Sample records for increasing organic loading

  1. Hygienic quality of artificial greywater subjected to aerobic treatment: a comparison of three filter media at increasing organic loading rates.

    PubMed

    Lalander, Cecilia; Dalahmeh, Sahar; Jönsson, Håkan; Vinnerås, Björn

    2013-01-01

    With a growing world population, the lack of reliable water sources is becoming an increasing problem. Reusing greywater could alleviate this problem. When reusing greywater for crop irrigation it is paramount to ensure the removal of pathogenic organisms. This study compared the pathogen removal efficiency of pine bark and activated charcoal filters with that of conventional sand filters at three organic loading rates. The removal efficiency of Escherichia coli O157:H7 decreased drastically when the organic loading rate increased fivefold in the charcoal and sand filters, but increased by 2 log10 in the bark filters. The reduction in the virus model organism coliphage phiX174 remained unchanged with increasing organic loading in the charcoal and sand filters, but increased by 2 log10 in the bark filters. Thus, bark was demonstrated to be the most promising material for greywater treatment in terms of pathogen removal.

  2. Biological Pilot Plant Study at Radford Army Ammunition Plant

    DTIC Science & Technology

    1976-10-01

    amount of organics applied to the rotating bio- logical disc system was substantially incre sed when the hy- draulic loading was increased from 2 GPD/ft... organic loading, therefore, the effluent organic con- centrations increased significantly. The increase in effluent BOD and COD after May 13th are...provided some additional organic removal while the third and fourth stages began providing an increased amount of organic removal. The first stage soluble

  3. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland.

    PubMed

    Li, Chunyan; Wu, Shubiao; Dong, Renjie

    2015-03-15

    This paper demonstrates the potential of tidal flow operated constructed wetland application for the removal dynamics of organic matter, nitrogen and phosphorus. Near-complete removal of organic matter was achieved with a constant removal efficiency of 95%, irrespective of TOC influent loadings ranged from 10 g/m(2) · d to 700 g/m(2) · d. High NH4(+)-N removal at 95% efficiency under influent loading of 17 g/m(2) · d, was stably obtained and was not negatively influenced by increasing influent organic carbon loading rate. Increased influent TOC loading (350 g/m(2) · d to 700 g/m(2) · d) significantly enhanced denitrification capacity and increased TN removal from 30% to 95%. Under tidal flow operation, a higher carbon supply (C/N = 20) for complete TN removal was demonstrated as comparing to that observed in traditional CWs approaches. In addition, the removal of phosphorus was strongly influenced by organic loadings. However, further investigations are needed to elucidate the detailed mechanism that would explain the role of organic loading in phosphorus removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A simple approach to estimate daily loads of total, refractory, and labile organic carbon from their seasonal loads in a watershed.

    PubMed

    Ouyang, Ying; Grace, Johnny M; Zipperer, Wayne C; Hatten, Jeff; Dewey, Janet

    2018-05-22

    Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) in streams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities through absorption of light and complex metals with production of carcinogenic compounds. Although computer models have become increasingly popular in understanding and management of TOC, ROC, and LOC loads in streams, the usefulness of these models hinges on the availability of daily data for model calibration and validation. Unfortunately, these daily data are usually insufficient and/or unavailable for most watersheds due to a variety of reasons, such as budget and time constraints. A simple approach was developed here to calculate daily loads of TOC, ROC, and LOC in streams based on their seasonal loads. We concluded that the predictions from our approach adequately match field measurements based on statistical comparisons between model calculations and field measurements. Our approach demonstrates that an increase in stream discharge results in increased stream TOC, ROC, and LOC concentrations and loads, although high peak discharge did not necessarily result in high peaks of TOC, ROC, and LOC concentrations and loads. The approach developed herein is a useful tool to convert seasonal loads of TOC, ROC, and LOC into daily loads in the absence of measured daily load data.

  5. Self-organized dynamics in local load-sharing fiber bundle models.

    PubMed

    Biswas, Soumyajyoti; Chakrabarti, Bikas K

    2013-10-01

    We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.

  6. Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine

    NASA Astrophysics Data System (ADS)

    Presto, Albert A.; Nguyen, Ngoc T.; Ranjan, Manish; Reeder, Aaron J.; Lipsky, Eric M.; Hennigan, Christopher J.; Miracolo, Marissa A.; Riemer, Daniel D.; Robinson, Allen L.

    2011-07-01

    Staged tests were conducted to measure the particle and vapor emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135T Stratotanker airframe at different engine loads. Exhaust was sampled using a rake inlet installed 1-m downstream of the engine exit plane of a parked and chocked aircraft and a dilution sampler and portable smog chamber were used to investigate the particulate matter (PM) emissions. Total fine PM mass emissions were highest at low (4%) and high (85%) load and lower at intermediate loads (7% and 30%). PM mass emissions at 4% load are dominated by organics, while at 85% load elemental carbon is dominant. Quantifying the primary organic aerosol (POA) emissions is complicated by substantial filter sampling artifacts. Partitioning experiments reveal that the majority of the POA is semivolatile; for example, the POA emission factor changed by a factor of two when the background organic aerosol concentration was increased from 0.7 to 4 μg m -3. Therefore, one cannot define a single non-volatile PM emission factor for aircraft exhaust. The gas- and particle-phase organic emissions were comprehensively characterized by analyzing canister, sorbent and filter samples with gas-chromatography/mass-spectrometry. Vapor-phase organic emissions are highest at 4% load and decrease with increasing load. Low-volatility organics (less volatile than a C 12n-alkane) contributed 10-20% of the total organic emissions. The low-volatility organic emissions contain signatures of unburned fuel and aircraft lubricating oil but are dominated by an unresolved complex mixture (UCM) of presumably branched and cyclic alkanes. Emissions at all loads contain more low-volatility organic vapors than POA; thus secondary organic aerosol formation in the aging plume will likely exceed POA emissions.

  7. Nitrogen and Phosphorus Loads to Temperate Seepage Lakes Associated With Allochthonous Dissolved Organic Carbon Loads

    Treesearch

    J.R. Corman; B.L. Bertolet; N.J. Casson; S.D. Sebestyen; R.K. Kolka; E.H. Stanley

    2018-01-01

    Terrestrial loads of dissolved organic matter (DOM) have increased in recent years in many north temperate lakes. While much of the focus on the "browning" phenomena has been on its consequences for carbon cycling, much less is known about how it influences nutrient loading to lakes. We characterize potential loads of nitrogen and phosphorus to seepage lakes...

  8. High solids co-digestion of food and landscape waste and the potential for ammonia toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drennan, Margaret F.; DiStefano, Thomas D., E-mail: thomas.distefano@bucknell.edu

    Highlights: • We evaluated co-digestion of food and landscape waste with a pilot-scale anaerobic dry digester. • We evaluated reactor performance at 35 °C under low and high organic loading rates. • Performance was stable under low organic loading rate, but declined under high organic loading rate. • Respirometry was employed to investigate potential inhibition due to ammonia. • Landscape waste was unsuitable in increasing the C:N ratio during codigestion. - Abstract: A pilot-scale study was completed to determine the feasibility of high-solids anaerobic digestion (HSAD) of a mixture of food and landscape wastes at a university in central Pennsylvaniamore » (USA). HSAD was stable at low loadings (2 g COD/L-day), but developed inhibitory ammonia concentrations at high loadings (15 g COD/L-day). At low loadings, methane yields were 232 L CH{sub 4}/kg COD fed and 229 L CH{sub 4}/kg VS fed, and at high loadings yields were 211 L CH{sub 4}/kg COD fed and 272 L CH{sub 4}/kg VS fed. Based on characterization and biodegradability studies, food waste appears to be a good candidate for HSAD at low organic loading rates; however, the development of ammonia inhibition at high loading rates suggests that the C:N ratio is too low for use as a single substrate. The relatively low biodegradability of landscape waste as reported herein made it an unsuitable substrate to increase the C:N ratio. Codigestion of food waste with a substrate high in bioavailable carbon is recommended to increase the C:N ratio sufficiently to allow HSAD at loading rates of 15 g COD/L-day.« less

  9. The mechanism of phloem loading in rice (Oryza sativa).

    PubMed

    Eom, Joon-Seob; Choi, Sang-Bong; Ward, John M; Jeon, Jong-Seong

    2012-05-01

    Carbohydrates, mainly sucrose, that are synthesized in source organs are transported to sink organs to support growth and development. Phloem loading of sucrose is a crucial step that drives long-distance transport by elevating hydrostatic pressure in the phloem. Three phloem loading strategies have been identified, two active mechanisms, apoplastic loading via sucrose transporters and symplastic polymer trapping, and one passive mechanism. The first two active loading mechanisms require metabolic energy, carbohydrate is loaded into the phloem against a concentration gradient. The passive process, diffusion, involves equilibration of sucrose and other metabolites between cells through plasmodesmata. Many higher plant species including Arabidopsis utilize the active loading mechanisms to increase carbohydrate in the phloem to higher concentrations than that in mesophyll cells. In contrast, recent data revealed that a large number of plants, especially woody species, load sucrose passively by maintaining a high concentration in mesophyll cells. However, it still remains to be determined how the worldwide important cereal crop, rice, loads sucrose into the phloem in source organs. Based on the literature and our results, we propose a potential strategy of phloem loading in rice. Elucidation of the phloem loading mechanism should improve our understanding of rice development and facilitate its manipulation towards the increase of crop productivity.

  10. Response of removal rates to various organic carbon and ammonium loads in laboratory-scale constructed wetlands treating artificial wastewater.

    PubMed

    Wu, Shubiao; Kuschk, Peter; Wiessner, Arndt; Kästner, Matthias; Pang, Changle; Dong, Renjie

    2013-01-01

    High levels (92 and 91%) of organic carbon were successfully removed from artificial wastewater by a laboratory-scale constructed wetland under inflow loads of 670 mg/m2 x d (100 mg/d) and 1600 mg/m2d (240 mg/d), respectively. Acidification to pH 3.0 was observed at the low organic carbon load, which further inhibited the denitrification process. An increase in carbon load, however, was associated with a significant elevation of pH to 6.0. In general, sulfate and nitrate reduction were relatively high, with mean levels of 87 and 90%, respectively. However, inhibition of nitrification was initiated with an increase in carbon loads. This effect was probably a result of competition for oxygen by heterotrophic bacteria and an inhibitory effect of sulfide (S2) toxicity (concentration approximately 3 mg/L). In addition, numbers of healthy stalks of Juncus effusus (common rush) decreased from 14 000 to 10 000/m2 with an increase of sulfide concentration, indicating the negative effect of sulfide toxicity on the wetland plants.

  11. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.

    PubMed

    Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-07-01

    The meniscus is a dense fibrocartilage tissue that withstands the complex loads of the knee via a unique organization of collagen fibers. Attempts to condition engineered menisci with compression or tensile loading alone have failed to reproduce complex structure on the microscale or anatomic scale. Here we show that axial loading of anatomically shaped tissue-engineered meniscus constructs produced spatial distributions of local strain similar to those seen in the meniscus when the knee is loaded at full extension. Such loading drove formation of tissue with large organized collagen fibers, levels of mechanical anisotropy, and compressive moduli that match native tissue. Loading accelerated the development of native-sized and aligned circumferential and radial collagen fibers. These loading patterns contained both tensile and compressive components that enhanced the major biochemical and functional properties of the meniscus, with loading significantly improved glycosaminoglycan (GAG) accumulation 200-250%, collagen accumulation 40-55%, equilibrium modulus 1000-1800%, and tensile moduli 500-1200% (radial and circumferential). Furthermore, this study demonstrates local changes in mechanical environment drive heterogeneous tissue development and organization within individual constructs, highlighting the importance of recapitulating native loading environments. Loaded menisci developed cartilage-like tissue with rounded cells, a dense collagen matrix, and increased GAG accumulation in the more compressively loaded horns, and fibrous collagen-rich tissue in the more tensile loaded outer 2/3, similar to native menisci. Loaded constructs reached a level of organization not seen in any previous engineered menisci and demonstrate great promise as meniscal replacements.

  12. Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction.

    PubMed

    Aichinger, Peter; Wadhawan, Tanush; Kuprian, Martin; Higgins, Matthew; Ebner, Christian; Fimml, Christian; Murthy, Sudhir; Wett, Bernhard

    2015-12-15

    Making good use of existing water infrastructure by adding organic wastes to anaerobic digesters improves the energy balance of a wastewater treatment plant (WWTP) substantially. This paper explores co-digestion load limits targeting a good trade-off for boosting methane production, and limiting process-drawbacks on nitrogen-return loads, cake-production, solids-viscosity and polymer demand. Bio-methane potential tests using whey as a model co-substrate showed diversification and intensification of the anaerobic digestion process resulting in a synergistical enhancement in sewage sludge methanization. Full-scale case-studies demonstrate organic co-substrate addition of up to 94% of the organic sludge load resulted in tripling of the biogas production. At organic co-substrate addition of up to 25% no significant increase in cake production and only a minor increase in ammonia release of ca. 20% have been observed. Similar impacts were measured at a high-solids digester pilot with up-stream thermal hydrolyses where the organic loading rate was increased by 25% using co-substrate. Dynamic simulations were used to validate the synergistic impact of co-substrate addition on sludge methanization, and an increase in hydrolysis rate from 1.5 d(-1) to 2.5 d(-1) was identified for simulating measured gas production rate. This study demonstrates co-digestion for maximizing synergy as a step towards energy efficiency and ultimately towards carbon neutrality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Sediment Bioaccumulation Test with Lumbriculus variegatus: Effects of Organism Loading

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  14. Dry fermentation of manure with straw in continuous plug flow reactor: Reactor development and process stability at different loading rates.

    PubMed

    Patinvoh, Regina J; Kalantar Mehrjerdi, Adib; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH 4 /gVS added /d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-02-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps) are here revisited in view to reconstruct past aerosol load of the free European troposphere from prior World War II to present. The extended array of inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, HUmic LIke Substances, dissolved organic carbon, water insoluble organic carbon, and black carbon) compounds and fractions already investigated permit to examine the overall aerosol composition and its change over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). It is shown that not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarii dealing with climate forcing by atmospheric aerosol.

  16. Towards a quasi-complete reconstruction of past atmospheric aerosol load and composition (organic and inorganic) over Europe since 1920 inferred from Alpine ice cores

    NASA Astrophysics Data System (ADS)

    Preunkert, S.; Legrand, M.

    2013-07-01

    Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.

  17. Metal loading levels influence on REE distribution on humic acid: Experimental and Modelling approach

    NASA Astrophysics Data System (ADS)

    Marsac, R.; Davranche, M.; Gruau, G.; Dia, A.

    2009-04-01

    In natural organic-rich waters, rare earth elements (REE) speciation is mainly controlled by organic colloids such as humic acid (HA). Different series of REE-HA complexation experiments performed at several metal loading (REE/C) displayed two pattern shapes (i) at high metal loading, a middle-REE (MREE) downward concavity, and (ii) at low metal loading, a regular increase from La to Lu (e.g. Sonke and Salters, 2006; Pourret et al., 2007). Both REE patterns might be related to REE binding with different surface sites on HA. To understand REE-HA binding, REE-HA complexation experiments at various metals loading were carried out using ultrafiltration combined with ICP-MS measurements, for the 14 REE simultaneously. The patterns of the apparent coefficients of REE partition between HA and the inorganic solution (log Kd) evolved regularly according to the metal loading. The REE patterns presented a MREE downward concavity at low loading and a regular increase from La to Lu at high loading. The dataset was modelled with Model VI by adjusting two specific parameters, log KMA, the apparent complexation constant of HA low affinity sites and DLK2, the parameter increasing high affinity sites binding strength. Experiments and modelling provided evidence that HA high affinity sites controlled the REE binding with HA at low metal loading. The REE-HA complex could be as multidentate complexes with carboxylic or phenolic sites or potentially with sites constituted of N, P or S as donor atoms. Moreover, these high affinity sites could be different for light and heavy REE, because heavy REE have higher affinity for these sites, in low density, and could saturate them. These new Model VI parameter sets allowed the prediction of the REE-HA pattern shape evolution on a large range of pH and metal loading. According to the metal loading, the evolution of the calculated REE patterns was similar to the various REE pattern observed in natural acidic organic-rich waters (pH<7 and DOC>10 mg L-1). As a consequence, the metal loading could be the key parameter controlling the REE pattern in organic-rich waters.

  18. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.

    PubMed

    Othman, Rahimah; Vladisavljević, Goran T; Thomas, Noreen L; Nagy, Zoltan K

    2016-05-01

    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Future export of particulate and dissolved organic carbon from land to coastal zones of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Strååt, Kim Dahlgren; Mörth, Carl-Magnus; Undeman, Emma

    2018-01-01

    The Baltic Sea is a semi-enclosed brackish sea in Northern Europe with a drainage basin four times larger than the sea itself. Riverine organic carbon (Particulate Organic Carbon, POC and Dissolved Organic Carbon, DOC) dominates carbon input to the Baltic Sea and influences both land-to-sea transport of nutrients and contaminants, and hence the functioning of the coastal ecosystem. The potential impact of future climate change on loads of POC and DOC in the Baltic Sea drainage basin (BSDB) was assessed using a hydrological-biogeochemical model (CSIM). The changes in annual and seasonal concentrations and loads of both POC and DOC by the end of this century were predicted using three climate change scenarios and compared to the current state. In all scenarios, overall increasing DOC loads, but unchanged POC loads, were projected in the north. In the southern part of the BSDB, predicted DOC loads were not significantly changing over time, although POC loads decreased in all scenarios. The magnitude and significance of the trends varied with scenario but the sign (+ or -) of the projected trends for the entire simulation period never conflicted. Results were discussed in detail for the "middle" CO2 emission scenario (business as usual, a1b). On an annual and entire drainage basin scale, the total POC load was projected to decrease by ca 7% under this scenario, mainly due to reduced riverine primary production in the southern parts of the BSDB. The average total DOC load was not predicted to change significantly between years 2010 and 2100 due to counteracting decreasing and increasing trends of DOC loads to the six major sub-basins in the Baltic Sea. However, predicted seasonal total loads of POC and DOC increased significantly by ca 46% and 30% in winter and decreased by 8% and 21% in summer over time, respectively. For POC the change in winter loads was a consequence of increasing soil erosion and a shift in duration of snowfall and onset of the spring flood impacting the input of terrestrial litter, while reduced primary production mainly explained the differences predicted in summer. The simulations also showed that future changes in POC and DOC export can vary significantly across the different sub-basins of the Baltic Sea. These changes in organic carbon input may impact future coastal food web structures e.g. by influencing bacterial and phytoplankton production in coastal zones, which in turn may have consequences at higher trophic levels.

  20. Simultaneous organic matter removal and nitrification of an inert self-supporting immersed media to upgrade aerated lagoons.

    PubMed

    Boutet, E; Baillargeon, S; Patry, B; Lessard, P

    2018-01-01

    A pilot study was performed to evaluate the potential of an inert self-supported immersed fixed film media to upgrade aerated lagoons. Simultaneous organic matter removal and nitrification was assessed under different loading rates and temperatures (near 0 °C) using 12 laboratory-scale reactors operated in parallel. Test results showed that both the temperature and the load have an influence on organic matter effluent concentrations. Effluent quality seemed related to the observed biofilm thickness. Thicker biofilm is believed to have contributed to biomass detachment and increased particulate organic matter concentrations in the effluent. Simultaneous organic removal and nitrification was obtained at loads above 5 g CBOD 5 /m 2 ·d. The highest nitrification rate at 0.4 °C was obtained for the smallest load, which showed a nitrification limitation close to freezing point.

  1. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production.

    PubMed

    Lefébure, R; Degerman, R; Andersson, A; Larsson, S; Eriksson, L-O; Båmstedt, U; Byström, P

    2013-05-01

    Both temperature and terrestrial organic matter have strong impacts on aquatic food-web dynamics and production. Temperature affects vital rates of all organisms, and terrestrial organic matter can act both as an energy source for lower trophic levels, while simultaneously reducing light availability for autotrophic production. As climate change predictions for the Baltic Sea and elsewhere suggest increases in both terrestrial matter runoff and increases in temperature, we studied the effects on pelagic food-web dynamics and food-web efficiency in a plausible future scenario with respect to these abiotic variables in a large-scale mesocosm experiment. Total basal (phytoplankton plus bacterial) production was slightly reduced when only increasing temperatures, but was otherwise similar across all other treatments. Separate increases in nutrient loads and temperature decreased the ratio of autotrophic:heterotrophic production, but the combined treatment of elevated temperature and terrestrial nutrient loads increased both fish production and food-web efficiency. CDOM: Chl a ratios strongly indicated that terrestrial and not autotrophic carbon was the main energy source in these food webs and our results also showed that zooplankton biomass was positively correlated with increased bacterial production. Concomitantly, biomass of the dominant calanoid copepod Acartia sp. increased as an effect of increased temperature. As the combined effects of increased temperature and terrestrial organic nutrient loads were required to increase zooplankton abundance and fish production, conclusions about effects of climate change on food-web dynamics and fish production must be based on realistic combinations of several abiotic factors. Moreover, our results question established notions on the net inefficiency of heterotrophic carbon transfer to the top of the food web. © 2013 Blackwell Publishing Ltd.

  2. A micromechanical model to explain the mechanical properties of bovine cortical bone in tension: In vitro fluoride ion effects

    NASA Astrophysics Data System (ADS)

    Kotha, Shiva Prasad

    Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The precipitate is assumed to contribute to the mechanical properties of bone due to friction generated by the poisson's contraction of the organic as it carries axial loads. The resulting stress-strain curve predicted by the model resembles the stress-strain curves obtained in the experiments.

  3. Influence of organic loading rate on integrated bioreactor treating hypersaline mustard wastewater.

    PubMed

    Kang, Wei; Chai, Hongxiang; Yang, Shiwei; Du, Guojun; Zhou, Jian; He, Qiang

    2016-07-01

    Mustard tuber wastewater is characterized by high salinity and high organic content that is potentially detrimental to the biological treatment system and affects the treatment efficiency accordingly. The experiment used the integrated bioreactor to reduce much of the organics in mustard tuber wastewater, and found the influence of organic loading rate on effluent chemical oxygen demand (COD) and phosphate (PO4 (3-) -P). Results showed that under the condition of 10-15 °C, 6 mg/L of dissolved oxygen, the reduction value of COD removal rate in anaerobic and aerobic area was 14.5% and 31.7% when the organic loading rate increased from 2.0 to 4.0 kg COD/m(3) /day. Therefore, an integrated bioreactor should take 2.0 kg COD/m(3) /day organic loading rate in mustard wastewater treatment if the effluent is expected to meet the third level of "Integrated Wastewater Discharge Standard" (GB 8978-1996). © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  4. Extremely fast increase in the organic loading rate during the co-digestion of rapeseed oil and sewage sludge in a CSTR--characterization of granules formed due to CaO addition to maintain process stability.

    PubMed

    Kasina, M; Kleyböcker, A; Michalik, M; Würdemann, H

    2015-01-01

    In a co-digestion system running with rapeseed oil and sewage sludge, an extremely fast increase in the organic loading rate was studied to develop a procedure to allow for flexible and demand-driven energy production. The over-acidification of the digestate was successfully prevented by calcium oxide dosage, which resulted in granule formation. Mineralogical analyses revealed that the granules were composed of insoluble salts of long chain fatty acids and calcium and had a porous structure. Long chain fatty acids and calcium formed the outer cover of granules and offered interfaces on the inside thereby enhancing the growth of biofilms. With granule size and age, the pore size increased and indicated degradation of granular interfaces. A stable biogas production up to the organic loading rate of 10.4 kg volatile solids m(-3) d(-1) was achieved although the hydrogen concentration was not favorable for propionic acid degradation. However, at higher organic loading rates, unbalanced granule formation and degradation were observed. Obviously, the adaption time for biofilm growth was too short to maintain the balance, thereby resulting in a low methane yield.

  5. Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: Implications of changes in seagrass blue carbon.

    PubMed

    Liu, Songlin; Jiang, Zhijian; Wu, Yunchao; Zhang, Jingping; Arbi, Iman; Ye, Feng; Huang, Xiaoping; Macreadie, Peter Ian

    2017-04-15

    Nutrient loading is a leading cause of global seagrass decline, triggering shifts from seagrass- to macroalgal-dominance. Within seagrass meadows of Xincun Bay (South China Sea), we found that nutrient loading (due to fish farming) increased sediment microbial biomass and extracellular enzyme activity associated with carbon cycling (polyphenol oxidase, invertase and cellulase), with a corresponding decrease in percent sediment organic carbon (SOC), suggesting that nutrients primed microorganism and stimulated SOC remineralization. Surpisingly, however, the relative contribution of seagrass-derived carbon to bacteria (δ 13 C bacteria ) increased with nutrient loading, despite popular theory being that microbes switch to consuming macroalgae which are assumed to provide a more labile carbon source. Organic carbon sources of fungi were unaffected by nutrient loading. Overall, this study suggests that nutrient loading changes the relative contribution of seagrass and algal sources to SOC pools, boosting sediment microbial biomass and extracellular enzyme activity, thereby possibly changing seagrass blue carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Organic matter dynamics and stable isotopes for tracing sources of suspended sediment

    NASA Astrophysics Data System (ADS)

    Schindler Wildhaber, Y.; Liechti, R.; Alewell, C.

    2012-01-01

    Suspended sediment (SS) and organic matter in rivers can harm brown trout Salmo trutta by impact on health and fitness of free swimming fish and siltation of the riverbed. The later results in a decrease of hydraulic conductivity and therefore smaller oxygen supply to the salmonid embryos. Additionally, oxygen demand within riverbeds will increase as the pool of organic matter increases. We assessed the temporal and spatial dynamics of sediment, carbon (C) and nitrogen (N) during the brown trout spawning season and used C isotopes as well as the C/N atomic ratio to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the sources of SS in respect of time and space. Organic matter fractions in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and precipitation probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to pasture and arable land. The fraction of SS originating from upper watershed riverbed sediment increased at all sites during high flow. Its mean fraction decreased from up- to downstream. During base flow conditions, the major sources of SS are pasture and arable land. The later increased during rainy and warmer periods probably due to snow melting and erosion processes. These modeling results support the measured increased DOC and NO3 concentrations during high flow.

  7. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons.

    PubMed

    Triantafillopoulos, Ioannis K; Banes, Albert J; Bowman, Karl F; Maloney, Melissa; Garrett, William E; Karas, Spero G

    2004-06-01

    To date, no studies document the effect of anabolic steroids on rotator cuff tendons. Controlled laboratory study. Anabolic steroids enhance remodeling and improve the biomechanical properties of bioartificially engineered human supraspinatus tendons. Bioartificial tendons were treated with either nandrolone decanoate (nonload, steroid, n = 18), loading (load, nonsteroid, n = 18), or both (load, steroid, n = 18). A control group received no treatment (nonload, nonsteroid [NLNS], n = 18). Bioartificial tendons' remodeling was assessed by daily scanning, cytoskeletal organization by staining, matrix metalloproteinase-3 levels by ELISA assay, and biomechanical properties by load-to-failure testing. The load, steroid group showed the greatest remodeling and the best organized actin cytoskeleton. Matrix metallo-proteinase-3 levels in the load, steroid group were greater than those of the nonload, nonsteroid group (P <.05). Ultimate stress and ultimate strain in the load, steroid group were greater than those of the nonload, nonsteroid and nonload, steroid groups (P <.05). The strain energy density in the load, steroid group was greater when compared to other groups (P <.05). Nandrolone decanoate and load acted synergistically to increase matrix remodeling and biomechanical properties of bioartificial tendons. Data suggest anabolic steroids may enhance production of bioartificial tendons and rotator cuff tendon healing in vitro. More research is necessary before such clinical use is recommended.

  8. Genome-Resolved Meta-Omics Ties Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation.

    PubMed

    Kantor, Rose S; Huddy, Robert J; Iyer, Ramsunder; Thomas, Brian C; Brown, Christopher T; Anantharaman, Karthik; Tringe, Susannah; Hettich, Robert L; Harrison, Susan T L; Banfield, Jillian F

    2017-03-07

    Remediation of industrial wastewater is important for preventing environmental contamination and enabling water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and one rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.

  9. Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.

    PubMed

    Zielinska, M; Wojnowska-Baryla, I

    2006-05-01

    Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.

  10. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as lowmore » as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.« less

  11. Interpreting the effect of increasing COD loading rates on the performance of a pre-anoxic MBBR system: implications on the attached and suspended biomass dynamics and nitrification-denitrification activity.

    PubMed

    Lima, P S; Dezotti, M; Bassin, J P

    2016-06-01

    A pre-anoxic MBBR system was subjected to increasing organic loading rates up to 18 gCOD/(m(2) day). At 3 gCOD/(m(2) day), most of the incoming organic matter was removed via denitrification. However, at higher loads, anoxic COD removal became limited by the nitrite/nitrate supply from the aerobic reactor, which assumed an important role in this conversion. Despite the application of low dissolved oxygen (DO) levels (<2 mg/L) in this tank, nitrification was observed to be nearly complete until 8 gCOD/(m(2) day). As the organic input was increased, the maximum specific nitrifying activity gradually declined. Activity tests suggested that an oxygen-limited environment was established in the biofilm. At lower loads [3-8 gCOD/(m(2) day)], the nitrification product obtained was affected by the DO concentration, whereas from 16 to 21 gCOD/(m(2) day), nitrite/nitrate profiles were likely associated with microbial stratification in the biofilm. The results also indicated that the role of the suspended biomass in the overall nitrification and denitrification can be very significant in high loaded MBBRs and should not be neglected, even at low HRTs.

  12. Organic matter dynamics and stable isotope signature as tracers of the sources of suspended sediment

    NASA Astrophysics Data System (ADS)

    Schindler Wildhaber, Y.; Liechti, R.; Alewell, C.

    2012-06-01

    Suspended sediment (SS) and organic matter in rivers can harm brown trout Salmo trutta by affecting the health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C), and nitrogen (N) during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase of pasture and arable land downstream of the river. The mean fraction of SS originating from upper watershed riverbed sediment decreased from up to downstream and increased during high flow at all measuring sites along the course of the river. During base flow conditions, the major sources of SS are pasture, forest and arable land. The latter increased during rainy and warmer winter periods, most likely because both triggered snow melt and thus erosion. The measured increase in DOC and nitrate concentrations during high flow support these modeling results. Enhanced soil erosion processes on pasture and arable land are expected with increasing heavy rain events and less snow during winter seasons due to climate change. Consequently, SS and organic matter in the river will increase, which will possibly affect brown trout negatively.

  13. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  14. Molecular analysis of meso- and thermophilic microbiota associated with anaerobic biowaste degradation

    PubMed Central

    2012-01-01

    Background Microbial anaerobic digestion (AD) is used as a waste treatment process to degrade complex organic compounds into methane. The archaeal and bacterial taxa involved in AD are well known, whereas composition of the fungal community in the process has been less studied. The present study aimed to reveal the composition of archaeal, bacterial and fungal communities in response to increasing organic loading in mesophilic and thermophilic AD processes by applying 454 amplicon sequencing technology. Furthermore, a DNA microarray method was evaluated in order to develop a tool for monitoring the microbiological status of AD. Results The 454 sequencing showed that the diversity and number of bacterial taxa decreased with increasing organic load, while archaeal i.e. methanogenic taxa remained more constant. The number and diversity of fungal taxa increased during the process and varied less in composition with process temperature than bacterial and archaeal taxa, even though the fungal diversity increased with temperature as well. Evaluation of the microarray using AD sample DNA showed correlation of signal intensities with sequence read numbers of corresponding target groups. The sensitivity of the test was found to be about 1%. Conclusions The fungal community survives in anoxic conditions and grows with increasing organic loading, suggesting that Fungi may contribute to the digestion by metabolising organic nutrients for bacterial and methanogenic groups. The microarray proof of principle tests suggest that the method has the potential for semiquantitative detection of target microbial groups given that comprehensive sequence data is available for probe design. PMID:22727142

  15. Relative importance of multiple factors on terrestrial loading of DOC to Arctic river networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kicklighter, David W.; Hayes, Daniel J; Mcclelland, James W

    2014-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to controlling carbon fluxes between the land surface and the atmosphere. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that the pan-arctic watershed has contributed, on average, 32 Tg C/yr of DOC to the Arctic Ocean over the 20th century with most coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate ofmore » terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of increases in air temperatures and precipitation. These increases have been partially compensated by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both compensated and enhanced concurrent effects on hydrology to influence terrestrial DOC loading. Future increases in riverine DOC concentrations and export may occur from warming-induced increases in terrestrial DOC production associated with enhanced microbial metabolism and the exposure of additional organic matter from permafrost degradation along with decreases in water yield associated with warming-induced increases in evapotranspiration. Improvements in simulating terrestrial DOC loading to pan-arctic rivers in the future will require better information on the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.« less

  16. Optimization of enhanced biological phosphorus removal after periods of low loading.

    PubMed

    Miyake, Haruo; Morgenroth, Eberhard

    2005-01-01

    Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.

  17. Export of dissolved organic matter in relation to land use along a European climatic gradient.

    PubMed

    Mattsson, Tuija; Kortelainen, Pirkko; Laubel, Anker; Evans, Dylan; Pujo-Pay, Mireille; Räike, Antti; Conan, Pascal

    2009-03-01

    The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.

  18. Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds

    PubMed Central

    Stasuk, Alexander

    2017-01-01

    Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells encapsulated within three-dimensional collagen scaffolds. Samples loaded at 0%, 2%, 4%, and 6% strains and 0.1 Hz and 1 Hz frequencies for 2 hours/day over a 7-day period using a custom-built uniaxial tensile strain bioreactor were characterized in terms of matrix organization, cell viability, and musculoskeletal gene expression profiles. The results displayed that the collagen fibers of the loaded samples exhibited increased matrix directionality with an increase in strain values. Gene expression analyses demonstrated that ASC-encapsulated collagen scaffolds loaded at 2% strain and 0.1 Hz frequency showed significant increases in extracellular matrix genes and tenogenic differentiation markers. Importantly, no cross-differentiation potential to osteogenic, chondrogenic, and myogenic lineages was observed at 2% strain and 0.1 Hz frequency loading condition. Thus, 2% strain and 0.1 Hz frequency were identified as the appropriate mechanical loading regime to induce tenogenic differentiation of adipose-derived stem cells cultured in a three-dimensional environment. PMID:29375625

  19. Biofilm architecture in a novel pressurized biofilm reactor.

    PubMed

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  20. Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors.

    PubMed

    Inaba, Tomohiro; Hori, Tomoyuki; Aizawa, Hidenobu; Ogata, Atsushi; Habe, Hiroshi

    2017-01-01

    Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling.

  1. Genome-Resolved Meta-Omics Ties Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder

    Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less

  2. Genome-Resolved Meta-Omics Ties Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation

    DOE PAGES

    Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder; ...

    2017-01-31

    Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less

  3. Nutrient, organic carbon, and chloride concentrations and loads in selected Long Island Sound tributaries—Four decades of change following the passage of the Federal Clean Water Act

    USGS Publications Warehouse

    Mullaney, John R.

    2016-03-10

    Loads of dissolved silica (DSi; flow-normalized and non-flow-normalized) increased slightly at most stations during the study period and were positively correlated to urbanized land in the basin and negatively correlated to area of open water. Concentrations and loads of chloride increased at 12 of the 14 sites during both periods. Increases likely are the result of an increase in the use of salt for deicing, as well as other factors related to urbanization and population growth, such as increases in wastewater discharge and discharge from septic systems.

  4. Effect of substrate concentration on hydrogen production by photo-fermentation in the pilot-scale baffled bioreactor.

    PubMed

    Lu, Chaoyang; Zhang, Zhiping; Zhou, Xuehua; Hu, Jianjun; Ge, Xumeng; Xia, Chenxi; Zhao, Jia; Wang, Yi; Jing, Yanyan; Li, Yameng; Zhang, Quanguo

    2018-01-01

    Effect of substrate concentration on photo-fermentative hydrogen production was studied with a self-designed 4m 3 pilot-scale baffled photo-fermentative hydrogen production reactor (BPHR). The relationships between parameters, such as hydrogen production rate (HPR, mol H 2 /m 3 /d), hydrogen concentration, pH value, oxidation-reduction potential, biomass concentration (volatile suspended solids, VSS) and reducing sugar concentration, during the photo-fermentative hydrogen production process were investigated. The highest HPR of 202.64±8.83mol/m 3 /d was achieved in chamber #3 at a substrate concentration of 20g/L. Hydrogen contents were in the range of 42.19±0.94%-49.71±0.27%. HPR increased when organic loading rate was increased from 3.3 to 20g/L/d, then decreased when organic loading rate was further increased to 25g/L/d. A maximum HPR of 148.65±4.19mol/m 3 /d was obtained when organic loading rate was maintained at 20g/L/d during continuous bio-hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. How phosphorus limitation can control climate-active gas sources and sinks

    NASA Astrophysics Data System (ADS)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-06-01

    Since the 1950's, anthropogenic activities have increased nutrient river loads to European coastal areas. Subsequent implementation of nutrient reduction policies have led to considerably reduction of phosphorus (P) loads from the mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorus (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 30% due to DOP uptake under limiting DIP conditions. Consequently, simulated DMS emissions also increase proportionally while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake.

  6. Sources and Transport of Nutrients, Organic Carbon, and Chlorophyll-a in the San Joaquin River Upstream of Vernalis, California, during Summer and Fall, 2000 and 2001

    USGS Publications Warehouse

    Kratzer, Charles R.; Dileanis, Peter D.; Zamora, Celia; Silva, Steven R.; Kendall, Carol; Bergamaschi, Brian A.; Dahlgren, Randy A.

    2004-01-01

    Oxidizable materials from the San Joaquin River upstream of Vernalis can contribute to low dissolved oxygen episodes in the Stockton Deep Water Ship Channel that can inhibit salmon migration in the fall. The U.S. Geological Survey collected and analyzed samples at four San Joaquin River sites in July through October 2000 and June through November 2001, and at eight tributary sites in 2001. The data from these sites were supplemented with data from samples collected and analyzed by the University of California at Davis at three San Joaquin River sites and eight tributary sites as part of a separate study. Streamflows in the San Joaquin River were slightly above the long-term average in 2000 and slightly below average in 2001. Nitrate loads at Vernalis in 2000 were above the long-term average, whereas loads in 2001 were close to average. Total nitrogen loads in 2000 were slightly above average, whereas loads in 2001 were slightly below average. Total phosphorus loads in 2000 and 2001 were well below average. These nutrient loads correspond with the flow-adjusted concentration trends--nitrate concentrations significantly increased since 1972 (p 0.05). Loading rates of nutrients and dissolved organic carbon increased in the San Joaquin River in the fall with the release of wetland drainage into Mud Slough and with increased reservoir releases on the Merced River. During August 2000 and September 2001, the chlorophyll-a loading rates and concentrations in the San Joaquin River declined and remained low during the rest of the sampling period. The most significant tributary sources of nutrients were the Tuolumne River, Harding Drain, and Mud Slough. The most significant tributary sources of dissolved organic carbon were Salt Slough, Mud Slough, and the Tuolumne and Stanislaus Rivers. Compared with nutrients and dissolved organic carbon, the tributaries were minor sources of chlorophyll-a, suggesting that most of the chlorophyll-a was produced in the San Joaquin River rather than its tributaries. On the basis of the carbon-to-nitrogen ratios and the d13C of particulate organic matter in the San Joaquin River and tributaries, the particulate organic matter in the river was mostly phytoplankton. On the basis of the d15N values of the particulate organic matter, and of total dissolved nitrogen and nitrate, the nitrate in the San Joaquin River probably was a significant nutrient source for the phytoplankton. The range of d15N and d18O values of nitrate in the San Joaquin River and tributaries suggest that animal waste or sewage was a significant source of nitrate in the river at the time the samples were collected.

  7. Minimal climate change impacts on natural organic matter forecasted for a potable water supply in Ireland.

    PubMed

    O'Driscoll, Connie; Ledesma, José L J; Coll, John; Murnane, John G; Nolan, Paul; Mockler, Eva M; Futter, Martyn N; Xiao, Liwen W

    2018-07-15

    Natural organic matter poses an increasing challenge to water managers because of its potential adverse impacts on water treatment and distribution, and subsequently human health. Projections were made of impacts of climate change on dissolved organic carbon (DOC) in the primarily agricultural Boyne catchment which is used as a potable water supply in Ireland. The results indicated that excluding a potential rise in extreme precipitation, future projected loads are not dissimilar to those observed under current conditions. This is because projected increases in DOC concentrations are offset by corresponding decreases in precipitation and hence river flow. However, the results presented assume no changes in land use and highlight the predicted increase in DOC loads from abstracted waters at water treatment plants. Copyright © 2018. Published by Elsevier B.V.

  8. Evaluation of food processing wastewater loading characteristics on metal mobilization within the soil.

    PubMed

    Julien, Ryan; Safferman, Steven

    2015-01-01

    Wastewater generated during food processing is commonly treated using land-application systems which primarily rely on soil microbes to transform nutrients and organic compounds into benign byproducts. Naturally occurring metals in the soil may be chemically reduced via microbially mediated oxidation-reduction reactions as oxygen becomes depleted. Some metals such as manganese and iron become water soluble when chemically reduced, leading to groundwater contamination. Alternatively, metals within the wastewater may not become assimilated into the soil and leach into the groundwater if the environment is not sufficiently oxidizing. A lab-scale column study was conducted to investigate the impacts of wastewater loading values on metal mobilization within the soil. Oxygen content and volumetric water data were collected via soil sensors for the duration of the study. The pH, chemical oxygen demand, manganese, and iron concentrations in the influent and effluent water from each column were measured. Average organic loading and organic loading per dose were shown to have statistically significant impacts using Spearman's Rank Correlation Coefficient on effluent water quality. The Hydraulic resting period qualitatively appeared to have impacts on effluent water quality. This study verifies that excessive organic loading of land application systems causes mobilization of naturally occurring metals and prevents those added in the wastewater from becoming immobilized, resulting in ineffective wastewater treatment. Results also indicate the need to consider the organic dose load and hydraulic resting period in the treatment system design. Findings from this study demonstrate waste application twice daily may encourage soil aeration and allow for increased organic loading while limiting the mobilization of metals already in the soil and those being applied.

  9. Nitrogen removal from high organic loading wastewater in modified Ludzack-Ettinger configuration MBBR system.

    PubMed

    Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza

    2015-01-01

    A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.

  10. Increasing the capacity for treatment of chemical plant wastewater by replacing existing suspended carrier media with Kaldnes Moving Bed media at a plant in Singapore.

    PubMed

    Wessman, F G; Yan Yuegen, E; Zheng, Q; He, G; Welander, T; Rusten, B

    2004-01-01

    The Kaldnes biomedia K1, which is used in the patented Kaldnes Moving Bed biofilm process, has been tested along with other types of biofilm carriers for biological pretreatment of a complex chemical industry wastewater. The main objective of the test was to find a biofilm carrier that could replace the existing suspended carrier media and at the same time increase the capacity of the existing roughing filter-activated sludge plant by 20% or more. At volumetric organic loads of 7.1 kg COD/m3/d the Kaldnes Moving Bed process achieved much higher removal rates and much lower effluent concentrations than roughing filters using other carriers. The Kaldnes roughing stage achieved more than 85% removal of organic carbon and more than 90% removal of BOD5 at the tested organic load, which was equivalent to a specific biofilm surface area load of 24 g COD/m2/d. Even for the combined roughing filter-activated sludge process, the Kaldnes carriers outperformed the other carriers, with 98% removal of organic carbon and 99.6% removal of BOD5. The Kaldnes train final effluent concentrations were only 22 mg FOC/L and 7 mg BOD5/L. Based on the successful pilot testing, the full-scale plant was upgraded with Kaldnes Moving Bed roughing filters. During normal operation the upgraded plant has easily met the discharge limits of 100 mg COD/L and 50 mg SS/L. For the month of September 2002, with organic loads between 100 and 115% of the design load for the second half of the month, average effluent concentrations were as low as 9 mg FOC/L, 51 mg COD/L and 12 mg SS/L.

  11. Effect of COD/SO4(2-) ratio on anaerobic treatment of landfill leachate during the start-up period.

    PubMed

    Yilmaz, Tuba; Erdirencelebi, Dilek; Berktay, Ali

    2012-01-01

    This study investigates the performance of an anaerobic baffled reactor (ABR) during the start-up period of raw young landfill leachate treatment at two chemical oxygen demand (COD) to SO4(2-) ratios of 20 and 4. The reactor was operated at ambient temperature and low organic loading rates (0.52, 0.76 and 1.05 kg COD/m3 per day). During the study, sulfate-reducing bacteria (SRB) activity increased at the lower ratio of COD/SO4(2-) producing higher levels of sulfide and alkalinity. The dissolved sulfide concentration reached an inhibitory level above 250 mg/L, which caused a sharp reduction in the total COD removal efficiency from 77-80% to 32%. Total volatile fatty acid (TVFA) production proceeded at a constant level despite increased organic loading. As the effluent total and organic COD concentrations increased, the inhibitory effect of the inborn sulfide was correlated to the limitation experienced in the hydrolysis/acidogenesis stages, and thus VFA production and organic matter removal.

  12. Performance and stability of an expanded granular sludge bed reactor modified with zeolite addition subjected to step increases of organic loading rate (OLR) and to organic shock load (OSL).

    PubMed

    Pérez-Pérez, T; Pereda-Reyes, I; Pozzi, E; Oliva-Merencio, D; Zaiat, M

    2018-01-01

    This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.

  13. [Using carnosine and natural antioxidants for the prophylaxis of acute post-loading oxidative stress].

    PubMed

    Rozhkova, E A; Ordzhonikidze, Z G; Druzhinin, A E; Seĭfulla, N R; Paniushkin, V V; Kuznetsov, Iu M

    2007-01-01

    The effects of a submaximum single physical load with a mixed aerobic-anaerobic character (combined rowing test) on the intensity of lipid peroxidation (LPO) processes, antioxidant state of the organism, and rheological properties of blood have been studied in a group of athletes. The administration of natural antioxidants significantly decreased the LPO stress induced by the physical load, reduced the suppression of the antioxidant system of the organism, and normalized the LPO-disturbed hemorheological parameters. Antioxidants such as carnosine, cytamine, and apilac can be used as non-doping means for the accelerated recovery and increase in the physical work capacity in athletes.

  14. Coastal ocean acidification: The other eutrophication problem

    EPA Science Inventory

    Increased nutrient loading into estuaries causes the accumulation of algal biomass, and microbial degradation of this organic matter decreases oxygen levels and contributes towards hypoxia. A second, often overlooked consequence of microbial degradation of organic matter is the p...

  15. Aerosol Composition and Variability in Baltimore Measured during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Thornhill, K. L.; Winstead, E. L.; Diskin, G. S.; Chatfield, R. B.; Natraj, V.; Anderson, B. E.

    2012-12-01

    In order to relate satellite-based measurements of aerosols to ground-level air quality, the correlation between aerosol optical properties (wavelength-dependent scattering and absorption measured by satellites) and mass measurements of aerosol loading (i.e. PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type (such as composition, size, hygroscopicity, and mass scattering and absorption efficiencies) and to the surrounding atmosphere (such as temperature, relative humidity and altitude). The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the Baltimore-Washington D.C. region was performed during fourteen flights during July 2011. Identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Measured aerosol mass was composed primarily of ammonium sulfate (campaign average of 36%) and water-soluble organics (58%). A distinct difference in composition was related to aerosol loading with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 60%). This composition shift causes a change in the water-uptake potential (hygroscopicity) of the aerosols with higher relative organic composition decreasing water-uptake. On average, sulfate mass increased during the day due to increased photochemistry, while organics decreased. Analysis of the linkage between aerosol loading and optical properties was also performed. The absorption by black carbon was dependent on the amount of organic coating with an increase in mass absorption efficiency from 7.5 m2/g for bare soot to 16 m2/g at an organic mass fraction of 70%. The organic fraction was also found to correlate with the absorption Angstrom exponent which is a solely optical measurement. This relationship allows for a possible understanding of aerosol composition based on solely-optical methods (such as satellite-based sensors). Comparison of aerosol composition to scattering indicated significant scattering from non-hydrophilic particles. The origin seemed to be hydrophobic organic material, and the scattering effects were roughly the same magnitude as the water-soluble organics. Such aerosols are not simulated in many air pollution models, and require more field study. 246 profiles were performed at six locations throughout the region. Variability in aerosol scattering (as a proxy for aerosol optical depth) amongst the six sites is dependent on variability in aerosol loading, composition, and relative humidity (the amount of water available for water uptake onto the aerosols). Aerosol loading was found to be the predominant source accounting for 68% on average of the measured variability in scattering with minor contributions from relative humidity (24%) and aerosol composition (8%).

  16. Evaluation of a Leaf Collection and Street Cleaning Program as a Way to Reduce Nutrients and Organic Carbon in Urban Runoff

    NASA Astrophysics Data System (ADS)

    Selbig, W.

    2016-12-01

    Organic detritus can be major sources of nutrients and organic carbon in urban stormwater, especially in areas with dense overhead tree canopy. In order to meet impending regulation to reduce nutrient loads, many cities will require information on structural and non-structural stormwater control measures that target organic detritus. Most cities already conduct some level of leaf collection and existing street cleaning programs; however, few studies have quantified their water-quality benefits. The U.S Geological Survey measured the water-quality benefits of a municipal leaf collection program coupled with street cleaning in Madison, WI, USA during the months of October through November of 2014 and 2015. The calibration phase of the study (2014) characterized nutrient and organic carbon concentrations and loads in runoff from two paired basins without leaf collection or street cleaning. During the treatment phase (2015), leaf collection and street cleaning was done in the test basin by city personnel on a weekly basis. Additionally, prior to each precipitation event, USGS personnel removed as much organic debris from the street surface as reasonably possible. The control remained without street cleaning or leaf collection for the entire monitoring period. During the fall, leaf collection and street cleaning was able to remove the increased amount of organic debris from the curb and street surface which resulted in statistically significant (p<0.05) reductions in loads of phosphorus, nitrogen and organic carbon. Total and dissolved phosphorus loads were reduced by 84 and 83 percent, respectively. Similarly, total and dissolved organic carbon was reduced by 81 and 86 percent, and total and dissolved nitrogen was reduced by 74 and 71 percent, respectively. In the control basin, 60 percent of the annual phosphorus load occurred in fall (winter excluded), the majority of which was dissolved as orthophosphorus, compared to only 16 percent in the test basin. While the leaf collection practices adopted during this study may surpass those used by most municipal programs, results from this study suggest a significant reduction of nutrient and organic carbon loads in urban stormwater is feasible when leaves and other organic detritus are removed from streets prior to precipitation events.

  17. Thermal Stability of Goethite-Bound Natural Organic Matter Is Impacted by Carbon Loading.

    PubMed

    Feng, Wenting; Klaminder, Jonatan; Boily, Jean-François

    2015-12-24

    Dissolved natural organic matter (NOM) sorption at mineral surfaces can significantly affect the persistence of organic carbon in soils and sediments. Consequently, determining the mechanisms that stabilize sorbed NOM is crucial for predicting the persistence of carbon in nature. This study determined the effects of loadings and pH on the thermal stability of NOM associated with synthetic goethite (α-FeOOH) particle surfaces, as a proxy for NOM-mineral interactions taking place in nature. NOM thermal stability was investigated using temperature-programmed desorption (TPD) in the 30-700 °C range to collect vibration spectra of thermally decomposing goethite-NOM assemblages, and to concomitantly analyze evolved gases using mass spectrometry. Results showed that NOM thermal stability, indicated by the range of temperatures in which CO2 evolved during thermal decomposition, was greatest in unbound NOM and lowest when NOM was bound to goethite. NOM thermal stability was also loading dependent. It decreased when loadings were in increased the 0.01 to 0.42 mg C m(-2) range, where the upper value corresponds to a Langmuirian adsorption maximum. Concomitant Fourier transform infrared (FTIR) spectroscopy measurement showed that these lowered stabilities could be ascribed to direct NOM-goethite interactions that dominated the NOM binding environment. Mineral surface interactions at larger loadings involved, on the contrary, a smaller fraction of the sorbed NOM, thus increasing thermal stability toward that of its unbound counterpart. This study thus identifies a sorption threshold below which NOM sorption to goethite decreases NOM thermal stability, and above which no strong effects are manifested. This should likely influence the fate of organic carbon exposed to thermal gradients in natural environments.

  18. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production.

    PubMed

    Solli, Linn; Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-01

    This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37°C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% - 6% - 13% - 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS(-1), obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The Influence of Organic Material and Temperature on the Burial Tolerance of the Blue Mussel, Mytilus edulis: Considerations for the Management of Marine Aggregate Dredging

    PubMed Central

    Cottrell, Richard S.; Black, Kenny D.; Hutchison, Zoë L.; Last, Kim S.

    2016-01-01

    Rationale and Experimental Approach Aggregate dredging is a growing source of anthropogenic disturbance in coastal UK waters and has the potential to impact marine systems through the smothering of benthic fauna with organically loaded screening discards. This study investigates the tolerance of the blue mussel, Mytilus edulis to such episodic smothering events using a multi-factorial design, including organic matter concentration, temperature, sediment fraction size and duration of burial as important predictor variables. Results and Discussion Mussel mortality was significantly higher in organically loaded burials when compared to control sediments after just 2 days. Particularly, M. edulis specimens under burial in fine sediment with high (1%) concentrations of organic matter experienced a significantly higher mortality rate (p<0.01) than those under coarse control aggregates. Additionally, mussels exposed to the summer maximum temperature treatment (20°C) exhibited significantly increased mortality (p<0.01) compared to those in the ambient treatment group (15°C). Total Oxygen Uptake rates of experimental aggregates were greatest (112.7 mmol m-2 day-1) with 1% organic loadings in coarse sediment at 20°C. Elevated oxygen flux rates in porous coarse sediments are likely to be a function of increased vertical migration of anaerobically liberated sulphides to the sediment-water interface. However, survival of M. edulis under bacterial mats of Beggiatoa spp. indicates the species’ resilience to sulphides and so we propose that the presence of reactive organic matter within the burial medium may facilitate bacterial growth and increase mortality through pathogenic infection. This may be exacerbated under the stable interstitial conditions in fine sediment and increased bacterial metabolism under high temperatures. Furthermore, increased temperature may impose metabolic demands upon the mussel that cannot be met during burial-induced anaerobiosis. Summary Lack of consideration for the role of organic matter and temperature during sedimentation events may lead to an overestimation of the tolerance of benthic species to smothering from dredged material. PMID:26809153

  20. FOOD WEB AND COMMUNITY COMPOSITION CHANGES IN RESPONSE TO NUTRIENT LOADING IN FRESHWATER AND MARINE COASTAL SYSTEMS (ESTUARIES AND COASTAL WETLANDS)

    EPA Science Inventory

    Our research will investigate the mechanisms by which increased loading of nutrients to coastal waters alters the structure and dynamics of food webs, resulting in declines in populations of ecologically and commercially important organisms. Research across NHEERL Divisions will...

  1. Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate.

    PubMed

    Agyeman, Fred O; Tao, Wendong

    2014-01-15

    This study was to comprehensively evaluate the effects of food waste particle size on co-digestion of food waste and dairy manure at organic loading rates increased stepwise from 0.67 to 3 g/L/d of volatile solids (VS). Three anaerobic digesters were fed semi-continuously with equal VS amounts of food waste and dairy manure. Food waste was ground to 2.5 mm (fine), 4 mm (medium), and 8 mm (coarse) for the three digesters, respectively. Methane production rate and specific methane yield were significantly higher in the digester with fine food waste. Digestate dewaterability was improved significantly by reducing food waste particle size. Specific methane yield was highest at the organic loading rate of 2g VS/L/d, being 0.63, 0.56, and 0.47 L CH4/g VS with fine, medium, and coarse food waste, respectively. Methane production rate was highest (1.40-1.53 L CH4/L/d) at the organic loading rate of 3 g VS/L/d. The energy used to grind food waste was minor compared with the heating value of the methane produced. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Nitrogen removal through N cycling from sediments in a constructed coastal marsh as assessed by 15N-isotope dilution.

    PubMed

    Ro, Hee-Myong; Kim, Pan-Gun; Park, Ji-Suk; Yun, Seok-In; Han, Junho

    2018-04-01

    Constructed coastal marsh regulates land-born nitrogen (N) loadings through salinity-dependent microbial N transformation processes. A hypothesis that salinity predominantly controls N removal in marsh was tested through incubation in a closed system with added- 15 NH 4 + using sediments collected from five sub-marshes in Shihwa marsh, Korea. Time-course patterns of concentrations and 15 N-atom% of soil-N pools were analyzed. Sediments having higher salinity and lower soil organic-C and acid-extractable organic-N exhibited slower rates of N mineralization and immobilization, nitrification, and denitrification. Rates of denitrification were not predicted well by sediment salinity but by its organic-C, indicating heterotrophic denitrification. Denitrification dominated N-loss from this marsh, and nitrogen removal capacity of this marsh was estimated at 337 kg N day -1 (9.9% of the daily N-loadings) considering the current rooting depth of common reeds (1.0 m). We showed that sediment N removal decreases with increasing salinity and can increase with increasing organic-C for heterotrophic denitrification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea.

    PubMed

    Vahtera, Emil; Conley, Daniel J; Gustafsson, Bo G; Kuosa, Harri; Pitkänen, Heikki; Savchuk, Oleg P; Tamminen, Timo; Viitasalo, Markku; Voss, Maren; Wasmund, Norbert; Wulff, Fredrik

    2007-04-01

    Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.

  4. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    PubMed

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Chewed out: an experimental link between food material properties and repetitive loading of the masticatory apparatus in mammals

    PubMed Central

    Scott, Jeremiah E.; McAbee, Kevin R.; Veit, Anna J.; Fling, Annika L.

    2015-01-01

    Using a model organism (rabbits) that resembles a number of mammalian herbivores in key aspects of its chewing behaviors, we examined how variation in dietary mechanical properties affects food breakdown during mastication. Such data have implications for understanding phenotypic variation in the mammalian feeding apparatus, particularly with respect to linking jaw form to diet-induced repetitive loading. Results indicate that chewing frequency (chews/s) is independent of food properties, whereas chewing investment (chews/g) and chewing duration(s), which are proportional to repetitive loading of the jaws, are positively related to food stiffness and toughness. In comparisons of displacement-limited and stress-limited fragmentation indices, which respectively characterize the intraoral breakdown of tough and stiff foods, increases in chewing investment and duration are linked solely to stiffness. This suggests that stiffer foods engender higher peak loads and increased cyclical loading. Our findings challenge conventional wisdom by demonstrating that toughness does not, by itself, underlie increases in cyclical loading and loading duration. Instead, tough foods may be associated with such jaw-loading patterns because they must be processed in greater volumes owing to their lower nutritive quality and for longer periods of time to increase oral exposure to salivary chemicals. PMID:26557436

  6. How phosphorus limitation can control climatic gas sources and sinks

    NASA Astrophysics Data System (ADS)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-04-01

    Since the 1950's, anthropogenic activities severely increased river nutrient loads in European coastal areas. Subsequent implementation of nutrient reduction policies have considerably reduced phosphorus (P) loads from mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorous (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on the importance of phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 70% due to DOP uptake in limiting DIP conditions. Consequently, simulated DMS emissions double while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake. At the end of the simulated period (late 2000's), the net direction of air-sea CO2 annual flux, changed from a source to a sink for atmospheric CO2 in response to use of DOP and increase of primary production.

  7. Disinfection and reduction of organic load of sewage water by electron beam radiation

    NASA Astrophysics Data System (ADS)

    Maruthi, Y. Avasn; Das, N. Lakshmana; Hossain, Kaizar; Sarma, K. S. S.; Rawat, K. P.; Sabharwal, S.

    2011-09-01

    The efficacy of electron beam radiation for the disinfection and reduction of organic load of sewage water was assessed with ILU-6 Accelerator at Radiation Technology Development Division of the Bhabha Atomic Research Centre, Mumbai India. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises heterogeneous organic based chemicals as well as pathogens. EB treatment of the wastewater has found to be very effective in reducing the pathogens as well as organic load. EB dose of 1.5 kGy was sufficient for complete elimination of total coli forms. The experimental results elucidated the reduction of biological oxygen demand—BOD (35 and 51.7%) in both inlet and outlet sewage samples. Similarly reduction of chemical oxygen demand—COD was observed (37.54 and 52.32%) in both sewage samples with respect to increase in irradiation doses (0.45-6 kGy). The present study demonstrated the potential of ionizing radiation for disinfection of sewage and to increase the water quality of the wastewater by decreasing BOD and COD. So, the irradiation sewage water can find its application either in agriculture for irrigation, in industry for cooling purpose and some selected domestic purposes.

  8. The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed

    NASA Astrophysics Data System (ADS)

    Dalzell, Brent J.; Filley, Timothy R.; Harbor, Jon M.

    2007-03-01

    Defining the control that hydrology exerts on organic carbon (OC) export at the watershed scale is important for understanding how the source and quantity of OC in streams and rivers is influenced by climate change or by landscape drainage. To this end, molecular (lignin phenol), stable carbon isotope, and dissolved organic carbon (DOC) data were collected over a range of flow conditions to examine the influence of hydrology on annual OC export from an 850 km 2 Midwestern United States agricultural watershed located in west central Indiana. In years 2002 and 2003, modeled annual DOC loads were 19.5 and 14.1 kg ha -1yr -1, while 71% and 85%, respectively, of the total annual OC was exported in flow events occurring during less than 20% of that time. These results highlight the importance of short-duration, high-discharge events (common in smaller watersheds) in controlling annual OC export. Based on reported increases in annual stream discharge coupled with current estimates of DOC export, annual DOC loads in this watershed may have increased by up to 40% over the past 50 years. Molecular (lignin phenol) characterization of quantity and relative degradation state of terrestrial OC shows as much temporal variability of lignin parameters (in high molecular weight dissolved organic carbon) in this one watershed as that demonstrated in previously published studies of dissolved organic matter in the Mississippi and Amazon Rivers. These results suggest that hydrologic variability is at least as important in determining the nature and extent of OC export as geographic variability. Moreover, molecular and bulk stable carbon isotope data from high molecular weight dissolved organic carbon and colloidal organic carbon showed that increased stream flow from the study watershed was responsible for increased export of agriculturally derived OC. When considered in the context of results from other studies that show the importance of flood events and in-stream processing of terrestrial organic carbon, our results show how hydrologic variability in smaller watersheds can reflect landscape-scale carbon dynamics in ways that cannot necessarily be measured at the outlets of large rivers due to multiple source signals and attenuated hydrology.

  9. Improved Monitoring of Semi-Continuous Anaerobic Digestion of Sugarcane Waste: Effects of Increasing Organic Loading Rate on Methanogenic Community Dynamics

    PubMed Central

    Leite, Athaydes Francisco; Janke, Leandro; Lv, Zuopeng; Harms, Hauke; Richnow, Hans-Hermann; Nikolausz, Marcell

    2015-01-01

    The anaerobic digestion of filter cake and its co-digestion with bagasse, and the effect of gradual increase of the organic loading rate (OLR) from start-up to overload were investigated. Understanding the influence of environmental and technical parameters on the development of particular methanogenic pathway in the biogas process was an important aim for the prediction and prevention of process failure. The rapid accumulation of volatile organic acids at high OLR of 3.0 to 4.0 gvs·L−1·day−1 indicated strong process inhibition. Methanogenic community dynamics of the reactors was monitored by stable isotope composition of biogas and molecular biological analysis. A potential shift toward the aceticlastic methanogenesis was observed along with the OLR increase under stable reactor operating conditions. Reactor overloading and process failure were indicated by the tendency to return to a predominance of hydrogenotrophic methanogenesis with rising abundances of the orders Methanobacteriales and Methanomicrobiales and drop of the genus Methanosarcina abundance. PMID:26404240

  10. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    NASA Astrophysics Data System (ADS)

    Kılıç, Doğuşhan; El Haddad, Imad; Brem, Benjamin T.; Bruns, Emily; Bozetti, Carlo; Corbin, Joel; Durdina, Lukas; Huang, Ru-Jin; Jiang, Jianhui; Klein, Felix; Lavi, Avi; Pieber, Simone M.; Rindlisbacher, Theo; Rudich, Yinon; Slowik, Jay G.; Wang, Jing; Baltensperger, Urs; Prévôt, Andre S. H.

    2018-05-01

    Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS) for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5-7 %), more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  11. Composition and temporal stability of turf sediments on inner-shelf coral reefs.

    PubMed

    Gordon, Sophie E; Goatley, Christopher H R; Bellwood, David R

    2016-10-15

    Elevated sediment loads within the epilithic algal matrix (EAM) of coral reefs can increase coral mortality and inhibit herbivory. Yet the composition, distribution and temporal variability of EAM sediment loads are poorly known, especially on inshore reefs. This study quantified EAM sediment loads (including organic particulates) and algal length across the reef profile of two bays at Orpheus Island (inner-shelf Great Barrier Reef) over a six month period. We examined the total sediment mass, organic load, carbonate and silicate content, and the particle sizes of EAM sediments. Throughout the study period, all EAM sediment variables exhibited marked variation among reef zones. However, EAM sediment loads and algal length were consistent between bays and over time, despite major seasonal variation in climate including a severe tropical cyclone. This study provides a comprehensive description of EAM sediments on inshore reefs and highlights the exceptional temporal stability of EAM sediments on coral reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. INFLUENCE OF IRON CHELATION ON R1 AND R2 CALIBRATION CURVES IN GERBIL LIVER AND HEART

    PubMed Central

    Wood, John C.; Aguilar, Michelle; Otto-Duessel, Maya; Nick, Hanspeter; Nelson, Marvin D.; Moats, Rex

    2008-01-01

    MRI is gaining increasing importance for the noninvasive quantification of organ iron burden. Since transverse relaxation rates depend on iron distribution as well as iron concentration, physiologic and pharmacologic processes that alter iron distribution could change MRI calibration curves. This paper compares the effect of three iron chelators, deferoxamine, deferiprone, and deferasirox on R1 and R2 calibration curves according to two iron loading and chelation strategies. 33 Mongolian gerbils underwent iron loading (iron dextran 500 mg/kg/wk) for 3 weeks followed by 4 weeks of chelation. An additional 56 animals received less aggressive loading (200 mg/kg/week) for 10 weeks, followed by 12 weeks of chelation. R1 and R2 calibration curves were compared to results from 23 iron-loaded animals that had not received chelation. Acute iron loading and chelation biased R1 and R2 from the unchelated reference calibration curves but chelator-specific changes were not observed, suggesting physiologic rather than pharmacologic differences in iron distribution. Long term chelation deferiprone treatment increased liver R1 50% (p<0.01), while long term deferasirox lowered liver R2 30.9% (p<0.0001). The relationship between R1 and R2 and organ iron concentration may depend upon the acuity of iron loading and unloading as well as the iron chelator administered. PMID:18581418

  13. On the organizing role of nonmuscular forces during performance of a giant circle in gymnastics.

    PubMed

    Sevrez, Violaine; Rao, Guillaume; Berton, Eric; Bootsma, Reinoud J

    2012-02-01

    Five elite gymnasts performed giant circles on the high bar under different conditions of loading (without and with 6-kg loads attached to the shoulders, waist or ankles). Comparing the gymnasts' kinematic pattern of movement with that of a triple-pendulum moving under the sole influence of nonmuscular forces revealed qualitative similarities, including the adoption of an arched position during the downswing and a piked position during the upswing. The structuring role of nonmuscular forces in the organization of movement was further reinforced by the results of an inverse dynamics analysis, assessing the contributions of gravitational, inertial and muscular components to the net joint torques. Adding loads at the level of the shoulders, waist or ankles systematically influenced movement kinematics and net joint torques. However, with the loads attached at the level of the shoulders or waist, the load-induced changes in gravitational and inertial torques provided the required increase in net joint torque, thereby allowing the muscular torques to remain unchanged. With the loads attached at the level of the ankles, this was no longer the case and the gymnasts increased the muscular torques at the shoulder and hip joints. Together, these results demonstrate that expert gymnasts skillfully exploit the operative nonmuscular forces, employing muscle force only in the capacity of complementary forces needed to perform the task.

  14. Transfer-arm evaporator cell for rapid loading and deposition of organic thin films.

    PubMed

    Greiner, M T; Helander, M G; Wang, Z B; Lu, Z H

    2009-12-01

    Described herein is a transfer-arm evaporator cell (TAE-cell), which allows for rapid loading of materials into vacuum for low-temperature sublimation deposition of thin films. This design can be incorporated with an existing analysis system for convenient in situ thin film characterization. This evaporator is especially well suited for photoemission characterization of organic semiconductor interfaces. Photoemission is one of the most important techniques for characterizing such, however, it generally requires in situ sample preparation. The ease with which materials can be loaded and evaporated with this design increases the throughput of in situ photoemission characterization, and broadens the research scope of the technique. Here, we describe the design, operation, and performance of the TAE-cell.

  15. Monfort waste conversion demonstration. Quarterly progress report, April 1, 1977--June 30, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turk, M.

    1977-07-01

    Progress in development of the mobile fermentation system at the Montfort cattle feedlots is reported. Fermentor startup was evaluated at operating conditions of 135/sup 0/F/57.2/sup 0/C with gradual increases in loading rates. An attempt was made to maintain the TVA (total volatile acid) concentration at a low level, but it became obvious that increases in loading rates could not be accomplished without a concomitant increase in TVA. Samples were also analyzed for heavy metals (Cu, Zn, Fe, Al) and S and P. Addition of FeCl/sub 3/ helped to reduce P, S, and TVA levels, making possible the maintenance of amore » healthy microbial colony capable of accepting increases in organic loading. (JGB)« less

  16. The effect of transient loading on the performance of a mesophilic anaerobic contact reactor at constant feed strength.

    PubMed

    Sentürk, Elif; Ince, Mahir; Engin, Guleda Onkal

    2012-12-15

    Anaerobic contact reactor is a high rate anaerobic process consisting of an agitated reactor and a solids settling tank for recycling. It was proved earlier that this type of reactor design offers highly efficient performance in the conversion of organic matter to biogas. In this study, the effect of transient loading on reactor performance in terms of a number of key intermediates and parameters such as, COD removal, pH and alkalinity change, VFAs, effluent MLSS concentration and biogas efficiency over time was examined. For this purpose, a step increase of organic loading rate from 3.35kg COD/m(3)day to 15.61kg COD/m(3)day was employed. The hydraulic retention time decreased to a value of 8.42h by an increase in the influent flow-rate during the transient loading. It was observed that the mesophilic anaerobic contact reactor (MACR) was quite resistant to large transient shocks. The reactor recovered back to its baseline performance only in 15h after the shock loading was stopped. Hence, it can be concluded that this type of reactor design has a high potential in treating food processing wastewaters with varying flow characteristics. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Impact of sampling strategy on stream load estimates in till landscape of the Midwest

    USGS Publications Warehouse

    Vidon, P.; Hubbard, L.E.; Soyeux, E.

    2009-01-01

    Accurately estimating various solute loads in streams during storms is critical to accurately determine maximum daily loads for regulatory purposes. This study investigates the impact of sampling strategy on solute load estimates in streams in the US Midwest. Three different solute types (nitrate, magnesium, and dissolved organic carbon (DOC)) and three sampling strategies are assessed. Regardless of the method, the average error on nitrate loads is higher than for magnesium or DOC loads, and all three methods generally underestimate DOC loads and overestimate magnesium loads. Increasing sampling frequency only slightly improves the accuracy of solute load estimates but generally improves the precision of load calculations. This type of investigation is critical for water management and environmental assessment so error on solute load calculations can be taken into account by landscape managers, and sampling strategies optimized as a function of monitoring objectives. ?? 2008 Springer Science+Business Media B.V.

  18. Sequencing batch reactor biofilm system for treatment of milk industry wastewater.

    PubMed

    Sirianuntapiboon, Suntud; Jeeyachok, Narumon; Larplai, Rarintorn

    2005-07-01

    A sequencing batch reactor biofilm (MSBR) system was modified from the conventional sequencing batch reactor (SBR) system by installing 2.7 m2 surface area of plastic media on the bottom of the reactor to increase the system efficiency and bio-sludge quality by increasing the bio-sludge in the system. The COD, BOD5, total kjeldahl nitrogen (TKN) and oil & grease removal efficiencies of the MSBR system, under a high organic loading of 1340 g BOD5/m3 d, were 89.3+/-0.1, 83.0+/-0.2, 59.4+/-0.8, and 82.4+/-0.4%, respectively, while they were only 87.0+/-0.2, 79.9+/-0.3, 48.7+/-1.7 and 79.3+/-10%, respectively, in the conventional SBR system. The amount of excess bio-sludge in the MSBR system was about 3 times lower than that in the conventional SBR system. The sludge volume index (SVI) of the MSBR system was lower than 100 ml/g under an organic loading of up to 1340 g BOD5/m3 d. However, the MSBR under an organic loading of 680 g BOD5/m3 d gave the highest COD, BOD5, TKN and oil & grease removal efficiencies of 97.9+/-0.0, 97.9+/-0.1, 79.3+/-1.0 and 94.8+/-0.5%, respectively, without any excess bio-sludge waste. The SVI of suspended bio-sludge in the MSBR system was only 44+/-3.4 ml/g under an organic loading of 680 g BOD5/m3 d.

  19. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    PubMed

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  20. Influence of domestic pets on soil concentrations of dissolved organic carbon, nitrogen, and phosphorus under turfgrass in apartment complexes of Central Texas, USA

    NASA Astrophysics Data System (ADS)

    Steele, M.; Aitkenhead-Peterson, J. A.

    2009-12-01

    High nitrogen (N) and phosphorus (P) watershed loading rates increases the concentration and loads present in urban streams and rivers, resulting in eutrophication and degradation of surface water quality. Domestic pet animal feed may represent a significant proportion of nitrogen loading in urban watersheds, and because it is deposited directly on the watershed surface may have a large effect on N loads in urban surface waters (Baker et al. 2001). Animal manure has long been used to increase soil N and phosphorus concentrations for the purpose of growing agricultural crops; however, little is known about unintentional urban manuring resulting from a high density of domesticated pets. The purpose of this study is to determine if the presence of domesticated animals in high density urban developments results in increased concentrations of soil dissolved organic carbon (DOC), N, and P and the potential to contribute to loading of urban streams. Composite soil samples from the 0 to 5 cm and 5 to 10 cm soil depth were collected from apartment complexes in Bryan/College Station (BCS) and San Antonio, Texas during August, 2009. Apartment complexes were randomly located around the city and were chosen based on their rules regarding pet ownership. Four apartment complexes that allowed all domestic pets were compared to four that did not allow any domestic pets on the property. A 10:1 water extraction of field moist soil was conducted immediately after sampling. Soil water extracts were analyzed for DOC, total dissolved nitrogen (TDN), nitrate-N, ammonium-N, dissolved organic N, and orthophosphate-P. Results indicated significantly increased concentrations of DOC and N species at both depths in BCS apartments that allowed pets compared to those that did not; however, opposite trends were found in San Antonio. There is a trend for increased concentrations of orthophosphate-P at both locations. Baker, L.A., D. Hope, Y. Xu, et al. 2001. Nitrogen balance for the central Arizona-Phoenix (CAP) ecosystem. Ecosystems 4: 582-602.

  1. Dominance of organic nitrogen from headwater streams to large rivers across the conterminous United States

    USGS Publications Warehouse

    Scott, D.; Harvey, J.; Alexander, R.; Schwarz, G.

    2007-01-01

    The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.

  2. Dominance of organic nitrogen from headwater streams to large rivers across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Scott, Durelle; Harvey, Judson; Alexander, Richard; Schwarz, Gregory

    2007-03-01

    The frequency and magnitude of hypoxic areas in coastal waterbodies are increasing across the globe, partially in response to the increase in nitrogen delivery from the landscape (Diaz, 2001; Rabalais et al., 2002). Although studies of annual total nitrogen and nitrate yields have greatly improved understanding of the contaminant sources that contribute to riverine nitrogen loads (Alexander et al., 2000; Caraco and Cole, 1999), the emphasis of these studies on annual timescales and selected nitrogen forms is not sufficient to understand the factors that control the cycling, transport, and fate of reactive nitrogen. Here we use data from 850 river stations to calculate long-term mean-annual and interannual loads of organic, ammonia, and nitrate-nitrite nitrogen suitable for spatial analysis. We find that organic nitrogen is the dominant nitrogen pool within rivers across most of the United States and is significant even in basins with high anthropogenic sources of nitrogen. Downstream organic nitrogen patterns illustrate that organic nitrogen is an abundant fraction of the nitrogen loads in all regions. Although the longitudinal patterns are not consistent across regions, these patterns are suggestive of cycling between ON and NO3- on seasonal timescales influenced by land use, stream morphology, and riparian connectivity with active floodplains. Future regional studies need to incorporate multinitrogen species at intraannual timescales, as well as stream characteristics beyond channel depth, to elucidate the roles of nitrogen sources and in-stream transformations on the fate and reactivity of riverine nitrogen transported to coastal seas.

  3. Dynamic Tensile Loading Improves the Functional Properties of Mesenchymal Stem Cell-Laden Nanofiber-Based Fibrocartilage

    PubMed Central

    Baker, Brendon M.; Shah, Roshan P.; Huang, Alice H.

    2011-01-01

    Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications. PMID:21247342

  4. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage.

    PubMed

    Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L

    2011-05-01

    Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.

  5. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    USGS Publications Warehouse

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  6. Accceleration of Fatigue Tests of Polymer Composite Materials by Using High-Frequency Loadings

    NASA Astrophysics Data System (ADS)

    Apinis, R.

    2004-03-01

    The possibility of using high-frequency loading in fatigue tests of polymer composite materials is discussed. A review of studies on the use of high-frequency loading of organic-, carbon-, and glass-fiber-reinforced plastics is presented. The results obtained are compared with those found in conventional low-frequency loadings. A rig for fatigue tests of rigid materials at loading frequencies to 500 Hz is described, and results for an LM-L1 unidirectional glass-fiber plastic in loadings with frequencies of 17 and 400 Hz are given. These results confirm that it is possible to accelerate the fatigue testing of polymer composite materials by considerably increasing the loading frequency. The necessary condition for using this method is an intense cooling of specimens to prevent them from vibration heating.

  7. Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load.

    PubMed

    Gianico, A; Braguglia, C M; Cesarini, R; Mininni, G

    2013-09-01

    The performance of thermophilic digestion of waste activated sludge, either untreated or thermal pretreated, was evaluated through semi-continuous tests carried out at organic loading rates in the range of 1-3.7 kg VS/m(3)d. Although the thermal pretreatment at T=134 °C proved to be effective in solubilizing organic matter, no significant gain in organics degradation was observed. However, the digestion of pretreated sludge showed significant soluble COD removal (more than 55%) whereas no removal occurred in control reactors. The lower the initial sludge biodegradability, the higher the efficiency of thermal pretreated digestion was observed, in particular as regards higher biogas and methane production rates with respect to the parallel untreated sludge digestion. Heat balance of the combined thermal hydrolysis/thermophilic digestion process, applied on full-scale scenarios, showed positive values for direct combustion of methane. In case of combined heat and power generation, attractive electric energy recoveries were obtained, with a positive heat balance at high load. Copyright © 2013. Published by Elsevier Ltd.

  8. Vertebrate gravity sensors as dynamic systems

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1985-01-01

    This paper considers verterbrate gravity receptors as dynamic sensors. That is, it is hypothesized that gravity is a constant force to which an acceleration-sensing system would readily adapt. Premises are considered in light of the presence of kinocilia on hair cells of vertebrate gravity sensors; differences in loading of the sensors among species; and of possible reduction in loading by inclusion of much organic material in otoconia. Moreover, organic-inorganic interfaces may confer a piezoelectric property upon otoconia, which increase the sensitivity of the sensory system to small accelerations. Comparisons with man-made accelerometers are briefly taken up.

  9. Cooperative loading of multisite receptors with lanthanide containers: an approach for organized luminescent metallopolymers.

    PubMed

    Babel, Lucille; Guénée, Laure; Besnard, Céline; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2018-01-14

    Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems L k are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta - ) are selected for balancing the charge of the trivalent lanthanide cations, Ln 3+ , in six-coordinate [Ln(pbta) 3 ] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature ( RT = 2.5 kJ mol -1 ). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

  10. Responses of stream nitrate and dissolved organic carbon loadings to hydrological forcing and climate change in an upland forest of the northeast USA

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.

    2009-01-01

    [1] In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070–2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (−2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.

  11. Insights and issues with simulating terrestrial DOC loading of Arctic river networks

    USGS Publications Warehouse

    Kicklighter, David W.; Hayes, Daniel J.; McClelland, James W.; Peterson, Bruce J.; McGuire, A. David; Melillo, Jerry M.

    2013-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  12. Ulva biomass as a co-substrate for stable anaerobic digestion of spent coffee grounds in continuous mode.

    PubMed

    Kim, Jaai; Kim, Hakchan; Lee, Changsoo

    2017-10-01

    Ulva biomass was evaluated as a co-substrate for anaerobic digestion of spent coffee grounds at varying organic loads (0.7-1.6g chemical oxygen demand (COD)/Ld) and substrate compositions. Co-digestion with Ulva (25%, COD basis) proved beneficial for SCG biomethanation in both terms of process performance and stability. The beneficial effect is much more pronounced at higher organic and hydraulic loads, with the highest COD removal and methane yield being 51.8% and 0.19L/g COD fed, respectively. The reactor microbial community structure changed dynamically during the experiment, and a dominance shift from hydrogenotrophic to aceticlastic methanogens occurred with increase in organic loading rate. Network analysis provides a comprehensive view of the microbial interactions involved in the system and confirms a direct positive correlation between Ulva input and methane productivity. A group of populations, including Methanobacterium- and Methanoculleus-related methanogens, was identified as a possible indicator for monitoring the biomethanation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Rigid palm oil-based polyurethane foam reinforced with diamine-modified montmorillonite nanoclay

    NASA Astrophysics Data System (ADS)

    Haziq Dzulkifli, Mohd; Yazid Yahya, Mohd; Majid, Rohah A.

    2017-05-01

    This paper presents work on organically-modified montmorillonite (MMT) nanoclay embedded in rigid palm oil-based polyurethane (PU) foam. MMT was modified with organic surfactant diamino propane (DAP). PU foam was fabricated in closed mold, and the amount of DAP-MMT was varied in each foam formulation. The obtained foam was tested for its microstructure and morphology. Appearance of peaks from infra-red spectra corresponding to N-H, C=O, and C-N confirms the formation of PU networks. Scanning electron microscopy (SEM) revealed fine, closed-cellular structure at low clay loading; increasing DAP-MMT content induced larger cell sizes with blowholes. X-ray diffraction (XRD) indicates fully-exfoliated clays at 1 wt. % and partial-exfoliation at 3 wt. % clay loading, suggesting clumping of clays as DAP-MMT content increased.

  14. Influence of Solvent on the Drug-Loading Process of Amphiphilic Nanogel Star Polymers.

    PubMed

    Carr, Amber C; Piunova, Victoria A; Maarof, Hasmerya; Rice, Julia E; Swope, William C

    2018-05-31

    We present an all-atom molecular dynamics study of the effect of a range of organic solvents (dichloromethane, diethyl ether, toluene, methanol, dimethyl sulfoxide, and tetrahydrofuran) on the conformations of a nanogel star polymeric nanoparticle with solvophobic and solvophilic structural elements. These nanoparticles are of particular interest for drug delivery applications. As drug loading generally takes place in an organic solvent, this work serves to provide insight into the factors controlling the early steps of that process. Our work suggests that nanoparticle conformational structure is highly sensitive to the choice of solvent, providing avenues for further study as well as predictions for both computational and experimental explorations of the drug-loading process. Our findings suggest that when used in the drug-loading process, dichloromethane, tetrahydrofuran, and toluene allow for a more extensive and increased drug-loading into the interior of nanogel star polymers of the composition studied here. In contrast, methanol is more likely to support shallow or surface loading and, consequently, faster drug release rates. Finally, diethyl ether should not work in a formulation process since none of the regions of the nanogel star polymer appear to be sufficiently solvated by it.

  15. Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia

    DOE PAGES

    de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro; ...

    2017-06-06

    The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less

  16. Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro

    The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less

  17. Early fluid loading for septic patients: Any safety limit needed?

    PubMed

    Gong, Yi-Chun; Liu, Jing-Tao; Ma, Peng-Lin

    2018-02-01

    Early adequate fluid loading was the corner stone of hemodynamic optimization for sepsis and septic shock. Meanwhile, recent recommended protocol for fluid resuscitation was increasingly debated on hemodynamic stability vs risk of overloading. In recent publications, it was found that a priority was often given to hemodynamic stability rather than organ function alternation in the early fluid resuscitation of sepsis. However, no safety limits were used at all in most of these reports. In this article, the rationality and safety of early aggressive fluid loading for septic patients were discussed. It was concluded that early aggressive fluid loading improved hemodynamics transitorily, but was probably traded off with a follow-up organ function impairment, such as worsening oxygenation by reduction of lung aeration, in a part of septic patients at least. Thus, a safeguard is needed against unnecessary excessive fluids in early aggressive fluid loading for septic patients. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  18. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.

    PubMed

    Nagao, Norio; Tajima, Nobuyuki; Kawai, Minako; Niwa, Chiaki; Kurosawa, Norio; Matsuyama, Tatsushi; Yusoff, Fatimah Md; Toda, Tatsuki

    2012-08-01

    Anaerobic digestion of food waste was conducted at high OLR from 3.7 to 12.9 kg-VS m(-3) day(-1) for 225 days. Periods without organic loading were arranged between the each loading period. Stable operation at an OLR of 9.2 kg-VS (15.0 kg-COD) m(-3) day(-1) was achieved with a high VS reduction (91.8%) and high methane yield (455 mL g-VS-1). The cell density increased in the periods without organic loading, and reached to 10.9×10(10) cells mL(-1) on day 187, which was around 15 times higher than that of the seed sludge. There was a significant correlation between OLR and saturated TSS in the sludge (y=17.3e(0.1679×), r(2)=0.996, P<0.05). A theoretical maximum OLR of 10.5 kg-VS (17.0 kg-COD) m(-3) day(-1) was obtained for mesophilic single-stage wet anaerobic digestion that is able to maintain a stable operation with high methane yield and VS reduction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Physical consequences of large organic debris in Pacific Northwest streams.

    Treesearch

    Frederick J. Swanson; George W. Lienkaemper

    1978-01-01

    Large organic debris in streams controls the distribution of aquatic habitats, the routing of sediment through stream systems, and the stability of streambed and banks. Management activities directly alter debris loading by addition or removal of material and indirectly by increasing the probability of debris torrents and removing standing streamside trees. We propose...

  20. Predicting total organic carbon load with El Nino southern oscillation phase using hybrid and fuzzy logic approaches

    USDA-ARS?s Scientific Manuscript database

    During drinking water treatment chlorine reacts with total organic carbon (TOC) to form disinfection byproducts (DBP), some of which can be carcinogenic. Additional treatment required to remove TOC before chlorination significantly increases treatment cost. There are two main sources of TOC in a wat...

  1. The Influence of Presentation, Organization, and Example Context on Text Learning

    ERIC Educational Resources Information Center

    McCrudden, Matthew; Schraw, Gregory; Hartley, Kendall; Kiewra, Kenneth

    2004-01-01

    This research compared high-load and low-load versions of a text by manipulating text presentation, text organization, and example context on measures of fact and concept learning. The low-load text presentation variable enhanced fact and concept learning and post-reading ease of comprehension ratings. The low-load text organization variable led…

  2. Sediment source detection by stable isotope analysis, carbon and nitrogen content and CSSI in a small river of the Swiss Plateau

    NASA Astrophysics Data System (ADS)

    SchindlerWildhaber, Yael; Alewell, Christine; Birkholz, Axel

    2014-05-01

    Suspended sediment (SS) and organic matter in rivers can harm the fauna by affecting health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C) and nitrogen (N) during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. We determined compound specific stable carbon isotopes (CSSI) in fatty acids of possible sediment source areas to the stream in addition and compared them to SS from selected high flow and low flow events. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase in sediment delivery from pasture and arable land downstream of the river. While the major sources of SS are pasture and arable land during base flow conditions, SS from forest soils increased during heavy rain events and warmer winter periods most likely due to snow melt which triggered erosion. Preliminary results of CSSI analysis of sediment source areas and comparison to SS of selected events indicate that differences in d13C values of individual fatty acids are too small to differentiate unambiguously between sediment sources.

  3. COMPARISON OF GENKENSIA DEMISSA (DILLWYN) POPULATIONS IN RHODE ISLAND FRINGE MARSHES WITH VARYING NITROGEN LOADS

    EPA Science Inventory

    Increased residential development in coastal watersheds has led to increases in anthropogenic nitrogen inputs into estuaries. Sessile bivalves are good candidate organisms to examine animal condition in nutrient-enriched areas because they contribute significantly to energy flow...

  4. Parameters affecting acetate concentrations during in-situ biological hydrogen methanation.

    PubMed

    Agneessens, Laura Mia; Ottosen, Lars Ditlev Mørck; Andersen, Martin; Berg Olesen, Christina; Feilberg, Anders; Kofoed, Michael Vedel Wegener

    2018-06-01

    Surplus electricity may be supplied to anaerobic digesters as H 2 gas to upgrade the CH 4 content of biogas. Acetate accumulation has been observed following H 2 injections, but the parameters determining the degree of acetate accumulation are not well understood. The pathways involved during H 2 consumption and acetate kinetics were evaluated in continuous lab reactors and parallel batch 13 C experiments. Acetate accumulation increased during initial H 2 injections as organic loading rate increased and CO 2 levels decreased below 7%. The share of CH 4 in H 2 and 13 C mass balances increased after repeated H 2 injections, which corresponded with the increase of Methanomicrobiales observed via qPCR. The organic loading rate, the inorganic carbon level and level of methanogen adaption hence determine acetate kinetics during biomethanation of H 2 . The three identified parameters may form the base of a decision tool to assess acetate accumulation during H 2 injections to an anaerobic digester. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching.

    PubMed

    Vega Thurber, Rebecca L; Burkepile, Deron E; Fuchs, Corinne; Shantz, Andrew A; McMinds, Ryan; Zaneveld, Jesse R

    2014-02-01

    Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat-forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5-fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching-induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future. © 2013 John Wiley & Sons Ltd.

  6. Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayono, Satoto E.; Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe; Winter, Josef, E-mail: josef.winter@iba.uka.d

    2010-10-15

    A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated atmore » an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.« less

  7. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    PubMed

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Adaptive plasticity in mammalian masticatory joints

    NASA Astrophysics Data System (ADS)

    Ravosa, Matthew J.; Kunwar, Ravinder; Nicholson, Elisabeth K.; Klopp, Emily B.; Pinchoff, Jessie; Stock, Stuart R.; Stack, M. Sharon; Hamrick, Mark W.

    2006-08-01

    Genetically similar white rabbits raised on diets of different mechanical properties, as well as wild-type and myostatin-deficient mice raised on similar diets, were compared to assess the postweaning effects of elevated masticatory loads due to increased jaw-adductor muscle and bite forces on the proportions and properties of the mandibular symphysis and temporomandibular joint (TMJ). Microcomputed tomography (microCT) was used to quantify bone structure at a series of equidistant external and internal sites in coronal sections for a series of joint locations. Discriminant function analyses and non-parametric ANOVAs were used to characterize variation in biomineralization within and between loading cohorts. In both species, long-term excessive loading results in larger joint proportions, thicker articular and cortical bone, and increased biomineralization of hard tissues. Such adaptive plasticity appears designed to maintain the postnatal integrity of masticatory joint systems for a primary loading environment(s). This behavioral signal may be increasingly mitigated in older organisms by the interplay between adaptive and degradative joint tissue responses.

  9. New insights into the source of decadal increase in chemical oxygen demand associated with dissolved organic carbon in Dianchi Lake.

    PubMed

    Guo, Wei; Yang, Feng; Li, Yanping; Wang, Shengrui

    2017-12-15

    Dissolved organic carbon (DOC) can be used an alternative index of water quality instead of chemical oxygen demand (COD) to reflect the organic pollution in water. The monitoring data of water quality in a long-term (1990-2013) from Dianchi Lake confirmed the increase trend of COD concentration in the lake since 2007. The similarities and differences in the DOC components between the lake and its sources and the contribution from allochthonous and autochthonous DOC to the total DOC in this lake were determined to elucidate the reason of COD increase based on C/N atomic ratios, stable isotope abundance of carbon and nitrogen, UV-visible spectroscopy, three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. The terrigenous organic matter showed humic-like fluorescence, and the autochthonous organic matter showed tryptophan-like components. Agricultural runoff (9.5%), leaf litter (7.5%) and urban runoff (13.2%) were the main sources of DOC in the lake. Sewage tail was a major source of organic materials, 3DEEM for the indicates that sewage tail DOC composition did not change markedly over the biodegradation period, indicating that sewage tail contains a high load of DOC that is resistant to further biodegradation and subsequently accumulates in the lake. The change of land use in the catchment and the increase of sewage tail load into the lake are the key factors for the increase in COD concentration in Dianchi Lake. Thus, the lake should be protected by controlling the pollution from the urban nonpoint sources and refractory composition in point sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A simple approach to estimate daily loads of total, refractory, and labile organic carbon from their seasonal loads in a watershed

    Treesearch

    Ying Ouyang; Johnny M. Grace; Wayne C. Zipperer; Jeff Hatten; Janet Dewey

    2018-01-01

    Loads of naturally occurring total organic carbons (TOC), refractory organic carbon (ROC), and labile organic carbon (LOC) instreams control the availability of nutrients and the solubility and toxicity of contaminants and affect biological activities throughabsorption of light and complex metals with production of carcinogenic compounds....

  11. The Effect of Oxygen on Organic Haze Properties

    NASA Astrophysics Data System (ADS)

    Ugelow, Melissa S.; De Haan, David O.; Hörst, Sarah M.; Tolbert, Margaret A.

    2018-05-01

    Atmospheric organic hazes are present on many planetary bodies, possibly including the ancient Earth and exoplanets, and can greatly influence surface and atmospheric properties. Here we examine the physical and optical properties of organic hazes produced with molecular nitrogen, methane, carbon dioxide, and increasing amounts of molecular oxygen, and compare them to hazes produced without added oxygen. As molecular oxygen is included in increasing amounts from 0 to 200 ppmv, the mass loading of haze produced decreases nonlinearly. With 200 ppmv molecular oxygen, the mass loading of particles produced is on the order of the amount of organic aerosol in modern Earth’s atmosphere, suggesting that while not a thick organic haze, haze particles produced with 200 ppmv molecular oxygen could still influence planetary climates. Additionally, the hazes produced with increasing amounts of oxygen become increasingly oxidized and the densities increase. For hazes produced with 0, 2 and 20 ppmv oxygen, the densities were found to be 0.94, 1.03 and 1.12 g cm‑3, respectively. Moreover, the hazes produced with 0, 2, and 20 ppmv oxygen are found to have real refractive indices of n = 1.58 ± 0.04, 1.53 ± 0.03 and 1.67 ± 0.03, respectively, and imaginary refractive indices of k={0.001}-0.001+0.002, 0.002 ± 0.002 and {0.002}-0.002+0.003, respectively. These k values demonstrate that the particles formed with oxygen have no absorption within our experimental error, and could result in a light scattering layer in an oxygen-containing atmosphere.

  12. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization.

    PubMed

    Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E

    2007-06-01

    We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.

  13. Persistence of Escherichia coli O157:H7 during pilot-scale processing of iceberg lettuce using flume water containing peroxyacetic acid-based sanitizers and various organic loads.

    PubMed

    Davidson, Gordon R; Kaminski-Davidson, Chelsea N; Ryser, Elliot T

    2017-05-02

    In order to minimize cross-contamination during leafy green processing, chemical sanitizers are routinely added to the wash water. This study assessed the efficacy of peroxyacetic acid and mixed peracid against E. coli O157:H7 on iceberg lettuce, in wash water, and on equipment during simulated commercial production in a pilot-scale processing line using flume water containing various organic loads. Iceberg lettuce (5.4kg) inoculated to contain 10 6 CFU/g of a 4-strain cocktail of non-toxigenic, GFP-labeled, ampicillin-resistant E. coli O157:H7, was shredded using a commercial shredder, step-conveyed to a flume tank, washed for 90s using water alone or two different sanitizing treatments (50ppm peroxyacetic acid or mixed peracid) in water containing organic loads of 0, 2.5, 5 or 10% (w/v) blended iceberg lettuce, and then dried using a shaker table and centrifugal dryer. Thereafter, three 5.4-kg batches of uninoculated iceberg lettuce were identically processed. Various product (25g) and water (50ml) samples collected during processing along with equipment surface samples (100cm 2 ) from the flume tank, shaker table and centrifugal dryer were then assessed for numbers of E. coli O157:H7. Organic load rarely impacted (P>0.05) the efficacy of either peroxyacetic acid or mixed peracid, with typical reductions of >5logCFU/ml in wash water throughout processing for all organic loads. Increases in organic load in the wash water corresponded to changes in total solids, chemical oxygen demand, turbidity, maximum filterable volume, and oxidation/reduction potential. After 90s of exposure to flume water, E. coli O157:H7 reductions on inoculated lettuce ranged from 0.97 to 1.74logCFU/g using peroxyacetic acid, with an average reduction of 1.35logCFU/g for mixed peracid. E. coli O157:H7 persisted on all previously uninoculated lettuce following the inoculated batch, emphasizing the need for improved intervention strategies that can better ensure end-product safety. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Structural and thermal properties of inorganic-organic montmorillonite: Implications for their potential environmental applications.

    PubMed

    Rathnayake, Suramya I; Xi, Yunfei; Frost, Ray L; Ayoko, Godwin A

    2015-12-01

    Inorganic-organic clays (IOCs), clays intercalated with both organic cations such as cationic surfactants and inorganic cations such as metal hydroxy polycations have the properties of both organic and pillared clays, and thereby the ability to remove both inorganic and organic contaminants from water simultaneously. In this study, IOCs were synthesised using three different methods with different surfactant concentrations. Octadecyltrimethylammonium bromide (ODTMA) and hydroxy aluminium ([Al13O4(OH)24(H2O)12](7+) or Al13) are used as the organic and inorganic modifiers (intercalation agents). According to the results, the interlayer distance, the surfactant loading amount and the Al/Si ratio of IOCs strictly depend on the intercalation method and the intercalation agent ratio. Interlayers of IOCs synthesised by intercalating ODTMA before Al13 and IOCs synthesised by simultaneous intercalation of ODTMA and Al13 were increased with increasing the ODTMA concentration used in the synthesis procedure and comparatively high loading amounts could be observed in them. In contrast, Al/Si decreased with increasing ODTMA concentration in these two types of IOCs. The results suggest that Al-pillars can be fixed within the interlayers by calcination and any increment in the amount of ODTMA used in the synthesis procedure did not affect the interlayer distance of the IOCs. Overall the study provides valuable insights into the structure and properties of the IOCs and their potential environmental applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Trying to Put the Puzzle Together: Age and Performance Level Modulate the Neural Response to Increasing Task Load within Left Rostral Prefrontal Cortex.

    PubMed

    Bauer, Eva; Sammer, Gebhard; Toepper, Max

    2015-01-01

    Age-related working memory decline is associated with functional cerebral changes within prefrontal cortex (PFC). Kind and meaning of these changes are heavily discussed since they depend on performance level and task load. Hence, we investigated the effects of age, performance level, and load on spatial working memory retrieval-related brain activation in different subregions of the PFC. 19 younger (Y) and 21 older (O) adults who were further subdivided into high performers (HP) and low performers (LP) performed a modified version of the Corsi Block-Tapping test during fMRI. Brain data was analyzed by a 4 (groups: YHP, OHP, YLP, and OLP) × 3 (load levels: loads 4, 5, and 6) ANOVA. Results revealed significant group × load interaction effects within rostral dorsolateral and ventrolateral PFC. YHP showed a flexible neural upregulation with increasing load, whereas YLP reached a resource ceiling at a moderate load level. OHP showed a similar (though less intense) pattern as YHP and may have compensated age-effects at high task load. OLP showed neural inefficiency at low and no upregulation at higher load. Our findings highlight the relevance of age and performance level for load-dependent activation within rostral PFC. Results are discussed in the context of the compensation-related utilization of neural circuits hypothesis (CRUNCH) and functional PFC organization.

  16. Impact of hydraulic and carbon loading rates of constructed wetlands on contaminants of emerging concern (CECs) removal.

    PubMed

    Sharif, Fariya; Westerhoff, Paul; Herckes, Pierre

    2014-02-01

    Constructed wetlands remove trace organic contaminants via synergistic processes involving plant biomass that include hydrolysis, volatilization, sorption, biodegradation, and photolysis. Wetland design conditions, such as hydraulic loading rates (HLRs) and carbon loading rates (CLRs), influence these processes. Contaminant of emerging concern (CEC) removal by wetland plants was investigated at varying HLRs and CLRs. Rate constants and parameters obtained from batch-scale studies were used in a mechanistic model to evaluate the effect of these two loading rates on CEC removal. CLR significantly influenced CEC removal when wetlands were operated at HLR >5 cm/d. High values of CLR increased removal of estradiol and carbamazepine but lowered that of testosterone and atrazine. Without increasing the cumulative HLR, operating two wetlands in series with varying CLRs could be a way to improve CEC removal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solli, Linn, E-mail: linn.solli@bioforsk.no; Bergersen, Ove; Sørheim, Roald

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 andmore » R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.« less

  18. Denitrification and gas emissions from organic soils under different water-table and flooding management

    USDA-ARS?s Scientific Manuscript database

    Draining the Florida Everglades for agricultural use has led to land subsidence and increase phosphorus loads to the southern Everglades, environmental concerns which can be limited by controlling water table depth. The resulting anaerobic conditions in saturated soils may lead to increased denitrif...

  19. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China.

    PubMed

    Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui

    2016-01-01

    Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.

  20. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, Brian D; Bernhardt, Emily; Roberts, Brian

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolvedmore » organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.« less

  1. Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature

    PubMed Central

    2013-01-01

    In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volume of 70 L was used. The digestion operated at 25°C, 30°C and 35°C with organic loading rates of 1.0, 2.0, 2.5, 3.0, 3.5 and 4.0 kg Volatile solid/m3d and a HRT of 15 days. At a temperature of 35°C, the methane yield was increased by 43% compared to 25°C. Anaerobic co-digestion appeared feasible with a loading rate of 3.0 kg VS/m3d at 35°C. At this state, the specific methane yield was calculated about 0.12 m3/kg VS with a methane content of 53–70.2% in the biogas. The volatile solid (VS) removal was 72%. As a result of volatile fatty acid accumulation and decrease in pH, when the loading rate was less than 1 or greater than 4 kg VS/m3d, the process was inhibited or overloaded, respectively. Both the lower and higher loading rates resulted in a decline in the methane yield. PMID:24502409

  2. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater.

    PubMed

    Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi

    2018-05-18

    In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1  d -1 in the control compared to 2.36 g L -1  d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Geomorphic Influences on Large Wood Dam Loadings, Particulate Organic Matter and Dissolved Organic Carbon in an 0ld-Growth Northern Hardwood Watershed

    Treesearch

    P. Charles Goebel; Kurt S. Pregitzer; Brain J. Palik

    2003-01-01

    We quantified large wood loadings and seasonal concentrations of particulate organic matter (POM) and dissolved organic carbon (DOC) in three different geomonghic zones (each with unique hydrogeomorphic characteristics) of a pristine, old-growth northern hardwood watershed. The highest large wood dam loadings were in the high-gradient, bedrock controlled geomorphic...

  4. Influence of organic loading rate on methane production in a CSTR from physicochemical sludge generated in a poultry slaughterhouse.

    PubMed

    López-Escobar, Luis A; Martínez-Hernández, Sergio; Corte-Cano, Grisel; Méndez-Contreras, Juan M

    2014-01-01

    The influence of the increase of the organic loading rate (OLR) on methane production in a continuous stirred-tank reactor (CSTR) from physicochemical sludge generated in a poultry slaughterhouse was evaluated. Total solid (TS) to obtain OLR of 1, 5, 10 and 15 g VS L(-1) day(-1), with hydraulic retention times of 29, 6, 6 and 4, respectively, were conditioned. The results showed a decrease in pH levels and an increase in the theoretical volatile fatty acids (VFA). While the yield of methane production decreased from 0.48 to 0.10 LCH4/g VSremoved, respectively, the OLR-10 managed on average 38% removal of volatile solids (VS) and a yield biogas production of 0.81 Lbiogas g(-1) VSremoved and 1.35 L day(-1). This suggests that the OLR increases in an anaerobic system from physicochemical sludge only inhibits the methanogenic metabolism, because there is still substrate consumption and biogas production.

  5. Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine

    NASA Technical Reports Server (NTRS)

    Heisey, J. B.; Lestz, S. S.

    1981-01-01

    A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.

  6. Vulnerability of boreal zone for increased nitrogen loading due to climate change

    NASA Astrophysics Data System (ADS)

    Rankinen, Katri; Holmberg, Maria

    2016-04-01

    The observed rapid warming of the boreal zone that has been observed in Finland (0.14 °C by decade) is expected to continue (http://www.ipcc.ch/report/ar5/wg1/). Also precipitation is assumed to increase in future. These changes may increase nitrogen (N) loading from terrestrial environments to water bodies by accelerating soil organic matter decay and by increasing runoff. Nitrogen is limiting nutrient in the Baltic Sea but also in some lakes, so increased loading may increase eutrophication. Further, high nitrate levels in drinking water may cause methaemoglobin anemia for humans, and nitrate is also connected to increased risk of diabetes and cancer. Thus EU has set upper limits to nitrate concentration in drinking water. MONIMET (LIFE12 ENV/FI/000409) is a project about Climate Change Indicators and Vulnerability of Boreal Zone. We simulated N loading from two boreal catchments to the receiving waters by the dynamic, catchment scale model INCA in different climate change and land use change scenarios. We calculated land use specific N loading values for these two well monitored catchments that belong to the LTER (The Long Term Ecological Research) monitoring network. We upscaled the results to the larger river basin, combining them with the information on drinking water supply to assess the vulnerability. Specific emphasis was paid on nitrate concentrations in soil water and groundwater. In general, land use change has higher influence on N loading than increase in precipitation and temperature alone. Peak runoff will sift from snow melting peak in April to late autumn and winter. Growing season will become longer allowing more efficient vegetation uptake of nutrients. Small groundwater aquifers and private wells in the middle of agricultural fields will be in the risk of increased N concentrations, if agricultural N loading increases due to changes in agricultural patterns and land use change.

  7. Effect of protein load on stability of immobilized enzymes.

    PubMed

    Fernandez-Lopez, Laura; Pedrero, Sara G; Lopez-Carrobles, Nerea; Gorines, Beatriz C; Virgen-Ortíz, Jose J; Fernandez-Lafuente, Roberto

    2017-03-01

    Different lipases have been immobilized on octyl agarose beads at 1mg/g and at maximum loading, via physical interfacial activation versus the octyl layer on the support. The stability of the preparations was analyzed. Most biocatalysts had the expected result: the apparent stability increased using the highly loaded preparations, due to the diffusional limitations that reduced the initial observed activity. However, lipase B from Candida antarctica (CALB) was significantly more stable using the lowly loaded preparation than the maximum loaded one. This negative effect of the enzyme crowding on enzyme stability was found in inactivations at pH 5, 7 or 9, but not in inactivations in the presence of organic solvents. The immobilization using ethanol to reduce the immobilization rate had no effect on the stability of the lowly loaded preparation, while the highly loaded enzyme biocatalysts increased their stabilities, becoming very similar to that of the lowly loaded preparation. Results suggested that CALB molecules immobilized on octyl agarose may be closely packed together due to the high immobilization rate and this produced some negative interactions between immobilized enzyme molecules during enzyme thermal inactivation. Slowing-down the immobilization rate may be a solution for this unexpected problem. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Loading rate effect on nanohardness of human enamel

    NASA Astrophysics Data System (ADS)

    Biswas, Nilormi; Dey, Arjun; Mukhopadhyay, Anoop K.

    2012-07-01

    In the present work, nanoindentation technique has been utilised to study the physics of deformation at the scale of micro/nano-structure of tooth enamel which is basically the hardest natural biomaterial in the human body comprising of a hybrid combination of hydroxypatite ceramic nano-crystal and organic-protein matrix. We have observed about 8 % increase in the nanohardness of human enamel with the increase in loading rate from 1 × 103 μN s-1 to 3 × 105 μN s-1. The results have been explained in terms of the maximum shear stress generated underneath the nanoindenter.

  9. Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs.

    PubMed

    Sánchez Pérez, José Antonio; Román Sánchez, Isabel María; Carra, Irene; Cabrera Reina, Alejandro; Casas López, José Luis; Malato, Sixto

    2013-01-15

    The aim of this paper is to carry out an economic assessment on a solar photo-Fenton/MBR combined process to treat industrial ecotoxic wastewater. This study focuses on the impact of the contamination present in wastewater, the photochemical oxidation, the use of an MBR as biological process and the plant size on operating and amortization costs. As example of ecotoxic pollutant, a mixture of five commercial pesticides commonly used in the Mediterranean area has been used, ranging from 500 mg/L to 50mg/L, expressed as dissolved organic carbon concentration. The economic evaluation shows that (i) the increase in pollution load does not always involve an increase in photo-Fenton costs because they also depend on organic matter mineralization; (ii) the use of an MBR process permits lower photochemical oxidation requirements than other biological treatments, resulting in approximately 20% photo-Fenton cost reduction for highly polluted wastewater; (iii) when pollution load decreases, the contribution of reactant consumption to the photo-Fenton process costs increase with regard to amortization costs; (iv) 30% total cost reduction can be gained treating higher daily volumes, obtaining competitive costs that vary from 1.1-1.9 €/m(3), depending on the pollution load. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Dynamic characteristics of organic bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Babenko, S. D.; Balakai, A. A.; Moskvin, Yu. L.; Simbirtseva, G. V.; Troshin, P. A.

    2010-12-01

    Transient characteristics of organic bulk-heterojunction solar cells have been studied using pulsed laser probing. An analysis of the photoresponse waveforms of a typical solar cell measured by varying load resistance within broad range at different values of the bias voltage provided detailed information on the photocell parameters that characterize electron-transport properties of active layers. It is established that the charge carrier mobility is sufficient to ensure high values of the fill factor (˜0.6) in the obtained photocells. On approaching the no-load voltage, the differential capacitance of the photocell exhibits a sixfold increase as compared to the geometric capacitance. A possible mechanism of recombination losses in the active medium is proposed.

  11. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    PubMed

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  12. Effectiveness of calcium hypochlorite on viral and bacterial contamination of alfalfa seeds.

    PubMed

    Wang, Qing; Kniel, Kalmia E

    2014-10-01

    Alfalfa sprouts have been involved in numerous foodborne outbreaks, which has increased the awareness for seed and sprout safety. This study compared the effectiveness of calcium hypochlorite (Ca(OCl)2) on the inactivation of bacteria and viruses on alfalfa seeds and in the presence of a simulated organic load. Alfalfa seeds were inoculated with human norovirus (huNoV) genogroup II (GII), murine norovirus (MNV), Tulane virus (TV), Escherichia coli O104:H4, and Salmonella enterica serovar Agona. Seeds were treated with Ca(OCl)2 (2000 ppm or 20,000 ppm with the average of free chlorine 1388 ± 117 mg/L and 11,472 ± 1500 mg/L, respectively, pH adjusted to 7.00). The reduction of huNoV genomic copies indicated that huNoV was relatively resistant to Ca(OCl)2 regardless of concentrations. Significant reductions were observed in the order of TV < Salmonella Agona < MNV < E. coli O104:H4 at 20,000 ppm Ca(OCl)2. A similar trend was found at 2000 ppm Ca(OCl)2 in the order of TV, Salmonella Agona, MNV < E. coli O104:H4. Ca(OCl)2 at 20,000 ppm was more effective than 2000 ppm for all the organisms tested. This trend was also observed in samples containing an artificial organic material load. Ca(OCl)2 activity on virus inactivation decreased as the organic load increased. Reduction was greater in fetal bovine serum-containing samples compared to alfalfa seeds, indicating a close relationship between the organisms and alfalfa seeds. Ca(OCl)2 could not completely inactivate bacteria or viruses inoculated on seeds, and high levels of E. coli O104:H4 and Salmonella Agona were present on sprouts from sanitized seed samples following a 7-day germination period.

  13. [Characteristics of nitrogen and phosphorus runoff losses from croplands with different planting patterns in a riverine plain area of Zhejiang Province, East China].

    PubMed

    Zhang, Ming-Kui; Wang, Yang; Huang, Chao

    2011-12-01

    By the method of site-specific observation, and selecting 27 field plots with 7 planting patterns in Shaoxing county of Zhejiang Province as test objects, this paper studied the characteristics of nitrogen (N) and phosphorous (P) runoff losses, loads, and their affecting factors in the croplands with different planting patterns in riverine plain area of the Province under natural rainfall. The mean annual runoff loads of total P, dissolved P, and particulate P from the field plots were 4.75, 0.74 and 4.01 kg x hm(-2), respectively, and the load of particulate P was much higher than that of dissolved P. The mean annual runoff loads of total N, dissolved total N, dissolved organic N, NH4(+)-N, and NO3(-)-N were 21.87, 17.19, 0.61, 3.63 and 12.95 kg x hm(-2), respectively, and the load of different fractions of dissolved total N was in the sequence of NO3(-)-N > NH4(+)-N > dissolved organic N. As for the field plots with different planting patterns, the runoff loads of total N, dissolved total N, dissolved organic N, and NO3(-)-N were in the sequence of fallow land < nursery land < single late rice field < double rice field < rape (or wheat)-single late rice field < wheat-early rice-late rice field < vegetable field, while those of total P and particulate P were in the sequence of fallow land < nursery land < single late rice field and double rice field < wheat-early rice-late rice field < rape (wheat)-single late rice field < vegetable field. No significant difference was observed in the load of water-dissolved P among the test plots with different planting patterns. The runoff losses of N and P mainly occurred in crop growth period, and the proportions of N and P losses in the growth period increased with increasing multiple crop index. The runoff losses of total N, dissolved N, and NO3(-)-N were mainly related to the application rate of N fertilizer, and soil NO3(-)-N content also had obvious effects on the runoff losses of total N and dissolved N. The runoff loss of dissolved organic N was related not only to N application rate, but also to soil total N and organic carbon. The runoff loss of NH4(+)-N was mainly related to soil available NH4(+)-N, but not related to N application rate. The runoff losses of total P and particulate P were related to both P application rate and soil available P, while the runoff loss of water dissolved P was less related to P application rate but had relations to soil total P and available P.

  14. Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry.

    PubMed

    Radischat, Christian; Sippula, Olli; Stengel, Benjamin; Klingbeil, Sophie; Sklorz, Martin; Rabe, Rom; Streibel, Thorsten; Harndorf, Horst; Zimmermann, Ralf

    2015-08-01

    Organic combustion aerosols from a marine medium-speed diesel engine, capable to run on distillate (diesel fuel) and residual fuels (heavy fuel oil), were investigated under various operating conditions and engine parameters. The online chemical characterisation of the organic components was conducted using a resonance-enhanced multiphoton ionisation time-of-flight mass spectrometer (REMPI TOF MS) and a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). Oxygenated species, alkenes and aromatic hydrocarbons were characterised. Especially the aromatic hydrocarbons and their alkylated derivatives were very prominent in the exhaust of both fuels. Emission factors of known health-hazardous compounds (e.g. mono- and poly-aromatic hydrocarbons) were calculated and found in higher amounts for heavy fuel oil (HFO) at typical engine loadings. Lower engine loads lead in general to increasing emissions for both fuels for almost every compound, e.g. naphthalene emissions varied for diesel fuel exhaust between 0.7 mg/kWh (75 % engine load, late start of injection (SOI)) and 11.8 mg/kWh (10 % engine load, late SOI) and for HFO exhaust between 3.3 and 60.5 mg/kWh, respectively. Both used mass spectrometric techniques showed that they are particularly suitable methods for online monitoring of combustion compounds and very helpful for the characterisation of health-relevant substances. Graphical abstract Three-dimensional REMPI data of organic species in diesel fuel and heavy fuel oil exhaust.

  15. Differences in BVOC oxidation and SOA formation above and below the forest canopy

    NASA Astrophysics Data System (ADS)

    Schulze, Benjamin C.; Wallace, Henry W.; Flynn, James H.; Lefer, Barry L.; Erickson, Matt H.; Jobson, B. Tom; Dusanter, Sebastien; Griffith, Stephen M.; Hansen, Robert F.; Stevens, Philip S.; VanReken, Timothy; Griffin, Robert J.

    2017-02-01

    Gas-phase biogenic volatile organic compounds (BVOCs) are oxidized in the troposphere to produce secondary pollutants such as ozone (O3), organic nitrates (RONO2), and secondary organic aerosol (SOA). Two coupled zero-dimensional models have been used to investigate differences in oxidation and SOA production from isoprene and α-pinene, especially with respect to the nitrate radical (NO3), above and below a forest canopy in rural Michigan. In both modeled environments (above and below the canopy), NO3 mixing ratios are relatively small (< 0.5 pptv); however, daytime (08:00-20:00 LT) mixing ratios below the canopy are 2 to 3 times larger than those above. As a result of this difference, NO3 contributes 12 % of total daytime α-pinene oxidation below the canopy while only contributing 4 % above. Increasing background pollutant levels to simulate a more polluted suburban or peri-urban forest environment increases the average contribution of NO3 to daytime below-canopy α-pinene oxidation to 32 %. Gas-phase RONO2 produced through NO3 oxidation undergoes net transport upward from the below-canopy environment during the day, and this transport contributes up to 30 % of total NO3-derived RONO2 production above the canopy in the morning (˜ 07:00). Modeled SOA mass loadings above and below the canopy ultimately differ by less than 0.5 µg m-3, and extremely low-volatility organic compounds dominate SOA composition. Lower temperatures below the canopy cause increased partitioning of semi-volatile gas-phase products to the particle phase and up to 35 % larger SOA mass loadings of these products relative to above the canopy in the model. Including transport between above- and below-canopy environments increases above-canopy NO3-derived α-pinene RONO2 SOA mass by as much as 45 %, suggesting that below-canopy chemical processes substantially influence above-canopy SOA mass loadings, especially with regard to monoterpene-derived RONO2.

  16. [Formation Mechanism of Aerobic Granular Sludge and Removal Efficiencies in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang

    2015-08-01

    Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.

  17. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  18. Thermal and mechanical properties of TPU/PBT reinforced by carbon fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jintao; Liu, Huanyu; Lu, Xiang

    2016-03-09

    In this study, thermal, mechanical properties and processability were performed on a series of carbon fiber (CF) filled thermoplastic polyurethane (TPU)/poly (butylene terephthalate) (PBT) composites to identify the effect of CF weight fraction on the properties of TPU/PBT. Scanning Electronic Microscope (SEM) show that CFs are uniformly dispersed in TPU/PBT matrix and there are no agglomerations. Melt flow index (MFI) show that the melt viscosity increased with the CF loading. Thermogravimetric analysis (TGA) revealed that the introduction of CF into organic materials tend to improve their thermal stability. The mechanical properties indicated that tensile strength and modulus, flexural strength andmore » modulus, improved with an increase in CF loading, but the impact strength decreased by the loading of CF.« less

  19. Organic matter sources and rehabilitation of the Sacramento-San Joaquin Delta (California, USA)

    USGS Publications Warehouse

    Jassby, A.D.; Cloern, J.E.

    2000-01-01

    1. The Sacramento San Joaquin River Delta, a complex mosaic of tidal freshwater habitats in California, is the focus of a major ecosystem rehabilitation effort because of significant long-term changes in critical ecosystem functions. One of these functions is the production, transport and transformation of organic matter that constitutes the primary food supply, which may be sub-optimal at trophic levels supporting fish recruitment. A long historical data set is used to define the most important organic matter sources, the factors underlying their variability, and the implications of ecosystem rehabilitation actions for these sources. 2. Tributary-borne loading is the largest organic carbon source on an average annual Delta-wide basis; phytoplankton production and agricultural drainage are secondary; wastewater treatment plant discharge, tidal marsh drainage and possibly aquatic macrophyte production are tertiary; and benthic microalgal production, urban run-off and other sources are negligible. 3. Allochthonous dissolved organic carbon must be converted to particulate form - with losses due to hydraulic flushing and to heterotroph growth inefficiency - before it becomes available to the metazoan food web. When these losses are accounted for, phytoplankton production plays a much larger role than is evident from a simple accounting of bulk organic carbon sources, especially in seasons critical for larval development and recruitment success. Phytoplankton-derived organic matter is also an important component of particulate loading to the Delta. 4. The Delta is a net producer of organic matter in critically dry years but, because of water diversion from the Delta, transport of organic matter from the Delta to important, downstream nursery areas in San Francisco Bay is always less than transport into the Delta from upstream sources. 5. Of proposed rehabilitation measures, increased use of floodplains probably offers the biggest increase in organic matter sources. 6. An isolated diversion facility - channelling water from the Sacramento River around the Delta to the water projects - would result in substantial loading increases during winter and autumn, but little change in spring and summer when food availability probably matters most to developing organisms. 7. Flow and fish barriers in the channel could have significant effects, especially on phytoplankton sources and in dry years, by eliminating 'short-circuits' in the transport of organic matter to diversion points. 8. Finally, productivity of intentionally flooded islands probably would exceed that of adjacent channels because of lower turbidity and shallower mean depth, although vascular plants rather than phytoplankton could dominate if depths were too shallow. Copyright (C) 2000 John Wiley and Sons, Ltd.

  20. Halloysite clay nanotubes for resveratrol delivery to cancer cells.

    PubMed

    Vergaro, Viviana; Lvov, Yuri M; Leporatti, Stefano

    2012-09-01

    Halloysite is natural aluminosilicate clay with hollow tubular structure which allows loading with low soluble drugs using their saturated solutions in organic solvents. Resveratrol, a polyphenol known for having antioxidant and antineoplastic properties, is loaded inside these clay nanotubes lumens. Release time of 48 h is demonstrated. Spectroscopic and ζ-potential measurements are used to study the drug loading/release and for monitoring the nanotube layer-by-layer (LbL) coating with polyelectrolytes for further release control. Resveratrol-loaded clay nanotubes are added to breast cell cultures for toxicity tests. Halloysite functionalization with LbL polyelectrolyte multilayers remarkably decrease nanotube self-toxicity. MTT measurements performed with a neoplastic cell lines model system (MCF-7) as function of the resveratrol-loaded nanotubes concentration and incubation time indicate that drug-loaded halloysite strongly increase of cytotoxicity leading to cell apoptosis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis and characterization of 12-aminolauric acid-modified montmorillonite for catalytic application

    NASA Astrophysics Data System (ADS)

    Pagtalunan, Cris Angelo M.; Sumera, Florentino C.; Conato, Marlon T.

    2018-05-01

    The simple cation-exchange preparation of 12-aminolauric acid-modified montmorillonite (ALA-Mt), an aluminosilicate clay modified with the alkylammonium surfactant, is reported. Different loadings of 12-aminolauric acid (12-ALA) from 100 to 400 times the cation exchange capacity (CEC) in montmorillonite (Mt) was prepared and studied. Successful intercalation of the organic surfactant was monitored by the increase in basal (d001) spacing of the organoclay compared to the pure Mt. The clay mineral composite have increased surfactant loading resulting to lower degradation temperatures, rougher surface morphology, increased particle size, and increased organophilicity of the organoclay compared to the native Mt. The improved properties of ALA-Mt present it as an attractive catalyst material for polymerization reactions.

  2. Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico

    USGS Publications Warehouse

    Turner, R.E.; Rabalais, N.N.; Alexander, Richard B.; McIsaac, G.; Howarth, R.W.

    2007-01-01

    We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.

  3. Does anthropogenic nitrogen enrichment increase organic nitrogen concentrations in runoff from forested and human-dominated watersheds?

    USGS Publications Warehouse

    Pellerin, B.A.; Kaushal, S.S.; McDowell, W.H.

    2006-01-01

    Although the effects of anthropogenic nitrogen (N) inputs on the dynamics of inorganic N in watersheds have been studied extensively, "the influence of N enrichment on organic N loss" is not as well understood. We compiled and synthesized data on surface water N concentrations from 348 forested and human-dominated watersheds with a range of N loads (from less than 100 to 7,100 kg N km-2 y-1) to evaluate the effects of N loading via atmospheric deposition, fertilization, and wastewater on dissolved organic N (DON) concentrations. Our results indicate that, on average, DON accounts for half of the total dissolved N (TDN) concentrations from forested watersheds, but it accounts for a smaller fraction of TDN in runoff from urban and agricultural watersheds with higher N loading. A significant but weak correlation (r 2 = 0.06) suggests that N loading has little influence on DON concentrations in forested watersheds. This result contrasts with observations from some plot-scale N fertilization studies and suggests that variability in watershed characteristics and climate among forested watersheds may be a more important control on DON losses than N loading from atmospheric sources. Mean DON concentrations were positively correlated, however, with N load across the entire land-use gradient (r 2 = 0.37, P < 0.01), with the highest concentrations found in agricultural and urban watersheds. We hypothesize that both direct contributions of DON from wastewater and agricultural amendments and indirect transformations of inorganic N to organic N represent important sources of DON to surface waters in human-dominated watersheds. We conclude that DON is an important component of N loss in surface waters draining forested and human-dominated watersheds and suggest several research priorities that may be useful in elucidating the role of N enrichment in watershed DON dynamics. ?? 2006 Springer Science+Business Media, Inc.

  4. Quantifying the combined effects of land use and climate changes on stream flow and nutrient loads: A modelling approach in the Odense Fjord catchment (Denmark).

    PubMed

    Molina-Navarro, Eugenio; Andersen, Hans E; Nielsen, Anders; Thodsen, Hans; Trolle, Dennis

    2018-04-15

    Water pollution and water scarcity are among the main environmental challenges faced by the European Union, and multiple stressors compromise the integrity of water resources and ecosystems. Particularly in lowland areas of northern Europe, high population density, flood protection and, especially, intensive agriculture, are important drivers of water quality degradation. In addition, future climate and land use changes may interact, with uncertain consequences for water resources. Modelling approaches have become essential to address water issues and to evaluate ecosystem management. In this work, three multi-stressor future storylines combining climatic and socio-economic changes, defined at European level, have been downscaled for the Odense Fjord catchment (Denmark), giving three scenarios: High-Tech agriculture (HT), Agriculture for Nature (AN) and Market-Driven agriculture (MD). The impacts of these scenarios on water discharge and inorganic and organic nutrient loads to the streams have been simulated using the Soil and Water Assessment Tool (SWAT). The results revealed that the scenario-specific climate inputs were most important when simulating hydrology, increasing river discharge in the HT and MD scenarios (which followed the high emission 8.5 representative concentration pathway, RCP), while remaining stable in the AN scenario (RCP 4.5). Moreover, discharge was the main driver of changes in organic nutrients and inorganic phosphorus loads that consequently increased in a high emission scenario. Nevertheless, both land use (via inputs of fertilizer) and climate changes affected the nitrate transport. Different levels of fertilization yielded a decrease in the nitrate load in AN and an increase in MD. In HT, however, nitrate losses remained stable because the fertilization decrease was counteracted by a flow increase. Thus, our results suggest that N loads will ultimately depend on future land use and management in an interaction with climate changes, and this knowledge is of utmost importance for the achievement of European environmental policy goals. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of algal flocculation on dissolved organic matters using cationic starch modified soils.

    PubMed

    Shi, Wenqing; Bi, Lei; Pan, Gang

    2016-07-01

    Modified soils (MSs) are being increasingly used as geo-engineering materials for the sedimentation removal of cyanobacterial blooms. Cationic starch (CS) has been tested as an effective soil modifier, but little is known about its potential impacts on the treated water. This study investigated dissolved organic matters in the bloom water after algal removal using cationic starch modified soils (CS-MSs). Results showed that the dissolved organic carbon (DOC) could be decreased by CS-MS flocculation and the use of higher charge density CS yielded a greater DOC reduction. When CS with the charge density of 0.052, 0.102 and 0.293meq/g were used, DOC was decreased from 3.4 to 3.0, 2.3 and 1.7mg/L, respectively. The excitation-emission matrix fluorescence spectroscopy and UV254 analysis indicated that CS-MS exhibits an ability to remove some soluble organics, which contributed to the DOC reduction. However, the use of low charge density CS posed a potential risk of DOC increase due to the high CS loading for effective algal removal. When CS with the charge density of 0.044meq/g was used, DOC was increased from 3.4 to 3.9mg/L. This study suggested, when CS-MS is used for cyanobacterial bloom removal, the content of dissolved organic matters in the treated water can be controlled by optimizing the charge density of CS. For the settled organic matters, other measures (e.g., capping treatments using oxygen loaded materials) should be jointly applied after algal flocculation. Copyright © 2016. Published by Elsevier B.V.

  6. Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12

    USGS Publications Warehouse

    Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald

    2015-01-01

    Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.

  7. Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads.

    PubMed

    Qi, Weixiao; Müller, Beat; Pernet-Coudrier, Benoit; Singer, Heinz; Liu, Huijuan; Qu, Jiuhui; Berg, Michael

    2014-02-15

    Twenty percent of the water run-off from China's land surface drains into the Yangtze River and carries the sewage of approximately 400 million people out to sea. The lower stretch of the Yangtze therefore offers the opportunity to assess the pollutant discharge of a huge population. To establish a comprehensive assessment of micropollutants, river water samples were collected monthly from May 2009 to June 2010 along a cross-section at the lowermost hydrological station of the Yangtze River not influenced by the tide (Datong Station, Anhui province). Following a prescreening of 268 target compounds, we examined the occurrence, seasonal variation, and annual loads of 117 organic micropollutants, including 51 pesticides, 43 pharmaceuticals, 7 household and industrial chemicals, and 16 polycyclic aromatic hydrocarbons (PAHs). During the 14-month study, the maximum concentrations of particulate PAHs (1-5 μg/g), pesticides (11-284 ng/L), pharmaceuticals (5-224 ng/L), and household and industrial chemicals (4-430 ng/L) were generally lower than in other Chinese rivers due to the dilution caused of the Yangtze River's average water discharge of approximately 30,000 m(3)/s. The loads of most pesticides, anti-infectives, and PAHs were higher in the wet season compared to the dry season, which was attributed to the increased agricultural application of chemicals in the summer, an elevated water discharge through the sewer systems and wastewater treatment plants (WWTP) as a result of high hydraulic loads and the related lower treatment efficiency, and seasonally increased deposition from the atmosphere and runoff from the catchment. The estimated annual load of PAHs in the river accounted for some 4% of the total emission of PAHs in the whole Yangtze Basin. Furthermore, by using sucralose as a tracer for domestic wastewater, we estimate a daily disposal of approximately 47 million m(3) of sewage into the river, corresponding to 1.8% of its average hydraulic load. In summary, the annual amounts flushed by the Yangtze River into the East China Sea were 2.9×10(6)tons of dissolved and particulate organic carbon (DOC and POC), 369 tons of PAHs, 98 tons of pesticides, 152 tons of pharmaceuticals, and 273 tons of household and industrial chemicals. While the concentrations seem comparably moderate, the pollutant loads are considerable and pose an increasing burden to the health of the marine coastal ecosystem. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Semi-preparative asymmetrical flow field-flow fractionation: A closer look at channel dimensions and separation performance.

    PubMed

    Bria, Carmen R M; Skelly, Patrick W; Morse, James R; Schaak, Raymond E; Williams, S Kim Ratanathanawongs

    2017-05-26

    The design and performance of a semi-preparative asymmetrical flow field-flow fractionation (SP-AF4) channel are investigated with the objective of better understanding and exploiting the relationship between channel dimensions, sample loading, and resolution. Most size-based separations of nanometer and submicrometer particles are currently limited to analytical scale quantities (<100μg). However, there is a strong need to fractionate and collect larger quantities so that fundamental properties of the more narrowly dispersed fractions can be studied using additional characterization methods and for subsequent applications. In this work, dimensions of the spacer that defines the form of SP-AF4 channels are varied and their performances are assessed with respect to sample focusing position and loading. Separations are performed in aqueous and organic carrier fluids. A critical evaluation of channel dimensions showed that increasing the channel breadth is a practical and effective route to maintaining separation resolution while increasing sample loads to milligram quantities. Good size resolution (∼1.0) is achieved for separations of 10mg of 50 and 100nm silica nanoparticles suspended in water and up to 0.6mg of ∼10 to 35nm inorganic hybrid nanoparticles suspended in tetrahydrofuran. This work represents important advances in the understanding of SP-AF4 separations and extends sample loading capacities in both aqueous and organic solvents. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Plastic Biofilm Carrier after Corn Cobs Reduces Nitrate Loading in Laboratory Denitrifying Bioreactors.

    PubMed

    Feyereisen, Gary W; Christianson, Laura E; Moorman, Thomas B; Venterea, Rodney T; Coulter, Jeffrey A

    2017-07-01

    Nitrate-nitrogen (nitrate-N) removal rates can be increased substantially in denitrifying bioreactors with a corn ( L.) cob bed medium compared with woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a postbed chamber of inert plastic biofilm carrier (PBC) after corn cobs (CC) to extend the area of biofilm colonization, enhance nitrate-N removal, lower total organic C losses, and reduce nitrous oxide (NO) production at warm (15.5°C) and cold (1.5°C) temperatures. Treatments were CC only and CC plus PBC in series (CC-PBC). Across the two temperatures, nitrate-N load removal was 21% greater with CC-PBC than CC, with 54 and 44% of total nitrate N load, respectively. However, total organic C concentrations and loads were not significantly different between treatments. Colonization of the PBC by denitrifiers occurred, although gene abundance at the outlet (PBC) was less than at the inlet (CC). The PBC chamber increased nitrate-N removal rate and reduced cumulative NO production at 15.5°C, but not at 1.5°C. Across temperatures and treatments, NO production was 0.9% of nitrate-N removed. Including an additional chamber filled with PBC downstream from the CC bioreactor provided benefits in terms nitrate-N removal but did not achieve C removal. The presence of excess C, as well as available nitrate, in the PBC chamber suggests another unidentified limiting factor for nitrate removal. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Quantitative Real-Time Polymerase Chain Reaction for the Diagnosis of Mycoplasma genitalium Infection in South African Men With and Without Symptoms of Urethritis.

    PubMed

    le Roux, Marie Cecilia; Hoosen, Anwar Ahmed

    2017-01-01

    This study was done to diagnose Mycoplasma genitalium infection based on bacterial load in urine specimens from symptomatic and asymptomatic men. Urine specimens from 94 men with visible urethral discharge, 206 with burning on micturition and 75 without symptoms presenting to a family practitioner were tested for M. genitalium as well as Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis by transcription-mediated amplification assays. A quantitative polymerase chain reaction assay was used to determine the bacterial load for all specimens in which M. genitalium was the only organism detected. Among the 375 specimens collected, M. genitalium was detected in 59 (15.7%) men (both symptomatic and asymptomatic) using the transcription-mediated amplification assay, and in 45 (12.0%) of the total population, it was the only pathogen detected. One or more pathogens were detected in 129 (43%) of the symptomatic men, with N. gonorrhoeae in 50 (16.7%); C. trachomatis in 37 (12.3%) and T. vaginalis present in 24 (8.0%) patients. Among the 17 patients where mixed infections were detected, M. genitalium with N. gonorrhoeae was the most common (11/17; 64.7%). Patients with visible urethral discharge had significantly higher M. genitalium concentrations than those with burning on micturition. The median M. genitalium load in symptomatic men was significantly higher than that in asymptomatic men. This study confirms the high prevalence of M. genitalium among men with urethritis in South Africa and demonstrates that there is a strong association with M. genitalium bacterial load and clinical urethritis. As the number of organisms increased, the severity of the symptoms increased, an indication of the role that the organism plays in disease progression.

  11. In situ nitrification rates and activity of present nitrifiers in the bottom water layer of two Baltic coastal zones affected by different riverine nutrient loads

    NASA Astrophysics Data System (ADS)

    Bartl, I.; Münster Happel, E.; Riemann, L.; Voss, M.

    2016-02-01

    Baltic coastal zones are among the most eutrophied in the world receiving high loads of nitrogen from riverine inputs. However, not only the loads but also the internal dynamics in coastal zones might have positive feedback on eutrophication through efficient remineralisation of organic material in the bottom water. Therefore, we studied nitrification, which is a vital remineralisation process, near the seafloor along with the community of nitrifying microorganisms. We hypothesize that a high nutrient and organic matter load leads to elevated ammonium concentrations in coastal waters and thus stimulates nitrification rates and alters the nitrifying community. Here we present results from 3 cruises combining nitrification rate measurements by 15N-incubations with sequence-based analyses of present and active nitrifiers in the bottom water of two sites in the Baltic Sea receiving different nutrient loads. The first results from the Bonus projects COCOA and BLUEPRINT indicate an increase of nitrification rates with depth as well as distance from the river mouth. In situ rates in the bottom water of the nutrient rich Vistula plume range from 53 to 197 nmol L-1 d-1 and from 10 to 646 nmol L-1 d-1 during winter and summer, respectively. In the nutrient poor Öre estuary rates increased significantly by 11 nmol L-1 d-1 from the river mouth to the outermost station. The relationship between nitrification rates, nitrifiers and trophic state of the coastal zone shall be discussed.

  12. High solids co-digestion of food and landscape waste and the potential for ammonia toxicity.

    PubMed

    Drennan, Margaret F; DiStefano, Thomas D

    2014-07-01

    A pilot-scale study was completed to determine the feasibility of high-solids anaerobic digestion (HSAD) of a mixture of food and landscape wastes at a university in central Pennsylvania (USA). HSAD was stable at low loadings (2g COD/L-day), but developed inhibitory ammonia concentrations at high loadings (15 g COD/L-day). At low loadings, methane yields were 232 L CH4/kg COD fed and 229 L CH4/kg VS fed, and at high loadings yields were 211 L CH4/kg COD fed and 272 L CH4/kg VS fed. Based on characterization and biodegradability studies, food waste appears to be a good candidate for HSAD at low organic loading rates; however, the development of ammonia inhibition at high loading rates suggests that the C:N ratio is too low for use as a single substrate. The relatively low biodegradability of landscape waste as reported herein made it an unsuitable substrate to increase the C:N ratio. Codigestion of food waste with a substrate high in bioavailable carbon is recommended to increase the C:N ratio sufficiently to allow HSAD at loading rates of 15 g COD/L-day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Chloride retention and release in a boreal forest soil: effects of soil water residence time and nitrogen and chloride loads.

    PubMed

    Bastviken, David; Sandén, Per; Svensson, Teresia; Ståhlberg, A Carina; Magounakis, Malin; Oberg, Gunilla

    2006-05-01

    The common assumption that chloride (Cl-) is conservative in soils and can be used as a groundwater tracer is currently being questioned, and an increasing number of studies indicate that Cl- can be retained in soils. We performed lysimeter experiments with soil from a coniferous forest in southeast Sweden to determine whether pore water residence time and nitrogen and Cl- loads affected Cl- retention. Over the first 42 days there was a net retention of Cl- with retention rates averaging 3.1 mg CI- m(-2) d(-1) (68% of the added Cl- retained over 42 days). Thereafter, a net release of Cl- at similar rates was observed for the remaining experimental period (85 d). Longer soil water residence time and higher Cl- load gave higher initial retention and subsequent release rates than shorter residence time and lower Cl- load did. Nitrogen load did not affect Cl transformation rates. This study indicates that simultaneous retention and release of Cl- can occur in soils, and that rates may be considerable relative to the load. The retention of Cl- observed was probably due to chlorination of soil organic matter or ion exchange. The cause of the shift between net retention and net release is unclear, but we hypothesize that the presence of O2 or the presence of microbially available organic matter regulates Cl- retention and release rates.

  14. Effect of production microclimate on female thermal state with increased temperature and air humidity

    NASA Technical Reports Server (NTRS)

    Machablishvili, O. G.

    1980-01-01

    The thermal state of women during the effect of high air temperature and relative humidity with a varying degree of physical loads was studied. Parameters for air temperature, relative humidity, and air movement were established. It was established that in women the thermo-regulatory stress occurs at lower air temperatures and with lower physical loads than in men. The accumulation of heat in women was revealed with lower air temperature than in men. It is concluded that to preserve the normal physiological state of the female organism it is necessary to create more favorable microclimate conditions and decrease the physical loads.

  15. Quantitative characterization of organic diffusion using an analytical diffusion-reaction model and its application to assessing BOD removal when treating municipal wastewater in a plug flow reactor.

    PubMed

    Fan, Chihhao; Kao, Chen-Fei; Liu, Yu-Hsi

    2017-09-15

    The present study aimed to derive an analytical formula to quantify the diffusion of organic contaminant in a biofilm. The experiments were conducted to investigate the BOD degradation under the conditions of influent COD concentration from 50 to 300 mg/L, COD:N:P ratios of 100:5:1 and 100:15:3, with and without auxiliary aeration. The BOD removal rate was around 73% for non-aerated influent COD of 50 mg/L with 1-h hydraulic retention time. The BOD removal rate increased as the influent loading and hydraulic retention time increased while the influent COD was no more than 150 mg/L. Without aeration, the removal rate dropped significantly when influent COD increased to the range no less than 200 mg/L, due to the fact that the BOD diffusive flux driven by the biomass uptake was not further enhanced by higher ambient organic loading. The diffusion coefficient was calculated to be 1.12 × 10 -6  m 2 /d with influent COD of 50 mg/L at COD:N:P ratio of 100:5:1 and 1 h hydraulic retention time and aeration, and the coefficient increased to 3.35 × 10 -6  m 2 /d as the influent COD concentration increased to 300 mg/L. The diffusion coefficient decreased to 4.09 × 10 -7  m 2 /d as the retention time increased to 3 h. The overall diffusion coefficients showed an increasing trend as the influent organic loading increased. The difference in diffusion coefficients between 1 and 2 h was apparently greater than that between 2 and 3 h, indicating a smaller overall diffusive flux due to a longer retention time. Further analysis revealed that BOD diffusion activity exhibited a declining trend as the wastewater travelled through the system. An analytical diffusion-reaction model was developed to characterize the diffusion behaviour, and applied to estimating the treatment efficiency for real domestic sewage. The result showed that the estimated effluent BOD concentrations were quite comparable to those from experimental measurements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Using cell and organ culture models to analyze responses of bone cells to mechanical stimulation.

    PubMed

    Pitsillides, Andrew A; Rawlinson, Simon C F

    2012-01-01

    Bone cells of the osteoblastic lineage are responsive to the local mechanical environment. Through integration of a number of possible loading-induced regulatory stimuli, osteocyte, osteoblast, and osteoclast behaviour is organized to fashion a skeletal element of sufficient strength and toughness to resist fracture and crack propagation. Early pre-osteogenic responses had been determined in vivo and this led to the development of bone organ culture models to elucidate other pre-osteogenic responses where osteocytes and osteoblasts retain the natural orientation, connections and attachments to their native extracellular matrix. The application of physiological mechanical loads to bone in these organ culture models generates the regulatory stimuli. As a consequence, these experiments can be used to illustrate the distinctive mechanisms by which osteocytes and osteoblasts respond to mechanical loads and also differences in these responses, suggesting co-ordinated and cooperatively between cell populations. Organ explant cultures are awkward to maintain, and have a limited life, but length of culture times are improving. Monolayer cultures are much easier to maintain and permit the application of a particular mechanical stimulation to be studied in isolation; mainly direct mechanical strain or fluid shear strains. These allow for the response of a single cell type to the applied mechanical stimulation to be monitored precisely.The techniques that can be used to apply mechanical strain to bone and bone cells have not advanced greatly since the first edition. The output from such experiments has, however, increased substantially and their importance is now more broadly accepted. This suggests a growing use of these approaches and an increasing awareness of the importance of the mechanical environment in controlling normal bone cell behaviour. We expand the text to include additions and modifications made to the straining apparatus and update the research cited to support this growing role of cell and organ culture models to analyze responses of bone cells to mechanical stimulation.

  17. Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yue, Yi

    2018-06-01

    Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.

  18. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were dominant. At low loads, photo-oxidation increased aerosol loadings in the chamber by a factor of fifty. We attribute this substantial secondary organic aerosol (SOA) production to oxidation of low-volatility organic vapors emitted under low loads. At higher loads, we see more modest secondary aerosol production from both organics and inorganics. Therefore secondary aerosol production can substantially exceed the direct aerosol emissions from aircraft. The results underscore the dramatic effects that photo-oxidation has on aerosol emissions from aircraft.

  19. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Qi; Graduate School of Chinese Academy of Sciences, Beijing 100049; Li Daping

    2009-04-15

    Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l{sup -1} d{sup -1} and 3.84 g COD l{sup -1} d{sup -1}, respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factorsmore » affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t{sup -1} TS d{sup -1} and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t{sup -1} TS d{sup -1} and the inhibition was enhanced with the increase of TON loading.« less

  20. Correlation between viral loads of cytomegalovirus in blood and bronchoalveolar lavage specimens from lung transplant recipients determined by histology and immunohistochemistry.

    PubMed

    Chemaly, Roy F; Yen-Lieberman, Belinda; Castilla, Elias A; Reilly, Amy; Arrigain, Susana; Farver, Carol; Avery, Robin K; Gordon, Steven M; Procop, Gary W

    2004-05-01

    Cytomegalovirus (CMV) is an important pathogen in lung transplant recipients. Early detection of CMV end-organ disease should help with treatment management. We determined the CMV viral load by hybrid capture in bronchoalveolar lavage (BAL) fluid samples from patients who had undergone lung transplantation. For 39 of these samples (from 25 patients), corresponding transbronchial biopsy samples were available for CMV immunohistochemistry (IHC). The CMV IHC results were interpreted and categorized as positive or negative, and the positive results were subcategorized as typical if cells with both significant nuclear enlargement or Cowdry A-type inclusions and positive staining were present or as atypical if definitive nuclear staining was seen but significant nuclear enlargement was not. Diagnostic CMV viral inclusions were reported in the anatomic diagnosis, based on hematoxylin-eosin staining alone, for three (8%) of the biopsy samples. CMV was detected by IHC in 13 (33%) samples (5 typical, 8 atypical). The median CMV viral load in BAL samples was 0 copies/ml for BAL samples from patients with IHC-negative biopsy samples; 47,678 copies/ml for BAL samples from patients with biopsy samples with positive, atypical staining; and 1,548,827 copies/ml for BAL samples from patients with biopsy samples with positive, typical staining (P < 0.001). Compared to routine pathology of biopsy samples, the use of IHC increased the diagnostic yield of CMV. Also, the CMV viral load in BAL fluid samples increased along with immunoreactivity from negative to positive, atypical staining to positive, typical staining. The CMV viral load determined with the end-organ sample, the BAL fluid sample, was higher than the corresponding viral load determined with blood. Both IHC and determination of the CMV viral load in BAL samples may be useful for the detection of individuals at risk for the development of fulminant invasive CMV disease.

  1. Evaluation of Streamflow, Water Quality, and Permitted and Nonpermitted Loads and Yields in the Raritan River Basin, New Jersey, Water Years 1991-98

    USGS Publications Warehouse

    Reiser, Robert G.

    2003-01-01

    Seventeen water-quality constituents were analyzed in samples collected from 21 surface-water sampling sites in the Raritan River Basin during water years 1991-97. Loads were computed for seven constituents. Thirteen constituents have associated instream water-quality standards that are used as reference levels when evaluating the data. Nine of the 13 constituents did not meet water-quality reference levels in all samples at all sites. The constituents that most commonly failed to meet the water-quality reference levels in the 801 samples analyzed were total phosphorus (greater than 0.1 mg/L (milligrams per liter) in 32 percent of samples), fecal coliform bacteria (greater than 400 counts/100 milliliters in 29 percent), hardness (less than 50 mg/L in 21 percent), pH (greater than 8.5 or less than 6.5 in 17 percent), and water temperature in designated trout waters (greater than 20 degrees Celsius in 12 percent of samples). Concentrations of chloride, total dissolved solids, nitrate plus nitrite, and sulfate did not exceed water-quality reference levels in any sample. Results from previous studies on pesticides and volatile organic compounds in streamwater during 1996-98, and organic compounds and trace elements in sediments during 1976-93, were summarized for this study. Concentrations of pesticides in some samples exceeded the relevant standards. Water-quality data varied significantly as season and streamflow changed. Concentrations or values of 12 constituents were significantly higher in the growing season than in the nongrowing season at 1 to 21 sites, and concentrations of 6 constituents were significantly higher in the nongrowing season at 1 to 21 sites. Concentrations or values of seven constituents decreased significantly with increased streamflow, indicating a more significant contribution from base flow or permitted sources than from runoff. Concentrations or values of four constituents increased with increased flow, indicating a more significant contribution from runoff than from base flow or permitted sources. Phosphorus concentrations increased with flow at two sites with no point sources and decreased with flow at five sites with four or more permitted point sources. Concentrations of five constituents did not vary significantly with changes in streamflow at any of the sites. Concentrations of constituents differed significantly between sites. The sites with the most desirable values for the most constituents were Mulhockaway Creek, Spruce Run, Millstone River at Manalapan, Manalapan Brook, and Lamington River at Pottersville. The sites with the least desirable values for the most constituents were Millstone River at Blackwells Mills, Matchaponix Brook, Raritan River at Bound Brook, Neshanic River, and Millstone River at Grovers Mill. The total instream loads of seven constituents - total ammonia plus organic nitrogen (TKN), biochemical oxygen demand (BOD), total dissolved solids (TDS), nitrate plus nitrite (NO3+NO2), total organic carbon (TOC), total phosphorus, and total suspended solids (TSS) - were analyzed at low, median, and high flows. The quantities of total instream load that originated from facilities with permits issued by the New Jersey Department of Environmental Protection to discharge effluent to streams (permitted sources) and from other sources (nonpermitted sources) were estimated for each sampling site. TOC and TSS loads primarily were contributed by nonpermitted sources at all flows. BOD and TDS loads primarily were contributed by nonpermitted sources at median and high flows. At low flow, permitted sources contributed more than one-third of the TDS load at 10 sites and more than one-third of the BOD load at 3 sites. Permitted sources contributed more than one-third of the total phosphorus load at 15 and 14 sites at low and median flows, respectively. Permitted sources accounted for more than one-third of total instream load of NO3+NO2 at low- and median-flow conditions at nearly

  2. Algal Biomass as an Indicator for Biochemical Oxygen Demand in the San Joaquin River, California.

    NASA Astrophysics Data System (ADS)

    Volkmar, E. C.; Dalhgren, R. A.

    2005-12-01

    Episodes of hypoxia (DO < 2 mg/L) occur in the lower San Joaquin River (SJR), California, and are typically most acute in the late summer and fall. The oxygen deficit can stress and kill aquatic organisms, and often inhibits the upstream migration of fall-run Chinook salmon. Hypoxia is most pronounced downstream from the Stockton Deep Water Ship Channel, which has been dredged from a depth of 2-3 m to about 11 m to allow ocean-going ships to reach the Port of Stockton. To protect aquatic organisms and facilitate the upstream migration of fall-run Chinook salmon, the minimum water quality standard for DO is 6 mg/L during September through November, and 5 mg/L for the remainder of the year. A five year study examined components contributing to biochemical oxygen demand (BOD): ammonia, algal biomass, non-algal particulate organic matter, and dissolved organic carbon. BOD shows a significant increase in loading rates as the SJR flows downstream, which parallels the load of algal biomass due to instream growth. BOD loading rates from tributaries accounts for 28% in a wet year and 39% in a dry year. Regression analysis revealed that chlorophyll-a + pheophyton-a was the only significant (p<0.05) predictor for BOD (r2 = 0.71). Less than 20% of the BOD was found in the dissolved fraction (<0.45 μm). The average BOD decomposition rate of the SJR and tributaries is 0.0841 d-1. We conclude that algal biomass is the primary contributor to BOD loads in the San Joaquin River.

  3. Protective effect of astaxanthin against multiple organ injury in a rat model of sepsis.

    PubMed

    Zhou, Liping; Gao, Min; Xiao, Zhiming; Zhang, Juan; Li, Xiangmin; Wang, Aimin

    2015-05-15

    Astaxanthin, a xanthophyll carotenoid, holds exceptional promise as an antioxidant, anti-inflammatory, and anticancer agent. No evidence has been published whether it has protective effects on sepsis. The study aimed to investigate the potential effects of astaxanthin on sepsis and multiple organ dysfunctions. Sepsis was induced by cecal ligation and puncture (CLP) in Sprague-Dawley rats. Animals subjected to CLP and sham-operated control rats were given vehicle or astaxanthin 100 mg/kg/d by oral gavage for 7 d before the operation. The rats were killed at the indicated time points, and the specimen was collected. Cytokines and multiorgan injury-associated enzymatic and oxidative stress indicators were investigated. Multiorgan tissues were assessed histologically, the peritoneal bacterial load and the 72-h survival was observed too. Sepsis resulted in a significant increase in serum tumor necrosis factor-α, interleukin-1β, and interleukin-6 levels showing systemic inflammatory response; it also caused a remarkable decrease in the superoxide dismutase activity and a significant increase in the malondialdehyde content showing oxidative damage; sepsis caused a great increase in organ injury-associated indicators, including blood urea nitrogen, creatinine, lactate dehydrogenase, creatine kinase isoenzyme-MB isotype, alanine aminotransferase, and aspartate aminotransferase, which was confirmed by histologic examination. And there was a dramatical increase of colony-forming units in the peritoneal cavity in septic rats. Astaxanthin reversed these inflammatory and oxidant response, alleviated the organ injury, reduced the peritoneal bacterial load, and improved the survival of septic rats induced by CLP. Astaxanthin exerts impressively protective effects on CLP-induced multiple organ injury. It might be used as a potential treatment for clinical sepsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century

    NASA Astrophysics Data System (ADS)

    Vilmin, Lauriane; Mogollón, José M.; Beusen, Arthur H. W.; Bouwman, Alexander F.

    2018-04-01

    Nitrogen (N) and phosphorus (P) play a major role in the biogeochemical functioning of aquatic systems. N and P transfer to surface freshwaters has amplified during the 20th century, which has led to widespread eutrophication problems. The contribution of different sources, natural and anthropogenic, to total N and P loading to river networks has recently been estimated yearly using the Integrated Model to Assess the Global Environment - Global Nutrient Model (IMAGE-GNM). However, eutrophic events generally result from a combination of physicochemical conditions governed by hydrological dynamics and the availability of specific nutrient forms that vary at subyearly timescales. In the present study, we define for each simulated nutrient source: i) its speciation, and ii) its subannual temporal pattern. Thereby, we simulate the monthly loads of different N (ammonium, nitrate + nitrite, and organic N) and P forms (dissolved and particulate inorganic P, and organic P) to global river networks over the whole 20th century at a half-degree spatial resolution. Results indicate that, together with an increase in the delivery of all nutrient forms to global rivers, the proportion of inorganic forms in total N and P inputs has risen from 30 to 43% and from 56 to 65%, respectively. The high loads originating from fertilized agricultural lands and the increasing proportion of sewage inputs have led to a greater proportion of DIN forms (ammonium and nitrate), that are usually more bioavailable. Soil loss from agricultural lands, which delivers large amounts of particle-bound inorganic P to surface freshwaters, has become the dominant P source, which is likely to lead to an increased accumulation of legacy P in slow flowing areas (e.g., lakes and reservoirs). While the TN:TP ratio of the loads has remained quite stable, the DIN:DIP molar ratio, which is likely to affect algal development the most, has increased from 18 to 27 globally. Human activities have also affected the timing of nutrient delivery to surface freshwaters. Increasing wastewater emissions in growing urban areas induces constant local pressure on the quality of aquatic systems by delivering generally highly bioavailable nutrient forms, even in periods of low runoff.

  5. Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter

    NASA Astrophysics Data System (ADS)

    Bastarrachea, Luis J.; Goddard, Julie M.

    2016-08-01

    A method to prepare a self-healing, antimicrobial polymer coating that retains efficacy against Escherichia coli O157:H7 in the presence of organic matter is reported. A coating composed of branched polyethyleneimine (PEI) and styrene maleic anhydride copolymer (SMA) was applied to a maleic anhydride functionalized polypropylene support. The chemistry of the polymer coating was designed to impart hydrophobicity due to the styrene subunits, intrinsic antimicrobial character (>99.9% reduction) from the cationic primary amine groups, and enhanced antimicrobial character (> 99.99% reduction) after chlorination of N-halamine forming groups. Antimicrobial effectiveness was demonstrated under conditions of increasing organic load. Up to 500 ppm horse serum, chlorinated coatings retained full antimicrobial character (>99.99% reduction). Even at 50,000 ppm of horse serum, the coating provided ∼90% reduction as prepared, and between ∼75% and ∼80% reduction in the form of N-halamines. Microscopy confirmed no evidence of bacterial adhesion on the coating surface. Finally, the coating exhibited self-healing properties after exposure to acid and alkaline solutions and restoration by heat, as confirmed through spectroscopy from the rebuilding of characteristic chemical bonds. Such robust antimicrobial polymer coatings with efficacy under conditions of increasing organic load may support reducing microbial cross-contamination in food and biomedical industries.

  6. Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: A holistic watershed approach

    USGS Publications Warehouse

    Barber, L.B.; Murphy, S.F.; Verplanck, P.L.; Sandstrom, M.W.; Taylor, Howard E.; Furlong, E.T.

    2006-01-01

    Identifying the sources and impacts of organic and inorganic contaminants at the watershed scale is a complex challenge because of the multitude of processes occurring in time and space. Investigation of geochemical transformations requires a systematic evaluation of hydrologic, landscape, and anthropogenic factors. The 1160 km2 Boulder Creek Watershed in the Colorado Front Range encompasses a gradient of geology, ecotypes, climate, and urbanization. Streamflow originates primarily as snowmelt and shows substantial annual variation. Water samples were collected along a 70-km transect during spring-runoff and base-flow conditions, and analyzed for major elements, trace elements, bulk organics, organic wastewater contaminants (OWCs), and pesticides. Major-element and trace-element concentrations were low in the headwaters, increased through the urban corridor, and had a step increase downstream from the first major wastewater treatment plant (WWTP). Boron, gadolinium, and lithium were useful inorganic tracers of anthropogenic inputs. Effluent from the WWTP accounted for as much as 75% of the flow in Boulder Creek and was the largest chemical input. Under both hydrological conditions, OWCs and pesticides were detected in Boulder Creek downstream from the WWTP outfall as well as in the headwater region, and loads of anthropogenic-derived contaminants increased as basin population density increased. This report documents a suite of potential endocrine-disrupting chemicals in a reach of stream with native fish populations showing indication of endocrine disruption.

  7. Investigation of Anion-Exchange and Immunoaffinity Particle-Loaded Membranes for the Isolation of Charged Organic Analytes from Water

    USGS Publications Warehouse

    Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.

    1998-01-01

    Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.

  8. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Ye, Yaoli; LaBarge, Nicole; Logan, Bruce E

    2016-05-01

    Anaerobic fluidized membrane bioreactors (AFMBRs) have been mainly developed as a post-treatment process to produce high quality effluent with very low energy consumption. The performance of an AFMBR was examined using the effluent from a microbial fuel cell (MFC) treating domestic wastewater, as a function of AFMBR hydraulic retention times (HRTs) and organic matter loading rates. The MFC-AFMBR achieved 89 ± 3% removal of the chemical oxygen demand (COD), with an effluent of 36 ± 6 mg-COD/L over 112 days operation. The AFMBR had very stable operation, with no significant changes in COD removal efficiencies, for HRTs ranging from 1.2 to 3.8h, although the effluent COD concentration increased with organic loading. Transmembrane pressure (TMP) was low, and could be maintained below 0.12 bar through solids removal. This study proved that the AFMBR could be operated with a short HRT but a low COD loading rate was required to achieve low effluent COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Novel Formulations of Phase Change Materials—Epoxy Composites for Thermal Energy Storage

    PubMed Central

    Alvarez Feijoo, Miguel Angel

    2018-01-01

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed. PMID:29373538

  10. Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage.

    PubMed

    Arce, Maria Elena; Alvarez Feijoo, Miguel Angel; Suarez Garcia, Andres; Luhrs, Claudia C

    2018-01-26

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed.

  11. The influence of changes in nitrogen: silicon ratios on diatom growth dynamics

    NASA Astrophysics Data System (ADS)

    Gilpin, L. C.; Davidson, K.; Roberts, E.

    2004-02-01

    Nitrate loading to coastal waters has increased over recent decades while silicon loading has remained relatively constant or decreased. As the N:Si ratio in coastal waters shifts due to these anthropogenic influences, silicate limitation of diatom biomass may become a feature of the biogeochemistry in coastal waters especially in regions of reduced exchange. Two sets of nutrient enrichment mesocosm experiments were conducted in successive years using a natural planktonic assemblage obtained from the Trondheimsfjord, Norway. The inorganic nutrient concentrations at the start of the experiments were manipulated to give a variety of N:Si concentrations at ratios representative of current and possible future values, should N loading continue. In June 1999 experiments were conducted with a gradient of inorganic N:Si ratios (1:2, 1:1, 2:1, 4:1) to investigate the influence of low and high N:Si ratio conditions and to determine the conditions that would generate Si limitation of diatom growth. In June 2000, based on 1999 data, highly replicated experiments were conducted at N:Si ratios of 1:1 and 4:1 which were expected to result in N and Si limitation of diatom growth, respectively; statistical differences in cellular composition were recorded. N limitation of diatom biomass increase was observed under the three lowest N:Si ratios: particulate carbon (C) accumulation continued to occur following N exhaustion resulting in an increase in the organic C:N ratio. Silicate limitation of diatom biomass increase only occurred at the highest N:Si ratio of 4:1. Silicate exhaustion was followed by continued nitrate uptake for several days, at a slower rate than previously. The resulting increase in organic N was accompanied by an increase in organic C such that the C:N ratio of the organic material at the highest N:Si ratio failed to increase to the extent observed under the N limited conditions. Statistically significant differences in chlorophyll-a yield per unit nitrate, C:chlorophyll-a ratios, C:N ratio and diatom cell yield per unit nitrate or Si were observed in Si compared to N limited conditions. All mesocosms became dominated numerically and in terms of biomass by the diatom Skeletonema costatum. The potential implications of changing N and Si regimes in coastal waters are discussed.

  12. Procedure for chromatography involving sample solvent with higher elution strength than the mobile phase.

    PubMed

    Patil, Nitin S; Mendhe, Rakesh B; Sankar, Ajeet A; Iyer, Harish

    2008-01-11

    In preparative chromatography, often the solubility of the sample in the mobile phase is limited, making the mobile phase unsuitable as a solvent for preparation of load. Generally, solvents that have high solubility for the sample also have higher elution strengths than the mobile phase. Additionally, at high loading volumes, these strong sample solvents are known to adversely affect the band profiles leading to poor chromatographic performance. Here, we show that controlling the mobile phase strength during loading and post-load elution resulted in improved band profiles when the sample solvent was stronger than the mobile phase. Such an approach improves performance in preparative chromatography by allowing either higher sample loading or higher organic content in mobile phase (without loss of yield). Alternately, the approach can be used for improvement in performance by increase in yield or product purity.

  13. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions.

    PubMed

    Hatzitaki, V; McKinley, P

    2001-09-01

    This study employed the paradigm of asymmetric limb loading during bilateral arm reaching to examine the motor system's ability to independently organize the discrete movement of both upper limbs to equidistant targets when one of the limbs is loaded under specific timing constraints. The loading procedure involved attaching two different Velcro strapped weights to the right wrist, thus increasing the right arm's mass by 25% (1 kg) and 50% (2 kg). Movements were captured by a high-speed digital camera (240 Hz), while electromyographic (EMG) activity of selected elbow and shoulder muscles of both limbs was recorded (1,000 Hz) simultaneously. The results revealed that the mechanisms used by the system to compensate for unilateral limb loading were as follows: First, addition of an inertial load resulted in an increased movement time and concomitant decrease in peak velocity of both the upper arm and forearm of only the loaded limb and was scaled to the added weight. Second, for the EMG parameters, adjustments to the inertial load were primarily characterized by an increase in burst duration of all muscles, with load-specific changes in activity and onset time: the elbow antagonist (biceps) demonstrated a decrease in activity with the 50% load, and the elbow agonist (triceps) had an earlier onset with the 25% load. Concomitant adjustments on the unloaded limb consisted primarily of an increase in burst duration of the shoulder and elbow agonists (pectoralis and triceps), an earlier triceps onset solely with the 25% load, and a decrease in activity of the biceps solely with the 50% load. Third, with the exception of biceps activity, the amplitude of EMG activity was invariant across changes in load for both the loaded and unloaded limb. This lack of modulation in activity may have been related to the inability of performers to meet the time constraint of simultaneous bilateral limb arrival to the end targets. This inability can be the result of an active strategy selection process to safeguard the actions against interference or alternatively it could simply be a consequence of the biomechanical properties of the system in relation to task constraints. These issues are discussed in the light of the present findings and those of previous studies.

  14. Cytomegalovirus (CMV) DNA load predicts relapsing CMV infection after solid organ transplantation.

    PubMed

    Sia, I G; Wilson, J A; Groettum, C M; Espy, M J; Smith, T F; Paya, C V

    2000-02-01

    Cytomegalovirus (CMV) DNA load was analyzed as a marker for relapse of CMV infection in 24 solid organ transplant patients with CMV infection or disease who received a fixed 14-day course of intravenous ganciclovir. Viral load was measured in blood samples obtained before and at the completion of treatment. Eight (33%) of 24 patients developed relapsing CMV infection. Median pretreatment viral loads were higher in the relapsing group (80,150 copies/106 leukocytes) than in the nonrelapsing group (5500 copies/106 leukocytes; P=.007). The relapsing group also had persistent detectable viral DNA (median, 5810 copies/106 leukocytes) after treatment, whereas it was undetectable in the nonrelapsing group (P<. 0001). Primary CMV infection (seronegative recipients of seropositive organs, D+R-) was an independent marker for CMV relapse (P=.03), and these patients had higher pre- and posttreatment viral loads than did non-D+/R- patients (P<.0001 and P=.0014, respectively). CMV DNA load is a useful marker for individualizing antiviral treatment of CMV infection in solid organ transplant recipients.

  15. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.

    PubMed

    Sirianuntapiboon, Suntud; Sadahiro, Ohmomo; Salee, Paneeta

    2007-10-01

    Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.

  16. Pre- and post-impoundment nitrogen in the lower Missouri River

    USGS Publications Warehouse

    Blevins, Dale W.; Wilkison, Donald H.; Niesen, Shelley L.

    2013-01-01

    Large water-sample sets collected from 1899 through 1902, 1907, and in the early 1950s allow comparisons of pre-impoundment and post-impoundment (1969 through 2008) nitrogen concentrations in the lower Missouri River. Although urban wastes were not large enough to detectably increase annual loads of total nitrogen at the beginning of the 20th century, carcass waste, stock-yard manure, and untreated human wastes measurably increased ammonia and organic-nitrogen concentrations during low flows. Average total-nitrogen concentrations in both periods were about 2.5 mg/l, but much of the particulate-organic nitrogen, which was the dominant form of nitrogen around 1900, has been replaced by nitrate. This change in speciation was caused by the nearly 80% decrease in suspended-sediment concentrations that occurred after impoundment, modern agriculture, drainage of riparian wetlands, and sewage treatment. Nevertheless, bioavailable nitrogen has not been low enough to limit primary production in the Missouri River since the beginning of the 20th century. Nitrate concentrations have increased more rapidly from 2000 through 2008 (5 to 12% per year), thus increasing bioavailable nitrogen delivered to the Mississippi River and affecting Gulf Coast hypoxia. The increase in nitrate concentrations with distance downstream is much greater during the post-impoundment period. If strategies to decrease total-nitrogen loads focus on particulate N, substantial decreases will be difficult because particulate nitrogen is now only 23% of total nitrogen in the Missouri River. A strategy aimed at decreasing particulates also could further exacerbate land loss along the Gulf of Mexico, which has been sediment starved since Missouri River impoundment. In contrast, strategies or benchmarks aimed at decreasing nitrate loads could substantially decrease nitrogen loadings because nitrates now constitute over half of the Missouri's nitrogen input to the Mississippi. Ongoing restoration and creation of wetlands along the Missouri River could be part of such a nitrate-reduction strategy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  17. Self and transport diffusivity of CO2 in the metal-organic framework MIL-47(V) explored by quasi-elastic neutron scattering experiments and molecular dynamics simulations.

    PubMed

    Salles, Fabrice; Jobic, Hervé; Devic, Thomas; Llewellyn, Philip L; Serre, Christian; Férey, Gérard; Maurin, Guillaume

    2010-01-26

    Quasi-elastic neutron scattering measurements are combined with molecular dynamics simulations to determine the self-diffusivity, corrected diffusivity, and transport diffusivity of CO(2) in the metal-organic framework MIL-47(V) (MIL = Materials Institut Lavoisier) over a wide range of loading. The force field used for describing the host/guest interactions is first validated on the thermodynamics of the MIL-47(V)/CO(2) system, prior to being transferred to the investigations of the dynamics. A decreasing profile is then deduced for D(s) and D(o) whereas D(t) presents a non monotonous evolution with a slight decrease at low loading followed by a sharp increase at higher loading. Such decrease of D(t) which has never been evidenced in any microporous systems comes from the atypical evolution of the thermodynamic correction factor that reaches values below 1 at low loading. This implies that, due to intermolecular interactions, the CO(2) molecules in MIL-47(V) do not behave like an ideal gas. Further, molecular simulations enabled us to elucidate unambiguously a 3D diffusion mechanism within the pores of MIL-47(V).

  18. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia

    USGS Publications Warehouse

    Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao

    2014-01-01

    Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.

  19. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Anaerobic biodegradation of aircraft deicing fluid in UASB reactors.

    PubMed

    Tham, P T Pham thi; Kennedy, K J Kevin J

    2004-05-01

    A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions (0.8% 1.6% ADF (6000-12,000mg/L COD), 12-56h HRT, and 18-36gVSS/L) were conducted in continuous mode. The development of four empirical models describing process responses (i.e. COD removal efficiency, biomass-specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time, and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass-specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass-specific acetoclastic activity was improved two-fold from 0.23gCOD/gVSS/d for inoculum to a maximum of 0.55gCOD/gVSS/d during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. The predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate is increased. ADF toxicity effects were evident for 1.6% ADF at medium organic loadings (SOLR above 0.5gCOD/gVSS/d). In contrast, good reactor stability and excellent COD removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73gCOD/gVSS/d).

  1. Aerosolized Antimicrobial Agents Based on Degradable Dextran Nanoparticles Loaded with Silver Carbene Complexes

    PubMed Central

    Ornelas-Megiatto, Cátia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Fréchet, Jean M. J.; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic): PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. PMID:23025592

  2. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes.

    PubMed

    Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.

  3. [The significance of free radicals and antioxidants due to the load induced by sport activity].

    PubMed

    Holecek, V; Liska, J; Racek, J; Rokyta, R

    2004-01-01

    Sport performance is followed by a high production of free radicals. The main reasons are reperfusion after the previous imbalance between the increased need of the organism and the ability of blood supply by oxygen, increased production of ATP, decomposition of the cells particularly white blood cells, oxidation of the purin basis from DNA, stress, output of epinephrine release of free iron, increased temperature in the muscle and its inflammation, and the reception of free radicals from external environment. Peroxidation of lipids, proteins, DNA and other compounds follows the previous biochemical steps. Antioxidants are consumed by free radicals, antioxidative enzymes are released into blood plasma, intracellular calcium is increased, the production of nitric oxide rises, the levels of hydrogen peroxide and hypochlorous acid increase. These penetrate through the membranes and oxidatively damage the tissues. Training improves the ability of the organism to balance the increased load of free radicals. The damage can be lowered by the application of a mixture of antioxidants, the most important are vitamin C, A, E, glutathione, selenium, carnosine, eventually bioflavonoids and ginkgo biloba. The lack of antioxidants can significantly diminish the sport performance and therefore the supplementation with antioxidants is for top sportsmen but also for aged people advisable.

  4. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  5. Biomechanics of a Bone-Periodontal Ligament-Tooth Fibrous Joint

    PubMed Central

    Lin, Jeremy D.; Özcoban, Hüseyin; Greene, Janelle; Jang, Andrew T.; Djomehri, Sabra; Fahey, Kevin; Hunter, Luke; Schneider, Gerold A; Ho, Sunita P.

    2013-01-01

    This study investigates bone-tooth association under compression to identify strain amplified sites within the bone-periodontal ligament (PDL)-tooth fibrous joint. Our results indicate that the biomechanical response of the joint is due to a combinatorial response of constitutive properties of organic, inorganic, and fluid components. Second maxillary molars within intact maxillae (N=8) of 5-month-old rats were loaded with a μ-XCT-compatible in situ loading device at various permutations of displacement rates (0.2, 0.5, 1.0, 1.5, 2.0 mm/min) and peak reactionary load responses (5, 10, 15, 20 N). Results indicated a nonlinear biomechanical response of the joint, in which the observed reactionary load rates were directly proportional to displacement rates (velocities). No significant differences in peak reactionary load rates at a displacement rate of 0.2 mm/min were observed. However, for displacement rates greater than 0.2 mm/min, an increasing trend in reactionary rate was observed for every peak reactionary load with significant increases at 2.0 mm/min. Regardless of displacement rates, two distinct behaviors were identified with stiffness (S) and reactionary load rate (LR) values at a peak load of 5 N (S5 N=290–523 N/mm) being significantly lower than those at 10 N (LR5 N=1–10 N/s) and higher (S10N–20 N=380–684 N/mm; LR10N–20 N=1–19 N/s). Digital image correlation revealed the possibility of a screw-like motion of the tooth into the PDL-space, i.e., predominant vertical displacement of 35 μm at 5 N, followed by a slight increase to 40 μm at 10 N and 50 μm at 20 N of the tooth and potential tooth rotation at loads above 10 N. Narrowed and widened PDL spaces as a result of tooth displacement indicated areas of increased apparent strain within the complex. We propose that such highly strained regions are “hot spots” that can potentiate local tissue adaptation under physiological loading and adverse tissue adaptation under pathological loading conditions. PMID:23219279

  6. Meso and micro-scale response of post carbon removal nitrifying MBBR biofilm across carrier type and loading.

    PubMed

    Young, Bradley; Banihashemi, Bahman; Forrest, Daina; Kennedy, Kevin; Stintzi, Alain; Delatolla, Robert

    2016-03-15

    This study investigates the effects of three specific moving bed biofilm reactor (MBBR) carrier types and two surface area loading rates on biofilm thickness, morphology and bacterial community structure of post carbon removal nitrifying MBBR systems along with the effects of carrier type and loading on ammonia removal rates and effluent solids settleability. The meso and micro analyses show that the AOB kinetics vary based on loading condition, but irrespective of carrier type. The meso-scale response to increases in loading was shown to be an increase in biofilm thickness with higher surface area carriers being more inclined to develop and maintain thicker biofilms. The pore spaces of these higher surface area to volume carriers also demonstrated the potential to become clogged at higher loading conditions. Although the biofilm thickness increased during higher loading conditions, the relative percentages of both the embedded viable and non-viable cells at high and conventional loading conditions remained stable; indicating that the reduced ammonia removal kinetics observed during carrier clogging events is likely due to the observed reduction in the surface area of the attached biofilm. Microbial community analyses demonstrated that the dominant ammonia oxidizing bacteria for all carriers is Nitrosomonas while the dominant nitrite oxidizing bacteria is Nitrospira. The research showed that filamentous species were abundant under high loading conditions, which likely resulted in the observed reduction in effluent solids settleability at high loading conditions as opposed to conventional loading conditions. Although the settleability of the effluent solids was correlated to increases in abundances of filamentous organisms in the biofilm, analyzed using next generation sequencing, the ammonia removal rate was not shown to be directly correlated to specific meso or micro-scale characteristics. Instead post carbon removal MBBR ammonia removal kinetics were shown to be related to the viable AOB cell coverage of the carriers; which was calculated by normalizing the surface area removal rate by the biofilm thickness, the bacterial percent abundance of ammonia oxidizing bacteria and the percentage of viable cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The role of oyster restoration and aquaculture in nutrient cycling within a Rhode Island estuary

    EPA Science Inventory

    Coastal ecosystems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for other organisms. Oyster aquaculture and restoration are hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification. However, this has not been exam...

  8. Spatial and temporal variability in greenhouse gas abundance of urban streams: The role of urban infrastructure

    EPA Science Inventory

    Background/Question/MethodsStreams and rivers are significant sources of greenhouse gas emissions globally. Water quality and watershed management, are likely to influence GHG emissions regionally. In urban-impacted watersheds, increased nitrogen loading, organic matter, and war...

  9. Sediment bioaccumulation test with Lumbriculus variegatus: Effects of feeding

    EPA Science Inventory

    Sediment bioaccumulation tests with Lumbriculus variegatus were performed on seven sediments with a series of ratios of total organic carbon in sediment to L. variegatus (dry weight) (TOC/Lv) that spanned the recommendation of no less than 50:1. With increasing loading of organi...

  10. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    PubMed

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Enhanced methane generation during theromophilic co-digestion of confectionary waste and grease-trap fats and oils with municipal wastewater sludge.

    PubMed

    Gough, Heidi L; Nelsen, Diane; Muller, Christopher; Ferguson, John

    2013-02-01

    Recent interest in carbon-neutral biofuels has revived interest in co-digestion for methane generation. At wastewater treatment facilities, organic wastes may be co-digested with sludge using established anaerobic digesters. However, changes to organic loadings may induce digester instability, particularly for thermophilic digesters. To examine this problem, thermophilic (55 degrees C) co-digestion was studied for two food-industry wastes in semi-continuous laboratory digesters; in addition, the wastes' biochemical methane potentials were tested. Wastes with high chemical oxygen demand (COD) content were selected as feedstocks allowing increased input of potential energy to reactors without substantially altering volumetric loadings. Methane generation increased while reactor pH and volatile solids remained stable. Lag periods observed prior to methane stimulation suggested that acclimation of the microbial community may be critical to performance during co-digestion. Chemical oxygen demand mass balances in the experimental and control reactors indicated that all of the food industry waste COD was converted to methane.

  12. Metabolic and physiochemical responses to a whole-lake experimental increase in dissolved organic carbon in a north-temperate lake

    USGS Publications Warehouse

    Zwart, Jacob A.; Craig, Nicola; Kelly, Patrick T.; Sebestyen, Stephen D.; Solomon, Christopher T.; Weidel, Brian C.; Jones, Stuart E.

    2016-01-01

    Over the last several decades, many lakes globally have increased in dissolved organic carbon (DOC), calling into question how lake functions may respond to increasing DOC. Unfortunately, our basis for making predictions is limited to spatial surveys, modeling, and laboratory experiments, which may not accurately capture important whole-ecosystem processes. In this article, we present data on metabolic and physiochemical responses of a multiyear experimental whole-lake increase in DOC concentration. Unexpectedly, we observed an increase in pelagic gross primary production, likely due to a small increase in phosphorus as well as a surprising lack of change in epilimnetic light climate. We also speculate on the importance of lake size modifying the relationship between light climate and elevated DOC. A larger increase in ecosystem respiration resulted in an increased heterotrophy for the treatment basin. The magnitude of the increase in heterotrophy was extremely close to the excess DOC load to the treatment basin, indicating that changes in heterotrophy may be predictable if allochthonous carbon loads are well-constrained. Elevated DOC concentration also reduced thermocline and mixed layer depth and reduced whole-lake temperature. Results from this experiment were quantitatively different, and sometimes even in the opposite direction, from expectations based on cross-system surveys and bottle experiments, emphasizing the importance of whole-ecosystem experiments in understanding ecosystem response to environmental change.

  13. Narrowing the scope of failure prediction using targeted fault load injection

    NASA Astrophysics Data System (ADS)

    Jordan, Paul L.; Peterson, Gilbert L.; Lin, Alan C.; Mendenhall, Michael J.; Sellers, Andrew J.

    2018-05-01

    As society becomes more dependent upon computer systems to perform increasingly critical tasks, ensuring that those systems do not fail becomes increasingly important. Many organizations depend heavily on desktop computers for day-to-day operations. Unfortunately, the software that runs on these computers is written by humans and, as such, is still subject to human error and consequent failure. A natural solution is to use statistical machine learning to predict failure. However, since failure is still a relatively rare event, obtaining labelled training data to train these models is not a trivial task. This work presents new simulated fault-inducing loads that extend the focus of traditional fault injection techniques to predict failure in the Microsoft enterprise authentication service and Apache web server. These new fault loads were successful in creating failure conditions that were identifiable using statistical learning methods, with fewer irrelevant faults being created.

  14. Immunomodulatory effect of ganoderma lucidum polysaccharides (GLP) on long-term heavy-load exercising mice.

    PubMed

    Shi, Yali; Cai, Dehua; Wang, Xiaojie; Liu, Xinshen

    2012-12-01

    Long-term heavy-load exercise can lead to a decrease in the organism's immune response. In this study, we used 100 Kunming (KM) mice to investigate the immune-regulatory effects of Ganoderma lucidum polysaccharides (GLP) on long-term heavy-load exercising mice. Peripheral white blood cells (WBC), the absolute value of neutrophils (NEUT), the phagocytic function of macrophages, serum agglutination valence, and the number of plaque-forming cells (PFC) were evaluated 4 weeks after gavaging long-term heavy-load exercising mice with GLP. After exercise, the WBC count in peripheral blood, absolute neutrophil count, macrophage phagocytic index, serum agglutination valence, and the number of plaque-forming cells were significantly reduced in the mice not fed GLP. Both medium and high doses of GLP drastically increased peripheral WBC, absolute neutrophil count, macrophage phagocytic index, serum agglutination valence, and the number of plaque-forming cells in long-term heavy-load exercising mice. High doses of GLP increased peritoneal macrophage phagocytic rate considerably. With this study, we demonstrate that 4 weeks of heavy-load exercise can lead to exercise-induced immunosuppression in mice. A supplement of GLP fed to these mice improves both non-specific and specific immune responses among these mice. The effect for the high-dose GLP treatment is especially significant.

  15. Pools, channel form, and sediment storage in wood-restored streams: Potential effects on downstream reservoirs

    NASA Astrophysics Data System (ADS)

    Elosegi, Arturo; Díez, José Ramón; Flores, Lorea; Molinero, Jon

    2017-02-01

    Large wood (LW, or pieces of dead wood longer than 1 m and thicker than 10 cm in diameter) is a key element in forested streams, but its abundance has decreased worldwide as a result of snagging and clearing of riparian forests. Therefore, many restoration projects introduce LW into stream channels to enhance geomorphology, biotic communities, and ecosystem functioning. Because LW enhances the retention of organic matter and sediments, its restoration can reduce siltation in receiving reservoirs, although so far little information on this subject is available. We studied the effects of restoring the natural loading of LW in four streams in the Aiako Harria Natural Park (the Basque Country, Spain) in pool abundance, channel form, and storage of organic matter and sediments. In all reaches log jams induced the formation of new geomorphic features and changes in physical habitat, especially an increase in the number and size of pools and in the formation of gravel bars and organic deposits. The storage of organic matter increased 5- to 88-fold and streambed level rose 7 ± 4 to 21 ± 4 cm on average, resulting in the storage of 35.2 ± 19.7 to 711 ± 375 m3 (733-1400 m3 ha- 1 y- 1) of sediment per reach. Extrapolation of these results to the entire drainage basin suggests that basinwide restoration of LW loading would enhance the retention potential of stream channels by 66,817 ± 27,804 m3 (1075 m3 ha- 1 y- 1) of sediment and by 361 t (5.32 T ha- 1 y- 1) of organic matter, which represents 60% of the estimated annual inputs of sediments to the downstream Añarbe Reservoir and almost twice as much as the annual input of organic matter to the entire river network. Therefore, basinwide restoration of LW loading is a potentially important tool to manage catchments that feed reservoirs, where retention of sediments and organic matter can be considered important ecosystem services as they reduce reservoir siltation.

  16. Optimisation of single-phase dry-thermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: population dynamics.

    PubMed

    Zahedi, S; Sales, D; Romero, L I; Solera, R

    2013-10-01

    Different high feed organic loading rates (OLRs) (from 5.7 g to 46.0 g TVS/l/d) or hydraulic retention times (HRTs) (from 15 d to 2 d) in single-phase dry-thermophilic anaerobic digestion (AD) of organic fraction municipal solid waste (OFMSW) were investigated. The specific gas production (SGP) values (0.25-0.53 m(3)/kg TVS) and the percentages of Eubacteria, Archaea, H2-utilising methanogens (HUMs) and acetate-utilising methanogens (AUMs) were stable within the ranges 80.2-91.1%, 12.4-18.5%, 4.4-9.8% and 5.5-10.9%, respectively. A HUM/AUM ratio greater than 0.7 seems to be necessary to maintain very low partial pressures of H2 required for dry AD process. Increasing OLR resulted in an increase in all the populations, except for propionate-utilising acetogens (PUAs). Optimal conditions were obtained at 3d HRT (OLR=30.7 g TVS/l/d), which is lower than the doubling time of acetogens and methanogens. The methane production (MP) was clearly higher than those reported in AD of OFMSW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations

    PubMed Central

    Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki

    2015-01-01

    Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576

  18. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    DOEpatents

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  19. Metal-loaded organic scintillators for neutrino physics

    DOE PAGES

    Buck, Christian; Yeh, Minfang

    2016-08-03

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can bemore » used under stable conditions for many years even in ton scale experiments. Lastly, we review applications of metal loaded scintillators in neutrino experiments and compare the performance as well as the prospects of different scintillator types.« less

  20. [Removal of AOX and Chroma in Biologically Treated Effluent of Chemical Dyestuff Wastewater with Nanoscale Ni/Fe].

    PubMed

    Shu, Xiao-ming; Xu, Can-can; Liu, Rui; Zhao, Yuan; Chen, Lü-jun

    2016-02-15

    Nanoscale Ni/Fe was applied to biologically treated effluent of chemical dyestuff wastewater. The removal rates of absorbable organic halogens (AOX) and chroma were investigated at different Ni loadings (0-5%), initial wastewater pH (4.1-10.0), Ni/Fe dosage (1-5 g x L(-1)) and reaction time (0.5-96 h). The results showed that the removal rates of AOX and chroma firstly increased and then decreased with the increase of the Ni loading, while continuously increased with the decrease of the initial wastewater pH and the increase of Ni/Fe dosage. The optimal condition was Ni loading of 1%, initial wastewater pH of 4.1 and Ni/Fe dosage of 3 g x L(-1), under which 29.2% of AOX and 79.6% of chroma were removed after 24 h reaction, and 50.6% of AOX and 80.7% of chroma were removed after 96 h reaction. GC-MS analysis revealed that toxicants such as chlorinated anilines, p-nitroaniline, 4-methoxy-2-nitroaniline and halogenated hydrocarbons were efficiently removed.

  1. Effects of feeding and organism loading rate on PCB accumulation by Lumbriculus variegatus in sediment bioaccumulation testing

    EPA Science Inventory

    Sediment bioaccumulation test methods published by USEPA and ASTM in 2000 specify that the Lumbriculus variegatus, a freshwater oligochaete, should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry we...

  2. 40 CFR 63.2338 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transfer racks at which organic liquids are loaded into or unloaded out of transport vehicles and/or...) Storage tanks storing organic liquids; (ii) Transfer racks loading or unloading organic liquids; (iii... and a transfer rack subject to this subpart; and (v) Pipelines that transfer organic liquids directly...

  3. An experimental model of COD abatement in MBBR based on biofilm growth dynamic and on substrates' removal kinetics.

    PubMed

    Siciliano, Alessio; De Rosa, Salvatore

    2016-08-01

    In this study, the performance of a lab-scale Moving Bed Biofilm Reactor (MBBR) under different operating conditions was analysed. Moreover, the dependence of the reaction rates both from the concentration and biodegradability of substrates and from the biofilm surface density, by means of several batch kinetic tests, was investigated. The reactor controls exhibited an increasing COD (Chemical Oxygen Demand) removal, reaching maximum yields (close to 90%) for influent loadings of up to12.5 gCOD/m(2)d. From this value, the pilot plant performance decreased to yields of only about 55% for influent loadings greater than 16 gCOD/m(2)d. In response to the influent loading increase, the biofilm surface density exhibited a logistic growing trend until reaching a maximum amount of total attached solids of about 9.5 g/m(2). The kinetic test results indicated that the COD removal rates for rapidly biodegradable, rapidly hydrolysable and slowly biodegradable substrates were not affected by the organic matter concentrations. Instead, first-order kinetics were detected with respect to biofilm surface density. The experimental results permitted the formulation of a mathematical model to predict the MBBR organic matter removal efficiency. The validity of the model was successfully tested in the lab-scale plant.

  4. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-07-15

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions. 2010 Elsevier B.V. All rights reserved.

  5. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: Effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances.

    PubMed

    Remmas, Nikolaos; Melidis, Paraschos; Zerva, Ioanna; Kristoffersen, Jon Bent; Nikolaki, Sofia; Tsiamis, George; Ntougias, Spyridon

    2017-08-01

    A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH 4 + -N. Exceptionally high β-glucosidase activities (6700-10,100Ug -1 ) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced β-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage.

    PubMed

    Santos, Samantha Christine; Rosa, Paula Rúbia Ferreira; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2014-05-01

    This study aimed to evaluate the effect of high organic loading rates (OLR) (60.0-480.00 kg COD m(-3)d(-1)) on biohydrogen production at 55°C, from sugarcane stillage for 15,000 and 20,000 mg CODL(-1), in two anaerobic fluidized bed reactors (AFBR1 and AFBR2). It was obtained, for H2 yield and content, a decreasing trend by increasing the OLR. The maximum H2 yield was observed in AFBR1 (2.23 mmol g COD added(-1)). The volumetric H2 production was proportionally related to the applied hydraulic retention time (HRT) of 6, 4, 2 and 1h and verified in AFBR1 the highest value (1.49 L H2 h(-1)L(-1)). Among the organic acids obtained, there was a predominance of lactic acid (7.5-22.5%) and butyric acid (9.4-23.8%). The microbial population was set with hydrogen-producing fermenters (Megasphaera sp.) and other organisms (Lactobacillus sp.). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Quantitative evolutionary design

    PubMed Central

    Diamond, Jared

    2002-01-01

    The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135

  8. Improvement of drug loading onto ion exchange resin by cyclodextrin inclusion complex.

    PubMed

    Samprasit, Wipada; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Sila-on, Warisada; Opanasopit, Praneet

    2013-11-01

    Ion exchange resins have ability to exchange their counter ions for ionized drug in the surrounding medium, yielding "drug resin complex." Cyclodextrin can be applied for enhancement of drug solubility and stability. Cyclodextrin inclusion complex of poorly water-soluble NSAIDs, i.e. meloxicam and piroxicam, was characterized and its novel application for improving drug loading onto an anionic exchange resin, i.e. Dowex® 1×2, was investigated. β-Cyclodextrin (β-CD) and hydroxypropyl β-cyclodextrin (HP-β-CD) were used for the preparation of inclusion complex with drugs in solution state at various pH. The inclusion complex was characterized by phase solubility, continuous variation, spectroscopic and electrochemistry methods. Then, the drug with and without cyclodextrin were equilibrated with resin at 1:1 and 1:2 weight ratio of drug and resin. Solubility of the drugs was found to increase with increasing cyclodextrin concentration and pH. The increased solubility was explained predominantly due to the formation of inclusion complex at low pH and the increased ionization of drug at high pH. According to characterization studies, the inclusion complex was successfully formed with a 1:1 stoichiometry. The presence of cyclodextrin in the loading solution resulted in the improvement of drug loading onto resin. Enhancing drug loading onto ion-exchange resin via the formation of cyclodextrin inclusion complex is usable in the development of ion-exchange based drug delivery systems, which will beneficially reduce the use of harmful acidic or basic and organic chemicals.

  9. Loads and yields of selected constituents in streams and rivers of Monroe County, New York, 1984-2001

    USGS Publications Warehouse

    Sherwood, Donald A.

    2004-01-01

    Hydrologic data collected in Monroe County since the 1980s and earlier, including long-term records of streamflow and chemical loads, provide a basis for assessment of water-management practices. All monitored streams except Northrup Creek showed a slight (nonsignificant) overall decrease in annual streamflow over their period of record; Northrup Creek showed a slight increase.The highest yields of all constituents except chloride and sulfate were at Northrup Creek; these values exceeded those of the seven Irondequoit Creek basin sites and the Genesee River site. The highest yields of dissolved chloride were at the most highly urbanized site (Allen Creek), whereas the highest yields of dissolved sulfate were at the most upstream Irondequoit Creek sites -- Railroad Mills (active) and Pittsford (inactive). Yields of all constituents in the Genesee River at the Charlotte Pump Station were within the range of those at the Irondequoit Creek basin sites.The four active Irondequoit Creek basin sites showed significant downward trends in flow-adjusted loads of ammonia + organic nitrogen, possibly from the conversion of agricultural land to suburban land. Two active sites (Allen Creek and Blossom Road) and one inactive site (Thomas Creek) showed downward trends in loads of ammonia. All active sites showed significant upward trends in dissolved chloride loads. Northrup Creek showed a significant downward trend in total phosphorus load since the improvement in phosphorus removal at the Spencerport wastewater-treatment plant, and upward trends in dissolved chloride and sulfate loads. The Genesee River at the Charlotte Pump Station showed significant downward trends in loads of ammonia + organic nitrogen and chloride, and an upward trend in loads of orthophosphate.The improved treatment or diversion of sewage-treatment-plant-effluent has produced decreased yields of some constituents throughout the county, particularly in the Irondequoit Creek basin, where the loads of nutrients delivered to Irondequoit Bay have been decreased.

  10. Load- and skill-related changes in segmental contributions to a weightlifting movement.

    PubMed

    Enoka, R M

    1988-04-01

    An exemplary short duration, high-power, weightlifting event was examined to determine whether the ability to lift heavier loads and whether variations in the level of skill were accompanied by quantitative changes in selected aspects of lower extremity joint power-time histories. Six experienced weightlifters, three skilled and three less skilled, performed the double-knee-bend execution of the pull in Olympic weightlifting, a movement which lasted almost 1 s. Analysis-of-variance statistics were performed on selected peak and average values of power generated by the three skilled subjects as they lifted three loads (69, 77, and 86% of their competition maximum). The results indicated that the skilled subjects lifted heavier loads by increasing the average power, but not the peak power, about the knee and ankle joints. In addition, the changes with load were more subtle than a mere quantitative scaling and also seemed to be associated with a skill element in the form of variation in the duration of the phases of power production and absorption. Similarly, statistical differences (independent t-test) due to skill did not involve changes in the magnitude of power but rather the temporal organization of the movement. Thus, the ability to successfully execute the double-knee-bend movement depends on an athlete's ability to both generate a sufficient magnitude of joint power and to organize the phases of power production and absorption into an appropriate temporal sequence.

  11. Performance of a stratified sand filter in removal of chemical oxygen demand, total suspended solids and ammonia nitrogen from high-strength wastewaters.

    PubMed

    Healy, M G; Rodgers, M; Mulqueen, J

    2007-06-01

    A stratified sand filter column, operated in recirculation mode and treating synthetic effluent resembling high-strength dairy wastewaters was studied over a 342-d duration. The aim of this paper was to examine the organic, total suspended solids (TSS) and nutrient removal rates of the sand filter, operated in recirculation mode, under incrementally increasing hydraulic and organic loading rates and to propose a field filter-sizing criterion. Best performance was obtained at a system hydraulic loading rate of 10 L m(-2) d(-1); a higher system hydraulic loading rate (of 13.4 L m(-2) d(-1)) caused surface ponding. The system hydraulic loading rate of 10 L m(-2) d(-1) gave a filter chemical oxygen demand (COD), TSS, and total kjeldahl nitrogen (TKN) loading rate of 14, 3.7, and 2.1 g m(-2) d(-1), respectively, and produced consistent COD and TSS removals of greater than 99%, and an effluent NO(3)-N concentration of 42 mg L(-1) (accounting for an 86% reduction in total nitrogen (Tot-N)). As the proportional surface area requirement for the sand filter described in this study is less than the recommended surface area requirement of a free-water surface (FWS) wetland treating an effluent of similar quality, it could provide an economic and sustainable alternative to conventional wetland treatment.

  12. Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter.

    PubMed

    Qiu, Yuping; Xiao, Xiaoyu; Cheng, Haiyan; Zhou, Zunlong; Sheng, G Daniel

    2009-07-01

    Loading two organic acids of known molecular structures onto a black carbon was conducted to study the influence of pH and dissolved organic matter on the adsorption of pesticides. Tannic acid at the loading rates of 100 and 300 micromol/g reduced the surface area of black carbon by 18 and 63%, respectively. This was due principally to the blockage of micropores, as verified by measured pore volumes and pore-size distributions. With a comparatively much smaller molecular structure, gallic acid did not apparently influence these properties. The intrinsic acidities of the two acids increased the surface acidity from 1.88 mmol/g of black carbon to 1.93-2.02 mmol/g after DOM loading, resulting in a reduction in isoelectric point pH from 1.93 to 1.66-1.82. The adsorption of propanil, 2,4-D and prometon by black carbon free and loaded of DOM was dependent on pH because major adsorptive forces were the interactions between neutral pesticide molecules and uncharged carbon surfaces. The adsorption was diminished considerably by the deprotonation of 2,4-D and protonation of prometon, as well as the surface charge change of black carbon. Tannic acid of 100 and 300 micromol/g on black carbon reduced the pesticide adsorption at the equilibrium concentration of 10 mg/L by an average of 46 and 81%, respectively, consistent with the reductions of 42 and 81% in micropore volume. At the equilibrium concentration of 30 mg/L, the mesopore surface became the additional adsorptive domain for propanil. Loading tannic acid made the mesopore surface less accessible, due presumably to the enhanced obstruction by tannic acid.

  13. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.

    PubMed

    Wang, Hong; Zhang, Guangxing; Ma, Xueqin; Liu, Yanhua; Feng, Jun; Park, Kinam; Wang, Wenping

    2017-06-01

    Poly (lactide-co-glycolide) (PLGA) microparticles are widely used for controlled drug delivery. Emulsion methods have been commonly used for preparation of PLGA microparticles, but they usually result in low loading capacity, especially for drugs with poor solubility in organic solvents. In the present study, the nanocrystal technology and a water-soluble polymer template method were used to fabricate nanocrystal-loaded microparticles with improved drug loading and encapsulation efficiency for prolonged delivery of breviscapine. Breviscapine nanocrystals were prepared using a precipitation-ultrasonication method and further loaded into PLGA microparticles by casting in a mold from a water-soluble polymer. The obtained disc-like particles were then characterized and compared with the spherical particles prepared by an emulsion-solvent evaporation method. X-ray powder diffraction (XRPD) and confocal laser scanning microscopy (CLSM) analysis confirmed a highly-dispersed state of breviscapine inside the microparticles. The drug form, loading percentage and fabrication techniques significantly affected the loading capacity and efficiency of breviscapine in PLGA microparticles, and their release performance as well. Drug loading was increased from 2.4% up to 15.3% when both nanocrystal and template methods were applied, and encapsulation efficiency increased from 48.5% to 91.9%. But loading efficiency was reduced as the drug loading was increased. All microparticles showed an initial burst release, and then a slow release period of 28days followed by an erosion-accelerated release phase, which provides a sustained delivery of breviscapine over a month. A relatively stable serum drug level for more than 30days was observed after intramuscular injection of microparticles in rats. Therefore, PLGA microparticles loaded with nanocrystals of poorly soluble drugs provided a promising approach for long-term therapeutic products characterized with preferable in vitro and in vivo performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Sediment bioaccumulation test with Lumbriculus variegatus (EPA test method 100.3) effects of feeding and organism loading rate

    EPA Science Inventory

    Sediment bioaccumulation test methodology of USEPA and ASTM in 2000 specifies that the Lumbriculus variegatus should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry weight of no less than 50:1. It ...

  15. Substance P enhances collagen remodeling and MMP-3 expression by human tenocytes.

    PubMed

    Fong, Gloria; Backman, Ludvig J; Hart, David A; Danielson, Patrik; McCormack, Bob; Scott, Alex

    2013-01-01

    The loss of collagen organization is considered a hallmark histopathologic feature of tendinosis. At the cellular level, tenocytes have been shown to produce signal substances that were once thought to be restricted to neurons. One of the main neuropeptides implicated in tendinosis, substance P (SP), is known to influence collagen organization, particularly after injury. The aim of this study was to examine the influence of SP on collagen remodeling by primary human tendon cells cultured in vitro in three-dimensional collagen lattices. We found that SP stimulation led to an increased rate of collagen remodeling mediated via the neurokinin-1 receptor (NK-1 R), the preferred cell receptor for SP. Gene expression analysis showed that SP stimulation resulted in significant increases in MMP3, COL3A1 and ACTA2 mRNA levels in the collagen lattices. Furthermore, cyclic tensile loading of tendon cell cultures along with the administration of exogenous SP had an additive effect on MMP3 expression. Immunoblotting confirmed that SP increased MMP3 protein levels via the NK-1 R. This study indicates that SP, mediated via NK-1 R, increases collagen remodeling and leads to increased MMP3 mRNA and protein expression that is further enhanced by cyclic mechanical loading. Copyright © 2012 Orthopaedic Research Society.

  16. Bacteria Contribute to Sediment Nutrient Release and Reflect Progressed Eutrophication-Driven Hypoxia in an Organic-Rich Continental Sea

    PubMed Central

    Sinkko, Hanna; Lukkari, Kaarina; Sihvonen, Leila M.; Sivonen, Kaarina; Leivuori, Mirja; Rantanen, Matias; Paulin, Lars; Lyra, Christina

    2013-01-01

    In the sedimental organic matter of eutrophic continental seas, such as the largest dead zone in the world, the Baltic Sea, bacteria may directly participate in nutrient release by mineralizing organic matter or indirectly by altering the sediment’s ability to retain nutrients. Here, we present a case study of a hypoxic sea, which receives riverine nutrient loading and in which microbe-mediated vicious cycles of nutrients prevail. We showed that bacterial communities changed along the horizontal loading and vertical mineralization gradients in the Gulf of Finland of the Baltic Sea, using multivariate statistics of terminal restriction fragments and sediment chemical, spatial and other properties of the sampling sites. The change was mainly explained by concentrations of organic carbon, nitrogen and phosphorus, which showed strong positive correlation with Flavobacteria, Sphingobacteria, Alphaproteobacteria and Gammaproteobacteria. These bacteria predominated in the most organic-rich coastal surface sediments overlain by oxic bottom water, whereas sulphate-reducing bacteria, particularly the genus Desulfobacula, prevailed in the reduced organic-rich surface sediments in the open sea. They correlated positively with organic nitrogen and phosphorus, as well as manganese oxides. These relationships suggest that the bacterial groups participated in the aerobic and anaerobic degradation of organic matter and contributed to nutrient cycling. The high abundance of sulphate reducers in the surficial sediment layers reflects the persistence of eutrophication-induced hypoxia causing ecosystem-level changes in the Baltic Sea. The sulphate reducers began to decrease below depths of 20 cm, where members of the family Anaerolineaceae (phylum Chloroflexi) increased, possibly taking part in terminal mineralization processes. Our study provides valuable information on how organic loading affects sediment bacterial community compositions, which consequently may maintain active nutrient recycling. This information is needed to improve our understanding on nutrient cycling in shallow seas where the dead zones are continuously spreading worldwide. PMID:23825619

  17. Evolution of defence cocktails: Antimicrobial peptide combinations reduce mortality and persistent infection.

    PubMed

    Zanchi, Caroline; Johnston, Paul R; Rolff, Jens

    2017-10-01

    The simultaneous expression of costly immune effectors such as multiple antimicrobial peptides is a hallmark of innate immunity of multicellular organisms, yet the adaptive advantage remains unresolved. Here, we test current hypotheses on the evolution of such defence cocktails. We use RNAi gene knock-down to explore, the effects of three highly expressed antimicrobial peptides, displaying different degrees of activity in vitro against Staphylococcus aureus, during an infection in the beetle Tenebrio molitor. We find that a defensin confers no survival benefit but reduces bacterial loads. A coleoptericin contributes to host survival without affecting bacterial loads. An attacin has no individual effect. Simultaneous knock-down of the defensin with the other AMPs results in increased mortality and elevated bacterial loads. Contrary to common expectations, the effects on host survival and bacterial load can be independent. The expression of multiple AMPs increases host survival and contributes to the control of persisting infections and tolerance. This is an emerging property that explains the adaptive benefit of defence cocktails. © 2017 John Wiley & Sons Ltd.

  18. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia.

    PubMed

    Gunawardena, Janaka; Ziyath, Abdul M; Bostrom, Thor E; Bekessy, Lambert K; Ayoko, Godwin A; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Co-metabolic enhancement of organic removal from waste water in the presence of high levels of alkyl paraben constituents of cosmetic and personal care products.

    PubMed

    Fan, Chihhao; Wang, Shin-Chih

    2017-07-01

    The enhanced removal of organic material from municipal waste water containing 50 mg/L of chemical oxygen demand and a given amount of alkyl paraben using a biofilm system was investigated. The parabens used were methyl, ethyl, and propyl paraben. The experiments were conducted at influent paraben concentrations of 10 and 50 mg/L. The influent pH was measured around 4.6 because of paraben hydrolysis. The effluent pH increased due to hydrogen consumption and small molecular acid generation. The higher removal rates were observed for the paraben with longer alkyl chains, which were more hydrophobic and capable of penetrating into microbial cells. The co-existing organic constituents in municipal waste water were found to be competitive with paraben molecules for microbial degradation at low paraben loading (i.e., 10 mg/L). Instead, the co-metabolic effect was observed at a higher paraben loading (i.e., 50 mg/L) due to more active enzymatic catalysis, implying the possible enhancement or organic removal in the presence of high levels of parabens. The difference in BOD and TOC removing ratios for parabens decreased with increasing HRT, implying their better mineralization than that of municipal organic constituents. This was because the microbial organism became more adapted to the reacting system with longer HRT, and more oxygenase was produced to facilitate the catechol formation and ring-opening reactions, causing apparent enhancement in mineralization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem

    PubMed Central

    Sirota, Jennie; Baiser, Benjamin; Gotelli, Nicholas J.; Ellison, Aaron M.

    2013-01-01

    Slow changes in underlying state variables can lead to “tipping points,” rapid transitions between alternative states (“regime shifts”) in a wide range of complex systems. Tipping points and regime shifts routinely are documented retrospectively in long time series of observational data. Experimental induction of tipping points and regime shifts is rare, but could lead to new methods for detecting impending tipping points and forestalling regime shifts. By using controlled additions of detrital organic matter (dried, ground arthropod prey), we experimentally induced a shift from aerobic to anaerobic states in a miniature aquatic ecosystem: the self-contained pools that form in leaves of the carnivorous northern pitcher plant, Sarracenia purpurea. In unfed controls, the concentration of dissolved oxygen ([O2]) in all replicates exhibited regular diurnal cycles associated with daytime photosynthesis and nocturnal plant respiration. In low prey-addition treatments, the regular diurnal cycles of [O2] were disrupted, but a regime shift was not detected. In high prey-addition treatments, the variance of the [O2] time series increased until the system tipped from an aerobic to an anaerobic state. In these treatments, replicate [O2] time series predictably crossed a tipping point at ∼45 h as [O2] was decoupled from diurnal cycles of photosynthesis and respiration. Increasing organic-matter loading led to predictable changes in [O2] dynamics, with high loading consistently driving the system past a well-defined tipping point. The Sarracenia microecosystem functions as a tractable experimental system in which to explore the forecasting and management of tipping points and alternative regimes. PMID:23613583

  1. Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem.

    PubMed

    Sirota, Jennie; Baiser, Benjamin; Gotelli, Nicholas J; Ellison, Aaron M

    2013-05-07

    Slow changes in underlying state variables can lead to "tipping points," rapid transitions between alternative states ("regime shifts") in a wide range of complex systems. Tipping points and regime shifts routinely are documented retrospectively in long time series of observational data. Experimental induction of tipping points and regime shifts is rare, but could lead to new methods for detecting impending tipping points and forestalling regime shifts. By using controlled additions of detrital organic matter (dried, ground arthropod prey), we experimentally induced a shift from aerobic to anaerobic states in a miniature aquatic ecosystem: the self-contained pools that form in leaves of the carnivorous northern pitcher plant, Sarracenia purpurea. In unfed controls, the concentration of dissolved oxygen ([O2]) in all replicates exhibited regular diurnal cycles associated with daytime photosynthesis and nocturnal plant respiration. In low prey-addition treatments, the regular diurnal cycles of [O2] were disrupted, but a regime shift was not detected. In high prey-addition treatments, the variance of the [O2] time series increased until the system tipped from an aerobic to an anaerobic state. In these treatments, replicate [O2] time series predictably crossed a tipping point at ~45 h as [O2] was decoupled from diurnal cycles of photosynthesis and respiration. Increasing organic-matter loading led to predictable changes in [O2] dynamics, with high loading consistently driving the system past a well-defined tipping point. The Sarracenia microecosystem functions as a tractable experimental system in which to explore the forecasting and management of tipping points and alternative regimes.

  2. Optimised anaerobic treatment of house-sorted biodegradable waste and slaughterhouse waste in a high loaded half technical scale digester.

    PubMed

    Resch, C; Grasmug, M; Smeets, W; Braun, R; Kirchmayr, R

    2006-01-01

    Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.

  3. Impact of organic loading rate on the performance of psychrophilic dry anaerobic digestion of dairy manure and wheat straw: long-term operation.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-04-01

    Development of efficient processes for valorising animal wastes would be a major advancement in cold-climate regions. This paper reports the results of long term (315 days experiment) of novel psychrophilic (20°C) dry anaerobic digestion (PDAD) of cow feces and wheat straw in laboratory scale sequence batch reactor operated at increasing organic loading rate. The PDAD process fed with a mixture of feces and straw (TS of 27%) over a treatment cycle length of 21 days at organic loading rate (OLR) 4.0, 5.0 and 6.0 g TCOD kg(-1) inoculum d(-1) (of 2.9 ± 0.1, 3.7 ± 0.1, and 4.4 ± 0.1g VS kg(-1) inoculum d(-1), respectively) resulted in average specific methane yield (SMY) of 187.3 ± 18.1, 163.6 ± 39.5, 150.8 ± 32.9 N L CH4 kg(-1)VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.4 at OLR of 6.0 g TCOD kg(-1) inoculum d(-1). Hydrolysis was the limiting step reaction. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Surface Properties and Catalytic Performance of Activated Carbon Fibers Supported TiO2 Photocatalyst

    NASA Astrophysics Data System (ADS)

    Yang, Huifen; Fu, Pingfeng

    Activated carbon fibers supported TiO2 photocatalyst (TiO2/ACF) in felt-form was successfully prepared with a dip-coating process using organic silicon modified acrylate copolymer as a binder followed by calcination at 500°C in a stream of Ar gas. The photocatalyst was characterized by SEM, XRD, XPS, FTIR, and BET surface area. Most of carbon fibers were coated with uniformly distributed TiO2 clusters of nearly 100 nm. The loaded TiO2 layer was particulate for the organic binder in the compact film was carbonized. According to XPS and FTIR analysis, amorphous silica in carbon grains was synthesized after carbonizing organic silicon groups, and the Ti-O-Si bond was formed between the interface of loaded TiO2 and silica. Additionally, the space between adjacent carbon fibers still remained unfilled after TiO2 coating, into which both UV light and polluted solutions could penetrate to form a three-dimensional environment for photocatalytic reactions. While loaded TiO2 amount increased to 456 mg TiO2/1 g ACF, the TiO2/ACF catalyst showed its highest photocatalytic activity, and this activity only dropped about 10% after 12 successive runs, exhibiting its high fixing stability of coated TiO2.

  5. Insights into biomethane production and microbial community succession during semi-continuous anaerobic digestion of waste cooking oil under different organic loading rates.

    PubMed

    He, Jing; Wang, Xing; Yin, Xiao-Bo; Li, Qiang; Li, Xia; Zhang, Yun-Fei; Deng, Yu

    2018-06-01

    High content of lipids in food waste could restrict digestion rate and give rise to the accumulation of long chain fatty acids in anaerobic digester. In the present study, using waste cooking oil skimmed from food waste as the sole carbon source, the effect of organic loading rate (OLR) on the methane production and microbial community dynamics were well investigated. Results showed that stable biomethane production was obtained at an organic loading rate of 0.5-1.5 g VS L -1  days -1 . The specific biogas/methane yield values at OLR of 1.0 were 1.44 ± 0.15 and 0.98 ± 0.11 L g VS -1 , respectively. The amplicon pyrosequencing revealed the distinct microbial succession in waste cooking oil AD reactors. Acetoclastic methanogens belonging to the genus Methanosaeta were the most dominant archaea, while the genera Syntrophomona, Anaerovibrio and Synergistaceae were the most common bacteria during AD process. Furthermore, redundancy analysis indicated that OLR showed more significant effect on the bacterial communities than that of archaeal communities. Additionally, whether the OLR of lipids increased had slight influence on the acetate fermentation pathway.

  6. Anthropogenic Carbon Pump in an Urbanized Estuary

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Yoon, T. K.; Jin, H.; Begum, M. S.

    2015-12-01

    The importance of estuaries as a carbon source has been increasingly recognized over the recent decades. However, constraining sources of CO2 evasion from urbanized estuaries remains incomplete, particularly in densely populated river systems receiving high loads of organic carbon from anthropogenic sources. To account for major factors regulating carbon fluxes the tidal reach of the Han River estuary along the metropolitan Seoul, characterization of organic carbon in the main stem and major urban tributaries were combined with continuous, submersible sensor measurements of pCO2 at a mid-channel location over a year and continuous underway measurements using a submersible sensor and two equilibrator sytems across the estuarine section receiving urban streams. Single-site continuous measurements exhibited large seasonal and diurnal variations in pCO2, ranging from sub-ambient air levels to exceptionally high values approaching 10,000 ppm. Diurnal variations of pCO2 were pronounced in summer and had an inverse relationship with dissolved oxygen, pointing to a potential role of day-time algal consumption of CO2. Cruise measurements displayed sharp pCO2 pulses along the confluences of urban streams as compared with relatively low values along the upper estuary receiving low-CO2 outflows from upstream dams. Large downstream increases in pCO2, concurrent with increases in DOC concentrations and fluorescence intensities indicative of microbially processed organic components, imply a translocation and subsequent dilution of CO2 carried by urban streams and/or fast transformations of labile C during transit along downstream reaches. The unique combination of spatial and temporal continuous measurements of pCO2 provide insights on estuarine CO2 pulses that might have resulted from the interplay between high loads of CO2 and organic C of anthropogenic origin and their priming effects on estuarine microbial processing of terrigenous and algal organic matter.

  7. ALTERATION OF SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY ASSOCIATED WITH BIOSOLIDS APPLICATION (ABSTRACT)

    EPA Science Inventory

    Biosolids are a complex mixture which contain both inorganic and organic adsorbents. Thus, addition of biosolids to soil not only increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) it alters the phytoavailability of these metals. This reduction in ph...

  8. Understanding nitrogen and organic carbon contents of agricultural drainage ditches of the Lower Mississippi Alluvial Valley

    USDA-ARS?s Scientific Manuscript database

    Application of agricultural fertilizers as a means of increasing production have resulted in excessive nutrient loading to agricultural drainage ditches, contributing to the Gulf of Mexico hypoxic zone. Drainage ditches can have wetland characteristics and functionality, including the capacity to re...

  9. Plastic biofilm carrier after corn cobs reduces nitrate loading in laboratory denitrifying bioreactors

    USDA-ARS?s Scientific Manuscript database

    Nitrate-nitrogen removal rates can be increased substantially in denitrifying bioreactors with a corn cob bed medium compared to woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a post-bed cha...

  10. The effect of graphic organizers on students' attitudes and academic performance in undergraduate general biology

    NASA Astrophysics Data System (ADS)

    Cleveland, Lacy

    High attrition among undergraduate Science Technology Engineering and Mathematics (STEM) majors has led national and business leaders in the United States to call for both research and educational reform within the collegiate STEM classrooms. Included among suggestions for reform are ideas to improve retention of first-year students and to improve critical thinking and depth of knowledge, instead of covering large quantities of materials. Past research on graphic organizers suggest these tools assist students in learning information and facilitate conceptual and critical thinking. Despite their widespread use in high school science departments, collegiate humanities departments, and even medical schools, their use is considerably less prevalent in the undergraduate biology classroom. In addition to their lack of use, little research has been conducted on their academic benefits in the collegiate classroom. Based on national calls for improving retention among undergraduate STEM majors and research suggesting that academic success during an individual first major's related course highly determine if that individual will continue on in their intended major, the researcher of this dissertation chose to conduct research on an introductory general biology class. Using both quantitative and qualitative methods, the research in this dissertation examines the effectiveness of graphic organizers in promoting academic success and also examines their influence on student attitudes. This research is grounded in the theories of constructivism and cognitive load theory. Constructivism suggests that individuals must build their knowledge from their personal experiences, while the cognitive load theory recognizes the limited nature of one's working memory and suggests that instructional practices minimize cognitive overload. The results of this dissertation suggest that the use of graphic organizers in an undergraduate general biology classroom can increase students' academic success when the cognitive load is high; however, when the instructors make effort to reduce cognitive load, while providing the students an opportunity to participate in metacognitive activities and to engage their germane working memory, graphic organizers do not provide an additional benefit to the students.

  11. Benthic sulfate reduction along the Chesapeake Bay central channel. II. Temporal controls

    USGS Publications Warehouse

    Marvin-DiPasquale, M. C.; Boynton, W.R.; Capone, D.G.

    2003-01-01

    Seasonal and interannual controls of benthic sulfate reduction (SR) were examined at 3 sites (upper [UB], mid- [MB] and lower [LB] bay) along the Chesapeake Bay central channel, from early spring through fall, for 6 yr (1989 to 1994). The combined influences of temperature, sulfate, organic loading and bioturbation affected seasonal SR rates differently in the 3 regions. Consistently low SR rates at UB resulted from low overlying-water sulfate concentrations and the dominance of refractory organic terrestrial material. Combined seasonal variation in temperature and sulfate accounted for 50% of the annual variability in 0 to 2 cm depth interval SR rates, while sediment organic content had no significant seasonal influence. In contrast, MB and LB sites had high rates of SR fostered by high levels of overlying water SO42- and organic input dominated by labile phytoplankton detritus. New organic loading (measured as chl a) stimulated 0 to 2 cm SR during spring at both sites. Combined organic quantity (as particulate C and/or N) and temperature accounted for > 75% of the variability in 0 to 2 cm SR at MB during spring and fall. Molecular diffusion supplied 25 to 45% of the SO 42- needed to fuel 0 to 12 cm depth interval SR at MB, with the balance presumably supplied by S-recycling. Interannual differences in summertime SR rates were linked to the extent of freshwater flow during spring, with high-flow years associated with high SR rates at UB and MB, and low rates at LB. The negative trend between benthic SR and river flow at LB may result from the up-estuary transport of senescing organic matter in bottom water, which increases in the lower reach of the estuary with increasing freshwater inflow.

  12. Epstein-Barr virus: general factors, virus-related diseases and measurement of viral load after transplant

    PubMed Central

    Gequelin, Luciana Cristina Fagundes; Riediger, Irina N.; Nakatani, Sueli M.; Biondo, Alexander W.; Bonfim, Carmem M.

    2011-01-01

    The Epstein-Barr virus is responsible for infectious mononucleosis syndrome and is also closely associated to several types of cancer. The main complication involving Epstein-Barr virus infection, both in recipients of hematopoietic stem cells and solid organs, is post-transplant lymphoproliferative disease. The importance of this disease has increased interest in the development of laboratory tools to improve post-transplant monitoring and to detect the disease before clinical evolution. Viral load analysis for Epstein-Barr virus through real-time polymerase chain reaction is, at present, the best tool to measure viral load. However, there is not a consensus on which sample type is the best for the test and what is its predictive value for therapeutic interventions. PMID:23049344

  13. Effect of dietary cadmium on iron metabolism in growing rats.

    PubMed

    Crowe, A; Morgan, E H

    1997-07-01

    Little is known regarding the interactions between iron and cadmium during postnatal development. This study examined the effect of altered levels of dietary iron and cadmium loading on the distribution of cadmium and iron in developing rats ages 15, 21, and 63 days. The uptake of iron, transferrin, and cadmium into various organs was also examined using 59Fe, [125I]transferrin, and 109Cd. Dietary cadmium loading reduced packed cell volume and plasma iron and nonheme iron levels in the liver and kidneys, evidence of the inducement of an iron deficient state. Dietary iron loading was able to reverse these effects, suggesting that they were the result of impaired intestinal absorption of iron. Cadmium loading resulted in cadmium concentrations in the liver and kidneys up to 20 microg/g in rats age 63 days, while cadmium levels in the brain reached only 0.16 microg/g, indicating that the blood-brain barrier restricts the entry of cadmium into the brain. Iron loading had little effect on cadmium levels in the organs and cadmium feeding did not lower tissue iron levels in iron loaded animals. These results suggest that cadmium inhibits iron absorption only at low to normal levels of dietary iron and that at high levels of intake iron and cadmium are largely absorbed by other, noncompetitive mechanisms. It was shown that 109Cd is removed from the plasma extremely quickly irrespective of iron status and deposits mainly in the liver. One of the most striking effects of cadmium loading on iron metabolism was increased uptake of [125I]transferrin by the heart, possibly by disrupting the process of receptor-mediated endocytosis and recycling of transferrin by heart muscle.

  14. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    PubMed

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Drawer compacted sand filter: a new and innovative method for on-site grey water treatment.

    PubMed

    Assayed, Almoayied; Chenoweth, Jonathan; Pedley, Steven

    2014-01-01

    In this paper, results ofa new sand filter design were presented. The drawer compacted sand filter (DCSF) is a modified design for a sand filter in which the sand layer is broken down into several layers, each of which is 10 cm high and placed in a movable drawer separated by a 10 cm space. A lab-scale DCSF was designed and operated for 330 days fed by synthetic grey water. The response of drawer sand filters to variable hydraulic and organic loading rates (HLR and OLR) in terms of biological oxygen demand (BODs), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity and Escherichia coli reductions were evaluated. The HLR was studied by increasing from 72 to 142 L m(-2) day(-1) and OLR was studied by increasing it from 23 to 30 g BOD5 m(-2) day(-1) while keeping the HLR constant at 142 L m(-2) day(-1). Each loading regime was applied for 110 days. Results showed that DCSF was able to remove >90% of organic matter and total suspended solids for all doses. No significant difference was noticed in terms of overall filter efficiency between different loads for all parameters. Significant reduction in BOD5 and COD (P < .05) was noticed after water was drained through the third drawer in all tested loads. The paper concludes that DCSF would be appropriate for use in dense urban areas as its footprint is small and is appropriate for a wide range of users because of its convenience and low maintenance requirements.

  16. Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.

    PubMed

    Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael

    2018-01-24

    Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.

  17. Achieving the Promise of Therapeutic Extracellular Vesicles: The Devil is in Details of Therapeutic Loading.

    PubMed

    Sutaria, Dhruvitkumar S; Badawi, Mohamed; Phelps, Mitch A; Schmittgen, Thomas D

    2017-05-01

    Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics.

  18. Water-quality assessment of the Frank Lyon, Jr., nursery pond releases into Lake Maumelle, Arkansas, 1991-1996

    USGS Publications Warehouse

    Green, William Reed

    1998-01-01

    Releases of the Frank Lyon, Jr., Nursery Pond into Lake Maumelle were monitored during 1991 through 1996 to assess the impact that the releases have on the water quality of Lake Maumelle. Results indicated that the water-quality impact of the nursery pond release into Lake Maumelle is variable, and appears to be related to the volume of the nursery pond at release and the amount of fertilizer applied within the nursery pond earlier in the year. In 1991 through 1994 and in 1996, nursery pond release loads for nutrients (except for dissolved nitrite plus nitrate nitrogen), total and dissolved organic carbon, iron, and manganese were greater than what would be expected in the annual area load from that basin. In 1995, only ammonium nitrate was appliec to the nursery pond. As a result, the 1995 phosphorus load was lower than in other years, and was less than what would be expected in the annual areal load. Nutrient enrichment, on average, in Lake Maumelle from the nursery pond release resulted in what would be equivalent to an 8 percent increase in concentration of total phosphorus, 50 percent increase in dissolved orthophosphorus, 0.1 percent increase in dissolved nitrite plus nitrate nitrogen, 2.5 percent increase in total ammonia plus organic nitrogen, and 5.7 percent increase in dissolved ammonia nitrogen, assuming that the nutrient load was conservative and evenly distributed throughout the water body. Evidence of elevated turbidity, nutrient, and chlorphyll a concentrations in the epilimnetic water outside the receiving embayment were apparent for as long as 3 weeks after the 1995 and 1996 releases. In general, highest values were found at the site located where the receiving embayment meets the open water of Lake Maumelle. Much of the released material in the nursery pond originated in the cooler, anoxic hypolimnetic water. The initial release water was seen to plunge beneath the warmer water existing in the receiving embayment and was transported into the open water of Lake Maumelle, under the thermocline. The quantity of water and mass of constituents transported into the open water under the thermocline is unknown and probably remained isolated from the surface water until fall turnover.

  19. Effect of oil concentration and residence time on the biodegradation of α-pinene vapours in two-liquid phase suspended-growth bioreactors.

    PubMed

    Montes, María; Veiga, María C; Kennes, Christian

    2012-02-20

    Recently, research on the use of binary aqueous-organic liquid phase systems for the treatment of polluted air has significantly increased. This paper reports the removal of α-pinene from a waste air stream in a continuous stirred tank bioreactor (CSTB), using either a single-liquid aqueous phase or a mixed aqueous-organic liquid phase. The influence of gas flow rate, load and pollutant concentration was evaluated as well as the effect of the organic to aqueous phase ratio. Continuous experiments were carried out at different inlet α-pinene concentrations, ranging between 0.03 and 25.1 g m⁻³ and at four different flow rates, corresponding to residence times (RTs) of 120 s, 60 s, 36 s and 26 s. The maximum elimination capacities (ECs) reached in the CSTB were 382 g m⁻³ h⁻¹ (without silicone oil) and 608 g m⁻³ h⁻¹ (with 5%v/v silicone oil), corresponding to a 1.6-fold improvement using an aqueous-organic liquid phase. During shock-loads experiments, the performance and stability of the CSTB were enhanced with 5% silicone oil, quickly recovering almost 100% removal efficiency (RE), when pre-shock conditions were restored. The addition of silicone oil acted as a buffer for high α-pinene loads, showing a more stable behaviour in the case of two-liquid-phase systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Loaded Ce-Ag organic-inorganic hybrids and their antibacterial activity.

    PubMed

    Truffault, Laurianne; Rodrigues, Danilo Fernando; Salgado, Hérida Regida Nunes; Santilli, Celso Valentim; Pulcinelli, Sandra Helena

    2016-11-01

    There are requirements for surfaces with antibacterial properties in various technological fields. U-PEO hybrids with antibacterial properties were synthesized by the sol-gel process, incorporating combinations of cerium and silver salts at different silver molar fractions (0, 0.02, 0.05, 0.10, and 1) relative to the total amount of doped cations. The loaded hybrids were characterized by TGA, XRD, and Raman spectroscopy. Release tests were performed using UV-vis spectroscopy, and the antibacterial properties of the hybrids were studied in agar tests and turbidimetry assays. The nanostructural evolution of the hybrids during the release of the antibacterial agents was investigated by in situ SAXS. XRD results showed the presence of the AgCl crystalline phase in the loaded hybrids from a silver molar fraction of 0.05. Raman spectroscopy evidenced the interaction of silver cations with the polymeric part of the hybrid. SAXS results confirmed these interactions and showed that cerium species interacted with both organic and inorganic parts of the hybrids. The loaded U-PEO hybrids were found to release all the incorporated cerium in 1h, while the hybrid containing 100% of silver released only 78% of the incorporated silver. All the loaded hybrids displayed antibacterial activity against the Pseudomonas aeruginosa bacterium. The antibacterial activity was found to increase with silver molar fraction. Due to its high antibacterial activity and low silver molar fraction, the loaded hybrid with silver molar fraction of 0.10 seemed to be a good compromise between efficiency, esthetic transparency, and photostability. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold.

    PubMed

    Yu, Kui; Zhu, Tonghe; Wu, Yu; Zhou, Xiangxiang; Yang, Xingxing; Wang, Juan; Fang, Jun; El-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2017-03-01

    A dual drug-loaded system is a promising alternative for the sustained drug release system and skin tissue engineering. In this study, a natural sodium montmorillonite (Na-MMT) modified by cetyl trimethyl ammonium bromide (CTAB) was prepared as a carrier to load a model drug - amoxicillin (AMX), the modified organic montmorillonite (CTAB-OMMT) loaded with AMX was marked as AMX@CTAB-OMMT and was subsequently incorporated into poly(ester-urethane) urea (PEUU) and gelatin hybrid nanofibers via electrospinning, resulting in a new drug-loaded nanofibrous scaffold (AMX@CTAB-OMMT-PU75). The scanning electron microscopy (SEM) result showed that the fiber morphology did not change after the embedding of AMX@CTAB-OMMT. Meanwhile, there was a significant increase of mechanical properties for PEUU/Gelatin hybrid nanofibers (PU75) after the incorporation of AMX@CTAB-OMMT and CTAB-OMMT. Importantly, AMX@CTAB-OMMT-PU75 nanofibers showed a kind of sustained drug release property which could be justified reasonably for the controlled release of AMX depending on the various application. The sustained release property could be identified roughly by the result of antibacterial test. The anaphylactic reaction test proved that there was no any anaphylactic reaction or inflammation on the back of rat for AMX@CTAB-OMMT-PU75 nanofibers. Consequently, the prepared drug-loaded AMX@CTAB-OMMT-PU75 nanofibrous scaffold is a promising candidate for application in the skin tissue engineering field and controlled drug release system. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Treatment of spent wash in anaerobic mesophilic suspended growth reactor (AMSGR).

    PubMed

    Banu, J Rajesh; Kaliappan, S; Rajkumar, M; Beck, Dieter

    2006-01-01

    Approximately 400 KL of spent wash or vinasse per annum is generated at an average COD concentration of 100,000 mg/l, by over 250 distilleries in India. There is an urgent need to develop, assess and use ecofriendly methods for the disposal of this high strength wastewater. Therefore, an attempt was made to investigate a few aspects of anaerobic digestion of spent wash collected from a distillery. The study was carried out in a 4 L laboratory scale anaerobic mesophilic suspended growth reactor. After the successful startup, the organic loading was increased stepwise to assess the performance of the reactor. During the study period, biogas generated was recorded and the maximum gas generated was found to be 16.9 L at an Organic Loading Rate (OLR) of 38 g COD/L. A 500% increase in the Volatile Fatty Acid (VFA) concentration (2150 mg/L) was observed, when the OLR was increased from 38 to 39 g COD/L. During the souring phase the removal of COD, Total Solids (TS) and Volatile Solids (VS) were in the order of 52%, 40% and 46% respectively. The methane content in the biogas varied from 65% to 75%.

  3. Organic Carbon Trends, Loads, and Yields to the Sacramento-San Joaquin Delta, California, Water Years 1980 to 2000

    USGS Publications Warehouse

    Saleh, Dina K.; Domagalski, Joseph L.; Kratzer, Charles R.; Knifong, Donna L.

    2003-01-01

    Organic carbon, nutrient, and suspended sediment concentration data were analyzed for the Sacramento and San Joaquin River Basins for the period 1980-2000. The data were retrieved from three sources: the U.S. Geological Survey's National Water Information System, the U.S. Environmental Protection Agency's Storage and Retrieval System, and the California Interagency Ecological Program's relational database. Twenty sites were selected, all of which had complete records of daily streamflow data. These data met the minimal requirements of the statistical programs used to estimate trends, loads, and yields. The seasonal Kendall program was used to estimate trends in organic carbon, nutrient, and suspended sediment. At all 20 sites, analyses showed that in the 145 analyses for the seven constituents, 95 percent of the analyses had no significant trend. Dissolved organic carbon (DOC) concentrations were significant only for four sites: the American River at Sacramento, the Sacramento River sites near Freeport, Orestimba Creek at River Roads near Crows Landing, and the San Joaquin River near Vernalis. Loads were calculated using two programs, ESTIMATOR and LOADEST2. The 1998 water year was selected to describe loads in the Sacramento River Basin. Organic carbon, nutrient, and suspended sediment loads at the Sacramento River sites near Freeport included transported loads from two main upstream sites: the Sacramento River at Verona and the American River at Sacramento. Loads in the Sacramento River Basin were affected by the amount of water diverted to the Yolo Bypass (the amount varies annually, depending on the precipitation and streamflow). Loads at the Sacramento River sites near Freeport were analyzed for two hydrologic seasons: the irrigation season (April to September) and the nonirrigation season (October to March). DOC loads are lower during the irrigation season then they are during the nonirrigation season. During the irrigation season, water with low concentrations of DOC is released from reservoirs and used for irrigation. On the other hand, during the nonirrigation season, streamflow results from surface water runoff and has higher concentrations of organic carbon, nutrients, and suspended sediment. The 1986 and 1987 water years were selected to describe loads in the San Joaquin River Basin. Organic carbon, nutrient, and suspended sediment loads in the San Joaquin River near Vernalis included transported loads from upstream sites, such as the Mud and Salt Sloughs, the Merced River at River Roads Bridge near Newman, the Tuolumne River at Modesto, and the Stanislaus River at Ripon. Loads at the San Joaquin River near Vernalis also were analyzed for the two seasons. The DOC load for the San Joaquin River at Vernalis is slightly higher during the irrigation season. Yields were calculated in an attempt to rank the subbasins in the Sacramento and San Joaquin River Basins. Five sites delivered streamflow from agricultural and urban sources that had relatively high yields of organic carbon: Sacramento Slough near Knights Landing, Arcade Creek near Del Paso Heights, Salt Slough, Mud Slough, and Colusa Basin Drain at Road 99E near Knights Landing.

  4. Evaluation of integral exposure energy load on aural analyzer of miners

    NASA Technical Reports Server (NTRS)

    Kornilov, A. N.; Larantseva, Y. I.

    1981-01-01

    The individual exposure integral noise load on workers before the beginning of hearing impairment was determined for a group of 20 male miners who had worked with drilling equipment and harvesters for 8 to 20 years before the onset of the disability. Results show that the total exposure energy load of about 4 kw x h sq m, obtained by miners in the examined group, resulted in occupational injury to the auditory organ (cochlear neuritis) in 75% of the cases. The equivalent energy level of noise computed according to the date of total energy load is roughly 99 db A, which significantly exceeds the permissible amount of 85 db A. There is a correlation (r = 0.77) between the integral exposure energy noise on the aural analyzer in the degree of increase in the total threshold for the mean speech range.

  5. Changes in collagen fibril network organization and proteoglycan distribution in equine articular cartilage during maturation and growth

    PubMed Central

    Hyttinen, Mika M; Holopainen, Jaakko; René van Weeren, P; Firth, Elwyn C; Helminen, Heikki J; Brama, Pieter A J

    2009-01-01

    The aim of this study was to record growth-related changes in collagen network organization and proteoglycan distribution in intermittently peak-loaded and continuously lower-level-loaded articular cartilage. Cartilage from the proximal phalangeal bone of the equine metacarpophalangeal joint at birth, at 5, 11 and 18 months, and at 6–10 years of age was collected from two sites. Site 1, at the joint margin, is unloaded at slow gaits but is subjected to high-intensity loading during athletic activity; site 2 is a continuously but less intensively loaded site in the centre of the joint. The degree of collagen parallelism was determined with quantitative polarized light microscopy and the parallelism index for collagen fibrils was computed from the cartilage surface to the osteochondral junction. Concurrent changes in the proteoglycan distribution were quantified with digital densitometry. We found that the parallelism index increased significantly with age (up to 90%). At birth, site 2 exhibited a more organized collagen network than site 1. In adult horses this situation was reversed. The superficial and intermediate zones exhibited the greatest reorganization of collagen. Site 1 had a higher proteoglycan content than site 2 at birth but here too the situation was reversed in adult horses. We conclude that large changes in joint loading during growth and maturation in the period from birth to adulthood profoundly affect the architecture of the collagen network in equine cartilage. In addition, the distribution and content of proteoglycans are modified significantly by altered joint use. Intermittent peak-loading with shear seems to induce higher collagen parallelism and a lower proteoglycan content in cartilage than more constant weight-bearing. Therefore, we hypothesize that the formation of mature articular cartilage with a highly parallel collagen network and relatively low proteoglycan content in the peak-loaded area of a joint is needed to withstand intermittent stress and shear, whereas a constantly weight-bearing joint area benefits from lower collagen parallelism and a higher proteoglycan content. PMID:19732210

  6. Controls on methane concentrations and fluxes in streams draining human-dominated landscapes

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.

    2016-01-01

    Streams and rivers are active processors of carbon, leading to significant emissions of CO2 and possibly CH4 to the atmosphere. Patterns and controls of CH4 in fluvial ecosystems remain relatively poorly understood. Furthermore, little is known regarding how major human impacts to fluvial ecosystems may be transforming their role as CH4 producers and emitters. Here, we examine the consequences of two distinct ecosystem changes as a result of human land use: increased nutrient loading (primarily as nitrate), and increased sediment loading and deposition of fine particles in the benthic zone. We did not find support for the hypothesis that enhanced nitrate loading down-regulates methane production via thermodynamic or toxic effects. We did find strong evidence that increased sedimentation and enhanced organic matter content of the benthos lead to greater methane production (diffusive + ebullitive flux) relative to pristine fluvial systems in northern Wisconsin (upper Midwest, USA). Overall, streams in a human-dominated landscape of southern Wisconsin were major regional sources of CH4 to the atmosphere, equivalent to ~20% of dairy cattle emissions, or ~50% of a landfill’s annual emissions. We suggest that restoration of the benthic environment (reduced fine deposits) could lead to reduced CH4 emissions, while decreasing nutrient loading is likely to have limited impacts to this ecosystem process.

  7. Sulfur and Methylmercury in the Florida Everglades - the Biogeochemical Connection

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Gilmour, C. C.; Krabbenhoft, D. P.; Aiken, G.

    2011-12-01

    Methylmercury (MeHg) is a serious environmental problem in aquatic ecosystems worldwide because of its toxicity and tendency to bioaccumulate. The Everglades receives some of the highest levels of atmospheric mercury deposition and has some of the highest levels of MeHg in fish in the USA, posing a threat to pisciverous wildlife and people through fish consumption. USGS studies show that a combination of biogeochemical factors make the Everglades especially susceptible to MeHg production and bioaccumulation: (1) vast wetland area with anoxic soils supporting anaerobic microbial activity, (2) high rates of atmospheric mercury deposition, (3) high levels of dissolved organic carbon (DOC) that complexes and stabilizes mercury in solution for transport to sites of methylation, and (4) high sulfate loading in surface water that drives microbial sulfate reduction and mercury methylation. The high levels of sulfate in the Everglades represent an unnatural condition. Background sulfate levels are estimated to be <1 mg/L, but about 60% of the Everglades has surface water sulfate concentrations exceeding background. Highly sulfate-enriched marshes in the northern Everglades have average sulfate levels of 60 mg/L. Sulfate loading to the Everglades is principally a result of land and water management in south Florida. The highest concentrations of sulfate, averaging 60-70 mg/L, are in canal water in the Everglades Agricultural Area (EAA). Geochemical data and a preliminary sulfur mass balance for the EAA are consistent with sulfur currently used in agriculture, and sulfur released by oxidation of organic EAA soils (including legacy agricultural applications and natural sulfur) as the primary sources of sulfate enrichment to the canals and ecosystem. Sulfate loading increases microbial sulfate reduction and MeHg production in soils. The relationship between sulfate loading and MeHg production, however, is complex. Sulfate levels up to about 20-30 mg/L increase mercury methylation, but buildup of sulfide from microbial sulfate reduction begins to inhibit mercury methylation above this range. Sulfate from the EAA canals has primarily impacted the northern Everglades nearest the EAA, but recent evidence shows sulfate loading extending about 80 km further south into Everglades National Park. Current restoration plans to restore to deliver more water south to Everglades National Park may increase overall sulfur loads to the southern part of the ecosystem. A comprehensive Everglades restoration strategy should include reduction of sulfur loads as a goal because of the many detrimental impacts of sulfate on the ecosystem. Monitoring data show that the ecosystem response to changes in sulfate levels is rapid, and strategies for reducing sulfate loading may be effective in the near-term. A multifaceted approach employing best management practices for sulfur in agriculture, agricultural practices that minimize soil oxidation, and changes to stormwater treatment areas that increase sulfate retention, could help reduce sulfate loads to the Everglades, with resulting benefits.

  8. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  9. Mass loading of selected major and trace elements in Lake Fork Creek near Leadville, Colorado, September-October 2001

    USGS Publications Warehouse

    Walton-Day, Katherine; Flynn, Jennifer L.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    A mass-loading study of Lake Fork Creek of the Arkansas River between Sugarloaf Dam and the mouth was completed in September-October 2001 to help ascertain the following: (1) variation of pH and aqueous constituent concentrations (calcium, sulfate, alkalinity, aluminum, cadmium, copper, iron, manganese, lead, and zinc) and their relation to toxicity standards along the study reach; (2) location and magnitude of sources of metal loading to Lake Fork Creek; (3) amount and locations of metal attenuation; (4) the effect of streamside wetlands on metal transport from contributing mine tunnels; and (5) the effect of organic-rich inflow from the Leadville National Fish Hatchery on water quality in Lake Fork Creek. The study was done in cooperation with the Bureau of Land Management, U.S. Department of Agriculture Forest Service, and U.S. Fish and Wildlife Service. Constituent concentrations and pH showed variable patterns over the study reach. Hardness-based acute and chronic toxicity standards were exceeded for some inflows and some constituents. However, stream concentrations did not exceed standards except for zinc starting in the upper parts of the study reach and extending to just downstream from the inflow from the Leadville National Fish Hatchery. Dilution from that inflow lowered stream zinc concentrations to less than acute and chronic toxicity standards. The uppermost 800 meters of the study reach that contained inflow from the Bartlett, Dinero, and Nelson mine tunnels and the Dinero wetland was the greatest source of loading for manganese and zinc. A middle section of the study reach that extended approximately 2 kilometers upstream from the National Fish Hatchery inflow to just downstream from that inflow was the largest source of aluminum, copper, iron, and lead loading. The loading was partially from the National Fish Hatchery inflow but also from unknown sources upstream from that inflow, possibly ground water. The largest sources for calcium and sulfate load to the stream were the parts of the study reach containing inflow from the tribu-taries Halfmoon Creek (calcium) and Willow Creek (sulfate). The Arkansas River and its tributaries upstream from Lake Fork Creek were the source of most of the calcium (70 percent), sulfate (82 percent), manganese (77 percent), lead (78 percent), and zinc (95 percent) loads in the Arkansas River downstream from the Lake Fork confluence. In contrast, Lake Fork Creek was the major source of aluminum (68 percent), copper (65 percent), and iron (87 percent) loads to the Arkansas River downstream from the confluence. Attenuation was not important for calcium, sulfate, or iron. However, other metals loads were reduced up to 81 percent over the study reach (aluminum, 25 percent; copper, 20 percent; manganese, 81 percent; lead, 30 percent; zinc, 72 percent). Metal attenuation in the stream occurred primarily in three locations (1) the irrigation diversion ditch; (2) the beaver pond complex extending from upstream from the Colorado Gulch inflow to just downstream from that inflow; and (3) the stream reach that included the inflow from Willow Creek. The most likely attenuation mechanism is precipitation of metal oxides and hydroxides (primarily manganese), and sorption or coprecipitation of trace elements with the precipitating phase. A mass-balance calculation indicated that the wetland between the Dinero Tunnel and Lake Fork Creek removed iron, had little effect on zinc mass load, and was a source for, or was releasing, aluminum and manganese. In contrast, the wetland that occurred between the Siwatch Tunnel and Lake Fork Creek removed aluminum, iron, manganese, and zinc from the tunnel drainage before it entered the creek. Inflow from the National Fish Hatchery increased dissolved organic carbon concentrations in Lake Fork Creek and slightly changed the composition of the dissolved organic carbon. However, dissolved organic carbon loads increased in the stream reach downs

  10. Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis

    PubMed Central

    Guan, Jiewen; Chan, Maria; Brooks, Brian W.; Rohonczy, Liz

    2013-01-01

    This study evaluated the influence of temperature and organic load on the effectiveness of domestic bleach (DB), Surface Decontamination Foam (SDF), and Virkon in inactivating Geobacillus stearothermophilus spores, which are a surrogate for Bacillus anthracis spores. The spores were suspended in light or heavy organic preparations and the suspension was applied to stainless steel carrier disks. The dried spore inoculum was covered with the disinfectants and the disks were then incubated at various temperatures. At −20°C, the 3 disinfectants caused less than a 2.0 log10 reduction of spores in both organic preparations during a 24-h test period. At 4°C, the DB caused a 4.4 log10 reduction of spores in light organic preparations within 2 h, which was about 3 log10 higher than what was achieved with SDF or Virkon. In heavy organic preparations, after 24 h at 4°C the SDF had reduced the spore count by 4.5 log10, which was about 2 log10 higher than for DB or Virkon. In general, the disinfectants were most effective at 23°C but a 24-h contact time was required for SDF and Virkon to reduce spore counts in both organic preparations by at least 5.5 log10. Comparable disinfecting activity with DB only occurred with the light organic load. In summary, at temperatures as low as 4°C, DB was the most effective disinfectant, inactivating spores within 2 h on surfaces with a light organic load, whereas SDF produced the greatest reduction of spores within 24 h on surfaces with a heavy organic load. PMID:24082400

  11. δ15N as a proxy for historic anthropogenic nitrogen loading in Charleston Harbor, SC, USA

    NASA Astrophysics Data System (ADS)

    Payne, T. N.; Andrus, C. F. T.

    2015-12-01

    Bivalve shell geochemistry can serve as a useful indicator of changes in coastal environments. There is increasing interest in developing paleoenvironmental proxies from mollusk shell organic components. Numerous studies have focused on how the δ15N obtained from bivalve tissues can be used to trace present-day wastewater input into estuaries. However, comparatively little attention has been paid to tracing the impact of anthropogenic nitrogen loading into estuaries over time. By measuring historic levels of δ15N in the organic fraction of oyster shells (Crassostrea virginica) from archaeological sites around Charleston Harbor and comparing those levels to the δ15N content of modern shells, it is possible to assess how nitrogen has fluctuated historically in the area. Whole-shell samples from the Late Archaic Period (~3000-4000 BP, Late Woodland Period (~1400-800 BP), 18th and 19th centuries, and modern controls were measured for %N and d15N. Evidence of increased anthropogenic input of N is expected to begin in the early historic period based on similar analysis in Chesapeake Bay. More ancient samples may give insight into baseline conditions prior to recent population growth and industrialization. This information could help understand how large-scale anthropogenic nitrogen loading has affected coastal ecosystems over time and guide future remediation. Furthermore, this project will help refine and improve this novel proxy of past environmental conditions.

  12. Atorvastatin along with imipenem attenuates acute lung injury in sepsis through decrease in inflammatory mediators and bacterial load.

    PubMed

    Choudhury, Soumen; Kandasamy, Kannan; Maruti, Bhojane Somnath; Addison, M Pule; Kasa, Jaya Kiran; Darzi, Sazad A; Singh, Thakur Uttam; Parida, Subhashree; Dash, Jeevan Ranjan; Singh, Vishakha; Mishra, Santosh Kumar

    2015-10-15

    Lung is one of the vital organs which is affected during the sequential development of multi-organ dysfunction in sepsis. The purpose of the present study was to examine whether combined treatment with atorvastatin and imipenem could attenuate sepsis-induced lung injury in mice. Sepsis was induced by caecal ligation and puncture. Lung injury was assessed by the presence of lung edema, increased vascular permeability, increased inflammatory cell infiltration and cytokine levels in broncho-alveolar lavage fluid (BALF). Treatment with atorvastatin along with imipenem reduced the lung bacterial load and pro-inflammatory cytokines (IL-1β and TNFα) level in BALF. The markers of pulmonary edema such as microvascular leakage and wet-dry weight ratio were also attenuated. This was further confirmed by the reduced activity of MPO and ICAM-1 mRNA expression, indicating the lesser infiltration and adhesion of inflammatory cells to the lungs. Again, expression of mRNA and protein level of iNOS in lungs was also reduced in the combined treatment group. Based on the above findings it can be concluded that, combined treatment with atorvastatin and imipenem dampened the inflammatory response and reduced the bacterial load, thus seems to have promising therapeutic potential in sepsis-induced lung injury in mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Determination of Optimum Sanitizer Levels for Prevention of Salmonella Cross-Contamination of Mature Round Tomatoes in a Laboratory Model Flume System.

    PubMed

    Sreedharan, Aswathy; Li, You; De, Jaysankar; Gutierrez, Alan; Silverberg, Rachael; Schneider, Keith R

    2017-09-01

    Salmonella has been reported to be involved in several foodborne illness outbreaks, many of which resulted from consumption of raw tomatoes. This research aimed to optimize and evaluate the concentration of free chlorine (hypochlorous acid [HOCl]) used as a sanitizer to prevent cross-contamination of tomatoes inoculated with a cocktail of five rifampin-resistant Salmonella enterica serovars in a laboratory-based model flume system. Organic load, prepared using sterilized Scotts Premium Topsoil, was added in different quantities to the flume wash water to simulate real-world packinghouse conditions. In a typical packinghouse operation utilizing a recirculating flume system, the organic matter washed from tomato surfaces accumulates over time. In this study, different concentrations (0, 25, 50, 75, and 100 ppm) of HOCl were used as sanitizers under three organic load conditions (0, 650, and 1,000 mg/L chemical oxygen demand). Results showed that 100 ppm of HOCl was necessary to prevent Salmonella cross-contamination of uninoculated tomatoes in the model flume system in the presence of organic loading. Also, when treated with 100 ppm of HOCl, Salmonella levels were reduced by >4.5 log CFU per tomato from inoculated tomatoes in the presence of organic load. At 75 ppm of HOCl, Salmonella cross-contamination was prevented, but only in the absence of organic loading. In studies in which plate counts were negative, whole tomato enrichment studies were performed. No cross-contamination of uninoculated tomatoes was recorded when 100 ppm of HOCl was used, even in the presence of high organic load (1,000 mg/L chemical oxygen demand). Although sanitizer application reduces contamination on tomato surfaces, the primary function of sanitizers in the wash water is to prevent cross-contamination.

  14. IS "RECLAIMED WATER AND BIOSOLIDS: BENEFITS AND HAZARDS" IT: "BIOACCULULATION AND FOODCHAIN CONTAMINATION IN TERRESTRIAL ECOSYSTEMS"

    EPA Science Inventory

    Biosolids are a complex mixture which contain both inorganic and organic adsorbents. Thus, addition of biosolids to soil not only increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) it alters the phytoavailability of these metals. This reduction in ph...

  15. Effect of fertilization on Soil Respiration and Belowground Macro-organic Matter in Spartina alternatflora Marsh Soils

    EPA Science Inventory

    Human activities and rising populations increase watershed nutrient loads, which may alter the structure and function of coastal wetlands. In a long-term fertilization experiment in the North Inlet-Winyah Bay Reserve (NI-WB, NERR) (SC) Spartina marsh system, we used a 2 X 2 facto...

  16. Secure and Robust Overlay Content Distribution

    ERIC Educational Resources Information Center

    Kang, Hun Jeong

    2010-01-01

    With the success of applications spurring the tremendous increase in the volume of data transfer, efficient and reliable content distribution has become a key issue. Peer-to-peer (P2P) technology has gained popularity as a promising approach to large-scale content distribution due to its benefits including self-organizing, load-balancing, and…

  17. The effect of organic loading rate and retention time on hydrogen production from a methanogenic CSTR.

    PubMed

    Pakarinen, O; Kaparaju, P; Rintala, J

    2011-10-01

    The possibility of shifting a methanogenic process for hydrogen production by changing the process parameters viz., organic loading rate (OLR) and hydraulic retention time (HRT) was evaluated. At first, two parallel semi-continuously fed continuously stirred tank reactors (CSTR) were operated as methanogenic reactors (M1 and M2) for 78 days. Results showed that a methane yield of 198-218 L/kg volatile solids fed (VS(fed)) was obtained when fed with grass silage at an OLR of 2 kgVS/m³/d and HRT of 30 days. After 78 days of operation, hydrogen production was induced in M2 by increasing the OLR from 2 to 10 kgVS/m³/d and shortening the HRT from 30 to 6 days. The highest H₂ yield of 42 L/kgVS(fed) was obtained with a maximum H₂ content of 24%. The present results thus demonstrate that methanogenic process can be shifted towards hydrogen production by increasing the OLR and decreasing HRT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: use of fluorescent in situ hybridization.

    PubMed

    Montero, B; García-Morales, J L; Sales, D; Solera, R

    2009-03-01

    Methanogenic activity in a thermophilic-dry anaerobic reactor was determined by comparing the amount of methane generated for each of the organic loading rates with the size of the total and specific methanogenic population, as determined by fluorescent in situ hybridization. A high correlation was evident between the total methanogenic activity and retention time [-0.6988Ln(x)+2.667] (R(2) 0.8866). The total methanogenic activity increased from 0.04x10(-8) mLCH(4) cell(-1)day(-1) to 0.38x10(-8) mLCH(4) cell(-1)day(-1) while the retention time decreased, augmenting the organic loading rates. The specific methanogenic activities of H(2)-utilizing methanogens and acetate-utilizing methanogens increased until they stabilised at 0.64x10(-8) mLCH(4) cell(-1)day(-1) and 0.33x10(-8) mLCH(4) cell(-1)day(-1), respectively. The methanogenic activity of H(2)-utilizing methanogens was higher than acetate-utilizing methanogens, indicating that maintaining a low partial pressure of hydrogen does not inhibit the acetoclastic methanogenesis or the anaerobic process.

  19. 3D-Printable Silicone Materials with Hydrogen Getter Capability

    DOE PAGES

    Ortiz-Acosta, Denisse; Moore, Tanya; Safarik, Douglas Joseph; ...

    2018-03-01

    Organic getters are used to reduce the amount of reactive hydrogen in applications such as nuclear plants and transuranic waste. Here, the present study examines the performance of getter loaded silicone elastomers in reducing reactive hydrogen gas from the gas phase and their capability of being 3D printed using direct ink writing techniques. The samples are placed in closed vessels and exposed to hydrogen atmosphere at pressures of 580 torr and 750 mtorr and at a temperature of 25 °C. The hydrogen consumption is measured as a function of time and normalized to getter concentration in the polymer. The performancemore » of the getter-loaded silicone elastomer containing 1,4-bis[phenylethynyl]benzene (DEB) as the organic getter and Pd/C catalyst (ratio of 3:1 DEB to catalyst) decreases with increasing the resin's curing temperature. Chemical analysis suggests that DEB reacts with the silicone resin at high temperatures. In addition, it is demonstrated that the increased surface area of 3D printed composites results in improved getter performance.« less

  20. Effects of organic loading rate on biogas production from macroalgae: Performance and microbial community structure.

    PubMed

    Sun, Meng-Ting; Fan, Xiao-Lei; Zhao, Xiao-Xian; Fu, Shan-Fei; He, Shuai; Manasa, M R K; Guo, Rong-Bo

    2017-07-01

    Macroalgae biomass has been considered as a promising feedstock for biogas production. In order to improve the efficiency of anaerobic digestion (AD) of macroalgae, semi-continuous fermentation was conducted to examine the effects of organic loading rate (OLR) on biogas production from Macrocystis pyrifer. Results showed that, under OLRs of 1.37, 2.74, 4.12 and 6.85kgVS substrate /(m 3 ·d), the average unit biogas yields were 438.9, 477.3, 480.1 and 188.7mL/(gVS substrate d), respectively. It indicated that biogas production was promoted by the increased OLR in an appropriate range while inhibited by the OLR beyond the appropriate range. The investigation on physical-chemical parameters revealed that unfavorable VFAs concentration, pH and salinity might be the main causes for system failure due to the overrange OLR, while the total phenols failed to reach the inhibitory concentration. Microbial community analysis demonstrated that several bacterial and archaeal phyla altered with increase in OLR apparently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude.

    PubMed

    Garfí, Marianna; Ferrer-Martí, Laia; Villegas, Vidal; Ferrer, Ivet

    2011-05-01

    Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 3D-Printable Silicone Materials with Hydrogen Getter Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Acosta, Denisse; Moore, Tanya; Safarik, Douglas Joseph

    Organic getters are used to reduce the amount of reactive hydrogen in applications such as nuclear plants and transuranic waste. Here, the present study examines the performance of getter loaded silicone elastomers in reducing reactive hydrogen gas from the gas phase and their capability of being 3D printed using direct ink writing techniques. The samples are placed in closed vessels and exposed to hydrogen atmosphere at pressures of 580 torr and 750 mtorr and at a temperature of 25 °C. The hydrogen consumption is measured as a function of time and normalized to getter concentration in the polymer. The performancemore » of the getter-loaded silicone elastomer containing 1,4-bis[phenylethynyl]benzene (DEB) as the organic getter and Pd/C catalyst (ratio of 3:1 DEB to catalyst) decreases with increasing the resin's curing temperature. Chemical analysis suggests that DEB reacts with the silicone resin at high temperatures. In addition, it is demonstrated that the increased surface area of 3D printed composites results in improved getter performance.« less

  3. Catalytic fast pyrolysis of durian rind using silica-alumina catalyst: Effects of pyrolysis parameters.

    PubMed

    Tan, Y L; Abdullah, A Z; Hameed, B H

    2018-05-18

    Silica-alumina catalyst was prepared and used in the catalytic fast pyrolysis of durian rind in a drop-type two-stage reactor. The effects of catalytic temperature (400 °C-600 °C) and catalyst-to-durian rind ratio (1:30-3:30) were evaluated. Bio-oil yield was increased with increased catalytic temperature due to considerable dehydration process, but it was reduced with high catalyst loading due to the overcracking of organics into light gases. Silica-alumina catalyst possessed good selectivity and the products changed according to the temperature. The major components in bio-oil were hydrocarbons, furan derivatives, and aromatic compounds at 400 °C, 500 °C, and 600 °C, respectively. The hydrogen and carbon contents of bio-oil were reduced with high catalyst loading due to the overcracking of organics, and the deoxygenation process became unfavorable. The silica-alumina catalyst worked well in catalytic fast pyrolysis of durian rind, and the condition may be adjusted based on the desired products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effects of organic loading rate on reactor performance and archaeal community structure in mesophilic anaerobic digesters treating municipal sewage sludge.

    PubMed

    Gómez, Eddie; Martin, Jay; Michel, Frederick C

    2011-11-01

    In this study, the organic loading rate (OLR) of a high-solids anaerobic digestion (HSAD) system was increased from 3.4 to 5.0 gVS L(-1) day(-1) and reactor stability, performance and microbial community structure were determined. Laboratory simulations (3.5 L) of the full-scale process (500 dry ton year(-1)) were conducted using continuously stirred-tank mesophilic reactors. OLRs of 3.4 gVS L(-1)day(-1) (equal to the full-scale HSAD), 4.0, 4.5 and 5.0 gVS L(-1)day(-1) were evaluated. Biochemical parameters and archaeal community dynamics were measured over 42 days of steady state operation. Results showed that increasing OLR increased the amount of organic matter conversion and resulted in higher organic matter removal and volumetric methane (CH₄) production (VMP) rates. The highest volatile solids (VS) removal and VMP results of 54 ± 2% and 1.4 ± 0.1 L CH₄ L(-1)day(-1) were observed for 5.0 gVS L(-1) day(-1). The efficiency of reactor conversion of organic matter to CH(4) was found to be similar in all the treatments with an average value of 0.57 ± 0.07 LCH(4) gVS(-1) (removed). 16S rRNA gene terminal restriction fragment polymorphism (T-RFLP) analyses revealed that archaeal TRFs remained stable during the experiment accounting for an average relative abundance (RA) of 81 ± 1%. Archaea consistent with multiple terminal restriction fragments (TRFs) included members of the Euryarchaeota and Crenarchaeota phyla, including acetoclastic and hydrogenotrophic groups. In conclusion, this laboratory-scale study suggests that performance and stability as well as the archaeal community structure in this HSAD system was unaffected by increasing the OLR by nearly 50% and that this increase resulted in a similar increase in the amount of CH(4) gas generated.

  5. Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan--a stable isotope approach.

    PubMed

    Miller, Todd W; Omori, Koji; Hamaoka, Hideki; Shibata, Jun-ya; Hidejiro, Onishi

    2010-10-01

    The Seto Inland Sea (SIS) receives waste runoff from ∼24% of Japan's total population, yet it is also important in regional fisheries, recreation and commerce. During August 2006 we measured carbon and nitrogen stable isotopes of particulate organic matter (POM) and zooplankton across urban population gradients of the SIS. Results showed a consistent trend of increasing δ(15)N in POM and zooplankton from the western to eastern subsystems of the SIS, corresponding to increasing population load. Principal components analysis of environmental variables indicated high positive loadings of δ(15)N and δ(13)C with high chlorophyll-a and surface water temperatures, and negative loadings of low salinities related to inputs from large rivers and high urban development in the eastern SIS. Anthropogenic nitrogen was therefore readily integrated into the SIS food web from primary production to copepods, which are a critical food source for many commercially important fishes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Food patterns and dietary quality associated with organic food consumption during pregnancy; data from a large cohort of pregnant women in Norway.

    PubMed

    Torjusen, Hanne; Lieblein, Geir; Næs, Tormod; Haugen, Margaretha; Meltzer, Helle Margrete; Brantsæter, Anne Lise

    2012-08-06

    Little is known about the consumption of organic food during pregnancy. The aim of this study was to describe dietary characteristics associated with frequent consumption of organic food among pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). The present study includes 63 808 women who during the years 2002-2007 answered two questionnaires, a general health questionnaire at gestational weeks 15 and a food frequency questionnaire at weeks 17-22. The exploration of food patterns by Principal component analyses (PCA) was followed by ANOVA analyses investigating how these food patterns as well as intake of selected food groups were associated with consumption of organic food. The first principal component (PC1) identified by PCA, accounting for 12% of the variation, was interpreted as a 'health and sustainability component', with high positive loadings for vegetables, fruit and berries, cooking oil, whole grain bread and cereal products and negative loadings for meat, including processed meat, white bread, and cakes and sweets. Frequent consumption of organic food, which was reported among 9.1% of participants (n = 5786), was associated with increased scores on the 'health and sustainability component' (p < 0.001). The increase in score represented approximately 1/10 of the total variation and was independent of sociodemographic and lifestyle characteristics. Participants with frequent consumption of organic food had a diet with higher density of fiber and most nutrients such as folate, beta-carotene and vitamin C, and lower density of sodium compared to participants with no or low organic consumption. The present study showed that pregnant Norwegian women reporting frequent consumption of organically produced food had dietary pattern and quality more in line with public advice for healthy and sustainable diets. A methodological implication is that the overall diet needs to be included in future studies of potential health outcomes related to consumption of organic food during pregnancy.

  7. Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate.

    PubMed

    Moestedt, Jan; Müller, Bettina; Westerholm, Maria; Schnürer, Anna

    2016-03-01

    Biogas production from nitrogen-rich feedstock results in release of ammonia (NH3), causing inhibition of the microbial process. The reported threshold ammonia value for stable biogas production varies greatly between studies, probably because of differences in operating conditions. Moreover, it is often difficult to separate the effect of ammonia inhibition from that of organic loading rate (OLR), as these two factors are often interrelated. This study attempted to distinguish the effects of ammonia and OLR by analysis of two laboratory-scale biogas reactors operating with thin stillage and subjected to an increase in free ammonia (from 0.30 to 1.1 g L(-1)) either by addition of an external nitrogen source (urea) or by increasing the OLR (3.2-6.0 g volatile solids L(-1) d(-1)). The results showed that ammonia concentration was detrimental for process performance, with the threshold for stability in both processes identified as being about 1 g NH3-N L(-1), irrespective of OLR. Analysis of the methanogenic community showed limited differences between the two reactors on order level and a clear increase in the abundance of Methanomicrobiales, particularly Methanoculleus sp., in response to increasing ammonia concentration. Further comprehensive molecular analysis revealed that diverse Methanoculleus species dominated in the reactors at a given ammonia level at different OLR. The acetogenic community was clearly affected by both ammonia concentration and OLR, suggesting that the volatile fatty acid load in relation to the higher OLR was important for the dynamics of this community. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Seasonal and flow-driven dynamics of particulate and dissolved mercury and methylmercury in a stream impacted by an industrial mercury source

    DOE PAGES

    Riscassi, Ami; Miller, Carrie; Brooks, Scott

    2015-11-17

    Sediments and floodplain soils in the East Fork Poplar Creek watershed (Oak Ridge, TN, USA) are contaminated with high levels of mercury (Hg) from an industrial source at the headwaters. Although baseflow conditions have been monitored, concentrations of Hg and methylmercury (MeHg) during high-flow storm events, when the stream is more hydrologically connected to the floodplain, have yet to be assessed. This paper evaluated baseflow and event-driven Hg and MeHg dynamics in East Fork Poplar Creek, 5 km upstream of the confluence with Poplar Creek, to determine the importance of hydrology to in-stream concentrations and downstream loads and to ascertainmore » whether the dynamics are comparable to those of systems without an industrial Hg source. Particulate Hg and MeHg were positively correlated with discharge (r 2 = 0.64 and 0.58, respectively) and total suspended sediment (r 2 = 0.97 and 0.89, respectively), and dissolved Hg also increased with increasing flow (r 2 = 0.18) and was associated with increases in dissolved organic carbon (r 2 = 0.65), similar to the dynamics observed in uncontaminated systems. Dissolved MeHg decreased with increases in discharge (r 2 = 0.23) and was not related to dissolved organic carbon concentrations (p = 0.56), dynamics comparable to relatively uncontaminated watersheds with a small percentage of wetlands (<10%). Finally, although stormflows exert a dominant control on particulate Hg, particulate MeHg, and dissolved Hg concentrations and loads, baseflows were associated with the highest dissolved MeHg concentration (0.38 ng/L) and represented the majority of the annual dissolved MeHg load.« less

  9. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A.V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for concentrations of nitrate, ammonia-plus-organic nitrogen, and orthophosphate. The data departed from the expected relations for concentrations of phosphorus and suspended sediment, and plausible explanations for these departures were posited. Snowmelt concentrations of dissolved constituents generally were greater and those of particulate constituents were less than concentrations of these constituents in storm runoff. Presumably, the snowpack acted as a short-term sink for dissolved constituents that had accumulated from atmospheric deposition, and streambed erosion and resuspension of previously deposited material, rather than land-surface erosion, were the primary sources of particulate constituents in snowmelt flows. Longitudinal assessments documented the changes in the median concentrations of constituents in base flows and event flows (combined stormflow and snowmelt) from upstream to downstream monitoring sites along the two major tributaries to Onondaga Lake - Onondaga Creek and Ninemile Creek. Median base-flow concentrations of ammonia and phosphorus and event concentrations of ammonia increased in the downstream direction in both streams. Whereas median event concentrations of other constituents in Onondaga Creek displayed no consistent trends, concentrations of ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment in Ninemile Creek decreased from upstream to downstream sites. Springs discharging from the Onondaga and Bertie Limestone had measureable effects on water temperatures in the receiving streams and increased salinity and values of specific conductance in base flows. Loads of selected nutrients and suspended sediment transported in three tributaries of Otisco Lake were compared with loads from 1981-83. Loads of ammonia-plus-organic nitrogen and orthophosphate decreased from 1981-83 to 2005-08, but those of nitrate-plus-nitrite, phosphorus, and suspended sediment increased. The largest load increase was for suspende

  10. Tracing organic and inorganic pollution sources of soils and water resources in Güzelhisar Basin of Aegean Region, Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Kurucu, Yusuf; Anac, Dilek; Düring, Rolf-Alexander

    2017-04-01

    This study was carried out to determine the residue level of major concern organic and inorganic pollutants in Güzelhisar Basin of Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel mills, but also areas of agriculture. Soil samples were collected from GPS determined points at 0-30 and 30-60 cm depth of a grid system of 2.5 km to the east and 2.5 km to the west of the Güzelhisar stream. The area was grouped into three main areas as West, Middle, and East region. Water and sediment samples were collected from the Güzelhisar stream and from Güzelhisar dam every 30 kilometers which is already contaminated due to industrial facilities in Aliaga, is used to irrigate the agricultural land. Soil pH of the research area was determined within the range from 5.87 to 6.61. Topsoil contamination was examined for all investigated elements with the exception of Cd. An increase in pseudo total metal contents of Cr, Cu, Mn, Ni, and Zn was observed with increasing distance from the coast with a simultaneous decrease in pH. Due to the analysis of the organic pollutants, a continuous load with the herbicide trifluralin was determined with a few clearly raised points to a possible load of the stream water. Although HCH-Isomers were not found, DDT (DDT and transformation products) residues were ascertained in the soil samples. With regard to the analysis of the water samples of the Güzelhisar stream and dam, a background load with trifluralin was found which is to be explained with transport processes with regard to utilization of trifluralin in the agricultural areas.

  11. Sensitivity of Aerosol Mass and Microphysics to varying treatments of Condensational Growth of Secondary Organic Compounds in a regional model

    NASA Astrophysics Data System (ADS)

    Lowe, Douglas; Topping, David; McFiggans, Gordon

    2017-04-01

    Gas to particle partitioning of atmospheric compounds occurs through disequilibrium mass transfer rather than through instantaneous equilibrium. However, it is common to treat only the inorganic compounds as partitioning dynamically whilst organic compounds, represented by the Volatility Basis Set (VBS), are partitioned instantaneously. In this study we implement a more realistic dynamic partitioning of organic compounds in a regional framework and assess impact on aerosol mass and microphysics. It is also common to assume condensed phase water is only associated with inorganic components. We thus also assess sensitivity to assuming all organics are hygroscopic according to their prescribed molecular weight. For this study we use WRF-Chem v3.4.1, focusing on anthropogenic dominated North-Western Europe. Gas-phase chemistry is represented using CBM-Z whilst aerosol dynamics are simulated using the 8-section MOSAIC scheme, including a 9-bin VBS treatment of organic aerosol. Results indicate that predicted mass loadings can vary significantly. Without gas phase ageing of higher volatility compounds, dynamic partitioning always results in lower mass loadings downwind of emission sources. The inclusion of condensed phase water in both partitioning models increases the predicted PM mass, resulting from a larger contribution from higher volatility organics, if present. If gas phase ageing of VBS compounds is allowed to occur in a dynamic model, this can often lead to higher predicted mass loadings, contrary to expected behaviour from a simple non-reactive gas phase box model. As descriptions of aerosol phase processes improve within regional models, the baseline descriptions of partitioning should retain the ability to treat dynamic partitioning of organics compounds. Using our simulations, we discuss whether derived sensitivities to aerosol processes in existing models may be inherently biased. This work was supported by the Natural Environment Research Council within the RONOCO (NE/F004656/1) and CCN-Vol (NE/L007827/1) projects.

  12. Sensitivity of Aerosol Mass and Microphysics to Treatments of Condensational Growth of Secondary Organic Compounds in a Regional Model

    NASA Astrophysics Data System (ADS)

    Topping, D. O.; Lowe, D.; McFiggans, G.; Zaveri, R. A.

    2016-12-01

    Gas to particle partitioning of atmospheric compounds occurs through disequilibrium mass transfer rather than through instantaneous equilibrium. However, it is common to treat only the inorganic compounds as partitioning dynamically whilst organic compounds, represented by the Volatility Basis Set (VBS), are partitioned instantaneously. In this study we implement a more realistic dynamic partitioning of organic compounds in a regional framework and assess impact on aerosol mass and microphysics. It is also common to assume condensed phase water is only associated with inorganic components. We thus also assess sensitivity to assuming all organics are hygroscopic according to their prescribed molecular weight.For this study we use WRF-Chem v3.4.1, focusing on anthropogenic dominated North-Western Europe. Gas-phase chemistry is represented using CBM-Z whilst aerosol dynamics are simulated using the 8-section MOSAIC scheme, including a 9-bin volatility basis set (VBS) treatment of organic aerosol. Results indicate that predicted mass loadings can vary significantly. Without gas phase ageing of higher volatility compounds, dynamic partitioning always results in lower mass loadings downwind of emission sources. The inclusion of condensed phase water in both partitioning models increases the predicted PM mass, resulting from a larger contribution from higher volatility organics, if present. If gas phase ageing of VBS compounds is allowed to occur in a dynamic model, this can often lead to higher predicted mass loadings, contrary to expected behaviour from a simple non-reactive gas phase box model. As descriptions of aerosol phase processes improve within regional models, the baseline descriptions of partitioning should retain the ability to treat dynamic partitioning of organic compounds. Using our simulations, we discuss whether derived sensitivities to aerosol processes in existing models may be inherently biased.This work was supported by the Nature Environment Research Council within the RONOCO (NE/F004656/1) and CCN-Vol (NE/L007827/1) projects.

  13. Tuning the Catalytic Activity of Subcellular Nanoreactors.

    PubMed

    Jakobson, Christopher M; Chen, Yiqun; Slininger, Marilyn F; Valdivia, Elias; Kim, Edward Y; Tullman-Ercek, Danielle

    2016-07-31

    Bacterial microcompartments are naturally occurring subcellular organelles of bacteria and serve as a promising scaffold for the organization of heterologous biosynthetic pathways. A critical element in the design of custom biosynthetic organelles is quantitative control over the loading of heterologous enzymes to the interior of the organelles. We demonstrate that the loading of heterologous proteins to the 1,2-propanediol utilization microcompartment of Salmonella enterica can be controlled using two strategies: by modulating the transcriptional activation of the microcompartment container and by coordinating the expression of the microcompartment container and the heterologous cargo. These strategies allow general control over the loading of heterologous proteins localized by two different N-terminal targeting peptides and represent an important step toward tuning the catalytic activity of bacterial microcompartments for increased biosynthetic productivity. Copyright © 2016. Published by Elsevier Ltd.

  14. Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8

    DOE PAGES

    Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; ...

    2014-03-28

    Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of frameworkmore » force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.« less

  15. The effect of trace element addition to mono-digestion of grass silage at high organic loading rates.

    PubMed

    Wall, David M; Allen, Eoin; Straccialini, Barbara; O'Kiely, Padraig; Murphy, Jerry D

    2014-11-01

    This study investigated the effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Two continuous reactors were compared. The first mono-digested grass silage whilst the second operated in co-digestion, 80% grass silage with 20% dairy slurry (VS basis). The reactors were run for 65weeks with a further 5weeks taken for trace element supplementation for the mono-digestion of grass silage. The co-digestion reactor reported a higher biomethane efficiency (1.01) than mono-digestion (0.90) at an OLR of 4.0kgVSm(-3)d(-1) prior to addition of trace elements. Addition of cobalt, iron and nickel, led to an increase in the SMY in mono-digestion of grass silage by 12% to 404LCH4kg(-1)VS and attained a biomethane efficiency of 1.01. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterization of active hair-bundle motility by a mechanical-load clamp

    NASA Astrophysics Data System (ADS)

    Salvi, Joshua D.; Maoiléidigh, Dáibhid Ó.; Fabella, Brian A.; Tobin, Mélanie; Hudspeth, A. J.

    2015-12-01

    Active hair-bundle motility endows hair cells with several traits that augment auditory stimuli. The activity of a hair bundle might be controlled by adjusting its mechanical properties. Indeed, the mechanical properties of bundles vary between different organisms and along the tonotopic axis of a single auditory organ. Motivated by these biological differences and a dynamical model of hair-bundle motility, we explore how adjusting the mass, drag, stiffness, and offset force applied to a bundle control its dynamics and response to external perturbations. Utilizing a mechanical-load clamp, we systematically mapped the two-dimensional state diagram of a hair bundle. The clamp system used a real-time processor to tightly control each of the virtual mechanical elements. Increasing the stiffness of a hair bundle advances its operating point from a spontaneously oscillating regime into a quiescent regime. As predicted by a dynamical model of hair-bundle mechanics, this boundary constitutes a Hopf bifurcation.

  17. Simulation of systems for shock wave/compression waves damping in technological plants

    NASA Astrophysics Data System (ADS)

    Sumskoi, S. I.; Sverchkov, A. M.; Lisanov, M. V.; Egorov, A. F.

    2016-09-01

    At work of pipeline systems, flow velocity decrease can take place in the pipeline as a result of the pumps stop, the valves shutdown. As a result, compression waves appear in the pipeline systems. These waves can propagate in the pipeline system, leading to its destruction. This phenomenon is called water hammer (water hammer flow). The most dangerous situations occur when the flow is stopped quickly. Such urgent flow cutoff often takes place in an emergency situation when liquid hydrocarbons are being loaded into sea tankers. To prevent environment pollution it is necessary to stop the hydrocarbon loading urgently. The flow in this case is cut off within few seconds. To prevent an increase in pressure in a pipeline system during water hammer flow, special protective systems (pressure relief systems) are installed. The approaches to systems of protection against water hammer (pressure relief systems) modeling are described in this paper. A model of certain pressure relief system is considered. It is shown that in case of an increase in the intensity of hydrocarbons loading at a sea tanker, presence of the pressure relief system allows to organize safe mode of loading.

  18. A study of competitive adsorption of organic molecules onto mineral oxides using DRIFTS

    DOE PAGES

    Joan E. Thomas; Kelley, Michael J.

    2009-10-20

    In this study, analysis of DRIFTS spectra was used for a quantitative study of competitive adsorption of myristic and salicylic acids onto kaolinite or γ-alumina. Peaks unique to the ring or the chain were selected and single molecule studies used as calibration. Samples were exposed to hexane solution containing equal molecular quantities of each acid. The surface loading of salicylic acid was not influenced by the presence of myristic acid on either mineral but the maximum loading of myristic acid was decreased (46-50%) by salicylic acid. Displacement of myristic acid from {gamma}-alumina, but not kaolinite, was observed when excess salicylicmore » acid remained in solution. A 25% increase in the maximum loading was observed for kaolinite, but not for{gamma}-alumina. On {gamma}-alumina, after a loading of 1 molecule per nm 2, increased exposure resulted in salicylic acid adsorption only, this value is approximately the same for salicylic acid adsorption from aqueous solution or for water washed hexane treated samples. Thus a set of sites for adsorption of either acid is indicated together with other energetically less favorable sites, which can be occupied by salicylic, but not by myristic, acid.« less

  19. A single-stage biological process for municipal sewage treatment in tourist areas.

    PubMed

    Di Iaconi, C; De Sanctis, M; Lopez, A

    2014-11-01

    This pilot scale study aims to test the effectiveness of an innovative compact biological system (SBBGR - Sequencing Batch Biofilter Granular Reactor) for treating municipal wastewater in tourist areas characterised by intense seasonal water demand and wastewater discharge. The results obtained after a long term operation of 463 days have shown that the proposed system is able to assure average removal efficiencies higher than 90% for COD (chemical oxygen demand), total suspended solids and TKN (total Kjeldahl nitrogen) independently of the influent concentration values and organic loading, which ranged from 0.2 to 5.1 kgCOD/m(3)biofilter.d Furthermore, the plant showed a high degree of operation flexibility and stability in response to the organic load variations occurring in tourist areas. In fact, no significant deterioration in the plant's effluent quality was observed even during a sudden several-fold increase in organic loading. High nitrogen removal efficiencies (80%, on average) were also achieved thanks to the establishment of simultaneous nitrification-denitrification process favoured by the plant's high biomass concentration and operating conditions. Finally, the system was characterized by an excess sludge production much lower (60-80% lower) than that of conventional biological systems operating without a primary clarifier. An acceptable level of stabilization of excess sludge was also obtained so that a further stabilization process was no longer required. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of Impaction Sequence on Osteochondral Graft Damage: The Role of Repeated and Varying Loads

    PubMed Central

    Kang, Richard W.; Friel, Nicole A.; Williams, James M.; Cole, Brian J.; Wimmer, Markus A.

    2013-01-01

    Background Osteochondral autografts and allografts require mechanical force for proper graft placement into the defect site; however, impaction compromises the tissue. This study aimed to determine the effect of impaction force and number of hits to seat the graft on cartilage integrity. Hypothesis Under constant impulse conditions, higher impaction load magnitudes are more detrimental to cell viability, matrix integrity and collagen network organization and will result in proteoglycan loss and nitric oxide release. Study Design Controlled laboratory study Methods Osteochondral explants, harvested from fresh bovine trochleas, were exposed to a series of consistent impact loads delivered by a pneumatically driven device. Each plug received the same overall impulse of 7 Ns, reflecting the mean of 23 clinically inserted plugs. Impaction loads of 37.5N, 75N, 150N, and 300N were matched with 74, 37, 21, and 11 hits respectively. Following impaction, the plugs were harvested and cartilage was analyzed for cell viability, histology by safranin-o and picosirius red, and release of sulfated glycosaminoglycans and nitric oxide. Data were compared with non-impacted control. Results Impacted plugs had significantly lower cell viability than non-impacted plugs. A dose response relationship in loss of cell viability with respect to load magnitude was seen immediately and after 4 days but lost after 8 days. Histologic analysis revealed intact cartilage surface in all samples (loaded or control), with loaded samples showing alterations in birefringence. While the sulfated GAG release was similar across varying impaction loads, release of nitric oxide increased with increasing impaction magnitudes and time. Conclusions Impaction loading parameters have a direct effect on the time course of the viability of the cartilage in the graft tissue. Clinical Relevance Optimal loading parameters for surgical impaction of osteochondral grafts are those with lower load magnitudes and a greater number of hits to ensure proper fit. PMID:19915099

  1. Evaluating the impact of water supply strategies on p-xylene biodegradation performance in an organic media-based biofilter.

    PubMed

    Gallastegui, G; Muñoz, R; Barona, A; Ibarra-Berastegi, G; Rojo, N; Elías, A

    2011-01-30

    The influence of water irrigation on both the long-term and short-term performance of p-xylene biodegradation under several organic loading scenarios was investigated using an organic packing material composed of pelletised sawdust and pig manure. Process operation in a modular biofilter, using no external water supply other than the moisture from the saturated inlet air stream, showed poor p-xylene abatement efficiencies (≈33 ± 7%), while sustained irrigation every 25 days rendered a high removal efficiency (RE) for a critical loading rate of 120 g m(-3)h(-1). Periodic profiles of removal efficiency, temperature and moisture content were recorded throughout the biofilter column subsequent to each biofilter irrigation. Hence, higher p-xylene biodegradation rates were always initially recorded in the upper module, which resulted in a subsequent increase in temperature and a decrease in moisture content. This decrease in the moisture content in the upper module resulted in a higher removal rate in the middle module, while the moisture level in the lower module steadily increased as a result of water condensation. Based on these results, mass balance calculations performed using measured bed temperatures and relatively humidity values were successfully used to account for water balances in the biofilter over time. Finally, the absence of bed compaction after 550 days of continuous operation confirmed the suitability of this organic material for biofiltration processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Tolerance of Artemia to static and shock pressure loading

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, B. C.; Appleby-Thomas, G. J.; Painter, J. D.; Ono, F.; McMillan, P. F.; Hazael, R.; Meersman, F.

    2017-10-01

    Hydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive.

  3. Modeling the Relative Importance of Nutrient and Carbon Loads, Boundary Fluxes, and Sediment Fluxes on Gulf of Mexico Hypoxia.

    PubMed

    Feist, Timothy J; Pauer, James J; Melendez, Wilson; Lehrter, John C; DePetro, Phillip A; Rygwelski, Kenneth R; Ko, Dong S; Kreis, Russell G

    2016-08-16

    The Louisiana continental shelf in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In this study, we applied a biogeochemical model that simulates dissolved oxygen concentrations on the shelf in response to varying riverine nutrient and organic carbon loads, boundary fluxes, and sediment fluxes. Five-year model simulations demonstrated that midsummer hypoxic areas were most sensitive to riverine nutrient loads and sediment oxygen demand from settled organic carbon. Hypoxic area predictions were also sensitive to nutrient and organic carbon fluxes from lateral boundaries. The predicted hypoxic area decreased with decreases in nutrient loads, but the extent of change was influenced by the method used to estimate model boundary concentrations. We demonstrated that modeling efforts to predict changes in hypoxic area on the continental shelf in relationship to changes in nutrients should include representative boundary nutrient and organic carbon concentrations and functions for estimating sediment oxygen demand that are linked to settled organic carbon derived from water-column primary production. On the basis of our model analyses using the most representative boundary concentrations, nutrient loads would need to be reduced by 69% to achieve the Gulf of Mexico Nutrient Task Force Action Plan target hypoxic area of 5000 km(2).

  4. Comparison of Standardized Cytomegalovirus (CMV) Viral Load Thresholds in Whole Blood and Plasma of Solid Organ and Hematopoietic Stem Cell Transplant Recipients with CMV Infection and Disease.

    PubMed

    Dioverti, M Veronica; Lahr, Brian D; Germer, Jeffrey J; Yao, Joseph D; Gartner, Michelle L; Razonable, Raymund R

    2017-01-01

    Quantification of cytomegalovirus (CMV) deoxyribonucleic acid (DNA) has important diagnostic, prognostic, and therapeutic implications in the management of transplant recipients. We aimed to assess a viral load in plasma and whole blood that distinguishes CMV disease from asymptomatic infection in a cohort of solid organ and hematopoietic stem cell transplantation. We prospectively measured and compared CMV viral load in paired plasma and whole blood samples collected from transplant recipients with CMV infection and disease. Cytomegalovirus viral loads were determined by a commercially available US Food and Drug Administration-approved quantitative assay (COBAS AmpliPrep/COBAS TaqMan CMV Test [CAP/CTM CMV]) calibrated to the first World Health Organization International Standard for CMV DNA quantification. Moderate agreement of CMV viral load was observed between plasma and whole blood, with 31% of samples having discordant findings, particularly among samples with low DNA levels. Among the subset of samples where both paired samples had quantifiable levels, we observed a systematic bias that reflected higher viral load in whole blood compared with plasma. Based on receiver operating curve analysis, an initial plasma CMV viral load threshold of 1700 IU/mL in solid organ transplant recipients (sensitivity 80%, specificity 74%) and 1350 IU/mL in allogeneic hematopoietic stem cell transplant recipients (sensitivity 87%, specificity 87%) distinguished CMV disease and asymptomatic infection. This study identifies standardized viral load thresholds that distinguish CMV disease from asymptomatic infection using CAP/CTM CMV assay. We propose these thresholds as potential triggers to be evaluated in prospective studies of preemptive therapy. Plasma was better than whole blood for measuring viral load using the CAP/CTM CMV assay.

  5. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    PubMed Central

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment, inventory, and exposure purposes. PMID:25722535

  6. Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture

    PubMed Central

    Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC

    2014-01-01

    Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441

  7. Organic carbon and nitrogen concentrations and annual organic carbon load of six selected rivers of the United States

    USGS Publications Warehouse

    Malcolm, R.L.; Durum, W.H.

    1976-01-01

    The organic carbon load during 1969-70 of each of the six rivers in this study is substantial. The 3.4-billion-kilogram (3.7-million-ton) and 47-million-kilogram (52-thousandton) annual organic carbon loads of the Mississippi River and the Brazos River (Tex.), respectively, were approximately equally distributed between dissolved and suspended phases, whereas the 725-million-kilogram (79.8-million-ton) organic load of the Missouri River was primarily in the suspended phase. The major portion of the 6.4-million-kilogram (7.3 thousand-ton) and the 19-million-kilogram (21-thousand-ton) organic carbon loads of the Sopchoppy River (Fla.) and the Neuse River (N.C.), respectively, was in the dissolved phase. DOC (dissolved organic carbon) concentrations in most rivers were usually less than 8 milligrams per litre. SOC (suspended organic carbon) concentrations fluctuated markedly with discharge, ranging between 1 and 14 percent, by weight, in sediment of most rivers. DOC concentrations were found to be independent of discharge, whereas SOC and SIC (suspended inorganic carbon) concentrations were positively correlated with discharge. Seasonal fluctuations in DOC and SOC were exhibited by the Missouri, Neuse, Ohio, and Brazos Rivers, but both SOC and DOC concentrations were relatively constant throughout the year in the Mississippi and Sopchoppy Rivers. The carbon-nitrogen ratio in the sediment phase of all river waters averaged less than 8 1 as compared with 12:1 or greater for most soils. This high nitrogen content shows a nitrogen enrichment of the stream sediment over that in adjacent soils, which suggests that different decomposition and humification processes are operating in streams than in the soils. The abundance of organic material in the dissolved and suspended phase of all river waters in this study indicate a large capacity factor for various types of organic reactivity within all streams and the quantitative importance of organic constituents in relation to the water quality of rivers and streams.

  8. [Temporal-spatial distribution of agricultural diffuse nitrogen pollution and relationship with soil respiration and nitrification].

    PubMed

    Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun

    2014-06-01

    The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.

  9. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems.

    PubMed

    Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell

    2016-10-01

    The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Treatment of phenolic wastewater in an anaerobic fixed bed reactor (AFBR) - recovery after shock loading.

    PubMed

    Bajaj, Mini; Gallert, Claudia; Winter, Josef

    2009-03-15

    An anaerobic fixed bed reactor (AFBR) was run for 550 days with a mixed microbial flora to stabilize synthetic wastewater that contained glucose and phenol as main carbon sources. The influent phenol concentration was gradually increased from 2 to 40 mmol/l within 221 days. The microbial flora was able to adapt to this high phenol concentration with an average of 94% phenol removal. Microbial adaptation at such a high phenol concentration is not reported elsewhere. The maximum phenol removal observed before the phenol shock load was 39.47 mmol/l or 3.7 g phenol/l at a hydraulic retention time (HRT) of 2.5 days and an organic loading rate (OLR) of 5.3 g/l.d which amounts to a phenol removal rate of ca. 15.8 mmol phenol/l.d. The chemical oxygen demand (COD) removal before exposing the reactor to a shock load corresponded with phenol removal. A shock load was induced in the reactor by increasing the phenol concentration from 40 to 50 mmol/l in the influent. The maximum phenol removal rate observed after shock load was 18 mmol/l.d at 5.7 g COD/l.d. But this was not a stable rate and a consistent drop in COD and phenol removal was observed for 1 week, followed by a sharp decline and production of fatty acids. Recovery of the reactor was possible only when no feed was provided to the reactor for 1 month and the phenol concentration was increased gradually. When glucose was omitted from the influent, unknown intermediates of anaerobic phenol metabolism were observed for some time.

  11. Four dimensional X-ray imaging of deformation modes in organic-rich Green River Shale retorted under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Kobchenko, M.; Pluymakers, A.; Cordonnier, B.; Tairova, A.; Renard, F.

    2017-12-01

    Time-lapse imaging of fracture network development in organic-rich shales at elevated temperatures while kerogen is retorted allows characterizing the development of microfractures and the onset of primary migration. When the solid organic matter is transformed to hydrocarbons with lower molecular weight, the local pore-pressure increases and drives the propagation of hydro-fractures sub-parallel to the shale lamination. On the scale of samples of several mm size, these fractures can be described as mode I opening, where fracture walls dilate in the direction of minimal compression. However, so far experiments coupled to microtomography in situ imaging have been performed on samples where no load was imposed. Here, an external load was applied perpendicular to the sample laminations and we show that this stress state slows down, but does not stop, the propagation of fracture along bedding. Conversely, microfractures also propagate sub-perpendicular to the shale lamination, creating a percolating network in three dimensions. To monitor this process we have used a uniaxial compaction rig combined with in-situ heating from 50 to 500 deg C, while capturing three-dimensional X-ray microtomography scans at a voxel resolution of 2.2 μm; Data were acquired at beamline ID19 at the European Synchrotron Radiation Facility. In total ten time-resolved experiments were performed at different vertical loading conditions, with and without lateral passive confinement and different heating rates. At high external load the sample fails by symmetric bulging, while at lower external load the reaction-induced fracture network develops with the presence of microfractures both sub-parallel and sub-perpendicular to the bedding direction. In addition, the variation of experimental conditions allows the decoupling of the effects of the hydrocarbon decomposition reaction on the deformation process from the influence of thermal stress heating on the weakening and failure mode of immature shale.

  12. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn; Wang Wei; Shi Yunchun

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practicalmore » approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.« less

  13. A biogeochemical comparison of two well-buffered catchments with contrasting histories of acid deposition

    USGS Publications Warehouse

    Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.

    2004-01-01

    Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.

  14. Competitive effects of humic acid and wastewater on adsorption of Methylene Blue dye by activated carbon and non-imprinted polymers.

    PubMed

    Murray, Audrey; Örmeci, Banu

    2018-04-01

    Natural organic matter (NOM), present in natural waters and wastewater, decreases adsorption of micropollutants, increasing treatment costs. This research investigated mechanisms of competition for non-imprinted polymers (NIPs) and activated carbon with humic acid and wastewater. Three different types of activated carbons (Norit PAC 200, Darco KB-M, and Darco S-51) were used for comparison with the NIP. The lower surface area and micropore to mesopore ratio of the NIP led to decreased adsorption capacity in comparison to the activated carbons. In addition, experiments were conducted for single-solute adsorption of Methylene Blue (MB) dye, simultaneous adsorption with humic acid and wastewater, and pre-loading with humic acid and wastewater followed by adsorption of MB dye using NIP and Norit PAC 200. Both the NIP and PAC 200 showed significant decreases of 27% for NIP (p=0.087) and 29% for PAC 200 (p=0.096) during simultaneous exposure to humic acid and MB dye. There was no corresponding decrease for NIP or PAC 200 pre-loaded with humic acid and then exposed to MB. In fact, for PAC 200, the adsorption capacity of the activated carbon increased when it was pre-loaded with humic acid by 39% (p=0.0005). For wastewater, the NIP showed no significant increase or decrease in adsorption capacity during either simultaneous exposure or pre-loading. The adsorption capacity of PAC 200 increased by 40% (p=0.001) for simultaneous exposure to wastewater and MB. Pre-loading with wastewater had no effect on MB adsorption by PAC 200. Copyright © 2017. Published by Elsevier B.V.

  15. Serial completely stirred tank reactors for improving biogas production and substance degradation during anaerobic digestion of corn stover.

    PubMed

    Li, YuQian; Liu, ChunMei; Wachemo, Akiber Chufo; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Li, XiuJin

    2017-07-01

    Several completely stirred tank reactors (CSTR) connected in series for anaerobic digestion of corn stover were investigated in laboratory scale. Serial anaerobic digestion systems operated at a total HRT of 40days, and distribution of HRT are 10+30days (HRT10+30d), 20+20days (HRT20+20d), and 30+10days (HRT30+10d) were compared to a conventional one-step CSTR at the same HRT of 40d. The results showed that in HRT10+30d serial system, the process became very unstable at organic load of 50gTS·L -1 . The HRT20+20d and HRT30+10d serial systems improved methane production by 8.3-14.6% compared to the one-step system in all loads of 50, 70, 90gTS·L -1 . The conversion rates of total solid, cellulose, and hemicellulose were increased in serial anaerobic digestion systems compared to single system. The serial systems showed more stable process performance in high organic load. HRT30+10d system showed the best biogas production and conversions among all systems. Copyright © 2017. Published by Elsevier Ltd.

  16. Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater.

    PubMed

    Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet

    2006-10-15

    Complex oily wastewater from a food industry was treated in three different UASB reactors at different operating conditions. Although all three systems achieved fat, oil, and grease (FOG) and COD removal efficiencies above 80% at an organic loading of 3 kg COD/m3 x d, system performance deteriorated sharply at higher loading rates, and the presence of high FOG caused a severe sludge flotation resulting in failure. Initially, FOG accumulated onto the biomass which led to sludge flotation and washout of biomass. The loss of sludge in the bed increased the FOG loading to the biomass and failure ensued. Contrary to previous findings, accumulation of FOG rather than influent FOG concentrations or volumetric FOG loading rate was the most importantfactor governing the high-rate anaerobic reactor performance. The critical accumulated FOG loading was identified as 1.04 +/- 0.13 g FOG/g VSS for all three reactors. Furthermore, FOG accumulation onto the biomass was identified mainly as palmitic acid (>60%) whereas the feed LCFA contained only 30% of palmitic acid and 50% of oleic acid.

  17. ACHIEVING THE PROMISE OF THERAPEUTIC EXTRACELLULAR VESICLES: THE DEVIL IS IN DETAILS OF THERAPEUTIC LOADING

    PubMed Central

    Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Phelps, Mitch A.; Schmittgen, Thomas D.

    2017-01-01

    Extracellular vesicles (EVs) represent a class of cell secreted organelles which naturally contain biomolecular cargo such as miRNA, mRNA and proteins. EVs mediate intercellular communication, enabling the transfer of functional nucleic acids from the cell of origin to the recipient cells. In addition, EVs make an attractive delivery vehicle for therapeutics owing to their increased stability in circulation, biocompatibility, low immunogenicity and toxicity profiles. EVs can also be engineered to display targeting moieties on their surfaces which enables targeting to desired tissues, organs or cells. While much has been learned on the role of EVs as cell communicators, the field of therapeutic EV application is currently under development. Critical to the future success of EV delivery system is the description of methods by which therapeutics can be successfully and efficiently loaded within the EVs. Two methods of loading of EVs with therapeutic cargo exist, endogenous and exogenous loading. We have therefore focused this review on describing the various published approaches for loading EVs with therapeutics. PMID:28315083

  18. Integrating Markets to Bridge Supply and Demand for Knowledge Intensive Tasks

    NASA Astrophysics Data System (ADS)

    Overbeek, Sietse; Janssen, Marijn; van Bommel, Patrick

    The advent of the knowledge-based economy has underlined the importance of intellectual capital that is possessed by knowledge intensive organizations. Three general observations of knowledge intensive work produced by actors working in such organizations served as the basis for the initiation of this research. First, knowledge intensive tasks become increasingly complex. Second, actors that perform such tasks experience an increase in cognitive load. Third, the desired quality of task performance and the produced task results are at stake due to the aforementioned two developments. In this research we investigate how supply and demand of intangible assets such as knowledge, cognitive characteristics, and quality factors can be matched based on market mechanisms.

  19. Soyuz 22 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Jams, John T.

    2010-01-01

    Three mini-grab sample containers (m-GSCs) were returned aboard Soyuz 22 because of concerns that new air pollutants were present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The toxicological assessment of 3 m-GSCs from the ISS is shown in Table 1. The recoveries of the 3 standards (as listed above) from the GSCs averaged 103, 95 and 76%, respectively. Recovery from formaldehyde control badges were 90 and 91%.

  20. Effects of organic pollution on biological communities of marine biofilm on hard substrata.

    PubMed

    Sanz-Lázaro, C; Fodelianakis, S; Guerrero-Meseguer, L; Marín, A; Karakassis, I

    2015-06-01

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ(13)C and δ(15)N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water.

    PubMed

    Wolfe, Marlene K; Gallandat, Karin; Daniels, Kyle; Desmarais, Anne Marie; Scheinman, Pamela; Lantagne, Daniele

    2017-01-01

    To prevent Ebola transmission, frequent handwashing is recommended in Ebola Treatment Units and communities. However, little is known about which handwashing protocol is most efficacious. We evaluated six handwashing protocols (soap and water, alcohol-based hand sanitizer (ABHS), and 0.05% sodium dichloroisocyanurate, high-test hypochlorite, and stabilized and non-stabilized sodium hypochlorite solutions) for 1) efficacy of handwashing on the removal and inactivation of non-pathogenic model organisms and, 2) persistence of organisms in rinse water. Model organisms E. coli and bacteriophage Phi6 were used to evaluate handwashing with and without organic load added to simulate bodily fluids. Hands were inoculated with test organisms, washed, and rinsed using a glove juice method to retrieve remaining organisms. Impact was estimated by comparing the log reduction in organisms after handwashing to the log reduction without handwashing. Rinse water was collected to test for persistence of organisms. Handwashing resulted in a 1.94-3.01 log reduction in E. coli concentration without, and 2.18-3.34 with, soil load; and a 2.44-3.06 log reduction in Phi6 without, and 2.71-3.69 with, soil load. HTH performed most consistently well, with significantly greater log reductions than other handwashing protocols in three models. However, the magnitude of handwashing efficacy differences was small, suggesting protocols are similarly efficacious. Rinse water demonstrated a 0.28-4.77 log reduction in remaining E. coli without, and 0.21-4.49 with, soil load and a 1.26-2.02 log reduction in Phi6 without, and 1.30-2.20 with, soil load. Chlorine resulted in significantly less persistence of E. coli in both conditions and Phi6 without soil load in rinse water (p<0.001). Thus, chlorine-based methods may offer a benefit of reducing persistence in rinse water. We recommend responders use the most practical handwashing method to ensure hand hygiene in Ebola contexts, considering the potential benefit of chlorine-based methods in rinse water persistence.

  2. Biomethanization of citrus waste: Effect of waste characteristics and of storage on treatability and evaluation of limonene degradation.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Pastore, Carlo; Di Iaconi, Claudio

    2018-06-01

    This study proposes the evaluation of the suitability of mesophilic anaerobic digestion as a simple technology for the treatment of the citrus waste produced by small-medium agro-industrial enterprises involved in the transformation of Citrus fruits. Two different stocks of citrus peel waste were used (i.e., fresh and stored citrus peel waste), to evaluate the influence of waste composition (variability in the type of processed Citrus fruits) and of storage (potentially necessary to operate the anaerobic digester continuously over the whole year due to the seasonality of the production) on anaerobic degradation treatability. A thorough characterization of the two waste types has been performed, showing that the fresh one has a higher solid and organic content, and that, in spite of the similar values of oil fraction amounts, the two stocks are significantly different in the composition of essential oils (43% of limonene and 34% of linalyl acetate in the fresh citrus waste and 20% of limonene and 74% of linalyl acetate in the stored citrus waste). Contrarily to what observed in previous studies, anaerobic digestion was successful and no reactor acidification occurred. No inhibition by limonene and linalyl acetate even at the maximum applied organic load value (i.e., 2.72 gCOD waste /gVS inoculum ) was observed in the treatment of the stored waste, with limonene and linalyl acetate concentrations of 104 mg/l and 385 mg/l, respectively. On the contrary, some inhibition was detected with fresh citrus peel waste when the organic load increased from 2.21 to 2.88 gCOD waste /gVS inoculum , ascribable to limonene at initial concentration higher than 150 mg/l. A good conversion into methane was observed with fresh peel waste, up to 0.33  [Formula: see text] at the highest organic load, very close to the maximum theoretical value of 0.35 [Formula: see text] , while a lower efficiency was achieved with stored peel waste, with a reduction down to 0.24  [Formula: see text] at the highest organic load. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Investigation of the Makeup, Source, and Removal Strategies for Total Organic Carbon in the Oxygen Generation System Recirculation Loop

    NASA Technical Reports Server (NTRS)

    Bowman, Elizabeth M.; Carpenter, Joyce; Roy, Robert J.; Van Keuren, Steve; Wilson, Mark E.

    2015-01-01

    Since 2007, the Oxygen Generation System (OGS) on board the International Space Station (ISS) has been producing oxygen for crew respiration via water electrolysis. As water is consumed in the OGS recirculating water loop, make-up water is furnished by the ISS potable water bus. A rise in Total Organic Carbon (TOC) was observed beginning in February, 2011, which continues through the present date. Increasing TOC is of concern because the organic constituents responsible for the TOC were unknown and had not been identified; hence their impacts on the operation of the electrolytic cell stack components and on microorganism growth rates and types are unknown. Identification of the compounds responsible for the TOC increase, their sources, and estimates of their loadings in the OGA as well as possible mitigation strategies are presented.

  4. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolzonella, David, E-mail: david.bolzonella@univr.it; Cavinato, Cristina, E-mail: cavinato@unive.it; Fatone, Francesco, E-mail: francesco.fatone@univr.it

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 +more » 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.« less

  5. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    PubMed Central

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895

  6. Advanced Computation Dynamics Simulation of Protective Structures Research

    DTIC Science & Technology

    2013-02-01

    additional load with increased cracking and deflection. Eventually, the walls failed in flexure due to self-weight and did not indicate any signs of shear...overall volume of the FEM block to be 432.2 in3, instead of 415.1 in3; the overall volume increased of area is 1.041%. This additional material is...sections in addition to the summary. Section 2 consists of an introduction, objectives, scope and methodology, and organization of the report. Section 2

  7. Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine.

    PubMed

    Thangaraj, Suja; Govindan, Nagarajan

    2018-01-01

    The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.

  8. Thermophilic co-digestion feasibility of distillers grains and swine manure: effect of C/N ratio and organic loading rate during high solid anaerobic digestion (HSAD).

    PubMed

    Sensai, P; Thangamani, A; Visvanathan, C

    2014-01-01

    Anaerobic co-digestion of high solids containing distillers grains and swine manure (total solids, 27 +/- 2% and 18 +/- 2%, respectively) was evaluated in this study to assess the effect of C/N ratio and organic loading rate (OLR). Feed mixture was balanced to achieve a C/N ratio of 30/1 by mixing distillers grains and swine manure. Pilot-scale co-digestion of distillers grains and swine manure was carried out under thermophilic conditions in the continuous mode for seven different OLRs from R1 to R7 (3.5, 5, 6, 8, 10, 12 and 14 kg VS/m3 day) under high solid anaerobic digestion. The methane yield and volatile solid (VS) removal were consistent; ranging from 0.33 to 0.34 m3CH4/kg VS day and 50-53%, respectively, until OLR 8 kg VS/m3 day. After which methane yield and VS removal significantly decreased to 0.26 m3 CH4/kg VS day and 42%, respectively, when OLR was increased to 14 kg VS/m3 day. However, during operation, at OLR of 10 kg VS/m3 day, the methane yield and VS removal increased after the 19th day to 0.33 m3 CH4/kg VS day and 46%, respectively, indicating that a longer acclimatization period is required by methanogens at a higher loading rate.

  9. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo

    NASA Astrophysics Data System (ADS)

    Sun, Dongdong; Li, Nuan; Zhang, Weiwei; Yang, Endong; Mou, Zhipeng; Zhao, Zhiwei; Liu, Haiping; Wang, Weiyun

    2016-01-01

    Nanotechnology-based approaches have tremendous potential for enhancing efficacy against infectious diseases. PLGA-based nanoparticles as drug delivery carrier have shown promising potential, owing to their sizes and related unique properties. This article aims to develop nanosized poly ( d, l-lactide-co-glycolide) PLGA nanoparticle formulation loaded with quercetin (QT). QT is an antioxidant and antibacterial compound isolated from Chinese traditional medicine with low skin permeability and extreme water insolubility. The quercetin-loaded PLGA nanoparticles (PQTs) were synthesized by emulsion-solvent evaporation method and stabilized by coating with poly (vinyl alcohol). The characteristics of PQTs were analyzed by Fourier transform infrared spectroscopy, Ultraviolet-Visible spectroscopy, scanning electron microscope, transmission electron microscopy, and atomic force microscopy, respectively. The PQTs showed a spherical shape with an average size of 100-150 nm. We compared the antibacterial effects of PQTs against Escherichia coli ( E. coli) and Micrococcus tetragenus ( M. tetragenus).The PQTs produced stronger antibacterial activity to E. coli than that to M. tetragenus through disrupting bacterial cell wall integrity. The antibacterial ratio was increased with the increasing dosages and incubation time. Next, we tested the in vivo antibacterial activity in mice. No noticeable organ damage was captured from H&E-staining organ slices, suggesting the promise of using PQTs for in vivo applications. The results of this study demonstrated the interaction between bacteria and PLGA-based nanoparticles, providing encouragement for conducting further investigations on properties and antimicrobial activity of the PQTs in clinical application.

  10. The English Channel: Contamination status of its transitional and coastal waters.

    PubMed

    Tappin, A D; Millward, G E

    2015-06-30

    The chemical contamination (organic compounds, metals, radionuclides, microplastics, nutrients) of English Channel waters has been reviewed, focussing on the sources, concentrations and impacts. River loads were only reliable for Pb, whereas atmospheric loads appeared robust for Cd, Pb, Hg, PCB-153 and γ-HCH. Temporal trends in atmospheric inputs were decreasing. Contaminant concentrations in biota were relatively constant or decreasing, but not for Cd, Hg and HBCDD, and deleterious impacts on fish and copepods were reported. However, data on ecotoxicological effects were generally sparse for legacy and emerging contaminants. Intercomparison of activity concentrations of artificial radionuclides in sediments and biota on both Channel coasts was hindered by differences in methodological approaches. Riverine phosphate loads decreased with time, while nitrate loads remained uniform. Increased biomass of algae, attributable to terrestrial inputs of nutrients, has affected benthic production and shellfisheries. A strategic approach to the identification of contaminant impacts on marine biota is recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Potential Impacts of Organic Wastes on Small Stream Water Quality

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall watershed waste loading. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

  13. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation.

    PubMed

    Ghangrekar, M M; Asolekar, S R; Joshi, S G

    2005-03-01

    Sludge characteristics available inside the reactor are of vital importance to maximize advantages of UASB reactor. The organic loading rate and sludge loading rate applied during start-up are among the important parameters to govern the sludge characteristics. Effects of these loading rates on the characteristics of the sludge developed are evaluated in six laboratory scale UASB reactors. The sludge characteristics considered are VSS/SS ratio of the sludge, sludge volume index, specific gravity, settling velocity and metal contents of the sludge developed under different loading rates. The experimental results indicate that, for developing good characteristics sludge, during primary start-up from flocculent inoculum sludge, organic loading rate and sludge loading rate should be in the range of 2.0-4.5 kg COD/m3 d and 0.1-0.25 kg COD/kg VSS d, respectively (chemical oxygen demand, COD). Proper sludge granulation and higher COD removal efficiency will be achieved by these loading rates.

  14. Effects of a Cattail Wetland on Water Quality of Irondequoit Creek near Rochester, New York

    USGS Publications Warehouse

    Coon, William F.; Bernard, John M.; Seischab, Franz K.

    2000-01-01

    A 6-year (1990-96) study of the Ellison Park wetland, a 423-acre, predominantly cattail (Typha glauca) marsh in Monroe County, N.Y., was conducted to document the effect that this wetland has on the water quality of Irondequoit Creek, which flows through it. Irondequoit Creek drains 151 square miles of mostly urban and suburban land and is the main tributary to Irondequoit Bay on Lake Ontario. The wetland was a sink for total phosphorus and total suspended solids (28 and 47 percent removal efficiencies, respectively, over the 6-year study period). Sedimentation and vegetative filtration appear to be the primary mechanisms for the decrease in loads of these constituents. Total nitrogen loads were decreased slightly by the wetland; removal efficiencies for ammonia-plus-organic nitrogen and nitrate-plus-nitrite were 6 and 3 percent, respectively. The proportions of total phosphorus and total nitrogen constituents were altered by the wetland. Orthophosphate and ammonia nitrogen were generated within the wetland and represented 12 percent of the total phosphorus output load and 1.8 percent of total nitrogen output load, respectively. Conservative chemicals, such as chloride and sulfate, were littleaffected by the wetland. Concentrations of zinc, lead, and cadmium showed statistically significant decreases, which are attributed to sedimentation and filtration of sediment and organic matter to which these elements adsorb.Sediment samples from open-water depositional areas in the wetland contained high concentrations of (1) trace metals, including barium, manganese, strontium, zinc (each of which exceeded 200 parts per million), as well as chromium, copper, lead, and vanadium, and (2) some polycyclic aromatic hydrocarbons. Persistent organochlorine pesticides, such as chlordane, dieldrin, DDT and its degradation products (DDD and DDE), and polychlorinated biphenyls (PCB's), also were detected, but concentrations of these compounds were within the ranges often found in depositional environments in highly urbanized areas.Cattail shoots attained a maximum height of 350 centimeters, a density of more than 30 shoots per square meter, and total biomass of more than 5,600 grams per square meter (46 percent of which was in above-ground tissues during the growing season). Nitrogen and potassium were three times more abundant in above-ground tissues (2.4 and 1.5 percent by dry weight, respectively) than in below-ground tissues (0.8 and 0.5 percent, respectively). Concentrations of phosphorus, molybdenum, and manganese in above-ground tissues were similar to those in below-ground tissues, but the concentrations of all other constituents were considerably higher in below-ground tissues. Concentrations of several elements exceeded those typically found in natural wetlands; these included manganese (417 ppm, parts per million) and sodium (3,600 ppm) in above-ground tissues, and aluminum (1,540 ppm), iron (15,400 ppm), manganese (433 ppm), and sodium (10,000 ppm) in below-ground tissues.Large quantities of nutrients are assimilated by wetland vegetation during the growing season, but neither tissue production nor microbial metabolic processes appeared to play a significant role in the observed patterns of surface-water chemical input-to-output relations on a seasonal basis. Presumably, internal cycling of nutrients sequestered in the sediments and detritus, combined with a summer increase in microbially mediated chemical transformations, obscured the effects of vegetative assimilation during the summer on surface-water chemical loads. Additionally, the natural confinement of most flows within the banks of Irondequoit Creek, which resulted in passage of stormwater through the wetland with little dispersion or detention in the cattail and backwater areas, diminished the capability of the wetland to improve water quality. Additional factors that probably affected the chemical-removal efficiency of the wetland included chemical inflow loading rates, storage and release mechanisms of the sediments (sedimentation, adsorption, filtration, precipitaton, dissolution, and resuspension), and accretion and burial of organic matter.Measurements of chlorophyll_a concentrations, and calculations of potential phosphorus concentrations, since the 1970’s indicate an improvement in the trophic state of Irondequoit Bay. Estimated average annual loads (1990-96) of selected constituents entering Irondequoit Bay indicate that, since 1980, the loads of all major forms of nitrogen have decreased, chloride loads have increased, and sulfate loads have changed little. Inputs of total phosphorus and suspended solids to the wetland have increased since 1980, possibly as a result of increased erosion by stormflows from an increasingly developed watershed. The wetland decreases the loads of these constituents, but the trends of these loads entering Irondequoit Bay cannot be reliably defined because the removal efficiencies during the two earlier study periods (1980–81 and 1984–88) are known.

  15. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    NASA Astrophysics Data System (ADS)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distringuishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the nitrogen imbalance and is a significant threat to future groundwater quality in the Central Valley system. The model provides the basis for evaluating future planning scenarios to develop and assess long-term solutions for sustainable groundwater quality management.

  16. Investigation on chlorine-based sanitization under stabilized conditions in the presence of organic load

    USDA-ARS?s Scientific Manuscript database

    Chlorine is commonly used for preventing water-mediated cross contamination during fresh produce washing. The sanitization efficacy (SE) is constantly compromised by the organic load (OL), which has been attributed to rapid chlorine depletion and unsuccessful maintenance of residual free chlorine (F...

  17. Incorporating Climate Change Predictions into Watershed Restoration and Protection Strategies (WRAPS) in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2014-12-01

    Development of the Watershed Restoration and Protection Strategies (WRAPS) for the Pine and Leech Lake River Watersheds is underway in Minnesota. Project partners participating in this effort include the Minnesota Pollution Control Agency (MPCA), Crow Wing Soil and Water Conservation District (SWCD), Cass County, and other local partners. These watersheds are located in the Northern Lakes and Forest ecoregion of Minnesota and drain to the Upper Mississippi River. To support the Pine and Leech Lake River WRAPS, watershed-scale hydrologic and water-quality models were developed with Hydrological Simulation Program-FORTRAN (HSPF). The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and provide predictions at points of interest within the watersheds, such as observation gages, management boundaries, compliance points, and impaired water body endpoints. The model applications were used to evaluate phosphorus loads to surface waters under resource management scenarios, which were based on water quality threats that were identified at stakeholder meetings. Simulations of land use changes including conversion of forests to agriculture, shoreline development, and full build-out of cities show a watershed-wide phosphorus increases of up to 80%. The retention of 1.1 inches of runoff from impervious surfaces was not enough to mitigate the projected phosphorus load increases. Changes in precipitation projected by climate change models led to a 20% increase in annual watershed phosphorus loads. The scenario results will inform the implementation strategies selected for the WRAPS.

  18. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    PubMed

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Role of Adaptation in Body Load-Regulating Mechanisms During Locomotion

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara; Holt, Christopher; Mulavara, Ajitkumar; Bloomberg, Jacob

    2010-01-01

    Body loading is a fundamental parameter that modulates motor output during locomotion, and is especially important for controlling the generation of stepping patterns, dynamic balance, and termination of locomotion. Load receptors that regulate and control posture and stance in locomotion include the Golgi tendon organs and muscle spindles at the hip, knee, and ankle joints, and the Ruffini endings and the Pacinian corpuscles in the soles of the feet. Increased body weight support (BWS) during locomotion results in an immediate reorganization of locomotor control, such as a reduction in stance and double support duration and decreased hip, ankle, and knee angles during the gait cycle. Previous studies on the effect during exposure to increased BWS while walking showed a reduction in lower limb joint angles and gait cycle timing that represents a reorganization of locomotor control. Until now, no studies have investigated how locomotor control responds after a period of exposure to adaptive modification in the body load sensing system. The goal of this research was to determine the adaptive properties of body load-regulating mechanisms in locomotor control during locomotion. We hypothesized that body load-regulating mechanisms contribute to locomotor control, and adaptive changes in these load-regulating mechanisms require reorganization to maintain forward locomotion. Head-torso coordination, lower limb movement patterns, and gait cycle timing were evaluated before and after a 30-minute adaptation session during which subjects walked on a treadmill at 5.4 km/hr with 40% body weight support (BWS). Before and after the adaptation period, head-torso and lower limb 3D kinematic data were obtained while performing a goal directed task during locomotion with 0% BWS using a video-based motion analysis system, and gait cycle timing parameters were collected by foot switches positioned under the heel and toe of the subjects shoes. Subjects showed adaptive modification in the body load-regulating mechanisms that included increased head movement amplitude, increased knee and ankle flexion, and increased stance, stride, and double support time, with no change in the performance of the task with respect to that measured before exposure to BWS. These changes in locomotor control are opposite to that reported during 40% BWS exposure and indicative of an after-effect after removal of the adaptive stimulus. Therefore, it is evident that just 30 minutes of 40% BWS during locomotion was sufficient to induce adaptive modifications in the body load sensing systems that contribute to reorganization of sensory contributions to stable locomotor control.

  20. Influence of land management and hydrology on urea fate and transport within a Coastal Plain watershed dominated by intensive poultry agriculture

    USDA-ARS?s Scientific Manuscript database

    Increasing nutrient loads delivered from the landscape to coastal ecosystems has widely been recognized as a major contributor to coastal eutrophication and as a driver of the escalation of harmful algal blooms (HABs). Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manu...

  1. Influence of organic load rate (OLR) on the hydrolytic acidification of 2-butenal manufacture wastewater and analysis of bacterial community structure.

    PubMed

    Song, Guangqing; Xi, Hongbo; Zhou, Yuexi; Fu, Liya; Xing, Xin; Wu, Changyong

    2017-11-01

    The influence of organic loading rate (OLR) on the performance of hydrolytic acidification process for treating 2-butenal manufacture wastewater was comprehensively studied, while its impact on microbial community was thoroughly investigated. The results demonstrated that over 21.0% of the average COD removal rate was observed in the range of OLR from 0.52 to 3.98g COD/L·d, whereas it reduced to 15.3% with increasing OLR to 6.09g COD/L·d. The acidification degree dramatically decreased from 17.1% to 4.7% when OLR increased from 3.98 to 6.09g COD/L·d. In addition, the removal rates of three kinds of typical matters were less than 65% at the OLR 6.09g COD/L·d. Illumina MiSeq sequencing revealed that Proteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes were dominant phyla at different OLRs. Finally, multivariate analysis suggested that the genera Longilinea and T78 had a positive correlation with the degradation of three kinds of typical matters and COD removal rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of cyclic hydraulic pressure on osteocytes.

    PubMed

    Liu, Chao; Zhao, Yan; Cheung, Wing-Yee; Gandhi, Ronak; Wang, Liyun; You, Lidan

    2010-05-01

    Bone is able to adapt its composition and structure in order to suit its mechanical environment. Osteocytes, bone cells embedded in the calcified matrix, are believed to be the mechanosensors and responsible for orchestrating the bone remodeling process. Recent in vitro studies have shown that osteocytes are able to sense and respond to substrate strain and fluid shear. However the capacity of osteocytes to sense cyclic hydraulic pressure (CHP) associated with physiological mechanical loading is not well understood. In this study, we subjected osteocyte-like MLO-Y4 cells to controlled CHP of 68 kPa at 0.5 Hz, and investigated the effects of CHP on intracellular calcium concentration, cytoskeleton organization, mRNA expression of genes related to bone remodeling, and osteocyte apoptosis. We found that osteocytes were able to sense CHP and respond by increased intracellular calcium concentration, altered microtubule organization, a time-dependent increase in COX-2 mRNA level and RANKL/OPG mRNA ratio, and decreased apoptosis. These findings support the hypothesis that loading induced cyclic hydraulic pressure in bone serves as a mechanical stimulus to osteocytes and may play a role in regulating bone remodeling in vivo. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Improving the yield from fermentative hydrogen production.

    PubMed

    Kraemer, Jeremy T; Bagley, David M

    2007-05-01

    Efforts to increase H(2) yields from fermentative H(2) production include heat treatment of the inoculum, dissolved gas removal, and varying the organic loading rate. Although heat treatment kills methanogens and selects for spore-forming bacteria, the available evidence indicates H(2) yields are not maximized compared to bromoethanesulfonate, iodopropane, or perchloric acid pre-treatments and spore-forming acetogens are not killed. Operational controls (low pH, short solids retention time) can replace heat treatment. Gas sparging increases H(2) yields compared to un-sparged reactors, but no relationship exists between the sparging rate and H(2) yield. Lower sparging rates may improve the H(2) yield with less energy input and product dilution. The reasons why sparging improves H(2) yields are unknown, but recent measurements of dissolved H(2) concentrations during sparging suggest the assumption of decreased inhibition of the H(2)-producing enzymes is unlikely. Significant disagreement exists over the effect of organic loading rate (OLR); some studies show relatively higher OLRs improve H(2) yield while others show the opposite. Discovering the reasons for higher H(2) yields during dissolved gas removal and changes in OLR will help improve H(2) yields.

  4. Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor.

    PubMed

    Tawfik, A; El-Qelish, M

    2012-06-01

    This study was carried out to assess the impact of organic loading rate (OLR) on the performance of mesophilic anaerobic baffled reactor (ABR) for H(2) production from a co-digestion of municipal food waste and kitchen wastewater. The reactor was operated at different organic loading rates (OLRs) of 29, 36 and 47 g COD(total)/Ld. The hydraulic retention time (HRT) was kept constant at 1.6d. The results showed that increasing the OLR from 29 to 36 g COD(total)/Ld, leads to a significant (p □ 0.01) drop in the H(2) production from 6.0±0.5 to 5.4±1.04 L H(2)/d, respectively. However, the H(2) production remained at the same level of 5.3±1.04 L H(2)/d at increasing the OLR from 36 to 47 g COD(total)/Ld. The H(2) generation was mainly due to conversion of COD (57%) and carbohydrate (81%). Protein and lipids conversion represents only 23.3% and 4.1% respectively for H(2) production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Ambulatory blood pressure monitoring in solid organ transplantation.

    PubMed

    Ramesh Prasad, G V

    2012-01-01

    Solid organ transplant recipients are at an increased risk for hypertension and cardiovascular disease. To assist in their management, 24-h ambulatory blood pressure monitoring (ABPM) has become increasingly used in both clinical research settings and practice. ABPM has been used to better define post-transplant hypertension incidence and prevalence in different solid organ transplantation populations. ABPM provides additional information on cardiovascular risk beyond that obtained by clinic-based readings, based on its ability to assess 24-h blood pressure (BP) load, detect nocturnal non-dipping, and predict target organ damage. It has provided some assurance about the safety of living kidney donation. Information from ABPM can be used to guide living kidney donor selection, and because ABPM-related data has been correlated with clinically important kidney and heart transplant recipient outcomes, it may be a valuable adjunct in their management. Despite these advantages, barriers to wider use of ABPM include expense, clinical inertia in hypertension management, lack of prospective clinical trial data, and clinical problems that compete with hypertension for attention such as acute or chronic allograft dysfunction. The increasing amount of research and clinical use for ABPM may allow for closer assessment and intervention to help address the increased cardiovascular risk faced by many solid organ transplant recipients. © 2011 John Wiley & Sons A/S.

  6. Zeolite-loaded poly(dimethylsiloxane) hybrid films for highly efficient thin-film microextraction of organic volatiles in water.

    PubMed

    Wang, Tao; Ansai, Toshihiro; Lee, Seung-Woo

    2017-01-15

    ZSM-5 zeolite-loaded poly(dimethylsiloxane) (PDMS) hybrid thin films were demonstrated for efficient thin-film microextraction (TFME) coupled with gas chromatography-mass spectrometry for analyzing organic volatiles in water. The extraction efficiency for a series of aliphatic alcohols and two aromatic compounds was significantly improved owing to the presence of ZSM-5 zeolites. The extraction efficiency of the hybrid films was increased in proportion to the content of ZSM-5 in the PDMS film, with 20wt% of ZSM-5 showing the best results. The 20wt% ZSM-5/PDMS hybrid film exhibited higher volatile organic content extraction compared with the single-component PDMS film or PDMS hybrid films containing other types of zeolite (e.g., SAPO-34). Limits of detection and limits of quantitation for individual analytes were in the range of 0.0034-0.049ppb and of 0.010-0.15 ppb, respectively. The effects of experimental parameters such as extraction time and temperature were optimized, and the molecular dispersion of the zeolites in/on the hybrid film matrix was confirmed with scanning electron microscopy and atomic force microscopy. Furthermore, the optimized hybrid film was preliminarily tested for the analysis of organic volatiles contained in commercially available soft drinks. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Finite element modeling of arachnid slit sensilla: II. Actual lyriform organs and the face deformations of the individual slits.

    PubMed

    Hössl, Bernhard; Böhm, Helmut J; Schaber, Clemens F; Rammerstorfer, Franz G; Barth, Friedrich G

    2009-09-01

    Arachnid slit sensilla respond to minute strains in the exoskeleton. After having applied finite element (FE) analysis to simplified arrays of five straight slits (Hössl et al. J Comp Physiol A 193:445-459, 2007) we now present a computational study of the effects of more subtle natural variations in geometry, number and arrangement of slits on the slit face deformations. Our simulations show that even minor variations in these parameters can substantially influence a slit's directional response. Using white-light interferometric measurements of the surface deformations of a lyriform organ, it is shown that planar FE models are capable of predicting the principal characteristics of the mechanical responses. The magnitudes of the measured and calculated slit face deformations are in good agreement. At threshold, they measure between 1.7 and 43 nm. In a lyriform organ and a closely positioned loose group of slits, the detectable range of loads increases to approximately 3.5 times the range of the lyriform organ alone. Stress concentration factors (up to ca. 29) found in the vicinity of the slits were evaluated from the models. They are mitigated due to local thickening of the exocuticle and the arrangement of the chitinous microfibers that prevents the formation of cracks under physiological loading conditions.

  8. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  9. Anaerobic co-digestion of aircraft deicing fluid and municipal wastewater sludge.

    PubMed

    Zitomer, D; Ferguson, N; McGrady, K; Schilling, J

    2001-01-01

    At many airports, aircraft deicing fluid and precipitation mix, becoming aircraft deicing runoff having a 5-day biochemical oxygen demand (BOD5) of 10(2) to 10(6) mg/L. Publicly owned treatment works can be used for aerobic biological treatment; however, it may be more economical to use anaerobic digesters to codigest a mixture of aircraft deicing fluid and sludge. The objectives of this investigation were to determine benefits and appropriate propylene glycol aircraft deicing fluid loadings to anaerobic codigesters. Results demonstrate aircraft deicing fluid can be successfully codigested to produce methane; supernatant BOD5 and Kjeldahl nitrogen concentration were not higher in codigesters compared to a conventional digester. Aircraft deicing fluid loadings as high as 1.6 g chemical oxygen demand (COD)/L x d were sustainable in codigesters, whereas system fed only aircraft deicing fluid with nutrients and alkalinity achieved a loading of 0.65 g COD/L x d. The sludge used increased digester alkalinity and provided nitrogen, iron, nickel, cobalt, and biomass required for methanogenesis. The deicer provides organics for increased methane production.

  10. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size1[OPEN

    PubMed Central

    Wang, Liang; Lu, Qingtao

    2015-01-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. PMID:26504138

  11. Phenolic refinery wastewater biodegradation by an expanded granular sludge bed reactor.

    PubMed

    Almendariz, F J; Meraz, M; Olmos, A D; Monroy, O

    2005-01-01

    Refinery spent caustics (SC) were diluted with sour waters (SW) in a ratio 1:7, neutralized with CO2 (SC/SW(CO2)) and 83% of H2S was striped during this procedure, remaining an aromatic portion that contained 2123, 2730 and 1379 mg L(-1) of phenol, p-cresol and o-cresol, respectively. The mixture was teated anaerobically in an EGSB reactor fed with 1.5 gCOD L(-1) d(-1), without mineral supplements causing loss of COD removal efficiency that dropped to 23%, methane production ceased and no phenol or cresols were biodegraded. The EGSB experiments were resumed by feeding the reactor with nutrients and phenol at 1.0 gCOD L(-1) d(-1). The mixture SC/SWco2 added to the phenol load, was step increased from 0.10 to 0.87 gCODL(-1) d(-1) maximum. When total organic load was increased to 1.6, COD removal efficiency was 90% and at the highest load attained, 1.87, efficiency dropped to 23% attributed to the toxic effect produced by cresols.

  12. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    PubMed

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Community-driven demand creation for the use of routine viral load testing: a model to scale up routine viral load testing.

    PubMed

    Killingo, Bactrin M; Taro, Trisa B; Mosime, Wame N

    2017-11-01

    HIV treatment outcomes are dependent on the use of viral load measurement. Despite global and national guidelines recommending the use of routine viral load testing, these policies alone have not translated into widespread implementation or sufficiently increased access for people living with HIV (PLHIV). Civil society and communities of PLHIV recognize the need to close this gap and to enable the scale up of routine viral load testing. The International Treatment Preparedness Coalition (ITPC) developed an approach to community-led demand creation for the use of routine viral load testing. Using this Community Demand Creation Model, implementers follow a step-wise process to capacitate and empower communities to address their most pressing needs. This includes utlizing a specific toolkit that includes conducting a baseline assessment, developing a treatment education toolkit, organizing mobilization workshops for knowledge building, provision of small grants to support advocacy work and conducting benchmark evaluations. The Community Demand Creation Model to increase demand for routine viral load testing services by PLHIV has been delivered in diverse contexts including in the sub-Saharan African, Asian, Latin American and the Caribbean regions. Between December 2015 and December 2016, ITPC trained more than 240 PLHIV activists, and disbursed US$90,000 to network partners in support of their national advocacy work. The latter efforts informed a regional, community-driven campaign calling for domestic investment in the expeditious implementation of national viral load testing guidelines. HIV treatment education and community mobilization are critical components of demand creation for access to optimal HIV treatment, especially for the use of routine viral load testing. ITPC's Community Demand Creation Model offers a novel approach to achieving this goal. © 2017 The Authors. Journal of the International AIDS Society published by John Wiley & sons Ltd on behalf of the International AIDS Society.

  14. Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells

    PubMed Central

    Heo, Su-Jin; Thorpe, Stephen D.; Driscoll, Tristan P.; Duncan, Randall L.; Lee, David A.; Mauck, Robert L.

    2015-01-01

    Mechanical cues direct the lineage commitment of mesenchymal stem cells (MSCs). In this study, we identified the operative molecular mechanisms through which dynamic tensile loading (DL) regulates changes in chromatin organization and nuclear mechanics in MSCs. Our data show that, in the absence of exogenous differentiation factors, short term DL elicits a rapid increase in chromatin condensation, mediated by acto-myosin based cellular contractility and the activity of the histone-lysine N-methyltransferase EZH2. The resulting change in chromatin condensation stiffened the MSC nucleus, making it less deformable when stretch was applied to the cell. We also identified stretch induced ATP release and purinergic calcium signaling as a central mediator of this chromatin condensation process. Further, we showed that DL, through differential stabilization of the condensed chromatin state, established a ‘mechanical memory’ in these cells. That is, increasing strain levels and number of loading events led to a greater degree of chromatin condensation that persisted for longer periods of time after the cessation of loading. These data indicate that, with mechanical perturbation, MSCs develop a mechanical memory encoded in structural changes in the nucleus which may sensitize them to future mechanical loading events and define the trajectory and persistence of their lineage specification. PMID:26592929

  15. Drug loading into beta-cyclodextrin granules using a supercritical fluid process for improved drug dissolution.

    PubMed

    Hussein, Khaled; Türk, Michael; Wahl, Martin A

    2008-03-03

    To improve dissolution properties of drugs, a supercritical fluid (SCF) technique was used to load these drugs into a solid carrier. In this study, granules based on beta-cyclodextrin (betaCD) were applied as a carrier for poor water-soluble drug and loaded with a model drug (ibuprofen) using two different procedures: controlled particle deposition (CPD), SCF process and solution immersion (SI) as a conventional method for comparison. Using the CPD technique, 17.42+/-2.06wt.% (n=3) ibuprofen was loaded into betaCD-granules, in contrast to only 3.8+/-0.15wt.% (n=3) in the SI-product. The drug loading was confirmed as well by reduction of the BET surface area for the CPD-product (1.134+/-0.07m(2)/g) compared to the unloaded-granules (1.533+/-0.031m(2)/g). Such a reduction was not seen in the SI-product (1.407+/-0.048m(2)/g). The appearance of an endothermic melting peak at 77 degrees C and X-ray patterns representing ibuprofen in drug-loaded granules can be attributed to the amount of ibuprofen loaded in its crystalline form. A significant increase in drug dissolution was achieved by either drug-loading procedures compared to the unprocessed ibuprofen. In this study, the CPD technique, a supercritical fluid process avoiding the use of toxic or organic solvents was successfully applied to load drug into solid carriers, thereby improving the water-solubility of the drug.

  16. Influence of sludge age on the performance of MFC treating winery wastewater.

    PubMed

    Penteado, Eduardo D; Fernandez-Marchante, Carmen Maria; Zaiat, Marcelo; Cañizares, Pablo; Gonzalez, Ernesto Rafael; Rodrigo, Manuel Andrés

    2016-05-01

    The objective of this paper was to determine the influence of sludge age on microbial fuel cell (MFC) performance for generating electricity and removing organic matter from winery wastewater. Six Solid Retention Times (SRT) were used: 1.2, 1.4, 1.8, 2.3, 3.5 and 7.0 d. Results demonstrate that the electricity generation increases by decreasing the SRT, selecting electrogenic microorganisms, once the specific organic loading rate (SOLR) increased and the competition for substrate was reduced. Decreasing the SRT, coulombic efficiency can be increased from 3.4% to almost 42.2% and maximum power density from 58 to 890 mW m(-2). However the SRT did not influence on organic matter removal in biological treatment, because only a small part of COD was removed oscillating around 600 mg L(-1) d(-1)and it was very similar at all SRT studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nitritating-anammox biomass tolerant to high dissolved oxygen concentration and C/N ratio in treatment of yeast factory wastewater.

    PubMed

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Seiman, Andrus; Loorits, Liis; Kroon, Kristel; Tomingas, Martin; Vabamäe, Priit; Tenno, Taavo

    2014-01-01

    Maintaining stability of low concentration (< 1 g L(-1)) floccular biomass in the nitritation-anaerobic ammonium oxidation (anammox) process in the sequencing batch reactor (SBR) system for the treatment of high COD (> 15,000 mg O2 L(-1)) to N (1680 mg N L(-1)) ratio real wastewater streams coming from the food industry is challenging. The anammox process was suitable for the treatment of yeast factory wastewater containing relatively high and abruptly increased organic C/N ratio and dissolved oxygen (DO) concentrations. Maximum specific total inorganic nitrogen (TIN) loading and removal rates applied were 600 and 280 mg N g(-1) VSS d(-1), respectively. Average TIN removal efficiency over the operation period of 270 days was 70%. Prior to simultaneous reduction of high organics (total organic carbon > 600mg L(-1)) and N concentrations > 400 mg L(-1), hydraulic retention time of 15 h and DO concentrations of 3.18 (+/- 1.73) mg O2 L(-1) were applied. Surprisingly, higher DO concentrations did not inhibit the anammox process efficiency demonstrating a wider application of cultivated anammox biomass. The SBR was fed rapidly over 5% of the cycle time at 50% volumetric exchange ratio. It maintained high free ammonia concentration, suppressing growth of nitrite-oxidizing bacteria. Partial least squares and response surface modelling revealed two periods of SBR operation and the SBR performances change at different periods with different total nitrogen (TN) loadings. Anammox activity tests showed yeast factory-specific organic N compound-betaine and inorganic N simultaneous biodegradation. Among other microorganisms determined by pyrosequencing, anammox microorganism (uncultured Planctomycetales bacterium clone P4) was determined by polymerase chain reaction also after applying high TN loading rates.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumner, Dennis; Vosburg, Tom; Brunner, Steve

    This project titled “Research, Development and Demonstration of Peak Load Reduction on Distribution Feeders Using Distributed Energy Resources for the City of Fort Collins” evolved in response to the Department of Energy’s (DOE) Funding Opportunity Announcement (FOA) Number DE-PS26-07NT43119. Also referred to as the Fort Collins Renewable and Distributed System Integration (RDSI) Project, the effort was undertaken by a diverse group of local government, higher education and business organizations; and was driven by three overarching goals: I. Fulfill the requirements of the DOE FOA’s Area of Interest 2: Renewable and Distributed System Integration; most notably, to demonstrate the ability tomore » reduce electric system distribution feeder peak load by 15% or more through the coordinated use of Distributed Energy Resources (DER). II. Advance the expertise, technologies and infrastructure necessary to support the long term vision of the Fort Collins Zero Energy District (FortZED) and move towards creating a zero energy district in the Fort Collins “Old Town” area. III. Further the goals of the City of Fort Collins Energy Policy, including the development of a Smart Grid-enabled distribution system in Fort Collins, expanded use of renewable energy, increased energy conservation, and peak load reduction. Through the collaborative efforts of the partner organizations, the Fort Collins RDSI project was successful in achieving all three of these goals. This report is organized into two distinct sections corresponding to the two phases of the project: • Part 1: Feeder Peak Load Reduction and the FortZED Initiative. • Part 2: Forming and Operating Utility Microgrids and Managing Load and Production Variability The original project scope addressed the Part 1 feeder peak load reduction. That work took place from 2009 through 2011 and was largely complete when the project scope was amended to include a demonstration of microgrid operations. While leveraging the assets, partner relationships, and lessons learned from Part 1, Part 2 was managed and executed as a distinct and substantially independent sub-project during the spring and summer of 2013. Both Parts 1 and 2 of the overall RDSI project can be viewed as cohesive stand-alone bodies of work and are presented as such within this report. In addition to the narratives, this document includes two Appendices that were compiled to supplement information about the various aspects of activities performed during Parts 1 and 2 of the project. Moreover, these Appendices are organized (as outlined below) so as to directly relate to the narratives in Part 1 and 2 of this report. • Appendix - Part 1: describes the roles of each project participant in regards to the feeder peak load reduction effort, and • Appendix - Part 2: deals with the microgrid research/demonstration.« less

  19. Food patterns and dietary quality associated with organic food consumption during pregnancy; data from a large cohort of pregnant women in Norway

    PubMed Central

    2012-01-01

    Background Little is known about the consumption of organic food during pregnancy. The aim of this study was to describe dietary characteristics associated with frequent consumption of organic food among pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Methods The present study includes 63 808 women who during the years 2002–2007 answered two questionnaires, a general health questionnaire at gestational weeks 15 and a food frequency questionnaire at weeks 17-22. The exploration of food patterns by Principal component analyses (PCA) was followed by ANOVA analyses investigating how these food patterns as well as intake of selected food groups were associated with consumption of organic food. Results The first principal component (PC1) identified by PCA, accounting for 12% of the variation, was interpreted as a ‘health and sustainability component’, with high positive loadings for vegetables, fruit and berries, cooking oil, whole grain bread and cereal products and negative loadings for meat, including processed meat, white bread, and cakes and sweets. Frequent consumption of organic food, which was reported among 9.1% of participants (n = 5786), was associated with increased scores on the ‘health and sustainability component’ (p < 0.001). The increase in score represented approximately 1/10 of the total variation and was independent of sociodemographic and lifestyle characteristics. Participants with frequent consumption of organic food had a diet with higher density of fiber and most nutrients such as folate, beta-carotene and vitamin C, and lower density of sodium compared to participants with no or low organic consumption. Conclusion The present study showed that pregnant Norwegian women reporting frequent consumption of organically produced food had dietary pattern and quality more in line with public advice for healthy and sustainable diets. A methodological implication is that the overall diet needs to be included in future studies of potential health outcomes related to consumption of organic food during pregnancy. PMID:22862737

  20. Projected future climate change and Baltic Sea ecosystem management.

    PubMed

    Andersson, Agneta; Meier, H E Markus; Ripszam, Matyas; Rowe, Owen; Wikner, Johan; Haglund, Peter; Eilola, Kari; Legrand, Catherine; Figueroa, Daniela; Paczkowska, Joanna; Lindehoff, Elin; Tysklind, Mats; Elmgren, Ragnar

    2015-06-01

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.

  1. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1997-11-25

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  2. Loading and conjugating cavity biostructures

    DOEpatents

    Hainfeld, J.F.

    1995-08-22

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  3. Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster.

    PubMed

    Mendes, César S; Rajendren, Soumya V; Bartos, Imre; Márka, Szabolcs; Mann, Richard S

    2014-01-01

    Walking behavior is context-dependent, resulting from the integration of internal and external influences by specialized motor and pre-motor centers. Neuronal programs must be sufficiently flexible to the locomotive challenges inherent in different environments. Although insect studies have contributed substantially to the identification of the components and rules that determine locomotion, we still lack an understanding of how multi-jointed walking insects respond to changes in walking orientation and direction and strength of the gravitational force. In order to answer these questions we measured with high temporal and spatial resolution the kinematic properties of untethered Drosophila during inverted and vertical walking. In addition, we also examined the kinematic responses to increases in gravitational load. We find that animals are capable of shifting their step, spatial and inter-leg parameters in order to cope with more challenging walking conditions. For example, flies walking in an inverted orientation decreased the duration of their swing phase leading to increased contact with the substrate and, as a result, greater stability. We also find that when flies carry additional weight, thereby increasing their gravitational load, some changes in step parameters vary over time, providing evidence for adaptation. However, above a threshold that is between 1 and 2 times their body weight flies display locomotion parameters that suggest they are no longer capable of walking in a coordinated manner. Finally, we find that functional chordotonal organs are required for flies to cope with additional weight, as animals deficient in these proprioceptors display increased sensitivity to load bearing as well as other locomotive defects.

  4. Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.

  5. Effects of changing hydraulic and organic loading rates on pollutant reduction in bark, charcoal and sand filters treating greywater.

    PubMed

    Dalahmeh, Sahar S; Pell, Mikael; Hylander, Lars D; Lalander, Cecilia; Vinnerås, Björn; Jönsson, Håkan

    2014-01-01

    Greywater flows and concentrations vary greatly, thus evaluation and prediction of the response of on-site treatment filters to variable loading regimes is challenging. The performance of 0.6 m × 0.2 m (height × diameter) filters of bark, activated charcoal and sand in reduction of biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total nitrogen (Tot-N) and total phosphorus (Tot-P) under variable loading regimes was investigated and modelled. During seven runs, the filters were fed with synthetic greywater at hydraulic loading rates (HLR) of 32-128 L m(-2) day(-1) and organic loading rates (OLR) of 13-76 g BOD5 m(-2) day(-1). Based on the changes in HLR and OLR, the reduction in pollutants was modelled using multiple linear regression. The models showed that increasing the HLR from 32 to 128 L m(-2) day(-1) decreased COD reduction in the bark filters from 74 to 40%, but increased COD reduction in the charcoal and sand filters from 76 to 90% and 65 to 83%, respectively. Moreover, the models showed that increasing the OLR from 13 to 76 g BOD5 m(-2) day(-1) enhanced the pollutant reduction in all filters except for Tot-P in the bark filters, which decreased slightly from 81 to 73%. Decreasing the HLR from 128 to 32 L m(-2) day(-1) enhanced the pollutant reduction in all filters, but decreasing the OLR from 76 to 14 g BOD5 m(-2) day(-1) detached biofilm and decreased the Tot-N and Tot-P reduction in the bark and sand filters. Overall, the bark filters had the capacity to treat high OLR, while the charcoal filters had the capacity to treat high HLR and high OLR. Both bark and charcoal filters had higher capacity than sand filters in dealing with high and variable loads. Bark seems to be an attractive substitute for sand filters in settings short in water and its effluent would be valuable for irrigation, while charcoal filters should be an attractive alternative for settings both rich and short in water supply and when environmental eutrophication has to be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles.

    PubMed

    Li, Xue; Guo, Tao; Lachmanski, Laurent; Manoli, Francesco; Menendez-Miranda, Mario; Manet, Ilse; Guo, Zhen; Wu, Li; Zhang, Jiwen; Gref, Ruxandra

    2017-10-15

    Cyclodextrin-based metal-organic frameworks (CD-MOFs) represent an environment-friendly and biocompatible class of MOFs drawing increasing attention in drug delivery. Lansoprazole (LPZ) is a proton-pump inhibitor used to reduce the production of acid in the stomach and recently identified as an antitubercular prodrug. Herein, LPZ loaded CD-MOFs were successfully synthesized upon the assembly with γ-CD in the presence of K + ions using an optimized co-crystallization method. They were characterized in terms of morphology, size and crystallinity, showing almost perfect cubic morphologies with monodispersed size distributions. The crystalline particles, loaded or not with LPZ, have mean diameters of around 6μm. The payloads reached 23.2±2.1% (wt) which corresponds to a molar ratio of 1:1 between LPZ and γ-CD. It was demonstrated that even after two years storage, the incorporated drug inside the CD-MOFs maintained its spectroscopic characteristics. Molecular modelling provided a deeper insight into the interaction between the LPZ and CD-MOFs. Raman spectra of individual particles were recorded, confirming the formation of inclusion complexes within the tridimensional CD-MOF structures. Of note, it was found that each individual particle had the same chemical composition. The LPZ-loaded particles had remarkable homogeneity in terms of both drug loading and size. These results pave the way towards the use of CD-MOFs for drug delivery purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    NASA Astrophysics Data System (ADS)

    Lack, D. A.; Corbett, J. J.

    2012-01-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on (a) the impact of fuel quality on EFBC using robust measurement methods and (b) the efficacy of scrubbers for the removal of particulate matter by size and composition.

  8. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    NASA Astrophysics Data System (ADS)

    Lack, D. A.; Corbett, J. J.

    2012-05-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on a) the impact of fuel quality on EFBC using robust measurement methods and b) the efficacy of scrubbers for the removal of particulate matter by size and composition.

  9. Effect of the Organic Loading Rate Increase and the Presence of Zeolite on Microbial Community Composition and Process Stability During Anaerobic Digestion of Chicken Wastes.

    PubMed

    Ziganshina, Elvira E; Belostotskiy, Dmitry E; Ilinskaya, Olga N; Boulygina, Eugenia A; Grigoryeva, Tatiana V; Ziganshin, Ayrat M

    2015-11-01

    This study investigates the effect of the organic loading rate (OLR) increase from 1.0 to 3.5 g VS L(-1) day(-1) at constant hydraulic retention time (HRT) of 35 days on anaerobic reactors' performance and microbial diversity during mesophilic anaerobic digestion of ammonium-rich chicken wastes in the absence/presence of zeolite. The effects of anaerobic process parameters on microbial community structure and dynamics were evaluated using a 16S ribosomal RNA gene-based pyrosequencing approach. Maximum 12 % of the total ammonia nitrogen (TAN) was efficiently removed by zeolite in the fixed zeolite reactor (day 87). In addition, volatile fatty acids (VFA) in the fixed zeolite reactor accumulated in lower concentrations at high OLR of 3.2-3.5 g VS L(-1) day(-1). Microbial communities in the fixed zeolite reactor and reactor without zeolite were dominated by various members of Bacteroidales and Methanobacterium sp. at moderate TAN and VFA levels. The increase of the OLR accompanied by TAN and VFA accumulation and increase in pH led to the predominance of representatives of the family Erysipelotrichaceae and genera Clostridium and Methanosarcina. Methanosarcina sp. reached relative abundances of 94 and 57 % in the fixed zeolite reactor and reactor without zeolite at the end of the experimental period, respectively. In addition, the diminution of Synergistaceae and Crenarchaeota and increase in the abundance of Acholeplasmataceae in parallel with the increase of TAN, VFA, and pH values were observed.

  10. Response of Growth and Density of a Population of Geukensia demissa to Land-Derived Nitrogen Loading, in Waquoit Bay, Massachusetts

    NASA Astrophysics Data System (ADS)

    Evgenidou, A.; Valiela, I.

    2002-07-01

    Nutrient enrichment is a widespread phenomenon affecting coastal waters, including salt marshes. As land-derived nitrogen loading in estuarine waters increases, chlorophyll concentrations in the water also increase. We hypothesized that such increases might increase growth of the food-limited population of Geukensia demissa, which is a dominant component of salt marshes. To test this, we conducted a regional scale experiment in three estuaries of Waquoit Bay, Massachusetts that receive different nitrogen loading rates. A stable isotope experiment on mussel tissues and on particulate organic matter (POM) showed that mussels within an estuary fed on POM characteristic of that estuary, demonstrating the direct linkage between POM and mussels within an estuary. In addition, we measured age-specific shell growth rates of mussel populations using two different methods: indirectly, shell growth of mussels indicated by internal shell-lines was measured by fitting the data to the von Bertalanffy equation, and directly, mussels were transplanted from one estuary to the other two, and their actual shell growth rates after 80 days were measured. Growth rates of mussels in the Waquoit Bay estuaries varied with age of the mussel, tidal elevation, and with mean concentration of chlorophyll in the water. Mussels grew best in the lower intertidal zone, at the marsh banks. Young mussels grew faster than older mussels. Growth rates increased in response to presumed greater food supply across the estuaries, only for younger mussels. The significant differences we found among the mussels from different estuaries indicate a response to higher concentrations of food particles available in estuaries subject to higher nitrogen loads.

  11. The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study

    NASA Astrophysics Data System (ADS)

    Pfaffenberger, L.; Barmet, P.; Slowik, J. G.; Praplan, A. P.; Dommen, J.; Prévôt, A. S. H.; Baltensperger, U.

    2013-07-01

    A series of smog chamber (SC) experiments was conducted to identify factors responsible for the discrepancy between ambient and SC aerosol degree of oxygenation. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer is used to compare mass spectra from α-pinene photooxidation with ambient aerosol. Composition is compared in terms of the fraction of particulate CO2+, a surrogate for carboxylic acids, vs. the fraction of C2H3O+, a surrogate for aldehydes, alcohols and ketones, as well as in the Van Krevelen space, where the evolution of the atomic hydrogen-to-carbon ratio (H : C) vs. the atomic oxygen-to-carbon ratio (O : C) is investigated. Low (near-ambient) organic mass concentrations were found to be necessary to obtain oxygenation levels similar to those of low-volatility oxygenated organic aerosol (LV-OOA) commonly identified in ambient measurements. The effects of organic mass loading and OH (hydroxyl radical) exposure were decoupled by inter-experiment comparisons at the same integrated OH concentration. An OH exposure between 3 and 25 × 107 cm-3 h is needed to increase O : C by 0.05 during aerosol aging. For the first time, LV-OOA-like aerosol from the abundant biogenic precursor α-pinene was produced in a smog chamber by oxidation at typical atmospheric OH concentrations. Significant correlation between measured secondary organic aerosol (SOA) and reference LV-OOA mass spectra is shown by Pearson's R2 values larger than 0.90 for experiments with low organic mass concentrations between 1.2 and 18 μg m-3 at an OH exposure of 4 × 107 cm-3 h, corresponding to about two days of oxidation time in the atmosphere, based on a global mean OH concentration of ~ 1 × 106 cm-3. α-Pinene SOA is more oxygenated at low organic mass loadings. Because the degree of oxygenation influences the chemical, volatility and hygroscopic properties of ambient aerosol, smog chamber studies must be performed at near-ambient concentrations to accurately simulate ambient aerosol properties.

  12. Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells.

    PubMed

    Asensio, Y; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Rodrigo, M A

    2016-08-01

    This manuscript focuses on the evaluation of the use of different types and dosages of fuels in the performance of double-compartment microbial fuel cell equipped with carbon felt electrodes and cationic membrane. Five types of fuels (ethanol, glycerol, acetate, propionate and fructose) have been tested for the same organic load (5,000 mg L(-1) measured as COD) and for one of them (acetate), the range of dosages between 500 and 20,000 mg L(-1) of COD was also studied. Results demonstrate that production of electricity depends strongly on the fuel used. Carboxylic acids are much more efficient than alcohols or fructose for the same organic load and within the range 500-5,000 mg L(-1) of acetate the production of electricity increases linearly with the amount of acetate fed but over these concentrations a change in the population composition may explain a worse performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability.

    PubMed

    Janke, Leandro; Leite, Athaydes F; Batista, Karla; Silva, Witan; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2016-10-01

    In this study, the effects of nitrogen, phosphate and trace elements supplementation were investigated in a semi-continuously operated upflow anaerobic sludge blanket system to enhance process stability and biogas production from sugarcane vinasse. Phosphate in form of KH2PO4 induced volatile fatty acids accumulation possibly due to potassium inhibition of the methanogenesis. Although nitrogen in form of urea increased the reactor's alkalinity, the process was overloaded with an organic loading rate of 6.1gCODL(-1)d(-1) and a hydraulic retention time of 3.6days. However, by supplementing urea and trace elements a stable operation even at an organic loading rate of 9.6gCODL(-1)d(-1) and a hydraulic retention time of 2.5days was possible, resulting in 79% higher methane production rate with a stable specific methane production of 239mLgCOD(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biodegradability enhancement and detoxification of cork processing wastewater molecular size fractions by ozone.

    PubMed

    Santos, Diana C; Silva, Lúcia; Albuquerque, António; Simões, Rogério; Gomes, Arlindo C

    2013-11-01

    Cork boiling wastewater pollutants were fractionated by sequential use of four ultrafiltration membranes and five fractions were obtained: four retentates (>100, 50-100, 20-50 and 10-20 kDa) and one permeate (<10 kDa); which were used to study the correlation of molecular size with biodegradability and toxicity before and after ozonation. The results show that molecular size is correlated with organic load and restrains biodegradability. The fraction with >100 kDa corresponds to 56% of the organic load and the one with <10 kDa only 8%. The biodegradability of fractions increased 182% with fractions molecular size reduction from >100 to <10 kDa and the chemical oxygen demand (COD) was from 3436 to 386 mg L(-1). For biodegradability enhancement the best outcome of ozonation was obtained with compounds having molecular size >20 kDa and range from 5% up to 175% for applied ozone doses to COD ratios between 0.15 and 0.38. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Handwashing and Ebola virus disease outbreaks: A randomized comparison of soap, hand sanitizer, and 0.05% chlorine solutions on the inactivation and removal of model organisms Phi6 and E. coli from hands and persistence in rinse water

    PubMed Central

    Gallandat, Karin; Daniels, Kyle; Desmarais, Anne Marie; Scheinman, Pamela; Lantagne, Daniele

    2017-01-01

    To prevent Ebola transmission, frequent handwashing is recommended in Ebola Treatment Units and communities. However, little is known about which handwashing protocol is most efficacious. We evaluated six handwashing protocols (soap and water, alcohol-based hand sanitizer (ABHS), and 0.05% sodium dichloroisocyanurate, high-test hypochlorite, and stabilized and non-stabilized sodium hypochlorite solutions) for 1) efficacy of handwashing on the removal and inactivation of non-pathogenic model organisms and, 2) persistence of organisms in rinse water. Model organisms E. coli and bacteriophage Phi6 were used to evaluate handwashing with and without organic load added to simulate bodily fluids. Hands were inoculated with test organisms, washed, and rinsed using a glove juice method to retrieve remaining organisms. Impact was estimated by comparing the log reduction in organisms after handwashing to the log reduction without handwashing. Rinse water was collected to test for persistence of organisms. Handwashing resulted in a 1.94–3.01 log reduction in E. coli concentration without, and 2.18–3.34 with, soil load; and a 2.44–3.06 log reduction in Phi6 without, and 2.71–3.69 with, soil load. HTH performed most consistently well, with significantly greater log reductions than other handwashing protocols in three models. However, the magnitude of handwashing efficacy differences was small, suggesting protocols are similarly efficacious. Rinse water demonstrated a 0.28–4.77 log reduction in remaining E. coli without, and 0.21–4.49 with, soil load and a 1.26–2.02 log reduction in Phi6 without, and 1.30–2.20 with, soil load. Chlorine resulted in significantly less persistence of E. coli in both conditions and Phi6 without soil load in rinse water (p<0.001). Thus, chlorine-based methods may offer a benefit of reducing persistence in rinse water. We recommend responders use the most practical handwashing method to ensure hand hygiene in Ebola contexts, considering the potential benefit of chlorine-based methods in rinse water persistence. PMID:28231311

  16. Relations of surface-water quality to streamflow in the Raritan River basin, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Buxton, Debra E.; Hunchak-Kariouk, Kathryn; Hickman, R. Edward

    1999-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 21 surface-water stations within the drainage area of the Raritan River Basin for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall’s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) or constant (point sources and ground water) sources, respectively. Highand low-flow trends in concentrations were determined for some constituents at 13 of the 21 water-quality stations; 8 stations have insufficient data to determine trends. Seasonal effects on the relations of concentration to streamflow are evident for 16 of the 18 constituents. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of the dilution of instream concentrations by storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. The slopes of load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. The slopes of load-to-streamflow relations increase in the downstream direction for alkalinity at North Branch Raritan and Millstone Rivers, for some or all of the nutrient species at South Branch and North Branch Raritan Rivers, for hardness at South Branch Raritan River, for dissolved solids at North Branch Raritan River, for dissolved sodium at Lamington River, and for suspended sediment and dissolved oxygen at Millstone River. Likewise, the slopes of load-tostreamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. The slopes of load-to-streamflow relations decrease in the downstream direction for dissolved solids at Raritan and Millstone Rivers; for dissolved sodium, dissolved chloride, total ammonia plus organic nitrogen, and total ammonia at South Branch Raritan, Raritan, and Millstone Rivers; for dissolved oxygen at North Branch Raritan and Lamington Rivers; for total nitrite at Lamington, Raritan, and Millstone Rivers; for total boron at South Branch Raritan and Millstone Rivers; for total organic carbon at North Branch Raritan River; for suspended sediment and total nitrogen at Raritan River; and for hardness, total phosphorus, and total lead at Millstone River.

  17. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    NASA Astrophysics Data System (ADS)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years, species composition was more evenly distributed. At the longer time scale, El Niño events with accompanying increase in nutrient loads were followed by years in which productivity declined below levels predicted solely by nutrient ratios. This was due to subtle shifts in organic matter decomposition where productive years are followed by increases in refractory material which sequesters nutrients and reduces internal loading.

  18. A direct correlation of x-ray diffraction orientation distributions to the in-plane stiffness of semi-crystalline organic semiconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bingxiao; Awartani, Omar; O'Connor, Brendan

    2016-05-02

    Large charge mobilities of semi-crystalline organic semiconducting films could be obtained by mechanically aligning the material phases of the film with the loading axis. A key element is to utilize the inherent stiffness of the material for optimal or desired alignment. However, experimentally determining the moduli of semi-crystalline organic thin films for different loading directions is difficult, if not impossible, due to film thickness and material anisotropy. In this paper, we address these challenges by presenting an approach based on combining a composite mechanics stiffness orientation formulation with a Gaussian statistical distribution to directly estimate the in-plane stiffness (transverse isotropy)more » of aligned semi-crystalline polymer films based on crystalline orientation distributions obtained by X-ray diffraction experimentally at different applied strains. Our predicted results indicate that the in-plane stiffness of an annealing film was initially isotropic, and then it evolved to transverse isotropy with increasing mechanical strains. This study underscores the significance of accounting for the crystalline orientation distributions of the film to obtain an accurate understanding and prediction of the elastic anisotropy of semi-crystalline polymer films.« less

  19. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.

    PubMed

    Ulrich, Daniela; Edwards, Sharon L; Alexander, David L J; Rosamilia, Anna; Werkmeister, Jerome A; Gargett, Caroline E; Letouzey, Vincent

    2016-02-01

    Pelvic organ prolapse (POP) is a multifactorial disease that manifests as the herniation of the pelvic organs into the vagina. Surgical methods for prolapse repair involve the use of a synthetic polypropylene mesh. The use of this mesh has led to significantly higher anatomical success rates compared with native tissue repairs, and therefore, despite recent warnings by the Food and Drug Administration regarding the use of vaginal mesh, the number of POP mesh surgeries has increased over the last few years. However, mesh implantation is associated with higher postsurgery complications, including pain and erosion, with higher consecutive rates of reoperation when placed vaginally. Little is known on how the mechanical properties of the implanted mesh itself change in vivo. It is assumed that the mechanical properties of these meshes remain unchanged, with any differences in mechanical properties of the formed mesh-tissue complex attributed to the attached tissue alone. It is likely that any changes in mesh mechanical properties that do occur in vivo will have an impact on the biomechanical properties of the formed mesh-tissue complex. The objective of the study was to assess changes in the multiaxial mechanical properties of synthetic clinical prolapse meshes implanted abdominally for up to 90 days, using a rat model. Another objective of the study was to assess the biomechanical properties of the formed mesh-tissue complex following implantation. Three nondegradable polypropylene clinical synthetic mesh types for prolapse repair (Gynemesh PS, Polyform Lite, and Restorelle) and a partially degradable polypropylene/polyglecaprone mesh (UltraPro) were mechanically assessed before and after implantation (n = 5/ mesh type) in Sprague Dawley rats for 30 (Gynemesh PS, Polyform Lite, and Restorelle) and 90 (UltraPro and Polyform Lite) days. Stiffness and permanent extension following cyclic loading, and breaking load, of the preimplanted mesh types, explanted mesh-tissue complexes, and explanted meshes were assessed using a multi-axial (ball-burst) method. The 4 clinical meshes varied from each other in weight, thickness, porosity, and pore size and showed significant differences in stiffness and breaking load before implantation. Following 30 days of implantation, the mechanical properties of some mesh types altered, with significant decreases in mesh stiffness and breaking load, and increased permanent extension. After 90 days these changes were more obvious, with significant decreases in stiffness and breaking load and increased permanent extension. Similar biomechanical properties of formed mesh-tissue complexes were observed for mesh types of different preimplant stiffness and structure after 90 days implantation. This is the first study to report on intrinsic changes in the mechanical properties of implanted meshes and how these changes have an impact on the estimated tissue contribution of the formed mesh-tissue complex. Decreased mesh stiffness, strength, and increased permanent extension following 90 days of implantation increase the biomechanical contribution of the attached tissue of the formed mesh-tissue complex more than previously thought. This needs to be considered when using meshes for prolapse repair. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed

    USGS Publications Warehouse

    Oh, Neung-Hwan; Pellerin, Brian A.; Bachand, Philip A.M.; Hernes, Peter J.; Bachand, Sandra M.; Ohara, Noriaki; Kavvas, M. Levent; Bergamaschi, Brian A.; Horwath, William R.

    2013-01-01

    We investigated the role of land use/land cover and agriculture practices on stream dissolved organic carbon (DOC) dynamics in the Willow Slough watershed (WSW) from 2006 to 2008. The 415 km2watershed in the northern Central Valley, California is covered by 31% of native vegetation and the remaining 69% of agricultural fields (primarily alfalfa, tomatoes, and rice). Stream discharge and weekly DOC concentrations were measured at eight nested subwatersheds to estimate the DOC loads and yields (loads/area) using the USGS developed stream load estimation model, LOADEST. Stream DOC concentrations peaked at 18.9 mg L−1 during summer irrigation in the subwatershed with the highest percentage of agricultural land use, demonstrating the strong influence of agricultural activities on summer DOC dynamics. These high concentrations contributed to DOC yields increasing up to 1.29 g m−2 during the 6 month period of intensive agricultural activity. The high DOC yields from the most agricultural subwatershed during the summer irrigation period was similar throughout the study, suggesting that summer DOC loads from irrigation runoff would not change significantly in the absence of major changes in crops or irrigation practices. In contrast, annual DOC yields varied from 0.89 to 1.68 g m−2 yr−1 for the most agricultural watershed due to differences in winter precipitation. This suggests that variability in the annual DOC yields will be largely determined by the winter precipitation, which can vary significantly from year to year. Changes in precipitation patterns and intensities as well as agricultural practices have potential to considerably alter the DOC dynamics.

  1. Fos-like immunoreactivity and thirst following hyperosmotic loading in rats with subdiaphragmatic vagotomy.

    PubMed

    Starbuck, Elizabeth M; Wilson, Wendy L; Fitts, Douglas A

    2002-03-29

    If receptors in the gut relay information about increases in local osmolality to the brain via the vagus nerve, then vagotomy should diminish this signaling and reduce both thirst and brain Fos-like immunoreactivity (Fos-ir). Water intake in response to hypertonic saline (i.p. or i.g., 1 M NaCl, 1% BW; i.g., 0.6 M NaCl, 0.5% BW) was reduced during 120 min in rats with subdiaphragmatic vagotomy (VGX) compared to sham-VGX rats. Brain Fos-ir was examined in response to both i.g. loads. After the smaller load, VGX greatly reduced Fos-ir in the supraoptic nucleus (SON) and the magnocellular and parvocellular areas of the paraventricular nucleus (PVN). Fos-ir in the subfornical organ (SFO) and nucleus of the solitary tract (NTS) was not affected. After the larger load, VGX significantly reduced Fos-ir in the parvocellular PVN and in the NTS, but not in the other regions. Thus, decreased water intake by VGX rats was accompanied by decreased Fos-ir in the parvocellular PVN after the same treatments, indicating a role for the abdominal vagus in thirst in response to signaling from gut osmoreceptors. The decreased water intake in the VGX group was not reflected as a decrease in Fos-ir in the SFO. Absorption of the larger i.g. load may have activated Fos-ir through more rapidly increasing systemic osmolality, thereby obscuring a role for the vagus at this dose in the SON and magnocellular PVN.

  2. Effect of phase lag on cyclic durability of laminated composite

    NASA Astrophysics Data System (ADS)

    Andersons, Janis; Limonov, V.; Tamuzs, Vitants

    1992-07-01

    Theoretical and experimental results on fatigue of laminated fiber reinforced composites under out-of-phase, biaxial cyclic loading are presented. Experiments were carried out on tubular filament wound samples of epoxy matrix/organic (Kevlar type) fiber composites. Fatigue strength under two different loading modes, namely cyclic torsion combined with axial tension or compression, was investigated for phase lags psi = 0, pi/2, and pi. Durability was shown to decrease with increasing phase shift both for axial tension (R = 0.1) and compression (R = 10). A matrix failure criterion was proposed for a unidirectionally reinforced ply, and the ply discount method was modified to account for phase lag. Calculated S-N curves agree reasonably well with experimental data.

  3. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  4. Spatio-temporal variability of dissolved organic nitrogen (DON), carbon (DOC), and nutrients in the Nile River, Egypt.

    PubMed

    Badr, El-Sayed A

    2016-10-01

    Increases in human activity have resulted in enhanced anthropogenic inputs of nitrogen (N) and carbon (C) into the Nile River. The Damietta Branch of the Nile is subject to inputs from industrial, agricultural, and domestic wastewater. This study investigated the distribution and seasonality of dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and nutrients in the Nile Damietta Branch. Water samples were collected from 24 sites between May 2009 and February 2010. Dissolved organic nitrogen concentrations averaged 251 ± 115 μg/l, with a range of 90.2-671 μg/l, and contributed 40.8 ± 17.7 % to the total dissolved nitrogen (TDN) pool. Relative to autumn and winter, DON was a larger fraction of the TDN pool during spring and summer indicating the influence of bacterioplankton on the nitrogen cycle. Concentrations of DOC ranged from 2.23 to 11.3 mg/l with an average of 5.15 ± 2.36 mg/l, reflecting a high organic matter load from anthropogenic sources within the study area, and were highest during autumn. Higher values of biochemical oxygen demand (BOD), chemical oxygen demand (COD), DON, nitrate, and phosphate occurred downstream of the Damietta Branch and were probably due to anthropogenic inputs to the Nile from the Damietta district. A bacterial incubation experiment indicated that 52.1-95.0 % of DON was utilized by bacteria within 21 days. The decrease in DON concentration was accompanied by an increase in nitrate concentration of 54.8-87.3 %, presumably through DON mineralization. Based on these results, we recommend that water quality assessments consider DON and DOC, as their omission may result in an underestimation of the total organic matter load and impact.

  5. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    USGS Publications Warehouse

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously unrecognized source of NO3− to karst groundwater or other oxic groundwater systems.

  6. Influence of salinity intrusion on the speciation and partitioning of mercury in the Mekong River Delta

    NASA Astrophysics Data System (ADS)

    Noh, Seam; Choi, Mijin; Kim, Eunhee; Dan, Nguyen Phuoc; Thanh, Bui Xuan; Ha, Nguyen Thi Van; Sthiannopkao, Suthipong; Han, Seunghee

    2013-04-01

    The lower Mekong and Saigon River Basins are dominated by distinctive monsoon seasons, dry and rainy seasons. Most of the Mekong River is a freshwater region during the rainy season, whereas during the dry season, salt water intrudes approximately 70 km inland. To understand the role of salinity intrusion controlling Hg behavior in the Mekong and Saigon River Basins, Hg and monomethylmercury (MMHg) in surface water and sediment of the Mekong River and in sediment of the Saigon River were investigated in the dry season. Sediment Hg distribution, ranging from 0.12 to 0.76 nmol g-1, was mainly controlled by organic carbon distribution in the Mekong River; however, the location of point sources was more important in the Saigon River (0.21-0.65 nmol g-1). The MMHg concentrations in Mekong (0.16-6.1 pmol g-1) and Saigon (0.70-8.7 pmol g-1) sediment typically showed significant increases in the estuarine head, with sharp increases of acid volatile sulfide. Unfiltered Hg (4.6-222 pM) and filtered Hg (1.2-14 pM) in the Mekong River increased in the estuarine zone due to enhanced particle loads. Conversely, unfiltered MMHg (0.056-0.39 pM) and filtered MMHg (0.020-0.17 pM) was similar between freshwater and estuarine zones, which was associated with mixing dilution of particulate MMHg by organic- and MMHg-depleted resuspended sediment. Partitioning of Hg between water and suspended particle showed tight correlation with the partitioning of organic carbon across study sites, while that of MMHg implied influences of chloride: enhanced chloride in addition to organic matter depletion decreased particulate MMHg in the estuarine zone. Primary production was an important determinant of inter-annual variation of particulate Hg and sediment MMHg. The bloom year showed relatively low particulate Hg with low C/N ratio, indicating biodilution of Hg. In contrast, the percentage of MMHg in sediment increased significantly in the bloom year, likely due to greater availability of metabolizable fresh organic matter. The overall results emphasize that Hg behavior in the lower Mekong River Basin is strongly connected to the local monsoon climate, via alterations in particle loads, biological productivity, and availability of sulfate, chloride and organic matter.

  7. The impact of loading approach and biological activity on NOM removal by ion exchange resins.

    PubMed

    Winter, Joerg; Wray, Heather E; Schulz, Martin; Vortisch, Roman; Barbeau, Benoit; Bérubé, Pierre R

    2018-05-01

    The present study investigated the impact of different loading approaches and microbial activity on the Natural Organic Matter (NOM) removal efficiency and capacity of ion exchange resins. Gaining further knowledge on the impact of loading approaches is of relevance because laboratory-scale multiple loading tests (MLTs) have been introduced as a simpler and faster alternative to column tests for predicting the performance of IEX, but only anecdotal evidence exists to support their ability to forecast contaminant removal and runtime until breakthrough of IEX systems. The overall trends observed for the removal and the time to breakthrough of organic material estimated using MLTs differed from those estimated using column tests. The results nonetheless suggest that MLTs could best be used as an effective tool to screen different ion exchange resins in terms of their ability to remove various contaminants of interest from different raw waters. The microbial activity was also observed to impact the removal and time to breakthrough. In the absence of regeneration, a microbial community rapidly established itself in ion exchange columns and contributed to the removal of organic material. Biological ion exchange (BIEX) removed more organic material and enabled operation beyond the point when the resin capacity would have otherwise been exhausted using conventional (i.e. in the absence of a microbial community) ion exchange. Furthermore, significantly greater removal of organic matter could be achieved with BIEX than biological activated carbon (BAC) (i.e. 56 ± 7% vs. 15 ± 5%, respectively) when operated at similar loading rates. The results suggest that for some raw waters, BIEX could replace BAC as the technology of choice for the removal of organic material. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    PubMed Central

    2012-01-01

    Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production. PMID:23167984

  9. Effect of flood events on transport of suspended sediments, organic matter and particulate metals in a forest watershed in the Basque Country (Northern Spain).

    PubMed

    Peraza-Castro, M; Sauvage, S; Sánchez-Pérez, J M; Ruiz-Romera, E

    2016-11-01

    An understanding of the processes controlling sediment, organic matter and metal export is critical to assessing and anticipating risk situations in water systems. Concentrations of suspended particulate matter (SPM), dissolved (DOC) and particulate (POC) organic carbon and metals (Cu, Ni, Pb, Cr, Zn, Mn, Fe) in dissolved and particulate phases were monitored in a forest watershed in the Basque Country (Northern Spain) (31.5km(2)) over three hydrological years (2009-2012), to evaluate the effect of flood events on the transport of these materials. Good regression was found between SPM and particulate metal concentration, making it possible to compute the load during the twenty five flood events that occurred during the study period at an annual scale. Particulate metals were exported in the following order: Fe>Mn>Zn>Cr>Pb>Cu>Ni. Annual mean loads of SPM, DOC and POC were estimated at 2267t, 104t and 57t, respectively, and the load (kg) of particulate metals at 76 (Ni), 83 (Cu), 135 (Pb), 256 (Cr), 532 (Zn), 1783 (Mn) and 95170 (Fe). Flood events constituted 91%-SPM, 65%-DOC, 71%-POC, 80%-Cu, 85%-Ni, 72%-Pb, 84%-Cr, 74%-Zn, 87%-Mn and 88%-Fe of total load exported during the three years studied. Flood events were classified into three categories according to their capacity for transporting organic carbon and particulate metals. High intensity flood events are those with high transport capacity of SPM, organic carbon and particulate metals. Most of the SPM, DOC, POC and particulate metal load was exported by this type of flood event, which contributed 59% of SPM, 45% of organic carbon and 54% of metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor.

    PubMed

    España-Gamboa, Elda I; Mijangos-Cortés, Javier O; Hernández-Zárate, Galdy; Maldonado, Jorge A Domínguez; Alzate-Gaviria, Liliana M

    2012-11-21

    A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production.Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.

  11. Characteristics of DO, organic matter, and ammonium profile for practical-scale DHS reactor under various organic load and temperature conditions.

    PubMed

    Nomoto, Naoki; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Hatamoto, Masashi; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki

    2018-04-01

    Profile analysis of the down-flow hanging sponge (DHS) reactor was conducted under various temperature and organic load conditions to understand the organic removal and nitrification process for sewage treatment. Under high organic load conditions (3.21-7.89 kg-COD m -3  day -1 ), dissolved oxygen (DO) on the upper layer of the reactor was affected by organic matter concentration and water temperature, and sometimes reaches around zero. Almost half of the COD Cr was removed by the first layer, which could be attributed to the adsorption of organic matter on sponge media. After the first layer, organic removal proceeded along the first-order reaction equation from the second to the fourth layers. The ammoniacal nitrogen removal ratio decreased under high organic matter concentration (above 100 mg L -1 ) and low DO (less than 1 mg L -1 ) condition. Ammoniacal nitrogen removal proceeded via a zero-order reaction equation along the reactor height. In addition, the profile results of DO, COD Cr , and NH 3 -N were different in the horizontal direction. Thus, it is thought the concentration of these items and microbial activities were not in a uniform state even in the same sponge layer of the DHS reactor.

  12. Using the spectral induced polarization method to assess biochar performance as a remediation agent

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Kirmizakis, P.; Kalderis, D.; Soupios, P. M.

    2016-12-01

    Olive mill waste-water (OMW), the waste product of olive oil production, typically holds a high concentration of hazardous substances (e.g. phenols) to humans and the environment. OMW is usually disposed of into unregulated, not properly constructed, evaporation ponds in the close vicinity of the olive mil. Efficient, easy to apply, remediation methods are sought to address the impact of uncontrolled OMW in the Mediterranean region. Biochar amended soils could be used to reduce the detrimental effects of OMW since it has been shown to reduce the organic load of impacted soils. We present results from a laboratory experiment designed [a] to treat OMW using biochar, and [b] utilize the spectral induced polarization (SIP) method to monitor the remediation process. Three biochar amended columns (5%, 10%, 25%) and one control were saturated with OMW from the Alikianos waste pond. After 10 day treatment the organic load was reduced on all biochar amended columns, with the 10% showing the highest reduction. Early results indicate aerobic degradation at the initial treatment stages, followed by anaerobic conditions later. SIP monitoring provides some very interesting results, with the real and imaginary components behaving differently. The real conductivity appears to increase significantly only for the 10% biochar column, the one with highest organic load removal. Imaginary conductivity appears to increase with time in all biochar amended columns, and it seems to be affected by the amount of biochar present. Finally, scaning electron microscopy (SEM) showed no alterations on the physical structure of the biochar, potentially allowing for multiple treatments and/or re-using. These early results suggest that biochar is suitable for OMW treatment, and SIP is sensitive to the remediation processes. Overall, the method is simple to set-up, run and monitor and does not require any safety precautions. Further geochemical analysis is performed to provide additional insight on OMW and biochar processes, and their links to SIP responses.

  13. Water quality of the Neuse River, North Carolina : variability, pollution loads, and long-term trends

    USGS Publications Warehouse

    Harned, Douglas A.

    1980-01-01

    A water-quality study of the Neuse River, N.C., based on data collected during 1956-77 at the U.S. Geological Survey stations at Clayton and Kinston, employs statistical trend analysis techniques that provide a framework for river quality assessment. Overall, water-quality of the Neuse River is satisfactory for most uses. At Clayton, fecal coliform bacteria and nutrient levels are high, but algae and total-organic-carbon data indicate water-quality improvement in recent years, due probably to a new wastewater treatment plant located downstream from Raleigh, N.C. Pollution was determined by subtracting estimated natural loads of constituents from measured total loads. Pollution makes up approximately 50% of the total dissolved material transported by the Neuse. Two different data transformation methods allowed trends to be identified in constituent concentrations. The methods recomputed the concentrations as if they were determined at a constant discharge over the period of record. Although little change since 1956 can be seen in most constituents, large changes in some constituents, such as increases in potassium and sulfate, indicate that the water quality of the Neuse River has noticeably deteriorated. Increases in sulfate are probably largely due to increased long-term inputs of sulfur compounds from airborne pollutants. (USGS)

  14. Contextualizing Wetlands Within a River Network to Assess Nitrate Removal and Inform Watershed Management

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Hansen, Amy T.; Foufoula-Georgiou, Efi; Finlay, Jacques C.

    2018-02-01

    Aquatic nitrate removal depends on interactions throughout an interconnected network of lakes, wetlands, and river channels. Herein, we present a network-based model that quantifies nitrate-nitrogen and organic carbon concentrations through a wetland-river network and estimates nitrate export from the watershed. This model dynamically accounts for multiple competing limitations on nitrate removal, explicitly incorporates wetlands in the network, and captures hierarchical network effects and spatial interactions. We apply the model to the Le Sueur Basin, a data-rich 2,880 km2 agricultural landscape in southern Minnesota and validate the model using synoptic field measurements during June for years 2013-2015. Using the model, we show that the overall limits to nitrate removal rate via denitrification shift between nitrate concentration, organic carbon availability, and residence time depending on discharge, characteristics of the waterbody, and location in the network. Our model results show that the spatial context of wetland restorations is an important but often overlooked factor because nonlinearities in the system, e.g., deriving from switching of resource limitation on denitrification rate, can lead to unexpected changes in downstream biogeochemistry. Our results demonstrate that reduction of watershed-scale nitrate concentrations and downstream loads in the Le Sueur Basin can be most effectively achieved by increasing water residence time (by slowing the flow) rather than by increasing organic carbon concentrations (which may limit denitrification). This framework can be used toward assessing where and how to restore wetlands for reducing nitrate concentrations and loads from agricultural watersheds.

  15. Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils.

    PubMed

    Karathanasis, A D; Johnson, D M C; Matocha, C J

    2005-01-01

    Increasing land applications of biosolid wastes as soil amendments have raised concerns about potential toxic effects of associated metals on the environment. This study investigated the ability of biosolid colloids to transport metals associated with organic waste amendments through subsurface soil environments with leaching experiments involving undisturbed soil monoliths. Biosolid colloids were fractionated from a lime-stabilized, an aerobically digested, and a poultry manure organic waste and applied onto the monoliths at a rate of 0.7 cm/h. Eluents were monitored for Cu, Zn, Pb, and colloid concentrations over 16 to 24 pore volumes of leaching. Mass-balance calculations indicated significantly higher (up to 77 times) metal elutions in association with the biosolid colloids in both total and soluble fractions over the control treatments. Eluted metal loads varied with metal, colloid, and soil type, following the sequences Zn = Cu > Pb, and ADB > PMB > LSB colloids. Colloid and metal elution was enhanced by decreasing pH and colloid size, and increasing soil macroporosity and organic matter content. Breakthrough curves were mostly irregular, showing several maxima and minima as a result of preferential macropore flow and multiple clogging and flushing cycles. Soil- and colloid-metal sorption affinities were not reliable predictors of metal attenuation/elution loads, underscoring the dynamic nature of transport processes. The findings demonstrate the important role of biosolid colloids as contaminant carriers and the significant risk they pose, if unaccounted, for soil and ground water contamination in areas receiving heavy applications of biosolid waste amendments.

  16. Projecting changes in Everglades soil biogeochemistry for carbon and other key elements, to possible 2060 climate and hydrologic scenarios.

    PubMed

    Orem, William; Newman, Susan; Osborne, Todd Z; Reddy, K Ramesh

    2015-04-01

    Based on previously published studies of elemental cycling in Everglades soils, we projected how soil biogeochemistry, specifically carbon, nitrogen, phosphorus, sulfur, and mercury might respond to climate change scenarios projected for 2060 by the South Florida Water Management Model. Water budgets and stage hydrographs from this model with future scenarios of a 10% increased or decreased rainfall, a 1.5 °C rise in temperature and associated increase in evapotranspiration (ET) and a 0.5 m rise in sea level were used to predict resulting effects on soil biogeochemistry. Precipitation is a much stronger driver of soil biogeochemical processes than temperature, because of links among water cover, redox conditions, and organic carbon accumulation in soils. Under the 10% reduced rainfall scenario, large portions of the Everglades will experience dry down, organic soil oxidation, and shifts in soil redox that may dramatically alter biogeochemical processes. Lowering organic soil surface elevation may make portions of the Everglades more vulnerable to sea level rise. The 10% increased rainfall scenario, while potentially increasing phosphorus, sulfur, and mercury loading to the ecosystem, would maintain organic soil integrity and redox conditions conducive to normal wetland biogeochemical element cycling. Effects of increased ET will be similar to those of decreased precipitation. Temperature increases would have the effect of increasing microbial processes driving biogeochemical element cycling, but the effect would be much less than that of precipitation. The combined effects of decreased rainfall and increased ET suggest catastrophic losses in carbon- and organic-associated elements throughout the peat-based Everglades.

  17. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  18. An Investigation of the Inertial Properties of Backpacks Loaded in Various Configurations

    DTIC Science & Technology

    1982-05-01

    and Richard C. Nelson, Ph.D. S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Biomechanics ...backpacks loads backpack system load carrying military clothing human backpack system military equipment loading configurations inertial properties 2i04...configuration, a 12.00-kg load, consisting of military clothing and equip- ment, was placed in the packs. The locations of the items were manipulated

  19. Microbial Population Dynamics and Ecosystem Functions of Anoxic/Aerobic Granular Sludge in Sequencing Batch Reactors Operated at Different Organic Loading Rates

    PubMed Central

    Szabó, Enikö; Liébana, Raquel; Hermansson, Malte; Modin, Oskar; Persson, Frank; Wilén, Britt-Marie

    2017-01-01

    The granular sludge process is an effective, low-footprint alternative to conventional activated sludge wastewater treatment. The architecture of the microbial granules allows the co-existence of different functional groups, e.g., nitrifying and denitrifying communities, which permits compact reactor design. However, little is known about the factors influencing community assembly in granular sludge, such as the effects of reactor operation strategies and influent wastewater composition. Here, we analyze the development of the microbiomes in parallel laboratory-scale anoxic/aerobic granular sludge reactors operated at low (0.9 kg m-3d-1), moderate (1.9 kg m-3d-1) and high (3.7 kg m-3d-1) organic loading rates (OLRs) and the same ammonium loading rate (0.2 kg NH4-N m-3d-1) for 84 days. Complete removal of organic carbon and ammonium was achieved in all three reactors after start-up, while the nitrogen removal (denitrification) efficiency increased with the OLR: 0% at low, 38% at moderate, and 66% at high loading rate. The bacterial communities at different loading rates diverged rapidly after start-up and showed less than 50% similarity after 6 days, and below 40% similarity after 84 days. The three reactor microbiomes were dominated by different genera (mainly Meganema, Thauera, Paracoccus, and Zoogloea), but these genera have similar ecosystem functions of EPS production, denitrification and polyhydroxyalkanoate (PHA) storage. Many less abundant but persistent taxa were also detected within these functional groups. The bacterial communities were functionally redundant irrespective of the loading rate applied. At steady-state reactor operation, the identity of the core community members was rather stable, but their relative abundances changed considerably over time. Furthermore, nitrifying bacteria were low in relative abundance and diversity in all reactors, despite their large contribution to nitrogen turnover. The results suggest that the OLR has considerable impact on the composition of the granular sludge communities, but also that the granule communities can be dynamic even at steady-state reactor operation due to high functional redundancy of several key guilds. Knowledge about microbial diversity with specific functional guilds under different operating conditions can be important for engineers to predict the stability of reactor functions during the start-up and continued reactor operation. PMID:28507540

  20. Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree

    PubMed Central

    Hesse, Linnea; Masselter, Tom; Leupold, Jochen; Spengler, Nils; Speck, Thomas; Korvink, Jan Gerrit

    2016-01-01

    Magnetic resonance imaging (MRI) was used to gain in vivo insight into load-induced displacements of inner plant tissues making a non-invasive and non-destructive stress and strain analysis possible. The central aim of this study was the identification of a possible load-adapted orientation of the vascular bundles and their fibre caps as the mechanically relevant tissue in branch-stem-attachments of Dracaena marginata. The complex three-dimensional deformations that occur during mechanical loading can be analysed on the basis of quasi-three-dimensional data representations of the outer surface, the inner tissue arrangement (meristem and vascular system), and the course of single vascular bundles within the branch-stem-attachment region. In addition, deformations of vascular bundles could be quantified manually and by using digital image correlation software. This combination of qualitative and quantitative stress and strain analysis leads to an improved understanding of the functional morphology and biomechanics of D. marginata, a plant that is used as a model organism for optimizing branched technical fibre-reinforced lightweight trusses in order to increase their load bearing capacity. PMID:27604526

  1. Co-digestion of wheat and rye bread suspensions with source-sorted municipal biowaste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chaoran, E-mail: Chaoran.Li3@kit.edu; Mörtelmaier, Christoph, E-mail: Christoph.Moertelmaier@kit.edu; Winter, Josef, E-mail: Josef.Winter@kit.edu

    Graphical abstract: Volatile fatty acid spectra of acidified WBS, RBS or FBS differ, but methanogenesis is similar. Display Omitted - Highlights: • Biogas improvement by co-digestion of wheat and rye bread. • Increased population density at high organic loading rates. • Less Pelotomaculum but increased numbers of Syntrophobacter and Smithella found in rye bread reactor. • Replacement of Methanosarcinales by acetate-oxidizers in rye bread co-digestion. • Increasing proportion of Methanomicrobiales in biowaste + rye bread reactor. - Abstract: Acidification of wheat bread (WBS), rye bread (RBS) and fresh biowaste suspensions (FBS), leading to lactate+acetate, lactate+acetate+n-buyrate, and acetate+propionate+n-butyrate, respectively, and biogasmore » production as well as population dynamics were investigated. Co-fermentation of FBS (14 kg m{sup −3} d{sup −1} organic loading rate (OLR)) with WBS or RBS was stable up to an OLR of 22 kg m{sup −3} d{sup −1} and resulted in up to 3 times as much biogas. During co-fermentation at more than 20 kg m{sup −3} d{sup −1} OLR the total population increased more than 2-fold, but the originally low share of propionate-oxidizing bacteria significantly decreased. The proportion of methanogens also decreased. Whereas the proportion of Methanosarcinales to Methanomicrobiales in biowaste and biowaste+WBS remained constant, Methanosarcinales and in particular Methanosaeta spec. in the biowaste+RBS assay almost completely disappeared. Methanomicrobiales increased instead, indicating propionate oxidation via acetate cleavage to CO{sub 2} and hydrogen.« less

  2. Effects of Jefferson Road stormwater-detention basin on loads and concentrations of selected chemical constituents in East Branch of Allen Creek at Pittsford, Monroe County, New York

    USGS Publications Warehouse

    Sherwood, Donald A.

    2004-01-01

    Discharge and water-quality data collection at East Branch Allen Creek from 1990 through 2000 provide a basis for estimating the effect of the Jefferson Road detention basin on loads and concentrations of chemical constituents downstream from the basin. Mean monthly flow for the 5 years prior to construction of the detention basin (8.71 ft3/s) was slightly lower than after (9.08 ft3/s). The slightly higher mean monthly flow after basin construction may have been influenced by the peak flow for the period of record that occurred in July 1998 or variations in flow diverted from the canal. No statistically significant difference in average monthly mean flow before and after basin installation was indicated.Total phosphorus was the only constituent to show no months with significant differences in load after basin construction. Several constituents showed months with significantly smaller loads after basin construction than before, whereas some constituents showed certain months with smaller and some months with greater loads, after basin construction. Statistical analysis of the "mean monthly load" for all months before and all months after construction of the detention basin showed only one constituent (ammonia + organic nitrogen) with a significantly lower load after construction and none with higher loads.Median concentrations of ammonia + organic nitrogen showed a statistically significant decrease (from 0.78 mg/L to 0.60 mg/L) after basin installation, as did nitrite + nitrate (from 1.50 mg/L to 0.96 mg/L); in contrast, the median concentration of dissolved chloride increased from 95.5 mg/L before basin installation to 109 mg/L thereafter. A trend analysis of constituent concentrations before and after installation of the detention basin showed that total phosphorus had a downward trend after installation.Analysis of the data collected at East Branch Allen Creek indicates that the Jefferson Road detention basin, in some cases, provides an improvement (reduction) in loads of some constituents. These results are uncertain, however, because hydrologic conditions before basin installation differed from those in the 5 years that followed, and because inflow from the Erie-Barge canal may alter the water quality in the 1-mi reach between the basin outflow and the gaging station.

  3. An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-Suprapostural Task

    PubMed Central

    Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou

    2016-01-01

    Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information transfer, (2) an anterior shift of processing resources toward frontal executive function, and (3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy. PMID:27594830

  4. Watershed characteristics and water-quality trends and loads in 12 watersheds in Gwinnett County, Georgia

    USGS Publications Warehouse

    Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total nitrogen, total phosphorus, total organic carbon, total lead, total zinc, total suspended solids, and suspended-sediment concentrations increased with increasing discharge at all watersheds. Specific conductance, however, decreased during stormflow at all watersheds, and total dissolved solids concentrations decreased during stormflow at a few of the watersheds. Total suspended solids and suspended-sediment concentrations typically were two orders of magnitude higher in stormflow samples, turbidities were about 1.5 orders of magnitude higher, total phosphorus and total zinc were about one order of magnitude higher, and total ammonia plus organic nitrogen, total nitrogen, total organic carbon, and total lead were about twofold higher than in base-flow samples. Seasonal patterns and long-term trends in flow-adjusted water-quality concentrations were identified for five representative constituents—total nitrogen, total phosphorus, total zinc, total dissolved solids, and total suspended solids. Seasonal patterns for all five constituents were fairly similar, with higher concentrations in the summer and lower concentrations in the winter. Significant linear long-term trends in stormflow composite concentrations were identified for 36 of the 60 constituent-watershed combinations (5 constituents multiplied by 12 watersheds) for the period of record through water year 2011. Significant trends typically were decreasing for total nitrogen, total phosphorus, total suspended solids, and total zinc and increasing for total dissolved solids. Total dissolved solids and total suspended solids trends had the largest magnitude changes per year. Stream water loads were estimated for 10 water-quality constituents. These estimates represent the cumulative effects of watershed characteristics, hydrologic processes, biogeochemical processes, climatic variability, and human influences on watershed water quality. Yields, in load per unit area, were used to compare loads from watersheds with different sizes. A load estimation approach developed for the Gwinnett County LTTM program that incorporates storm-event composited samples was used with some minor modifications. This approach employs the commonly used regression-model method. Concentrations were modeled as a function of discharge, time, season, and turbidity to improve model predictions and reduce errors in load estimates. Total suspended solids annual loads have been identified in Gwinnett County’s Watershed Protection Plan for target performance criterion. The amount of annual runoff is the primary factor in determining the amount of annual constituent loads. Below average runoff during water years 2004–09, especially during water years 2006–08, resulted in corresponding below average loads. Variations in constituent yields between watersheds appeared to be related to various watershed characteristics. Suspended sediment (total suspended solids and suspended-sediment concentrations) along with constituents transported predominately in solid phase (total phosphorus, total organic carbon, total lead, and total zinc) and total dissolved solids typically had higher yields from watersheds that had high percentages of impervious areas or high basin slope. High total nitrogen yields were also associated with watersheds with high percentages of impervious areas. Low total nitrogen, total suspended solids, total lead, and total zinc yields appear to be associated with watersheds that have a low percentage of high-density development. Total suspended solids yields were lower in drought years, water years 2007–08, from the combined effects of less runoff and the result of fewer, lower magnitude storms, which likely resulted in less surface erosion and lower stream sediment transport.

  5. Interacting roles of immune mechanisms and viral load in the pathogenesis of crimean-congo hemorrhagic fever.

    PubMed

    Saksida, Ana; Duh, Darja; Wraber, Branka; Dedushaj, Isuf; Ahmeti, Salih; Avsic-Zupanc, Tatjana

    2010-07-01

    Until now, the pathogenesis of Crimean-Congo hemorrhagic fever (CCHF) has not been well described. However, it has been hypothesized that it could be a result of the direct injury of virus-infected tissues in combination with the indirect effects of host immune responses, including cytokines. To shed more light on the role of viral load and cytokines, differential influences of CCHF virus (CCHFV) RNA load, antibody response, and cytokine production on severity and outcome of the disease were studied in sera of 46 patients with confirmed acute CCHF from Kosovo. In this study, viral load proved to be strongly related to the severity and outcome of the disease, with higher viral loads detected in patients with fatal outcomes than in surviving patients. Also, patients with fatal outcome had on average a weaker antibody response, if one was present at all. High levels of interleukin-10 (IL-10), gamma interferon (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha) were associated with poor outcome, since detected concentrations were highest in patients with fatal outcome and lowest in patients with moderate disease course. Additionally, a positive linear dependence between viral load and these cytokines was observed. Interestingly, reduced levels of IL-12 were detected in all CCHF patients. Our study favors the hypothesis that CCHF could be a result of a delayed and downregulated immune response caused by IL-10, which leads to an increased replication and spread of CCHFV throughout the body. This consequently triggers increased production of IFN-gamma and TNF-alpha, cytokines mediating vascular dysfunction, disseminated intravascular coagulation, organ failure, and shock.

  6. Treatment of high organic content wastewater from food-processing industry with the French vertical flow constructed wetland system.

    PubMed

    Paing, J; Serdobbel, V; Welschbillig, M; Calvez, M; Gagnon, V; Chazarenc, F

    2015-01-01

    This study aimed at determining the treatment performances of a full-scale vertical flow constructed wetlands designed to treat wastewater from a food-processing industry (cookie factory), and to study the influence of the organic loading rate. The full-scale treatment plant was designed with a first vertical stage of 630 m², a second vertical stage of 473 m² equipped with a recirculation system and followed by a final horizontal stage of 440 m². The plant was commissioned in 2011, and was operated at different loading rates during 16 months for the purpose of this study. Treatment performances were determined by 24 hour composite samples. The mean concentration of the raw effluent was 8,548 mg.L(-1) chemical oxygen demand (COD), 4,334 mg.L(-1) biochemical oxygen demand (BOD5), and 2,069 mg.L(-1) suspended solids (SS). Despite low nutrients content with a BOD5/N/P ratio of 100/1.8/0.5, lower than optimum for biological degradation (known as 100/5/1), mean removal performances were very high with 98% for COD, 99% for BOD5 and SS for the two vertical stages. The increasing of the organic load from 50 g.m(-2).d(-1) COD to 237 g.m(-2).d(-1) COD (on the first stage) did not affect removal performances. The mean quality of effluent reached French standards (COD < 125 mg.L(-1), BOD5 < 25 mg.L(-1), SS < 35 mg.L(-1)).

  7. Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses

    PubMed Central

    Campen, Matthew J.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2011-01-01

    Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different conditions. PMID:21524982

  8. Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model

    PubMed Central

    Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.

    2013-01-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. PMID:22749872

  9. Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.

    PubMed

    Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H

    2012-11-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg contamination. Additional focused research and monitoring are needed to critically examine the link between nutrient supply and Hg contamination of marine waters. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Robotic Scaffolds for Tissue Engineering and Organ Growth

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    2011-01-01

    The aim of tissue engineering (TE) is to restore tissue and organ functions with minimal host rejection. TE is seen as a future solution to solve the crisis of donor organs for transplant, which faces a shortage expected only to increase in the future. In this innovation, a flexible and configurable scaffold has been conceived that mechanically stresses cells that are seeded on it, stimulating them to increased growth. The influence of mechanical stress/ loading on cell growth has been observed on all forms of cells. For example, for cartilages, studies in animals, tissue explants, and engineered tissue scaffolds have all shown that cartilage cells (chondrocytes) modify their extracellular matrix in response to loading. The chondrocyte EMC production response to dynamics of the physical environment (in vivo cartilage development) illustrates a clear benefit (better growth) when stressed. It has been shown that static and dynamic compression regulates PRG4 biosynthesis by cartilage explants. Mechanical tissue stimulation is beneficial and (flexible) scaffolds with movable components, which are able to induce mechanical stimulation, offer advantages over the fixed, rigid scaffold design. In addition to improved cell growth from physical/mechanical stimulation, additional benefits include the ability to increase in size while preserving shape, or changing shape. By making scaffolds flexible, allowing relative movement between their components, adding sensing (e.g., for detecting response of cells to drug release and to mechanical actions), building controls for drug release and movement, and building even simple algorithms for mapping sensing to action, these structures can actually be made into biocompatible and biodegradable robots. Treating them as robots is a perspective shift that may offer advantages in the design and exploitation of these structures of the future.

  11. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    PubMed

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 49 CFR 177.838 - Class 4 (flammable solid) materials, Class 5 (oxidizing) materials, and Division 4.2 (pyroforic...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... not be piled closer than 15 cm (5.9 inches) from the top of any motor vehicle with a closed body. (d)-(e) [Reserved] (f) Nitrates, except ammonium nitrate having organic coating, must be loaded in closed... covered. Ammonium nitrate having organic coating must not be loaded in all-metal vehicles, other than...

  13. Effects of nutrient loading on the carbon balance of coastal wetland sediments

    USGS Publications Warehouse

    Morris, J.T.; Bradley, P.M.

    1999-01-01

    Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m-2 yr-1 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil macroorganic matter in the top 5 cm of sediment was 475 g C m-2 lower in fertilized plots than in controls, which is equivalent to a constant loss rate of 40 g C m-2 yr-1. It is not known whether soil carbon in fertilized plots has reached a new equilibrium or continues to decline. The increase in soil respiration in the fertilized plots was far greater than the loss of sediment organic matter, which indicates that the increase in soil respiration was largely due to an increase in primary production. Sediment respiration in laboratory incubations also demonstrated positive effects of nutrients. Thus, the results indicate that increased nutrient loading of oligotrophic wetlands can lead to an increased rate of sediment carbon turnover and a net loss of carbon from sediments.

  14. The effect of metal (hydr)oxide nano-enabling on intraparticle mass transport of organic contaminants in hybrid granular activated carbon.

    PubMed

    Garcia, Jose; Markovski, Jasmina; McKay Gifford, J; Apul, Onur; Hristovski, Kiril D

    2017-05-15

    The overarching goal of this study was to ascertain the changes in intraparticle mass transport rates for organic contaminants resulting from nano-enabled hybridization of commercially available granular activated carbon (GAC). Three different nano-enabled hybrid media were fabricated by in-situ synthesizing titanium dioxide nanoparticles inside the pores of GAC sorbent, characterized, and evaluated for removal of two model organic contaminants under realistic conditions to obtain the intraparticle mass transport (pore and surface diffusion) coefficients. The results validated the two hypotheses that: (H1) the pore diffusion rates of organic contaminants linearly decrease with decrease in cumulative pore volume caused by increase in metal (hydr)oxide nanoparticle content inside the pores of the hybrid GAC sorbent; and (H2) introduction of metal (hydr)oxide nanoparticles initially increases surface diffusivity, but additional loading causes its decrease as the increase in metal (hydr)oxide nanoparticles content continues to reduce the porosity of the GAC sorbent. Nano-enabled hybridization of commercially available GAC with metal (hydr)oxides has the potential to significantly increase the intraparticle mass transport limitations for organic contaminants. Introduction of metal (hydr)oxide nanoparticles inside the pores of a pristine sorbent causes the pore diffusion rates of organic contaminants to decrease as the cumulative pore volume is reduced. In contrast, the introduction of limited amounts of metal (hydr)oxide nanoparticles appears to facilitate the surface diffusion rates of these contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    NASA Astrophysics Data System (ADS)

    Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.

    2017-10-01

    The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  16. River Suspended Sediment and Particulate Organic Carbon Transport in Two Montane Catchments in the Luquillo Critical Zone Observatory of Puerto Rico over 25 years: 1989 to 2014

    NASA Astrophysics Data System (ADS)

    Clark, K. E.; Plante, A. F.; Willenbring, J. K.; Jerolmack, D. J.; Gonzalez, G.; Stallard, R. F.; Murphy, S. F.; Vann, D. R.; Leon, M.; McDowell, W. H.

    2015-12-01

    Physical erosion in mountain catchments mobilizes large amounts of sediment, while exporting carbon and nutrients from forest ecosystems. This study expands from previous studies quantifying river suspended sediment and particulate organic carbon loads in the Luquillo Critical Zone Observatory, in Puerto Rico. We evaluate the influences on river suspended load due to i) underlying basin geology, ii) hillslope debris and biomass supply, and iii) hurricanes and large storms. In the Mameyes and Icacos catchments of the Luquillo Mountains, we estimate suspended sediment and particulate organic carbon yields over a 25-year period using streamflow discharge determined from stage measurements at 15-intervals, with estimates of discharge replacing gaps in data, and over 3000 suspended sediment samples. We estimate variation in suspended sediment loads over time, and examine variation in particulate organic carbon loads. Mass spectrometry was used to determine organic carbon concentrations. We confirm that higher suspended sediment fluxes occurred i) in the highly weathered quartz diorite catchment rather than the predominantly volcaniclastic catchment, ii) on the rising limb of the hydrograph once a threshold discharge had been reached, and iii) during hurricanes and other storm events, and we explore these influences on particulate organic carbon transport. Transport of suspended sediment and particulate organic carbon in the rivers shows considerable hysteresis, and we evaluate the extent to which hysteresis affects particulate fluxes over time and between catchments. Because particulate organic carbon is derived from the critical zone and transported during high flow, our research highlights the role of major tropical storms in controlling carbon storage in the critical zone and the coastal ocean.

  17. The role of mechanical loading in ligament tissue engineering.

    PubMed

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  18. Tree leaf control on low flow water quality in a small Virginia stream

    USGS Publications Warehouse

    Slack, K.V.; Feltz, H.R.

    1968-01-01

    Impaired water quality in a small stream was related to autumn leaf fall from riparian vegetation. Dissolved oxygen and pH decreased, and water color, specific conductance, iron, manganese, and bicarbonate values increased as the rate of leaf fall increased. Similar quality changes occurred in laboratory cultures of tree leaves in filtered stream water, but the five leaf species studied produced widely differing results. Stream quality improved rapidly following channel flushing by storm flow. Organic loading by tree litter can exert significant control on water composition, especially during low flow.

  19. Effect of organic loading on nitrification and denitrification in a marine sediment microcosm

    USGS Publications Warehouse

    Caffrey, J.M.; Sloth, N.P.; Kaspar, H.F.; Blackburn, T.H.

    1993-01-01

    The effects of organic additions on nitrification and denitrification were examined in sediment microcosms. The organic material, heat killed yeast, had a C/N ratio of 7.5 and was added to sieved, homogenized sediments. Four treatments were compared: no addition (control, 30 g dry weight (dw) m-2 mixed throughout the 10 cm sediment column (30 M), 100 g dw m-2 mixed throughout sediments (100M), and 100 g dw m-2 mixed into top 1 cm (100S). After the microcosms had been established for 7-11 days, depth of O2 penetration, sediment-water fluxes and nitrification rates were measured. Nitrification rates were measured using three different techniques: N-serve and acetylene inhibition in intact cores, and nitrification potentials in slurries. Increased organic additions decreased O2 penetration from 2.7 to 0.2 mm while increasing both O2 consumption, from 30 to 70 mmol O2 m-2 d-1, and NO3- flux into sediments. Nitrification rates in intact cores were similar for the two methods. Highest rates occurred in the 30 M treatment, while the lowest rate was measured in the 100S treatment. Total denitrification rates (estimated from nitrification and nitrate fluxes) increased with increased organic addition, because of the high concentrations of NO3- (40 ??M) in the overlying water. The ratio of nitrification: denitrification was used as an indication of the importance of nitrification as the NO3- supply for denitrification. This ratio decreased from 1.55 to 0.05 with increased organic addition.

  20. Groundwater – The disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients

    USGS Publications Warehouse

    Lewandowski, Jörg; Meinikmann, Karin; Nützmann, Gunnar; Rosenberry, Donald O.

    2015-01-01

    Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer-lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater-borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer-lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater-borne P loads vary from 0.74 to 2900 mg PO4-P m−2 year−1; for N, these loads vary from 0.001 to 640 g m−2 year−1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management.

  1. The Genetic Cost of Neanderthal Introgression

    PubMed Central

    Harris, Kelley; Nielsen, Rasmus

    2016-01-01

    Approximately 2–4% of genetic material in human populations outside Africa is derived from Neanderthals who interbred with anatomically modern humans. Recent studies have shown that this Neanderthal DNA is depleted around functional genomic regions; this has been suggested to be a consequence of harmful epistatic interactions between human and Neanderthal alleles. However, using published estimates of Neanderthal inbreeding and the distribution of mutational fitness effects, we infer that Neanderthals had at least 40% lower fitness than humans on average; this increased load predicts the reduction in Neanderthal introgression around genes without the need to invoke epistasis. We also predict a residual Neanderthal mutational load in non-Africans, leading to a fitness reduction of at least 0.5%. This effect of Neanderthal admixture has been left out of previous debate on mutation load differences between Africans and non-Africans. We also show that if many deleterious mutations are recessive, the Neanderthal admixture fraction could increase over time due to the protective effect of Neanderthal haplotypes against deleterious alleles that arose recently in the human population. This might partially explain why so many organisms retain gene flow from other species and appear to derive adaptive benefits from introgression. PMID:27038113

  2. Impact of nitrogen loading rates on treatment performance of domestic wastewater and fouling propensity in submerged membrane bioreactor (MBR).

    PubMed

    Khan, Sher Jamal; Ilyas, Shazia; Zohaib-Ur-Rehman

    2013-08-01

    In this study, performance of laboratory-scale membrane bioreactor (MBR) was evaluated in treating high strength domestic wastewater under two nitrogen loading rates (NLR) i.e., 0.15 and 0.30 kg/m(3)/d in condition 1 and 2, respectively, while organic loading rate (OLR) was constant at 3 kg/m(3)/d in both conditions. Removal efficiencies of COD were above 95.0% under both NLR conditions. Average removal efficiencies of ammonium nitrogen (NH₄(+)-N), total nitrogen (TN) and total phosphorus (TP) were found to be higher in condition 1 (90.5%, 74.0%, and 38.0%, respectively) as compared to that in Condition 2 (89.3%, 35.0%, and 14.0%, respectively). With increasing NLR, particle size distribution shifted from narrow (67-133 μm) towards broader distribution (3-300 μm) inferring lower cake layer porosity over membrane fibers. Soluble extracellular polymer substance (sEPS) concentration increased at higher NLR due to biopolymers released from broken flocs. Higher cake layer resistance (Rc) contributed towards shorter filtration runs during condition 2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Opposite effects of capacity load and resolution load on distractor processing.

    PubMed

    Zhang, Weiwei; Luck, Steven J

    2015-02-01

    According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining 2 vs. 4 colors) or the precision of the representations (resolution load, detecting small vs. large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load.

  4. Opposite Effects of Capacity Load and Resolution Load on Distractor Processing

    PubMed Central

    Zhang, Weiwei; Luck, Steven J.

    2014-01-01

    According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining two versus four colors) or the precision of the representations (resolution load, detecting small versus large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load. PMID:25365573

  5. Temporal responses of coastal hypoxia to nutrient loading and physical controls

    NASA Astrophysics Data System (ADS)

    Kemp, W. M.; Testa, J. M.; Conley, D. J.; Gilbert, D.; Hagy, J. D.

    2009-12-01

    The incidence and intensity of hypoxic waters in coastal aquatic ecosystems has been expanding in recent decades coincident with eutrophication of the coastal zone. Worldwide, there is strong interest in reducing the size and duration of hypoxia in coastal waters, because hypoxia causes negative effects for many organisms and ecosystem processes. Although strategies to reduce hypoxia by decreasing nutrient loading are predicated on the assumption that this action would reverse eutrophication, recent analyses of historical data from European and North American coastal systems suggest little evidence for simple linear response trajectories. We review published parallel time-series data on hypoxia and loading rates for inorganic nutrients and labile organic matter to analyze trajectories of oxygen (O2) response to nutrient loading. We also assess existing knowledge of physical and ecological factors regulating O2 in coastal marine waters to facilitate analysis of hypoxia responses to reductions in nutrient (and/or organic matter) inputs. Of the 24 systems identified where concurrent time series of loading and O2 were available, half displayed relatively clear and direct recoveries following remediation. We explored in detail 5 well-studied systems that have exhibited complex, non-linear responses to variations in loading, including apparent "regime shifts". A summary of these analyses suggests that O2 conditions improved rapidly and linearly in systems where remediation focused on organic inputs from sewage treatment plants, which were the primary drivers of hypoxia. In larger more open systems where diffuse nutrient loads are more important in fueling O2 depletion and where climatic influences are pronounced, responses to remediation tended to follow non-linear trends that may include hysteresis and time-lags. Improved understanding of hypoxia remediation requires that future studies use comparative approaches and consider multiple regulating factors. These analyses should consider: (1) the dominant temporal scales of the hypoxia, (2) the relative contributions of inorganic and organic nutrients, (3) the influence of shifts in climatic and oceanographic processes, and (4) the roles of feedback interactions whereby O2-sensitive biogeochemistry, trophic interactions, and habitat conditions influence the nutrient and algal dynamics that regulate O2 levels.

  6. Recent advances in "bioartificial polymeric materials" based nanovectors

    NASA Astrophysics Data System (ADS)

    Conte, Raffaele; De Luca, Ilenia; Valentino, Anna; Di Salle, Anna; Calarco, Anna; Riccitiello, Francesco; Peluso, Gianfranco

    2017-04-01

    This chapter analyzes the advantages of the use of bioartificial polymers as carriers and the main strategies used for their design. Despite the enormous progresses in this field, more studies are required for the fully evaluation of these nanovectors in complex organisms and for the characterization of the pharmacodynamic and pharmacokinetic of the loaded drugs. Moreover, progresses in polymer chemistry are introducing a wide range of functionalities in the bioartificial polymeric material (BPM) nanostructures leading to a second generation of bioartificial polymer therapeutics based on novel and heterogeneous architectures with higher molecular weight and predictable structures, in order to achieve greater multivalency and increased loading capacity. Therefore, research on bioartificial polymeric nanovectors is an "on-going" field capable of attracting medical interest.

  7. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater.

    PubMed

    Evans, C A; Coombes, P J; Dunstan, R H

    2006-01-01

    The microbiological and chemical quality of tank-stored rainwater is impacted directly by roof catchment and subsequent run-off contamination, via direct depositions by birds and small mammals, decay of accumulated organic debris, and atmospheric deposition of airborne micro-organisms and chemical pollutants. Previous literature reports on roof water quality have given little consideration to the relative significance of airborne micro-organisms. This study involved analyses of direct roof run-off at an urban housing development in Newcastle, on the east coast of Australia. A total of 77 samples were collected during 11 separate rainfall events, and microbial counts and mean concentrations of several ionic contaminants were matched to climatic data corresponding to each of the monitored events. Conditions both antecedent to, and those prevailing during each event, were examined to investigate the influence of certain meteorological parameters on the bacterial composition of the roof water and indirectly assess the relative contribution of airborne micro-organisms to the total bacterial load. Results indicated that airborne micro-organisms represented a significant contribution to the bacterial load of roof water at this site, and that the overall contaminant load was influenced by wind velocities, while the profile (composition) of the load varied with wind direction. The implications of these findings to the issues of tank water quality and health risk analysis, appropriate usage and system design are discussed.

  8. Survival and growth of micro-organisms on air filtration media during initial loading

    NASA Astrophysics Data System (ADS)

    Kemp, P. C.; Neumeister-Kemp, H. G.; Lysek, G.; Murray, F.

    A new type of air filtration medium made from a hygroscopic polymer fibre and constructed in three layers was investigated to measure the survival and growth of micro-organisms on this medium in comparison to a widely used fibreglass medium. Both materials were supplied by the manufacturer and tested "blind". The materials were loaded in an Airotester unit. Micro-organisms were analysed at 2 weekly intervals for 8 weeks by washing filter samples and plating the solution on to agar media and by vital fluorescence microscopy. Filter samples were also weighed to calculate water content and the pH value of the filter material was measured in the wash out eluate. Vital fluorescence microscopy revealed fungi were able to grow on fibreglass medium, but not on the multi-layered polymer. The colony forming unit (CFU) counts did not increase at a steady rate. There was a significant increase on both materials ( P<0.001) during the first 2 weeks which was then followed by a significant decrease in 4 weeks ( P<0.001) but the CFU then significantly increased in 6 weeks ( P<0.05) which were the highest CFU counts during the 2-month trial. There was a significant difference in CFU counts between the filter materials only in week 2 ( P⩽0.001) and week 4 ( P=0.04). Fewer micro-organisms were extracted from the multi-layered polymer than from the fibreglass medium. Fewer fungal species were identified on the multi-layered polymer (nine species) than on the fibreglass medium (13 species). The pH value on the multi-layered polymer was significantly higher than the fibreglass material but only when clean ( P<0.010) and after 2 weeks ( P<0.001). A significantly higher water content on the fibreglass medium ( P<0.001) also indicated a habitat where a wider range of fungal species and bacteria are able to survive. While there was a reduced survival and growth of micro-organisms on the multi-layered polymer material in the initial month of service life, this advantage was cancelled by the supply of nutrients (particulate matter) that were accumulated on the filter materials after 6 weeks.

  9. Non-enzymatic glycation alters microdamage formation in human cancellous bone⋆

    PubMed Central

    Tang, S.Y.; Vashishth, D.

    2015-01-01

    Introduction The accumulation of advanced glycation end-products (AGEs) in bone has been suggested to adversely affect the fracture resistance of bone with aging, diabetes, and pharmacological treatments. The formation of AGEs increases crosslinking in the organic matrix of bone but it is unknown how elevated levels of AGEs affect the mechanisms of fracture resistance such as microdamage formation. Methods Human tibial cancellous bone cores were subjected to non-enzymatic glycation (NEG) by in vitro ribosylation and were mechanically loaded to pre- (0.6%) and post- (1.1%) yield apparent level strains. Loaded specimens were stained with lead–uranyl acetate and subjected to microCT-based 3D quantification and characterization of microdamage as either diffuse damage and linear microcracks. Damaged volume per bone volume (DV/BV) and damaged surface per damaged volume (DS/DV) ratios were used to quantify the volume and morphology of the detected microdamage, respectively. Results In vitro ribosylation increased the microdamage morphology parameter (DS/DV) under both pre-(p<0.05; +51%) and post-yield loading (p<0.001; +38%), indicating that the alteration of bone matrix by NEG caused the formation of crack-like microdamage morphologies. Under post-yield loading, the NEG-mediated increase in DS/DV was coupled with the reductions in microdamage formation (DV/BV; p<0.001) and toughness (p<0.001). Discussion Using a novel microCT technique to characterize and quantify microdamage, this study shows that the accumulation of AGEs in the bone matrix significantly alters the quantity and morphology of microdamage production and results in reduced fracture resistance. PMID:19747573

  10. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    PubMed

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Increasing M 2(dobdc) Loading in Selective Mixed-Matrix Membranes: A Rubber Toughening Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Zachary P.; Bachman, Jonathan E.; Li, Tao

    Mixed-matrix membranes (MMMs) were formed by incorporating M 2(dobdc) (M = Mg, Ni; dobdc 4– = 2,5-dioxido-1,4-benzenedicarboxylate) metal–organic framework (MOF) nanoparticles in a series of poly(ether-imide) copolymers. Addition of the MOF nanoparticles improved the permeability of H 2, N 2, CH 4, and CO 2 relative to the pure copolymer by increasing gas solubility and, in most cases, diffusivity. More limited improvements in diffusivity were observed for the more strongly adsorbing gases. Because of such transport considerations, improvements in permeability and selectivity were most pronounced for H 2/CH 4 and H 2/N 2 separations. Incorporation of a greater ether contentmore » within the copolymers led to the formation of defect-free MMMs by physically sealing polymer–MOF interfacial defects, allowing higher MOF loadings to be achieved. For Mg 2(dobdc), selective, defect-free films could be formed with loadings of up to 51 wt %. However, at these high loadings, films became weak and brittle. The mechanical properties of the composite materials were therefore quantified by tensile tests and compared to those of the neat polymers used commercially for membrane film formation. High contents of flexible ether units and small MOF nanoparticle sizes were found to be necessary to form strong and ductile MMMs, although clear trade-offs exist between transport performance, MOF loading, and mechanical properties. In conclusion, these trade-offs are critically examined to evaluate the current limitations and potential benefits to forming M 2(dobdc) MMMs using this rubber toughening approach.« less

  12. Force encoding in stick insect legs delineates a reference frame for motor control

    PubMed Central

    Schmitz, Josef; Chaudhry, Sumaiya; Büschges, Ansgar

    2012-01-01

    The regulation of forces is integral to motor control. However, it is unclear how information from sense organs that detect forces at individual muscles or joints is incorporated into a frame of reference for motor control. Campaniform sensilla are receptors that monitor forces by cuticular strains. We studied how loads and muscle forces are encoded by trochanteral campaniform sensilla in stick insects. Forces were applied to the middle leg to emulate loading and/or muscle contractions. Selective sensory ablations limited activities recorded in the main leg nerve to specific receptor groups. The trochanteral campaniform sensilla consist of four discrete groups. We found that the dorsal groups (Groups 3 and 4) encoded force increases and decreases in the plane of movement of the coxo-trochanteral joint. Group 3 receptors discharged to increases in dorsal loading and decreases in ventral load. Group 4 showed the reverse directional sensitivities. Vigorous, directional responses also occurred to contractions of the trochanteral depressor muscle and to forces applied at the muscle insertion. All sensory discharges encoded the amplitude and rate of loading or muscle force. Stimulation of the receptors produced reflex effects in the depressor motoneurons that could reverse in sign during active movements. These data, in conjunction with findings of previous studies, support a model in which the trochanteral receptors function as an array that can detect forces in all directions relative to the intrinsic plane of leg movement. The array could provide requisite information about forces and simplify the control and adaptation of posture and walking. PMID:22673329

  13. Increasing M 2(dobdc) Loading in Selective Mixed-Matrix Membranes: A Rubber Toughening Approach

    DOE PAGES

    Smith, Zachary P.; Bachman, Jonathan E.; Li, Tao; ...

    2018-01-30

    Mixed-matrix membranes (MMMs) were formed by incorporating M 2(dobdc) (M = Mg, Ni; dobdc 4– = 2,5-dioxido-1,4-benzenedicarboxylate) metal–organic framework (MOF) nanoparticles in a series of poly(ether-imide) copolymers. Addition of the MOF nanoparticles improved the permeability of H 2, N 2, CH 4, and CO 2 relative to the pure copolymer by increasing gas solubility and, in most cases, diffusivity. More limited improvements in diffusivity were observed for the more strongly adsorbing gases. Because of such transport considerations, improvements in permeability and selectivity were most pronounced for H 2/CH 4 and H 2/N 2 separations. Incorporation of a greater ether contentmore » within the copolymers led to the formation of defect-free MMMs by physically sealing polymer–MOF interfacial defects, allowing higher MOF loadings to be achieved. For Mg 2(dobdc), selective, defect-free films could be formed with loadings of up to 51 wt %. However, at these high loadings, films became weak and brittle. The mechanical properties of the composite materials were therefore quantified by tensile tests and compared to those of the neat polymers used commercially for membrane film formation. High contents of flexible ether units and small MOF nanoparticle sizes were found to be necessary to form strong and ductile MMMs, although clear trade-offs exist between transport performance, MOF loading, and mechanical properties. In conclusion, these trade-offs are critically examined to evaluate the current limitations and potential benefits to forming M 2(dobdc) MMMs using this rubber toughening approach.« less

  14. Biodegradation of organics in landfill leachate by immobilized white rot fungi, Trametes versicolor BCC 8725.

    PubMed

    Saetang, Jenjira; Babel, Sandhya

    2012-12-01

    Immobilized Trametes versicolor BCC 8725 was evaluated for the biodegradation of the organic components of four different types of landfill leachate collected at different time periods and locations from the Nonthaburi landfill site of Thailand in batch treatment. The effects of carbon source, ammonia and organic loading on colour, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal, and the reuse of immobilized fungi were investigated. It was found that fungi can remove 78% of colour, reduce BOD by 68% and reduce COD by 57% in leachate within 15 days at optimum conditions. Organic loading and ammonia were the factors that affected the biodegradation. When immobilized T versicolor on polyurethane foam (PUF) was subjected to repeated use for treatment over the course of three cycles, the decolourization efficiency of the first and the second cycle was very similar, whereas the third cycle was about 20% lower than the first cycle under similar conditions. The obtained removal of colour, BOD and COD indicates the effectiveness of fungi for leachate treatment with high organic loading and varied leachate characteristics.

  15. Preparation and drug controlled release of porous octyl-dextran microspheres.

    PubMed

    Hou, Xin; Liu, Yanfei

    2015-01-01

    In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.

  16. Uptake of PSMA-ligands in normal tissues is dependent on tumor load in patients with prostate cancer

    PubMed Central

    Ahmadzadehfar, Hojjat; Kürpig, Stefan; Eppard, Elisabeth; Kotsikopoulos, Charalambos; Liakos, Nikolaos; Bundschuh, Ralph A.; Strunk, Holger; Essler, Markus

    2017-01-01

    Radioligand therapy (RLT) with Lu-177-labeled PSMA-ligands is a new therapy option for prostate cancer. Biodistribution in normal tissues is of interest for therapy planning. We evaluated if the biodistribution of Ga-68-PSMA-11 is influenced by tumor load. Results In patients with high tumor load, SUVmean was reduced to 61.5% in the lacrimal glands, to 56.6% in the parotid glands, to 63.7% in the submandibular glands, to 61.3% in the sublingual glands and to 55.4% in the kidneys (p < 0.001). Further significant differences were observed for brain, mediastinum, liver, spleen and muscle. Total tracer retention was higher in patients with high tumor load (p < 0.05). SUV in lacrimal, salivary glands and kidneys correlated negatively with PSA. Materials and Methods 135 patients were retrospectively evaluated. SUV was measured in the lacrimal and salivary glands, brain, heart, liver, spleen, kidneys, muscle and bone. SUV was correlated with visual tumor load, total tracer retention and PSA. Conclusions Patients with high tumor load show a significant reduction of tracer uptake in dose-limiting organs. As similar effects might occur when performing RLT using Lu-177-labeled PSMA-ligands, individual adaptations of therapy protocols based on diagnostic PSMA PET imaging before therapy might help to further increase efficacy and safety of RLT. PMID:28903405

  17. Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign

    NASA Astrophysics Data System (ADS)

    Rinaldi, M.; Gilardoni, S.; Paglione, M.; Sandrini, S.; Fuzzi, S.; Massoli, P.; Bonasoni, P.; Cristofanelli, P.; Marinoni, A.; Poluzzi, V.; Decesari, S.

    2015-10-01

    High-resolution aerosol mass spectrometer measurements were performed, for the first time, at the Mt. Cimone Global Atmosphere Watch (GAW) station between June and July 2012, within the EU project PEGASOS and the ARPA-Emilia-Romagna project SUPERSITO. Submicron aerosol was dominated by organics (63 %), with sulfate, ammonium and nitrate contributing the remaining 20, 9 and 7 %, respectively. Organic aerosol (OA) was in general highly oxygenated, consistent with the remote character of the site; our observations suggest that oxidation and secondary organic aerosol (SOA) formation processes occurred during aerosol transport to high altitudes. All of the aerosol component concentrations as well as the OA elemental ratios showed a clear daily trend, driven by the evolution of the planetary boundary layer (PBL) and by the mountain wind regime. Higher loadings and lower OA oxidation levels were observed during the day, when the site was within the PBL, and therefore affected by relatively fresh aerosol transported from lower altitudes. Conversely, lower loadings and higher OA oxidation levels were observed at night, when the top of Mt. Cimone resided in the free troposphere although affected by the transport of residual layers on several days of the campaign. Analysis of the elemental ratios in a Van Krevelen space shows that OA oxidation follows a slope comprised between -0.5 and -1, consistent with addition of carboxylic groups, with or without fragmentation of the parent molecules. The increase of carboxylic groups during OA ageing is confirmed by the increased contribution of organic fragments containing more than one oxygen atom in the free troposphere night-time mass spectra. Finally, positive matrix factorization was able to deconvolve the contributions of relatively fresh OA (OOAa) originating from the PBL, more aged OA (OOAb) present at high altitudes during periods of atmospheric stagnation, and very aged aerosols (OOAc) transported over long distances in the free troposphere.

  18. Modeling ecosystem processes with variable freshwater inflow to the Caloosahatchee River Estuary, southwest Florida. II. Nutrient loading, submarine light, and seagrasses

    NASA Astrophysics Data System (ADS)

    Buzzelli, Christopher; Doering, Peter; Wan, Yongshan; Sun, Detong

    2014-12-01

    Short- and long-term changes in estuarine biogeochemical and biological attributes are consequences of variations in both the magnitude and composition of freshwater inputs. A common conceptualization of estuaries depicts nutrient loading from coastal watersheds as the stressor that promotes algal biomass, decreases submarine light penetration, and degrades seagrass habitats. Freshwater inflow depresses salinity while simultaneously introducing colored dissolved organic matter (color or CDOM) which greatly reduces estuarine light penetration. This is especially true for sub-tropical estuaries. This study applied a model of the Caloosahatchee River Estuary (CRE) in southwest Florida to explore the relationships between freshwater inflow, nutrient loading, submarine light, and seagrass survival. In two independent model series, the loading of dissolved inorganic nitrogen and phosphorus (DIN and DIP) was reduced by 10%, 20%, 30%, and 50% relative to the base model case from 2002 to 2009 (2922 days). While external nutrient loads were reduced by lowering inflow (Q0) in the first series (Q0 series), reductions were accomplished by decreasing the incoming concentrations of DIN and DIP in the second series (NP Series). The model also was used to explore the partitioning of submarine light extinction due to chlorophyll a, CDOM, and turbidity. Results suggested that attempting to control nutrient loading by decreasing freshwater inflow could have minor effects on water column concentrations but greatly influence submarine light and seagrass biomass. This is because of the relative importance of Q0 to salinity and submarine light. In general, light penetration and seagrass biomass decreased with increased inflow and CDOM. Increased chlorophyll a did account for more submarine light extinction in the lower estuary. The model output was used to help identify desirable levels of inflow, nutrient loading, water quality, salinity, and submarine light for seagrass in the lower CRE. These findings provide information essential to the development of a resource-based approach to improve the management of both freshwater inflow and estuarine biotic resources.

  19. Removal of non-biodegradable organic matter from landfill leachates by adsorption.

    PubMed

    Rodríguez, J; Castrillón, L; Marañón, E; Sastre, H; Fernández, E

    2004-01-01

    Leachates produced at the La Zoreda landfill in Asturias, Spain, were recirculated through a simulated landfill pilot plant. Prior to recirculation, three loads of different amounts of Municipal Solid Waste (MSW) were added to the plant, forming in this way consecutive layers. When anaerobic digestion was almost completed, the leachates from the landfill were recirculated. After recirculation, a new load of MSW was added and two new recirculations were carried out. The organic load of the three landfill leachates recirculated through the anaerobic pilot plant decreased from initial values of 5108, 3782 and 2560 mg/l to values of between 1500 and 1600 mg/l. Despite achieving reductions in the organic load of the leachate, a residual organic load still remained that was composed of non-biodegradable organic constituents such as humic substances. Similar values of the chemical oxygen demand (COD) were obtained when the landfill leachate was treated by a pressurised anoxic-aerobic process followed by ultrafiltration. After recirculation through the pilot plant, physico-chemical treatment was carried out to reduce the COD of the leachate. The pH of the leachate was decreased to a value of 1.5 to precipitate the humic fraction, obtaining a reduction in COD of about 13.5%. The supernatant liquid was treated with activated carbon and different resins, XAD-8, XAD-4 and IR-120. Activated carbon presented the highest adsorption capacities, obtaining COD values for the treated leachate in the order of 200mg/l. Similar results were obtained when treating with activated carbon, the leachate from the biological treatment plant at the La Zoreda landfill; in this case without decreasing the pH.

  20. Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law

    PubMed Central

    Carbonell-Ballestero, M.; Garcia-Ramallo, E.; Montañez, R.; Rodriguez-Caso, C.; Macía, J.

    2016-01-01

    Synthetic biology seeks to envision living cells as a matter of engineering. However, increasing evidence suggests that the genetic load imposed by the incorporation of synthetic devices in a living organism introduces a sort of unpredictability in the design process. As a result, individual part characterization is not enough to predict the behavior of designed circuits and thus, a costly trial-error process is eventually required. In this work, we provide a new theoretical framework for the predictive treatment of the genetic load. We mathematically and experimentally demonstrate that dependences among genes follow a quantitatively predictable behavior. Our theory predicts the observed reduction of the expression of a given synthetic gene when an extra genetic load is introduced in the circuit. The theory also explains that such dependence qualitatively differs when the extra load is added either by transcriptional or translational modifications. We finally show that the limitation of the cellular resources for gene expression leads to a mathematical formulation that converges to an expression analogous to the Ohm's law for electric circuits. Similitudes and divergences with this law are outlined. Our work provides a suitable framework with predictive character for the design process of complex genetic devices in synthetic biology. PMID:26656950

  1. Optimizing the U.S. Electric System with a High Penetration of Renewables

    NASA Astrophysics Data System (ADS)

    Corcoran, B. A.; Jacobson, M. Z.

    2012-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load and, separately, electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. The effects of aggregating electric load alone -- including generator capacity capital cost savings, load energy shift operating cost savings, reserve requirement cost savings, and transmission costs -- were calculated for various groupings of FERC regions using 2006 data. Transmission costs outweighed cost savings due to aggregation in nearly all cases. East-west transmission layouts had the highest overall cost, and interconnecting ERCOT to adjacent FERC regions resulted in increased costs, both due to limited existing transmission capacity. Scenarios consisting of smaller aggregation groupings had the lowest overall cost. This analysis found no economic case for further aggregation of load alone within the U.S., except possibly in the West and Northwest. If aggregation of electric load is desired, then small, regional consolidations yield the lowest overall system cost. Next, the effects of aggregating electric load together with renewable electricity generation are being quantified through the development and use of an optimization tool in AMPL (A Mathematical Programming Language). This deterministic linear program solves for the least-cost organizational structure and system (generator, transmission, storage, and reserve requirements) for a highly renewable U.S. electric grid. The analysis will 1) examine a highly renewable 2006 electric system, and 2) create a "roadmap" from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize regions for transmission planning.

  2. Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene

    NASA Astrophysics Data System (ADS)

    Hinks, Mallory L.; Montoya-Aguilera, Julia; Ellison, Lucas; Lin, Peng; Laskin, Alexander; Laskin, Julia; Shiraiwa, Manabu; Dabdub, Donald; Nizkorodov, Sergey A.

    2018-02-01

    The effect of relative humidity (RH) on the chemical composition of secondary organic aerosol (SOA) formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI-HRMS). Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS) at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75-90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles.

  3. Characterization and spacial distribution variability of chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary.

    PubMed

    Wang, Ying; Zhang, Di; Shen, Zhenyao; Chen, Jing; Feng, Chenghong

    2014-01-01

    The spatial characteristics and the quantity and quality of the chromophoric dissolved organic matter (CDOM) in the Yangtze Estuary, based on the abundance, degree of humification and sources, were studied using 3D fluorescence excitation emission matrix spectra (F-EEMs) with parallel factor and principal component analysis (PARAFAC-PCA). The results indicated that the CDOM abundance decreased and the aromaticity increased from the upstream to the downstream areas of the estuary. Higher CDOM abundance and degrees of humification were observed in the pore water than that in the surface and bottom waters. Two humic-like components (C1 and C3) and one tryptophan-like component (C2) were identified using the PARAFAC model. The separation of the samples by PCA highlighted the differences in the DOM properties. Components C1 and C3 concurrently displayed positive factor 1 loadings with nearly zero factor 2 loadings, while C2 showed highly positive factor 2 loadings. The C1 and C3 were very similar and exhibited a direct relationship with A355 and DOC. The CDOM in the pore water increased along the river to the coastal area, which was mainly influenced by C1 and C3 and was significantly derived from sediment remineralization and deposition from the inflow of the Yangtze River. The CDOM in the surface and bottom waters was dominated by C2, especially in the inflows of multiple tributaries that were affected by intensive anthropogenic activities. The microbial degradation of exogenous wastes from the tributary inputs and shoreside discharges were dominant sources of the CDOM in the surface and bottom waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The delivery of organic contaminants to the Arctic food web: why sea ice matters.

    PubMed

    Pućko, Monika; Stern, Gary A; Macdonald, Robie W; Jantunen, Liisa M; Bidleman, Terry F; Wong, Fiona; Barber, David G; Rysgaard, Søren

    2015-02-15

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical-chemical properties (e.g. 2-3-fold increase in exposure to brine-associated biota), and 2) depend on physical-chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate the concentrations of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in melt pond water in the Beaufort Sea, Canadian High Arctic, in 2008, at near-gas exchange equilibrium based on Henry's law constants (HLCs), air concentrations and exchange dynamics. CUPs currently present the highest risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical 'pump' delivering contaminants from the atmosphere to the ocean under ice-covered conditions, with 2-10% of CUPs annually entering the Beaufort Sea via this input route compared to the standing stock in the Polar Mixed Layer of the ocean. The abovementioned processes are strongly favored in first-year ice compared to multi-year ice and, therefore, the dynamic balance between contaminant inventories and contaminant deposition to the surface ocean is being widely affected by the large-scale icescape transition taking place in the Arctic. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell.

    PubMed

    Cerrillo, Míriam; Viñas, Marc; Bonmatí, August

    2016-09-01

    The combination of the anaerobic digestion (AD) process with a microbial electrolysis cell (MEC) coupled to an ammonia stripping unit as a post-treatment was assessed both in series operation, to improve the quality of the effluent, and in loop configuration recirculating the effluent, to increase the AD robustness. The MEC allowed maintaining the chemical oxygen demand removal of the whole system of 46±5% despite the AD destabilization after doubling the organic and nitrogen loads, while recovering 40±3% of ammonia. The AD-MEC system, in loop configuration, helped to recover the AD (55% increase in methane productivity) and attained a more stable and robust operation. The microbial population assessment revealed an enhancement of AD methanogenic archaea numbers and a shift in eubacterial population. The AD-MEC combined system is a promising strategy for stabilizing AD against organic and nitrogen overloads, while improving the quality of the effluent and recovering nutrients for their reutilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Water quality following extensive beetle-induced tree mortality: Interplay of aromatic carbon loading, disinfection byproducts, and hydrologic drivers.

    PubMed

    Brouillard, Brent M; Dickenson, Eric R V; Mikkelson, Kristin M; Sharp, Jonathan O

    2016-12-01

    The recent bark beetle epidemic across western North America may impact water quality as a result of elevated organic carbon release and hydrologic shifts associated with extensive tree dieback. Analysis of quarterly municipal monitoring data from 2004 to 2014 with discretization of six water treatment facilities in the Rocky Mountains by extent of beetle impact revealed a significant increasing trend in total organic carbon (TOC) and total trihalomethane (TTHM) production within high (≳50% areal infestation) beetle-impacted watersheds while no or insignificant trends were found in watersheds with lower impact levels. Alarmingly, the TTHM concentration trend in the high impact sites exceeded regulatory maximum contaminant levels during the most recent two years of analysis (2013-14). To evaluate seasonal differences, explore the interplay of water quality and hydrologic processes, and eliminate variability associated with municipal reporting, these treatment facilities were targeted for more detailed surface water sampling and characterization. Surface water samples collected from high impact watersheds exhibited significantly higher TOC, aromatic signatures, and disinfection byproduct (DBP) formation potential than watersheds with lower infestation levels. Spectroscopic analyses of surface water samples indicated that these heightened DBP precursor levels are a function of both elevated TOC loading and increased aromatic character. This association was heightened during precipitation and runoff events in high impact sites, supporting the hypothesis that altered hydrologic flow paths resulting from tree mortality mobilize organic carbon and elevate DBP formation potential for several months after runoff ceases. The historical trends found here likely underestimate the full extent of TTHM shifts due to monitoring biases with the extended seasonal release of DBP precursors increasing the potential for human exposure. Collectively, our analysis suggests that while water quality impacts continue to rise nearly one decade after infestation, significant increases in TOC mobilization and DBP precursors are limited to watersheds that experience extensive tree mortality. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of Extensive Beetle-Induced Forest Mortality on Aromatic Organic Carbon Loading and Disinfection Byproduct Formation Potential

    NASA Astrophysics Data System (ADS)

    Brouillard, B.; Mikkelson, K. M.; Dickenson, E.; Sharp, J.

    2015-12-01

    Recent drought and warmer temperatures associated with climate change have caused increased pest-induced forest mortality with impacts on biogeochemical and hydrologic processes. To better understand the seasonal impacts of bark beetle infestation on water quality, samples were collected regularly over two overlapping snow free seasons at surface water intakes of six water treatment facilities in the Rocky Mountain region of Colorado displaying varying levels of bark beetle infestation (high >40%, moderate 20-40%, and low <20%). Organic carbon concentrations were typically 3 to 6 times higher in waters sourced from high beetle-impacted watersheds compared to moderate and low impact watersheds, revealing elevated specific ultraviolet absorbance, fluorescence, and humic-like intensity indicative of elevated aromatic carbon signatures. Accordingly, an increase in disinfection byproduct (DBP) formation potential of 400 to 600% was quantified when contrasted with watersheds containing less tree mortality. Beetle impact exasperated seasonal increases in carbon loading and DBP formation potential following both runoff and precipitation events indicating windows when enhanced water treatment may be utilized by water providers in highly infested regions. Additionally, elevated carbon concentrations throughout the summer and fall along with peaks following precipitation events provide evidence of shifting hydrologic flow paths in areas experiencing high forest mortality from decreased tree water uptake and interception. Collectively, these results demonstrate the need for continued watershed protection and monitoring with a changing climate as the resultant perturbations can have adverse effects on biogeochemistry and water quality in heavily impacted areas.

  8. Ecological correlates of variable organ sizes and fat loads in the most northerly-wintering shorebirds

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; Summers, R.W.; Piersma, Theunis

    2013-01-01

    Shorebirds at northern latitudes during the nonbreeding season typically carry relatively large lipid stores and exhibit an up-regulation of lean tissues associated with digestion and thermogenesis. Intraspecific variation in these tissues across sites primarily reflects differences in environmental conditions. Rock (Calidris ptilocnemis (Coues, 1873)) and Purple (Calidris maritima (Brünnich, 1764)) sandpipers are closely related species having the most northerly nonbreeding distributions among shorebirds, living at latitudes up to 61°N in Cook Inlet, Alaska, and up to 71°N in northern Norway, respectively. Cook Inlet is the coldest known site used by nonbreeding shorebirds, and the region’s mudflats annually experience extensive coverage of foraging sites by sea and shore-fast ice. Accordingly, Rock Sandpipers increase their fat stores to nearly 20% of body mass during winter. In contrast, Purple Sandpipers exploit predictably ice-free rocky intertidal foraging sites and maintain low (<6.5%) fat stores. Rock Sandpipers increase the mass of lean tissues from fall to winter, including contour feathers, stomach, and liver components. They also have greater lean pectoralis and supracoracoideus muscle and liver and kidney tissues compared with Purple Sandpipers in winter. This demonstrates a combined emphasis on digestive processes and thermogenesis, whereas Purple Sandpipers primarily augment organs associated with digestive processes. The high winter fat loads and increased lean tissues of Rock Sandpipers in Cook Inlet reflect the region’s persistent cold and abundant but sporadically unavailable food resources.

  9. The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells.

    PubMed

    Santofimia-Castaño, Patricia; Garcia-Sanchez, Lourdes; Ruy, Deborah Clea; Fernandez-Bermejo, Miguel; Salido, Gines M; Gonzalez, Antonio

    2014-09-17

    Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Visible light curing of Epon SU-8 based superparamagnetic polymer composites with random and ordered particle configurations.

    PubMed

    Peters, Christian; Ergeneman, Olgaç; Sotiriou, Georgios A; Choi, Hongsoo; Nelson, Bradley J; Hierold, Christofer

    2015-01-14

    The performance of superparamagnetic polymer composite microdevices is highly dependent on the magnetic particle content. While high loading levels are desired for many applications, the UV absorption of these nanoparticles limits the overall thickness of the fabricated microstructures and subsequently their capability of magnetic interaction. The combination of a visible-light-sensitive photoinitiator and particle self-organization is proposed to extend the exposure depth limitation in Epon SU-8 based superparamagnetic polymer composites. While superparamagnetic iron oxide particles strongly absorb i-line radiation required to cross-link the Epon SU-8 polymer matrix, we propose the utilization of H-Nu 470 photoinitiator to expand the photosensitivity of the composite toward the visible spectrum, where the dispersed nanoparticles are more transparent. The novel photoinitiator preserves the composite's superparamagnetic properties as well as a homogeneous particle distribution. As a result, particle load or resist thickness can be more than doubled while maintaining exposure time. The self-organization of ordered magnetic structures allows for an additional increase in exposure depth of up to 40%, resulting in a 2.5-fold saturation magnetization.

  11. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.

    PubMed

    Sarkar, Omprakash; Venkata Mohan, S

    2017-10-01

    Application of pre-aeration (AS) to waste prior to feeding was evaluated on acidogenic process in a semi-pilot scale biosystem for the production of biobased products (biohydrogen, volatile fatty acids (VFA) and biohythane) from food waste. Oxygen assisted in pre-hydrolysis of waste along with the suppression of methanogenic activity resulting in enhanced acidogenic product formation. AS operation resulted in 97% improvement in hydrogen conversion efficiency (HCE) and 10% more VFA production than the control. Increasing the organic load (OL) of food waste in association with AS application improved the productivity. The application of AS also influenced concentration and composition of fatty acid. Highest fraction of acetic (5.3g/l), butyric (0.7g/l) and propionic acid (0.84g/l) was achieved at higher OL (100g COD/l) with good degree of acidification (DOA). AS strategy showed positive influence on biofuel (biohydrogen and biohythane) production along with the biosynthesis of short chain fatty acids functioning as a low-cost pretreatment strategy in a single stage bioprocess. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: Effect of the organic loading rate (OLR) on process performance.

    PubMed

    Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro

    2015-10-01

    Anaerobic co-digestion of dried pellet of exhausted sugar beet cossettes (ESBC-DP) with pig manure (PM) was investigated in a semi-continuous stirred tank reactor (SSTR) under mesophilic conditions. Seven hydraulic retention times (HRT) from 20 to 5 days were tested with the aim to evaluate the methane productivities and volatile solids (VS) removal. The corresponding organic loading rates (OLR) ranged from 4.2 to 12.8 gVS/L(reactor) d. The findings revealed that highest system efficiency was achieved at an OLR of 11.2 gVS/L(reactor) d (6 days-HRT) with a methane production rate (MPR) and volatile solids (VS) reduction of 2.91 LCH4/L(reactor) d and 57.5%, respectively. The HRT of 5 days was found critical for the studied process, which leads to volatile fatty acids (VFA) accumulation and sharp drop in pH. However, the increase of HRT permits the recovery of system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Performance, carotenoids yield and microbial population dynamics in a photobioreactor system treating acidic wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

    PubMed

    Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng

    2016-01-01

    Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodopseudomonas palustris)-chemoheterotrophic bacteria to treat volatile fatty acid wastewater. Pollutants removal, biomass production and carotenoids yield in different phases were investigated in together with functional microbial population dynamics. The results indicated that properly decreasing HRT and increasing OLR improved the nutrient removal performance as well as the biomass and carotenoids productions. 85.7% COD, 89.9% TN and 91.8% TP removals were achieved under the optimal HRT of 48h and OLR of 2.51g/L/d. Meanwhile, the highest biomass production and carotenoids yield were 2719.3mg/L and 3.91mg/g-biomass respectively. In addition, HRT and OLR have obvious impacts on PNSB and total bacteria dynamics. Statistical analyses indicated that the COD removal exhibited a positive relationship with OLR, biomass and carotenoids production. PNSB/total bacteria ratio had a positive correlation with the carotenoids yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Different organic loading rates on the biogas production during the anaerobic digestion of rice straw: A pilot study.

    PubMed

    Zhou, Jun; Yang, Jun; Yu, Qing; Yong, Xiaoyu; Xie, Xinxin; Zhang, Lijuan; Wei, Ping; Jia, Honghua

    2017-11-01

    The aim of this work was to investigate the mesophilic methane fermentation of rice straw at different organic loading rates (OLRs) in a 300m 3 bioreactor. It was found that biogas production increased when the OLR was below 2.00kg VS substrate /(m 3 ·d). The average volumetric biogas production reached 0.86m 3 /(m 3 ·d) at an OLR of 2.00kg VS substrate /(m 3 ·d). Biogas production rate was 323m 3 /t dry rice straw over the whole process. The pH, chemical oxygen demand, volatile fatty acid, and NH 4 + -N concentrations were all in optimal range at different OLRs. High-throughput sequencing analysis indicated that Firmicutes, Fibrobacteres, and Spirochaetes predominated in straw samples. Chloroflexi, Proteobacteria, and Planctomycetes were more abundant in the slurry. The hydrogenotrophic pathway was the main biochemical pathway of methanogenesis in the reactor. This study provides new information regarding the OLR and the differences in the spatial distribution of specific microbiota in a rice straw biogas plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Anaerobic treatment of rice winery wastewater in an upflow filter packed with steel slag under different hydraulic loading conditions.

    PubMed

    Jo, Yeadam; Kim, Jaai; Hwang, Seokhwan; Lee, Changsoo

    2015-10-01

    Rice-washing drainage (RWD), a strong organic wastewater, was anaerobically treated using an upflow filter filled with blast-furnace slag. The continuous performance of the reactor was examined at varying hydraulic retention times (HRTs). The reactor achieved 91.7% chemical oxygen demand removal (CODr) for a 10-day HRT (0.6 g COD/Ld organic loading rate) and maintained fairly stable performance until the HRT was shortened to 2.2 days (CODr > 84%). Further decreases in HRT caused process deterioration (CODr < 50% and pH < 5.5 for a 0.7-day HRT). The methane production rate increased with decreasing HRT to reach the peak level for a 1.3-day HRT, whereas the yield was significantly greater for 3.4-day or longer HRTs. The substrate removal and methane production kinetics were successfully evaluated, and the generated kinetic models produced good performance predictions. The methanogenic activity of the reactor likely relies on the filter biofilm, with Methanosaeta being the main driver. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Respirometric studies on the effectiveness of biogas production from wastewaters originating from dairy, sugar and tanning industry.

    PubMed

    Debowski, M; Krzemieniewski, M; Zieliński, M; Dudek, M; Grala, A

    2013-01-01

    The objective of the present study was to determine the effectiveness of biogas production during methane fermentation of wastewaters originating from the dairy, tanning and sugar industries, by means ofrespirometric measurements conducted at a temperature of 35 degrees C. Experiments were carried out with the use of model tanks of volume 0.5 dm3. A high production yield of biogas, with methane content exceeding 60%, was achieved in the case of the anaerobic treatment of wastewaters from the dairy and sugar industries. A significantly lower effect was observed in the case of tanning wastewaters. The effectiveness of the fermentation process decreased with increasing loading of the tanks with a feedstock of organic compounds. By loading a model tank with this feedstock, the effectiveness of treatment ranged from 62.8% to 71.4% residual chemical oxygen demand for dairy wastewaters and from 57.9% to 64.1% for sugar industry wastewaters. The efficiency of organic compound removal from tanning wastewaters was below 50%, regardless of the method applied.

  17. The efficiency coefficient of the rat heart and muscular system after physical training and hypokinesia

    NASA Technical Reports Server (NTRS)

    Alyukhin, Y. S.; Davydov, A. F.

    1982-01-01

    The efficiency of an isolated heart did not change after prolonged physical training of rats for an extreme load. The increase in oxygen consumption by the entire organism in 'uphill' running as compared to the resting level in the trained rats was 14% lower than in the control animals. Prolonged hypokinesia of the rats did not elicit a change in the efficiency of the isolated heart.

  18. Asphyxiation death caused by oxygen-depleting cargo on a ship.

    PubMed

    Sundal, Marjana Kjetland; Lilleng, Peer Kaare; Barane, Hans; Morild, Inge; Vevelstad, Merete

    2017-10-01

    The extreme danger associated with entering enclosed spaces loaded with oxygen-depleting organic cargo in ships and tanks is obviously underestimated, both among crew and management. We present a case report to highlight this occupational hazard and to increase the knowledge about the imperative precautions, in order to prevent future accidents. An experienced customs officer was found lifeless at the bottom of the unattended cargo hold on a ship loaded with woodchips. The oxygen content in the cargo atmosphere was below 2%, which is incompatible with life. Forensic autopsy revealed injuries related to the fall, and there were no positive toxicological findings in blood, lung or urine. Management and workers must be taught about the extreme rapidity of developing unconsciousness and asphyxiant death when entering enclosed spaces loaded with oxygen-depleting cargo. Even a single inhalation can result in unconsciousness and death. Dozens of annual deaths and severe injuries can easily be prevented if simple precautions are followed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Smart PV grid to reinforce the electrical network

    NASA Astrophysics Data System (ADS)

    AL-Hamad, Mohamed Y.; Qamber, Isa S.

    2017-11-01

    Photovoltaic (PV) became the new competitive energy resources of the planet and needs to be engaged in grid to break up the congestion in both Distribution and Transmission systems. The objective of this research is to reduce the load flow through the distribution and transmission equipment by 20%. This reduction will help in relief networks loaded equipment's in all networks. Many projects are starting to develop in the GCC countries and need to be organized to achieve maximum benefits from involving the Renewable Energy Sources (RES) in the network. The GCC countries have a good location for solar energy with high intensity of the solar radiation and clear sky along the year. The opportunities of the solar energy is to utilize and create a sustainable energy resource for this region. Moreover, the target of this research is to engage the PV technology in such a way to lower the over loaded equipment and increases the electricity demand at the consumer's side.

  20. Durability and Intelligent Nondestructive Evaluation of Adhesive Composite Joints

    DTIC Science & Technology

    2000-09-22

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION University of Nebraska-Lincoln, Research Grants REPORTNUMBER & Contracts Office...Lincoln, NE 68588-0430 9. SPONSORING / MONrrORLNG AGENCY NAIME(S) AND ADDRESS( ES ) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER * AFOSR 801 North...An MTS 10 MT load cell was used to measure loads. The tests were performed with a Satec spherical alignment coupling attached to the top grip. Acoustic

  1. Modeling of orthotropic plate fracture under impact load using various strength criteria

    NASA Astrophysics Data System (ADS)

    Radchenko, Andrey; Krivosheina, Marina; Kobenko, Sergei; Radchenko, Pavel; Grebenyuk, Grigory

    2017-01-01

    The paper presents the comparative analysis of various tensor multinomial criteria of strength for modeling of orthotropic organic plastic plate fracture under impact load. Ashkenazi, Hoffman and Wu strength criteria were used. They allowed fracture modeling of orthotropic materials with various compressive and tensile strength properties. The modeling of organic plastic fracture was performed numerically within the impact velocity range of 700-1500 m/s.

  2. Photoswitchable nanoporous films by loading azobenzene in metal-organic frameworks of type HKUST-1.

    PubMed

    Müller, Kai; Wadhwa, Jasmine; Singh Malhi, Jasleen; Schöttner, Ludger; Welle, Alexander; Schwartz, Heidi; Hermann, Daniela; Ruschewitz, Uwe; Heinke, Lars

    2017-07-13

    Photoswitchable metal-organic frameworks (MOFs) enable the dynamic remote control of their key properties. Here, a readily producible approach is presented where photochromic molecules, i.e. azobenzene (AB) and o-tetrafluoroazobenzene (tfAB), are loaded in MOF films of type HKUST-1. These nanoporous films, which can be reversibly switched with UV/visible or only visible light, have remote-controllable guest uptake properties.

  3. Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR).

    PubMed

    Saidi, Assia; Masmoudi, Khaoula; Nolde, Erwin; El Amrani, Btissam; Amraoui, Fouad

    2017-12-01

    Greywater is an important non-conventional water resource which can be treated and recycled in buildings. A decentralized greywater recycling system for 223 inhabitants started operating in 2006 in Berlin, Germany. High load greywater undergoes advanced treatment in a multistage moving bed biofilm reactor (MBBR) followed by sand filtration and UV disinfection. The treated water is used safely as service water for toilet flushing. Monitoring of the organic matter degradation was pursued to describe the degradation processes in each stage and optimize the system. Results showed that organic matter reduction was achieved for the most part in the first three reactors, whereas the highest reduction rate was observed in the third reactor in terms of COD (chemical oxygen demand), dissolved organic carbon and BOD 7 (biological oxygen demand). The results also showed that the average loading rate entering the system was 3.7 kg COD/d, while the removal rate was 3.4 kg COD/d in a total bioreactor volume of 11.7 m³. In terms of BOD, the loading rate was 2.8 kg BOD/d and it was almost totally removed. This system requires little space (0.15 m²/person) and maintenance work of less than one hour per month and it shows operational stability under peak loads.

  4. Occupant kinematics and estimated effectiveness of side airbags in pole side impacts using a human FE model with internal organs.

    PubMed

    Hayashi, Shigeki; Yasuki, Tsuyoshi; Kitagawa, Yuichi

    2008-11-01

    When a car collides against a pole-like obstacle, the deformation pattern of the vehicle body-side tends to extend to its upper region. A possible consequence is an increase of loading to the occupant thorax. Many studies have been conducted to understand human thoracic responses to lateral loading, and injury criteria have been developed based on the results. However, injury mechanisms, especially those of internal organs, are not well understood. A human body FE model was used in this study to simulate occupant kinematics in a pole side impact. Internal organ parts were introduced into the torso model, including their geometric features, material properties and connections with other tissues. The mechanical responses of the model were validated against PMHS data in the literature. Although injury criterion for each organ has not been established, pressure level and its changes can be estimated from the organ models. Finite element simulations were conducted assuming a case where a passenger vehicle collides against a pole at 29km/h. Occupant kinematics, force-deformation responses and pressure levels were compared between cases with and without side airbag deployment. The results indicated that strain to the ribs and pressure to the organs was smaller with side airbag deployment. The side airbag widened the contact area at the torso, helping to distribute the force to the shoulder, arm and chest. Such distributed force helped generate relatively smaller deformation in the ribs. Furthermore, the side airbag deployment helped restrict the spine displacement. The smaller displacement contributed to lowering the magnitude of contact force between the torso and the door. The study also examined the correlations between the pressure levels in the internal organs, rib deflection, and V*C of chest. The study found that the V*C(t) peak appeared to be synchronized with the organ pressure peak, suggesting that the pressure level of the internal organs could be one possible indicator to estimate their injury risk.

  5. [The status of soil contamination in areas of northern and northwestern Bohemia affected by pollution].

    PubMed

    Podlesáková, E; Nĕmecek, J; Vácha, R

    1999-10-20

    A regional study of soil contamination in North and Northwest immission-impacted Bohemian regions present the results of the assessment of soil loads of agricultural soils by hazardous trace elements and organic xenobiotic substances. The evaluation is based on the exceeding of background values of contaminants (upper limit of their variability). Two forms of soil loads by trace elements are differentiated, the anthropogenic and geogenic one. They occur simultaneously on the territory under study. Geogenic "loads" prevail (basalts, metallogenic zones). Anthropogenic contamination by both hazardous elements and organic xenobiotic substances occurs only in some parts of these severely immission-impacted regions.

  6. Performance assessment of two-stage anaerobic digestion of kitchen wastes.

    PubMed

    Bo, Zhang; Pin-Jing, He

    2014-01-01

    This study is aimed at investigating the performance of the two-phase anaerobic digestion of kitchen wastes in a lab-scale setup. The semi-continuous experiment showed that the two-phase anaerobic digestion of kitchen wastes had a bioconversion rate of 83%, biogas yield of 338 mL x (g chemical oxygen demand (COD))(-1) and total solid conversion of 63% when the entire two-phase anaerobic digestion process was subjected to an organic loading rate (OLR) of 10.7 g x (L d)(-1). In the hydrolysis-acidogenesis process, the efficiency of solubilization decreased from 72.6% to 41.1%, and the acidogenesis efficiency decreased from 31.8% to 17.8% with an increase in the COD loading rate. On the other hand, the performance of the subsequent methanogenic process was not susceptible to the increase in the feeding COD loading rate in the hydrolysis-acidogenesis stage. Lactic acid was one of the main fermentation products, accounting for over 40% of the total soluble COD in the fermentation liquid. The batch experiments indicated that the lactic acid was the earliest predominant fermentation product, and distributions of fermentation products were pH dependent. Results showed that increasing the feeding OLR of kitchen wastes made the two-stage anaerobic digestion process more effective. Moreover, there was a potential improvement in the performance of anaerobic digestion of kitchen wastes with a corresponding improvement in the hydrolysis process.

  7. Factors Affecting P Loads to Surface Waters: Comparing the Roles of Precipitation and Land Management Practices

    NASA Astrophysics Data System (ADS)

    Motew, M.; Booth, E.; Carpenter, S. R.; Kucharik, C. J.

    2014-12-01

    Surface water quality is a major concern in the Yahara watershed (YW) of southern Wisconsin, home to a thriving dairy industry, the city of Madison, and five highly valued lakes that are eutrophic. Despite management interventions to mitigate runoff, there has been no significant trend in P loading to the lakes since 1975. Increases in manure production and heavy rainfall events over this time period may have offset any effects of management. We developed a comprehensive, integrated modeling framework that can simulate the effects of multiple drivers on ecosystem services, including surface water quality. The framework includes process-based representation of terrestrial ecosystems (Agro-IBIS) and groundwater flow (MODFLOW), hydrologic routing of water and nutrients across the landscape (THMB), and assessment of lake water quality (YWQM). Biogeochemical cycling and hydrologic transport of P have been added to the framework to enable detailed simulation of P dynamics within the watershed, including interactions with climate and management. The P module features in-soil cycling of organic, inorganic, and labile forms of P; manure application, decomposition, and subsequent loss of dissolved P in runoff; loss of particulate-bound P with erosion; and transport of dissolved and particulate P within waterways. Model results will compare the effects of increased heavy rainfall events, increased manure production, and implementation of best management practices on P loads to the Yahara lakes.

  8. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer

    PubMed Central

    Navarro, Maria A.; Atlas, Elliot L.; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R. P.; Meneguz, Elena; Ashfold, Matthew J.; Manning, Alistair J.; Cuevas, Carlos A.; Schauffler, Sue M.; Donets, Valeria

    2015-01-01

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry−climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4−9) parts per thousand] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  9. Increasing floodplain connectivity through urban stream restoration increases nutrient and sediment retention

    USGS Publications Warehouse

    McMillan, Sara K.; Noe, Gregory

    2017-01-01

    Stream restoration practices frequently aim to increase connectivity between the stream channel and its floodplain to improve channel stability and enhance water quality through sediment trapping and nutrient retention. To measure the effectiveness of restoration and to understand the drivers of these functional responses, we monitored five restored urban streams that represent a range of channel morphology and restoration ages. High and low elevation floodplain plots were established in triplicate in each stream to capture variation in floodplain connectivity. We measured ecosystem geomorphic and soil attributes, sediment and nutrient loading, and rates of soil nutrient biogeochemistry processes (denitrification; N and P mineralization) then used boosted regression trees (BRT) to identify controls on sedimentation and nutrient processing. Local channel and floodplain morphology and position within the river network controlled connectivity with increased sedimentation at sites downstream of impaired reaches and at floodplain plots near the stream channel and at low elevations. We observed that nitrogen loading (both dissolved and particulate) was positively correlated with denitrification and N mineralization and dissolved phosphate loading positively influenced P mineralization; however, none of these input rates or transformations differed between floodplain elevation categories. Instead, continuous gradients of connectivity were observed rather than categorical shifts between inset and high floodplains. Organic matter and nutrient content in floodplain soils increased with the time since restoration, which highlights the importance of recovery time after construction that is needed for restored systems to increase ecosystem functions. Our results highlight the importance of restoring floodplains downstream of sources of impairment and building them at lower elevations so they flood frequently, not just during bankfull events. This integrated approach has the greatest potential for increasing trapping of sediment, nutrients, and associated pollutants in restored streams and thereby improving water quality in urban watersheds.

  10. Treatment of petroleum refinery wastewater containing heavily polluting substances in an aerobic submerged fixed-bed reactor.

    PubMed

    Vendramel, S; Bassin, J P; Dezotti, M; Sant'Anna, G L

    2015-01-01

    Petroleum refineries produce large amount of wastewaters, which often contain a wide range of different compounds. Some of these constituents may be recalcitrant and therefore difficult to be treated biologically. This study evaluated the capability of an aerobic submerged fixed-bed reactor (ASFBR) containing a corrugated PVC support material for biofilm attachment to treat a complex and high-strength organic wastewater coming from a petroleum refinery. The reactor operation was divided into five experimental runs which lasted more than 250 days. During the reactor operation, the applied volumetric organic load was varied within the range of 0.5-2.4 kgCOD.m(-3).d(-1). Despite the inherent fluctuations on the characteristics of the complex wastewater and the slight decrease in the reactor performance when the influent organic load was increased, the ASFBR showed good stability and allowed to reach chemical oxygen demand, dissolved organic carbon and total suspended solids removals up to 91%, 90% and 92%, respectively. Appreciable ammonium removal was obtained (around 90%). Some challenging aspects of reactor operation such as biofilm quantification and important biofilm constituents (e.g. polysaccharides (PS) and proteins (PT)) were also addressed in this work. Average PS/volatile attached solids (VAS) and PT/VAS ratios were around 6% and 50%, respectively. The support material promoted biofilm attachment without appreciable loss of solids and allowed long-term operation without clogging. Microscopic observations of the microbial community revealed great diversity of higher organisms, such as protozoa and rotifers, suggesting that toxic compounds found in the wastewater were possibly removed in the biofilm.

  11. Changes in the Degree of Contamination of Organic Horizons of Al-Fe-Humus Podzols upon a Decrease in Aerotechnogenic Loads, the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Barkan, V. Sh.; Lyanguzova, I. V.

    2018-03-01

    Contamination levels of the organic horizon of Al-Fe-humus podzols (Albic Rustic Podzols) in the zone affected by atmospheric emissions of the Severonikel smelter (Murmansk oblast) within a 20-yearlong period are compared. The spatiotemporal changes in the total content of heavy metals in the soils in response to a decrease in aerotechnogenic loads have a complicated pattern. As the content of heavy metals in the soils varies widely, the correlation between their amount in the organic soil horizon and the distance from the contamination source is absent. In response to the ninefold decrease in the amount of atmospheric emission of Ni compounds, the bulk content of Ni in the organic horizons of podzols reliably decreased by 2.5 times. The threefold decrease in the emission of Cu compounds proved to be insufficient for a significant decrease in the Cu content in the soils. In 2016, the content of heavy metals in some sampling points even increased in comparison with the earlier periods. The Ni-to-Cu ratio in the soil samples changed significantly. In 1989-1994, bulk forms of heavy metals in the soil samples formed the sequence Ni > Cu > Co; in 2016, it changed to Cu > Ni > Co, which corresponds to the proportions of these metals in the aerial emissions. Under conditions of the continuous input of heavy metals from the atmosphere, the contamination of the organic horizons of podzols with heavy metals remains at the high or very high levels.

  12. Partitioning phase preference for secondary organic aerosol in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Chang, Wayne Li-Wen

    Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter (PM). The impact of PM on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state-of-the-art 3-D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the distribution of fAQ values is inversely proportional to the total SOA loading. Further analysis accounting for various meteorological parameters indicates that large fAQ values are the results of aqueous-phase SOA insensitivity to the ambient conditions; while organic-phase SOA concentrations are dramatically reduced under unfavorable SOA formation conditions, aqueous-phase SOA level remains relatively unchanged, thus increasing fAQ at low SOA loading. Diurnal variations of fAQ near the surface are also observed: it tends to be larger during daytime hours than nighttime hours. When examining the vertical gradient of fAQ, largest values are found at heights above the surface layer. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.

  13. Architecture of the sperm whale forehead facilitates ramming combat.

    PubMed

    Panagiotopoulou, Olga; Spyridis, Panagiotis; Mehari Abraha, Hyab; Carrier, David R; Pataky, Todd C

    2016-01-01

    Herman Melville's novel Moby Dick was inspired by historical instances in which large sperm whales (Physeter macrocephalus L.) sank 19th century whaling ships by ramming them with their foreheads. The immense forehead of sperm whales is possibly the largest, and one of the strangest, anatomical structures in the animal kingdom. It contains two large oil-filled compartments, known as the "spermaceti organ" and "junk," that constitute up to one-quarter of body mass and extend one-third of the total length of the whale. Recognized as playing an important role in echolocation, previous studies have also attributed the complex structural configuration of the spermaceti organ and junk to acoustic sexual selection, acoustic prey debilitation, buoyancy control, and aggressive ramming. Of these additional suggested functions, ramming remains the most controversial, and the potential mechanical roles of the structural components of the spermaceti organ and junk in ramming remain untested. Here we explore the aggressive ramming hypothesis using a novel combination of structural engineering principles and probabilistic simulation to determine if the unique structure of the junk significantly reduces stress in the skull during quasi-static impact. Our analyses indicate that the connective tissue partitions in the junk reduce von Mises stresses across the skull and that the load-redistribution functionality of the former is insensitive to moderate variation in tissue material parameters, the thickness of the partitions, and variations in the location and angle of the applied load. Absence of the connective tissue partitions increases skull stresses, particularly in the rostral aspect of the upper jaw, further hinting of the important role the architecture of the junk may play in ramming events. Our study also found that impact loads on the spermaceti organ generate lower skull stresses than an impact on the junk. Nevertheless, whilst an impact on the spermaceti organ would reduce skull stresses, it would also cause high compressive stresses on the anterior aspect of the organ and the connective tissue case, possibly making these structures more prone to failure. This outcome, coupled with the facts that the spermaceti organ houses sensitive and essential sonar producing structures and the rostral portion of junk, rather than the spermaceti organ, is frequently a site of significant scarring in mature males suggest that whales avoid impact with the spermaceti organ. Although the unique structure of the junk certainly serves multiple functions, our results are consistent with the hypothesis that the structure also evolved to function as a massive battering ram during male-male competition.

  14. Decentralized control of units in smart grids for the support of renewable energy supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenschein, Michael, E-mail: Michael.Sonnenschein@Uni-Oldenburg.DE; Lünsdorf, Ontje, E-mail: Ontje.Luensdorf@OFFIS.DE; Bremer, Jörg, E-mail: Joerg.Bremer@Uni-Oldenburg.DE

    Due to the significant environmental impact of power production from fossil fuels and nuclear fission, future energy systems will increasingly rely on distributed and renewable energy sources (RES). The electrical feed-in from photovoltaic (PV) systems and wind energy converters (WEC) varies greatly both over short and long time periods (from minutes to seasons), and (not only) by this effect the supply of electrical power from RES and the demand for electrical power are not per se matching. In addition, with a growing share of generation capacity especially in distribution grids, the top-down paradigm of electricity distribution is gradually replaced bymore » a bottom-up power supply. This altogether leads to new problems regarding the safe and reliable operation of power grids. In order to address these challenges, the notion of Smart Grids has been introduced. The inherent flexibilities, i.e. the set of feasible power schedules, of distributed power units have to be controlled in order to support demand–supply matching as well as stable grid operation. Controllable power units are e.g. combined heat and power plants, power storage systems such as batteries, and flexible power consumers such as heat pumps. By controlling the flexibilities of these units we are particularly able to optimize the local utilization of RES feed-in in a given power grid by integrating both supply and demand management measures with special respect to the electrical infrastructure. In this context, decentralized systems, autonomous agents and the concept of self-organizing systems will become key elements of the ICT based control of power units. In this contribution, we first show how a decentralized load management system for battery charging/discharging of electrical vehicles (EVs) can increase the locally used share of supply from PV systems in a low voltage grid. For a reliable demand side management of large sets of appliances, dynamic clustering of these appliances into uniformly controlled appliance sets is necessary. We introduce a method for self-organized clustering for this purpose and show how control of such clusters can affect load peaks in distribution grids. Subsequently, we give a short overview on how we are going to expand the idea of self-organized clusters of units into creating a virtual control center for dynamic virtual power plants (DVPP) offering products at a power market. For an efficient organization of DVPPs, the flexibilities of units have to be represented in a compact and easy to use manner. We give an introduction how the problem of representing a set of possibly 10{sup 100} feasible schedules can be solved by a machine-learning approach. In summary, this article provides an overall impression how we use agent based control techniques and methods of self-organization to support the further integration of distributed and renewable energy sources into power grids and energy markets. - Highlights: • Distributed load management for electrical vehicles supports local supply from PV. • Appliances can self-organize into so called virtual appliances for load control. • Dynamic VPPs can be controlled by extensively decentralized control centers. • Flexibilities of units can efficiently be represented by support-vector descriptions.« less

  15. Comparison of AIS 1990 update 98 versus AIS 2005 for describing PMHS injuries in lateral and oblique sled tests

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Humm, John R.; Stadter, Gregory W.; Curry, William H.; Brasel, Karen J.

    2013-01-01

    This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990–1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m2. Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data. PMID:24406958

  16. Investigation of Anaerobic Fluidized Bed Reactor/ Aerobic Moving Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater

    PubMed Central

    JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein

    2013-01-01

    Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640

  17. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria.

    PubMed

    Natan, Michal; Gutman, Ori; Lavi, Ronit; Margel, Shlomo; Banin, Ehud

    2015-02-24

    Increased resistance of bacteria to disinfection and antimicrobial treatment poses a serious public health threat worldwide. This has prompted the search for agents that can inhibit both bacterial growth and withstand harsh conditions (e.g., high organic loads). In the current study, N-halamine-derivatized cross-linked polymethacrylamide nanoparticles (NPs) were synthesized by copolymerization of the monomer methacrylamide (MAA) and the cross-linker monomer N,N-methylenebis(acrylamide) (MBAA) and were subsequently loaded with oxidative chlorine using sodium hypochlorite (NaOCl). The chlorinated NPs demonstrated remarkable stability and durability to organic reagents and to repetitive bacterial loading cycles as compared with the common disinfectant NaOCl (bleach), which was extremely labile under these conditions. The antibacterial mechanism of the cross-linked P(MAA-MBAA)-Cl NPs was found to involve generation of reactive oxygen species (ROS) only upon exposure to organic media. Importantly, ROS were not generated upon suspension in water, revealing that the mode of action is target-specific. Further, a unique and specific interaction of the chlorinated NPs with Staphylococcus aureus was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. This bacterial encircling was achieved without using a targeting module (e.g., an antibody or a ligand) and represents a highly beneficial, natural property of the P(MAA-MBAA)-Cl nanostructures. Our findings provide insights into the mechanism of action of P(MAA-MBAA)-Cl NPs and demonstrate the superior efficacy of the NPs over bleach (i.e., stability, specificity, and targeting). This work underscores the potential of developing sustainable P(MAA-MBAA)-Cl NP-based devices for inhibiting bacterial colonization and growth.

  18. Effect of hydraulic retention time and sludge recirculation on greenhouse gas emission and related microbial communities in two-stage membrane bioreactor treating solid waste leachate.

    PubMed

    Nuansawan, Nararatchporn; Boonnorat, Jarungwit; Chiemchaisri, Wilai; Chiemchaisri, Chart

    2016-06-01

    Methane (CH4) and nitrous oxide (N2O) emissions and responsible microorganisms during the treatment of municipal solid waste leachate in two-stage membrane bioreactor (MBR) was investigated. The MBR system, consisting of anaerobic and aerobic stages, were operated at hydraulic retention time (HRT) of 5 and 2.5days in each reactor under the presence and absence of sludge recirculation. Organic and nitrogen removals were more than 80% under all operating conditions during which CH4 emission were found highest under no sludge recirculation condition at HRT of 5days. An increase in hydraulic loading resulted in a reduction in CH4 emission from anaerobic reactor but an increase from the aerobic reactor. N2O emission rates were found relatively constant from anaerobic and aerobic reactors under different operating conditions. Diversity of CH4 and N2O producing microorganisms were found decreasing when hydraulic loading rate to the reactors was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  20. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant.

    PubMed

    Sebaaly, Carine; Greige-Gerges, Hélène; Agusti, Géraldine; Fessi, Hatem; Charcosset, Catherine

    2016-01-01

    Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection.

  1. Monte Carlo modeling of single-molecule cytoplasmic dynein.

    PubMed

    Singh, Manoranjan P; Mallik, Roop; Gross, Steven P; Yu, Clare C

    2005-08-23

    Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.

  2. Towards a cognitive resource limitations model of diminished expression in schizotypy.

    PubMed

    Cohen, Alex S; Morrison, Sean C; Brown, Laura A; Minor, Kyle S

    2012-02-01

    Diminished expression of speech is a pernicious feature of both schizophrenia and schizotypy--defined as the personality organization reflecting a putative genetic schizophrenia liability. As yet, the mechanism underlying diminished expression is unclear. We tested the hypothesis that diminished expression reflects a cognitive resource issue--that is, as cognitive resources are depleted, expression becomes diminished in individuals with psychometrically defined schizotypy. Acoustic analysis of natural speech was procured during experimentally manipulated baseline and high cognitive-load dual tasks and examined in 38 individuals with psychometrically defined schizotypy and 34 controls. For both groups, expression significantly decreased as a function of increased task demands, although there were no group differences in expression or magnitude of change across baseline to high cognitive-load conditions. Participants with self-reported constricted affect showed significant reductions in expression under high-load versus baseline speaking conditions relative to other schizotypal and control participants. Moreover, psychometrically defined schizotypal participants with poor cognitive performance on the high-load task, suggestive of depleted cognitive resources, also showed expressivity reductions compared with other participants. These findings suggest that diminished expression occurs as a function of limited cognitive resources in psychometrically defined schizotypy. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  3. Pasture BMP effectiveness using an HRU-based subarea approach in SWAT.

    PubMed

    Sheshukov, Aleksey Y; Douglas-Mankin, Kyle R; Sinnathamby, Sumathy; Daggupati, Prasad

    2016-01-15

    Many conservation programs have been established to motivate producers to adopt best management practices (BMP) to minimize pasture runoff and nutrient loads, but a process is needed to assess BMP effectiveness to help target implementation efforts. A study was conducted to develop and demonstrate a method to evaluate water-quality impacts and the effectiveness of two widely used BMPs on a livestock pasture: off-stream watering site and stream fencing. The Soil and Water Assessment Tool (SWAT) model was built for the Pottawatomie Creek Watershed in eastern Kansas, independently calibrated at the watershed outlet for streamflow and at a pasture site for nutrients and sediment runoff, and also employed to simulate pollutant loads in a synthetic pasture. The pasture was divided into several subareas including stream, riparian zone, and two grazing zones. Five scenarios applied to both a synthetic pasture and a whole watershed were simulated to assess various combinations of widely used pasture BMPs: (1) baseline conditions with an open stream access, (2) an off-stream watering site installed in individual subareas in the pasture, and (3) stream or riparian zone fencing with an off-stream watering site. Results indicated that pollutant loads increase with increasing stocking rates whereas off-stream watering site and/or stream fencing reduce time cattle spend in the stream and nutrient loads. These two BMPs lowered organic P and N loads by more than 59% and nitrate loads by 19%, but TSS and sediment-attached P loads remained practically unchanged. An effectiveness index (EI) quantified impacts from the various combinations of off-stream watering sites and fencing in all scenarios. Stream bank contribution to pollutant loads was not accounted in the methodology due to limitations of the SWAT model, but can be incorporated in the approach if an amount of bank soil loss is known for various stocking rates. The proposed methodology provides an adaptable framework for pasture BMP assessment and was utilized to represent a consistent, defensible process to quantify the effectiveness of BMP proposals in a BMP auction in eastern Kansas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    PubMed

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.

  5. Global-scale combustion sources of organic aerosols: sensitivity to formation and removal mechanisms

    NASA Astrophysics Data System (ADS)

    Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos

    2017-06-01

    Organic compounds from combustion sources such as biomass burning and fossil fuel use are major contributors to the global atmospheric load of aerosols. We analyzed the sensitivity of model-predicted global-scale organic aerosols (OA) to parameters that control primary emissions, photochemical aging, and the scavenging efficiency of organic vapors. We used a computationally efficient module for the description of OA composition and evolution in the atmosphere (ORACLE) of the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry). A global dataset of aerosol mass spectrometer (AMS) measurements was used to evaluate simulated primary (POA) and secondary (SOA) OA concentrations. Model results are sensitive to the emission rates of intermediate-volatility organic compounds (IVOCs) and POA. Assuming enhanced reactivity of semi-volatile organic compounds (SVOCs) and IVOCs with OH substantially improved the model performance for SOA. The use of a hybrid approach for the parameterization of the aging of IVOCs had a small effect on predicted SOA levels. The model performance improved by assuming that freshly emitted organic compounds are relatively hydrophobic and become increasingly hygroscopic due to oxidation.

  6. [Evaluation of the usefulness of laryngeal vocal efficiency tests during noise load for diagnosing occupational diseases of the larynx in teachers].

    PubMed

    Loś-Spychalska, T

    1997-01-01

    A growing incidence of the voice organ occupational diseases has recently become one of major health problems. There is a need to objective diagnostic examinations performed in teachers who apply for occupational disease certification. The aim of our study was to assess the feasibility of larynx vocal efficiency test during noise load in diagnosis of the voice organ occupational diseases in teachers.

  7. Innovative Alternatives to Lifting Overturned Military Vehicles

    DTIC Science & Technology

    2014-04-25

    NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) United States Air Force Academy,Washington,DC,20301 8...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...Initial testing of the prototype involved using a SATEC load frame to apply a load. As previously stated, during the first test the design failed

  8. AMINE EXTRACTION OF PLUTONIUM FROM NITRIC ACID SOLUTIONS LOADING AND STRIPPING EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.S.

    1961-01-19

    Information is presented on a suitable amine processing system for plutonium nitrate. Experiments with concentrated plutonium nitrate solutions show that trilaurylamine (TLA) - xylene solvent systems did not form a second organic phase. Experiments are also reported with tri-noctylamine (TnOA)-xylene and TLA-Amsco - octyl alcohol. Two organic phases appear in both these systems at high plutonium nitrate concentrations. Data are tabulated from loading and stripping experiments. (J.R.D.)

  9. Organic pollutant loading and biodegradability of firefighting foam

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Zhong; Bao, Zhi-ming; Hu, Cheng; Li-Shuai, Jing; Chen, Yang

    2017-11-01

    Firefighting foam has been widely used as the high-performance extinguishing agent in extinguishing the liquid poor fire. It was concerned for its environmental impacts due to its massive usage. In this study, the organic loading level and the biodegradability of 18 firefighting foams commonly used in China were evaluated and compared. The COD and TOC of firefighting foam concentrates are extremely high. Furthermore, those of foam solutions are also much higher than regular wastewater. The COD/TOC ratio of synthetic foams are higher than protein foams. The 28-day biodegradation rates of 18 firefighting foams are all over 60%, indicating that they are all ready biodegradable. Protein foams (P, FP and FFFP) have the higher organic loading and lower 28-day biodegradation rates compared to the synthetic foams (Class A foam, AFFF and S). The short and long-term impact of protein foams on the environment are larger than synthetic foams.

  10. On the shock response of pisum sativum and lepidium sativum

    NASA Astrophysics Data System (ADS)

    Leighs, James Allen; Hazell, Paul; Appleby-Thomas, Gareth James

    2012-03-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry to astrobiology. Consequently, knowledge of the damage mechanisms within, and the viability of shocked organic material are of significant importance. In this study, a single-stage gasgun has been employed to subject samples of Pisum sativum (common pea) and Lepidium sativum (curled cress) to planar shock loading. Impact pressures of up to ~11.5 GPa and ~0.5 GPa for pea and cress seed samples respectively have been reached. The development of the experimental approach is discussed and presented alongside results from modelled gauge traces showing the sample loading history. Viability of the shock-loaded pea and cress seeds was investigated via attempts at germination, which were unsuccessful with pea seeds but successful in all tests performed on cress seeds. This work suggests that organic structures could survive shockwaves that may be encountered during asteroid collisions.

  11. Organic matter loading by hippopotami causes subsidy overload resulting in downstream hypoxia and fish kills.

    PubMed

    Dutton, Christopher L; Subalusky, Amanda L; Hamilton, Stephen K; Rosi, Emma J; Post, David M

    2018-05-16

    Organic matter and nutrient loading into aquatic ecosystems affects ecosystem structure and function and can result in eutrophication and hypoxia. Hypoxia is often attributed to anthropogenic pollution and is not common in unpolluted rivers. Here we show that organic matter loading from hippopotami causes the repeated occurrence of hypoxia in the Mara River, East Africa. We documented 49 high flow events over 3 years that caused dissolved oxygen decreases, including 13 events resulting in hypoxia, and 9 fish kills over 5 years. Evidence from experiments and modeling demonstrates a strong mechanistic link between the flushing of hippo pools and decreased dissolved oxygen in the river. This phenomenon may have been more widespread throughout Africa before hippopotamus populations were severely reduced. Frequent hypoxia may be a natural part of tropical river ecosystem function, particularly in rivers impacted by large wildlife.

  12. New findings confirm the viscoelastic behaviour of the inter-lamellar matrix of the disc annulus fibrosus in radial and circumferential directions of loading.

    PubMed

    Tavakoli, J; Costi, J J

    2018-04-15

    While few studies have improved our understanding of composition and organization of elastic fibres in the inter-lamellar matrix (ILM), its clinical relevance is not fully understood. Moreover, no studies have measured the direct tensile and shear failure and viscoelastic properties of the ILM. Therefore, the aim of this study was, for the first time, to measure the viscoelastic and failure properties of the ILM in both the tension and shear directions of loading. Using an ovine model, isolated ILM samples were stretched to 40% of their initial length at three strain rates of 0.1%s -1 (slow), 1%s -1 (medium) and 10%s -1 (fast) and a ramp test to failure was performed at a strain rate of 10%s -1 . The findings from this study identified that the stiffness of the ILM was significantly larger at faster strain rates, and energy absorption significantly smaller, compared to slower strain rates, and the viscoelastic and failure properties were not significantly different under tension and shear loading. We found a strain rate dependent response of the ILM during dynamic loading, particularly at the fastest rate. The ILM demonstrated a significantly higher capability for energy absorption at slow strain rates compared to medium and fast strain rates. A significant increase in modulus was found in both loading directions and all strain rates, having a trend of larger modulus in tension and at faster strain rates. The finding of no significant difference in failure properties in both loading directions, was consistent with our previous ultra-structural studies that revealed a well-organized (±45°) elastic fibre orientation in the ILM. The results from this study can be used to develop and validate finite element models of the AF at the tissue scale, as well as providing new strategies for fabricating tissue engineered scaffolds. While few studies have improved our understanding of composition and organization of elastic fibres in the inter-lamellar matrix (ILM) of the annulus in the disc no studies have measured the direct mechanical failure and viscoelastic properties of the ILM. The findings from this study identified that the stiffness of the ILM was significantly larger at faster strain rates, and energy absorption significantly smaller, compared to slower strain rates. The failure properties of the ILM were not significantly different under tension and shear. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Impact of Expert Teaching Quality on Novice Academic Performance in the Jigsaw Cooperative Learning Method

    NASA Astrophysics Data System (ADS)

    Berger, Roland; Hänze, Martin

    2015-01-01

    We assessed the impact of expert students' instructional quality on the academic performance of novice students in 12th-grade physics classes organized in an expert model of cooperative learning ('jigsaw classroom'). The instructional quality of 129 expert students was measured by a newly developed rating system. As expected, when aggregating across all four subtopics taught, regression analysis revealed that academic performance of novice students increases with the quality of expert students' instruction. The difficulty of subtopics, however, moderates this effect: higher instructional quality of more difficult subtopics did not lead to better academic performance of novice students. We interpret this finding in the light of Cognitive Load Theory. Demanding tasks cause high intrinsic cognitive load and hindered the novice students' learning.

  14. A review of land–sea coupling by groundwater discharge of nitrogen to New England estuaries: Mechanisms and effects

    USGS Publications Warehouse

    2007-01-01

    Hydrologists have long been concerned with the interface of groundwater flow into estuaries, but not until the end of the last century did other disciplines realize the major role played by groundwater transport of nutrients to estuaries. Mass balance and stable isotopic data suggest that land-derived NO3, NH4, and dissolved organic N do enter estuaries in amounts likely to affect the function of the receiving ecosystem. Because of increasing human occupancy of the coastal zone, the nutrient loads borne by groundwater have increased in recent decades, in spite of substantial interception of nutrients within the land and aquifer components of watersheds. Groundwater-borne nutrient loads have increased the N content of receiving estuaries, increased phytoplankton and macroalgal production and biomass, decreased the area of seagrasses, and created a cascade of associated ecological changes. This linkage between land use and eutrophication of estuaries occurs in spite of mechanisms, including uptake of land-derived N by riparian vegetation and fringing wetlands, “unloading” by rapid water removal, and direct N inputs to estuaries, that tend to uncouple the effects of land use on receiving estuaries. It can be expected that as human activity on coastal watersheds continues to increase, the role of groundwater-borne nutrients to the receiving estuary will also increase.

  15. Simultaneous removals of NOx, HC and PM from diesel exhaust emissions by dielectric barrier discharges.

    PubMed

    Song, Chong-Lin; Bin, Feng; Tao, Ze-Min; Li, Fang-Cheng; Huang, Qi-Fei

    2009-07-15

    The main target of this work is to characterize the abatements of particulate matter (PM), hydrocarbons (HC) and nitrogen oxides (NO(x)) from an actual diesel exhaust using dielectric barrier discharge technology (DBD). The effects of several parameters, such as peak voltage, frequency and engine load, on the contaminant removals have been investigated intensively. The present study shows that for a given frequency, the removals of PM and HC are enhanced with the increase of peak voltage and level off at higher voltage, while in the range of higher voltages a decline of NO(x) removal efficiency is observed. For a given voltage, the maximums of specific energy density (SED) and removal efficiency are attained at resonance point. The increase of peak voltage will result in a significant decrease of energy utilization efficiency of DBD at most engine loads. Alkanes in soluble organic fraction (SOF) are more readily subjected to removals than polycyclic aromatic hydrocarbons (PAHs).

  16. 76 FR 10492 - Credit Reforms in Organized Wholesale Electric Markets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... unsecured credit for all participants, particularly load-serving entities. \\17\\ Order No. 741, FERC Stats... responsibilities, under section 217(b)(4) of the Federal Power Act (FPA) \\19\\ and Order No. 681,\\20\\ to enable load... TDUs argue that they be allowed to request exemptions under Order No. 741 to ensure that a load-serving...

  17. Effects of Peer-Tutor Competences on Learner Cognitive Load and Learning Performance during Knowledge Sharing

    ERIC Educational Resources Information Center

    Hsiao, Ya-Ping; Brouns, Francis; van Bruggen, Jan; Sloep, Peter B.

    2012-01-01

    In Learning Networks, learners need to share knowledge with others to build knowledge. In particular, when working on complex tasks, they often need to acquire extra cognitive resources from others to process a high task load. However, without support high task load and organizing knowledge sharing themselves might easily overload learners'…

  18. [Copper nanoparticles as modulators of apoptosis and structural changes in some organs].

    PubMed

    Sizova, E A; Miroshnikov, S A; Poliakova, V S; Lebedev, S V; Glushchenko, N N

    2013-01-01

    The effect of repeated intramuscular injection into the organism of copper nanoparticles (CNP) with the diameter of 103 nm on the index of cell readiness to apoptosis and the structure of liver, spleen, kidney, as well as sensomotor cerebral cortex, was studied in 78 male Wistar rats. CNP were injected once per week for 12 weeks. The organs were studied using histological, immunohistochemical and morphometric methods. It was found that after the injections, CNP were distributed into organs and tissues of animals causing structural changes that were specific for eaach tissue. Toxicity of CNP in respect to microgliocytes was demonstrated at a dose of 2 mg/kg, hepatotoxicity and nephrotoxicity--at 6 mg/kg. The increase of CNP load on the organism up to toxic threshold (maximum tolerated dose) resulted in the appearance of signs of dystrophy and tissue necrosis. The data obtained suggest the application of an index of cell readiness to apoptosis, as assessed by caspase 3 expression, as a criterion for evaluation of CNP injection safety.

  19. [Characterizing composition and transformation of dissolved organic matter in subsurface wastewater infiltration system].

    PubMed

    Wang, Li-Jun; Liu, Yu-Zhong; Zhang, Lie-Yu; Xi, Bei-Dou; Xia, Xun-Feng; Liu, Ya-Ru

    2013-08-01

    In the present study, the soil column with radius of 30 cm and height of 200 cm was used to simulate a subsurface wastewater infiltration system. Under the hydraulic loading of 4 cm x d(-1), composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI). The results indicate that: (1) from different depth, the composition of DOM was also different; influent with the depth of 0.5 m was mainly composed of protein-like substances, and that at other depths was mainly composed of humic- and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively, but also the stability of the DOM improved in subsurface wastewater infiltration system.

  20. The influence of reservoirs, climate, land use and hydrologic conditions on loads and chemical quality of dissolved organic carbon in the Colorado River

    USGS Publications Warehouse

    Miller, Matthew P.

    2012-01-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were identified in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994 to 2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together, these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC, whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  1. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change.

    PubMed

    Paerl, Hans W; Hall, Nathan S; Calandrino, Elizabeth S

    2011-04-15

    Harmful (toxic, food web altering, hypoxia generating) cyanobacterial algal blooms (CyanoHABs) are proliferating world-wide due to anthropogenic nutrient enrichment, and they represent a serious threat to the use and sustainability of our freshwater resources. Traditionally, phosphorus (P) input reductions have been prescribed to control CyanoHABs, because P limitation is widespread and some CyanoHABs can fix atmospheric nitrogen (N(2)) to satisfy their nitrogen (N) requirements. However, eutrophying systems are increasingly plagued with non N(2) fixing CyanoHABs that are N and P co-limited or even N limited. In many of these systems N loads are increasing faster than P loads. Therefore N and P input constraints are likely needed for long-term CyanoHAB control in such systems. Climatic changes, specifically warming, increased vertical stratification, salinization, and intensification of storms and droughts play additional, interactive roles in modulating CyanoHAB frequency, intensity, geographic distribution and duration. In addition to having to consider reductions in N and P inputs, water quality managers are in dire need of effective tools to break the synergy between nutrient loading and hydrologic regimes made more favorable for CyanoHABs by climate change. The more promising of these tools make affected waters less hospitable for CyanoHABs by 1) altering the hydrology to enhance vertical mixing and/or flushing and 2) decreasing nutrient fluxes from organic rich sediments by physically removing the sediments or capping sediments with clay. Effective future CyanoHAB management approaches must incorporate both N and P loading dynamics within the context of altered thermal and hydrologic regimes associated with climate change. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Deposition of selenium and other constituents in reservoir bottom sediment of the Solomon River Basin, north-central Kansas

    USGS Publications Warehouse

    Christensen, Victoria G.

    1999-01-01

    The Solomon River drains approximately 6,840 square miles of mainly agricultural land in north-central Kansas. The Bureau of Reclamation, U.S. Department of the Interior, has begun a Resource Management Assessment (RMA) of the Solomon River Basin to provide the necessary data for National Environmental Policy Act (NEPA) compliance before renewal of long-term water-service contracts with irrigation districts in the basin. In May 1998, the U.S. Geological Survey (USGS) collected bottom-sediment cores from Kirwin and Webster Reservoirs, which are not affected by Bureau irrigation, and Waconda Lake, which receives water from both Bureau and non-Bureau irrigated lands. The cores were analyzed for selected physical properties, total recoverable metals, nutrients, cesium-137, and total organic carbon. Spearman's rho correlations and Kendall's tau trend tests were done for sediment concentrations in cores from each reservoir. Selenium, arsenic, and strontium were the only constituents that showed an increasing trend in concentrations for core samples from more than one reservoir. Concentrations and trends for these three constituents were compared to information on historical irrigation to determine any causal effect. Increases in selenium, arsenic, and strontium concentrations can not be completely explained by Bureau irrigation. However, mean selenium, arsenic, and strontium concentrations in sediment from all three reservoirs may be related to total irrigated acres (Bureau and non-Bureau irrigation) in the basin. Selenium, arsenic, and strontium loads were calculated for Webster Reservoir to determine if annual loads deposited in the reservoir were increasing along with constituent concentrations. Background selenium, arsenic, and strontium loads in Webster Reservoir are significantly larger than post-background loads.

  4. Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment.

    PubMed

    Denac, M; Dunn, I J

    1988-07-05

    Anaerobic degradation performance of a laboratory-scale packed-bed reactor (PBR) was compared with two fluidized-bed biofilm reactors (FBRs) on molasses and whey feeds. The reactors were operated under constant pH (7) and temperature (35 degrees C) conditions and were well mixed with high recirculation rates. The measured variables were chemical oxygen demand (COD), individual organic acids, gas composition, and gas rates. As carrier, sand of 0.3-0.5 mm diameter was used in the FBR, and porous clay spheres of 6 mm diameter were used in the PBR. Startup of the PBR was achieved with 1-5 day residence times. Start-up of the FBR was only successful if liquid residence times were held low at 2-3 h. COD degradations of 86% with molasses (90% was biodegradable) were reached in both the FBR and PBR at 6 h residence time and loadings of 10 g COD/L day. At higher loadings the FBR gave the best performance; even at 40-45 g COD/L day, with 6 h residence times, 70% COD was degraded. The PBR could not be operated above 20 g COD/L day without clogging. A comparison of the reaction rates show that the PBR and FBR per formed similarly at low concentrations in the reactors up to 1 g COD/L, while above 3 g COD/L the rates were 17.4 g COD/L day for the PBR and 38.4 g COD/L day for the FBR. This difference is probably due to diffusion limitations and a less active biomass content of the PBR compared with the fluidized bed.The results of dynamic step change experiments, in which residence times and feed concentrations were changed hanged at constant loading, demonstrated the rapid response of the reactors. Thus, the response times for an increase in gas rate or an increase in organic acids due to an increase in feed concentration were less than 1 day and could be explained by substrate limitation. Other slower responses were observed in which the reactor culture adapted over periods of 5-10 days; these were apparently growth related. An increase in loading of over 100% always resulted in large increases inorganic acids, especially acetic and propionic, as well as large increases in the CO(2) gas content. In general, the CO(2) content of the gas was very low, due to the large amount of dissolved CO(2) that exited with the liquid phase at low residence times. The performance of the FBR with whey was comparable to its performance with molasses, and switching of molasses to whey feed resulted in immediate good performance without adaptation.

  5. Effects of ultraviolet radiation and contaminant-related stressors on arctic freshwater ecosystems.

    PubMed

    Wrona, Frederick J; Prowse, Terry D; Reist, James D; Hobbie, John E; Lévesque, Lucie M J; Macdonald, Robie W; Vincent, Warwick F

    2006-11-01

    Climate change is likely to act as a multiple stressor, leading to cumulative and/or synergistic impacts on aquatic systems. Projected increases in temperature and corresponding alterations in precipitation regimes will enhance contaminant influxes to aquatic systems, and independently increase the susceptibility of aquatic organisms to contaminant exposure and effects. The consequences for the biota will in most cases be additive (cumulative) and multiplicative (synergistic). The overall result will be higher contaminant loads and biomagnification in aquatic ecosystems. Changes in stratospheric ozone and corresponding ultraviolet radiation regimes are also expected to produce cumulative and/or synergistic effects on aquatic ecosystem structure and function. Reduced ice cover is likely to have a much greater effect on underwater UV radiation exposure than the projected levels of stratospheric ozone depletion. A major increase in UV radiation levels will cause enhanced damage to organisms (biomolecular, cellular, and physiological damage, and alterations in species composition). Allocations of energy and resources by aquatic biota to UV radiation protection will increase, probably decreasing trophic-level productivity. Elemental fluxes will increase via photochemical pathways.

  6. Advanced age diminishes tendon-to-bone healing in a rat model of rotator cuff repair.

    PubMed

    Plate, Johannes F; Brown, Philip J; Walters, Jordan; Clark, John A; Smith, Thomas L; Freehill, Michael T; Tuohy, Christopher J; Stitzel, Joel D; Mannava, Sandeep

    2014-04-01

    Advanced patient age is associated with recurrent tearing and failure of rotator cuff repairs clinically; however, basic science studies have not evaluated the influence of aging on tendon-to-bone healing after rotator cuff repair in an animal model. Hypothesis/ This study examined the effect of aging on tendon-to-bone healing in an established rat model of rotator cuff repair using the aged animal colony from the National Institute on Aging of the National Institutes of Health. The authors hypothesized that normal aging decreases biomechanical strength and histologic organization at the tendon-to-bone junction after acute repair. Controlled laboratory study. In 56 F344xBN rats, 28 old and 28 young (24 and 8 months of age, respectively), the supraspinatus tendon was transected and repaired. At 2 or 8 weeks after surgery, shoulder specimens underwent biomechanical testing to compare load-to-failure and load-relaxation response between age groups. Histologic sections of the tendon-to-bone interface were assessed with hematoxylin and eosin staining, and collagen fiber organization was assessed by semiquantitative analysis of picrosirius red birefringence under polarized light. Peak failure load was similar between young and old animals at 2 weeks after repair (31% vs 26% of age-matched uninjured controls, respectively; P > .05) but significantly higher in young animals compared with old animals 8 weeks after repair (86% vs 65% of age-matched uninjured controls, respectively; P < .01). Eight weeks after repair, fibroblasts appeared more organized and uniformly aligned in young animals on hematoxylin and eosin slides compared with old animals. Collagen birefringence analysis of the tendon-to-bone junction demonstrated that young animals had increased collagen fiber organization and similar histologic structure compared with age-matched controls (53.7 ± 2.4 gray scales; P > .05). In contrast, old animals had decreased collagen fiber organization and altered structure compared with age-matched controls (49.8 ± 3.1 gray scales; P < .01). In a rat model of aging, old animals demonstrated diminished tendon-to-bone healing after rotator cuff injury and repair. Old animals had significantly decreased failure strength and collagen fiber organization at the tendon-to-bone junction compared with young animals. This study implies that animal age may need to be considered in future studies of rotator cuff repair in animal models. With increasing age and activity level of the population, the incidence of rotator cuff tears is predicted to rise. Despite advances in rotator cuff repair technique, the retear rate remains specifically high in elderly patients. The findings of this research suggest that aging negatively influences tendon-to-bone healing after rotator cuff repair in a validated animal model.

  7. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs.

    PubMed

    Di Martino, Antonio; Guselnikova, Olga A; Trusova, Marina E; Postnikov, Pavel S; Sedlarik, Vladimir

    2017-06-30

    The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500μg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Naltrexone-loaded poly[La-(Glc-Leu)] polymeric microspheres for the treatment of alcohol dependence: in vitro characterization and in vivo biocompatibility assessment.

    PubMed

    Pagar, Kunal P; Vavia, Pradeep R

    2014-06-01

    The poly[La-(Glc-Leu)] copolymer was applied in the present investigation as polymeric carrier to fabricate naltrexone (NTX)-loaded poly[La-(Glc-Leu)] microspheres in the single emulsion solvent evaporation technique for the long-term treatment of alcohol dependence. Newly synthesized poly[La-(Glc-Leu)] copolymer exhibited diminished crystallanity, good biocompatibility and favorable biodegradability to be explored for drug delivery application. Scanning Electron Microscopy study revealed smooth and spherical-shaped NTX-loaded polymeric microspheres with a mean size of 10-90 µm. Influence of various decisive formulation variables such as amount of polymer, stabilizer concentration, homogenization speed, homogenization time, drug loading and organic-to-aqueous phase ratio on particle size, and entrapment efficiency was studied. Differential scanning calorimeter and X-ray diffractometry study confirmed the drug entrapment within polymer matrix into the microsphere environment. In vitro drug release showed the sustained drug release of formulation for the period of 28 d giving biphasic release pattern. Histological examination of NTX-loaded poly[La-(Glc-Leu)] microspheres injected intramuscularly into the thigh muscle of Wistar rats showed minimal inflammatory reaction, demonstrating that NTX-loaded microspheres were biocompatible. Insignificant increase in the serum creatine phosphokinase level (p < 0.05) as compared with the normal value revealed good muscle compatibility of the poly[La-(Glc-Leu)] microsphere system. Biocompatible nature and sustained drug-release action of poly[La-(Glc-Leu)] microspheres may have potential application in depot therapy.

  9. Identification of in-sewer sources of organic solids contributing to combined sewer overflows.

    PubMed

    Ahyerre, M; Chebbo, G

    2002-09-01

    Previous research has shown that combined sewer systems are the main source of particle and organic pollution during rainfall events contributing to combined sewer overflow. The aim of this article is to identify in an urban catchment area called "Le Marais", in the center of Paris, the types of sediments that are eroded and contribute to the pollution of combined sewer overflow. Three sediment types are considered: granular material found in the inverts of pipes, organic biofilms and organic sediment at the water bed interface, identified as an immobile layer in the "Le Marais" catchment area. The method used consist, firstly, of sampling and assessing the organic pollutant loads and metallic loads of the particles in each type of sediment. Then, the mass of each type of sediment is assessed. The mass and the characteristics of each type of sediment is finally compared to the mass and characteristics of the particles eroded in the catchment area, estimated by mass balances, in order to find the source of eroded particles. The only identified type of deposit that can contribute to combined sewer overflows is the organic layer. Indeed, the solids of this layer have mean and metallic loads that are of the same order of magnitude as the eroded particles. Moreover, the mass of the organic layer considered over different time scales is of the same order of magnitude as the eroded masses during rainfall events and an erosion experiment showed that the organic layer is actually eroded.

  10. Noise effects on the health status in a dynamic failure model for living organisms

    NASA Astrophysics Data System (ADS)

    Kang, H.; Jo, J.; Choi, M. Y.; Choi, J.; Yoon, B.-G.

    2007-03-01

    We study internal and external noise effects on the healthy-unhealthy transition and related phenomena in a dynamic failure model for living organisms. It is found that internal noise makes the system weaker, leading to breakdown under smaller stress. The discontinuous healthy-unhealthy transition in a system with global load sharing below a critical point is naturally explained in terms of the bistability for the health status. External noise present in constant stress gives similar results; further, it induces resonance in response to periodic stress, regardless of load transfer. In the case of local load sharing, such periodic stress is revealed more hazardous than the constant stress.

  11. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    PubMed

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  12. Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading.

    PubMed

    Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter

    2016-06-22

    Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.

  13. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, May; Zhang, Zhonglong

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat,more » and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was clearly attributable to the conversion of a large amount of land to switchgrass. The Middle Lower Missouri River and Lower Missouri River were identified as hot regions. Further analysis identified four subbasins (10240002, 10230007, 10290402, and 10300200) as being the most vulnerable in terms of sediment, nitrogen, and phosphorus loadings. Overall, results suggest that increasing the amount of switchgrass acreage in the hot spots should be considered to mitigate the nutrient loads. The study provides an analytical method to support stakeholders in making informed decisions that balance biofuel production and water sustainability.« less

  14. Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration.

    PubMed

    Avila, Cristina; Nivala, Jaime; Olsson, Linda; Kassa, Kinfe; Headley, Tom; Mueller, Roland A; Bayona, Josep Maria; García, Joan

    2014-10-01

    Four side-by-side pilot-scale vertical flow (VF) constructed wetlands of different designs were evaluated for the removal of eight widely used emerging organic contaminants from municipal wastewater (i.e. ibuprofen, acetaminophen, diclofenac, tonalide, oxybenzone, triclosan, ethinylestradiol, bisphenol A). Three of the systems were free-draining, with one containing a gravel substrate (VGp), while the other two contained sand substrate (VS1p and VS2p). The fourth system had a saturated gravel substrate and active aeration supplied across the bottom of the bed (VAp). All beds were pulse-loaded on an hourly basis, except VS2p, which was pulse-loaded every 2h. Each system had a surface area of 6.2m(2), received a hydraulic loading rate of 95 mm/day and was planted with Phragmites australis. The beds received an organic loading rate of 7-16 gTOC/m(2)d. The sand-based VF (VS1p) performed significantly better (p<0.05) than the gravel-based wetland (VGp) both in the removal of conventional water quality parameters (TSS, TOC, NH4-N) and studied emerging organic contaminants except for diclofenac (85 ± 17% vs. 74 ± 15% average emerging organic contaminant removal for VS1p and VGp, respectively). Although loading frequency (hourly vs. bi-hourly) was not observed to affect the removal efficiency of the cited conventional water quality parameters, significantly lower removal efficiencies were found for tonalide and bisphenol A for the VF wetland that received bi-hourly dosing (VS2p) (higher volume per pulse), probably due to the more reducing conditions observed in that system. However, diclofenac was the only contaminant showing an opposite trend to the rest of the compounds, achieving higher elimination rates in the wetlands that exhibited less-oxidizing conditions (VS2p and VGp). The use of active aeration in the saturated gravel bed (VAp) generally improved the treatment performance compared to the free-draining gravel bed (VGp) and achieved a similar performance to the free-draining sand-based VF wetlands (VS1p). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sulfur in the South Florida ecosystem: Distribution, sources, biogeochemistry, impacts, and management for restoration

    USGS Publications Warehouse

    Orem, W.; Gilmour, C.; Axelrad, D.; Krabbenhoft, D.; Scheidt, D.; Kalla, P.; McCormick, P.; Gabriel, M.; Aiken, G.

    2011-01-01

    Sulfur is broadly recognized as a water quality issue of significance for the freshwater Florida Everglades. Roughly 60% of the remnant Everglades has surface water sulfate concentrations above 1 mg l-1, a restoration performance measure based on present sulfate levels in unenriched areas. Highly enriched marshes in the northern Everglades have average sulfate levels of 60 mg l-1. Sulfate loading to the Everglades is principally a result of land and water management in South Florida. The highest concentrations of sulfate (average 60-70 mg l-1) in the ecosystem are in canal water in the Everglades Agricultural Area (EAA). Potential sulfur sourcesin the watershed are many, but geochemical data and a preliminary sulfur mass balance for the EAA are consistent with sulfur presently used in agricultural, and sulfur released by oxidation of organic EAA soils (including legacy agricultural applications and natural sulfur) as the primary sources of sulfate enrichment in the EAA canals. Sulfate loading to the Everglades increases microbial sulfate reduction in soils, leading to more reducing conditions, greater cycling of nutrients in soils, production of toxic sulfide, and enhanced methylmercury (MeHg) production and bioaccumulation. Wetlands are zones of naturally high MeHg production, but the combination of high atmospheric mercury deposition rates in South Florida and elevated sulfate loading leads to increased MeHg production and MeHg risk to Everglades wildlife and human consumers. Sulfate from the EAA drainage canals penetrates deep into the Everglades Water Conservation Areas, and may extend into Everglades National Park. Present plans to restore sheet flow and to deliver more water to the Everglades may increase overall sulfur loads to the ecosystem, and move sulfate-enriched water further south. However, water management practices that minimize soil drying and rewetting cycles can mitigate sulfate release during soil oxidation. A comprehensive Everglades restoration strategy should include reduction of sulfur loads as a goal because of the many detrimental impacts of sulfate on the ecosystem. Monitoring data show that the ecosystem response to changes in sulfate levels is rapid, and strategies for reducing sulfate loading may be effective in the near term. A multifaceted approach employing best management practices for sulfur in agriculture, agricultural practices that minimize soil oxidation, and changes to stormwater treatment areas that increase sulfate retention could help achieve reduced sulfate loads to the Everglades, with resulting benefits. Copyright ?? 2011 Taylor & Francis Group, LLC.

  16. Urban storm-runoff modelling; Madison, Wisconsin

    USGS Publications Warehouse

    Grant, R. Stephen; Goddard, Gerald

    1979-01-01

    A brief inconclusive evaluation of the water-quality subroutines of the model was made. Close agreement was noted between observed and simulated loads for nitrates, organic nitrogen, total phosphate, and total solids. Ammonia nitrogen and orthophosphate computed by the model ranged 7 to 11 times greater than the observed loads. Observed loads are doubtful because of the sparsity of water-quality data.

  17. Embryonic genetic load in coastal Douglas-fir, Pseudotsuga menziesii var. menziesii.

    Treesearch

    Frank C. Sorensen

    1969-01-01

    Genetic load has been estimated for a number of outcrossing organisms, for example, Drosophila (Malogolowkin-Cohen et al. 1964), Tribolium (Levene et al. 1965), and man (Morton, Crow, and Muller 1956). However, little informaiton about load of deleterious genes in higher plants has been published. The purpose of this article is to provide some data on plants by...

  18. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer, and d) provide improved in vitro controlled release of antigenic TT. PMID:23103983

  19. Preventing Mesh Pore Collapse by Designing Mesh Pores With Auxetic Geometries: A Comprehensive Evaluation Via Computational Modeling.

    PubMed

    Knight, Katrina M; Moalli, Pamela A; Abramowitch, Steven D

    2018-05-01

    Pelvic organ prolapse (POP) meshes are exposed to predominately tensile loading conditions in vivo that can lead to pore collapse by 70-90%, decreasing overall porosity and providing a plausible mechanism for the contraction/shrinkage of mesh observed following implantation. To prevent pore collapse, we proposed to design synthetic meshes with a macrostructure that results in auxetic behavior, the pores expand laterally, instead of contracting when loaded. Such behavior can be achieved with a range of auxetic structures/geometries. This study utilized finite element analysis (FEA) to assess the behavior of mesh models with eight auxetic pore geometries subjected to uniaxial loading to evaluate their potential to allow for pore expansion while simultaneously providing resistance to tensile loading. Overall, substituting auxetic geometries for standard pore geometries yielded more pore expansion, but often at the expense of increased model elongation, with two of the eight auxetics not able to maintain pore expansion at higher levels of tension. Meshes with stable pore geometries that remain open with loading will afford the ingrowth of host tissue into the pores and improved integration of the mesh. Given the demonstrated ability of auxetic geometries to allow for pore size maintenance (and pore expansion), auxetically designed meshes have the potential to significantly impact surgical outcomes and decrease the likelihood of major mesh-related complications.

  20. Load-dependent surface diffusion model for analyzing the kinetics of protein adsorption onto mesoporous materials.

    PubMed

    Marbán, Gregorio; Ramírez-Montoya, Luis A; García, Héctor; Menéndez, J Ángel; Arenillas, Ana; Montes-Morán, Miguel A

    2018-02-01

    The adsorption of cytochrome c in water onto organic and carbon xerogels with narrow pore size distributions has been studied by carrying out transient and equilibrium batch adsorption experiments. It was found that equilibrium adsorption exhibits a quasi-Langmuirian behavior (a g coefficient in the Redlich-Peterson isotherms of over 0.95) involving the formation of a monolayer of cyt c with a depth of ∼4nm on the surface of all xerogels for a packing density of the protein inside the pores of 0.29gcm -3 . A load-dependent surface diffusion model (LDSDM) has been developed and numerically solved to fit the experimental kinetic adsorption curves. The results of the LDSDM show better fittings than the standard homogeneous surface diffusion model. The value of the external mass transfer coefficient obtained by numerical optimization confirms that the process is controlled by the intraparticle surface diffusion of cyt c. The surface diffusion coefficients decrease with increasing protein load down to zero for the maximum possible load. The decrease is steeper in the case of the xerogels with the smallest average pore diameter (∼15nm), the limit at which the zero-load diffusion coefficient of cyt c also begins to be negatively affected by interactions with the opposite wall of the pore. Copyright © 2017 Elsevier Inc. All rights reserved.

Top