showed no real improvement in the inlet performance at the low speeds, but did improve the inlet performance at the design conditions. Reducing the inlet flow rate improved the inlet performance, but at the likely expense of reduced thrust of the propulsion system. Deforming the cowl lip for low-speed operation of the inlet increased the inlet capture area and improved the inlet performance.
Thompson, Jon M; McCue, Michael J
2010-01-01
Inpatient rehabilitation hospitals provide important services to patients to restore physical and cognitive functioning. Historically, these hospitals have been reimbursed by Medicare under a cost-based system; but in 2002, Medicare implemented a rehabilitation prospective payment system (PPS). Despite the implementation of a PPS for rehabilitation, there is limited published research that addresses the operating and financial performance of these hospitals. We examined operating and financial performance in the pre- and post-PPS periods for for-profit and nonprofit freestanding inpatient rehabilitation hospitals to test for pre- and post-PPS differences within the ownership groups. We identified freestanding inpatient rehabilitation hospitals from the Centers for Medicare and Medicaid Services Health Care Cost Report Information System database for the first two fiscal years under PPS. We excluded facilities that had fiscal years less than 270 days, facilities with missing data, and government facilities. We computed average values for performance variables for the facilities in the two consecutive fiscal years post-PPS. For the pre-PPS period, we collected data on these same facilities and, once facilities with missing data and fiscal years less than 270 days were excluded, computed average values for the two consecutive fiscal years pre-PPS. Our final sample of 140 inpatient rehabilitation facilities was composed of 44 nonprofit hospitals and 96 for-profit hospitals both pre- and post-PPS. We utilized a pairwise comparison test (t-test comparison) to measure the significance of differences on each performance variable between pre- and post-PPS periods within each ownership group. Findings show that both nonprofit and for-profit freestanding inpatient rehabilitation hospitals reduced length of stay, increased discharges, and increased profitability. Within the for-profit ownership group, the percentage of Medicare discharges increased and operating expense per adjusted discharge decreased. Findings suggest that managers of these hospitals have adapted their administrative practices to conform with the financial incentives of the rehabilitation PPS. Managers must continue to control costs, increase discharges, and reduce length of stay to remain financially viable under the rehabilitation PPS.
The CEBAF RF Separator System Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Hovater; Mark Augustine; Al Guerra
2004-08-01
The CEBAF accelerator uses RF deflecting cavities operating at the third sub-harmonic (499 MHz) of the accelerating frequency (1497 MHz) to ''kick'' the electron beam to the experimental halls. The cavities operate in a TEM dipole mode incorporating mode enhancing rods to increase the cavity's transverse shunt impedance [1]. As the accelerators energy has increased from 4 GeV to 6 GeV the RF system, specifically the 1 kW solid-state amplifiers, have become problematic, operating in saturation because of the increased beam energy demands. Two years ago we began a study to look into replacement for the RF amplifiers and decidedmore » to use a commercial broadcast Inductive Output Tube (IOT) capable of 30 kW. The new RF system uses one IOT amplifier on multiple cavities as opposed to one amplifier per cavity as was originally used. In addition, the new RF system supports a proposed 12 GeV energy upgrade to CEBAF. We are currently halfway through the upgrade with three IOTs in operation and the remaining one nearly installed. This paper reports on the new RF system and the IOT performance.« less
Archer, D C; Pinchbeck, G L; Proudman, C J
2011-08-01
Epiploic foramen entrapment (EFE) has been associated with reduced post operative survival compared to other types of colic but specific factors associated with reduced long-term survival of these cases have not been evaluated in a large number of horses using survival analysis. To describe post operative survival of EFE cases and to identify factors associated with long-term survival. A prospective, multicentre, international study was conducted using clinical data and long-term follow-up information for 126 horses diagnosed with EFE during exploratory laparotomy at 15 clinics in the UK, Ireland and USA. Descriptive data were generated and survival analysis performed to identify factors associated with reduced post operative survival. For the EFE cohort that recovered following anaesthesia, survival to hospital discharge was 78.5%. Survival to 1 and 2 years post operatively was 50.6 and 34.3%, respectively. The median survival time of EFE cases undergoing surgery was 397 days. Increased packed cell volume (PCV) and increased length of small intestine (SI) resected were significantly associated with increased likelihood of mortality when multivariable analysis of pre- and intraoperative variables were analysed. When all pre-, intra- and post operative variables were analysed separately, only horses that developed post operative ileus (POI) were shown to be at increased likelihood of mortality. Increased PCV, increased length of SI resected and POI are all associated with increased likelihood of mortality of EFE cases. This emphasises the importance of early diagnosis and treatment and the need for improved strategies in the management of POI in order to reduce post operative mortality in these cases. The present study provides evidence-based information to clinicians and owners of horses undergoing surgery for EFE about long-term survival. These results are applicable to university and large private clinics over a wide geographical area. © 2011 EVJ Ltd.
Pemberton, J H; Phillips, S F; Ready, R R; Zinsmeister, A R; Beahrs, O H
1989-01-01
Although the clinical results of Brooke ileostomy are good, patients are permanently incontinent of stool and gas. Alternative operations designed to restore enteric continence, such as ileal pouch-anal anastomosis, must not only be as safe and effective as Brooke ileostomy, but should provide an improved quality of life in order to establish long-term acceptability. Ileal pouch-anal anastomosis has been performed safely and good functional results have been reported. The quality of life after ileal pouch-anal anastomosis, however, has not been documented. Two hundred ninety-eight ileal pouch patients and 406 Brooke ileostomy patients who had the operations performed for chronic ulcerative colitis or familial adenomatous polyposis formed the basis of the study. After adjusting for age, diagnosis, and reoperation rate, logistic regression analysis of performance scores in seven different categories was used to discriminate between operations. Median follow-up was longer in Brooke ileostomy patients than in ileal pouch patients (104 months vs. 47 months, respectively), and Brooke ileostomy patients were slightly older (38 years vs. 32 years). A great majority of patients in each group were satisfied (93% Brooke ileostomy; 95% ileal pouch-anal anastomosis). Thirty-nine per cent of Brooke ileostomy patients, however, desired a change in the type of ileostomy they had. At 47 months, ileal pouch patients had a median of 5 stools per day and 1 at night, 77% did not experience any daytime incontinence, while 22% reported occasional spotting. In each performance category, the performance score discriminated between operations, with the probability of having had an ileal pouch-anal anastomosis operation increasing with improvement in performance scores (p less than 0.05). We concluded that after ileal pouch-anal anastomosis, patients experienced significant advantages in performing daily activities compared to patients with Brooke ileostomy and thus may experience a better quality of life. These results help further to establish ileal pouch-anal anastomosis as a safe, attractive, and valid alternative to Brooke ileostomy. PMID:2539790