Lowe, B K; Bohrer, B M; Holmer, S F; Boler, D D; Dilger, A C
2014-06-01
Objectives were to characterize differences in pork bellies that were stored frozen for different durations prior to processing and characterize sensory properties of the bacon derived from those bellies when stored in either retail or food service style packaging. Bellies (n = 102) were collected from 4 different time periods, fresh bellies (never frozen) and bellies frozen for 2, 5, or 7 mo, and manufactured into bacon under commercial conditions. Food service bacon was packaged in oxygen-permeable polyvinyl lined boxes layered on wax-covered lined paper and blast frozen (-33 °C) for 45 or 90 d after slicing. Retail bacon was vacuum-packaged in retail packages and refrigerated (2 °C) in the dark for 60 or 120 d after slicing. At the end of respective storage times after slicing, bacon was analyzed for sensory attributes and lipid oxidation. Off-flavor and oxidized odor of bacon increased (P < 0.01) with increasing storage time in both packaging types. Lipid oxidation increased (P < 0.01) as storage time increased from day 0 to day 45 in food service packaged bacon from frozen bellies, but was unchanged (P ≥ 0.07) with time in food service packaged bacon from fresh bellies. Lipid oxidation was also unchanged (P ≥ 0.21) over time in retail packaged bacon, with the exception of bellies frozen for 5 mo, which was increased from day 0 to day 90. Overall, off-flavor, oxidized odor, and lipid oxidation increased as storage time after processing increased. Freezing bellies before processing may exacerbate lipid oxidation as storage time after processing was extended. Bacon can be packaged and managed several different ways before it reaches the consumer. This research simulated food service (frozen) and retail packaged (refrigerated) bacon over a range of storage times after slicing. Off-flavor and oxidized odor increased as storage time after processing increased in both packaging types. Lipid oxidation increased as storage time after slicing increased to a greater extent in food service packaging. © 2014 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Ru, Xiangkun; Lu, Zhanpeng; Chen, Junjie; Han, Guangdong; Zhang, Jinlong; Hu, Pengfei; Liang, Xue
2017-12-01
The iron content in Ni-Cr-xFe (x = 0-9 at.%) alloys strongly affected the properties of oxide films after 978 h of immersion in the simulated PWR primary water environment at 310 °C. Increasing the iron content in the alloys increased the amount of iron-bearing polyhedral spinel oxide particles in the outer oxide layer and increased the local oxidation penetrations into the alloy matrix from the chromium-rich inner oxide layer. The effects of iron content in the alloys on the oxide film properties after 500 h of immersion were less significant than those after 978 h. Iron content increased, and chromium content decreased, in the outer oxide layer with increasing iron content in the alloys. Increasing the immersion time facilitated the formation of the local oxidation penetrations along the matrix/film interface and the nickel-bearing spinel oxides in the outer oxide layer.
NASA Astrophysics Data System (ADS)
Swaminathan, Srinivasan; Krishna, Nanda Gopala; Kim, Dong-Ik
2015-10-01
Oxide scale evolution on Cu-bearing austenitic stainless steel 304H at 650 °C, in ambient air, for exposure times 100, 300, 500 and 1000 h, has been investigated. Surface morphology and chemistry of the oxide scale grown were examined using SEM/EDX and XPS. The oxidation kinetics was determined by measuring the weight change using an electronic balance. At the initial stage, up to 500 h of exposure time, the oxidation rate was rapid due to surface reactions governed primarily by oxygen ingress, and then, dropped to a low rate after prolonged oxidation for 1000 h. The diffusion of reactants through the initially formed oxide scale limits the oxidation rate at longer times, thus, the progress of reaction followed the parabolic kinetics. The formed oxide scale was enriched significantly with segregation and subsequent oxidation of Nb, and finely dispersed metallic Cu particles. Within the time frame of oxidation, the oxide scale was mainly composed of mixed oxides such as FeCr2O4 and MnCr2O4 along with the binary oxides of Fe, Cr and Mn. Moreover, the precipitation fraction of Cu-rich particles on the oxide scale increased markedly with increase of exposure times. The chemical heterogeneity of oxide scale suggests that the oxidation occurred in a non-selective manner.
Roldan, Mar; Antequera, Teresa; Armenteros, Monica; Ruiz, Jorge
2014-04-15
Forty-five lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70 and 80 °C) and time (6, 12 and 24 h) to assess the effect on the oxidative stability of lipids and proteins. Heating induced both lipid and protein oxidation in lamb loins. Higher cooking temperature-time combinations increased conjugated dienes and decreased thiobarbituric reactive substances (TBARS) values and hexanal. Total protein carbonyls increased throughout time at all cooking temperatures considered, while α-aminoadipic (AAS) and γ-glutamic semialdehydes (GGS) increased when cooking at 60 °C but not at 80 °C. Links between the decrease in secondary compounds from lipid oxidation due to cooking at higher temperatures and for longer times with the increased levels of 3-methylbutanal and greater differences between total protein carbonyls and AAS plus GGS were hypothesised. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Naddaf, M.
2017-01-01
Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.
Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation
NASA Astrophysics Data System (ADS)
Baek, Jong Hyuk; Jeong, Yong Hwan
2008-01-01
The breakaway oxidation phenomena in Zr-based alloys were studied in the temperature range of 950-1200 °C for up to 36 000 s by using a modified thermo-gravimetric analyzer. After the oxidation tests, the oxidation behaviors, breakaway oxidation time, hydrogen pick-up contents, and oxidation rate constants of the alloys were systematically evaluated in this study. The breakaway oxidation time was shortened with an increase of the Sn content in the Zr alloys. A breakaway oxidation phenomenon could be caused by the transition of a tetragonal oxide phase into a monoclinic one, and the oxide transition could lead to form the oxide cracks in both the lateral and radial directions. The cracks within the oxide layer could result in catastrophic increase in the weight gain rates and rapid increase the hydrogen pick-up within the oxygen-stabilized α-Zr and prior β-Zr layers. The oxidation rate constants calculated from the post-breakaway data in the Zr alloys with breakaway oxidation behaviors matched well with the values from both the Baker-Just and Cathcart-Pawel correlations.
Local Anodic Oxidation of Thin GeO Films and Formation of Nanostructures Based on Them
NASA Astrophysics Data System (ADS)
Astankova, K. N.; Kozhukhov, A. S.; Azarov, I. A.; Gorokhov, E. B.; Sheglov, D. V.; Latyshev, A. V.
2018-04-01
The process of local anodic oxidation of thin GeO films has been studied using an atomic force microscope. The electron-probe microanalysis showed that oxidized areas of a GeO film were germanium dioxide. The effect of the voltage pulse duration applied to the probe-substrate system and the atmospheric humidity on the height of the oxide structures has been studied. The kinetics of the local anodic oxidation (LAO) in a semi-contact mode obeys the Cabrera-Mott model for large times. The initial growth rate of the oxide ( R 0) significantly increases and the time of starting the oxidation ( t 0) decreases as the atmospheric humidity increases by 20%, which is related to an increase in the concentration of oxygen-containing ions at the surface of the oxidized GeO film. It was shown that nanostructures in thin GeO layers can be formed by the LAO method.
2012-01-01
Background One central concept in evolutionary ecology is that current and residual reproductive values are negatively linked by the so-called cost of reproduction. Previous studies examining the nature of this cost suggested a possible involvement of oxidative stress resulting from the imbalance between pro- and anti-oxidant processes. Still, data remain conflictory probably because, although oxidative damage increases during reproduction, high systemic levels of oxidative stress might also constrain parental investment in reproduction. Here, we investigated variation in oxidative balance (i.e. oxidative damage and antioxidant defences) over the course of reproduction by comparing female laboratory mice rearing or not pups. Results A significant increase in oxidative damage over time was only observed in females caring for offspring, whereas antioxidant defences increased over time regardless of reproductive status. Interestingly, oxidative damage measured prior to reproduction was negatively associated with litter size at birth (constraint), whereas damage measured after reproduction was positively related to litter size at weaning (cost). Conclusions Globally, our correlative results and the review of literature describing the links between reproduction and oxidative stress underline the importance of timing/dynamics when studying and interpreting oxidative balance in relation to reproduction. Our study highlights the duality (constraint and cost) of oxidative stress in life-history trade-offs, thus supporting the theory that oxidative stress plays a key role in life-history evolution. PMID:23268929
Wet oxidation of GeSi strained layers by rapid thermal processing
NASA Astrophysics Data System (ADS)
Nayak, D. K.; Kamjoo, K.; Park, J. S.; Woo, J. C. S.; Wang, K. L.
1990-07-01
A cold-wall rapid thermal processor is used for the wet oxidation of the commensurately grown GexSi1-x layers on Si substrates. The rate of oxidation of the GexSi1-x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the increase in the Ge content in GexSi1-x layer. The oxidation rate of GexSi1-x appears to decrease with increasing oxidation time for the time-temperature cycles considered here. Employing high-frequency and quasi-static capacitance-voltage measurements, it is found that a fixed negative oxide charge density in the range of 1011- 1012/cm2 and the interface trap level density (in the mid-gap region) of about 1012/cm2 eV are present. Further, the density of this fixed interface charge at the SiO2/GeSi interface is found to increase with the Ge concentration in the commensurately grown GeSi layers.
Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz
2018-04-01
Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.
NASA Astrophysics Data System (ADS)
Polonskyi, Oleksandr; Peter, Tilo; Mohammad Ahadi, Amir; Hinz, Alexander; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz
2013-07-01
Using reactive DC sputtering in a gas aggregation cluster source, we show that pulsed discharge gives rise to a huge increase in deposition rate of nanoparticles by more than one order of magnitude compared to continuous operation. We suggest that this effect is caused by an equilibrium between slight target oxidation (during "time-off") and subsequent sputtering of Ti oxides (sub-oxides) at "time-on" with high power impulse.
Oxidation behaviors of porous Haynes 214 alloy at high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yan, E-mail: wangyan@csu.edu.cn; Liu, Yong, E-mail: yonliu@csu.edu.cn; Tang, Huiping, E-mail: hptang@c-nin.com
The oxidation behaviors of porous Haynes 214 alloy at temperatures from 850 to 1000 °C were investigated. The porous alloys before and after the oxidation were examined by optical microscopy, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analyses, and X-ray photoelectron spectroscopy (XPS). The oxidation kinetics of the porous alloy approximately follows a parabolic rate law and exhibits two stages controlled by different oxidation courses. Complex oxide scales composed of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are formed on the oxidized porous alloys, and the formation of Cr{sub 2}O{sub 3} onmore » its outer layer is promoted with the oxidation proceeding. The rough surface as well as the micropores in the microstructures of the porous alloy caused by the manufacturing process provides fast diffusion paths for oxygen so as to affect the formation of the oxide layers. Both the maximum pore size and the permeability of the porous alloys decrease with the increase of oxidation temperature and exposure time, which may limit its applications. - Highlights: • Two-stage oxidation kinetics controlled by different oxidation courses is showed. • Oxide scale mainly consists of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Al{sub 2}O{sub 3}. • Rough surface and micropores lead to the formation of uneven oxide structure. • Content of Cr{sub 2}O{sub 3} in the outer layer of the scale increases with time at 1000 °C. • Maximum pore size and permeability decrease with increasing temperature and time.« less
V'iushina, A V; Pritvorova, A V; Flerov, M A
2012-08-01
We studied the influence of late prenatal stress on free radical oxidation processes in Sprague-Dawley rats cortex, striatum, hippocampus, hypothalamus proteins. It was shown that after prenatal stress most changes were observed in hypothalamus and hippocampus. It was shown that in hypothalamus spontaneous oxidation level increased, but level of induced oxidation decreased, the opposite changes were found in hippocampus. Simultaneously minor changes of protein modification were observed in cortex and striatum. It was shown that prenatal stress changed both correlation of proteins free radical oxidation in studied structures and values of these data regarding to control. In test of "open field" motor activity in rats after prenatal stress decreased and time of freezing and grooming increased; opposite, in T-labyrinth motor activity and time of grooming in rats after prenatal stress increased, but time of freezing decreased.
Arrigo, Rossella; Teresi, Rosalia; Gambarotti, Cristian; Parisi, Filippo; Lazzara, Giuseppe; Dintcheva, Nadka Tzankova
2018-03-05
The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT's original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena.
Teresi, Rosalia; Gambarotti, Cristian; Dintcheva, Nadka Tzankova
2018-01-01
The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT’s original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena. PMID:29510595
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajitno, Djoko Hadi, E-mail: djokohp@batan.go.id; Syarif, Dani Gustaman, E-mail: djokohp@batan.go.id
2014-03-24
The objective of this study is to evaluate high temperature oxidation behavior of austenitic stainless steel SS 304 in steam of nanofluids contain nanoparticle ZrO{sub 2}. The oxidation was performed at high temperatures ranging from 600 to 800°C. The oxidation time was 60 minutes. After oxidation the surface of the samples was analyzed by different methods including, optical microscope, scanning electron microscope (SEM) and X-ray diffraction (XRD). X-ray diffraction examination show that the oxide scale formed during oxidation of stainless steel AISI 304 alloys is dominated by iron oxide, Fe{sub 2}O{sub 3}. Minor element such as Cr{sub 2}O{sub 3} ismore » also appeared in the diffraction pattern. Characterization by optical microscope showed that cross section microstructure of stainless steel changed after oxidized with the oxide scale on the surface stainless steels. SEM and x-ray diffraction examination show that the oxide of ZrO{sub 2} appeared on the surface of stainless steel. Kinetic rate of oxidation of austenite stainless steel AISI 304 showed that increasing oxidation temperature and time will increase oxidation rate.« less
Development of microbial spoilage and lipid and protein oxidation in rabbit meat.
Nakyinsige, K; Sazili, A Q; Aghwan, Z A; Zulkifli, I; Goh, Y M; Abu Bakar, F; Sarah, S A
2015-10-01
This experiment aimed to determine microbial spoilage and lipid and protein oxidation during aerobic refrigerated (4°C) storage of rabbit meat. Forty male New Zealand white rabbits were slaughtered according to the Halal slaughter procedure. The hind limbs were used for microbial analysis while the Longissimus lumborum m. was used for determination of lipid and protein oxidation. Bacterial counts generally increased with aging time and the limit for fresh meat (10(8)cfu/g) was reached at d 7 postmortem. Significant differences in malondialdehyde content were observed after 3d of storage. The thiol concentration significantly decreased with increase in aging time. The band intensities of myosin heavy chain and troponin T significantly reduced with increased refrigerated storage while actin remained relatively stable. This study thus proposes protein oxidation as a potential deteriorative change in refrigerated rabbit meat along with microbial spoilage and lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lankin, V Z; Ivanova, M V; Konovalova, G G; Tikhaze, A K; Kaminnyi, A I; Kukharchuk, V V
2007-04-01
We studied the effects of two inhibitors of beta-hydroxy-beta-methylglutaryl coenzyme A reductase, simvastatin and lovastatin, on the lag phase of ascorbate-dependent lipid oxidation in rat liver. Oxidizability of liver biological membranes significantly increased in intact animals and rats with induced hypercholesterolemia after peroral administration of these statins. The lag phase of ascorbate-dependent lipid oxidation in liver biomembranes decreased by 2.1 times in hypercholesterolemic rats. In animals of the lovastatin group this parameter decreased by 4.4 times compared to the control. In intact rats receiving simvastatin, the lag phase of oxidation in biomembranes from the liver decreased practically by 2 times. At the same time, in animals receiving simvastatin in combination with antioxidant vitamins (vitamins E and C, provitamin A) and selenium, the period of induction of oxidation increased by 3.3 times. Our results indicate that beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors produce a prooxidant effect on the liver, which can be prevented by administration of antioxidant agents.
Ru(III) catalyzed permanganate oxidation of aniline at environmentally relevant pH.
Zhang, Jing; Zhang, Ying; Wang, Hui; Guan, Xiaohong
2014-07-01
Ru(III) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(III) could significantly improve the oxidation rate of aniline by 5-24 times with its concentration increasing from 2.5 to 15 μmol/L. The reaction of Ru(III) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(III), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(III) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)⁻¹sec⁻¹ with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC-MS/MS analysis. Ru(III), as an electron shuttle, was oxidized by permanganate to Ru(VI) and Ru(VII), which acted the co-oxidants for decomposition of aniline. Although Ru(III) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(III) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(III) toward permanganate oxidation in our future study. Copyright © 2014. Published by Elsevier B.V.
Effect of growth time to the properties of Al-doped ZnO nanorod arrays
NASA Astrophysics Data System (ADS)
Ismail, A. S.; Mamat, M. H.; Malek, M. F.; Saidi, S. A.; Yusoff, M. M.; Mohamed, R.; Sin, N. D. Md; Suriani, A. B.; Rusop, M.
2018-05-01
Aluminum (Al)-doped zinc oxide (ZnO) nanorod array films were successfully deposited at different growth time on zinc oxide (ZnO) seed layer coated glass substrate using sol-gel immersion method. The morphology images of the films showed that the thicknesses of the films were increased parallel with the increment of growth period. The surface topology of the films displayed an increment of roughness as the growth period increased. Optical properties of the samples exposed that the percentage of transmittances reduced at higher growth time. Besides, the Urbach energy of the films slightly increased as the immersion time increased. The current-voltage (I-V) measurement indicated that the resistance increased as the immersion time increased owing to the appearance of intrinsic layer on top of the nanorods.
NASA Astrophysics Data System (ADS)
Fockaert, L. I.; Taheri, P.; Abrahami, S. T.; Boelen, B.; Terryn, H.; Mol, J. M. C.
2017-11-01
Zirconium-based conversion treatment of zinc, aluminium and magnesium oxides have been studied in-situ using ATR-FTIR in a Kretschmann geometry. This set-up was coupled to an electrochemical cell, which allowed to obtain chemical and electrochemical information simultaneously as a function of conversion time. This elucidated the strong relation between physico-chemical surface properties and zirconium-based conversion kinetics. Whereas the surface hydroxyl density of zinc and aluminium increased during conversion, magnesium (hydr)oxide was shown to dissolve in the acid solution. Due to this dissolution, strong surface alkalization can be expected, explaining the rapid conversion kinetics. AES depth profiling was used to determine the final oxide thickness and elemental composition. This confirmed that magnesium is most active and forms a zirconium oxide layer approximately 10 times thicker than zinc. On the other hand, the presence of zirconium oxide on aluminium is very low and can be considered as not fully covering the metal oxide. Additionally, the converted oxide chemistry was related to the bonding mechanisms of amide functionalized molecules using ATR-FTIR and XPS. It was shown that inclusion of zirconium altered the acid-base properties, increasing the substrate proton donating capabilities in case of magnesium oxide and increasing hydrogen bonding and Bronsted interactions due to increased surface hydroxide fractions on zinc and aluminium substrates.
Mungure, Tanyaradzwa E; Bekhit, Alaa El-Din A; Birch, E John; Stewart, Ian
2016-04-01
The effects of rigor temperature (5, 15, 20 and 25°C), ageing (3, 7, 14, and 21 days) and display time on meat quality and lipid oxidative stability of hot boned beef M. Semimembranosus (SM) muscle were investigated. Ultimate pH (pH(u)) was rapidly attained at higher rigor temperatures. Electrical conductivity increased with rigor temperature (p<0.001). Tenderness, purge and cooking losses were not affected by rigor temperature; however purge loss and tenderness increased with ageing (p<0.01). Lightness (L*) and redness (a*) of the SM increased as rigor temperature increased (p<0.01). Lipid oxidation was assessed using (1)H NMR where changes in aliphatic to olefinic (R(ao)) and diallylmethylene (R(ad)) proton ratios can be rapidly monitored. R(ad), R(ao), PUFA and TBARS were not affected by rigor temperature, however ageing and display increased lipid oxidation (p<0.05). This study shows that rigor temperature manipulation of hot boned beef SM muscle does not have adverse effects on lipid oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chanadang, Sirichat; Koppel, Kadri; Aldrich, Greg
2016-01-01
Simple Summary Sensory analysis was used to determine the changes due to the storage time on extruded pet food prepared from two different rendered protein meals: (i) beef meat and bone meal (BMBM); (ii) chicken byproduct meal (CPBM). Extrusion is a process where feed is pressed through a die in order to create shapes and increase digestibility. Descriptive sensory analysis using a human panel found an increase in undesirable sensory attributes (e.g., oxidized oil, rancid) in extruded pet food over storage time, especially the one prepared from chicken by product meal without antioxidants. The small increase in oxidized and rancid aromas of BMBM samples did not affect pet owners’ acceptability of the products. CPBM samples without antioxidants showed a notable increase in oxidized and rancid aroma over storage time and, thus, affected product acceptability negatively. This finding indicated that human sensory analysis can be used as a tool to track the changes of pet food characteristics due to storage, as well as estimate the shelf-life of the products. Abstract Pet foods are expected to have a shelf-life for 12 months or more. Sensory analysis can be used to determine changes in products and to estimate products’ shelf-life. The objectives of this study were to (1) investigate how increasing levels of oxidation in rendered protein meals used to produce extruded pet food affected the sensory properties and (2) determine the effect of shelf-life on pet owners’ acceptability of extruded pet food diet formulated without the use of preservative. Pet food diets contained beef meat bone meal (BMBM) and chicken byproduct meal (CBPM) in which the oxidation was retarded with ethoxyquin, mixed tocopherols, or none at all, and then extruded into dry pet foods. These samples represented low, medium, and high oxidation levels, respectively. Samples were stored for 0, 3, 6, 9, and 12 months at ambient temperature. Each time point, samples were evaluated by six highly trained descriptive panelists for sensory attributes related to oxidation. Samples without preservatives were chosen for the acceptability test, since the differences in sensory characteristics over storage time were more distinguishable in those samples. Pet owners evaluated samples for aroma, appearance and overall liking. Descriptive sensory analysis detected significant changes in oxidized-related sensory characteristics over storage time. However, the differences for CBPM samples were more pronounced and directional. The consumer study showed no differences in pet owners’ acceptability for BMBM samples. However, the noticeable increase in aroma characteristics (rancid aroma 0.33–4.21) in CBPM samples over storage time did have a negative effect on consumer’s liking (overall liking 5.52–4.95). PMID:27483326
NASA Astrophysics Data System (ADS)
Quick, Annika; Farrell, Tiffany B.; Reeder, William Jeffrey; Feris, Kevin P.; Tonina, Daniele; Benner, Shawn G.
2015-04-01
The hyporheic zone is a potentially important producer of nitrous oxide, a powerful greenhouse gas. The location and magnitude of nitrous oxide generation within the hyporheic zone involves complex interactions between multiple nitrogen species, redox conditions, microbial communities, and hydraulics. To better understand nitrous oxide generation and emissions from streams, we conducted large-scale flume experiments in which we monitored pore waters along hyporheic flow paths within stream dune structures. Measurements of dissolved oxygen, ammonia, nitrate, nitrite, and dissolved nitrous oxide showed distinct spatial relationships reflecting redox changes along flow paths. Using residence times along a flow path, clear trends in oxygen conditions and nitrogen species were observed. Three dune sizes were modeled, resulting in a range of residence times, carbon reactivity levels and respiration rates. We found that the magnitude and location of nitrous oxide production in the hyporheic zone is related to nitrate loading, dune morphology, and residence time. Specifically, increasing exogenous nitrate levels in surface water to approximately 3 mg/L resulted in an increase in dissolved N2O concentrations greater than 500% (up to 10 µg/L N-N2O) in distinct zones of specific residence times. We also found, however, that dissolved N2O concentrations decreased to background levels further along the flow path due to either reduction of nitrous oxide to dinitrogen gas or degassing. The decrease in measurable N2O along a flow path strongly suggests an important relationship between dune morphology, residence time, and nitrous oxide emissions from within stream sediments. Relating streambed morphology and loading of nitrogen species allows for prediction of nitrous oxide production in the hyporheic zone of natural systems.
The Role of Coordination Environment and pH in Tuning the Oxidation Rate of Europium(II).
Ekanger, Levi A; Basal, Lina A; Allen, Matthew J
2017-01-23
The Eu II/III redox couple offers metal-based oxidation-sensing with magnetic resonance imaging making the study of Eu II oxidation chemistry important in the design of new probes. Accordingly, we explored oxidation reactions with a set of Eu II -containing complexes. Superoxide formation from the reaction between Eu II and dioxygen was observed using electron paramagnetic resonance spectroscopy. Additionally, oxidation kinetics of three Eu II -containing complexes with bromate and glutathione disulfide at pH values, including 5 and 7, is reported. In the reaction with bromate, the oxidation rate of two of the complexes increased by 7.3 and 6.7 times upon decreasing pH from 7 to 5, but the rate increased by 17 times for a complex containing amide functional groups over the same pH range. The oxidation rate of a fluorobenzo-functionalized cryptate was relatively slow, indicating that the ligand used to impart thermodynamic oxidative stability might also be useful for controlling oxidation kinetics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetics of natural oxidant demand by permanganate in aquifer solids.
Urynowicz, Michael A; Balu, Balamurali; Udayasankar, Umamaheshwari
2008-02-19
During in situ chemical oxidation with permanganate, natural organic matter and other reduced species in the subsurface compete with the target compounds for the available oxidant and can exert a significant natural oxidant demand. This competition between target and nontarget compounds can have a significant impact on the permeation, dispersal, and persistence of permanganate in the subsurface. The kinetics of natural oxidant demand by permanganate was investigated using a composite sample made up of aquifer material collected from three different sites. The study found that although the depletion of organic carbon increased with increased permanganate dosage and increased reaction period, the mass ratio of MnO(4)(-):OC (wt/wt) was relatively constant over time (11.4+/-0.9). The reaction order and rate with respect to permanganate were found to decrease with time suggesting a continuum of reactions with the slower reactions becoming more controlling with time. However, the data also suggests that this continuum of reactions can be simplified into short- and long-term kinetic expressions representing fast and slow reactions. An independent first-order kinetic model with separate fast and slow reaction rate constants was used to successfully describe the complete kinetic expression of natural oxidant demand. The kinetic parameters used in the model are easily determined and can be used to better understand the complex kinetics of natural oxidant demand.
NASA Astrophysics Data System (ADS)
Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In
2017-07-01
In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Shiyang; Nakajima, Anri; Ohashi, Takuo
2005-12-01
The interface trap generation ({delta}N{sub it}) and fixed oxide charge buildup ({delta}N{sub ot}) under negative bias temperature instability (NBTI) of p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultrathin (2 nm) plasma-nitrided SiON gate dielectrics were studied using a modified direct-current-current-voltage method and a conventional subthreshold characteristic measurement. Different stress time dependences were shown for {delta}N{sub it} and {delta}N{sub ot}. At the earlier stress times, {delta}N{sub it} dominates the threshold voltage shift ({delta}V{sub th}) and {delta}N{sub ot} is negligible. With increasing stress time, the rate of increase of {delta}N{sub it} decreases continuously, showing a saturating trend for longer stress times, while {delta}N{submore » ot} still has a power-law dependence on stress time so that the relative contribution of {delta}N{sub ot} increases. The thermal activation energy of {delta}N{sub it} and the NBTI lifetime of pMOSFETs, compared at a given stress voltage, are independent of the peak nitrogen concentration of the SiON film. This indicates that plasma nitridation is a more reliable method for incorporating nitrogen in the gate oxide.« less
Characterization and corrosion behavior of F6NM stainless steel treated in high temperature water
NASA Astrophysics Data System (ADS)
Li, Zheng-yang; Cai, Zhen-bing; Yang, Wen-jin; Shen, Xiao-yao; Xue, Guo-hong; Zhu, Min-hao
2018-03-01
F6NM martensitic stainless steel was exposed to 350 °C water condition for 500, 1500, and 2500 h to simulate pressurized water reactor (PWR) condition. The characterization and corrosion behavior of the oxide film were investigated. Results indicate that the exposed steel surface formed a double-layer oxide film. The outer oxide film is Fe-rich and contains two type oxide particles. However, the inner oxide film is Cr-rich, and two oxide films, whose thicknesses increase with increasing exposure time. The oxide film reduces the corrosion behavior because the outer oxide film has many crack and pores. Finally, the mechanism and factors affecting the formation of the oxide film were investigated.
NASA Astrophysics Data System (ADS)
Panić, V. V.; Dekanski, A. B.; Stevanović, R. M.
Hydrous ruthenium oxide/carbon black nanocomposites were prepared by impregnation of the carbon blacks by differently aged inorganic RuO 2 sols, i.e. of different particle size. Commercial Black Pearls 2000 ® (BP) and Vulcan ® XC-72 R (XC) carbon blacks were used. Capacitive properties of BP/RuO 2 and XC/RuO 2 composites were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in H 2SO 4 solution. Capacitance values and capacitance distribution through the composite porous layer were found different if high- (BP) and low- (XC) surface-area carbons are used as supports. The aging time (particle size) of Ru oxide sol as well as the concentration of the oxide solid phase in the impregnating medium influenced the capacitive performance of prepared composites. While the capacitance of BP-supported oxide decreases with the aging time, the capacitive ability of XC-supported oxide is promoted with increasing oxide particle size. The increase in concentration of the oxide solid phase in the impregnating medium caused an improvement of charging/discharging characteristics due to pronounced pseudocapacitance contribution of the increasing amount of inserted oxide. The effects of these variables in the impregnation process on the energy storage capabilities of prepared nanocomposites are envisaged as a result of intrinsic way of population of the pores of carbon material by hydrous Ru oxide particle.
NASA Astrophysics Data System (ADS)
Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu
2017-05-01
A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.
Improved chamber systems for rapid, real-time nitrous oxide emissions from manure and soil
USDA-ARS?s Scientific Manuscript database
Nitrous oxide (N2O) emission rates have traditionally been measured using non-flow-through, non-steady-state (NFT-NSS) chambers, which rely on measuring the increase in N2O concentration in the sealed chamber headspace over time. These flux measurements are very labor and time intensive, requiring ...
Layton, Alice C.; Dionisi, Hebe; Kuo, H.-W.; Robinson, Kevin G.; Garrett, Victoria M.; Meyers, Arthur; Sayler, Gary S.
2005-01-01
Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant. PMID:15691975
Photo-oxidation of LDPE: Effects on elongational viscosity
NASA Astrophysics Data System (ADS)
Rolón-Garrido, Víctor H.; Wagner, Manfred H.
2013-04-01
Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, time-deformation separability is confirmed for all samples, independent of the degree of photo-oxidation.
Wannomae, Keith K; Christensen, Steven D; Freiberg, Andrew A; Bhattacharyya, Shayan; Harris, William H; Muratoglu, Orhun Kamil
2006-03-01
Irradiation decreases the wear of ultra-high molecular weight polyethylene (UHMWPE) but generates residual free radicals, precursors to long-term oxidation. Melting or annealing is used in quenching free radicals. We hypothesized that irradiated and once-annealed UHMWPE would oxidize while irradiated and melted UHMWPE would not, and that the oxidation in the former would increase wear. Acetabular liners were real-time aged by immersion in an aqueous environment that closely mimicked the temperature and oxygen concentration of synovial fluid. After 95 weeks of real-time aging, once-annealed components were oxidized; the melted components were not. The wear rate of the real-time aged irradiated and once-annealed components was higher than the literature reported values of other contemporary highly cross-linked UHMWPEs. Single annealing after irradiation used with terminal gamma sterilization may adversely affect the long-term oxidative stability of UHMWPE components.
Iron(II) Initiation of Lipid and Protein Oxidation in Pork: The Role of Oxymyoglobin.
Zhou, Feibai; Jongberg, Sisse; Zhao, Mouming; Sun, Weizheng; Skibsted, Leif H
2016-06-08
Iron(II), added as FeSO4·7H2O, was found to increase the rate of oxygen depletion as detected electrochemically in a pork homogenate from Longissimus dorsi through an initial increase in metmyoglobin formation from oxymyoglobin and followed by formation of primary and secondary lipid oxidation products and protein oxidation as detected as thiol depletion in myofibrillar proteins. Without added iron(II), under the same conditions at 37 °C, oxygen consumption corresponded solely to the slow oxymyoglobin autoxidation. Long-lived myofibrillar protein radicals as detected by ESR spectroscopy in the presence of iron(II) were formed subsequently to oxymyoglobin oxidation, and their level was increased by lipid oxidation when oxygen was completely depleted. Similarly, the time profile for formation of lipid peroxide indicated that oxymyoglobin oxidation initiates both protein oxidation and lipid oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchini, T.; Magnani, N.D.; Paz, M.L.
2014-01-15
It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acidmore » levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN activation is a relevant source of reactive oxygen species in this model. • These findings may account for previously described cardiopulmonary alterations.« less
Daniels, Roger L; Kim, Hyun Jung; Min, David B
2006-08-09
Soybean oil with an iodine value of 136 was hydrogenated to have iodine values of 126 and 117. The soybean oils with iodine values of 136, 126, and 117 were randomly interesterified using sodium methoxide. The oxidative stabilities of the hydrogenated and/or interesterified soybean oils were evaluated by measuring the headspace oxygen content by gas chromatography, and the induction time was measured using Rancimat. The melting points of the oils were evaluated by differential scanning calorimetry. Duncan's multiple range test of the headspace oxygen and induction time showed that hydrogenation increased the headspace oxygen content and induction time at alpha = 0.05. Interesterification decreased the headspace oxygen and the induction time for the soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. Hydrogenation increased the melting points as the iodine value decreased from 136 and 126 to 117 at alpha = 0.05. The random interesterification increased the melting points of soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. The combined effects of hydrogenation and interesterification increased the oxidative stability of soybean oil at alpha = 0.05 and the melting point at alpha = 0.01. The optimum combination of hydrogenation and random interesterification can improve the oxidative stability and increase the melting point to expand the application of soybean oil in foods.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Haraveen, K. J. S.; Tee, Tiam-Ting; Rahmat, A. R.
2015-10-01
In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.
Eslami, Hadi; Ehrampoush, Mohammad Hassan; Esmaeili, Abbas; Ebrahimi, Ali Asghar; Salmani, Mohammad Hossein; Ghaneian, Mohammad Taghi; Falahzadeh, Hossein
2018-09-01
The efficiency of photocatalytic oxidation process in arsenite (As(III)) removal from contaminated water by a new Fe 2 O 3 -Mn 2 O 3 nanocomposite under UV A radiation was investigated. The effect of nanocomposite dosage, pH and initial As(III) concentration on the photocatalytic oxidation of As(III) were studied by experimental design. The synthesized nanocomposite had a uniform and spherical morphological structure and contained 49.83% of Fe 2 O 3 and 29.36% of Mn 2 O 3 . Based on the experimental design model, in photocatalytic oxidation process, the effect of pH was higher than other parameters. At nanocomposite concentrations of more than 12 mg L -1 , pH 4 to 6 and oxidation time of 30 min, photocatalytic oxidation efficiency was more than 95% for initial As(III) concentration of less than 500 μg L -1 . By decreasing pH and increasing the nanocomposite concentration, the photocatalytic oxidation efficiency was increased. Furthermore, by increasing the oxidation time from 10 to 240 min, in addition to oxidation of As(III) to arsenate (As(V)), the residual As(V) was adsorbed on the Fe 2 O 3 -Mn 2 O 3 nanocomposite and total As concentration was decreased. Therefore, Fe 2 O 3 -Mn 2 O 3 nanocomposite as a bimetal oxide, at low doses and short time, can enhance and improve the efficiency of the photocatalytic oxidation and adsorption of As(III) from contaminated water resources. Furthermore, the energy and material costs of the UV A /Fe 2 O 3 -Mn 2 O 3 system for photocatalytic oxidation of 1 mg L -1 As(III) in the 1 L laboratory scale reactor was 0.0051 €. Copyright © 2018 Elsevier Ltd. All rights reserved.
Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout
Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle
2015-01-01
CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192
Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.
Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle
2015-09-29
CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.
Exercise Increases 24-h Fat Oxidation Only When It Is Performed Before Breakfast
Iwayama, Kaito; Kurihara, Reiko; Nabekura, Yoshiharu; Kawabuchi, Ryosuke; Park, Insung; Kobayashi, Masashi; Ogata, Hitomi; Kayaba, Momoko; Satoh, Makoto; Tokuyama, Kumpei
2015-01-01
Background As part of the growing lifestyle diversity in modern society, there is wide variation in the time of day individuals choose to exercise. Recent surveys in the US and Japan have reported that on weekdays, more people exercise in the evening, with fewer individuals exercising in the morning or afternoon. Exercise performed in the post-prandial state has little effect on accumulated fat oxidation over 24 h (24-h fat oxidation) when energy intake is matched to energy expenditure (energy-balanced condition). The present study explored the possibility that exercise increases 24-h fat oxidation only when performed in a post-absorptive state, i.e. before breakfast. Methods Indirect calorimetry using a metabolic chamber was performed in 10 young, non-obese men over 24 h. Subjects remained sedentary (control) or performed 60-min exercise before breakfast (morning), after lunch (afternoon), or after dinner (evening) at 50% of VO2max. All trials were designed to be energy balanced over 24 h. Time course of energy and substrate balance relative to the start of calorimetry were estimated from the differences between input (meal consumption) and output (oxidation). Findings Fat oxidation over 24 h was increased only when exercise was performed before breakfast (control, 456 ± 61; morning, 717 ± 64; afternoon, 446 ± 57; and evening, 432 ± 44 kcal/day). Fat oxidation over 24 h was negatively correlated with the magnitude of the transient deficit in energy and carbohydrate. Interpretation Under energy-balanced conditions, 24-h fat oxidation was increased by exercise only when performed before breakfast. Transient carbohydrate deficits, i.e., glycogen depletion, observed after morning exercise may have contributed to increased 24-h fat oxidation. PMID:26844280
Hamidi, Roya; Kahforoushan, Davood; Fatehifar, Esmaeil
2013-01-01
In this article, a method for simultaneous removal of calcium, magnesium and chloride by using Mg0.80Al0.20O1.10 as a Magnesium-Aluminum oxide (Mg‒Al oxide) was investigated. Mg‒Al oxide obtained by thermal decomposition of the Mg-Al layered double hydroxide (Mg-Al LDH). The synthesized Mg‒Al oxide were characterized with respect to nitrogen physicosorption, X-ray diffraction (XRD) and field emission scan electron microscopy (FESEM) morphology. Due to high anion-exchange capacity of Mg‒Al oxide, it was employed in simultaneously removal of Cl(-), Mg(+2) and Ca(+2) from distiller waste of a sodium carbonate production factory. For this purpose, experiments were designed to evaluate the effects of quantity of Mg‒Al oxide, temperature and time on the removal process. The removal of Cl(-), Mg(+2) and Ca(+2) from wastewater was found 93.9%, 93.74% and 93.25% at 60°C after 0.5 h, respectively. Results showed that the removal of Cl(-), Mg(+2) and Ca(+2) by Mg‒Al oxide increased with increasing temperature, time and Mg‒Al oxide quantity.
Arsenic silicide formation by oxidation of arsenic implanted silicon
NASA Astrophysics Data System (ADS)
Hagmann, D.; Euen, W.; Schorer, G.; Metzger, G.
1989-07-01
Wet oxidations of (100) silicon implanted with an arsenic dose of 2 × 1016 cm-2 and an energy of 30 keV were carried out in the temperature range between 600 and 900° C. The oxidation rate is increased on the arsenic implanted samples up to a factor of 2000 as compared to undoped samples. During these oxidations the arsenic suicide phase AsSi is precipitated at the oxide/silicon interface. After short oxidation times at 600° C, a continuous AsSi layer is found. It is dissolved during extended oxidation times and finally almost all As is incorporated in the oxide. After 900° C oxidations, substantial AsSi crystallites remain at the Si/SiO2 interface. They are still observed up to the larg-est oxide thickness grown (2.3 µm). The AsSi phase and the distribution of the im-planted arsenic were analyzed by TEM, SIMS and XRF measurements.
Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets
NASA Astrophysics Data System (ADS)
Wang, Shuai; Chen, Mao; Guo, Yufeng; Jiang, Tao; Zhao, Baojun
2018-04-01
Reduction and smelting of the vanadium titanomagnetite metallized pellets have been experimentally investigated in this study. By using the high-temperature smelting, rapid quenching, and electron probe x-ray microanalysis (EPMA) technique, the effects of basicity, reaction time, and graphite reductant amount were investigated. The vanadium contents in iron alloys increase with increasing basicity, reaction time, and graphite amount, whereas the FeO and V2O3 concentrations in the liquid phase decrease with the increase of graphite amount and reaction time. Increasing the reaction time and reductant content promotes the reduction of titanium oxide, whereas the reduction of titanium oxides can be suppressed with increasing the slag basicity. Titanium carbide (TiC) was not observed in all the quenched samples under the present conditions. The experimental results and the FactSage calculations are also compared in the present study.
Properties enhancement of cassava starch based bioplastics with addition of graphene oxide
NASA Astrophysics Data System (ADS)
Amri, A.; Ekawati, L.; Herman, S.; Yenti, S. R.; Zultiniar; Aziz, Y.; Utami, S. P.; Bahruddin
2018-04-01
The properties of cassava starch based bioplastic have been successfully enhanced by additioning of graphene oxide (GO) filler. The composite was synthesized via starch intercalation method using glycerol plasticizer with variation of 5 – 15 % v/v GO filler and mixing time of 30 and 60 minutes. The effects of GO content and the mixing time to the mechanical, water uptake and biodegradation were studied. The synthesis of GO and its integration in the bioplastic composite were also elucidated. The increasing of the GO content and mixing time improved the mechanical properties of composite mainly due to of good homogeneity among the constituents in the composite as indicated by scanning electron microscopy (SEM) and Fourier Transfom Infrared (FTIR) spectroscopy. The bioplastic produced using 15% of GO and 60 minutes mixing time had the highest mechanical properties with tensile strenght of 3,92 Mpa, elongation of 13,22% and modulus young of 29,66 MPa. The water uptake and biodegradation increased as the increase of GO content and decreased as the increase of the mixing time. Graphene oxide is the promissing filler for further development of cassava starch based bioplastics.
Time resolved study of hydroxyl radical oxidation of oleic acid at the air-water interface
NASA Astrophysics Data System (ADS)
Zhang, Xinxing; Barraza, Kevin M.; Upton, Kathleen T.; Beauchamp, J. L.
2017-09-01
The ubiquity of oleic acid (OA) renders it a poster child for laboratory investigations of environmental oxidation chemistry. In the current study, mechanistic details of the oxidation of OA by hydroxyl radicals at the air-water interface are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Products from OH oxidation of both unsaturated and saturated carbon atoms are identified, and mechanisms for both types of oxidation processes are proposed. Uptake of oxygen in the interfacial layer increases linearly with time, consistent with Langmuir-Hinshelwood reaction kinetics. These results provide fundamental knowledge relating to OH initiated degradation of fatty acids in atmospheric aerosols.
Chauhan, Ved; Chauhan, Abha
2016-06-01
Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders. Published by Elsevier Ltd.
Oxidation and Reduction: Too Many Definitions?
ERIC Educational Resources Information Center
Silverstein, Todd P.
2011-01-01
IUPAC gives several different definitions of oxidation: loss of electrons, increase in oxidation state, loss of hydrogen, or gain of oxygen. Most introductory or general chemistry textbooks use all of these definitions at one time or another, which can lead to some confusion in the minds of first-year chemistry students. Some paradoxical…
NASA Astrophysics Data System (ADS)
Mønster, J.; Rella, C.; Jacobson, G. A.; He, Y.; Hoffnagle, J.; Scheutz, C.
2012-12-01
Nitrous oxide is a powerful greenhouse gas considered 298 times stronger than carbon dioxide on a hundred years term (Solomon et al. 2007). The increasing global concentration is of great concern and is receiving increasing attention in various scientific and industrial fields. Nitrous oxide is emitted from both natural and anthropogenic sources. Inventories of source specific fugitive nitrous oxide emissions are often estimated on the basis of modeling and mass balance. While these methods are well-developed, actual measurements for quantification of the emissions can be a useful tool for verifying the existing estimation methods as well as providing validation for initiatives targeted at lowering unwanted nitrous oxide emissions. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001), in which a tracer gas is released at the source location at a known flow. The ratio of downwind concentrations of both the tracer gas and nitrous oxide gives the ratios of the emissions rates. This tracer dilution method can be done with both stationary and mobile measurements; in either case, real-time measurements of both tracer and analyte gas is required, which places high demands on the analytical detection method. To perform the nitrous oxide measurements, a novel, robust instrument capable of real-time nitrous oxide measurements has been developed, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. We present the results of the laboratory and field tests of this instrument in both California and Denmark. Furthermore, results are presented from measurements using the mobile plume method with a tracer gas (acetylene) to quantify the nitrous oxide and methane emissions from known sources such as waste water treatment plants and composting facilities. Nitrous oxide (blue) and methane (yellow) plumes downwind from a waste water treatment facility.
Sabow, Azad Behnan; Sazili, Awis Qurni; Aghwan, Zeiad Amjad; Zulkifli, Idrus; Goh, Yong Meng; Ab Kadir, Mohd Zainal Abidin; Nakyinsige, Khadijah; Kaka, Ubedullah; Adeyemi, Kazeem Dauda
2016-06-01
Examined was the effect of post mortem refrigerated storage on microbial spoilage, lipid-protein oxidation and physicochemical traits of goat meat. Seven Boer bucks were slaughtered, eviscerated and aged for 24 h. The Longissimus lumborum (LL) and Semitendinosus (ST) muscles were excised and subjected to 13 days post mortem refrigerated storage. The pH, lipid and protein oxidation, tenderness, color and drip loss were determined in LL while microbiological analysis was performed on ST. Bacterial counts generally increased with increasing aging time and the limit for fresh meat was reached at day 14 post mortem. Significant differences were observed in malondialdehyde (MDA) content at day 7 of storage. The thiol concentration significantly reduced as aging time increased. The band intensities of myosin heavy chain (MHC) and troponin-T significantly decreased as storage progressed, while actin remained relatively stable. After 14 days of aging, tenderness showed significant improvement while muscle pH and drip loss reduced with increase in storage time. Samples aged for 14 days had higher lightness (P < 0.05) and lower (P < 0.05) yellowness and redness. Post mortem refrigerated storage influenced oxidative and microbial stability and physico-chemical properties of goat meat. © 2016 Japanese Society of Animal Science.
Dielectric Properties of Generation 3 Pamam Dendrimer Nanocomposites
NASA Astrophysics Data System (ADS)
Ristić, Sanja; Mijović, Jovan
2008-08-01
Broadband dielectric relaxation spectroscopy (DRS) was employed to study molecular dynamics of blends composed of generation 3 poly(amidoamine) (PAMAM) dendrimers with ethylenediamine core and amino surface groups and four linear polymers: poly(propylene oxide)—PPO, two block copolymers, poly(propylene oxide)/poly(ethylene oxide)—PPO/PEO with different mol ratios (29/6 and 10/31) and poly(ethylene oxide)—PEO. The results were generated over a broad range of frequency. Dielectric spectra of dendrimers in PPO matrix reveal slight shift of normal and segmental processes to higher frequency with increasing concentration of dendrimers. In the 29PPO/6PEO matrix, no effect of concentration on the average relaxation time for normal and segmental processes was observed. In the 10PPO/31PEO matrix the relaxation time of the segmental process increases with increasing dendrimer concentration, while in the PEO matrix, local processes in dendrimers slow down. A detailed analysis of the effect of concentration of dendrimers and morphology of polymer matrix on the dielectric properties of dendrimer nanocomposites will be presented.
Oxidation and formation of deposit precursors in hydrocarbon fuels
NASA Technical Reports Server (NTRS)
Buttrill, S. E., Jr.; Mayo, F. R.; Lan, B.; St.john, G. A.; Dulin, D.
1982-01-01
A practical fuel, home heating oil no. 2 (Fuel C), and the pure hydrocarbon, n-dodecane, were subjected to mild oxidation at 130 C and the resulting oxygenated reaction products, deposit precursors, were analyzed using field ionization mass spectrometry. Results for fuel C indicated that, as oxidation was initially extended, certain oxygenated reaction products of increasing molecular weights in the form of monomers, dimers and some trimers were produced. Further oxidation time increase resulted in further increase in monomers but a marked decrease in dimers and trimers. This suggests that these larger molecular weight products have proceeded to form deposit and separated from the fuel mixture. Results for a dodecane indicated that yields for dimers and trimers were very low. Dimers were produced as a result of interaction between oxygenated products with each other rather than with another fuel molecule. This occurred even though fuel molecule concentration was 50 times, or more greater than that for these oxygenated reaction products.
Zou, Xian-Guo; Hu, Jiang-Ning; Zhu, Xue-Mei; Wang, Yu-Fu; Deng, Ze-Yuan
2018-06-01
This study aimed to explore the possibility of using methionine sulfone (Msn)-containing orbitides as indicators to evaluate the oxidation process of flaxseed oils. Results showed that after 4 days' heating, oxidation values slightly increased (p > .05) with significant decrease in methionine (Met)-containing peptides (p < .05) instead of γ-tocopherol (p > .05). However, as oxidation time continues increasing, oxidation values significantly increased (p < .05) with significant reduction of γ-tocopherol (p < .05). It demonstrated that Met-containing peptides were more readily oxidized compared with γ-tocopherol and showed certain antioxidant activity. Besides, high logarithmic correlations were found between oxidation values and Msn-containing orbitides (0.94-1.00), such as between total carbonyl compounds and orbitide [1-8-NαC],[1-MetO 2 ]-CLE (64.95 lnx - 52.14, R 2 = 0.99, Dingya23 oil). Therefore, in comparison with common oxidation indices, Msn-containing orbitides may be better indicators for evaluating the oxidation process of flaxseed oil with superior separation efficiency, specific information and high stability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigating the oxidation mechanism of tantalum nanoparticles at high heating rates
NASA Astrophysics Data System (ADS)
DeLisio, Jeffery B.; Wang, Xizheng; Wu, Tao; Egan, Garth C.; Jacob, Rohit J.; Zachariah, Michael R.
2017-12-01
Reduced diffusion length scales and increased specific surface areas of nanosized metal fuels have recently demonstrated increased reaction rates for these systems, increasing their relevance in a wide variety of applications. The most commonly employed metal fuel, aluminum, tends to oxidize rapidly near its melting point (660 °C) in addition to undergoing a phase change of the nascent oxide shell. To further expand on the understanding of nanosized metal fuel oxidation, tantalum nanoparticles were studied due to their high melting point (3017 °C) in comparison to aluminum. Both traditional slow heating rate and in-situ high heating rate techniques were used to probe the oxidation of tantalum nanoparticles in oxygen containing environments in addition to nanothermite mixtures. When oxidized by gas phase oxygen, the oxide shell of the tantalum nanoparticles rapidly crystallized creating cracks that may attribute to enhanced oxygen diffusion into the particle. In the case of tantalum based nanothermites, oxide shell crystallization was shown to induce reactive sintering with the metal oxide resulting in a narrow range of ignition temperatures independent of the metal oxide used. The oxidation mechanism was modeled using the Deal-Grove model to extract rate parameters, and theoretical burn times for tantalum based nanocomposites were calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan
2014-12-15
Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less
Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q
2015-10-01
Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.
Takahashi, Masaki; Koizumi, Hiromu; Chun, Wang-Jae; Kori, Makoto; Imaoka, Takane; Yamamoto, Kimihisa
2017-01-01
The catalytic activity of alloy nanoparticles depends on the particle size and composition ratio of different metals. Alloy nanoparticles composed of Pd, Pt, and Au are widely used as catalysts for oxidation reactions. The catalytic activities of Pt and Au nanoparticles in oxidation reactions are known to increase as the particle size decreases and to increase on the metal-metal interface of alloy nanoparticles. Therefore, multimetallic nanoclusters (MNCs) around 1 nm in diameter have potential as catalysts for oxidation reactions. However, there have been few reports describing the preparation of uniform alloy nanoclusters. We report the synthesis of finely controlled MNCs (around 1 nm) using a macromolecular template with coordination sites arranged in a gradient of basicity. We reveal that Cu-Pt-Au MNCs supported on graphitized mesoporous carbon show catalytic activity that is 24 times greater than that of a commercially available Pt catalyst for aerobic oxidation of hydrocarbons. In addition, solvent-free aerobic oxidation of hydrocarbons to ketones at room temperature, using small amounts of a radical initiator, was achieved as a heterogeneous catalytic reaction for the first time. PMID:28782020
Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site
NASA Astrophysics Data System (ADS)
Helmig, Detlev; Greenberg, Jim; Guenther, Alex; Zimmerman, Pat; Geron, Chris
1998-09-01
Biogenic volatile organic compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs such as chlorofluorocarbons (CFCs), alkanes, alkenes and aromatic compounds. Isoprene was the dominant BVOC during daytime. Primary products from BVOC oxidation were methylvinylketone, methacrolein and 3-methylfuran. Other compounds studied include the BVOCs α-pinene, camphene, β-pinene, p-cymene, limonene and cis-3-hexenyl acetate and a series of light alkanes, aromatic hydrocarbons and seven of the CFCs. The correlation of meteorological parameters, with the mixing ratios of these different compounds, reveals information on atmospheric oxidation processes and transport. Long-lived VOCs show very steady mixing ratio time series. Regionally and anthropogenically emitted VOCs display distinct diurnal cycles with a strong mixing ratio decrease in the morning from the breakup of the nocturnal boundary layer. Nighttime mixing ratio increases of CFCs and anthropogenic VOCs are suspected to derive from emissions within the Knoxville urban area into the shallow nocturnal boundary layer. In contrast, the time series of BVOCs and their oxidation products are determined by a combination of emission control, atmospheric oxidation and deposition, and boundary layer dynamics. Mixing ratio time series data for monoterpenes and cis-3-hexenyl acetate suggest a temporarily emission rate increase during and after heavy rain events. The isoprene oxidation products demonstrate differences in the oxidation pathways during night and day and in their dry and wet deposition rates.
Wang, Wen-Long; Zhang, Xue; Wu, Qian-Yuan; Du, Ye; Hu, Hong-Ying
2017-11-01
The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Houzhao; Lv, Lin; Peng, Lu; Ruan, Yunjun; Liu, Jia; Ji, Xiao; Miao, Ling; Jiang, Jianjun
2015-07-01
Hollow spiny shell Ni-Mn precursors composed of one-dimensional nanoneedles were synthesized via a simple hydrothermal method without any template. The hollow Spiny shell Ni-Mn oxides are obtained under thermal treatment at different temperatures. The BET surface areas of Ni-Mn oxides reach up to 112 and 133 m2 g-1 when calcination temperatures occur at 300 and 400 °C, respectively. The electrochemical performances of as-synthesized hollow spiny shell Ni-Mn oxides gradually die down with annealing temperatures increasing. The porous hollow spiny shell Ni-Mn oxide obtained at 300 °C delivers a maximum capacitance of 1140 F g-1 at a high current density of 1 A g-1 after 1000th cycles and the specific capacitance of Ni-Mn oxide will increase with cycling times increasing. So, porous hollow spiny shell Ni-Mn oxide obtained at low annealing temperature can form a competitive electrode material for supercapacitors.
Pulsed corona discharge oxidation of aqueous lignin: decomposition and aldehydes formation.
Panorel, Iris; Kaijanen, Laura; Kornev, Iakov; Preis, Sergei; Louhi-Kultanen, Marjatta; Sirén, Heli
2014-01-01
Lignin is the mass waste product of pulp and paper industry mostly incinerated for energy recovery. Lignin is, however, a substantial source of raw material for derivatives currently produced in costly wet oxidation processes. The pulsed corona discharge (PCD) for the first time was applied to lignin oxidation aiming a cost-effective environmentally friendly lignin removal and transformation to aldehydes. The experimental research into treatment of coniferous kraft lignin aqueous solutions was undertaken to establish the dependence of lignin oxidation and aldehyde formation on the discharge parameters, initial concentration of lignin and gas phase composition. The rate and the energy efficiency of lignin oxidation increased with increasing oxygen concentration reaching up to 82 g kW-1 h-1 in 89% vol. oxygen. Oxidation energy efficiency in PCD treatment exceeds the one for conventional ozonation by the factor of two under the experimental conditions. Oxidation at low oxygen concentrations showed a tendency of the increasing aldehydes and glyoxylic acid formation yield.
Exercise-induced oxidative stress and hypoxic exercise recovery.
Ballmann, Christopher; McGinnis, Graham; Peters, Bridget; Slivka, Dustin; Cuddy, John; Hailes, Walter; Dumke, Charles; Ruby, Brent; Quindry, John
2014-04-01
Hypoxia due to altitude diminishes performance and alters exercise oxidative stress responses. While oxidative stress and exercise are well studied, the independent impact of hypoxia on exercise recovery remains unknown. Accordingly, we investigated hypoxic recovery effects on post-exercise oxidative stress. Physically active males (n = 12) performed normoxic cycle ergometer exercise consisting of ten high:low intensity intervals, 20 min at moderate intensity, and 6 h recovery at 975 m (normoxic) or simulated 5,000 m (hypoxic chamber) in a randomized counter-balanced cross-over design. Oxygen saturation was monitored via finger pulse oximetry. Blood plasma obtained pre- (Pre), post- (Post), 2 h post- (2Hr), 4 h post- (4Hr), and 6 h (6Hr) post-exercise was assayed for Ferric Reducing Ability of Plasma (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), Lipid Hydroperoxides (LOOH), and Protein Carbonyls (PC). Biopsies from the vastus lateralis obtained Pre and 6Hr were analyzed by real-time PCR quantify expression of Heme oxygenase 1 (HMOX1), Superoxide Dismutase 2 (SOD2), and Nuclear factor (euthyroid-derived2)-like factor (NFE2L2). PCs were not altered between trials, but a time effect (13 % Post-2Hr increase, p = 0.044) indicated exercise-induced blood oxidative stress. Plasma LOOH revealed only a time effect (p = 0.041), including a 120 % Post-4Hr increase. TEAC values were elevated in normoxic recovery versus hypoxic recovery. FRAP values were higher 6Hr (p = 0.045) in normoxic versus hypoxic recovery. Exercise elevated gene expression of NFE2L2 (20 % increase, p = 0.001) and SOD2 (42 % increase, p = 0.003), but hypoxic recovery abolished this response. Data indicate that recovery in a hypoxic environment, independent of exercise, may alter exercise adaptations to oxidative stress and metabolism.
Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, Juan F.; McCauley, Linda; Scherer, J.
Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers andmore » applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects.« less
Enhanced bioremediation of oil contaminated soil by graded modified Fenton oxidation.
Xu, Jinlan; Xin, Lei; Huang, Tinglin; Chang, Kun
2011-01-01
Graded modified Fenton's (MF) oxidation is a strategy in which H2O2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the same amount of H2O2 continuously. The primary objective of the present study was to investigate whether a mild MF pre-oxidation such as a stepwise addition of H2O2 can prevent sterilization and achieve a maximum degradation of tank oil in soil. Optimization experiments of graded MF oxidation were conducted using citric acid, oxalic acid and SOLV-X as iron chelators under different frequencies of H2O2 addition. The results indicated that the activity order of iron chelates decreased as: citric acid (51%) > SOLV-X (44%) > oxalic acid (9%), and citric acid was found to be an optimized iron chelating agent of graded MF oxidation. Three-time addition of H2O2 was found to be favorable and economical due to decreasing total petroleum hydrocarbon removal from three time addition (51%) to five time addition (59%). Biological experiments were conducted after graded MF oxidation of tank oil completed under optimum conditions mentioned above. After graded oxidation, substantially higher increase (31%) in microbial activity was observed with excessive H2O2 (1470 mmol/L, the mol ratio of H2O2:Fe2+ was 210:1) than that of non-oxidized soil. Removal efficiency of tank oil was up to 93% after four weeks. Especially, the oil fraction (C10-C40) became more biodagradable after graded MF oxidation than its absence. Therefore, graded MF oxidation is a mild pretreatment to achieve an effective bioremediation of oil contaminated soil.
Shim, Kwanseob; Jacobi, Sheila; Odle, Jack; Lin, Xi
2018-01-01
Up-regulation of peroxisome proliferator-activating receptor-α (PPARα) and increasing fatty acid oxidation are important for reducing pre-weaning mortality of pigs. We examined the time-dependent regulatory effects of PPARα activation via oral postnatal clofibrate administration (75 mg/(kg-BW·d) for up to 7 days) on mitochondrial and peroxisomal fatty acid oxidation in pigs, a species with limited hepatic fatty acid oxidative capacity due to low ketogenesis. Hepatic oxidation was increased by 44-147% (depending on fatty acid chain-length) and was attained after only 4 days of clofibrate treatment. Acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase I (CPTI) activities accelerated in parallel. The increase in CPTI activity was accompanied by a rapid reduction in the sensitivity of CPTI to malonyl-CoA inhibition. The mRNA abundance of CPTI and ACO, as well as peroxisomal keto-acyl-CoA thiolase (KetoACoA) and mitochondrial malonyl-CoA decarboxylase (MCD), also were augmented greatly. However, the increase in ACO activity and MCD expression were different from CPTI, and significant interactions were observed between postnatal age and clofibrate administration. Furthermore, the expression of acetyl-CoA carboxylase β (ACCβ) decreased with postnatal age and clofibrate had no effect on its expression. Collectively these results demonstrate that the expression of PPARα target genes and the increase in fatty acid oxidation induced by clofibrate are time- and age-dependent in the liver of neonatal pigs. Although the induction patterns of CPTI, MCD, ACO, KetoACoA, and ACCβ are different during the early postnatal period, 4 days of exposure to clofibrate were sufficient to robustly accelerate fatty acid oxidation.
The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ndukwe Erlingsson, Uzochi Chimdinma; Iacobazzi, Francesco; Department of Basic Medical Sciences, University of Bari, Piazza Giulio Cesare 11, Policlinico, I-70124 Bari
Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacitymore » of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.« less
Improved synthesis of fine zinc borate particles using seed crystals
NASA Astrophysics Data System (ADS)
Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim
2009-03-01
Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).
Chang, Fangfang; Qu, Jiuhui; Liu, Huijuan; Liu, Ruiping; Zhao, Xu
2009-10-15
Fe-Mn binary oxide incorporated into diatomite (FMBO-diatomite) was prepared by a simple coating method, and exhibited high oxidation and adsorption ability for arsenite [As(III)]. After being incorporated by Fe-Mn binary oxide, the surface area of diatomite increased 36%, and the pore volume increased five times. The pHzpc of FMBO-diatomite was determined to be 8.1. These characteristics are responsible for the increased As(III) adsorption efficiency. The adsorption equilibria of As(III) on FMBO-diatomite were described well by a Langmuir isotherm model due to the homogeneous distribution of Fe-Mn binary oxide on a diatomite surface. As(III) was oxidized into As(V), and then adsorbed by FMBO-diatomite. The oxidation and adsorption efficiencies for As(III) depended deeply on the pH of solution. When the pH was raised to 8.1, the As(III) adsorption efficiency of FMBO-diatomite was almost equal to the As(III) oxidation efficiency. Silicate and phosphate had negative effects on As(III) adsorption. Also the influence of silicate and phosphate with the pH variation was different.
Plasma Oxidation Of Silver And Zinc In Low-Emissivity Stacks
NASA Astrophysics Data System (ADS)
Ross, R. C.; Sherman, R.,; Bunger, R. A.; Nadel, S. J.
1987-11-01
The oxidation of silver and zinc films was studied by exposing metallic films to low-power 02 plasmas and analyzing the reacted films. This type of oxidation is an important phenomenon near the barrier layer in sputter-deposited metal-oxide/Ag/metal-oxide low-emissivity (low-e) coatings. Barrier layers generally are deposited on the Ag layer to prevent its degradation during subsequent 02 reactive sputtering. Both individual layers and complete stacks were studied. In addition, the thermal stability of plasma-oxidized Ag was examined. There are several important findings for the individual layers. Ag oxidizes rapidly in the plasma, forming Ag≍1.70 after complete reaction. Relative to the original Ag, the 9ide has -l.7 times greater thick-ness, >10 times higher electrical resistiv-ity (p), and increased surface roughness. Zn oxidizes slowly, at only -1% to 0.1% times the rate for Ag, and is thus more difficult to characterize. The results for individual layers are discussed as they relate to practical pro-perties of low-e stacks: the difficulty of obtaining complete barrier layer oxidation without partially degrading the Ag layer as well as the effects of heat treatment and aging.
Kilicaslan, Alper; Gök, Funda; Erol, Atilla; Okesli, Selmin; Sarkilar, Gamze; Otelcioglu, Seref
2014-06-01
It has been shown that early placement of an intravenous line in children administered sevoflurane anesthesia increased the incidence of laryngospasm and movement. However, the optimal time for safe cannulation after the loss of the eyelash reflex during the administration of sevoflurane and nitrous oxide is not known. The aim of the study was to determine the optimum time for intravenous cannulation after the induction of anesthesia with sevoflurane and nitrous oxide in children premedicated with oral midazolam. We performed a prospective, observer-blinded, up-down sequential, allocation study, and children, aged 2-6 years, ASA physical status I, scheduled for an elective procedure undergoing inhalational induction were included in the study. Anesthesia was induced with sevoflurane and nitrous oxide after premedication with oral midazolam. For the first child, 4 min after the loss of the eyelash reflex, the intravenous cannulation was attempted by an experienced anesthesiologist. The time for intravenous cannulation was considered adequate if movement, coughing, or laryngospasm did not occur. The time for cannulation was increased by 15 s if the time was inadequate in the previous patient, and conversely, the time for cannulation was decreased by 15 s if the time was adequate in the previous patient. The probit test was used in the analysis of up-down sequences. A total of 32 children were enrolled sequentially during the study period. The adequate time for effective intravenous cannulation after induction with sevoflurane and nitrous oxide in 50% and 95% of patients were 1.29 min (95% confidence interval, 0.96-1.54 min) and 1.86 min (95% confidence interval 1.58-4.35 min), respectively. We recommend waiting 2 min for attempting intravenous placement following the loss of the eyelash reflex in children sedated with midazolam and receiving an inhalation induction with sevoflurane and nitrous oxide. © 2014 John Wiley & Sons Ltd.
Dong, Conglin; Yuan, Chengqing; Bai, Xiuqin; Li, Jian; Qin, Honglin; Yan, Xinping
2017-05-24
Stainless steel is widely used in strongly oxidizing hydrogen peroxide (H 2 O 2 ) environments. It is crucial to study its wear behaviour and failure mode. The tribological properties and oxidation of 304 stainless steel were investigated using a MMW-1 tribo-tester with a three-electrode setup in H 2 O 2 solutions with different concentrations. Corrosion current densities (CCDs), coefficients of frictions (COFs), wear mass losses, wear surface topographies, and metal oxide films were analysed and compared. The results show that the wear process and oxidation process interacted significantly with each other. Increasing the concentration of H 2 O 2 or the oxidation time was useful to form a layer of integrated, homogeneous, compact and thick metal oxide film. The dense metal oxide films with higher mechanical strengths improved the wear process and also reduced the oxidation reaction. The wear process removed the metal oxide films to increase the oxidation reaction. Theoretical data is provided for the rational design and application of friction pairs in oxidation corrosion conditions.
Diffusion Behavior of Mn and Si Between Liquid Oxide Inclusions and Solid Iron-Based Alloy at 1473 K
NASA Astrophysics Data System (ADS)
Kim, Sun-Joong; Tago, Hanae; Kim, Kyung-Ho; Kitamura, Shin-ya; Shibata, Hiroyuki
2018-06-01
In order to clarify the changes in the composition of oxide inclusions in steel, the effect of the metal and oxide composition on the reaction between solid Fe-based alloys and liquid multi-component oxides was investigated using the diffusion couple method at 1473 K. The measured concentration gradients of Mn and Si in the metal indicated that Mn diffused into the metal from the oxide, while the diffusion of Si occurred in the opposite direction. In addition, the MnO content in the oxide decreased with heat treatment time, while the SiO2 content increased. The compositional changes in both phases indicated that the Mn content in the metal near the interface increased with heat treatment with decreasing MnO content in the oxide. Assuming local equilibrium at the interface, the calculated [Mn]2/[Si] ratio at the interface in equilibrium with the oxide increased with increases in the MnO/SiO2 ratio in the oxide. The difference in the [Mn]2/[Si] ratios between the interface and the metal matrix increased, which caused the diffusion of Mn and Si between the multi-component oxide and metal. By measuring the diffusion lengths of Mn and Si in the metal, the chemical diffusion coefficients of Mn and Si were obtained to calculate the composition changes in Mn and Si in the metal. The calculated changes in Mn and Si in the metal agreed with the experimental results.
Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide.
Abdullayev, Elshad; Joshi, Anupam; Wei, Wenbo; Zhao, Yafei; Lvov, Yuri
2012-08-28
Halloysite clay tubes have 50 nm diameter and chemically different inner and outer walls (inner surface of aluminum oxide and outer surface of silica). Due to this different chemistry, the selective etching of alumina from inside the tube was realized, while preserving their external diameter (lumen diameter changed from 15 to 25 nm). This increases 2-3 times the tube lumen capacity for loading and further sustained release of active chemical agents such as metals, corrosion inhibitors, and drugs. In particular, halloysite loading efficiency for the benzotriazole increased 4 times by selective etching of 60% alumina within the tubes' lumens. Specific surface area of the tubes increased over 6 times, from 40 to 250 m(2)/g, upon acid treatment.
Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen.
Yeo, Boon Siang; Bell, Alexis T
2011-04-13
Scanning electron microscopy, linear sweep voltammetry, chronoamperometry, and in situ surface-enhanced Raman spectroscopy were used to investigate the electrochemical oxygen evolution reaction (OER) occurring on cobalt oxide films deposited on Au and other metal substrates. All experiments were carried out in 0.1 M KOH. A remarkable finding is that the turnover frequency for the OER exhibited by ∼0.4 ML of cobalt oxide deposited on Au is 40 times higher than that of bulk cobalt oxide. The activity of small amounts of cobalt oxide deposited on Pt, Pd, Cu, and Co decreased monotonically in the order Au > Pt > Pd > Cu > Co, paralleling the decreasing electronegativity of the substrate metal. Another notable finding is that the OER turnover frequency for ∼0.4 ML of cobalt oxide deposited on Au is nearly three times higher than that for bulk Ir. Raman spectroscopy revealed that the as-deposited cobalt oxide is present as Co(3)O(4) but undergoes progressive oxidation to CoO(OH) with increasing anodic potential. The higher OER activity of cobalt oxide deposited on Au is attributed to an increase in fraction of the Co sites present as Co(IV) cations, a state of cobalt believed to be essential for OER to occur. A hypothesis for how Co(IV) cations contribute to OER is proposed and discussed. © 2011 American Chemical Society
Study of the normal emissivity of molybdenum during thermal oxidation process
NASA Astrophysics Data System (ADS)
Xu, Yihan; Li, Longfei; Yu, Kun; Liu, Yufang
2018-04-01
The infrared normal spectral emissivity of the oxidized molybdenum was measured during thermal oxidation process, and the integral emissivity was calculated from the data of spectral emissivity. It is found that the surface oxidation has a remarkable effect on the spectral emissivity of molybdenum, and the spectral emissivity curves become more fluctuant with the increase in oxidation time. The integral emissivity grows exponentially with the oxidation time at 773 K, remains almost constant at 823 K, and fluctuates at 873 and 923 K. The X-ray fluorescence spectrometer, the X-ray diffraction, and the scanning electron microscopy were employed to analyze the changes in surface composition and surface morphology. The results show that the most probable reason for the variation of integral emissivity is the change in surface roughness caused by the variation in the size and shape of oxide particle on specimen surface.
Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp
2018-01-01
By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiCp/Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time. PMID:29682145
Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp.
Wang, Bin; Qu, Shengguan; Li, Xiaoqiang
2018-01-01
By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiC p /Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time.
Seager, C.H.; Evans, J.T. Jr.
1998-11-24
A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.
Seager, Carleton H.; Evans, Jr., Joseph Tate
1998-01-01
A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.
Effect of cyclic conditions on the dynamic oxidation of gas turbine superalloys
NASA Technical Reports Server (NTRS)
Johnston, J. R.; Ashbrook, R. L.
1974-01-01
The effects of operating parameters of a dynamic apparatus used to study oxidation and thermal fatigue of gas turbine materials were studied. IN-100, TD-NiCr, and WI-52 were tested at a maximum temperature of 1,090 deg C. Heating time per cycle was varied from 1/20 hr to 10 hr. Minimum temperatures between heating cycles were room temperature, 430 deg, and 650 deg C. Cooling air velocities were zero, Mach 0.7, and Mach 1. Increasing the number of cycles for a given time at temperature increased weight loss. Thermal fatigue was related to number of cycles more than to time at temperature.
Dell'Aquila, M. E.; Bogliolo, L.; Russo, R.; Martino, N. A.; Filioli Uranio, M.; Ariu, F.; Amati, F.; Sardanelli, A. M.; Linsalata, V.; Ferruzzi, M. G.; Cardinali, A.; Minervini, F.
2014-01-01
Verbascoside (VB) is a bioactive polyphenol from olive oil mill wastewater with known antioxidant activity. Oxidative stress is an emerging problem in assisted reproductive technology (ART). Juvenile ART is a promising topic because, in farm animals, it reduces the generation gap and, in human reproductive medicine, it helps to overcome premature ovarian failure. The aim of this study was to test the effects of VB on the developmental competence of ovine prepubertal oocytes and the bioenergetic/oxidative stress status of fresh and vitrified oocytes. In fresh oocytes, VB exerted prooxidant short-term effects, that is, catalase activity increase and uncoupled increases of mitochondria and reactive oxygen species (ROS) fluorescence signals, and long-term effects, that is, reduced blastocyst formation rate. In vitrified oocytes, VB increased ROS levels. Prooxidant VB effects in ovine prepubertal oocytes could be related to higher VB accumulation, which was found as almost one thousand times higher than that reported in other cell systems in previous studies. Also, long exposure times of oocytes to VB, throughout the duration of in vitro maturation culture, may have contributed to significant increase of oocyte oxidation. Further studies are needed to identify lower concentrations and/or shorter exposure times to figure out VB antioxidant effects in juvenile ARTs. PMID:24719893
Study of annealing time on sol-gel indium tin oxide films on glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, A.; Biswas, P.K.; Manara, J.
2007-07-15
Indium and tin salt-based precursors maintaining In:Sn atomic ratio as 90:10 were utilized for the development of sol-gel dip coated indium tin oxide films (ITO) on SiO{sub 2} coated ({approx} 200 nm thickness) soda lime silica glass substrate. The gel films were initially cured in air at {approx} 450 deg. C to obtain oxide films of physical thickness {approx} 250 nm. These were then annealed in 95% Ar-5% H{sub 2} atmosphere at {approx} 500 deg. C. The annealing time was varied from 0.5 h to 5 h. Variation of annealing time did not show any considerable change of transmittance inmore » the visible region. Thermal emissivity ({epsilon} {sub d}, 0.67-0.79) of the films were evaluated from their hemispherical spectral reflectance. These passed through a minima with increasing annealing time as the reflectivity of the films in the mid-IR passed through a maxima. The microstructure of the films revealed systematic growth of the ITO grains. XRD and XPS studies revealed the presence of both In and Sn metals in addition to the metal oxides. The energy dispersive X-ray (EDX) analysis showed little lowering of tin content in the films with increasing annealing time.« less
NASA Astrophysics Data System (ADS)
Kim, Tae-Ho; Hyun Song, Seok; Kim, Hyo-Jae; Oh, Seong-Hyeon; Han, Song-Yi; Kim, Goung; Nah, Yoon-Chae
2018-06-01
Herein, we report the effects of applied voltage on the electrochromic (EC) stability of poly(3-hexylthiophene) (P3HT) films during EC reactions. The transmittance difference and cycling stability of these films were monitored to optimize the oxidation voltage, and their chemical compositions were analyzed by X-ray photoelectron spectroscopy after long-term electrochemical cycling. High oxidation voltages increased the color contrast of P3HT films but decreased their cycling stability due to facilitating chemical degradation. Furthermore, at an optimized oxidation voltage, the retention time during potential pulsing was adjusted utilizing the optical memory of P3HT, revealing that the decreased voltage application time reduced power consumption by 9.6% and enhanced EC stability without loss of color contrast.
Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; ...
2016-03-08
An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowedmore » for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m –3 when LVOC fate corrected) compared to daytime (average 0.9 µg m –3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+ p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (>10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 4.4 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. To our knowledge this is the first time that this has been shown when comparing VOC concentrations with SOA formation measured at the same time, rather than comparing measurements made at different times. Several recently developed instruments have quantified ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). An SOA yield of 18–58 % from those compounds can explain the observed SOA formation. S/IVOCs were the only pool of gas-phase carbon that was large enough to explain the observed SOA formation. This work suggests that these typically unmeasured gases play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Lastly, these measurements help clarify the magnitude of potential SOA formation from OH oxidation in forested environments and demonstrate methods for interpretation of ambient OFR measurements.« less
NASA Astrophysics Data System (ADS)
Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.
2016-03-01
An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 4.4 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. To our knowledge this is the first time that this has been shown when comparing VOC concentrations with SOA formation measured at the same time, rather than comparing measurements made at different times. Several recently developed instruments have quantified ambient semivolatile and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). An SOA yield of 18-58 % from those compounds can explain the observed SOA formation. S/IVOCs were the only pool of gas-phase carbon that was large enough to explain the observed SOA formation. This work suggests that these typically unmeasured gases play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. These measurements help clarify the magnitude of potential SOA formation from OH oxidation in forested environments and demonstrate methods for interpretation of ambient OFR measurements.
NASA Astrophysics Data System (ADS)
Baris, A.; Restani, R.; Grabherr, R.; Chiu, Y.-L.; Evans, H. E.; Ammon, K.; Limbäck, M.; Abolhassani, S.
2018-06-01
A high burn-up Zircaloy-2 cladding is characterised in order to correlate its microstructure and composition to the change of oxidation and hydrogen uptake behaviour during long term service in the reactor. After 9 cycle of service, the chemical analysis of the cladding segment shows that most secondary phase particles (SPPs) have dissolved into the matrix. Fe and Ni are distributed homogenously in the metal matrix. Cr-containing clusters, remnants of the original Zr(Fe, Cr)2 type precipitates, are still present. Hydrides are observed abundantly in the metal side close to the metal-oxide interface. These hydrides have lower Fe and Ni concentration than that in the metal matrix. The three-dimensional (3D) reconstruction of the oxide and the metal-oxide interface obtained by Focused Ion Beam (FIB) tomography shows how the oxide microstructure has evolved with the number of cycles. The composition and microstructural changes in the oxide and the metal can be correlated to the oxidation kinetics and the H-uptake. It is observed that there is an increase in the oxidation kinetics and in the H-uptake between the third and the fifth cycles, as well as during the last two cycles. At the same time the volume fraction of cracks in the oxide significantly increased. Many fine cracks and pores exist in the oxide formed in the last cycle. Furthermore, the EPMA results confirm that this oxide formed at the last cycle reflects the composition of the metal at the metal-oxide interface after the long residence time in the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longo, Amelia F.; Feng, Yan; Lai, Barry
Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation statemore » became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.« less
Influence of atmospheric processes on the solubility and composition of iron in Saharan dust
Longo, Amelia F.; Feng, Yan; Lai, Barry; ...
2016-06-10
Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation statemore » became more reduced, and aerosol acidity increased. As a result, atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.« less
Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust.
Longo, Amelia F; Feng, Yan; Lai, Barry; Landing, William M; Shelley, Rachel U; Nenes, Athanasios; Mihalopoulos, Nikolaos; Violaki, Kalliopi; Ingall, Ellery D
2016-07-05
Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.
Atomic Oxygen Tailored Graphene Oxide Nanosheets Emissions for Multicolor Cellular Imaging.
Mei, Qingsong; Chen, Jian; Zhao, Jun; Yang, Liang; Liu, Bianhua; Liu, Renyong; Zhang, Zhongping
2016-03-23
Graphene oxide (GO) has been widely used as a fluorescence quencher, but its luminescent properties, especially tailor-made controlling emission colors, have been seldom reported due to its heterogeneous structures. Herein, we demonstrated a novel chemical oxidative strategy to tune GO emissions from brown to cyan without changing excitation wavelength. The precise tuning is simply achieved by varying reaction times of GO nanosheets in piranha solution, but there is no need for complex chromatography separation procedures. With increasing reaction times, oxygen content on the lattice of GO nanosheets increased, accompanied by the diminution of their sizes and sp(2) conjugation system, resulting in an increase of emissive carbon cluster-like states. Thereby, the luminescent colors of GO were tuned from brown to yellow, green, and cyan, and its fluorescent quantum yields were enhanced. The obtained multicolored fluorescent GO nanosheets would open plenty of novel applications in cellular imaging and multiplex encoding analysis.
Xing, Zhilin; Zhao, Tiantao; Gao, Yanhui; He, Zhi; Zhang, Lijie; Peng, Xuya; Song, Liyan
2017-10-01
Real-time CH 4 oxidation in a landfill cover soil was studied using automated gas sampling that determined biogas (CH 4 and CO 2 ) and O 2 concentrations at various depths in a simulated landfill cover soil (SLCS) column reactor. The real-time monitoring system obtained more than 10,000 biogas (CH 4 and CO 2 ) and O 2 data points covering 32 steady states of CH 4 oxidation with 32 different CH 4 fluxes (0.2-125mol·m -2 ·d -1 ). The kinetics of CH 4 oxidation at different depths (0-20cm, 20-40cm, and 40-60cm) of SLCS were well fit by a CH 4 -O 2 dual-substrate model based on 32 values (averaged, n=5-15) of equilibrated CH 4 concentrations. The quality of the fit (R 2 ranged from 0.90 to 0.96) was higher than those reported in previous studies, which suggests that real time monitoring is beneficial for CH 4 oxidation simulations. MiSeq pyrosequencing indicated that CH 4 flux events changed the bacterial community structure (e.g., increased the abundance of Bacteroidetes and Methanotrophs) and resulted in a relative increase in the amount of type I methanotrophs (Methylobacter and Methylococcales) and a decrease in the amount of type II methanotrophs (Methylocystis). Copyright © 2017 Elsevier Ltd. All rights reserved.
Endurance exercise, plasma oxidation and cardiovascular risk.
Sharman, James E; Geraghty, Dominic P; Shing, Cecilia M; Fraser, David I; Coombes, Jeff S
2004-12-01
Although physical activity is beneficial to health, people who exercise at high intensities throughout their lifetime may have increased cardiovascular risk. Aerobic exercise increases oxidative stress and may contribute to atherogenesis by augmented oxidation of plasma lipoproteins. The aim of this study was to examine the relationship between aerobic power and markers of oxidative stress, including the susceptibility of plasma to oxidation. Aerobic power was measured in 24 healthy men aged 29+/-9 years (mean+/-SD). Plasma was analysed from subjects of high aerobic power (HAP; VO2max, 64.6+/-6.1 ml/kg/min) and lower aerobic power (LAP;VO2max, 45.1+/-6.3 ml/kg/min) for total antioxidant capacity (TAC), malondialdehyde (MDA) and susceptibility to oxidation. Three measures were used to quantify plasma oxidizability: (1) lag time to conjugated diene formation (lag time); (2) change in absorbance at 234 nm and; (3) slope of the oxidation curve during propagation (slope). The HAP subjects had significantly lower TAC (1.38+/-0.04 versus 1.42+/-0.06 TEAC units; P < 0.05), significantly higher change in absorbance (1.55+/-0.21 versus 1.36+/-0.17 arbitrary units; P < 0.05), but no difference in MDA (P = 0.6), compared to LAP subjects. There was a significant inverse association between TAC and slope (r = -0.49; P < 0.05). Lipoprotein profiles and daily intake of nutrients did not differ between the groups. These findings suggest that people with high aerobic power, due to extreme endurance exercise, have plasma with decreased antioxidant capacity and higher susceptibility to oxidation, which may increase their cardiovascular risk.
Mao, Ling-Feng; Ning, Huansheng; Li, Xijun
2015-12-01
We report theoretical study of the effects of energy relaxation on the tunneling current through the oxide layer of a two-dimensional graphene field-effect transistor. In the channel, when three-dimensional electron thermal motion is considered in the Schrödinger equation, the gate leakage current at a given oxide field largely increases with the channel electric field, electron mobility, and energy relaxation time of electrons. Such an increase can be especially significant when the channel electric field is larger than 1 kV/cm. Numerical calculations show that the relative increment of the tunneling current through the gate oxide will decrease with increasing the thickness of oxide layer when the oxide is a few nanometers thick. This highlights that energy relaxation effect needs to be considered in modeling graphene transistors.
NASA Astrophysics Data System (ADS)
Ward, P. L.
2008-12-01
The atmosphere cleans itself by oxidizing pollutants. The primary oxidant is the hydroxyl radical (OH) formed by photodissociation of ozone in the near ultra-violet. Ozone and OH are in limited supply. Sulfur dioxide (SO2) absorbs near ultraviolet light limiting production of OH and reacts immediately with any available OH, forming sulfuric acid. Methane reacts more slowly with OH and will typically not be oxidized until there is little SO2. Thus a high concentration of methane indicates low oxidizing capacity. The rate at which SO2 is injected into the atmosphere controls oxidizing capacity and climate change in four ways: 1. Moderate rate: Large volcanic eruptions (VEI >=6) lower global temperatures for a few years when they are separated by years to decades so the oxidizing capacity of the atmosphere can fully recover. In 1991, Pinatubo volcano in the Philippines erupted 20 Mt SO2 and 491 Mt H2O, the largest volcanic eruption since 1912. The SO2 was oxidized primarily by OH to form a 99% pure aerosol of sulfuric acid and water at an elevation of 20-23 km. This aerosol reflected sunlight, lowering the world's temperature on average 0.4°C for three years. Ozone levels were reduced by 10%. Methane increased by 15 ppb for a year. The e-folding time for SO2 was 35 days. 2. High rate: When large eruptions occur once to several times per year, there is insufficient oxidizing capacity leading to increases in methane and other greenhouse gases and global warming. There were 15 times in the Holocene when large volcanoes erupted on average at least every year for 7 to 21 years. Man is now putting as much SO2 from burning fossil fuels into the atmosphere every year as one large volcano, causing current global warming. The two previous times were from 818-838 AD, the onset of the Medieval Warming Period, and from 180-143 BC, the onset of the Roman Warm Period. 3. Low rate: When there are no large eruptions for decades, the oxidizing capacity can catch up, cleaning the atmosphere, removing most of the methane and other pollutants. A clean atmosphere leads to cooling and drought. The 8.2 ka event is a classic example, but similar decadal droughts around 6.2, 5.8, 5.4, 4.2, and 2.9 ka caused the demise of major civilizations. 4. Extreme rate: Whereas large volcanic eruptions produce 10-1000 km3 of andesitic and silicic tephra, flood basalt eruptions produce as much as 3,000,000 km3 of basalt containing 10 to 100 times more SO2 per km3. The result is runaway global warming, widespread acid rain, and mass extinctions. The link between SO2 and global warming is good news because we have developed many efficient technologies that burn fossil fuels with less SO2 emission and scrub SO2 out of smoke stacks. Efforts to reduce acid rain have been successful in reducing manmade emissions of SO2 by >20% since 1980 and thereby reducing methane concentrations. Sudden increases in methane during the Pleistocene Dansgaard-Oeschger events follow sudden increases in volcanism. High rainfall especially in the Sahara and high methane concentrations in the early Holocene are clearly related to increased volcanism that brought about the end of the Ice Age. Increases in global warming at 3170 BC, 161 BC, and 828 AD are contemporaneous with short-term increases in methane. The rapid increase in SO2 from burning fossil fuels since 1850 can explain much of the corresponding rapid increase in methane. But during the last 5000 years, volcanism has been relatively constant and thus it can not explain the observed gradual increase in methane.
NASA Astrophysics Data System (ADS)
Ahn, D. U.; Nam, K. C.
2004-09-01
Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.
Chromium uptake and consequences for metabolism and oxidative stress in chamomile plants.
Kováčik, Jozef; Babula, Petr; Klejdus, Bořivoj; Hedbavny, Josef
2013-08-21
Chromium Cr(III) toxicity toward chamomile metabolism and oxidative stress-related parameters after 7 days of exposure was studied. Cr preferentially accumulated in the roots and evoked extensive both dose-dependent and dose-independent increase in fluorescence signals of ROS, NO and thiols. Superoxide increased mainly at the highest Cr dose, whereas H2O2 accumulation revealed a discontinuous trend in relation to external Cr supply, and this could be owing to variation in activities of peroxidases. Glutathione and ascorbate quantification, using LC-MS/MS equipment, revealed strong stimulation despite low shoot Cr amounts. Phenolic enzyme activities, except for PAL, were depressed by Cr presence, whereas phenolic metabolites were stimulated, indicating various time dynamics. Among free amino acids, their sum and even proline decreased in the roots, whereas soluble proteins increased. Mineral nutrients showed negligible responses with only Zn and Cu being depleted in both shoots and roots. Cr staining using Cr(III)-specific (naphthalimide-rhodamine) and metal nonspecific (Phen Green) dyes indicated that the former correlated well with AAS quantification of Cr amount. Use of Phen Green is also discussed. These data indicate that Cr-induced oxidative stress is not simply a function of exposure time and applied concentration. Microscopic observations in terms of oxidative stress and chromium uptake are presented here for the first time.
Estimating Agricultural Nitrous Oxide Emissions
USDA-ARS?s Scientific Manuscript database
Nitrous oxide emissions are highly variable in space and time and different methodologies have not agreed closely, especially at small scales. However, as scale increases, so does the agreement between estimates based on soil surface measurements (bottom up approach) and estimates derived from chang...
NASA Astrophysics Data System (ADS)
Yang, S.; Aoki, Y.; Habazaki, H.
2011-07-01
Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.
NASA Astrophysics Data System (ADS)
Horita, Susumu; Jain, Puneet
2017-08-01
A low-temperature silcon oxide film was deposited at 160 to 220 °C using an atmospheric pressure CVD system with silicone oil vapor and ozone gases. It was found that the deposition rate is markedly increased by adding trichloroethylene (TCE) vapor, which is generated by bubbling TCE solution with N2 gas flow. The increase is more than 3 times that observed without TCE, and any contamination due to TCE is hardly observed in the deposited Si oxide films from Fourier transform infrared spectra.
Guo, Jia; Jiang, Xianjun; Zhou, Xue; Meng, Yao; Jia, Zhongjun
2016-06-04
This study was aimed to elucidate the effect of periodic flooding-drying to ecological processes of ammonia oxidizers in the hydro-fluctuation belt of the Three Gorges Reservoir. Soil samples were collected at thee altitudes in regions of Wanzhou, Fengdu and Changshou, representing 8, 5 and 0 times floodingdrying management, respectively. Soil physiochemical properties were analyzed and microcosms were constructed to monitor nitrification activity by fertilizing soils with ammonium substrate. Real-time PCR was used to quantify the population size of ammonia-oxidizing archaea (AOA) and bacteria (AOB). DGGE fingerprints and clone libraries were conducted to study the shift of AOA and AOB compositions in nitrifying soils. Among the physiochemical characteristics of the soils, soil organic matter and total phosphates increased along with cycle increasing. After incubation for 13 days, the net nitrification rates of the samples with 8 cycles exceeded those with 5 cycles. The quantities of both AOA and AOB have increased during the incubation. Phylogenetic analysis showed that AOA were placed within the soil group 1.1b and soil group 1.1a, while bacterial ammonia oxidizers were closely related to Nitrosospira and Cluster 0. Periodical flooding-drying increased soil organic matter, enhanced soil nitrification activity and likely played important roles in shaping community structures of soil ammonia oxidizers.
Susman, Mariano D; Feldman, Yishai; Bendikov, Tatyana A; Vaskevich, Alexander; Rubinstein, Israel
2017-08-31
Oxidation and corrosion reactions have a major effect on the application of non-noble metals. Kinetic information and simple theoretical models are often insufficient for describing such processes in metals at the nanoscale, particularly in cases involving formation of internal voids (nano Kirkendall effect, NKE) during oxidation. Here we study the kinetics of solid-state oxidation of chemically-grown copper nanoparticles (NPs) by in situ localized surface plasmon resonance (LSPR) spectroscopy during isothermal annealing in the range 110-170 °C. We show that LSPR spectroscopy is highly effective in kinetic studies of such systems, enabling convenient in situ real-time measurements during oxidation. Change of the LSPR spectra throughout the oxidation follows a common pattern, observed for different temperatures, NP sizes and substrates. The well-defined initial Cu NP surface plasmon (SP) band red-shifts continuously with oxidation, while the extinction intensity initially increases to reach a maximum value at a characteristic oxidation time τ, after which the SP intensity continuously drops. The characteristic time τ is used as a scaling parameter for the kinetic analysis. Evolution of the SP wavelength and extinction intensity during oxidation at different temperatures follows the same kinetics when the oxidation time is normalized to τ, thus pointing to a general oxidation mechanism. The characteristic time τ is used to estimate the activation energy of the process, determined to be 144 ± 6 kJ mol -1 , similar to previously reported values for high-temperature Cu thermal oxidation. The central role of the NKE in the solid-state oxidation process is revealed by electron microscopy, while formation of Cu 2 O as the major oxidation product is established by X-ray diffraction, XPS, and electrochemical measurements. The results indicate a transition of the oxidation mechanism from a Valensi-Carter (VC) to NKE mechanism with the degree of oxidation. To interpret the optical evolution during oxidation, Mie scattering solutions for metal core-oxide shell spherical particles are computed, considering formation of Kirkendall voids. The model calculations are in agreement with the experimental results, showing that the large red-shift of the LSPR band during oxidation is the result of Kirkendall voiding, thus establishing the major role of the NKE in determining the optical behavior of such systems.
NASA Astrophysics Data System (ADS)
Shriwastaw, R. S.; Sawarn, Tapan K.; Banerjee, Suparna; Rath, B. N.; Dubey, J. S.; Kumar, Sunil; Singh, J. L.; Bhasin, Vivek
2017-09-01
The present study involves the estimation of ring tensile properties of Indian Pressurised Heavy Water Reactor (IPHWR) fuel cladding made of Zircaloy-4, subjected to experiments under a simulated loss-of-coolant-accident (LOCA) condition. Isothermal steam oxidation experiments were conducted on clad tube specimens at temperatures ranging from 900 to 1200 °C at an interval of 50 °C for different soaking periods with subsequent quenching in water at ambient temperature. The specimens, which survived quenching, were then subjected to ambient temperature ring tension test (RTT). The microstructure was correlated with the mechanical properties. The yield strength (YS) and ultimate tensile strength (UTS) increased initially with rise in oxidation temperature and time duration but then decreased with further increase in oxidation. Ductility is adversely affected with rising oxidation temperature and longer holding time. A higher fraction of load bearing phase and lower oxygen content in it ensures higher residual ductility. Cladding shows almost zero ductility behavior in RIT when load bearing phase fraction is less than 0.72 and its average oxygen concentration is greater than 0.58 wt%.
Filgueras, R S; Gatellier, P; Zambiazi, R C; Santé-Lhoutellier, V
2011-08-01
This study was conducted to evaluate the effect of frozen storage time (30, 60, 90 or 180 days) and cooking (100 °C, 30 min) on the physical characteristics and oxidative stability of M. Gastrocnemius pars interna (GN) and M. Iliofiburalis (IF) of rhea americana. Physical parameters measured included thawing and cooking loss, colour parameters (L*a*b*), while oxidation was assessed by determining the TBA-RS, carbonyl and aromatic amino acid content. Prolonged frozen storage of rhea meat decreased lightness (L*), yellowness (b*), and increased the discoloration parameter hue angle and redness a*. During storage, muscle IF was more prone to lipid and myoglobin oxidation than muscle GN. Cooking loss declined with the increase of storage time and was higher in GN than in IF muscle. With cooking, TBA-RS, carbonyl content, and aromatic amino acids (phenylalanine, tyrosine, and tryptophan) were highly affected, but the extent of oxidation ranged according to muscle and duration of frozen storage. Copyright © 2011 Elsevier Ltd. All rights reserved.
Studies on the effects of aspartame on memory and oxidative stress in brain of mice.
Abdel-Salam, O M E; Salem, N A; El-Shamarka, M E S; Hussein, J S; Ahmed, N A S; El-Nagar, M E S
2012-12-01
The dipeptide aspartame (N-L-alpha-aspartyl-Lphenylalanine, 1-methyl ester; alpha-APM) is one of the most widely used artificial sweeteners. The present study aimed to investigate the effect of repeated administration of aspartame in the working memory version of Morris water maze test, on oxidative stress and brain monoamines in brain of mice. Aspartame (0.625, 1.875 or 5.625 mg/kg) was administered once daily subcutaneously for 2 weeks and mice were examined four times a week for their ability to locate a submerged plate. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide levels (the concentrations of nitrite/nitrate) and glucose were determined in brain. Only at the highest dose of 5.625 mg/kg, did aspartame significantly impaired water maze performance. The mean time taken to find the escape platform (latency) over 2 weeks was significantly delayed by aspartame 5.625 mg/kg, compared with the saline-treated control group. Significant differences occurred only on the first trial to find the escape platform. Significant increase in brain MDA by 16.5% and nitric oxide by 16.2% and a decrease in GSH by 25.1% and glucose by 22.5% occurred after treatment with aspartame at 1.875 mg/kg. Aspartame administered at 5.625 mg/kg significantly increased brain MDA by 43.8%, nitric oxide by 18.6% and decreased GSH by 32.7% and glucose by 25.8%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline and dopamine. These findings suggest impaired memory performance and increased brain oxidative stress by repeated aspartame administration. The impaired memory performance is likely to involve increased oxidative stress as well as decreased brain glucose availability.
Hort, Ryan D; Revil, André; Munakata-Marr, Junko
2014-09-01
Time lapse resistivity surveys could potentially improve monitoring of permanganate-based in situ chemical oxidation (ISCO) of organic contaminants such as trichloroethene (TCE) by tracking changes in subsurface conductivity that result from injection of permanganate and oxidation of the contaminant. Bulk conductivity and pore fluid conductivity changes during unbuffered TCE oxidation using permanganate are examined through laboratory measurements and conductivity modeling using PHREEQC in fluid samples and porous media samples containing silica sand. In fluid samples, oxidation of one TCE molecule produces three chloride ions and one proton, resulting in an increase in fluid electrical conductivity despite the loss of two permanganate ions in the reaction. However, in saturated sand samples in which up to 8mM TCE was oxidized, at least 94% of the fluid conductivity associated with the presence of protons was removed within 3h of sand contact, most likely through protonation of silanol groups found on the surface of the sand grains. Minor conductivity effects most likely associated with pH-dependent reductive dissolution of manganese dioxide were also observed but not accounted for in pore-fluid conductivity modeling. Unaccounted conductivity effects resulted in an under-calculation of post-reaction pore fluid conductivity of 2.1% to 5.5%. Although small increases in the porous media formation factor resulting from precipitation of manganese dioxide were detected (about 3%), these increases could not be confirmed to be statistically significant. Both injection of permanganate and oxidation of TCE cause increases in bulk conductivity that would be detectable through time-lapse resistivity surveys in field conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization
NASA Astrophysics Data System (ADS)
Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu
2017-06-01
The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.
NASA Astrophysics Data System (ADS)
Pawar, V.; Weaver, C.; Jani, S.
2011-05-01
Zirconium and particularly Zr-2.5 wt%Nb (Zr2.5Nb) alloy are useful for engineering bearing applications because they can be oxidized in air to form a hard surface ceramic. Oxidized zirconium (OxZr) due to its abrasion resistant ceramic surface and biocompatible substrate alloy has been used as a bearing surface in total joint arthroplasty for several years. OxZr is characterized by hard zirconium oxide (oxide) formed on Zr2.5Nb using one step thermal oxidation carried out in air. Because the oxide is only at the surface, the bulk material behaves like a metal, with high toughness. The oxide, furthermore, exhibits high adhesion to the substrate because of an oxygen-rich diffusion hardened zone (DHZ) interposing between the oxide and the substrate. In this study, we demonstrate a two step process that forms a thicker DHZ and thus increased depth of hardening than that can be obtained using a one step oxidation process. The first step is thermal oxidation in air and the second step is a heat treatment in vacuum. The second step drives oxygen from the oxide formed in the first step deeper into the substrate to form a thicker DHZ. During the process only a portion of the oxide is dissolved. This new composition (DHOxZr) has approximately 4-6 μm oxide similar to that of OxZr. The nano-hardness of the oxide is similar but the DHZ is approximately 10 times thicker. The stoichiometry of the oxide is similar and a secondary phase rich in oxygen is present through the entire thickness. Due to the increased depth of hardening, the critical load required for the onset of oxide cracking is approximately 1.6 times more than that of the oxide of OxZr. This new composition has a potential to be used as a bearing surface in applications where greater depth of hardening is required.
Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben.
Zhang, Jing; Sun, Bo; Guan, Xiaohong; Wang, Hui; Bao, Hongliang; Huang, Yuying; Qiao, Junlian; Zhou, Gongming
2013-11-19
This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.
Radiation-induced deposition of transparent conductive tin oxide coatings
NASA Astrophysics Data System (ADS)
Umnov, S.; Asainov, O.; Temenkov, V.
2016-04-01
The study of tin oxide films is stimulated by the search for an alternative replacement of indium-tin oxide (ITO) films used as transparent conductors, oxidation catalysts, material gas sensors, etc. This work was aimed at studying the influence of argon ions irradiation on optical and electrical characteristics of tin oxide films. Thin films of tin oxide (without dopants) were deposited on glass substrates at room temperature using reactive magnetron sputtering. After deposition, the films were irradiated with an argon ion beam. The current density of the beam was (were) 2.5 mA/cm2, and the particles energy was 300-400 eV. The change of the optical and electrical properties of the films depending on the irradiation time was studied. Films optical properties were investigated by photometry in the range of 300-1100 nm. Films structural properties were studied using X-ray diffraction. The diffractometric research showed that the films, deposited on a substrate, had a crystal structure, and after argon ions irradiation they became quasi-crystalline (amorphous). It has been found that the transmission increases proportionally with the irradiation time, however the sheet resistance increases disproportionally. Tin oxide films (thickness ~30 nm) with ~100% transmittance and sheet resistance of ~100 kOhm/sq. were obtained. The study has proved to be prospective in the use of ion beams to improve the properties of transparent conducting oxides.
The physical properties of accelerated Portland cement for endodontic use.
Camilleri, J
2008-02-01
To investigate the physical properties of a novel accelerated Portland cement. The setting time, compressive strength, pH and solubility of white Portland cement (Lafarge Asland; CEM 1, 52.5 N) and accelerated Portland cement (Proto A) produced by excluding gypsum from the manufacturing process (Aalborg White) and a modified version with 4 : 1 addition of bismuth oxide (Proto B) were evaluated. Proto A set in 8 min. The compressive strength of Proto A was comparable with that of Portland cement at all testing periods (P > 0.05). Additions of bismuth oxide extended the setting time and reduced the compressive strength (P < 0.05). Both cements and storage solution were alkaline. All cements tested increased by >12% of their original weight after immersion in water for 1 day with no further absorption after 28 days. Addition of bismuth oxide increased the water uptake of the novel cement (P < 0.05). The setting time of Portland cement can be reduced by excluding the gypsum during the last stage of the manufacturing process without affecting its other properties. Addition of bismuth oxide affected the properties of the novel cement. Further investigation on the effect that bismuth oxide has on the properties of mineral trioxide aggregate is thus warranted.
Razinger, Jaka; Drinovec, Luka; Zrimec, Alexis
2010-12-01
An ultra-sensitive digital imaging system was employed to visualize oxidative stress in intact L. minor plants exposed to Cd, Cu, menadione, AAPH, and ascorbate in real time. The increase of ROS production was assessed by measuring the rate of fluorescence intensity increases of the test medium supplemented with a fluorescing probe (dichlorofluorescein diacetate). The addition of 100 μM CdCl₂ or 100 μM CuSO₄ to the growth medium resulted in a significant increase of medium fluorescence. Additionally, CuSO₄ caused a significantly higher fluorescence intensity than CdCl₂ did. A strong positive correlation (R² = 0.99) between menadione concentration and fluorescence intensity was observed. The positive correlation between AAPH concentration and fluorescence intensity was not as strong as in the case of menadione (R² = 0.81). Menadione induced a stronger oxidative stress than similar concentration of AAPH. The addition of 100 μM ascorbate to L. minor treated with 50 μM menadione significantly reduced the fluorescence intensity increase. A linear trend of the fluorescence increase was observed in all treatments, indicating that chemical-induced oxidative stress is a gradual process and that the applied concentrations of the chemicals caused a constant increased production of ROS with different intensities, depending on the treatment. This is the combined result of a gradual diminishing of antioxidant reserves and accumulating oxidative damage. The observed rates of ROS production were slower than those in the studies using cell cultures. Copyright © 2009 Wiley Periodicals, Inc.
Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor
NASA Astrophysics Data System (ADS)
Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan
2013-03-01
The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.
Oxidation of RyR2 Has a Biphasic Effect on the Threshold for Store Overload-Induced Calcium Release.
Waddell, Helen M M; Zhang, Joe Z; Hoeksema, Katie J; McLachlan, Julia J; McLay, Janet C; Jones, Peter P
2016-06-07
At the single-channel level, oxidation of the cardiac ryanodine receptor (RyR2) is known to activate and inhibit the channel depending on the level of oxidation. However, the mechanisms through which these changes alter the activity of RyR2 in a cellular setting are poorly understood. In this study, we determined the effect of oxidation on a common form of RyR2 regulation; store overload-induced Ca(2+) release (SOICR). We found that oxidation resulted in concentration and time-dependent changes in the activation threshold for SOICR. Low concentrations of the oxidant H2O2 resulted in a decrease in the threshold for SOICR, which led to an increase in SOICR events. However, higher concentrations of H2O2, or prolonged exposure, reversed these changes and led to an increase in the threshold for SOICR. This increase in the threshold for SOICR in most cells was to such an extent that it led to the complete inhibition of SOICR. Acute exposure to high concentrations of H2O2 led to an initial decrease and then increase in the threshold for SOICR. In the majority of cells the increased threshold could not be reversed by the application of the reducing agent dithiothreitol. Therefore, our data suggest that low levels of RyR2 oxidation increase the channel activity by decreasing the threshold for SOICR, whereas high levels of RyR2 oxidation irreversibly increase the threshold for SOICR leading to an inhibition of RyR2. Combined, this indicates that oxidation regulates RyR2 by the same mechanism as phosphorylation, methylxanthines, and mutations, via changes in the threshold for SOICR. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Chowdhury, Vishwajit S; Tomonaga, Shozo; Ikegami, Taro; Erwan, Edi; Ito, Kentaro; Cockrem, John F; Furuse, Mitsuhiro
2014-03-01
High ambient temperatures (HT) reduce food intake and body weight in young chickens, and HT can cause increased expression of hypothalamic neuropeptides. The mechanisms by which HT act, and the effects of HT on cellular homeostasis in the brain, are however not well understood. In the current study lipid peroxidation and amino acid metabolism were measured in the brains of 14 d old chicks exposed to HT (35 °C for 24- or 48-h) or to control thermoneutral temperature (CT; 30 °C). Malondialdehyde (MDA) was measured in the brain to determine the degree of oxidative damage. HT increased body temperature and reduced food intake and body weight gain. HT also increased diencephalic oxidative damage after 48 h, and altered some free amino acid concentrations in the diencephalon. Diencephalic MDA concentrations were increased by HT and time, with the effect of HT more prominent with increasing time. HT altered cystathionine, serine, tyrosine and isoleucine concentrations. Cystathionine was lower in HT birds compared with CT birds at 24h, whilst serine, tyrosine and isoleucine were higher at 48 h in HT birds. An increase in oxidative damage and alterations in amino acid concentrations in the diencephalon may contribute to the physiological, behavioral and thermoregulatory responses of heat-exposed chicks. Copyright © 2013 Elsevier Inc. All rights reserved.
Evaluation of oxidative stress in hunting dogs during exercise.
Pasquini, A; Luchetti, E; Cardini, G
2010-08-01
Exercise has been shown to increase the production of reactive oxygen species (ROS) to a point that can exceed antioxidant defenses, to cause oxidative stress. The aim of our trials was to evaluate oxidative stress and recovery times in trained dogs during two different hunting exercises, with reactive oxygen metabolites-derivatives (d-ROMs) and biological antioxidant potential (BAP) tests. A group of nine privately owned Italian hounds were included. A 20-min aerobic exercise and a 4-h aerobic exercise, after 30 days of rest, were performed by the dogs. Our results show an oxidative stress after exercise due to both the high concentration of oxidants (d-ROMs) and the low level of antioxidant power (BAP). Besides, the recovery time is faster after the 4-h aerobic exercise than the 20-min aerobic exercise. Oxidative stress monitoring during dogs exercise could become an interesting aid to establish ideal adaptation to training. Copyright 2010 Elsevier Ltd. All rights reserved.
Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan
2014-01-01
The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.
Research on Oxidation Wear Behavior of a New Hot Forging Die Steel
NASA Astrophysics Data System (ADS)
Shi, Yuanji; Wu, Xiaochun
2018-01-01
Dry sliding tests for the hot forging die steel DM were performed in air under the test temperature at 400-700 °C and the time of 0.5-4 h by a UMT-3 high-temperature wear tester. The wear behavior and characteristics were studied systematically to explore the general characters in severe oxidation conditions. The results showed that a mild-to-severe oxidation wear transition occurred with an increase in the test temperature and duration. The reason was clarified as the unstable M6C carbides coarsening should be responsible for the severe delamination of tribo-oxide layer. More importantly, an intense oxidation wear with lower wear rates was found when the experimental temperature reaches 700 °C or after 4 h of test time at 600 °C, which was closely related to the degradation behavior during wear test. Furthermore, a new schematic diagram of oxidation wear of DM steel was proposed.
Jalowicka, A.; Duan, R.; Huczkowski, P.; ...
2015-09-25
An accurate procedure for predicting oxidation-induced damage and lifetime limits is crucial for the reliable operation of high-temperature metallic components in practical applications. In order to develop a predictive oxidation lifetime model for Ni–Cr alloys, specimens of wrought NiCrW alloy 230 with different thicknesses were cyclically oxidized in air at 950–1050°C for up to 3000 h. After prolonged exposure, two types of carbides as well as a Cr-rich nitride (π-phase) precipitated in the γ-Ni matrix. In the case of oxidation-induced loss of Cr from the alloy resulted in the formation of subscale zones, which were free of the Cr-rich carbidemore » and nitride but also of the Ni-W rich M 6C. The width of the M 6C-free zone was smaller than that free of the Cr-rich precipitates. Thermodynamic and diffusion calculations of the observed time- and temperature-dependent Cr depletion processes identified that back diffusion of C occurred which resulted in an increased volume fraction of M 23C 6 in the specimen core. Moreover, with increasing time and temperature, the amount of π-phase in the specimen core increased. The subscale depletion of the initially present Cr-nitrides and the formation of Cr-nitrides in the specimen center is believed to be related to a mechanism which is qualitatively similar to that described for the Cr carbide enrichment. However, with increasing time and decreasing specimen thickness, N uptake from the atmosphere becomes apparent. As a result, the precipitates present in the specimen center eventually consisted almost exclusively of nitrides.« less
Smith, JohnEric W; Zachwieja, Jeffrey J; Péronnet, François; Passe, Dennis H; Massicotte, Denis; Lavoie, Carole; Pascoe, David D
2010-06-01
Endurance performance and fuel selection while ingesting glucose (15, 30, and 60 g/h) was studied in 12 cyclists during a 2-h constant-load ride [approximately 77% peak O2 uptake] followed by a 20-km time trial. Total fat and carbohydrate (CHO) oxidation and oxidation of exogenous glucose, plasma glucose, glucose released from the liver, and muscle glycogen were computed using indirect respiratory calorimetry and tracer techniques. Relative to placebo (210+/-36 W), glucose ingestion increased the time trial mean power output (%improvement, 90% confidence limits: 7.4, 1.4 to 13.4 for 15 g/h; 8.3, 1.4 to 15.2 for 30 g/h; and 10.7, 1.8 to 19.6 for 60 g/h glucose ingested; effect size=0.46). With 60 g/h glucose, mean power was 2.3, 0.4 to 4.2% higher, and 3.1, 0.5 to 5.7% higher than with 30 and 15 g/h, respectively, suggesting a relationship between the dose of glucose ingested and improvements in endurance performance. Exogenous glucose oxidation increased with ingestion rate (0.17+/-0.04, 0.33+/-0.04, and 0.52+/-0.09 g/min for 15, 30, and 60 g/h glucose), but endogenous CHO oxidation was reduced only with 30 and 60 g/h due to the progressive inhibition of glucose released from the liver (probably related to higher plasma insulin concentration) with increasing ingestion rate without evidence for muscle glycogen sparing. Thus ingestion of glucose at low rates improved cycling time trial performance in a dose-dependent manner. This was associated with a small increase in CHO oxidation without any reduction in muscle glycogen utilization.
NASA Astrophysics Data System (ADS)
Jalowicka, A.; Duan, R.; Huczkowski, P.; Chyrkin, A.; Grüner, D.; Pint, B. A.; Unocic, K. A.; Quadakkers, W. J.
2015-11-01
An accurate procedure for predicting oxidation-induced damage and lifetime limits is crucial for the reliable operation of high-temperature metallic components in practical applications. In order to develop a predictive oxidation lifetime model for Ni-Cr alloys, specimens of wrought NiCrW alloy 230 with different thicknesses were cyclically oxidized in air at 950-1050°C for up to 3000 h. After prolonged exposure, two types of carbides as well as a Cr-rich nitride (π-phase) precipitated in the γ-Ni matrix. The oxidation-induced loss of Cr from the alloy resulted in the formation of subscale zones, which were free of the Cr-rich carbide and nitride but also of the Ni-W rich M6C. The width of the M6C-free zone was smaller than that free of the Cr-rich precipitates. Thermodynamic and diffusion calculations of the observed time- and temperature-dependent Cr depletion processes identified that back diffusion of C occurred which resulted in an increased volume fraction of M23C6 in the specimen core. With increasing time and temperature, the amount of π-phase in the specimen core increased. The subscale depletion of the initially present Cr-nitrides and the formation of Cr-nitrides in the specimen center is believed to be related to a mechanism which is qualitatively similar to that described for the Cr carbide enrichment. However, with increasing time and decreasing specimen thickness, N uptake from the atmosphere becomes apparent. As a result, the precipitates present in the specimen center eventually consisted almost exclusively of nitrides.
Mechanical properties experimental investigation of HTPB propellant after thermal accelerated aging
NASA Astrophysics Data System (ADS)
Yang, Xiaohong; Sun, Chaoxiang; Zhang, Junfa; Xu, Jinsheng; Tan, Bingdong
2017-04-01
To get accurate aging mechanical properties of aged HTPB propellant, the thermal accelerated aging experiment method is utilized and the uniaxial tensile experiments were conducted to obtain the mechanical data of aged HTPB propellants, and the maximum tensile strength, σm, maximum tensile strain, ɛm, and the fracture tensile strain, ɛb, of HTPB propellant with different aging time and various aging temperatures,were obtained, using universal material testing machine. The experimental results show that the σm of HTPB propellant initially increases, subsequently decreases and finally increases with aging time. The ɛm and ɛb generally decrease with increasing aging time, what's more, the decrease rate of both ɛm and ɛb reduce with the aging time. What's more, the postcure effect and oxidation reaction occurred inside HTPB matrix, including the chain degradation reaction and oxidation-induced crosslinking, were discussed to explain the mechanical aging rule of HTPB propellant.
Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities.
Wang, Guo-Hua; Xie, Jian-Ping; Li, Shou-Peng; Guo, Yu-Jie; Pan, Ying; Wu, Haiyan; Liu, Xin-Xing
2016-11-28
Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.
Liu, Haizhou; Bruton, Thomas A; Doyle, Fiona M; Sedlak, David L
2014-09-02
Persulfate (S2O8(2-)) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4(•-)) and hydroxyl radical (HO(•)) over time scales of several weeks at rates that were 2-20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants.
2015-01-01
Persulfate (S2O82–) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4•–) and hydroxyl radical (HO•) over time scales of several weeks at rates that were 2–20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants. PMID:25133603
Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, N.; Maroun, F., E-mail: fouad.maroun@polytechnique.fr; Allongue, P.
2015-03-23
We studied the influence of controlled surface-limited oxidation of electrodeposited epitaxial Co(0001)/Au(111) films on their magnetic anisotropy energy using real time in situ magneto optical Kerr effect and density functional theory (DFT) calculations. We investigated the Co first electrochemical oxidation step which we demonstrate to be completely reversible and determined the structure of this oxide layer. We show that the interface magnetic anisotropy of the Co film increases by 0.36 erg/cm{sup 2} upon Co surface oxidation. We performed DFT calculations to determine the different surface structures in a wide potential range as well as the charge transfer at the Co surface.more » Our results suggest that the magnetic anisotropy change is correlated with a positive charge increase of 0.54 e{sup −} for the Co surface atom upon oxidation.« less
NASA Astrophysics Data System (ADS)
Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, In Sup
2000-07-01
Corrosion behavior, hydrogen pickup, oxide microstructure, and precipitate characterization have been studied in order to investigate the effect of the accumulated annealing parameter on the corrosion characteristics in a Zr-Nb-Sn-Fe-Cr alloy. An autoclave corrosion test was carried out in 400°C steam for 300 days on the Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy, which had been given 18 different accumulated annealing parameters. The corrosion rate increased with increasing the accumulated annealing parameter. To investigate the crystal structure of oxide layer, the corroded specimens were prepared to have an equal oxide thickness (˜1.6 μm) by controlling exposure time. The relative fraction of tetragonal ZrO 2 also decreased gradually with increasing accumulated annealing parameter. From the hydrogen analysis of the corroded samples for 300 days, it was observed that, with increasing the size of precipitates, the hydrogen pickup was enhanced. It was revealed from transmission electron microscope (TEM) observation of the oxide that the larger precipitates still remained to be oxidized in the oxide layer and had undergone a reduction of Fe/Cr ratio from 2.1 to 1.5. The oxidation of the precipitates in the oxide gave rise to a volume expansion at the precipitate-oxide interface. This volume change could lead to the transformation in the oxide phase from tetragonal ZrO 2 to monoclinic ZrO 2 and in oxide structure from columnar grain to equiaxed grain. The precipitate in a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy is composed of Nb, Fe, and Cr and the Nb content in the precipitate increase with increasing accumulated annealing parameter. Thus, it can be thought that Nb within precipitates plays a key role in the microstructural change of oxide.
NITROUS OXIDE BEHAVIOR IN THE ATMOSPHERE, AND IN COMBUSTION AND INDUSTRIAL SYSTEMS
Tropospheric measurements show that nitrous oxide (N2O) concentrations are increasing over time. This demonstrates the existence of one or more significant anthropogenic sources, a fact that has generated considerable research interest over the last several years. The debate has ...
Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS
NASA Astrophysics Data System (ADS)
Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.
2015-11-01
Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.
The effect of pre-oxidation on NDMA formation and the influence of pH.
Selbes, Meric; Kim, Daekyun; Karanfil, Tanju
2014-12-01
N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated drinking water systems. Pre-oxidation of the NDMA precursors prior to chloramination can be a viable approach for water utilities to control the NDMA levels. This study examined the effects of (i) commonly used oxidants (i.e., chlorine, chlorine dioxide and ozone) in water treatment, (ii) oxidant concentration and contact time (CT), and (iii) pre-oxidation pH on the formation of NDMA from subsequent chloramination. Fifteen model precursors with NDMA molar yields ranging from approximately 0.1%-90% were examined. Pre-chlorination reduced NDMA formation from most precursors by 10%-50% except quaternary amine polymers (i.e., PolyDADMAC, PolyACRYL, PolyAMINE). Pre-oxidation with chlorine dioxide and ozone achieved the same or higher deactivation of NDMA precursors (e.g., ranitidine) while increasing NDMA formation for some other precursors (e.g., daminozid). The increases with chlorine dioxide exposure were attributed to the release of oxidation products with dimethylamine (DMA) moiety, which may form more NDMA upon chloramination than the unoxidizied parent compound. On the other hand, chlorine dioxide was effective, if a precursors NDMA yield were higher than DMA. The ozone-triggered increases could be related to direct NDMA formation from DMA which are released by ozonation of amines with DMA moiety, amides or hydrazines. However, hydroxyl radicals formed from the decomposition of ozone would be also involved in decomposition of formed NDMA, reducing the overall NDMA levels at longer contact times. pH conditions influenced significantly the effectiveness of deactivation of precursors depending on the type of precursor and oxidant used. Copyright © 2014 Elsevier Ltd. All rights reserved.
The role of hydrogen in zirconium alloy corrosion
NASA Astrophysics Data System (ADS)
Ensor, B.; Lucente, A. M.; Frederick, M. J.; Sutliff, J.; Motta, A. T.
2017-12-01
Hydrogen enters zirconium metal as a result of the corrosion process and forms hydrides when present in quantities above the solubility limit at a given temperature. Zircaloy-4 coupons of different thicknesses (0.4 mm-2.3 mm) but identical chemistry and processing were corroded in autoclave at 360 °C for various times up to 2800 days. Coupons were periodically removed and weighed to determine weight gain, which allows follow of the corrosion kinetics. Coupon thickness differences resulted in different volumetric concentrations of hydrogen, as quantified using hot vacuum extraction. The thinnest coupons, having the highest concentration of hydrogen, demonstrated acceleration in their corrosion kinetics and shorter transition times when compared to thicker coupons. Furthermore, it was seen that the post-transition corrosion rate was increased with increasing hydrogen concentration. Corrosion rates increased only after the terminal solid solubility (TSS) was exceeded for hydrogen in Zircaloy-4 at 360 °C. Therefore, it is hypothesized that the corrosion acceleration is caused by the formation of hydrides. Scanning electron microscope (SEM) examinations of fractured oxide layers demonstrate the oxide morphology changed with hydrogen content, with more equiaxed oxide grains in the high hydrogen samples than in those with lower hydrogen content. Additionally, locations of advanced oxide growth were correlated with locations of hydrides in the metal. A hypothesis is proposed to explain the accelerated corrosion due to the presence of the hydrides, namely that the metal, locally, is less able to accommodate oxide growth stresses and this leads to earlier loss of oxide protectiveness in the form of more frequent oxide kinetic transitions.
Oxidation and mobilization of selenium by nitrate in irrigation drainage
Wright, W.G.
1999-01-01
Selenium (Se) can be oxidized by nitrate (NO3-) from irrigation on Cretaceous marine shale in western Colorado. Dissolved Se concentrations are positively correlated with dissolved NO3- concentrations in surface water and ground water samples from irrigated areas. Redox conditions dominate in the mobilization of Se in marine shale hydrogeologic settings; dissolved Se concentrations increase with increasing platinum-electrode potentials. Theoretical calculations for the oxidation of Se by NO3- and oxygen show favorable Gibbs free energies for the oxidation of Se by NO3-, indicating NO3- can act as an electron acceptor for the oxidation of Se. Laboratory batch experiments were performed by adding Mancos Shale samples to zero- dissolved-oxygen water containing 0, 5, 50, and 100 mg/L NO3- as N (mg N/L). Samples were incubated in airtight bottles at 25??C for 188 d; samples collected from the batch experiment bottles show increased Se concentrations over time with increased NO3- concentrations. Pseudo first-order rate constants for NO3- oxidation of Se ranged from 0.0007 to 0.0048/d for 0 to 100 mg N/L NO3- concentrations, respectively. Management of N fertilizer applications in Cretaceous shale settings might help to control the oxidation and mobilization of Se and other trace constituents into the environment.
Bhargava, Neelima; Shanmugaiah, Vellasamy; Saxena, Manav; Sharma, Manish; Sethy, Niroj Kumar; Singh, Sushil Kumar; Balakrishnan, Karuppiah; Bhargava, Kalpana; Das, Mainak
2016-09-16
In vitro cell culture system for adult rod and cone photoreceptor (PR) is an effective and economical model for screening drug candidates against all kinds of age related retinal blindness. Interestingly, adult PR cells have a limited survival in the culture system, thus preventing full exploitation of this in vitro approach for drug screening applications. The limited survival of the adult PR cells in culture is due to their inherently high oxidative stress and photic injury. Mixed valence-state ceria nanoparticles have the ability to scavenge free radicals and reduce oxidative stress. Here, ceria nanoparticles of 5-10 nm dimensions have been synthesized, possessing dual oxidation state (+3 and +4) as evident from x-ray photoelectron spectroscopy and exhibiting real time reduction of hydrogen peroxide (H 2 O 2 ) as quantified by absorbance spectroscopy and cyclic voltammogram analysis. Using flow cytometry and cell culture assay, it has been shown that, upon one time addition of 10 nM of nanoceria in the PR culture of the 18 months old adult common carp (Cyprinus carpio) at the time of plating the cells, the oxidative stress caused due to hydrogen peroxide assault could be abrogated. A further single application of nanoceria significantly increases the survival of these fragile cells in the culture, thus paving way for developing a more robust photoreceptor culture model to study the aging photoreceptor cells in a defined condition.
Oxidative stress increases eukaryotic initiation factor 4E phosphorylation in vascular cells.
Duncan, Roger F; Peterson, Hazel; Hagedorn, Curt H; Sevanian, Alex
2003-01-01
Dysregulated cell growth can be caused by increased activity of protein synthesis eukaryotic initiation factor (eIF) 4E. Dysregulated cell growth is also characteristic of atherosclerosis. It is postulated that exposure of vascular cells, such as endothelial cells, smooth muscle cells and monocytes/macrophages, to oxidants, such as oxidized low-density lipoprotein (oxLDL), leads to the elaboration of growth factors and cytokines, which in turn results in smooth muscle cell hyperproliferation. To investigate whether activation of eIF4E might play a role in this hyperproliferative response, vascular cells were treated with oxLDL, oxidized lipid components of oxLDL and several model oxidants, including H(2)O(2) and dimethyl naphthoquinone. Exposure to each of these compounds led to a dose- and time-dependent increase in eIF4E phosphorylation in all three types of vascular cells, correlated with a modest increase in overall translation rate. No changes in eIF4EBP, eIF2 or eIF4B modification state were observed. Increased eIF4E phosphorylation was paralleled by increased presence of eIF4E in high-molecular-mass protein complexes characteristic of its most active form. Anti-oxidants at concentrations typically employed to block oxidant-induced cell signalling likewise promoted eIF4E phosphorylation. The results of this study indicate that increased eIF4E activity may contribute to the pathophysiological events in early atherogenesis by increasing the expression of translationally inefficient mRNAs encoding growth-promoting proteins. PMID:12215171
Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes.
Rodríguez-Chueca, J; Laski, E; García-Cañibano, C; Martín de Vidales, M J; Encinas, Á; Kuch, B; Marugán, J
2018-07-15
The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H 2 O 2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H 2 O 2 /UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H 2 O 2 /UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m 3 ·order). Even H 2 O 2 /UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H 2 O 2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jadko, Sergiy
Early increasing of reactive oxygen species (ROS) content, including H2O2, occurs in plant cells under various impacts and than these ROS can function as signaling molecules in starting of cell stress responses. At the same time thioredoxins (TR) are significant ROS and H2O2 sensors and transmitters to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study was aimed to investigate early increasing of ROS and H2O2 contents and TR activity in the pea roots and in tissue culture under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12-14 days old tissue culture of Arabidopsis thaliana were studied. The pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 10 and 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and TR activity were determined. All experiments were repeated by 3-5 times. Early and reliable increasing of ChL intensity and H2O2 contents in the pea roots and in the tissue culture took place under hypergravity and oxidative stresses to 30, 60 and 90 min. At the same time TR activity increased on 11 and 19 percents only to 60 and 90 min. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers lead to increasing of TR activity with creating of ROS-TR stress signaling pathway.
Cinetica de oxidacion de polimeros conductores: poli-3,4- etilendioxitiofeno
NASA Astrophysics Data System (ADS)
Caballero Romero, Maria
Films of poly-3,4-ethylenedioxythiophene (PEDOT) perchlorate used as electrodes in liquid electrolytes incorporate anions and solvent during oxidation for charge and osmotic balance: the film swells. During reduction the film shrinks, closes its structure trapping counterions getting then rising conformational packed states by expulsion of counterions and solvent. Here by potential step from the same reduced initial state to the same oxidized final state the rate coefficient, the activation energy and reaction orders related to the counterion concentration in solution and to the concentration of active centers in the polymer film, were attained following the usual methodology used for chemical and electrochemical kinetics. Now the full methodology was repeated using different reduced-shrunk or reduced-conformational compacted initial states every time. Those initial states were attained by reduction of the oxidized film at rising cathodic potentials for the same reduction time each. Rising reduced and conformational compacted states give slower subsequent oxidation rates by potential step to the same anodic potential every time. The activation energy, the reaction coefficient and reaction orders change for rising conformational compacted initial states. Decreasing rate constants and increasing activation energies are obtained for the PEDOT oxidation from increasing conformational compacted initial states. The experimental activation energy presents two linear ranges as a function of the initial reduced-compacted state. Using as initial states for the oxidation open structures attained by reduction at low cathodic potentials, activation energies attained were constant: namely the chemical activation energy. Using as initial states for the oxidation deeper reduced, closed and packed conformational structures, the activation energy includes two components: the constant chemical energy plus the conformational energy required to relax the conformational structure generating free volume which allows the entrance of the balancing counterions required for the reaction. The conformational energy increases linearly as a function of the reduction-compaction potential. The kinetic magnitudes include conformational and structural information. The Chemical Kinetics becomes Structural (or conformational) Chemical Kinetics.
Bekele, Raie T.; Venkatraman, Ganesh; Liu, Rong-Zong; Tang, Xiaoyun; Mi, Si; Benesch, Matthew G. K.; Mackey, John R.; Godbout, Roseline; Curtis, Jonathan M.; McMullen, Todd P. W.; Brindley, David N.
2016-01-01
Tamoxifen is the accepted therapy for patients with estrogen receptor-α (ERα)-positive breast cancer. However, clinical resistance to tamoxifen, as demonstrated by recurrence or progression on therapy, is frequent and precedes death from metastases. To improve breast cancer treatment it is vital to understand the mechanisms that result in tamoxifen resistance. This study shows that concentrations of tamoxifen and its metabolites, which accumulate in tumors of patients, killed both ERα-positive and ERα-negative breast cancer cells. This depended on oxidative damage and anti-oxidants rescued the cancer cells from tamoxifen-induced apoptosis. Breast cancer cells responded to tamoxifen-induced oxidation by increasing Nrf2 expression and subsequent activation of the anti-oxidant response element (ARE). This increased the transcription of anti-oxidant genes and multidrug resistance transporters. As a result, breast cancer cells are able to destroy or export toxic oxidation products leading to increased survival from tamoxifen-induced oxidative damage. These responses in cancer cells also occur in breast tumors of tamoxifen-treated mice. Additionally, high levels of expression of Nrf2, ABCC1, ABCC3 plus NAD(P)H dehydrogenase quinone-1 in breast tumors of patients at the time of diagnosis were prognostic of poor survival after tamoxifen therapy. Therefore, overcoming tamoxifen-induced activation of the ARE could increase the efficacy of tamoxifen in treating breast cancer. PMID:26883574
New insight of high temperature oxidation on self-exfoliation capability of graphene oxide.
Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang
2018-05-04
The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.
New insight of high temperature oxidation on self-exfoliation capability of graphene oxide
NASA Astrophysics Data System (ADS)
Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang
2018-05-01
The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.
Abbas Ali, M; Anowarul Islam, M; Othman, Noor Hidayu; Noor, Ahmadilfitri Md
2017-12-01
The oxidative stability and fatty acid composition of groundnut seed oil (GSO) exposed to microwaves were evaluated during heating at 170 °C. During heating, the oxidative indices such as free fatty acid, peroxide value, p -anisidine value, TOTOX, thiobarbituric acid value, specific extinctions, and color value were increased. The increments were found to be higher in unroasted seed oils compared to roasted ones indicating lower release of lipid oxidation products in roasted GSO. After 9 h heating, the relative content of polyunsaturated fatty acid (PUFA) decreased to 89.53% and that of saturated fatty acid (SFA) increased to 117.46% in unroasted sample. The relative content of PUFA decreased to 92.05% and that of SFA increased to 105.76% in 7.5 min roasted sample after 9 h of heating. However, the roasting process slowed down the oxidative deterioration of PUFA. With increased heating times, an appreciable loss was more apparent in the triacylglycerol species OLL and OOL in unroasted samples compared to roasted ones. In FTIR, the peak intensities in unroasted samples were markedly changed in comparison with roasted samples during heating. The roasting of groundnut seed prior to the oil extraction reduced the oxidative degradation of oil samples; thereby increasing heat stability.
Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis.
Lalonde, Stefan V; Konhauser, Kurt O
2015-01-27
The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen increased above ∼10(-5) times the present atmospheric level (PAL). This threshold represents an estimated upper limit for sulfur isotope mass-independent fractionation (S-MIF), an Archean signature of atmospheric anoxia that begins to disappear from the rock record at 2.45 Ga. However, an increasing number of papers have suggested that the timing for oxidative continental weathering, and by conventional thinking the onset of atmospheric oxygenation, was hundreds of million years earlier than previously thought despite the presence of S-MIF. We suggest that this apparent discrepancy can be resolved by the earliest oxidative-weathering reactions occurring in benthic and soil environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts and freshwater microbial mats covering riverbed, lacustrine, and estuarine sediments. We calculate that oxygenic photosynthesis in these millimeter-thick ecosystems provides sufficient oxidizing equivalents to mobilize sulfate and redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. As continental freeboard increased significantly between 3.0 and 2.5 Ga, the chemical and isotopic signatures of benthic oxidative weathering would have become more globally significant from a mass-balance perspective. These observations help reconcile evidence for pre-GOE oxidative weathering with the history of atmospheric chemistry, and support the plausible antiquity of a terrestrial biosphere populated by cyanobacteria well before the GOE.
Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis
Konhauser, Kurt O.
2015-01-01
The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen increased above ∼10−5 times the present atmospheric level (PAL). This threshold represents an estimated upper limit for sulfur isotope mass-independent fractionation (S-MIF), an Archean signature of atmospheric anoxia that begins to disappear from the rock record at 2.45 Ga. However, an increasing number of papers have suggested that the timing for oxidative continental weathering, and by conventional thinking the onset of atmospheric oxygenation, was hundreds of million years earlier than previously thought despite the presence of S-MIF. We suggest that this apparent discrepancy can be resolved by the earliest oxidative-weathering reactions occurring in benthic and soil environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts and freshwater microbial mats covering riverbed, lacustrine, and estuarine sediments. We calculate that oxygenic photosynthesis in these millimeter-thick ecosystems provides sufficient oxidizing equivalents to mobilize sulfate and redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. As continental freeboard increased significantly between 3.0 and 2.5 Ga, the chemical and isotopic signatures of benthic oxidative weathering would have become more globally significant from a mass-balance perspective. These observations help reconcile evidence for pre-GOE oxidative weathering with the history of atmospheric chemistry, and support the plausible antiquity of a terrestrial biosphere populated by cyanobacteria well before the GOE. PMID:25583484
Etching of germanium-tin using ammonia peroxide mixture
NASA Astrophysics Data System (ADS)
Dong, Yuan; Ong, Bin Leong; Wang, Wei; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Liang, Gengchiau; Yeo, Yee-Chia
2015-12-01
The wet etching of germanium-tin (Ge1-xSnx) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge1-xSnx is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge1-xSnx surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge0.918Sn0.082 samples. Both root-mean-square roughness and undulation periods of the Ge1-xSnx surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge1-xSnx using APM and may be used for the fabrication of Ge1-xSnx-based electronic and photonic devices.
The effect of fission products on the rate of U3O8 formation in SIMFUEL oxidized in air at 250°C
NASA Astrophysics Data System (ADS)
Choi, Jong-Won; McEachern, Rod J.; Taylor, Peter; Wood, Donald D.
1996-06-01
The effect of fission products on the rate of U3O8 formation was investigated by oxidizing UO2-based SIMFUEL (simulated high burnup nuclear fuel) and unirradiated UO2 fuel specimens in air at 250°C for different times (1-317 days). The progress of oxidation was monitored by X-ray diffraction, revealing that the rate of U3O8 formation declines with increasing burnup. An expression was derived to describe quantitatively the time for U3O8 powder formation as a function of simulated burnup. These findings were supported by additional isochronal oxidation experiments conducted between 200 and 300°C.
García-de-la-Asunción, José; García-del-Olmo, Eva; Perez-Griera, Jaume; Martí, Francisco; Galan, Genaro; Morcillo, Alfonso; Wins, Richard; Guijarro, Ricardo; Arnau, Antonio; Sarriá, Benjamín; García-Raimundo, Miguel; Belda, Javier
2015-09-01
During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the duration of one-lung ventilation. During lung lobectomy, the operated lung is collapsed and oxidative injury occurs, with the levels of markers of oxidative stress increasing simultaneously in exhaled breath condensate and blood during one-lung ventilation. These increases were larger after resuming two-lung ventilation. Increases immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation were directly correlated with the duration of one-lung ventilation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Astrophysics Data System (ADS)
Krupińska, Izabela
2017-09-01
One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.
Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael
2015-08-01
Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio
2011-10-01
Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.
NASA Astrophysics Data System (ADS)
Park, Ho-Ra; Kim, Yong; Yeo, Won-Jun; Kim, Ji-Hye; Han, Kyung-Nam
2017-09-01
The DNA-damage defense mechanism was studied in black seabreams after oxidative stress caused by exposure to sodium hypochlorite (NaOCl). Liver, muscle, and brain tissues were obtained after different NaOCl-exposure times (0, 24, 48, 72, and 96 h) and concentrations (0.5, 1, 1.5, 2, and 3 mg/L), after which oxoguanine glycosylase (OGG1) and superoxide dismutase (SOD) mRNA-expression levels were analyzed. At all NaOCl concentrations tested, liver OGG1 expression increased to a maximum in a time-dependent manner after NaOCl exposure and then decreased. In muscles, OGG1 expression increased over time following exposure to a low concentration of NaOCl (0.5, 1, and 1.5 mg/L), whereas it showed a mixed pattern (both increases and decreases observed) in the high-concentration groups (2 and 3 mg/L). SOD mRNA expression increased over time, both in the liver and muscles. In the brain, both OGG1 and SOD mRNA expression levels were highest after exposure to the lowest NaOCl concentration (0.5 mg/L), whereas basal levels were maintained over time at higher concentrations. These results indicate that OGG1 and SOD provide resistance to oxidative stress in black seabreams. In addition, continuous exposure to oxidative stress can suppress enzyme expression, suggesting a risk for long-term exposure to NaOCl.
Elongational viscosity of photo-oxidated LDPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolón-Garrido, Víctor H., E-mail: victor.h.rolongarrido@tu-berlin.de, E-mail: manfred.wagner@tu-berlin.de; Wagner, Manfred H., E-mail: victor.h.rolongarrido@tu-berlin.de, E-mail: manfred.wagner@tu-berlin.de
2014-05-15
Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method.more » The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.« less
Elongational viscosity of photo-oxidated LDPE
NASA Astrophysics Data System (ADS)
Rolón-Garrido, Víctor H.; Wagner, Manfred H.
2014-05-01
Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.
Vissers, Anne; Kiskini, Alexandra; Hilgers, Roelant; Marinea, Marina; Wierenga, Peter Alexander; Gruppen, Harry; Vincken, Jean-Paul
2017-06-21
Sugar beet (Beta vulgaris L.) leaves of 8 month (8 m ) plants showed more enzymatic browning than those of 3 month (3 m ). Total phenolic content increased from 4.6 to 9.4 mg/g FW in 3 m and 8 m , respectively, quantitated by reverse-phase-ultrahigh-performance liquid chromatography-ultraviolet-mass spectrometry (RP-UHPLC-UV-MS). The PPO activity was 6.7 times higher in extracts from 8 m than from 3 m leaves. Substrate content increased from 0.53 to 2.45 mg/g FW in 3 m and 8 m , respectively, of which caffeic acid glycosyl esters were most important, increasing 10-fold with age. Caffeic acid glycosides and vitexin derivatives were no substrates. In 3 m and 8 m, nonsubstrate-to-substrate ratios were 8:1 and 3:1, respectively. A model system showed browning at 3:1 ratio due to formation of products with extensive conjugated systems through oxidative coupling and coupled oxidation. The 8:1 ratio did not turn brown as oxidative coupling occurred without much coupled oxidation. We postulate that differences in nonsubstrate-to-substrate ratio and therewith extent of coupled oxidation explain browning.
2017-01-01
Sugar beet (Beta vulgaris L.) leaves of 8 month (8m) plants showed more enzymatic browning than those of 3 month (3m). Total phenolic content increased from 4.6 to 9.4 mg/g FW in 3m and 8m, respectively, quantitated by reverse-phase-ultrahigh-performance liquid chromatography–ultraviolet-mass spectrometry (RP-UHPLC–UV-MS). The PPO activity was 6.7 times higher in extracts from 8m than from 3m leaves. Substrate content increased from 0.53 to 2.45 mg/g FW in 3m and 8m, respectively, of which caffeic acid glycosyl esters were most important, increasing 10-fold with age. Caffeic acid glycosides and vitexin derivatives were no substrates. In 3m and 8m, nonsubstrate-to-substrate ratios were 8:1 and 3:1, respectively. A model system showed browning at 3:1 ratio due to formation of products with extensive conjugated systems through oxidative coupling and coupled oxidation. The 8:1 ratio did not turn brown as oxidative coupling occurred without much coupled oxidation. We postulate that differences in nonsubstrate-to-substrate ratio and therewith extent of coupled oxidation explain browning. PMID:28570816
Kim, J. S.; Kim, S. Y.; Kim, D. H.; ...
2015-07-01
The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni 59Zr 20Ti 16Si 2Sn 3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO 3, ZrTiO 4 and ZrSnO 4 ternary oxide phases observed on the surface of metallic glass at below glassmore » transition temperature and the morphology of oxide phases changed to plate-shape around 2 μm in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.« less
Chanadang, Sirichat; Koppel, Kadri; Aldrich, Greg
2016-07-28
Pet foods are expected to have a shelf-life for 12 months or more. Sensory analysis can be used to determine changes in products and to estimate products' shelf-life. The objectives of this study were to (1) investigate how increasing levels of oxidation in rendered protein meals used to produce extruded pet food affected the sensory properties and (2) determine the effect of shelf-life on pet owners' acceptability of extruded pet food diet formulated without the use of preservative. Pet food diets contained beef meat bone meal (BMBM) and chicken byproduct meal (CBPM) in which the oxidation was retarded with ethoxyquin, mixed tocopherols, or none at all, and then extruded into dry pet foods. These samples represented low, medium, and high oxidation levels, respectively. Samples were stored for 0, 3, 6, 9, and 12 months at ambient temperature. Each time point, samples were evaluated by six highly trained descriptive panelists for sensory attributes related to oxidation. Samples without preservatives were chosen for the acceptability test, since the differences in sensory characteristics over storage time were more distinguishable in those samples. Pet owners evaluated samples for aroma, appearance and overall liking. Descriptive sensory analysis detected significant changes in oxidized-related sensory characteristics over storage time. However, the differences for CBPM samples were more pronounced and directional. The consumer study showed no differences in pet owners' acceptability for BMBM samples. However, the noticeable increase in aroma characteristics (rancid aroma 0.33-4.21) in CBPM samples over storage time did have a negative effect on consumer's liking (overall liking 5.52-4.95).
Summary and Evaluation of NRC-Sponsored Stellite 6 Aging and Friction Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. C. Watkins; K. G. DeWall; D. Bramwell
1999-04-01
This report describes four sets of tests sponsored by the U.S. Nuclear Regulatory Commission and conducted by the Idaho National Engineering and Environmental Laboratory. The tests support research addressing the need to provide assurance that motor-operated valves are able to perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. One of the parameters that affects a gate valve's operability is the friction between the disc seats and the valve body seats. In most gate valves, these surfaces are hardfaced with Stellite 6, a cobalt-based alloy. The tests described in this reportmore » investigate the changes that occur in the friction as the Stellite 6 surfaces develop an oxide film as they age. Stellite 6 specimens were aged in a corrosion autoclave, the oxide films were examined and characterized, and the specimens were subjected to friction testing in a friction autoclave. A very thin oxide film formed after only a fe w days of natural aging. Even a very thin oxide film caused an increase in friction. The surface structure of the oxide film was dominated by a hard crystalline structure, such that the friction response was analogous to rubbing two pieces of sandpaper together. In the limited data provided by naturally aged specimens (78 days maximum exposure, very thin oxide films), the friction increased with greater aging time, approaching an as-yet-undetermined plateau. Although the thickness of the oxide film increased with greater aging time, the mechanical properties of the oxide film (larger granules with greater aging time) appeared to play a greater role in the friction response. Friction testing of specimens subjected to simulated in-service testing strokes at intervals during the aging process showed only a slight decrease in friction, compared to other specimens. Results from specimens subjected to accelerated aging were inconclusive, because of differences in the structure and comp osition of the oxide films, compared to naturally aged specimens. For the naturally aged specimens, the highest friction occurred on the first stroke. The first stroke smeared the oxide film and dislodged some of the granules, so that subsequent strokes saw lower friction values and less variation in the friction. This result underscores the importance of planning in-plant tests so that data are collected from the first stroke following a period of inactivity.« less
The effect of oxidation on the mechanical response and microstructure of porcine aortas.
Stephen, Elizabeth A; Venkatasubramaniam, Arundhathi; Good, Theresa A; Topoleski, L D Timmie
2014-09-01
Reactive oxygen species (ROS), a product of many cellular functions, has been implicated in many age-related pathophysiological processes, including cardiovascular disease. The arterial proteins collagen and elastin may also undergo structural and functional changes due to damage caused by ROS. This study examined the effect of oxidation on the mechanical response of porcine aortas and aorta elastin and the associated changes in structural protein ultrastructure as a step in exploring the role of molecular changes in structural proteins with aging on elastic artery function. We examined the change in mechanical properties of aorta samples after various oxidation times as a first step in understanding how the oxidative environment associated with aging could impact mechanical properties of arterial structural proteins. We used confocal microscopy to visualize how the microstructure of isolated elastin changed with oxidation. We find that short term oxidation of elastin isolated from aortas leads to an increase in material stiffness, but also an increase in the fiber diameter, increase in void space in the matrix, and a decrease in the fiber orientation, possibly due to fiber cross-linking. The short term effects of oxidation on arterial collagen is more complex, with increase in material stiffness seen in the collagen region of the stress stretch curve at low extents of oxidation, but not at high levels of oxidation. These results may provide insight into the relationship between oxidative damage to tissue associated with aging and disease, structure of the arterial proteins elastin and collagen, and arterial mechanical properties and function. © 2013 Wiley Periodicals, Inc.
Wu, Fan; Cui, Qi; Qiu, Zeliang; Liu, Changwen; Zhang, Hui; Shen, Wei; Wang, Mingtai
2013-04-24
Incorporation of vertically aligned nanorod/nanowire arrays of metal oxide (oxide-NAs) with a polymer can produce efficient hybrid solar cells with an ideal bulk-heterojunction architecture. However, polymer/oxide-NAs solar cells still suffer from a rather low (normally, < 0.4 V) open-circuit voltage (Voc). Here we demonstrate, for the first time, a novel strategy to improve the Voc in polymer/oxide-NAs solar cells by formation of homogeneous core/shell structures and reveal the intrinsic principles involved therein. A feasible hydrothermal-solvothermal combined method is developed for preparing homogeneous core/shell nanoarrays of metal oxides with a single-crystalline nanorod as core and the aggregation layer of corresponding metal oxide quantum dots (QDs) as shell, and the shell thickness (L) is easily controlled by the solvothermal reaction time for growing QDs on the nanorod. The core/shell formation dramatically improves the device Voc up to ca. 0.7-0.8 V depending on L. Based on steady-state and dynamic measurements, as well as modeling by space-charge-limited current method, it is found that the improved Voc originates from the up-shifted conduction band edge in the core by the interfacial dipole field resulting from the decreased mobility difference between photogenerated electrons and holes after the shell growth, which increases the energy difference between the quasi-Fermi levels of photogenerated electrons in the core and holes in the polymer for a higher Voc. Our results indicate that increasing Voc by the core/shell strategy seems not to be dependent on the kinds of metal oxides.
Effect of Ge surface termination on oxidation behavior
NASA Astrophysics Data System (ADS)
Lee, Younghwan; Park, Kibyung; Cho, Yong Soo; Lim, Sangwoo
2008-09-01
Sulfur-termination was formed on the Ge(1 0 0) surface using (NH 4) 2S solution. Formation of Ge-S and the oxidation of the S-terminated Ge surface were monitored with multiple internal reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. In the 0.5, 5, or 20% (NH 4) 2S solution, H-termination on the Ge(1 0 0) surface was substituted with S-termination in 1 min. When the S-terminated Ge(1 0 0) surface was exposed in air ambient, the oxidation was retarded for about 3600 min. The preservation time of the oxide layer up to one monolayer of S-terminated Ge(1 0 0) surface was about 120 times longer than for the H-terminated Ge(1 0 0) surface. However, the oxidation of S-terminated Ge(1 0 0) surface drastically increased after the threshold time. There was no significant difference in threshold time between S-terminations formed in 0.5, 5, and 20% (NH 4) 2S solutions. With the surface oxidation, desorption of S on the Ge surface was observed. The desorption behavior of sulfur on the S-terminated Ge(1 0 0) surface was independent of the concentration of the (NH 4) 2S solution that forms S-termination. Non-ideal S-termination on Ge surfaces may be related to drastic oxidation of the Ge surface. Finally, with the desulfurization on the S-terminated Ge(1 0 0) surface, oxide growth is accelerated.
Molecular-Level Transformations of Lignin During Photo-Oxidation and Biodegradation
NASA Astrophysics Data System (ADS)
Feng, X.; Hills, K.; Simpson, A. J.; Simpson, M. J.
2009-05-01
As the second most abundant component of terrestrial plant residues, lignin plays a key role in regulating plant litter decomposition, humic substance formation, and dissolved organic matter (OM) production from terrestrial sources. Biodegradation is the primary decomposition process of lignin on land. However, photo- oxidation of lignin-derived compounds has been reported in aquatic systems and is considered to play a vital role in arid and semiarid regions. With increasing ultraviolet (UV) radiation due to ozone depletion, it is important to understand the biogeochemical fate of lignin exposed to photo-oxidation in terrestrial environments. This study examines and compares the transformation of lignin in a three-month laboratory simulation of biodegradation and photo-oxidation using molecular-level techniques. Lignin-derived monomers extracted by copper oxidation were analyzed by gas chromatography/mass spectrometry (GC/MS) from the water-soluble and insoluble OM of 13C-labeled corn leaves. Biodegradation increased the solubility of lignin monomers in comparison to the control samples, and the acid-to-aldehyde (Ad/Al) ratios increased in both the water-soluble and insoluble OM, indicating a higher degree of side-chain lignin oxidation. Photo-oxidation did not produce a significant change on the solubility or Ad/Al ratios of lignin from corn leaves. However, the ratios of trans-to-cis isomers of both cinnamyl units (p-coumaric acid and ferulic acid) increased with photo-oxidation and decreased with biodegradation in the insoluble OM. We also investigated the role of photo-oxidation in lignin transformation in soils cropped with 13C-labeled corn. Interestingly, the organic carbon content increased significantly with time in the water-soluble OM from soil/corn residues under UV radiation. An increase in the concentration of lignin monomers and dimers and the Ad/Al ratios was also observed with photo-oxidation. Iso-branched fatty acids of microbial origin remained in a similar concentration in the water-soluble OM from the UV-radiated and control soils, indicating little microbial contribution to the observed increase in water-soluble carbon. These observations suggest that photo-oxidation may increase the solubility of soil organic matter (SOM) through the oxidation of lignin-derived compounds. Mechanisms of lignin oxidation (demethylation or side-chain oxidation) and molecular size distribution changes of the water-soluble and NaOH-soluble OM during photo-oxidation and biodegradation will also be examined using solution-state nuclear magnetic resonance (NMR) spectroscopy. Collectively, our experiment demonstrates that while biodegradation predominates in the decomposition of lignin in plant litter, photo- oxidation may play an important part in destabilizing lignin-derived compounds in the soil.
Molecular-level transformations of lignin during photo-oxidation and biodegradation
NASA Astrophysics Data System (ADS)
Feng, X.; Hills, K.; Simpson, A. J.; Simpson, M. J.
2009-04-01
As the second most abundant component of terrestrial plant residues, lignin plays a key role in regulating plant litter decomposition, humic substance formation, and dissolved organic matter (OM) production from terrestrial sources. Biodegradation is the primary decomposition process of lignin on land. However, photo-oxidation of lignin-derived compounds has been reported in aquatic systems and is considered to play a vital role in arid and semiarid regions. With increasing ultraviolet (UV) radiation due to ozone depletion, it is important to understand the biogeochemical fate of lignin exposed to photo-oxidation in terrestrial environments. This study examines and compares the transformation of lignin in a three-month laboratory simulation of biodegradation and photo-oxidation using molecular-level techniques. Lignin-derived monomers extracted by copper oxidation were analyzed by gas chromatography/mass spectrometry (GC/MS) from the water-soluble and insoluble OM of 13C-labeled corn leaves. Biodegradation increased the solubility of lignin monomers in comparison to the control samples, and the acid-to-aldehyde (Ad/Al) ratios increased in both the water-soluble and insoluble OM, indicating a higher degree of side-chain lignin oxidation. Photo-oxidation did not produce a significant change on the solubility or Ad/Al ratios of lignin from corn leaves. However, the ratios of trans-to-cis isomers of both cinnamyl units (p-coumaric acid and ferulic acid) increased with photo-oxidation and decreased with biodegradation in the insoluble OM. We also investigated the role of photo-oxidation in lignin transformation in soils cropped with 13C-labeled corn. Interestingly, the organic carbon content increased significantly with time in the water-soluble OM from soil/corn residues under UV radiation. An increase in the concentration of lignin monomers and dimers and the Ad/Al ratios was also observed with photo-oxidation. Iso-branched fatty acids of microbial origin remained in a similar concentration in the water-soluble OM from the UV-radiated and control soils, indicating little microbial contribution to the observed increase in water-soluble carbon. These observations suggest that photo-oxidation may increase the solubility of soil organic matter (SOM) through the oxidation of lignin-derived compounds. Mechanisms of lignin oxidation (demethylation or side-chain oxidation) and molecular size distribution changes of the water-soluble and NaOH-soluble OM during photo-oxidation and biodegradation will also be examined using solution-state nuclear magnetic resonance (NMR) spectroscopy. Collectively, our experiment demonstrates that while biodegradation predominates in the decomposition of lignin in plant litter, photo-oxidation may play an important part in destabilizing lignin-derived compounds in the soil.
NASA Astrophysics Data System (ADS)
El-Deab, Mohamed S.; El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Anadouli, Bahgat E.
2015-07-01
The current study addresses, for the first time, the enhanced direct electro-oxidation of formic acid (FA) at platinum-nanoparticles modified glassy carbon (nano-Pt/GC) electrode in the presence of methanol (MeOH) as a blending fuel. This enhancement is probed by: (i) the increase of the direct oxidation current of FA to CO2 (Ipd, dehydrogenation pathway), (ii) suppressing the dehydration pathway (Ipind, producing the poisoning intermediate CO) and (iii) a favorable negative shift of the onset potential of Ipd with increasing the mole fraction of MeOH in the blend. Furthermore, the charge of the direct FA oxidation in 0.3 M FA + 0.3 M MeOH blend is by 14 and 21times higher than that observed for 0.3 M FA and 0.3 M MeOH, respectively. MeOH is believed to adsorb at the Pt surface sites and thus disfavor the "non-faradaic" dissociation of FA (which produces the poisoning CO intermediate), i.e., MeOH induces a high CO tolerance of the Pt catalyst. The enhanced oxidation activity indicates that FA/MeOH blend is a promising fuel system.
Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment
NASA Astrophysics Data System (ADS)
Lengke, Maggy F.; Tempel, Regina N.
2005-01-01
Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO 3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.
Gupta, Amit Chand; Mohanty, Shilpa; Saxena, Archana; Maurya, Anil Kumar; Bawankule, Dnyaneshwar U
2018-03-22
Plumbagin, a vitamin K3 analogue is the major active constituent in several plants including root of Plumbago indica Linn. This compound has been shown to exhibit a wide spectrum of pharmacological activities. The present investigation was to evaluate the ameliorative effects of plumbagin (PL) against severe malaria pathogenesis due to involvement of oxidative stress and inflammatory response in Plasmodium berghei infected malaria in mice. Malaria pathogenesis was induced by intra-peritoneal injection of P. berghei infected red blood cells into the Swiss albino mice. PL was administered orally at doses of 3, 10 and 30 mg/kg/day following Peter's 4 day suppression test. Oral administration of PL showed significant reduction of parasitaemia and increase in mean survival time. PL treatment is also attributed to significant increase in the blood glucose and haemoglobin level when compared with vehicle-treated infected mice. Significant inhibition in level of oxidative stress and pro-inflammation related markers were observed in PL treated group. The trend of inhibition in oxidative stress markers level after oral treatment of PL was MPO > LPO > ROS in organ injury in P. berghei infected mice. This study showed that plumbagin is able to ameliorate malaria pathogenesis by augmenting anti-oxidative and anti-inflammatory mechanism apart from its effect on reducing parasitaemia and increasing mean survival time of malaria-induced mice.
[Effect of lignite humic acid on soil ammonia oxidizing archaea community].
Dong, Lianhua; Li, Baozhen; Yuan, Hongli; Scow, Kate M
2010-06-01
To illuminate the impact of humic acid (HA) on soil ammonia oxidizing archaea and then reveal the effect of HA on soil nitrogen cycle. Two humic acids (cHA and bHA) were added into the soil amended with urea. Community changes of ammonia oxidizing archaea (AOA) and total archaea were studied with terminal restricted fragment length polymorphism (T-RFLP) and real time PCR in the microcosm experiment. We found that the AOA population size increased significantly and AOA community changed greatly in the urea only treatment. However, HA could inhibit the increase of AOA population, moreover, HA could buffer the change in AOA community showed by canonical correspondence analysis (CCA) result. On the other hand, the total archaeal population decreased significantly in the urea only treatment, but stabilized in the urea with HA treatments, which indicated HA could eliminate the toxicity of urea to total archaea. CCA results showed that incubation time was the most important factor for the total archaeal community, and partial CCA (pCCA, when time as a covariable) result demonstrated that cHA was the most important environmental variable for total archaeal community. These results showed that HA diminished ammonia loss by inhibiting the increase of AOA competing with plant for ammonia, thus HA can increase the urea efficiency.
NASA Technical Reports Server (NTRS)
Levine, Joel S.
1990-01-01
Most burning of biomass is the result of human activity, and on a global scale it is increasing. Tropospheric concentrations of CO2, CO, CH4, non-methane hydrocarbons, and ozone are all increasing with time; global biomass burning may make an important contribution to this increase and thus to potential global climate change. The nitrogen cycle also can have important climatic effects. Nitrous oxide put into the atmosphere by biomass burning is a greenhouse gas 250 times more powerful (molecule for molecule) than carbon dioxide. Nitric oxide, as well as being a photochemical precursor of ozone, a major pollutant in the troposphere, produces nitric acid, the fastest-growing component of acid rain. Hence, the new bridge in the nitrogen cycle is of more than mere technical interest.
NASA Astrophysics Data System (ADS)
Ortel, Marlis; Kalinovich, Nataliya; Röschenthaler, Gerd-Volker; Wagner, Veit
2013-09-01
Surface functionalization of solution processed zinc oxide layers was studied in transistors with bottom-gate bottom-contact configuration aiming at suppression of trapping processes to increase device stability. Saturation of electrically active surface sites and formation of a moisture barrier to decrease the impact of humid atmosphere was successfully shown by binding hexafluoropropylene oxide (HFPO) on the metal oxide semiconductor. Deep trap level related electrical parameters, i.e., stability, hysteresis, and on-set voltage, improved rapidly within 60 s of exposure which was attributed to occupation of sites characterized by low adsorption energies, e.g., at edges. In contrast, shallow trap level related parameters, i.e., mobility, showed a much slower process of improvement. Identical behavior was determined for the contact angle. A physical model is presented by applying first order reaction kinetics equation to Young's law and multiple trapping and release model which relates the dependence of the contact angle and the mobility to the hexafluoropropylene oxide deposition time. Consistent time constants of τ = ≪1 min, 2 min, and 250 min were extracted for mobility and contact angle which implies a direct dependence on the surface coverage. Mobility decreased at short deposition times, recovered at medium deposition times and improved strongly by 2.4 cm2 V-1 s-1 for long deposition times of 1400 min. A microscopic model of these phenomena is given with interpretation of the different time constants found in the experiment.
Leelarungrayub, Donrawee; Saidee, Kunteera; Pothongsunun, Prapas; Pratanaphon, Sainetee; YanKai, Araya; Bloomer, Richard J
2011-07-01
This study evaluated the change in blood oxidative stress, blood interleukin-2, and physical performance following 6 weeks of moderate intensity and duration aerobic dance exercise in 24 sedentary women. Blood samples were collected at rest twice before (baseline) and after the 6-week intervention for analysis of protein hydroperoxide (PrOOH), malondialdehyde (MDA), total anti-oxidant capacity (TAC), and interleukin-2 (IL-2) levels. Maximal treadmill run time (Time(max)) and maximal oxygen consumption (VO(2max)) were also measured. All variables were statistically analyzed with a repeated measurement ANOVA and Tukey post hoc. No differences were noted in any variable during the baseline period (p > 0.05). After aerobic dance exercise, VO(2max), Time(max), TAC and IL-2 were significantly increased, whereas MDA levels were decreased significantly (p < 0.05). PrOOH did not change either between baseline measures or after exercise. It can be concluded that aerobic dance exercise at a moderate intensity and duration can improve physical fitness, decrease MDA, and increase TAC and IL-2 in previously sedentary women. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin, E-mail: jjang@khu.ac.kr
We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm{sup 2}/V s to 17.9 cm{sup 2}/V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO{sub 2}. Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility.more » X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm{sup −3} to 5.83 g cm{sup −3} (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability.« less
The effect of heat treatment on the resistivity of polycrystalline silicon films
NASA Technical Reports Server (NTRS)
Fripp, A. L., Jr.
1975-01-01
The resistivity of doped polycrystalline silicon films has been studied as a function of post deposition heat treatments in an oxidizing atmosphere. It was found that a short oxidation cycle may produce a resistivity increase as large as three orders of magnitude in the polycrystalline films. The extent of change was dependent on the initial resistivity and the films' doping level and was independent of the total oxidation time.
Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.
Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina
2015-01-01
Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.
Technology of GaAs metal-oxide-semiconductor solar cells
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Yeh, Y. C. M.
1977-01-01
The growth of an oxide interfacial layer was recently found to increase the open-circuit voltage (OCV) and efficiency by up to 60 per cent in GaAs metal-semiconductor solar cells. Details of oxidation techniques to provide the necessary oxide thickness and chemical structure and using ozone, water-vapor-saturated oxygen, or oxygen gas discharges are described, as well as apparent crystallographic orientation effects. Preliminary results of the oxide chemistry obtained from X-ray, photoelectron spectroscopy are given. Ratios of arsenic oxide to gallium oxide of unity or less seem to be preferable. Samples with the highest OVC predominantly have As(+3) in the arsenic oxide rather than As(+5). A major difficulty at this time is a reduction in OCV by 100-200 mV when the antireflection coating is vacuum deposited.
Sales, Amanda J; Hiroaki-Sato, Vinícius A; Joca, Sâmia R L
2017-02-01
Systemic or hippocampal administration of nitric oxide (NO) synthase inhibitors induces antidepressant-like effects in animals, implicating increased hippocampal levels of NO in the neurobiology of depression. However, the role played by different NO synthase in this process has not been clearly defined. As stress is able to induce neuroinflammatory mechanisms and trigger the expression of inducible nitric oxide synthase (iNOS) in the brain, as well as upregulate neuronal nitric oxide synthase (nNOS) activity, the aim of the present study was to investigate the possible differential contribution of hippocampal iNOS and nNOS in the modulation of the consequences of stress elicited by the forced swimming test. Male Wistar rats received intrahippocampal injections, immediately after the pretest or 1 h before the forced swimming test, of selective inhibitors of nNOS (N-propyl-L-arginine), iNOS (1400W), or sGC (ODQ), the main pharmacological target for NO. Stress exposure increased nNOS and phospho-nNOS levels at all time points, whereas iNOS expression was increased only 24 h after the pretest. All drugs induced an antidepressant-like effect. However, whereas the nNOS inhibitor was equally effective when injected at different times, the iNOS inhibitor was more effective 24 h after the pretest. These results suggest that hippocampal nNOS and iNOS contribute to increase in NO levels in response to stress, although with a differential time course after stress exposure.
Is human saliva an indicator of the adverse health effects of using mobile phones?
Hamzany, Yaniv; Feinmesser, Raphael; Shpitzer, Thomas; Mizrachi, Aviram; Hilly, Ohad; Hod, Roy; Bahar, Gideon; Otradnov, Irina; Gavish, Moshe; Nagler, Rafael M
2013-02-20
Increasing use of mobile phones creates growing concerns regarding harmful effects of radiofrequency nonionizing electromagnetic radiation on human tissues located close to the ear, where phones are commonly held for long periods of time. We studied 20 subjects in the mobile-phone group who had a mean duration of mobile phone use of 12.5 years (range 8-15) and a mean time use of 29.6 h per month (range 8-100). Deaf individuals served as controls. We compared salivary outcomes (secretion, oxidative damage indices, flow rate, and composition) between mobile phone users and nonusers. We report a significant increase in all salivary oxidative stress indices studied in mobile phone users. Salivary flow, total protein, albumin, and amylase activity were decreased in mobile phone users. These observations lead to the hypothesis that the use of mobile phones may cause oxidative stress and modify salivary function.
Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells.
Cellai, Filippo; Munnia, Armelle; Viti, Jessica; Doumett, Saer; Ravagli, Costanza; Ceni, Elisabetta; Mello, Tommaso; Polvani, Simone; Giese, Roger W; Baldi, Giovanni; Galli, Andrea; Peluso, Marco E M
2017-04-29
Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3 H )-one deoxyguanosine (M₁dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe₃O₄-nanoparticles (NPs) versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF) of 186 kHz using 32 P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 μg/mL of Fe₃O₄-NPs. Significant dose-response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death.
Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells
Cellai, Filippo; Munnia, Armelle; Viti, Jessica; Doumett, Saer; Ravagli, Costanza; Ceni, Elisabetta; Mello, Tommaso; Polvani, Simone; Giese, Roger W.; Baldi, Giovanni; Galli, Andrea; Peluso, Marco E. M.
2017-01-01
Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe3O4-nanoparticles (NPs) versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF) of 186 kHz using 32P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 μg/mL of Fe3O4-NPs. Significant dose–response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death. PMID:28468256
The effect of alpha-tocopherol on the oxidation and free radical decay in irradiated UHMWPE.
Oral, Ebru; Rowell, Shannon L; Muratoglu, Orhun K
2006-11-01
We developed a radiation cross-linked ultra-high molecular weight polyethylene (UHMWPE) stabilized with alpha-tocopherol (Vitamin E) as a bearing material in total joint replacements. The stabilizing effect of alpha-tocopherol on free radical reactions in UHMWPE is not well understood. We investigated the effect of alpha-tocopherol on the oxidation and transformation of residual free radicals during real-time aging of alpha-tocopherol-doped, irradiated UHMWPE (alphaTPE) and irradiated UHMWPE (control). Samples were aged at 22 degrees C (room temperature) in air, at 40 degrees C in air and at 40 degrees C in water for 7 months. During the first month, alphaTPE showed some oxidation at the surface, which stayed constant thereafter. Control exhibited substantial oxidation in the subsurface region, which increased with time. The alkyl/allyl free radicals transformed to oxygen centered ones in both materials; this transformation occurred faster in alpha-TPE. In summary, the real-time oxidation behavior of alpha-TPE was consistent with that observed using accelerated aging methods. This new UHMWPE is oxidation resistant and is expected to maintain its properties in the long term.
Tikhaze, A K; Konovalova, G G; Lankin, V Z; Kaminnyi, A I; Kaminnaja, V I; Ruuge, E K; Kukharchuk, V V
2005-08-01
We studied the effects of 30-day peroral treatment with beta-carotene, a complex of antioxidant vitamins (vitamins C and E and provitamin A) and selenium, and solubilized ubiquinone Q(10) on the antioxidant potential in rat liver (ascorbate-dependent free radical oxidation of unsaturated membrane phospholipids). beta-Carotene irrespective of the administration route increased antioxidant potential of the liver by 2-3.5 times. The complex of antioxidant vitamins and selenium increased this parameter by more than 15 times. Antiradical activity in rat liver was extremely high after administration of solubilized ubiquinone Q(10) (increase by more than by 36 times). It can be expected that reduced ubiquinone Q(10) in vivo should produce a more pronounced protective effect due to activity of the system for bioregeneration of this natural antioxidant.
Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.
2005-07-01
The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface.more » The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.« less
Synthesis and properties of graphene oxide/graphene nanostructures
NASA Astrophysics Data System (ADS)
Kapitanova, O. O.; Panin, G. N.; Baranov, A. N.; Kang, T. W.
2012-05-01
We report preparation of graphene oxide (GO)/graphene (G) nanostructures and their structural, optical and electrical properties. GO was synthesized through oxidation of graphite by using the modified Hummer's method, in which a long oxidation time was combined with a highly effective method for purifying the reaction products. The obtained GO was partially reduced (r-GO) by adding ascorbic acid and thermal annealing. An electrical reduction/oxidation process in r-GO under an electric field was used to form and control the GO/G nanostructures and the potential barrier at the interface. After the treatment, the ratio of the intensity of peak G (1578 cm-1) to that of peak D (1357 cm-1) in Raman spectra of the samples is increased, which is attributed to an increase in the ratio between the sp2 and sp3 regions. The electrical and the luminescence characteristics of the GO/G nanostructures were investigated.
Increased levels of mitochondrial DNA copy number in patients with vitiligo.
Vaseghi, H; Houshmand, M; Jadali, Z
2017-10-01
Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo. © 2017 British Association of Dermatologists.
Oxidant-Antioxidant Balance during On-Pump Coronary Artery Bypass Grafting
Mentese, Umit; Dogan, Orhan Veli; Turan, Ibrahim; Usta, Sefer; Dogan, Emre; Oztas Mentese, Seda; Demir, Selim; Ozer, Tanil; Aykan, Ahmet Cagri; Alver, Ahmet
2014-01-01
Backround. The aim of this study was to evaluate the changes in perioperative oxidant-antioxidant balance in ONCABG. Methods. Twenty-three patients were included in this study. Serum total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI) values were assessed preoperatively, at 20 minutes after aortic clamping and at 30 minutes, 6 hours, and 48 hours after declamping (reperfusion). The patients were divided into 2 groups according to the median aortic cross clamping (XC) time: group 1 (XC time < 42 minutes) and group 2 (XC time ≥ 42 minutes). Results. TOS and OSI values of whole patients at 30 minutes after reperfusion were higher than preoperative values (P = 0.045, P = 0.015), while perioperative TAS levels of the patients were similar to the preoperative levels (P = 0.173). XC time was correlated with TOS levels at 30 minutes after reperfusion (r = 0.43, P = 0.041). In group 2, TOS and OSI values at 30 minutes after reperfusion were higher than preoperative values (P = 0.023, P = 0.048), whereas a significant difference was not found in group 1 (P = 0.601, P = 0.327). Conclusions. Oxidative imbalance and increase in TOS at reperfusion in ONCABG may be associated with XC time. PMID:25302318
Ramel, A; Wagner, K; Elmadfa, I
2004-01-01
Objectives: To investigate noradrenaline concentrations, neutrophil counts, plasma antioxidants, and lipid oxidation products before and after acute resistance exercise. Methods: 17 male participants undertook a submaximal resistance exercise circuit (10 exercises; 75% of the one repetition maximum; mean (SD) exercise time, 18.6 (1.1) minutes). Blood samples were taken before and immediately after exercise and analysed for plasma antioxidants, noradrenaline, neutrophils, and lipid oxidation products. Wilcoxon's signed-rank test and Pearson's correlation coefficient were used for calculations. Results: Neutrophils, noradrenaline, fat soluble antioxidants, and lipid oxidation products increased after exercise. Noradrenaline concentrations were associated with higher antioxidant concentrations. Neutrophils were related to higher concentrations of conjugated dienes. Conclusions: Submaximal resistance exercise increases plasma antioxidants. This might reflect enhanced antioxidant defence in response to the oxidative stress of exercise, though this is not efficient for inhibiting lipid oxidation. The correlation between noradrenaline concentrations and plasma antioxidants suggests a modulating role of the stress hormone. Neutrophils are a possible source of oxidative stress after resistance exercise. PMID:15388566
Iodinated contrast media can induce long-lasting oxidative stress in hemodialysis patients.
Hwang, Seun Deuk; Kim, Yoon Ji; Lee, Sang Heun; Cho, Deok Kyu; Cho, Yun Hyeong; Moon, Sung Jin; Lee, Sang Choel; Yoon, Soo Young
2013-11-01
Due to their comorbidities, dialysis patients have many chances to undergo radiologic procedures using iodinated contrast media. We aimed to assess time-sequenced blood oxidative stress level after contrast exposure in hemodialysis (HD) patients compared to those in the non-dialysis population. We included 21 anuric HD patients [HD-coronary angiography (CAG) group] and 23 persons with normal renal function (nonHD-CAG group) scheduled for CAG, and assessed 4 oxidative stress markers [advanced oxidation protein products (AOPP); catalase; 8-hydroxydeoxyguanosine; and malondialdehyde] before and after CAG, and subsequently up to 28 days. In the nonHD-CAG group, only AOPP increased immediately after CAG and returned to baseline within one day. However, in the HD-CAG group, all four oxidative stress markers were significantly increased starting one day after CAG, and remained elevated longer than those in the nonHD-CAG group. Especially, AOPP level remained elevated for a month after contrast exposure. Our study showed that iodinated contrast media induces severe and prolonged oxidative stress in HD patients.
Development of MoSi2 coating with Al doping by using high energy milling method
NASA Astrophysics Data System (ADS)
Simanjuntak, C. M. S.; Hastuty, S.; Izzuddin, H.; Sundawa, R.; Sudiro, T.; Sukarto, A.; Thosin, K. A. Z.
2018-03-01
MoSi2 is well known as a material for high temperature application because it has high oxidation and corrosion resistance. The aim of this research is to develop MoSi2 coating with Al doping on Stainless Steel 316 (SS316) substrate using High-Energy Milling method. Aluminium is added to the coating as a dopant to increase formation of MoSi2 coating layer on the substrate. The variations used here based on the concentrations of doping Al (at.%) and duration of milling. Results show that the MoSi2 coatings with variations of 30 and 50 at.% of Al doping and 3 and 6 hours of milling times were successfully coated on the surface of SS 316 using the high-energy milling method. The most optimum coating result after oxidation test at 1100 °C for 100 hours is shown by MoSi2-30%Al with 3 hours of milling times. From the oxidation results, the Al doping into MoSi2 coating was able to increase the oxidation resistance of the SS 316 substrate.
2013-01-01
We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342
Puniredd, Sreenivasa Reddy; Jayaraman, Sundaramurthy; Yeong, Sai Hooi; Troadec, Cedric; Srinivasan, M P
2013-05-02
Oxide-free Si and Ge surfaces have been passivated and modified with organic molecules by forming covalent bonds between the surfaces and reactive end groups of linear alkanes and aromatic species using single-step deposition in supercritical carbon dioxide (SCCO2). The process is suitable for large-scale manufacturing due to short processing times, simplicity, and high resistance to oxidation. It also allows the formation of monolayers with varying reactive terminal groups, thus enabling formation of nanostructures engineered at the molecular level. Ballistic electron emission microscopy (BEEM) spectra performed on the organic monolayer on oxide-free silicon capped by a thin gold layer reveals for the first time an increase in transmission of the ballistic current through the interface of up to three times compared to a control device, in contrast to similar studies reported in the literature suggestive of oxide-free passivation in SCCO2. The SCCO2 process combined with the preliminary BEEM results opens up new avenues for interface engineering, leading to molecular electronic devices.
Dietary Modulation of Oxidative Stress in Alzheimer's Disease.
Thapa, Arjun; Carroll, Nick J
2017-07-21
Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer's, and Parkinson's diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer's disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.
Sokolov, Alexander; Louhi-Kultanen, Marjatta
2018-06-07
The increase in volume and variety of pharmaceuticals found in natural water bodies has become an increasingly serious environmental problem. The implementation of cold plasma technology, specifically gas-phase pulsed corona discharge (PCD), for sulfamethizole abatement was studied in the present work. It was observed that sulfamethizole is easily oxidized by PCD. The flow rate and pH of the solution have no significant effect on the oxidation. Treatment at low pulse repetition frequency is preferable from the energy efficiency point of view but is more time-consuming. The maximum energy efficiency was around 120 g/kWh at half-life and around 50 g/kWh at the end of the treatment. Increasing the solution temperature from room temperature to 50 °C led to a significant reaction retardation of the process and decrease in energy efficiency. The pseudo-first order reaction rate constant (k 1 ) grows with increase in pulse repetition frequency and does not depend on pH. By contrast, decreasing frequency leads to a reduction of the second order reaction rate constant (k 2 ). At elevated temperature of 50 °C, the k 1 , k 2 values decrease 2 and 2.9 times at 50 pps and 500 pps respectively. Lower temperature of 10 °C had no effect on oxidation efficiency compared with room temperature.
Kishimoto, Yoshimi; Taguchi, Chie; Saita, Emi; Suzuki-Sugihara, Norie; Nishiyama, Hiroshi; Wang, Wei; Masuda, Yasunobu; Kondo, Kazuo
2017-09-01
The egg is a nutrient-dense food and contains antioxidative carotenoids, lutein and zeaxanthin, but its impact on serum cholesterol levels has been a matter of concern, especially for individuals who have high serum cholesterol levels. We conducted this study to determine whether and how the daily additional consumption of one egg affects serum lipid profiles and parameters of LDL oxidation in moderately hypercholesterolemic males. Nineteen male Japanese adults (total cholesterol [TC]>5.2mmol/L) participated, consuming one soft boiled egg per day for 4weeks in addition to their habitual diet. Despite the significant increase in their intake of dietary cholesterol during the intervention period, the subjects' serum concentrations of TC and low-density lipoprotein cholesterol (LDL-C) did not increase. Their serum malondialdehyde modified low-density lipoprotein (MDA-LDL) concentrations were significantly decreased and their LDL oxidation lag times, reflecting the resistance of free-radical-induced LDL lipid peroxidation (ex vivo), was prolonged after 2 and 4weeks. At weeks 2 and 4, the subjects' serum lutein+zeaxanthin concentrations were significantly higher than their baseline values and showed both an inverse relation with MDA-LDL and a positive relationship with the LDL oxidation lag time. These data showed that in moderately hypercholesterolemic males, the additional consumption of one egg per day for 4weeks did not have adverse effects on serum TC or LDL-C, and it might reduce the susceptibility of LDL to oxidation through an increase in the serum lutein and zeaxanthin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of daily ingestion of chilli on serum lipoprotein oxidation in adult men and women.
Ahuja, Kiran D K; Ball, Madeleine J
2006-08-01
Laboratory studies have shown that the resistance of isolated LDL-cholesterol or linoleic acid to oxidation is increased in incubations with chilli extracts or capsaicin--the active ingredient of chilli. It is unknown if these in vitro antioxidative effects also occur in the serum of individuals eating chilli regularly. The present study investigated the effects of regular consumption of chilli on in vitro serum lipoprotein oxidation and total antioxidant status (TAS) in healthy adult men and women. In a randomised cross-over study, twenty-seven participants (thirteen men and fourteen women) ate 'freshly chopped chilli' blend (30 g/d; 55% cayenne chilli) and no chilli (bland) diets, for 4 weeks each. Use of other spices, such as cinnamon, ginger, garlic and mustard, was restricted to minimum amounts. At the end of each dietary period serum samples were analysed for lipids, lipoproteins, TAS and Cu-induced lipoprotein oxidation. Lag time (before initiation of oxidation) and rate of oxidation (slope of propagation phase) were calculated. There was no difference in the serum lipid, lipoproteins and TAS at the end of the two dietary periods. In the whole group, the rate of oxidation was significantly lower (mean difference -0.23 absorbance x10(-3)/min; P=0.04) after the chilli diet, compared with the bland diet. In women, lag time was higher (mean difference 9.61 min; P<0.001) after the chilli diet, compared with the bland diet. In conclusion, regular consumption of chilli for 4 weeks increases the resistance of serum lipoproteins to oxidation.
Joad, J P; Kott, K S; Bonham, A C
1997-01-01
1. Substance P induces fluid flux via nitric oxide, and fluid flux stimulates lung rapidly adapting receptors (RARs). We therefore proposed that nitric oxide contributes to substance P-evoked increases in RAR activity. Since substance P decreases dynamic compliance (Cdyn), which can stimulate RARs, we also determined whether nitric oxide contributed to substance P-induced effects on pulmonary function. 2. In anaesthetized guinea-pigs, the effects of substance P on RAR activity, Cdyn, pulmonary resistance (RL), and arterial blood pressure were measured before and after i.v. infusion of NG-methyl-L-arginine (L-NMMA; a nitric oxide synthase inhibitor), or L-NMMA followed by L-arginine (a nitric oxide precursor which reverses the effects of L-NMMA). 3. Substance P-evoked increases in RAR activity were blunted by L-NMMA (P = 0.006) but not by L-NMMA-L-arginine (P = 0.42). 4. Substance P-evoked decreases in Cdyn were slightly inhibited by L-NMMA (P = 0.02) and slightly enhanced by L-NMMA-L-arginine (P = 0.004). However, at the time at which L-NMMA maximally reduced substance P-induced RAR stimulation (the first 30 s), it did not change substance P-induced decreases in Cdyn. 5. Substance P-evoked increases in RL were not changed by L-NMMA (P = 0.10) and were enhanced by L-NMMA-L-arginine (P = 0.03). 6. L-NMMA-evoked increases in mean arterial blood pressure were reversed by L-arginine. Substance P-evoked decreases in mean arterial blood pressure were not changed by L-NMMA or by L-NMMA-L-arginine. 7. We conclude that nitric oxide contributes to substance P-evoked increases in RAR activity and that the increases are most probably independent of decreases in Cdyn. PMID:9379417
NASA Astrophysics Data System (ADS)
Chen, Xiang; Haasch, Rick; Stubbins, James F.
2012-12-01
The corrosion behavior of FeCrAl alloy in Lead-Bismuth Eutectic (LBE) saturated with oxygen at 550 °C was investigated. Impedance Spectroscopy (IS) measurement was made continuously on one specimen during the entire LBE exposure test to characterize the corrosion kinetics. Various microanalysis techniques, including SEM, EDS, XRD, AES, and XPS were used to analyze the corrosion products of post-exposure specimens. It was found that a very thin, adherent alumina oxide layer formed on the specimen surface and was able to protect the alloy from the corrosion attack in LBE. The thickness of the alumina surface layer increased very slowly with time reaching about 837 nm in average thickness after exposure for 3600-h in LBE. The IS measurements match the microanalysis results in three respects: first, a non-zero impedance measurement agrees with the existence of a continuous surface oxide layer; second, a general increase of the impedance was observed during the real-time IS measurement which means that the IS measurements reflect the growth rate of the oxide layer; and third, the oxide film thickness derived from the IS data compares favorably with the SEM film thickness measurements which establishes the validity of using IS to monitor the real-time corrosion kinetics of alloys in LBE.
Effect of several environmental parameters on carbon metabolism in histosols.
Tate, R L
1980-12-01
High specific activity(14)C-labeled glucose, succinate, acetate, salicylate, and amino acids were used to examine carbon metabolism by the microbial community of Pahokee muck (aLithic medisaprist), a drained, cultivated soil of the Florida Everglades. Variations in carbon oxidation were observed from the end of the wet season through the dry season in a fallow (bare) field. Evolution of(14)CO2 varied with the substrate added and time. Calculation of(14)CO2 evolution for each substrate as a proportion of total respiration of the microbial community which was measured by succinate oxidation (relative oxidation) allowed for determination of the proportion of metabolic activity contributed by the oxidation of each carbon source. Except for the May sample when an approximate 30% decline in relative salicylate oxidation activity was observed, the proportion of total catabolic activity contributed by salicylate oxidation and acetate degradation was constant with time. Relative oxidation of glucose and amino acids ranged from 0.12 to 0.52 and 0.10 to 0.23, respectively. At two times during the dry season, the effect of depth of soil and crop on the carbon oxidation was examined. Relative acetate and amino acid oxidation were constant with depth whereas statistically significant variation was observed in glucose and salicylate oxidation. Generally, with the latter substrates, the activity declined with increased soil depth. Greatest effect of crop on these metabolic activities was noted with oxidation of salicylate in soils from a St. Augustinegrass [Stenatophrum secundatum (Walt.) Kuntz] pasture. In these soils, oxidation of salicylate was nearly double that of the fallow field or of soil planted with sugarcane (Saccharum sp.).
Effects of Hydrogen Peroxide on Wound Healing in Mice in Relation to Oxidative Damage
Ho, Rongjian; Wasser, Martin; Du, Tiehua; Ng, Wee Thong; Halliwell, Barry
2012-01-01
It has been established that low concentrations of hydrogen peroxide (H2O2) are produced in wounds and is required for optimal healing. Yet at the same time, there is evidence that excessive oxidative damage is correlated with poor-healing wounds. In this paper, we seek to determine whether topical application of H2O2 can modulate wound healing and if its effects are related to oxidative damage. Using a C57BL/6 mice excision wound model, H2O2 was found to enhance angiogenesis and wound closure at 10 mM but retarded wound closure at 166 mM. The delay in closure was also associated with decreased connective tissue formation, increased MMP-8 and persistent neutrophil infiltration. Wounding was found to increase oxidative lipid damage, as measured by F2-isoprostanes, and nitrative protein damage, as measured by 3-nitrotyrosine. However H2O2 treatment did not significantly increase oxidative and nitrative damage even at concentrations that delay wound healing. Hence the detrimental effects of H2O2 may not involve oxidative damage to the target molecules studied. PMID:23152875
Decrease of total antioxidant capacity during coronary artery bypass surgery.
Kunt, Alper Sami; Selek, Sahbettin; Celik, Hakim; Demir, Deniz; Erel, Ozcan; Andac, Mehmet Halit
2006-09-01
Cardiac surgery induces an oxidative stress, which may lead to impairment of cardiac function. In this study, we aimed to measure the changes of oxidative and antioxidative status of patients undergoing coronary artery bypass surgery (CABG). We studied 79 patients who underwent CABG with and without cardiopulmonary bypass (CPB). Of the 79 patients, 39 had CPB and 40 did not. Blood samples were drawn before, during, and after the surgery. Antioxidant status was evaluated by measuring total antioxidant capacity (TAC), and oxidative status was evaluated by measuring total peroxide (TP) levels and oxidative stress index (OSI). TP and OSI levels increased, while TAC decreased progressively after the beginning of surgery, for all patients. There were negative correlations between TAC levels and aortic cross-clamping period and anastomosis time ( r = -0.553, p < 0.001 and r = -0.500, p < 0.001, respectively). In addition, there was a positive correlation between TAC and ejection fraction (r = 0.647, p < 0.001). During CABG, oxidant and OSI levels significantly increase and TAC significantly decreases. This situation is influenced by long CPB and anastomosis time, and also by low ventricular ejection fraction. We concluded that the patients who undergo CABG are exposed to potent oxidative stress that impairs their TAC. We speculate that supplementation with antioxidant vitamins such as vitamins C and E may be beneficial for patients undergoing CABG.
Protective effect of exercise and sildenafil on acute stress and cognitive function.
Ozbeyli, Dilek; Gokalp, Ayse Gizem; Koral, Tolga; Ocal, Onur Yuksel; Dogan, Berkay; Akakin, Dilek; Yuksel, Meral; Kasimay, Ozgur
2015-11-01
There are contradictory results about the effects of exercise and sildenafil on cognitive functions. To investigate the effects of sildenafil pretreatment and chronic exercise on anxiety and cognitive functions. Wistar rats (n=42) were divided as sedentary and exercise groups. A moderate-intensity swimming exercise was performed for 6 weeks, 5 days/week, 1h/day. Some of the rats were administered orogastrically with sildenafil (25mg/kg/day) either acutely or chronically. Exposure to cat odor was used for induction of stress. The level of anxiety was evaluated by elevated plus maze test, while object recognition test was used to determine cognitive functions. Brain tissues were removed for the measurement of myeloperoxidase (MPO), malondialdehyde (MDA), nitric oxide levels, lucigenin-enhanced chemiluminescence, and for histological analysis. Increased MPO and MDA levels in sedentary-stressed rats were decreased with sildenafil applications. Chronic exercise inhibited the increase in MPO levels. Increased nitric oxide and lucigenin chemiluminescence levels in sedentary-stressed rats, were diminished with chronic sildenafil pretreatment. The time spent in the open arms of the plus maze was declined in sedentary-stressed rats, while chronic sildenafil pretreatment increased the time back to that in non-stressed rats. Acute sildenafil application to exercised rats prolonged the time spent in open arms as compared to non-treated exercise group. The time spent with the novel object, which was decreased in sedentary-stressed rats, was increased with sildenafil pretreatment. Our results suggest that sildenafil pretreatment or exercise exerts a protective effect against acute stress and improves cognitive functions by decreasing oxidative damage. Copyright © 2015 Elsevier Inc. All rights reserved.
Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.
Forsey, Steven P; Thomson, Neil R; Barker, James F
2010-04-01
The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene
Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker
2016-01-01
ABSTRACT Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3−reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of 14C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments. IMPORTANCE Twenty years after the discovery of nitrate-reducing Fe(II) oxidizers, it is still controversially discussed whether autotrophic nitrate-reducing Fe(II)-oxidizing microorganisms exist and to what extent Fe(II) oxidation in this reduction/oxidation process is enzymatically catalyzed or which role abiotic side reactions of Fe(II) with reactive N species play. Most pure cultures of nitrate-reducing Fe(II) oxidizers are mixotrophic; i.e., they need an organic cosubstrate to maintain their activity over several cultural transfers. For the few existing autotrophic isolates and enrichment cultures, either the mechanism of nitrate-reducing Fe(II) oxidation is not known or evidence for their autotrophic lifestyle is controversial. In the present study, we provide evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. The evidence is based on stoichiometries of nitrate reduction and Fe(II) oxidation determined in microcosm incubations and the incorporation of carbon from CO2 under conditions that favor the activity of nitrate-reducing Fe(II) oxidizers. PMID:27496777
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.
Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale
2012-01-01
This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273
Modeling SOA formation from the oxidation of intermediate volatility n-alkanes
NASA Astrophysics Data System (ADS)
Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.
2012-08-01
The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.
Modeling SOA formation from the oxidation of intermediate volatility n-alkanes
NASA Astrophysics Data System (ADS)
Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.
2012-06-01
The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.
Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality
2016-01-01
Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry. PMID:27482521
Er 3+ Doping conditions of planar porous silicon waveguides
NASA Astrophysics Data System (ADS)
Najar, A.; Lorrain, N.; Ajlani, H.; Charrier, J.; Oueslati, M.; Haji, L.
2009-11-01
EDX and infrared photoluminescence (IR PL) analyses performed on erbium-doped porous silicon waveguides (PSWG) were studied using different doping conditions. Both parameters of the cathodisation electrochemical method used for Er incorporation and parameters of thermal treatments required for Er optical activation were taken into consideration. Firstly, by varying the current density and the time of cathodisation, we have shown that a current density of 0.1 mA/cm 2 for 10 min allows homogeneous Er doping to be achieved throughout the depth of the guiding layer. Then, the PL intensity at 1.53 μm was studied as a function of the oxidation time at 900 °C and Er diffusion temperature for 60 min. Increasing the oxidation time up to 1 h allows PL to be enhanced due to active Si-O-Er complex formation whereas an oxidation time of 2 h induces a decrease in PL because of Er segregation. Moreover, an increase in the diffusion temperature induces an optimal distribution of optically active Si-Er-O complexes inside the crystallites. When the temperature is too high, a PSWG densification and Er segregation occurs inducing a decrease in PL due to energy transfer phenomena.
NASA Astrophysics Data System (ADS)
Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.
2018-01-01
This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.
Process dependency of radiation hardness of rapid thermal reoxidized nitrided gate oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weishin Lu; Kuanchin Lin; Jenngwo Hwu
The radiation hardness of MOS capacitors with various reoxidized nitrided oxide (RNO) structures is studied by changing the durations of rapid thermal processes during sample preparation and by applying irradiation-then-anneal (ITA) treatments on samples after preparation. It is found that the initial flatband voltage and midgap interface trap density of MOS capacitors exhibit turnaround'' dependency on the total time of nitridation and reoxidation processes. For samples with nitrided oxide (NO) structures, the radiation-induced variations of above parameters are also turnaround''-dependent on nitridation time. However, when the reoxidation process is performed, the radiation hardness for all samples will be gradually improvedmore » with increasing reoxidation time no matter what the nitridation time is. The most radiation-hard process for RNO structures is suggested. Finally, it is found that when ITA treatments are applied on samples after preparation, their radiation hardness is much improved.« less
Induction of Oxidation in Living Cells by Time-Varying Electromagnetic Fields
NASA Technical Reports Server (NTRS)
Stolc, Viktor
2015-01-01
We are studying how biological systems can harness quantum effects of time varying electromagnetic (EM) waves as the time-setting basis for universal biochemical organization via the redox cycle. The effects of extremely weak EM field on the biochemical redox cycle can be monitored through real-time detection of oxidation-induced light emissions of reporter molecules in living cells. It has been shown that EM fields can also induce changes in fluid transport rates through capillaries (approximately 300 microns inner diameter) by generating annular proton gradients. This effect may be relevant to understanding cardiovascular dis-function in spaceflight, beyond the ionosphere. Importantly, we show that these EM effects can be attenuated using an active EM field cancellation device. Central for NASA's Human Research Program is the fact that the absence of ambient EM field in spaceflight can also have a detrimental influence, namely via increased oxidative damage, on DNA replication, which controls heredity.
The synthesis and application of fine particles for coatings and composites
NASA Astrophysics Data System (ADS)
Stephenson, Richard Charles
A variety of coating methods are presented for producing titanium and zirconium oxide coatings on spherical alpha-alumina substrates. Some methods did not completely coat the alumina substrate leaving surface areas exposed. Techniques such as surface modifications with PDVB and 4-VP did produce coatings of metal oxides of very high quality. The best metal oxide coatings are produced from pre-treatment of the alumina microspheres followed by the acid catalyzed hydrolysis of the metal tetra-alkoxides. Methods to investigate converting titanium oxide and zirconium oxide coated alumina microspheres to the corresponding metal carbide coated alumina microspheres have been done. The methods involving direct reduction of the metal oxides by methane and methane-hydrogen gas proved inefficient in producing high quality metal carbide coatings. It is evident higher processing temperatures are required to achieve good metal carbide yield by these methods. Metal oxide coated products carbided by ART (Buffalo, NY) proved the carbiding can be accomplished at higher temperatures and with a different carburizing gas. In addition to the ART carbiding method, the magnesium thermite reaction is a promising method in converting metal oxides to metal carbides at much lower temperatures and shorter processing times. The electrophoretic deposition of Bi2Sr2CaCu 2O8 powder was in ethanol. Of critical consequence were the design of the cathode geometry and the arrangement of the electrodes so that all faces and edges of the silver anode were coated simultaneously. This was achieved by shaping the platinum cathode into a configuration that allowed the silver tape to be completely surrounded by the platinum. The electrophoretic cell was set up to keep the electrodes stationary thereby maintaining a constant distance from the cathode and anode (3 mm). The relationship between deposition time and coating thickness was determined for various powder loadings for a given electric field strength (62 V). For low powder loadings (10 and 20 g/L), the thickness of the coating increases with increasing deposition time (6, 12, and 24 hours). At a powder loading of 30 g/L, the thickness of the BSCCO layer decreases from a deposition time of 6 to 12 hours. At 24 hours, the layer thickness increases. Very high powder loadings (40 g/L) showed a linear decrease in the BSCCO layer thickness with increasing deposition time. Analysis by XRD showed the EPD superconductor exhibited preferential orientation on the silver tape. The degree of orientation was related to the layer thickness and hence the deposition times. Thermal treatment at 800°C in 90% Ar-10% O2 improved the orientation effects. A marked improvement in the surface texture was also observed by SEM. Carbon nanotubes were synthesized via Fe catalysis in an aerosol column in the presence of Ar, CO, and H2 gas. Fe particles were generated by the thermal decarbonylation of Fe(CO)5. Multiwalled and single-walled carbon nanotubes were grown from the decomposition of CO gas on the forming Fe particles. Optimal conditions were determined for producing high yields of single-walled nanotubes. A growth theory is proposed based on the results. (Abstract shortened by UMI.)
Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.
Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F
2006-10-01
The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.
Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.
Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu
2016-06-22
A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2.
NASA Astrophysics Data System (ADS)
Sarkar, Sanjit; Basak, Durga
2013-03-01
We have synthesized for the first time ZnO/rGO hybrids from metal zinc and GO using hydrothermal technique without adding further reducing agent. The photocatalytic property of ZnO-rGO reveals that the hybrid for 50 mg of GO has the highest activity, causing a 94% degradation of methyl orange compared to 70% by only ZnO. The consistent quenching and a gradual decrease in the decay life time of the emission at ˜500 nm as the rGO content increases indicates the interfacial charge transfer process between ZnO and rGO by the defect states responsible for green emission.
Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis.
Xu, Mengchuan; Rui, Dongsheng; Yan, Yizhong; Xu, Shangzhi; Niu, Qiang; Feng, Gangling; Wang, Yan; Li, Shugang; Jing, Mingxia
2017-03-01
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As 3+ than to As 5+ . Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.
Wang, Hao; Sun, Xuming; Lin, Marina S; Ferrario, Carlos M; Van Remmen, Holly; Groban, Leanne
2018-04-25
Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss. Copyright © 2018 Elsevier Inc. All rights reserved.
Thakare, Vishnu N; Dhakane, Valmik D; Patel, Bhoomika M
2017-04-01
Protocatechuic acid ethyl ester (PCA), a phenolic compound, exhibits neuroprotective effects through improving endogenous antioxidant enzymatic and nonezymatic system. Based on the role of oxidative stress in modulating depressive disorders and the relationship between neuroprotective and antioxidant potential of PCA, we studied if its antidepressant like effect is associated by modulation of cerebral cortex and hippocampal antioxidant alterations. Acute restraint stress (ARS) is known to induce depressive like behavior by neuronal oxidative damage in mice. Swiss albino mice subjected to ARS exhibited an increased immobility time in forced swim test, elevated serum corticosterone and produced oxidative stress dependent alterations in cerebral cortex and hippocampus mainly increased thiobarbituric acid reactive substances and reduced catalase (CAT), superoxide dismutase (SOD) activity. Treatment with PCA was able to prevent stress induced immobility time in forced swim test without altering locomotor activity in mice. Further, PCA treatment attenuated the elevation of serum corticosterone, lipid peroxidation and restored enzymatic antioxidants in cerebral cortex and hippocampus in ARS mice. Altogether, the experimental findings demonstrate the notion that PCA exhibit antidepressant like activity might be related, at least in part, to its capability of modulating antioxidant defense system and oxidative damage induced by ARS in cerebral cortex and hippocampus in mice and thus maintain the pro-/anti-oxidative homeostasis.
Marinić, Jelena; Broznić, Dalibor; Milin, Čedomila
2016-01-01
Polyphenols can act as oxidants in some conditions, inducing redox-sensitive genes. We investigated the effect of preexposure to the olive oil polyphenols extract (PFE) on time-dependent changes in the hepatic oxidative state in a model of liver regeneration—a process in which oxidative stress associated with the metabolic overload accounts for the early events that contribute to the onset of liver self-repair. Liver regeneration was induced by one-third hepatectomy in mice. Prior to hepatectomy, mice were intraperitoneally given either PFE (50 mg/kg body weight) or saline for seven consecutive days, while respective controls received vehicle alone. Redox state-regulating enzymes and thiol proteins along with the mRNA levels of Nrf2 gene and its targets γ-glutamylcysteine synthetase and heme oxygenase-1 were determined at different time intervals after hepatectomy. The liver mass restoration was calculated to assess hepatic regeneration. The resulting data demonstrate the effectiveness of preexposure to PFE in stimulating liver regeneration in a model of a small tissue loss which may be ascribed to the transient increase in oxidant load during the first hours after hepatectomy and associated induction of stress response gene-profiles under the control of Nrf2. PMID:26925195
Li, Khu Say; Ali, M Abbas; Muhammad, Ida Idayu; Othman, Noor Hidayu; Noor, Ahmadilfitri Md
2018-05-01
The impact of microwave roasting on the thermooxidative degradation of perah seed oil (PSO) was evaluated during heating at a frying temperature (170°C). The roasting resulted significantly lower increment of the values of oxidative indices such as free acidity, peroxide value, p-anisidine, total oxidation (TOTOX), specific extinctions and thiobarbituric acid in oils during heating. The colour L* (lightness) value dropped gradually as the heating time increased up to 12 h, whereas a*(redness) and b* (yellowness) tended to increase. The viscosity and total polar compound in roasted PSO was lower as compared to that in unroasted one at each heating times. The tocol retention was also high in roasted samples throughout the heating period. The relative contents of polyunsaturated fatty acids (PUFAs) were decreased to 94.42% and saturated fatty acids (SFAs) were increased to 110.20% in unroasted sample, after 12 h of heating. On the other hand, in 3 min roasted samples, the relative contents of PUFAs were decreased to 98.08% and of SFAs were increased to 103.41% after 12 h of heating. Outcome from analyses showed that microwave roasting reduced the oxidative deteriorations of PSO during heating.
Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose
NASA Astrophysics Data System (ADS)
Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut
2014-03-01
Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation.
Covalent conjugation of graphene oxide with methotrexate and its antitumor activity
NASA Astrophysics Data System (ADS)
Wojtoniszak, M.; Urbas, K.; Perużyńska, M.; Kurzawski, M.; Droździk, M.; Mijowska, E.
2013-05-01
Here, we have functionalized graphene oxide with anticancer drug methotrexate through amide bonding. A kinetics of the drug release from graphene oxide in physiological solution - phosphate buffered saline (PBS) containing different biocompatible polymers have been investigated. Dispersion of MTX-GO in poly sodium-4-styrene sulfonate and poly ethylene glycol resulted in increase of the release time. The material was characterized with transmission electron microscopy, atomic force microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, antineoplastic action against human breast adenocarcinoma cell line MCF7 of MTX-GO and empty graphene oxide was explored.
Effects of the conversion of cropland to forest on the CH4 oxidation capacity in soils.
NASA Astrophysics Data System (ADS)
Bárcena, Teresa G.; D'Imperio, Ludovica; Priemé, Anders; Gundersen, Per; Vesterdal, Lars; Christiansen, Jesper R.
2013-04-01
As the second most important greenhouse gas (GHG) in the atmosphere, methane (CH4) plays a central role in global warming. Diverse types of soil have been reported as potential CH4 sinks due to the activity of methane oxidizing bacteria (MOB), underlining the importance of this functional group of microorganisms on a global basis. Agricultural practices are known to negatively affect CH4 oxidation in soil, while afforestation of former agricultural soils has been shown to enhance CH4 oxidation over time. However, knowledge is scarce with regard to the mechanisms driving the process of CH4 oxidation in different land uses. Our aim was to study the changes in CH4 uptake capacity in soils along a land-use change gradient from cropland to forest. We performed an incubation experiment to study the CH4 oxidation capacity of the top mineral soil (0-5 cm and 5-15 cm depth) for sites representing the transition from agriculture to afforestation based on monoculture of three tree species with different stand ages: pedunculate oak (4, 19, 42 and >200 years old), European larch (22 and 41 years old) and Norway spruce (15 and 43 years old). Main soil parameters were also measured to determine differences in soil properties between sites. Methane oxidation rates were related to the abundance of the soil methanotrophic community based on quantitative PCR (qPCR). In addition, we also estimated the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA), in order to investigate the link between these two similar functional groups. Although present, the abundance of AOB was under detection limit. The effects and interactions among all measured variables were summarized by Principal Component Analysis (PCA). Along the gradient, CH4 oxidation increased with increasing stand age in both soil layers (ranging from 0-1.3 nmol g-1dw d-1). However, we detected significant differences, in particular between oak and spruce, suggesting a possible tree species effect on the CH4 oxidation potential. The abundance of MOB also increased with stand age in the top layer (0-5 cm), but this trend was not clear in the 5-15 cm. On the other hand, we found a consistent decrease in the abundance of AOA with increasing stand age. This trend suggests that over time, the environmental niche shared by these microbial populations changes in favour of the MOB, most likely induced by changes in soil parameters, such as bulk density, carbon content and concentration of inorganic forms of nitrogen. In fact, results from the PCA indicated that over time, bulk density and carbon content were the variables that changed the most across the land use gradient, thereby influencing the CH4 oxidation capacity and the presence of the MOB. Our study provides evidence for a positive impact of afforestation of former cropland on CH4 uptake capacity in soils, contributing to mitigate the climatic consequences of this strong GHG in the atmosphere. Keywords: methane oxidation, afforestation, methane oxidizing bacteria (MOB), bulk density.
NASA Astrophysics Data System (ADS)
Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.
Analytical electron microscopy and three-dimensional atom probe tomography (ATP) examinations of surface and near-surface oxidation have been performed on Ni-30%Cr alloy 690 materials after exposure to high-temperature, simulated PWR primary water. The oxidation nanostructures have been characterized at crack walls after stress-corrosion crack growth tests and at polished surfaces of unstressed specimens for the same alloys. Localized oxidation was discovered for both crack walls and surfaces as continuous filaments (typically <10 nm in diameter) extending from the water interface into the alloy 690 matrix reaching depths of 500 nm. These filaments consisted of discrete, plate-shaped Cr2O3 particles surrounded by a distribution of nanocrystalline, rock-salt (Ni-Cr-Fe) oxide. The oxide-containing filament depth was found to increase with exposure time and, at longer times, the filaments became very dense at the surface leaving only isolated islands of metal. Individual dislocations were oxidized in non-deformed materials, while the oxidation path appeared to be along more complex dislocation substructures in heavily deformed materials. This paper will highlight the use of high resolution scanning and transmission electron microscopy in combination with APT to better elucidate the microstructure and microchemistry of the filamentary oxidation.
Paital, Biswaranjan
2014-01-01
Responses of redox regulatory system to long-term survival (>18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 °C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.
Benzing, A; Loop, T; Mols, G; Geiger, K
1999-10-01
Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the therapeutic use of nitric oxide.
Velten, D; Biehl, V; Aubertin, F; Valeske, B; Possart, W; Breme, J
2002-01-01
The excellent biocompatibility of titanium and its alloys used, for example, for medical devices, is associated with the properties of their surface oxide. For a better understanding of the tissue reaction in contact with the oxide layer, knowledge of the chemical and physical properties of this layer is of increasing interest. In this study, titania films were produced on cp-Ti and Ti6Al4V substrates by thermal oxidation, anodic oxidation, and by the sol-gel process. The thickness and structure of the films produced under different conditions were determined by ellipsometry, infrared spectroscopy, and X-ray diffraction measurements. The corrosion properties of these layers were investigated by current density-potential curves under physiological conditions. The oxide layers produced on cp-Ti and Ti6Al4V by thermal oxidation consist of TiO(2) in the rutile structure. For the anodized samples the structure of TiO(2) is a mixture of amorphous phase and anatase. The structure of the coatings produced by the sol-gel process for a constant annealing time depends on the annealing temperature, and with increasing temperature successively amorphous, anatase, and rutile structure is observed. Compared to the uncoated, polished substrate with a natural oxide layer, the corrosion resistance of cp-Ti and Ti6Al4V is increased for the samples with an oxide layer thickness of about 100 nm, independent of the oxidation procedure. Copyright 2001 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Saryanto, Hendi; Sebayang, Darwin; Untoro, Pudji; Sujitno, Tjipto
2018-03-01
The cross-sectional examinations of oxide scales formed by oxidation on the surface of FeCr alloys and Ferritic Steel that implanted with lanthanum and titanium dopants were observed and investigated. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) has been used to study the cross-sectional oxides produced by specimens after oxidation process. X-ray diffraction (XRD) analysis was used to strengthen the analysis of the oxide scale morphology, oxide phases and oxidation products. Cross-sectional observations show the effectiveness of La implantation for improving thinner and stronger scale/substrate interface during oxidation process. The result shows that the thickness of oxide scales formed on the surface of La implanted FeCr alloy and ferritic steel was found less than 3 μm and 300 μm, respectively. The oxide scale formed on the surface of La implanted specimens consisted roughly of Cr2O3 with a small amount of FeO mixture, which indicates that lanthanum implantation can improve the adherence, reduce the growth of the oxide scale as well as reduce the Cr evaporation. On the other side, the oxide scale formed on the surface of FeCr alloys and ferritic steel that implanted with titanium dopant was thicker, indicating that significant increase in oxidation mass gain. It can be noticed that titanium implantation ineffectively promotes Cr rich oxide. At the same time, the amount of Fe increased and diffused outwards, which caused the formation and rapid growth of FeO.
Lee, Seon Hwa; Matsushima, Keita; Miyamoto, Kohei; Oe, Tomoyuki
2016-02-05
Ultraviolet (UV) radiation is the major environmental factor that causes oxidative skin damage. Keratins are the main constituents of human skin and have been identified as oxidative target proteins. We have recently developed a mass spectrometry (MS)-based non-invasive proteomic methodology to screen oxidative modifications in human skin keratins. Using this methodology, UV effects on methionine (Met) oxidation in human skin keratins were investigated. The initial screening revealed that Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UVA (or UVB) irradiation of human tape-stripped skin. Subsequent liquid chromatography/electrospray ionization-MS and tandem MS analyses confirmed amino acid sequences and oxidation sites of tryptic peptides D(290)VDGAYMTK(298) (P1) and N(258)MQDMVEDYR(267) (P2). The relative oxidation levels of P1 and P2 increased in a time-dependent manner upon UVA irradiation. Butylated hydroxytoluene was the most effective antioxidant for artifactual oxidation of Met residues. The relative oxidation levels of P1 and P2 after UVA irradiation for 48 h corresponded to treatment with 100mM hydrogen peroxide for 15 min. In addition, Met(259) was oxidized by only UVA irradiation. The Met sites identified in conjunction with the current proteomic methodology can be used to evaluate skin damage under various conditions of oxidative stress. We demonstrated that the relative Met oxidation levels in keratins directly reflected UV-induced damages to human tape-stripped skin. Human skin proteins isolated by tape stripping were analyzed by MS-based non-invasive proteomic methodology. Met(259), Met(262), and Met(296) in K1 keratin were the most susceptible oxidation sites upon UV irradiation. Met(259) was oxidized by only UVA irradiation. Quantitative LC/ESI-SRM/MS analyses confirmed a time-dependent increase in the relative oxidation of target peptides (P1 and P2) containing these Met residues, upon UVA irradiation of isolated human skin. The relative oxidation levels of P1 and P2 along with the current proteomic methodology could be applied to the assessment of oxidative stress levels in skin after exposure to sunlight. Copyright © 2015 Elsevier B.V. All rights reserved.
Utrera, Mariana; Morcuende, David; Estévez, Mario
2014-03-01
The effect of three frozen storage temperatures (-8, -18 and -80 °C) on protein oxidation in beef patties was studied through the analysis of novel oxidation markers. Additionally, the connection between lipid and protein oxidation and the impact of the latter on particular quality traits (water holding capacity, color and texture) of subsequently processed beef patties (cooking/cold-stored) were investigated. Protein oxidation was measured as the loss of tryptophan fluorescence and formation of diverse lysine oxidation products (α-aminoadipic semialdehyde, α-aminoadipic acid and Schiff bases). Lipid oxidation was assessed by levels of thiobarbituric acid reactive substances and hexanal. A significant effect of storage temperature on protein oxidation was detected. Frozen storage increased the susceptibility of meat proteins to undergo further oxidation during processing. Timely interactions were found between lipid and protein oxidation. Plausible mechanisms by which oxidative damage to proteins may have an impact in particular quality traits are thoroughly discussed. © 2013.
Şimşek, Şeref; Kaplan, İbrahim; Uysal, Cem; Yüksel, Tuğba; Alaca, Rümeysa
2016-01-01
In this study we aimed to investigate serum cortisol, oxidative stress, and DNA damage in children who are sexual abuse victims. The study included 38 children who sustained child sexual abuse and 38 age- and gender-matched children who did not have a history of trauma. Cortisol levels reflecting the status of the hypothalamic-pituitary-adrenal axis, anti-oxidant enzymes glutathione peroxidase, superoxide dismutase, natural anti-oxidant coenzyme Q, and 8-hydroxy-2-deoxyguanosine as the indicator of DNA damage were analyzed in serum samples using the enzyme linked immunosorbent assay method. Cortisol levels were significantly higher in the child sexual abuse group compared to the control group. There were no significant differences between the groups in terms of oxidative stress and DNA damage. Cortisol and 8-hydroxy-2-deoxyguanosine levels decreased as the time elapsed since the sexual abuse increased. Coenzyme Q level was lower in victims who sustained multiple assaults than in the victims of a single assault. Cortisol and superoxide dismutase levels were lower in the victims of familial sexual abuse. Decreases in cortisol and 8-hydroxy-2-deoxyguanosine levels as time elapsed may be an adaptation to the toxic effects of high cortisol levels over a prolonged period of time. Child sexual abuse did not result in oxidative stress and DNA damage; however, some features of sexual abuse raised the level of oxidative stress.
Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.
2016-01-01
Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.
Oxidation kinetics of hydride-bearing uranium metal corrosion products
NASA Astrophysics Data System (ADS)
Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.
The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.
Chen, Shen-Yi; Chou, Li-Chieh
2016-08-01
Heavy metals can be removed from the sludge using bioleaching technologies at thermophilic condition, thereby providing an option for biotreatment of wasted sludge generated from wastewater treatment. The purposes of this study were to establish a molecular biology technique, real-time PCR, for the detection and enumeration of the sulfur-oxidizing bacteria during the thermophilic sludge bioleaching. The 16S rRNA gene for real-time PCR quantification targeted the bioleaching bacteria: Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidithiobacillus caldus. The specificity and stringency for thermophilic sulfur-oxidizing bacteria were tested before the experiments of monitoring the bacterial community, bacterial number during the thermophilic sludge bioleaching and the future application on testing various environmental samples. The results showed that S. acidophilus was identified as the dominant sulfur-oxidizing bacteria, while A. caldus and S. thermosulfidooxidans occurred in relatively low numbers. The total number of the sulfur-oxidizing bacteria increased during the thermophilic bioleaching process. Meanwhile, the decrease of pH, production of sulfate, degradation of SS/VSS, and solubilization of heavy metal were found to correlate well with the population of thermophilic sulfur-oxidizing bacteria during the bioleaching process. The real-time PCR used in this study is a suitable method to monitor numbers of thermophilic sulfur-oxidizing bacteria during the bioleaching process.
Boss, Andreas; Lecoultre, Virgile; Ruffieux, Christiane; Tappy, Luc; Schneiter, Philippe
2010-04-01
Endurance training improves exercise performance and insulin sensitivity, and these effects may be in part mediated by an enhanced fat oxidation. Since n-3 and n-9 unsaturated fatty acids may also increase fat oxidation, we hypothesised that a diet enriched in these fatty acids may enhance the effects of endurance training on exercise performance, insulin sensitivity and fat oxidation. To assess this hypothesis, sixteen normal-weight sedentary male subjects were randomly assigned to an isoenergetic diet enriched with fish and olive oils (unsaturated fatty acid group (UFA): 52 % carbohydrates, 34 % fat (12 % SFA, 12 % MUFA, 5 % PUFA), 14 % protein), or a control diet (control group (CON): 62 % carbohydrates, 24 % fat (12 % SFA, 6 % MUFA, 2 % PUFA), 14 % protein) and underwent a 10 d gradual endurance training protocol. Exercise performance was evaluated by measuring VO2max and the time to exhaustion during a cycling exercise at 80 % VO2max; glucose homeostasis was assessed after ingestion of a test meal. Fat oxidation was assessed by indirect calorimetry at rest and during an exercise at 50 % VO2max. Training significantly increased time to exhaustion, but not VO2max, and lowered incremental insulin area under the curve after the test meal, indicating improved insulin sensitivity. Those effects were, however, of similar magnitude in UFA and CON. Fat oxidation tended to increase in UFA, but not in CON. This difference was, however, not significant. It is concluded that a diet enriched with fish- and olive oil does not substantially enhance the effects of a short-term endurance training protocol in healthy young subjects.
U.S. nitrogen science plan focuses collaborative efforts
NASA Astrophysics Data System (ADS)
Holland, E. A.; Guenther, A.; Lee-Taylor, J.; Bertman, S. B.; Carroll, M. A.; Shepson, P. B.; Sparks, J. P.
Nitrogen is a major nutrient in terrestrial ecosystems and an important catalyst in tropospheric photochemistry. Over the last century human activities have dramatically increased inputs of reactive nitrogen (Nr, the combination of oxidized, reduced, and organically bound nitrogen) to the Earth system (Figure 1). Nitrogen cycle perturbations have compromised air quality and human health, acidified ecosystems, and degraded and eutrophied lakes and coastal estuaries [Vitousek et al., 1997a, 1997b; Rabalais, 2002; Howarth et al., 2003; Townsend et al., 2003; Galloway et al., 2004].Increased Nr affects global climate. Use of agricultural fertilizers such as ammonium nitrate leads to increased soil production of nitrous oxide (N2O), which has 320 times the global warming potential of carbon dioxide (CO2). Emission of nitrogen oxides (NOx = nitric oxide, NO + nitrogen dioxide, NO2) from fossil fuel burning leads to increases in tropospheric ozone, another greenhouse gas. Ozone is phytotoxic, and may reduce terrestrial CO2 sequestration. To predict the effects of nitrogen cycling changes under changing climatic conditions, there needs to be a better understanding of the global nitrogen budget.
Soil Methane Sink Capacity Response to a Long-Term Wildfire Chronosequence in Northern Sweden.
McNamara, Niall P; Gregg, Ruth; Oakley, Simon; Stott, Andy; Rahman, Md Tanvir; Murrell, J Colin; Wardle, David A; Bardgett, Richard D; Ostle, Nick J
2015-01-01
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished.
Soil Methane Sink Capacity Response to a Long-Term Wildfire Chronosequence in Northern Sweden
McNamara, Niall P.; Gregg, Ruth; Oakley, Simon; Stott, Andy; Rahman, Md. Tanvir; Murrell, J. Colin; Wardle, David A.; Bardgett, Richard D.; Ostle, Nick J.
2015-01-01
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished. PMID:26372346
Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R
2015-11-05
Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major role in the lifecycle of atmospheric OA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orsenigo, C.; Lietti, L.; Tronconi, E.
1998-06-01
Transient experiments performed over synthesized and commercial V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalysts during catalyst conditioning and during step changes of the operating variables (SO{sub 2} inlet concentration and temperature) show that conditioning of the catalyst is required to attain significant and reproducible steady-state data in both the reduction of NO{sub x} and the oxidation of SO{sub 2}. The response time of conditioning for NO{sub x} reduction is of a few hours and that for SO{sub 2} oxidation is of several hours. Fourier transform infrared spectroscopy temperature programmed decomposition, and thermogravimetric measurements showed that catalyst conditioning is associated with amore » slow process of buildup of sulfates: the different characteristic conditioning times observed in the reduction of NO{sub x} and in the oxidation of SO{sub 2} suggest that the buildup of sulfates occurs first at the vanadyl sites and later on at the exposed titania surface. Formation of sulfates at or near the vanadyl sites increases the reactivity in the de-NO{sub x} reaction, possibly due to the increase in the Broensted and Lewis acidity of the catalyst, whereas the titania surface acts as SO{sub 3} acceptor and affects the outlet SO{sub 3} concentration during catalyst conditioning for the SO{sub 2} oxidation reaction. The response time to step changes in SO{sub 2} concentration and temperature is of a few hours in the case of SO{sub 2} oxidation and much shorter in the case of NO{sub x} reduction. The different time responses associated with conditioning and with step changes in the settings of the operating variables have been rationalized in terms of the different extent of perturbation of the sulfate coverage experienced by the catalyst.« less
Kinetics of plasma oxidation of germanium-tin (GeSn)
NASA Astrophysics Data System (ADS)
Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia
2017-12-01
The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.
Poussin, Carinne; Ibberson, Mark; Hall, Diana; Ding, Jun; Soto, Jamie; Abel, E Dale; Thorens, Bernard
2011-09-01
To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.
Enhanced adsorption of arsenic through the oxidative treatment of reduced aquifer solids.
Huling, Jenna R; Huling, Scott G; Ludwig, Ralph
2017-10-15
Arsenic (As) contamination in drinking water is an epidemic in many areas of the world, especially Eastern Asian countries. Developing affordable and efficient procedures to remove arsenic from drinking water is critical to protect human health. In this study, the oxidation of aquifer solids through the use of sodium permanganate (NaMnO 4 ), hydrogen peroxide (H 2 O 2 ), and exposure to air, enhanced the adsorption of arsenic to the aquifer material resulting in treatment of the water. NaMnO 4 was more effective than H 2 O 2 . NaMnO 4 was tested at different loading rates (0.5, 1.5, 2.4, 3.4, and 4.9 g NaMnO 4 /kg aquifer material), and after 30 days contact time, arsenic removal ([As +3 ] INITIAL = 610 μg/L) was 77%, 88%, 93%, 95%, 97%, respectively, relative to un-oxidized aquifer material. Arsenic removal increased with increasing contact time (30, 60, 90 days) suggesting removal was not reversible under the conditions of these experiments. Oxidative treatment by exposing the aquifer solids to air for 68 days resulted in >99% removal of Arsenic ([As +3 ] INITIAL = 550 μg/L). Less arsenic removal (38.2%) was measured in the un-oxidized aquifer material. In-situ oxidation of aquifer materials using NaMnO 4 , or ex-situ oxidation of aquifer materials through exposure to air could be effective in the removal of arsenic in ground water and a potential treatment method to protect human health. Published by Elsevier Ltd.
Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Soppet, W.K.
A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment.more » Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation {approx}500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after {approx}2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after {approx}250 h exposure at 500 C in environments with a pO{sub 2} range of 1 {times} 10{sup {minus}6} to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO{sub 2} in the preexposure environment and was of 70--95 {micro}m after 250--275 h exposure at 500 C.« less
NASA Astrophysics Data System (ADS)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; Kolb, C. E.; Davidovits, P.
2015-03-01
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1-2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.
NASA Astrophysics Data System (ADS)
Siregar, S. S.; Awaluddin, A.
2018-04-01
Redox reaction between KMnO4 and glucose usingsolvent-free method produces the octahedral layer birnessite-type manganese oxide. The effects of mole ratios, temperatures, and calcinations time on the structures and crystallinity of the oxides were studied throughthe X-ray powder diffraction analysis. The mole ratio of KMnO4/glucose (1:3) produces the purebirnessite with low crystallinity, whereas the mole ratio of KMnO4/glucose (3:1) yields high crystalline birnessite with minor components of hausmannite-type manganese oxide.The increasing of the temperature and calcinations times (300-700 °C and 3-7 h, respectively) willimprove the crystallinity and the purity of the as-synthesized oxide. Further experiments also showed that the as-syntesized octahedral layer birnessite-type manganese oxides have catalytic activity on the degradation of methylene blue (MB) dye with H2O2 as oxidant. The results revealed that the effective degradation could be achieved only in the presence of both the birnessite and H2O2, whereas without the addition of catalyst (H2O2only) or addition of H2O2 (catalyst only), the 3.5% and 15.5% of MB removal were obtained, respectively.
Oxidation-Induced Increase In Photoreactivity of Bovine Retinal Lipid Extract.
Koscielniak, A; Serafin, M; Duda, M; Oles, T; Zadlo, A; Broniec, A; Berdeaux, O; Gregoire, S; Bretillon, L; Sarna, T; Pawlak, A
2017-12-01
The mammalian retina contains a high level of polyunsaturated fatty acids, including docosahexaenoic acid (22:6) (DHA), which are highly susceptible to oxidation. It has been shown that one of the products of DHA oxidation-carboxyethylpyrrole (CEP), generated in situ, causes modifications of retinal proteins and induces inflammation response in the outer retina. These contributing factors may play a role in the development of age-related macular degeneration (AMD). It is also possible that some of the lipid oxidation products are photoreactive, and upon irradiation with blue light may generate reactive oxygen species. Therefore, in this work we analysed oxidation-induced changes in photoreactivity of lipids extracted from bovine neural retinas. Lipid composition of bovine neural retinas closely resembles that of human retinas making the bovine tissue a convenient model for studying the photoreactivity and potential phototoxicity of oxidized human retinal lipids. Lipid composition of bovine neural retinas Folch' extracts (BRex) was determined by gas chromatography (GC) and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS) analysis. Liposomes prepared from BRex, equilibrated with air, were oxidized in the dark at 37 °C for up to 400 h. The photoreactivity of BRex at different stages of oxidation was studied by EPR-oximetry and EPR-spin trapping. Photogeneration of singlet oxygen ( 1 O 2 , 1 Δ g ) by BRex was measured using time-resolved detection of the characteristic phosphorescence at 1270 nm. To establish contribution of lipid components to the analysed photoreactivity of Folch' extract of bovine retinas, a mixture of selected synthetic lipids in percent by weight (w/w %) ratio resembling that of the BRex has been also studied. Folch's extraction of bovine neural retinas was very susceptible to oxidation despite the presence of powerful endogenous antioxidants such as α-tocopherol and zeaxanthin. Non-oxidized and oxidized BRex photogenerated singlet oxygen with moderate quantum yield. Blue-light induced generation of superoxide anion by Folch' extract of bovine neural retinas strongly depended on the oxidation time. The observed photoreactivity of the studied extract gradually increased during its in vitro oxidation.
Casey, Darren P; Ueda, Kenichi; Wegman-Points, Lauren; Pierce, Gary L
2017-10-01
We determined if local increases in brachial artery shear during repetitive muscle contractions induce changes in protein expression of endothelial nitric oxide synthase (eNOS) and/or phosphorylated (p-)eNOS at Ser 1177 , the primary activation site on eNOS, in endothelial cells (ECs) of humans. Seven young male subjects (25 ± 1 yr) performed 20 separate bouts (3 min each) of rhythmic forearm exercise at 20% of maximum over a 2-h period. Each bout of exercise was separated by 3 min of rest. An additional six male subjects (24 ± 1 yr) served as time controls (no exercise). ECs were freshly isolated from the brachial artery using sterile J-wires through an arterial catheter at baseline and again after the 2-h exercise or time control period. Expression of eNOS or p-eNOS Ser 1177 in ECs was determined via immunofluorescence. Brachial artery mean shear rate was elevated compared with baseline and the time control group throughout the 2-h exercise protocol ( P < 0.001). p-eNOS Ser 1177 expression was increased 57% in ECs in the exercise group [0.06 ± 0.01 vs. 0.10 ± 0.02 arbitrary units (au), P = 0.02] but not in the time control group (0.08 ± 0.01 vs. 0.07 ± 0.01 au, P = 0.72). In contrast, total eNOS expression did not change in either the exercise (0.13 ± 0.04 vs. 0.12 ± 0.03 au) or time control (0.12 ± 0.03 vs. 0.11 ± 0.03 au) group ( P > 0.05 for both). Our novel results suggest that elevations in brachial artery shear increase eNOS Ser 1177 phosphorylation in the absence of changes in total eNOS in ECs of young healthy male subjects, suggesting that this model is sufficient to alter posttranslational modification of eNOS activity in vivo in humans. NEW & NOTEWORTHY Elevations in brachial artery shear in response to forearm exercise increased endothelial nitric oxide synthase Ser 1177 phosphorylation in brachial artery endothelial cells of healthy humans. Our present study provides the first evidence in humans that muscle contraction-induced increases in conduit arterial shear lead to in vivo posttranslational modification of endothelial nitric oxide synthase activity in endothelial cells. Copyright © 2017 the American Physiological Society.
Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion
NASA Astrophysics Data System (ADS)
Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak
2018-02-01
The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.
NASA Astrophysics Data System (ADS)
Scott, Ethan A.; Gaskins, John T.; King, Sean W.; Hopkins, Patrick E.
2018-05-01
The need for increased control of layer thickness and uniformity as device dimensions shrink has spurred increased use of atomic layer deposition (ALD) for thin film growth. The ability to deposit high dielectric constant (high-k) films via ALD has allowed for their widespread use in a swath of optical, optoelectronic, and electronic devices, including integration into CMOS compatible platforms. As the thickness of these dielectric layers is reduced, the interfacial thermal resistance can dictate the overall thermal resistance of the material stack compared to the resistance due to the finite dielectric layer thickness. Time domain thermoreflectance is used to interrogate both the thermal conductivity and the thermal boundary resistance of aluminum oxide, hafnium oxide, and titanium oxide films on silicon. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, which will be of great importance in predicting the thermal resistances of current and future devices.
Iodinated Contrast Media Can Induce Long-Lasting Oxidative Stress in Hemodialysis Patients
Hwang, Seun Deuk; Kim, Yoon Ji; Lee, Sang Heun; Cho, Deok Kyu; Cho, Yun Hyeong; Moon, Sung Jin; Lee, Sang Choel
2013-01-01
Purpose Due to their comorbidities, dialysis patients have many chances to undergo radiologic procedures using iodinated contrast media. We aimed to assess time-sequenced blood oxidative stress level after contrast exposure in hemodialysis (HD) patients compared to those in the non-dialysis population. Materials and Methods We included 21 anuric HD patients [HD-coronary angiography (CAG) group] and 23 persons with normal renal function (nonHD-CAG group) scheduled for CAG, and assessed 4 oxidative stress markers [advanced oxidation protein products (AOPP); catalase; 8-hydroxydeoxyguanosine; and malondialdehyde] before and after CAG, and subsequently up to 28 days. Results In the nonHD-CAG group, only AOPP increased immediately after CAG and returned to baseline within one day. However, in the HD-CAG group, all four oxidative stress markers were significantly increased starting one day after CAG, and remained elevated longer than those in the nonHD-CAG group. Especially, AOPP level remained elevated for a month after contrast exposure. Conclusion Our study showed that iodinated contrast media induces severe and prolonged oxidative stress in HD patients. PMID:24142649
Data-driven exploration of copper mineralogy and its application to Earth's near-surface oxidation
NASA Astrophysics Data System (ADS)
Morrison, S. M.; Eleish, A.; Runyon, S.; Prabhu, A.; Fox, P. A.; Ralph, J.; Golden, J. J.; Downs, R. T.; Liu, C.; Meyer, M.; Hazen, R. M.
2017-12-01
Earth's atmospheric composition has changed radically throughout geologic history.1,2 The oxidation of our atmosphere, driven by biology, began with the Great Oxidation Event (GOE) 2.5 Ga and has heavily influenced Earth's near surface mineralogy. Therefore, temporal trends in mineral occurrence elucidate large and small scale geologic and biologic processes. Cu, and other first-row transition elements, are of particular interest due to their variation in valance state and sensitivity to ƒO2. Widespread formation of oxidized Cu mineral species (Cu2+) would not have been possible prior to the GOE and we have found that the proportion of oxidized Cu minerals increased steadily with the increase in atmospheric O2 on Earth's surface (see Fig. 1). To better characterize the changes in Cu mineralogy through time, we have employed advanced analytical and visualization methods. These techniques rely on large and growing mineral databases (e.g., rruff.info, mindat.org, earthchem.org, usgs.gov) and allow us to quantify and visualize multi-dimensional trends.5
Oxidants and anti-oxidants in turbot seminal plasma and their effects on sperm quality
NASA Astrophysics Data System (ADS)
Han, Mingming; Ding, Fuhong; Meng, Zhen; Lei, Jilin
2015-08-01
In this research, the concentration and activity of oxidants and anti-oxidants in turbot semen, and their effects on sperm quality were studied. The results showed that superoxide dismutase (SOD), catalase, glutathione reductase (GR), uric acid, vitamin E (VE) and vitamin C (VC) were more abundant in seminal plasma than in spermatozoa. The variation for each of them was specific. In seminal plasma, the activity of SOD and GR increased from November 15, November 30 to December 15, and then decreased on December 30. The concentrations of both VC and uric acid decreased during the first 3 sampling times and increased on December 30. The oxidants in seminal plasma accumulated to the highest on December 30. Lactic acid (LA) and ATP levels decreased to the lowest on December 30. The correlation analysis showed that GR had the significant positive relevance to sperm motility and VSL/VCL, while ·OH had negative relevance to them.
Flora, Swaran J S; Bhatt, Kapil; Mehta, Ashish
2009-10-15
Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.
Increase of Long-chain Branching by Thermo-oxidative Treatment of LDPE
NASA Astrophysics Data System (ADS)
Rolón-Garrido, Víctor H.; Luo, Jinji; Wagner, Manfred H.
2011-07-01
Low-density polyethylene (LDPE) was exposed to thermal and thermo-oxidative treatment at 170 °C, and subsequently characterized by linear-viscoelastic measurements and in uniaxial extension. The Molecular Stress Function (MSF) model was used to quantify the elongational viscosities measured. For the thermally treated samples, exposure times between 2 and 6 hours were applied. Formation of long-chain branching (LCB) was found to occur only during the first two hours of thermal treatment. At longer exposure times, no difference in the level of strain hardening was observed. This was quantified by use of the MSF model: the nonlinear parameter fmax2 increased from fmax2 = 14 for the virgin sample to fmax2 = 22 for the samples thermally treated between 2 and 6 hours. For the thermo-oxidatively treated samples, which were exposed to air during thermal treatment between 30 and 90 minutes, the level of strain hardening increases drastically up to fmax2 = 55 with increasing exposure times from 30 up to 75 min due to LCB formation, and then decreases for an exposure time of 90 minutes due to chain scission dominating LCB formation. The nonlinear parameter β of the MSF model was found to be β = 2 for all samples, indicating that the general type of the random branching structure remains the same under all thermal conditions. Consequently only the parameter fmax2 of the MSF model and the linear-viscoelastic spectra were required to describe quantitatively the experimental observations. The strain hardening index, which is sometimes used to quantify strain hardening, follows accurately the trend of the MSF model parameter fmax2.
Self-propagating solar light reduction of graphite oxide in water
NASA Astrophysics Data System (ADS)
Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E.; Lekakou, C.; Trapalis, C.
2017-01-01
Graphite Oxide (GtO) is commonly used as an intermediate material for preparation of graphene in the form of reduced graphene oxide (rGO). Being a semiconductor with tunable band gap rGO is often coupled with various photocatalysts to enhance their visible light activity. The behavior of such rGO-based composites could be affected after prolonged exposure to solar light. In the present work, the alteration of the GtO properties under solar light irradiation is investigated. Water dispersions of GtO manufactured by oxidation of natural graphite via Hummers method were irradiated into solar light simulator for different periods of time without addition of catalysts or reductive agent. The FT-IR analysis of the treated dispersions revealed gradual reduction of the GtO with the increase of the irradiation time. The XRD, FT-IR and XPS analyses of the obtained solid materials confirmed the transition of GtO to rGO under solar light irradiation. The reduction of the GtO was also manifested by the CV measurements that revealed stepwise increase of the specific capacitance connected with the restoration of the sp2 domains. Photothermal self-propagating reduction of graphene oxide in aqueous media under solar light irradiation is suggested as a possible mechanism. The self-photoreduction of GtO utilizing solar light provides a green, sustainable route towards preparation of reduced graphene oxide. However, the instability of the GtO and partially reduced GO under irradiation should be considered when choosing the field of its application.
Process for combined control of mercury and nitric oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livengood, C. D.; Mendelsohn, M. H.
Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less thanmore » $$5,000/ton removed, while for Hg{sup 0} oxidation it would be about $$20,000/lb removed.« less
Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor
Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard
2015-01-01
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode. PMID:26496630
USDA-ARS?s Scientific Manuscript database
Nitrous oxide (N2O) is a greenhouse gas primarily produced in soils by denitrifying and nitrifying organisms. In terms of global warming potential (GWP), N2O has 310 times the GWP of carbon dioxide (CO2). Atmospheric N2O concentrations have increased by 18% since the industrial revolution with agr...
Su, Yu; Wang, Weidong; Wu, Di; Huang, Wei; Wang, Mengzi; Zhu, Guibing
2018-05-15
An integrated approach to document high ammonium oxidation rate in Guanjinggang constructed wetland (GJG-CW) was performed and the results showed that the substantial ammonium oxidation rate could be obtained by enhancing Ammonia Oxidizing Bacteria (AOB) activity rather than Ammonia Oxidizing Archaea (AOA) activity. In the plant-bed/ditch system, ditch center and plant-bed fringe were two active zones for NH 4 + -N removal with ammonium oxidation rate peaking at 2.98±0.04 and 2.15±0.02mgNkg -1 d -1 , respectively. The enhanced AOB activity were achieved by increasing water level fluctuations, extending hydraulic retention time (HRT) and stimulating substrate availability, which subsequently enhanced NH 4 + -N removal by 34.06% in GJG-CW. However, the high AOB activity was not correlated with high AOB abundance, but was instead mostly determined by specific AOB taxa, particularly Nitrosomonas, which dominated in the active AOB. The increased cell-specific AOA activity and high AOA diversity were also achieved using those engineering measures. Although the AOA activity decreased overall with extended HRT and increased NH 4 + -N contents in GJG-CW, AOA still played a major role on ammonium oxidation in plant-bed soil. The study illustrated that artificially enhancing AOB activity and certain species in anthropogenically polluted water ecosystems would be an effective strategy to improve NH 4 + -N removal. Copyright © 2017 Elsevier B.V. All rights reserved.
Exhaled nitric oxide in mylar balloons: influence of storage time, humidity and temperature.
Bodini, Alessandro; Pijnenburg, Mariëlle W H; Boner, Atillio L; de Jongste, Johan C
2003-01-01
BACKGROUND: Mylar balloons are used to collect exhaled air for analysis of fractional nitric oxide concentration (FENO). AIM: We studied the effect of storage conditions on the stability of nitric oxide (NO) in mylar balloons. METHODS: Exhaled air samples and calibration gases were stored in mylar balloons at 4, 21 and 37 degrees C, with or without silica gel. NO was measured after 0, 6, 9, 24 and 48 h. Scheffe F-tests were used to compare NO values. RESULTS: NO remained stable in balloons for 9 h at all temperatures, without silica gel. NO increased between 9 and 48 h, but only with low initial FENO. Silica gel increased variability. CONCLUSIONS: FENO in mylar balloons is stable for at least 9 h. The storage temperature is not critical, but silica gel increases variability. PMID:12745548
The effects of anthocyanin-rich wheat diet on the oxidative status and behavior of rats
Janšáková, Katarína; Bábíčková, Janka; Havrlentová, Michaela; Hodosy, Július; Kraic, Ján; Celec, Peter; Tóthová, Ľubomíra
2016-01-01
Aim To evaluate the effect of food containing anthocyanin-rich wheat on oxidative status and behavior of healthy rats. Methods Twenty male rats were divided into the control and anthocyanin group. Oral glucose tolerance test was performed, and proteinuria and creatinine clearance were measured. Behavioral analysis was performed in Phenotyper cages. Serum and tissues were collected to measure the markers of oxidative stress and antioxidant status. Results Anthocyanins significantly increased total antioxidant capacity in serum (P = 0.039), decreased advanced oxidation protein products in the kidney (P = 0.002), but increased thiobarbituric acid reactive substances in the kidney compared to the control group. No significant difference between the groups was found in the markers of oxidative stress in the liver and colon, as well as in renal functions and glucose metabolism. The anthocyanin group spent significantly less time in the spotlight zone of the Phenotyper cages (P = 0.040), indicating higher anxiety-like behavior. Conclusion Food containing anthocyanin-rich wheat had positive effects on serum antioxidant status and kidney protein oxidation, but increased lipid peroxidation in the kidney and modified animal behavior related to anxiety. The molecular mechanisms leading to observed effects should be further elucidated. PMID:27106354
Potumarthi, Ravichandra; Mugeraya, Gopal; Jetty, Annapurna
2008-12-01
In the present studies, newly isolated Thiobacillus sp was used for the treatment of synthetic spent sulfide caustic in a laboratory-scale fluidized bed bioreactor. The sulfide oxidation was tested using Ca-alginate immobilized Thiobacillus sp. Initially, response surface methodology was applied for the optimization of four parameters to check the sulfide oxidation efficiency in batch mode. Further, reactor was operated in continuous mode for 51 days at different sulfide loading rates and retention times to test the sulfide oxidation and sulfate and thiosulfate formation. Sulfide conversions in the range of 90-98% were obtained at almost all sulfide loading rates and hydraulic retention times. However, increased loading rates resulted in lower sulfide oxidation capacity. All the experiments were conducted at constant pH of around 6 and temperature of 30 +/- 5 degrees C.
Etching of germanium-tin using ammonia peroxide mixture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Yuan; Ong, Bin Leong; Wang, Wei
The wet etching of germanium-tin (Ge{sub 1-x}Sn{sub x}) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge{sub 1-x}Sn{sub x} is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge{sub 1-x}Sn{sub x} surface decreases the amount ofmore » Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge{sub 0.918}Sn{sub 0.082} samples. Both root-mean-square roughness and undulation periods of the Ge{sub 1-x}Sn{sub x} surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge{sub 1-x}Sn{sub x} using APM and may be used for the fabrication of Ge{sub 1-x}Sn{sub x}-based electronic and photonic devices.« less
Oxidative damage in keratinocytes exposed to cigarette smoke and aldehydes.
Avezov, Katia; Reznick, Abraham Z; Aizenbud, Dror
2014-06-01
Cigarette smoke (CS) is a significant environmental source of human exposure to chemically active saturated (acetaldehyde) and α,β-unsaturated aldehydes (acrolein) inducing protein carbonylation and dysfunction. The exposure of oral tissues to environmental hazards is immense, especially in smokers. The objectives of the current study were to examine the effect of aldehydes originating from CS on intracellular proteins of oral keratinocytes and to observe the antioxidant response in these cells. Intracellular protein carbonyl modification under CS, acrolein and acetaldehyde exposure in the HaCaT keratinocyte cell line, representing oral keratinocytes was examined by Western blot. Possible intracellular enzymatic dysfunction under the above conditions was examined by lactate dehydrogenase (LDH) activity assay. Oxidative stress response was investigated, by DCF (2,7-dichlorodihydrofluorescein) assay and GSH (glutathione) oxidation. Intracellular protein carbonyls increased 5.2 times after CS exposure and 2.7 times after exposure to 1 μmol of acrolein. DCF assay revealed an increase of fluorescence intensity 3.2 and 3.1 times after CS and acrolein exposure, respectively. CS caused a 72.5% decrease in intracellular GSH levels compared to controls. Activity of intracellular LDH was preserved. α,β-Unsaturated aldehydes from CS are capable of intracellular protein carbonylation and have a role in intracellular oxidative stress elevation in keratinocytes, probably due to the reduction in GSH levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stenzel, Stephanie L; Krull, Kevin R; Hockenberry, Marilyn; Jain, Neelam; Kaemingk, Kris; Miketova, Petra; Moore, Ida M
2010-03-01
Neurobehavioral problems after chemotherapy treatment for pediatric acute lymphoblastic leukemia (ALL) have been a recent focus of investigation. This study extended previous research that suggested oxidative stress as a potential mechanism for chemotherapy-induced central nervous system injury by examining early markers of oxidative stress in relation to subsequent neurobehavioral problems. Oxidized and unoxidized components of phosphatidylcholine (PC) were measured in the cerebrospinal fluid of 87 children with ALL at diagnosis, induction, and consolidation. Behavioral assessments were conducted postconsolidation and at the end of chemotherapy. Results revealed a significant association between physiologic reactivity (high vs. low PC changes from diagnosis) and behavioral outcomes (high vs. low pathology). Elevated oxidized PC fraction change was predictive of increased problems with aggression at the end of therapy as well as postconsolidation adaptability. Furthermore, symptoms of hyperactivity systematically changed over time in relation to both unoxidized PC and oxidized PC fraction reactivity. These findings suggest that symptoms of behavioral problems occur early in the course of chemotherapy and that increases in the cerebrospinal fluid PC markers of oxidative stress during induction and consolidation may help to predict certain future behavioral problems.
NASA Astrophysics Data System (ADS)
Coindreau, O.; Duriez, C.; Ederli, S.
2010-10-01
Progress in the treatment of air oxidation of zirconium in severe accident (SA) codes are required for a reliable analysis of severe accidents involving air ingress. Air oxidation of zirconium can actually lead to accelerated core degradation and increased fission product release, especially for the highly-radiotoxic ruthenium. This paper presents a model to simulate air oxidation kinetics of Zircaloy-4 in the 600-1000 °C temperature range. It is based on available experimental data, including separate-effect experiments performed at IRSN and at Forschungszentrum Karlsruhe. The kinetic transition, named "breakaway", from a diffusion-controlled regime to an accelerated oxidation is taken into account in the modeling via a critical mass gain parameter. The progressive propagation of the locally initiated breakaway is modeled by a linear increase in oxidation rate with time. Finally, when breakaway propagation is completed, the oxidation rate stabilizes and the kinetics is modeled by a linear law. This new modeling is integrated in the severe accident code ASTEC, jointly developed by IRSN and GRS. Model predictions and experimental data from thermogravimetric results show good agreement for different air flow rates and for slow temperature transient conditions.
Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice
Guachalla, Luis Miguel; Ju, Zhenyu; Koziel, Rafal; von Figura, Guido; Song, Zhangfa; Fusser, Markus; Epe, Bernd; Jansen-Dűrr, Pidder; Rudolph, K. Lenhard
2009-01-01
Telomere shortening represents a causal factor of cellular senescence. At the same time, several lines of evidence indicate a pivotal role of oxidative DNA damage for the aging process in vivo. A causal connection between the two observations was suggested by experiments showing accelerated telomere shorting under conditions of oxidative stress in cultured cells, but has never been studied in vivo. We therefore have analysed whether an increase in mitochondrial derived oxidative stress in response to heterozygous deletion of superoxide dismutase (Sod2+/-) would exacerbate aging phenotypes in telomere dysfunctional (mTerc-/-) mice. Heterozygous deletion of Sod2 resulted in reduced SOD2 protein levels and increased oxidative stress in aging telomere dysfunctional mice, but this did not lead to an increase in basal levels of oxidative nuclear DNA damage, an accumulation of nuclear DNA breaks, or an increased rate of telomere shortening in the mice. Moreover, heterozygous deletion of Sod2 did not accelerate the depletion of stem cells and the impairment in organ maintenance in aging mTerc-/- mice. In agreement with these observations, Sod2 haploinsufficiency did not lead to a further reduction in lifespan of mTerc-/- mice. Together, these results indicate that a decrease in SOD2-dependent antioxidant defence does not exacerbate aging in the context of telomere dysfunction. PMID:20195488
Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces
NASA Astrophysics Data System (ADS)
Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.
2016-09-01
Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb(II) mobilized from the ESHA coatings onto the α-Al2O3 (1 -1 0 2) surfaces increased from 40% (no added Ca) to 58% (with 2 mM Ca) after 72 h of reaction time, possibly due to displacement of Pb(II) by Ca(II) from binding sites in the ESHA coatings. In contrast, Pb(II), Cu(II), and Zn(II) present in the ESHA coatings were found to be unreactive with the α-Al2O3 (0 0 0 1) surface. The observed reactivities of the three ESHA-coated metal-oxide surfaces with respect to metal-ion sorption are consistent with the trend observed for the uncoated metal-oxide surfaces: α-Fe2O3 (0 0 0 1) > α-Al2O3 (1 -1 0 2) > α-Al2O3 (0 0 0 1). In addition, Pb(II) partitioning onto α-Al2O3 (1 -1 0 2) surfaces increased with increasing pH from 4.0 to 9.0 as a result of the increasingly negative surface charge. These results show that intrinsic properties (nature of binding sites, binding affinities, and surface charge) of the ESHA coatings and metal-oxide surfaces, as well as external parameters such as pH and competing ions, are key factors governing the distribution and speciation of metal ions at complex NOM/mineral interfaces.
Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel
2014-01-01
Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336
Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel
2014-01-01
Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits.
Research of the photovoltaic properties of anodized films of Sn
NASA Astrophysics Data System (ADS)
Afanasyev, D. A.; Ibrayev, N. Kh; Omarova, G. S.; Smagulov, Zh K.
2015-04-01
The results of studies of photovoltaic properties of solar cells based on porous tin oxide films, sensitized with an organic dye are presented. Porous films were prepared by electrochemical anodization of tin in alkaline electrolytes based on aqueous solution of NaOH and aqueous ammonia NH4OH. It was found that the time of anodizing of the Sn films affects on conversion efficiency of light energy into electrical energy. Increasing of the sorption time leads to an increase of the number of molecules on the surface of the porous film. For the solar cell based on tin oxide there is a strong dark current, which significantly reduces the efficiency of conversion of light energy into electrical energy.
Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng
2016-11-01
This work uncovers an important feature of the forward osmosis membrane bioreactor (FOMBR) process: the decoupling of contaminants retention time (CRT) and hydraulic retention time (HRT). Based on this concept, the capability of the hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) in achieving high through-put treatment of municipal wastewater with enhanced phosphorus recovery was explored. High removal of TOC and NH4(+)-N (90% and 99%, respectively) was achieved with HRTs down to 47min, with the treatment capacity increased by an order of magnitude. Reduced HRT did not affect phosphorus removal and recovery. As a result, the phosphorus recovery capacity was also increased by the same order. Reduced HRT resulted in increased system loading rates and thus elevated concentrations of mixed liquor suspended solids and increased membrane fouling. 454-pyrosequecing suggested the thriving of Bacteroidetes and Proteobacteria (especially Sphingobacteriales Flavobacteriales and Thiothrix members), as well as the community succession and dynamics of ammonium oxidizing and nitrite oxidizing bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yu, Y-M; Chang, W-C; Chang, C-T; Hsieh, C-L; Tsai, C E
2002-04-01
The effects of supplementation of young barley leaf extract (BL) and/or antioxidative vitamins C and E on different low-density lipoprotein (LDL) subfractions susceptibility to oxidation and free radical scavenging activities in patients with type 2 diabetes were evaluated. Thirty-six type 2 diabetic patients were enrolled in this study. The subjects received one of the following supplements daily for 4 weeks: 15 g BL, 200 mg vitamin C and 200 mg vitamin E (CE), or BL plus CE (BL + CE). The lucigenin-chemiluminescence (CL) and luminol-CL levels in blood were significantly reduced in all groups. Vitamin E content of LDL subfractions increased significantly following supplements, especially for BL + CE group. The percent increase of lag times in the BL + CE was significantly higher than those in the BL or CE group. The antioxidative effect of BL + CE was the greatest for small, dense LDL (Sd-LDL) with further increases in percentage of lag times 4 folds compared to BL alone. Our results indicate that supplementation with BL may help to scavenge oxygen free radicals, save the LDL-vitamin E content, and inhibit LDL oxidation. Furthermore, the addition of vitamins C and E to BL can inhibit the Sd-LDL oxidation more effectively, which may protect against vascular diseases in type 2 diabetic patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surfacemore » oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.« less
Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose.
Mukherjee, Kakali; Ghosh, Aniruddha; Saha, Rumpa; Sar, Pintu; Malik, Susanta; Saha, Bidyut
2014-03-25
Kinetic data for oxidation of D-sorbitol to glucose by hexavalent chromium in aqueous medium and aqueous surfactant medium (SDS, TX-100) have been reported. Effect of promoter such as PA, bipy and phenanthroline on the reaction has been investigated. The reaction is performed under pseudo first order condition with an excess of substrate over the oxidant. The reaction is first order with respect to substrate and oxidant. The micelles have a catalytic effect on the reaction. Combination of phen and TX-100 produces almost twelve times increase in rate of oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.
Active and Widespread Halogen Chemistry in the Tropical and Subtropical Free Troposphere
NASA Technical Reports Server (NTRS)
Wang, Siyuan; Schmidt, Johan A.; Baidar, Sunil; Coburn, Sean; Dix, Barbara; Koenig, Theodore K.; Apel, Eric; Bowdalo, Dene; Campos, Teresa; Eloranta, Ed;
2015-01-01
Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O3 and methane (CH4) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10degN to 40degS), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric O3. The observed BrO concentrations increase strongly with altitude (approx.3.4 pptv at 13.5 km), and are 2-4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5-6.4 pptv total inorganic bromine (Bry), or model overestimated Bry wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Bry source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. The halogen-catalyzed loss of tropospheric O3 needs to be considered when estimating past and future ozone radiative effects.
Effect of processing on structural features of anodic aluminum oxides
NASA Astrophysics Data System (ADS)
Erdogan, Pembe; Birol, Yucel
2012-09-01
Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.
Lee, Hyeong-Seon; Lee, Gyeong-Seon; Kim, Seon-Hee; Kim, Hyun-Kyung; Suk, Dong-Hee; Lee, Dong-Seok
2014-02-01
Orostachys japonicus shows various biological activities. However, the molecular mechanisms remain unknown in LPS-stimulated macrophages. Here, we investigated the anti-oxidizing effect of the dichloromethane (DCM) and hexane fractions from O. japonicus (OJD and OJH) against oxidative stress in RAW 264.7 cells stimulated by LPS. OJD and OJH significantly increased the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Additionally, it was found that the expression of HO-1 was stimulated by Nrf2 activated via degradation of Keap1. ERK and p38 inhibitors repressed HO-1 induced by OJD and OJH in LPS-stimulated cells, respectively. In conclusion, these results suggest that OJD and OJH may block oxidative damage stimulated by LPS, via increasing the expression of HO-1 and Nrf2, and MAPK signaling pathway.
NASA Astrophysics Data System (ADS)
Maiyalagan, T.; Scott, Keith
Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH 4 as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 °C had a great effect on increasing the ethanol oxidation activity.
Done, Aaron J; Traustadóttir, Tinna
2016-12-01
Older individuals who exercise regularly exhibit greater resistance to oxidative stress than their sedentary peers, suggesting that exercise can modify age-associated loss of resistance to oxidative stress. However, we recently demonstrated that a single bout of exercise confers protection against a subsequent oxidative challenge in young, but not older adults. We therefore hypothesized that repeated bouts of exercise would be needed to increase resistance to an oxidative challenge in sedentary older middle-aged adults. Sedentary older middle-aged men and women (50-63 years, n = 11) participated in an 8-week exercise intervention. Maximal oxygen consumption was measured before and after the intervention. The exercise intervention consisted of three sessions per week, for 45 min at an intensity corresponding to 70-85 % maximal heart rate (HR max ). Resistance to oxidative stress was measured by F 2 -isoprostane response to a forearm ischemia/reperfusion (I/R) trial. Each participant underwent the I/R trial before and after the exercise intervention. The intervention elicited a significant increase in maximal oxygen consumption (VO 2max ) (P < 0.0001). Baseline levels of F 2 -isoprostanes pre- and post-intervention did not differ, but the F 2 -isoprostane response to the I/R trial was significantly lower following the exercise intervention (time-by-trial interaction, P = 0.043). Individual improvements in aerobic fitness were associated with greater improvements in the F 2 -isoprostane response (r = -0.761, P = 0.011), further supporting the role of aerobic fitness in resistance to oxidative stress. These data demonstrate that regular exercise with improved fitness leads to increased resistance to oxidative stress in older middle-aged adults and that this measure is modifiable in previously sedentary individuals.
Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C
2010-05-04
Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt < PtPd < Pd, indicating that BT adsorbs most strongly to nanoscale Pd. Yet, BT Raman scattering intensities, measured in situ over time scales of minutes to hours, are most persistent on the film of nanostructured Pt. Raman spectra indicate that adsorbed BT desorbs from nanoscale Pt at oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.
Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Cabilla, Jimena P; Duvilanski, Beatriz H
2007-03-01
We previously showed that long-term exposure of anterior pituitary cells to nitric oxide (NO) induces apoptosis. The intracellular signals underlying this effect remained unclear. In this study, we searched for possible mechanisms involved in the early stages of the NO apoptotic cascade. Caspase 3 was activated by NO with no apparent disruption of mitochondrial membrane potential. NO caused a rapid increase of reactive oxygen species (ROS), and this increase seems to be dependent of mitochondrial electron transport chain. The antioxidant N-acetyl-cysteine avoided ROS increase, prevented the NO-induced caspase 3 activation, and reduced the NO apoptotic effect. Catalase was inactivated by NO, while glutathione peroxidase (GPx) activity and reduced glutathione (GSH) were not modified at first, but increased at later times of NO exposure. The increase of GSH level is important for the scavenging of the NO-induced ROS overproduction. Our results indicate that ROS have an essential role as a trigger of the NO apoptotic cascade in anterior pituitary cells. The permanent inhibition of catalase may strengthen the oxidative damage induced by NO. GPx activity and GSH level augment in response to the oxidative damage, though this increase seems not to be enough to rescue the cells from the NO effect.
Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad
2015-01-01
Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression. PMID:26583057
Troyano-Suárez, Nuria; del Nogal-Avila, María; Mora, Inés; Sosa, Patricia; López-Ongil, Susana; Rodriguez-Puyol, Diego; Olmos, Gemma; Ruíz-Torres, María Piedad
2015-01-01
Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods. GOx induced senescence, increasing senescence associated β-galactosidase activity and the expression of p16. In parallel, GOx increased ILK protein expression and activity. Ectopic overexpression of ILK in cells increased p16 expression, even in the absence of GOx, whereas downregulation of ILK inhibited the increase in p16 due to oxidative stress. Additionally, GOx reduced Klotho gene expression and cells overexpressing Klotho protein did not undergo senescence after GOx addition. We demonstrated a direct link between ILK and Klotho since silencing ILK expression in cells and mice increases Klotho expression and reduces p53 and p16 expression in renal cortex. In conclusion, oxidative stress induces cellular senescence in kidney cells by increasing ILK protein expression and activity, which in turn reduces Klotho expression. We hereby present ILK as a novel downregulator of Klotho gene expression.
Metabolism of valine and 3-methyl-2-oxobutanoate by the isolated perfused rat kidney.
Miller, R H; Harper, A E
1984-01-01
Metabolism of branched-chain amino and 2-oxo acids was studied in the isolated perfused kidney. Significant amounts of 2-oxo acids were released by perfused kidney with all concentrations of amino acids tested (0.1-1.0 mM each), despite the high activity of branched-chain 2-oxo acid dehydrogenase in kidney. As perfusate valine concentration was increased from 0.2 to 1.0 mM, [1-14C]valine transamination (2-oxo acid oxidized + released) increased roughly linearly; [1-14C]valine oxidation, however, increased exponentially. Increasing perfusate concentration of 3-methyl-2-oxo[1-14C]butanoate from 0 to 1.0 mM resulted in a linear increase in the rate of its oxidation and a rise in perfusate valine concentration; at the same time significant decreases occurred in perfusate isoleucine and leucine concentrations, with corresponding increases in rates of release of their respective 2-oxo acids. Comparison of rates of oxidation of [1-14C]valine and 3-methyl-2-oxo[1-14C]butanoate suggests that 2-oxo acid arising from [1-14C]valine transamination has freer access to the 2-oxo acid dehydrogenase than has the 2-oxo acid from the perfusate. The observations indicate that, when branched-chain amino and 2-oxo acids are present in perfusate at near-physiological concentrations, rates of transamination of the amino and 2-oxo acids by isolated perfused kidney are greater than rates of oxidation. PMID:6508752
Thermionic converter performance with oxide collectors
NASA Technical Reports Server (NTRS)
Lieb, D.; Goodale, D.; Briere, T.; Balestra, C.
1977-01-01
Thermionic converters using a variety of metal oxide collector surfaces have been fabricated and tested. Both work function and power output data are presented and evaluated. Oxides of barium, strontium, zinc, tungsten and titanium have been incorporated into a variable spacing converter. Tungsten oxide was found to give the highest converter performance and to furnish oxygen for the emitter at the same time. Oxygenated emitters operate at reduced cesium pressure with an increase in electrode spacing. Electron spectroscopy for chemical analysis (ESCA) performed on several tungsten oxide collectors showed cesium penetration of the oxide layer, possibly forming a cesium tungstate bronze. Titanium oxide showed high performance but did not furnish oxygen for the emitter; strontium oxide, in the form of a sprayed layer, appeared to dissociate in the presence of cesium. Sprayed coatings of barium and zinc oxides produced collector work functions of about 1.3 eV, but had excessive series resistance. Lanthanum hexaboride, in combination with oxygen introduced through a silver tube, and cesium produced a low work function collector and better than average performance.
SiGe-on-insulator fabricated via germanium condensation following high-fluence Ge+ ion implantation
NASA Astrophysics Data System (ADS)
Anthony, R.; Haddara, Y. M.; Crowe, I. F.; Knights, A. P.
2017-08-01
Germanium condensation is demonstrated using a two-step wet oxidation of germanium implanted Silicon-On-Insulator (SOI). Samples of 220 nm thick SOI are implanted with a nominal fluence of 5 × 1016 cm-2 Ge+ at an energy of 33 keV. Primary post-implantation wet oxidation is performed initially at 870 °C for 70 min, with the aim of capping the sample without causing significant dose loss via Ge evaporation through the sample surface. This is followed by a secondary higher temperature wet oxidation at either 900 °C, 1000 °C, or 1080 °C. The germanium retained dose and concentration profile, and the oxide thickness is examined after primary oxidation, and various secondary oxidation times, using Rutherford backscattering analysis. A mixed SiGe oxide is observed to form during the primary oxidation followed by a pure silicon oxide after higher temperature secondary oxidation. The peak germanium concentration, which varies with secondary oxidation condition, is found to range from 43 at. % to 95 at. %, while the FWHM of the Ge profile varies from 13 to 5 nm, respectively. It is also observed that both the diffusion of germanium and the rate of oxidation are enhanced at 870 and 900 °C compared to equilibrium expectations. Transmission electron microscopy of a representative sample with secondary oxidation at 1080 °C for 20 min shows that the SiGe layer is crystalline in nature and seeded from the underlying silicon. Raman spectroscopy is used to determine residual strain in the SiGe region following secondary oxidation. The strain is compressive in nature and increases with Ge concentration to a maximum of approximately 1% in the samples probed. In order to elucidate the physical mechanisms, which govern the implantation-condensation process, we fit the experimental profiles of the samples with a model that uses a modified segregation boundary condition; a modified linear rate constant for the oxidation; and an enhanced diffusion coefficient of germanium where the enhancement is inversely proportional to the temperature and decays with increasing time. Comparison of the modeled and experimental results shows reasonable agreement and allows conclusions to be made regarding the dominant physical mechanisms, despite the semi-empirical nature of the model used.
Cyclic Oxidation Behavior and Durability of ODS-FeCrAl Alloys in H2O and CO2 rich environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dryepondt, Sebastien N; Pint, Bruce A
Cyclic oxidation testing was conducted at 1200 C in O2, dry air and in atmospheres rich in H2O and/or CO2 to simulate combustion environments. The oxidation rates were significantly higher in air + 10%H2O and a mixture of O2-buffered 50%H2O-50%CO2, leading to shorter times to breakaway oxidation. Curve fitting using the COSP cyclic oxidation program confirmed that the presence of H2O results in an increase of the alumina spallation rate. The use of specimen mass gain modeling associated with the characterization of pre-oxidized specimens and in particular the determination of the remaining Al content after exposure, will allow to accuratelymore » estimate the durability of oxide dispersion-strengthened (ODS) FeCrAl alloys in combustion environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaofei Guan; Peter A. Zink; Uday B. Pal
2012-01-01
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in themore » refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.« less
NASA Astrophysics Data System (ADS)
Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar
2018-05-01
Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.
Queiroz, Eveline A. I. F.; Puukila, Stephanie; Eichler, Rosangela; Sampaio, Sandra C.; Forsyth, Heidi L.; Lees, Simon J.; Barbosa, Aneli M.; Dekker, Robert F. H.; Fortes, Zuleica B.; Khaper, Neelam
2014-01-01
Recent studies have demonstrated that the anti-diabetic drug, metformin, can exhibit direct antitumoral effects, or can indirectly decrease tumor proliferation by improving insulin sensitivity. Despite these recent advances, the underlying molecular mechanisms involved in decreasing tumor formation are not well understood. In this study, we examined the antiproliferative role and mechanism of action of metformin in MCF-7 cancer cells treated with 10 mM of metformin for 24, 48, and 72 hours. Using BrdU and the MTT assay, it was found that metformin demonstrated an antiproliferative effect in MCF-7 cells that occurred in a time- and concentration- dependent manner. Flow cytometry was used to analyze markers of cell cycle, apoptosis, necrosis and oxidative stress. Exposure to metformin induced cell cycle arrest in G0-G1 phase and increased cell apoptosis and necrosis, which were associated with increased oxidative stress. Gene and protein expression were determined in MCF-7 cells by real time RT-PCR and western blotting, respectively. In MCF-7 cells metformin decreased the activation of IRβ, Akt and ERK1/2, increased p-AMPK, FOXO3a, p27, Bax and cleaved caspase-3, and decreased phosphorylation of p70S6K and Bcl-2 protein expression. Co-treatment with metformin and H2O2 increased oxidative stress which was associated with reduced cell number. In the presence of metformin, treating with SOD and catalase improved cell viability. Treatment with metformin resulted in an increase in p-p38 MAPK, catalase, MnSOD and Cu/Zn SOD protein expression. These results show that metformin has an antiproliferative effect associated with cell cycle arrest and apoptosis, which is mediated by oxidative stress, as well as AMPK and FOXO3a activation. Our study further reinforces the potential benefit of metformin in cancer treatment and provides novel mechanistic insight into its antiproliferative role. PMID:24858012
Maruyama, C; Imamura, K; Oshima, S; Suzukawa, M; Egami, S; Tonomoto, M; Baba, N; Harada, M; Ayaori, M; Inakuma, T; Ishikawa, T
2001-06-01
Effects of tomato juice supplementation on the carotenoid concentration in lipoprotein fractions and the oxidative susceptibility of LDL were investigated in 31 healthy Japanese female students. These subjects were randomized to one of three treatment groups; Control, Low and High. The Control, Low and High groups consumed 480 g of a control drink, 160 g of tomato juice plus 320 g of the control drink, and 480 g of tomato juice, providing 0, 15 and 45 mg of lycopene, respectively, for one menstrual cycle. The ingestion of tomato juice, rich in lycopene but having little beta-carotene, increased both lycopene and beta-carotene. Sixty-nine percent of lycopene in plasma was distributed in the LDL fraction and 24% in the HDL fraction. In the Low group, the lycopene concentration increased 160% each in the VLDL+IDL, LDL and HDL fractions (p<0.01). In the High group, the lycopene concentration increased 270% each in the VLDL+IDL and LDL fractions, and 330% in the HDL fraction (p<0.01). Beta-carotene also increased 120% and 180% in LDL fractions of the Low and the High groups, respectively. Despite these carotenoid increases in LDL, the lag time before oxidation was not prolonged as compared with that of the Control group. The propagation rate decreased significantly after consumption in the High group. Multiple regression analysis showed a positive correlation between lag time changes and changes in the alpha-tocopherol concentration per triglyceride in LDL, and a negative correlation between propagation rate changes and changes in the lycopene concentration per phospholipid in LDL. These data suggest that alpha-tocopherol is a major determinant in protecting LDL from oxidation, while lycopene from tomato juice supplementaion may contribute to protect phospholipid in LDI, from oxidation. Thus, oral intake of lycopene might be beneficial for ameliorating atherosclerosis.
Farmer, C; Lapointe, J; Palin, M-F
2014-07-01
The impacts of supplementing the diet of gestating gilts twice daily with 4 g of the plant extract silymarin on circulating hormonal concentrations, oxidative status, mammary development, and mammary gene expression at the end of gestation were determined. Gilts were fed conventional diets during gestation and on d 90 they were assigned as controls (CTL; n = 16) or treated (TRT; n = 17) animals. Treatment consisted of providing 4 g of silymarin twice daily until d 110, at which time all gilts were slaughtered to collect mammary tissue for compositional analyses and measures of gene expression and oxidative status, and liver and corpora lutea for measures of oxidative stress variables. Blood samples for hormonal assays and evaluation of oxidative stress biomarkers were obtained on d 89, 94, and 109 of gestation. Silymarin increased (P = 0.05) circulating concentrations of prolactin over all samples in the repeated in time analysis. In separate analyses for each sampling time, prolactin concentrations in TRT gilts tended (P < 0.10) to be greater than in CTL gilts on d 94 of gestation. Repeated in time analysis also revealed that silymarin reduced (P ≤ 0.05) plasmatic accumulation of biomarkers of oxidative damage to protein (protein carbonyls) between d 89 and 109. There was no effect (P > 0.10) of treatment on progesterone, estradiol, leptin, or 8-hydroxy-2'-deoxyguanosine concentrations. Percent fat in mammary parenchyma was greater (P ≤ 0.05), percent protein was lesser (P ≤ 0.05), and concentrations of both RNA (P ≤ 0.01) and DNA (P < 0.05) were lesser in TRT than CTL gilts. Mammary parenchyma from TRT gilts had lower (P ≤ 0.05) mRNA abundance for STAT5A and leptin and tended to have lower (P ≤ 0.10) abundance for STAT5B than CTL gilts. Silymarin reduced (P ≤ 0.001) protein carbonyls concentrations in liver of TRT gilts. No effect of treatment was observed on antioxidant gene expression and enzymatic activities in liver samples while total superoxide dismutase activity tended to be higher (P ≤ 0.10) in the corpora lutea of TRT animals when compared with CTL. This is the first demonstration that, in female pigs, silymarin can increase prolactin concentrations and protect against oxidative stress, yet the increase in prolactin was not enough to have beneficial effects on mammary gland development in late gestation.
Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla
2017-11-01
High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oxide layer stability in lead-bismuth at high temperature
NASA Astrophysics Data System (ADS)
Martín, F. J.; Soler, L.; Hernández, F.; Gómez-Briceño, D.
2004-11-01
Materials protection by 'in situ' oxidation has been studied in stagnant lead-bismuth, with different oxygen levels (H 2/H 2O ratios of 0.3 and 0.03), at temperatures from 535 °C to 600 °C and times from 100 to 3000 h. The materials tested were the martensitic steels F82Hmod, EM10 and T91 and the austenitic stainless steels, AISI 316L and AISI 304L. The results obtained point to the existence of an apparent threshold temperature above which corrosion occurs and the formation of a protective and stable oxide layer is not possible. This threshold temperature depends on material composition, oxygen concentration in the liquid lead-bismuth and time. The threshold temperature is higher for the austenitic steels, especially for the AISI 304L, and it increases with the oxygen concentration in the lead-bismuth. The oxide layer formed disappear with time and, after 3000 h all the materials, except AISI 304L, suffer corrosion, more severe for the martensitic steels and at the highest temperature tested.
Oxidation and alpha-case formation in Ti–6Al–2Sn–4Zr–2Mo alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaddam, Raghuveer, E-mail: raghuveer.gaddam@ltu.se; Sefer, Birhan; Pederson, Robert
2015-01-15
Isothermal heat treatments in ambient air were performed on wrought Ti–6Al–2Sn–4Zr–2Mo (Ti-6242) material at 500, 593 and 700°C for times up to 500 h. In the presence of oxygen at elevated temperatures simultaneous reactions occurred in Ti-6242 alloy, which resulted in the formation of an oxide scale and a layer with higher oxygen concentration (termed as alpha-case). Total weight gain analysis showed that there was a transition in the oxidation kinetics. At 500°C, the oxidation kinetics obeyed a cubic relationship up to 200 h and thereafter changed to parabolic at prolonged exposure times. At 593°C, it followed a parabolic relationship.more » After heat treatment at 700°C, the oxidation obeyed a parabolic relationship up to 200 h and thereafter changed to linear at prolonged exposure times. The observed transition is believed to be due to the differences observed in the oxide scale. The activation energy for parabolic oxidation was estimated to be 157 kJ/mol. In addition, alpha-case layer was evaluated using optical microscope, electron probe micro-analyser and microhardness tester. The thickness of the alpha-case layer was found to be a function of temperature and time, increasing proportionally, and following a parabolic relationship. The activation energy for the formation of alpha-case layer was estimated to be 153 kJ/mol. - Highlights: • Transition in oxidation kinetics was observed in Ti–6Al–2Sn–4Zr–2Mo alloy in the temperature range 500–700°C. • The activation energy for parabolic oxidation and for alpha-case formation is about 157 kJ/mol and 153 kJ/mol. • Thickness of alpha-case layer estimated by optical microscopy and electron probe microanalysis is comparable.« less
Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors
NASA Astrophysics Data System (ADS)
Brown, Juliana; Burgos, William
2010-05-01
Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments decreased as residence time decreased and as water column depth increased. Control reactors with Co-60 irradiated sediments showed an increase in Fe concentration as a result of dissolution of the sediments; thus, it was concluded that Fe(II) oxidation in the reactors was a result of biological processes and not abiotic oxidation. It was also concluded that Fe(II) oxidation and removal rates were dependent upon geochemical gradients (pH, Fe(II) concentration) rather than depositional facies. Fluorescent in situ hybridization was also performed on field and reactor samples to determine which microbial communities were responsible for the highest Fe(II) oxidation rates.
Dietary fiber and flavan-3-ols in shortbread biscuits enriched with barley flours co-products.
Verardo, Vito; Riciputi, Ylenia; Messia, Maria Cristina; Vallicelli, Melania; Falasca, Luisa; Marconi, Emanuele; Caboni, Maria Fiorenza
2011-05-01
The coarse fraction obtained by air classification of barley flour, rich in dietary fiber and flavan-3-ols, was utilized to develop functional biscuits. The flavan-3-ol content, antioxidant activity and oxidative stability of biscuits were measured during storage under retail conditions for 1 year. The replacement of 60% (w/w) refined wheat flour with barley coarse fraction increased the ash, fiber and flavan-3-ol contents significantly. Biscuit samples enriched with barley coarse fraction had a significantly higher amount of fiber compared with the control sample (six times higher). The β-glucan content in enriched samples was 15 times higher than control samples. The flavan-3-ol loss in biscuits after baking was about 67%. The initial content of flavan-3-ols increased from 0.6 to 4.3 mg/100 g in biscuits formulated with barley coarse fraction and showed improved antioxidant properties. Lipid oxidation increased during the shelf-life; the enriched biscuit showed the higher lipid oxidation status, but the level reached during the shelf-life was lower than the limit of acceptance reported for bakery products and, for this reason, does not compromise the safety.
NASA Astrophysics Data System (ADS)
Abustam, E.; Said, M. I.; Yusuf, M.
2018-02-01
This study aims to look at the role of liquid smoke as an antioxidant added in feed supplement block and administered to cattle for 45 days on the functional properties of meat. The level of liquid smoke in the feed and the time of maturation in Muscle Longissimus dorsi after slaughtering cattle were the two treatment factors observed for the functional properties of meat. The study used a complete randomized design in which factor 1 was a 10% smoke level in the feed (0, 1, 2%) and factor 2 was maturation time (0, 2, 4, 6, 8 days). The parameters observed were water holding capacity (WHC), raw meat shear force (RMSF), fat oxidation rate (thiobarbituric acid reactive substance) and antioxidant activity (DPPH). The results showed that liquid smoke levels lowered the WHC, RMSF more or less the same, increased fat oxidation rate, and antioxidant activity more or less the same. While maturation tends to increase WHC, increase RMSF, fat oxidation rate, and antioxidant activity. It can be concluded that liquid smoke as an antioxidant in the diet of block supplements can maintain the functional properties of Muscle Longissimus dorsi of Bali cattle during maturation.
Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piallat, Fabien, E-mail: fabien.piallat@gmail.com; CEA, LETI, Campus Minatec, F-38054 Grenoble; LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble
2016-09-15
Due to the reduction of the thickness of the layers used in the advanced technology nodes, there is a growing importance of the surface phenomena in the definition of the general properties of the materials. One of the least controlled and understood phenomenon is the oxidation of metals after deposition, at the vacuum break. In this study, the influence of the sample temperature at vacuum break on the oxidation level of TiN deposited by metalorganic chemical vapor deposition is investigated. TiN resistivity appears to be lower for samples which underwent vacuum break at high temperature. Using X-ray photoelectron spectrometry analysis,more » this change is correlated to the higher oxidation of the TiN layer. Moreover, angle resolved XPS analysis reveals that higher is the temperature at the vacuum break, higher is the surface oxidation of the sample. This surface oxidation is in turn limiting the diffusion of oxygen in the volume of the layer. Additionally, evolution of TiN layers resistivity was monitored in time and it shows that resistivity increases until a plateau is reached after about 10 days, with the lowest temperature at vacuum break resulting in the highest increase, i.e., the resistivity of the sample released to atmosphere at high temperature increased by a factor 1.7 whereas the resistivity of the sample cooled down under vacuum temperature increased by a factor 2.7.« less
Effects of power ultrasound on oxidation and structure of beef proteins during curing processing.
Kang, Da-Cheng; Zou, Yun-He; Cheng, Yu-Ping; Xing, Lu-Juan; Zhou, Guang-Hong; Zhang, Wan-Gang
2016-11-01
The aim of this study was to evaluate the effects of power ultrasound intensity (PUS, 2.39, 6.23, 11.32 and 20.96Wcm(-2)) and treatment time (30, 60, 90 and 120min) on the oxidation and structure of beef proteins during the brining procedure with 6% NaCl concentration. The investigation was conducted with an ultrasonic generator with the frequency of 20kHz and fresh beef at 48h after slaughter. Analysis of TBARS (Thiobarbituric acid reactive substances) contents showed that PUS treatment significantly increased the extent of lipid oxidation compared to static brining (P<0.05). As indicators of protein oxidation, the carbonyl contents were significantly affected by PUS (P<0.05). SDS-PAGE analysis showed that PUS treatment increased protein aggregation through disulfide cross-linking, indicated by the decreasing content of total sulfhydryl groups which would contribute to protein oxidation. In addition, changes in protein structure after PUS treatment are suggested by the increases in free sulfhydryl residues and protein surface hydrophobicity. Fourier transformed infrared spectroscopy (FTIR) provided further information about the changes in protein secondary structures with increases in β-sheet and decreases in α-helix contents after PUS processing. These results indicate that PUS leads to changes in structures and oxidation of beef proteins caused by mechanical effects of cavitation and the resultant generation of free radicals. Copyright © 2016 Elsevier B.V. All rights reserved.
Lasagni Vitar, Romina M; Tau, Julia; Janezic, Natasha S; Tesone, Agustina I; Hvozda Arana, Ailen G; Reides, Claudia G; Berra, Alejandro; Ferreira, Sandra M; Llesuy, Susana F
2018-06-01
The aim of this study was to evaluate the time course of oxidative stress markers and inflammatory mediators in human conjunctival epithelial cells (IOBA-NHC) exposed to diesel exhaust particles (DEP) for 1, 3, and 24 h. Reactive oxygen species (ROS) production, lipid and protein oxidation, Nrf2 pathway activation, enzymatic antioxidants, glutathione (GSH) levels and synthesis, as well as cytokine release and cell proliferation were analyzed. Cells exposed to DEP showed an increase in ROS at all time points. The induction of NADPH oxidase-4 appeared later than mitochondrial superoxide anion production, when the cell also underwent a proinflammatory response mediated by IL-6. DEP exposure triggered the activation of Nrf2 in IOBA-NHC, as a strategy for increasing cellular antioxidant capacity. Antioxidant enzyme activities were significantly increased at early stages except for glutathione reductase (GR) that showed a significant decrease after a 3-h-incubation. GSH levels were found increased after 1 and 3 h of incubation with DEP, despite the increase in its consumption by the antioxidant enzymes as it works as a cofactor. GSH recycling and the de novo synthesis were responsible for the maintenance of its content at these time points, respectively. After 24 h, the decrease in GR and glutamate cysteine ligase as wells as the enhanced activity of glutathione peroxidase and glutathione S-transferase produced a depletion in the GSH pool. Lipid-peroxidation was found increased in cells exposed to DEP after 1-h-incubation, whereas protein oxidation was found increased in cells exposed to DEP after a 3-h-incubation that persisted after a longer exposure. Furthermore, DEP lead IOBA-NHC cells to hyperplasia after 1 and 3 h of incubation, but a decrease in cell proliferation was found after longer exposure. ROS production seems to be an earlier event triggered by DEP on IOBA-NHC, comparing to the proinflammatory response mediated by IL-6. Despite the fact that under short periods of exposure to DEP lipids and then proteins are targets of oxidative damage, the viability of the cells is not affected at early stages, since cell hyperplasia was detected as compensatory mechanism. Although after 24 h Nrf2 pathway is still enhanced, the epithelial cell capacity to maintain redox balance is exceeded. The antioxidant enzymes activation and the depleted GSH pool are not capable of counteracting the increased ROS production, leading to oxidative damage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Li-You; Renn, Ting-Yi; Liao, Wen-Chieh; Mai, Fu-Der; Ho, Ying-Jui; Hsiao, George; Lee, Ai-Wei; Chang, Hung-Ming
2017-09-01
Prolonged exposure to gamma-hydroxybutyric acid (GHB) would cause drug intoxication in which impaired cognitive function results from enhanced hippocampal oxidative stress may serve as a major symptom in this deficiency. Considering melatonin possesses significant anti-oxidative efficacy, this study aimed to determine whether melatonin would successfully promote the nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) signaling, depress oxidative stress, and rescue hippocampal bioenergetics and cognitive function following drug intoxication injury. Adolescent rats subjected to 10 days of GHB were received melatonin at doses of either 10 or 100 mg/kg. Time-of-flight secondary ion mass spectrometry, biochemical assay, quantitative histochemistry, [ 14 C]-2-deoxyglucose analysis, together with Morris water maze were employed to detect the molecular signaling, oxidative status, bioenergetic level, as well as the cognitive performances, respectively. Results indicated that in GHB-intoxicated rats, enhanced oxidative stress, increased cholesterol level, and decreased anti-oxidative enzymes activities were detected in hippocampal regions. Intense oxidative stress paralleled well with reduced bioenergetics and poor performance in behavioral testing. However, in rats treated with melatonin following GHB intoxication, all above parameters and cognitive function were gradually returned to nearly normal levels. Melatonin also remarkably promoted the translocation of Nrf2 from cytoplasm to nucleus in a dose-dependent manner, thereby increased the Nrf2-ARE signaling-related downstream anti-oxidative enzymes activities. As melatonin effectively rescues hippocampal bioenergetics through depressing the oxidative stress by promoting Nrf2-ARE molecular machinery, this study thus highlights for the first time that clinical use of melatonin may serve as a therapeutic strategy to improve the cognitive function in unsuspecting victims suffered from GHB intoxication injury. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kumar, Raj; Kumar, R. Manoj; Bera, Parthasarathi; Ariharan, S.; Lahiri, Debrupa; Lahiri, Indranil
2017-12-01
Reduced graphene oxide coated soda lime glass can act as an alternative transparent/conducting electrode for many opto-electronic applications. However, bonding between the deposited reduced graphene oxide film and the glass substrate is important for achieving better stability of the coating and an extended device lifetime. In the present study, delamination energy of reduced graphene oxide on soda lime glass was quantified by using nanoscratch technique. Graphene oxide was deposited on soda lime glass by dip coating technique and was thermally reduced at different temperatures (100 °C, 200 °C, 300 °C, 400 °C and 500 °C) and treatment time (2 h, 3 h, 4 h, 5 h and 10 h) in Ar (95%) with H2 (5%) atmosphere. An inverse behavior of delamination energy with temperature and treatment time was observed, which could be correlated with the removal of oxygen functional groups. Sheet resistance of the film demonstrated a steady decay with increasing temperature and treatment time. Functional groups attached to the graphene planes have more influence on conductivity than groups attached to the edges. Removal of functional groups could also be related to optical transmittance of the samples. Knowledge generated in this study with respect to delamination energy, sheet resistance and optical transmittance could be extensively used for various opto-electronic applications.
Deferme, Lize; Wolters, Jarno; Claessen, Sandra; Briedé, Jacco; Kleinjans, Jos
2015-08-17
It is widely accepted that in chemical carcinogenesis different modes-of-action exist, e.g., genotoxic (GTX) versus nongenotoxic (NGTX) carcinogenesis. In this context, it has been suggested that oxidative stress response pathways are typical for NGTX carcinogenesis. To evaluate this, we examined oxidative stress-related changes in gene expression, cell cycle distribution, and (oxidative) DNA damage in human hepatoma cells (HepG2) exposed to GTX-, NGTX-, and noncarcinogens, at multiple time points (4-8-24-48-72 h). Two GTX (azathriopine (AZA) and furan) and two NGTX (tetradecanoyl-phorbol-acetate, (TPA) and tetrachloroethylene (TCE)) carcinogens as well as two noncarcinogens (diazinon (DZN, d-mannitol (Dman)) were selected, while per class one compound was deemed to induce oxidative stress and the other not. Oxidative stressors AZA, TPA, and DZN induced a 10-fold higher number of gene expression changes over time compared to those of furan, TCE, or Dman treatment. Genes commonly expressed among AZA, TPA, and DZN were specifically involved in oxidative stress, DNA damage, and immune responses. However, differences in gene expression between GTX and NGTX carcinogens did not correlate to oxidative stress or DNA damage but could instead be assigned to compound-specific characteristics. This conclusion was underlined by results from functional readouts on ROS formation and (oxidative) DNA damage. Therefore, oxidative stress may represent the underlying cause for increased risk of liver toxicity and even carcinogenesis; however, it does not discriminate between GTX and NGTX carcinogens.
Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A
Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatiguemore » tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.« less
NASA Technical Reports Server (NTRS)
Barrett, Charles A.
1999-01-01
Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic (typical of isothermal oxidation), paralinear, linear, and mixed-linear kinetics.
Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling.
Travasso, Rui D M; Sampaio Dos Aidos, Fernando; Bayani, Anahita; Abranches, Pedro; Salvador, Armindo
2017-08-01
Hydrogen peroxide (H 2 O 2 ) is a key signaling agent. Its best characterized signaling actions in mammalian cells involve the early oxidation of thiols in cytoplasmic phosphatases, kinases and transcription factors. However, these redox targets are orders of magnitude less H 2 O 2 -reactive and abundant than cytoplasmic peroxiredoxins. How can they be oxidized in a signaling time frame? Here we investigate this question using computational reaction-diffusion models of H 2 O 2 signaling. The results show that at H 2 O 2 supply rates commensurate with mitogenic signaling a H 2 O 2 concentration gradient with a length scale of a few tenths of μm is established. Even near the supply sites H 2 O 2 concentrations are far too low to oxidize typical targets in an early mitogenic signaling time frame. Furthermore, any inhibition of the peroxiredoxin or increase in H 2 O 2 supply able to drastically increase the local H 2 O 2 concentration would collapse the concentration gradient and/or cause an extensive oxidation of the peroxiredoxins I and II, inconsistent with experimental observations. In turn, the local concentrations of peroxiredoxin sulfenate and disulfide forms exceed those of H 2 O 2 by several orders of magnitude. Redox targets reacting with these forms at rate constants much lower than that for, say, thioredoxin could be oxidized within seconds. Moreover, the spatial distribution of the concentrations of these peroxiredoxin forms allows them to reach targets within 1 μm from the H 2 O 2 sites while maintaining signaling localized. The recruitment of peroxiredoxins to specific sites such as caveolae can dramatically increase the local concentrations of the sulfenic and disulfide forms, thus further helping these species to outcompete H 2 O 2 for the oxidation of redox targets. Altogether, these results suggest that H 2 O 2 signaling is mediated by localized redox relays whereby peroxiredoxins are oxidized to sulfenate and disulfide forms at H 2 O 2 supply sites and these forms in turn oxidize the redox targets near these sites. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Kanaoka, Yuji; Inagaki, Ei-ichirou; Hamanaka, Souhei; Masaki, Hisao; Tanemoto, Kazuo
2010-10-01
The transient systemic low perfusion that occurs during cardiovascular surgery leads to oxidative stress and the production of free radicals. A systemic increase of various markers of oxidative stress has been shown to occur during cardiopulmonary bypass (CPB). However, these markers have not been adequately evaluated because they seem to be reactive and short-lived. Here, oxidative stress was measured using the free radical analytical system (FRAS 4) assessing the derivatives of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP). Blood samples were taken from 21 patients undergoing elective cardiovascular surgery. CPB was used in 15 patients, and abdominal aortic aneurysm (AAA) surgery without CPB was performed in 6. Measurements of d-ROMs and BAP were taken before surgery, 1 day, 1 week, and 2 weeks after surgery, and oxidative stress was evaluated. The d-ROM level increased gradually after cardiovascular surgery up to 2 weeks. Over time, the d-ROM level after surgery involving CPB became higher than that after AAA surgery. This difference reached statistical significance at 1 week and lasted to 2 weeks. The prolongation of CPB was prone to elevate the d-ROM level whereas the duration of the aortic clamp in AAA surgery had no relation to the d-ROM level. The BAP was also elevated after surgery, and was positively correlated with the level of d-ROMs. In this study, patients who underwent cardiovascular surgery involving CPB had significant oxidative damage. The production of ROMs was shown to depend on the duration of CPB. Damage can be reduced if CPB is avoided. When CPB must be used, shortening the CPB time may be effective in reducing oxidative stress.
Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M
2014-02-01
Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.
2016-03-01
Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.
Corradini, Patricia Gon; Antolini, Ermete; Perez, Joelma
2013-07-28
Pt-Pr/C electrocatalysts were prepared using a modified formic acid method, and their activity for carbon monoxide and ethanol oxidation was compared to Pt/C. No appreciable alloy formation was detected by XRD analysis. By TEM measurements it was found that Pt particle size increases with an increasing Pr content in the catalysts and with decreasing metal precursor addition time. XPS measurements indicated Pt segregation on the catalyst surface and the presence of Pr2O3 and PrO2 oxides. The addition of Pr increased the electro-catalytic activity of Pt for both CO and CH3CH2OH oxidation. The enhanced activity of Pt-Pr/C catalysts was ascribed to both an electronic effect, caused by the presence of Pr2O3, and the bi-functional mechanism, caused by the presence of PrO2.
Gadjeva, Veselina Georgieva; Goycheva, Petia; Nikolova, Galina; Zheleva, Antoaneta
2017-11-01
The pathology of diabetes is associated with several mechanisms, one of which is oxidative stress (OS). The relationship between OS and diabetic complications has been extensively investigated. OS has been suggested to be involved in the genesis of both macroand microangiopathy. In contrast, the relationship between OS and insulin action is a neglected research area. The aim of this study is to elucidate the effect of glycemic control in type 2 diabetic patients by following the serum levels of some real-time oxidative stress biomarkers. The study group consisted of 53 type 2 diabetic patients (31 with poor glycemic control and 22 with good glycemic control) and 24 healthy control subjects. The oxidative stress biomarkers (ROS, Asc• and •NO) were measured by using electron paramagnetic resonance spectroscopy (EPR) methods and compared with clinical parameters. The statistically significantly higher levels of ROS products and •NO in type 2 diabetic patients in both groups compared to controls mean that the oxidation processes take place at the time the survey is performed. Free radical overproduction persists after the normalization of the glucose levels, and oxidative stress may be involved in the "metabolic memory" effect. This is confirmed by the positive correlation between ROS levels/•NO and average blood glucose levels, triglycerides, and total cholesterol. Furthermore, the low level of the ascorbate radical in both diabetes groups compared to controls confirmed an increase in oxidation processes. Higher levels of real-time biomarkers show that intensive insulin treatment does not lead to the expected decrease in oxidative processes involving ROS and •NO, probably due to "metabolic memory".
Induction of pulmonary fibrosis by cerium oxide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jane Y., E-mail: jym1@cdc.gov; Mercer, Robert R.; Barger, Mark
2012-08-01
Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophagesmore » (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis. ► Cerium oxide particles were detected in lung tissue and AM. ► Cerium oxide caused lung fibrosis in a dose- and time-dependent manner.« less
NASA Astrophysics Data System (ADS)
Gao, Junxia; Zhao, Guohua; Liu, Meichuan; Li, Dongming
2009-09-01
Remarkable enhancement in degradation effect is achieved at in situ activated boron-doped diamond (BDD) and Pt anodes with different extent through electrochemical oxidation (EC) of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave (MW) radiation in a flow system. Results show that when EC is activated with MW radiation, the complete mineralization time of 2,4-D at the BDD is reduced quickly from 10 to 4 h while Chemical oxygen demand (COD) removal at Pt is increased from 37.7 to 58.3% at 10 h; the initial current efficiency is both improved about 1.5 times while the pseudo-first-order rate constant is increased by 153 and 119% at the BDD and Pt, respectively. To gain insight into the higher efficiency in microwave activated EC, the mechanism has therefore been systematically evaluated from the essence of electrochemical reaction and the accumulated hydroxyl radical concentration. 2,4-Dichlorophenol, catechol, benquinone, and maleic and oxalic acids are the main intermediates on the Pt anode measured by high performance liquid chromatography (HPLC), while the intermediates on the BDD electrode include 2,4-dichlorophenol, hydroquinone, and maleic and oxalic acids. The reaction pathway with microwave radiation is the same as that in a conventional electrochemical oxidation on both electrodes. While less and lower aromatic intermediates produce at the BDD with MW, which suggests the higher ring-open ratio and the faster oxidation of carboxylic acids. With microwave radiation, the ring-open ratio at the BDD is increased to 98.8% from 85.6%; the value at Pt is increased to 67.3% from 35.9%. So microwave radiation can activate the electrochemical oxidation, which leads to the higher efficiency. This promotion is mainly due to the higher accumulated hydroxyl radical concentration and the effects by microwave radiation. All the results prove that the BDD electrode presents much better mineralization performance with MW. To the best of our knowledge, it is the first time the systematic analysis of the mechanism of microwave activated EC has been reported.
NASA Astrophysics Data System (ADS)
Liang, Liyuan; McCarthy, John F.; Jolley, Louwanda W.; McNabb, J. Andrew; Mehlhorn, Tonia L.
1993-05-01
The dynamics of dissolved, colloidal, and deposited iron phases were examined during a forced-gradient field experiment. The experiment involved the injection of oxygenated water containing high levels of natural organic matter (NOM) into a sandy aquifer. The initial redox potential of the aquifer favored Fe(II) in the groundwater. The changes in the concentrations of Fe(II) and Fe(III) were observed in sampling wells. Under the increased dissolved oxygen (DO) conditions, Fe(II) oxygenation was rapid, resulting in the formation of Fe(III) (hydr) oxide colloids. The oxidation follows the rate law as given in STUMM and MORGAN (1981): d[ Fe(II)] /dt = - k obs[ O2( aq)] /[ H+] 2[ Fe(II)] , with a rate constant, kobs to be 1.9 × 10 -12 M min -1. For an averaged pH and DO of the groundwater, the half time of Fe(II) oxidation is 49 h. The NOM was postulated to stabilize the newly formed colloids, thereby increasing the turbidity in the groundwater. The additional increase in the colloidal fraction of Fe(III) oxide suggested that transport of the colloidal particles was occurring. At those locations where DO remained constantly low, the turbidity increase was moderate, and up to 80% of Fe(III) was in the dissolved phase (< 3000 mol. wt). The latter observation was attributed to the presence of NOM, forming Fe(III)-organic complexes. In addition, NOM may play a role in the oxygen consumption through a Fe(II)/Fe(III) catalyzed oxidation of organic matter as outlined by STUMM and MORGAN (1981, p. 469). In this mechanism, Fe(II) oxidation is slow, maintaining a near constant Fe(II) concentration, in agreement with field data. The overall increase in Fe(III) under low DO conditions was postulated to be a combination of (1) slow oxidation, (2) ligand-promoted and catalytic dissolution of deposited iron phases, and (3) the transport of newly formed iron oxide colloids along flow paths.
High temperature oxidation in boiler environment of chromized steel
NASA Astrophysics Data System (ADS)
Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.
2017-10-01
The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.
Low-damage direct patterning of silicon oxide mask by mechanical processing
2014-01-01
To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891
Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin
2017-03-01
In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm -2 ), NaCl concentration added to the real wastewaters (0-3 g·L -1 ), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg -1 COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Farrokhi, Effat; Samani, Keihan Ghatreh; Chaleshtori, Morteza Hashemzadeh
2014-01-01
Oxidative stress has been associated with the progression of atherosclerosis and activation of genes that lead to increased deposition of proteins in the extracellular matrix. Bone sialoprotein (BSP) and osteonectin are proteins involved in the initiation and progression of vascular calcification. To investigate the effect of oxidized low-density lipoprotein on osteonectin and BSP expression in human aorta vascular smooth muscle cells (HA/VSMCs). We treated HA/VSMCs with oxidized low-density lipoprotein (oxLDL) and measured the relative expression of osteonectin and BSP genes using the real-time polymerase chain reaction (PCR) method. We investigated the protein levels produced by each gene using the western blotting technique. oxLDL increased osteonectin and BSP levels (mean [SD], 9.1 [2.1]-fold and 4.2 [0.75]-fold, respectively) after 48 hours. The western blotting results also confirmed the increased levels of osteonectin and BSP. oxLDL may enhance vascular calcification by promoting the expression of osteonectin and BSP. Copyright© by the American Society for Clinical Pathology (ASCP).
Madjid Ansari, Alireza; Farzampour, Shahrokh; Sadr, Ali; Shekarchi, Babak; Majidzadeh-A, Keivan
2016-02-01
Previous reports on the possible effects of Extremely Low Frequency Magnetic Fields (ELF MF) on mood have been paradoxical in different settings while no study has yet been conducted on animal behavior. In addition, it was shown that ELF MF exposure makes an increase in brain nitric oxide level. Therefore, in the current study, we aimed to assess the possible effect(s) of ELF MF exposure on mice Forced Swimming Test (FST) and evaluate the probable role of the increased level of nitric oxide in the observed behavior. Male adult mice NMRI were recruited to investigate the short term and long term ELF MF exposure (0.5 mT and 50 Hz, single 2h and 2 weeks 2h a day). Locomotor behavior was assessed by using open-field test (OFT) followed by FST to evaluate the immobility time. Accordingly, NΩ-nitro-l-arginine methyl ester 30 mg/kg was used to exert anti-depressant like effect. According to the results, short term exposure did not alter the immobility time, whereas long term exposure significantly reduces immobility time (p<0.01). However, it was revealed that the locomotion did not differ among all experimental groups. Short term exposure reversed the anti-depressant like effect resulting from 30 mg/kg of NΩ-nitro-l-arginine methyl ester (p<0.01). It has been concluded that long term exposure could alter the depressive disorder in mice, whereas short term exposure has no significant effect. Also, reversing the anti-depressant activity of L-NAME indicates a probable increase in the brain nitric oxide. Copyright © 2016 Elsevier Inc. All rights reserved.
Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha
2016-01-01
The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163
A cafeteria diet triggers intestinal inflammation and oxidative stress in obese rats.
Gil-Cardoso, K; Ginés, I; Pinent, M; Ardévol, A; Terra, X; Blay, M
2017-01-01
The gastrointestinal alterations associated with the consumption of an obesogenic diet, such as inflammation, permeability impairment and oxidative stress, have been poorly explored in both diet-induced obesity (DIO) and genetic obesity. The aim of the present study was to examine the impact of an obesogenic diet on the gut health status of DIO rats in comparison with the Zucker (fa/fa) rat leptin receptor-deficient model of genetic obesity over time. For this purpose, female Wistar rats (n 48) were administered a standard or a cafeteria diet (CAF diet) for 12, 14·5 or 17 weeks and were compared with fa/fa Zucker rats fed a standard diet for 10 weeks. Morphometric variables, plasma biochemical parameters, myeloperoxidase (MPO) activity and reactive oxygen species (ROS) levels in the ileum were assessed, as well as the expressions of proinflammatory genes (TNF-α and inducible nitric oxide synthase (iNOS)) and intestinal permeability genes (zonula occludens-1, claudin-1 and occludin). Both the nutritional model and the genetic obesity model showed increased body weight and metabolic alterations at the final time point. An increase in intestinal ROS production and MPO activity was observed in the gastrointestinal tracts of rats fed a CAF diet but not in the genetic obesity model. TNF-α was overexpressed in the ileum of both CAF diet and fa/fa groups, and ileal inflammation was associated with the degree of obesity and metabolic alterations. Interestingly, the 17-week CAF group and the fa/fa rats exhibited alterations in the expressions of permeability genes. Relevantly, in the hyperlipidic refined sugar diet model of obesity, the responses to chronic energy overload led to time-dependent increases in gut inflammation and oxidative stress.
Sulfur Dioxide Accelerates the Heterogeneous Oxidation Rate of Organic Aerosol by Hydroxyl Radicals
Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.
2016-03-08
There remains considerable uncertainty in how anthropogenic gas phase emissions alter the oxidative aging of organic aerosols in the troposphere. Here we observe a 10-20 fold acceleration in the effective heterogeneous OH oxidation rate of organic aerosol in the presence of SO 2. This acceleration originates from the radical chain reactions propagated by alkoxy radicals, which are formed efficiently inside the particle by the reaction of peroxy radicals with SO 2. As the OH approaches atmospheric concentrations, the radical chain length increases, transforming the aerosol at rates predicted to be up to 10 times the OH-aerosol collision frequency. Model predictions,more » constrained by experiments over orders of magnitude changes in [OH] and [SO 2], suggest that in polluted regions the heterogeneous processing of organic aerosols by OH ([SO 2] ≥ 40 ppb) occur on similar time scales as analogous gas-phase oxidation reactions. These results provide evidence for a previously unidentified mechanism by which organic aerosol oxidation is enhanced by anthropogenic gas phase emissions. (Chemical Equation Presented).« less
NASA Astrophysics Data System (ADS)
Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng
2018-01-01
It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.
Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin
2014-02-15
A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident. Copyright © 2013 Elsevier B.V. All rights reserved.
NITRIC OXIDE FORMATION DURING PULVERIZED COAL COMBUSTION
Data on the overall conversion of coal-nitrogen to NOx were obtained at 1250 K and 1750 K for a residence time of one second. The conversion of coal-nitrogen to NOx decreased monotonically with increasing fuel/oxygen equivalence ratio and decreased slightly with increasing temper...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less
Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...
2015-03-18
We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 10 8 to 2.2 × 10 10 molec cm -3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 10 6 to 2 × 10 7 molec cm -3 over exposure times of severalmore » hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 10 11 and 2 × 10 11 molec cm -3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less
NOx adsorber and method of regenerating same
Endicott, Dennis L [Peoria, IL; Verkiel, Maarten [Metamora, IL; Driscoll, James J [Dunlap, IL
2007-01-30
New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.
Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality
NASA Astrophysics Data System (ADS)
Requejo, B. A.; Pajarito, B. B.
2017-05-01
Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.
Besson-Bard, Angélique; Griveau, Sophie; Bedioui, Fethi; Wendehenne, David
2008-01-01
It was previously reported that cryptogein, an elicitor of defence responses, induces an intracellular production of nitric oxide (NO) in tobacco. Here, the possibility was explored that cryptogein might also trigger an increase of NO extracellular content through two distinct approaches, an indirect method using the NO probe 4,5-diaminofluorescein (DAF-2) and an electrochemical method involving a chemically modified microelectrode probing free NO in biological media. While the chemical nature of DAF-2-reactive compound(s) is still uncertain, the electrochemical modified microelectrodes provide real-time evidence that cryptogein induces an increase of extracellular NO. Direct measurement of free extracellular NO might offer important new insights into its role in plants challenged by biotic stresses. PMID:18653691
Prickett, Claire D.; Lister, E.; Collins, Michelle; Trevithick-Sutton, C. C.; Hirst, M.; Vinson, J. A.; Noble, E.; Trevithick, J. R.
2004-01-01
Objectives: To correlate the oxidative state of postabsorptive blood plasma after consumption of one or three drinks of different beverages with known J-shaped epidemiological risk curves. Design, interventions, and main outcome measures: Red wine, lager beer, stout (alcoholic and alcohol-free), with antioxidant activity, and an aqueous solution of alcohol were compared for the plasma antioxidant or pro-oxidant activity in human volunteers following consumption of one or three typical drinks containing equivalent amounts of alcohol (except for an alcohol-free stout used as a control for stout). Results: One drink of red wine, lager beer, or stout (5% alcohol v/v, and alcohol-free) significantly increased the average antioxidant activity in plasma samples obtained from volunteers averaged over 240 min. Three drinks of red wine, lager beer, or stout (5% alcohol v/v, and alcohol-free) significantly increased the average pro-oxidant activity in plasma samples obtained from volunteers averaged over 360 min. For a solution of alcohol, three drinks resulted in pro-oxidant plasma on average, whereas while one drink did not significantly affect the plasma oxidative status. A preliminary experiment in which two volunteers showed a significantly increased time to metabolize ethanol after ingestion resulted in elevated antioxidant activity in plasma for lager beer and red wine. Conclusions: One drink of red wine, beer, or stout provided equivalent increases in plasma antioxidant activity. Three drinks of red wine, beer, or stout provided equivalent increases in plasma pro-oxidant activity. This may explain, at least in part, the decreased risk of cataract and atherosclerosis from daily consumption of one drink of different types of alcoholic beverages as well as the increased risk from daily consumption of three drinks of alcoholic beverages. The plasma pro-oxidant activity appears to be due to ethanol metabolism, whereas the antioxidant activity may be due to the absorption of polyphenols in the beverages. PMID:19330151
Porkkala, T; Jäntti, V; Kaukinen, S; Häkkinen, V
1997-04-01
Electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) are altered by inhalation anaesthesia. Nitrous oxide is commonly used in combination with volatile anaesthetics. We have studied the effects of nitrous oxide on both EEG and SEPs simultaneously during isoflurane burst-suppression anaesthesia. Twelve ASA I-II patients undergoing abdominal or orthopaedic surgery were anaesthetized with isoflurane by mask. After intubation and relaxation the isoflurane concentration was increased to a level at which an EEG burst-suppression pattern occurred (mean isoflurane end-tidal concentration 1.9 (SD 0.2) %. With a stable isoflurane concentration, the patients received isoflurane-air-oxygen and isoflurane-nitrous oxide-oxygen (FiO2 0.4) in a randomized cross-over manner. EEG and SEPs were simultaneously recorded before, and after wash-out or wash-in periods for nitrous oxide. The proportion of EEG suppressions as well as SEP amplitudes for cortical N20 were calculated. The proportion of EEG suppressions decreased from 53.5% to 34% (P < 0.05) when air was replaced by nitrous oxide. At the same time, the cortical N20 amplitude was reduced by 69% (P < 0.01). The results suggest that during isoflurane anaesthesia, nitrous oxide has a different effect on EEG and cortical SEP at the same time. The effects of nitrous oxide may be mediated by cortical and subcortical generators.
Calvano, C D; van der Werf, I D; Palmisano, F; Sabbatini, L
2011-06-01
A matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based approach was applied for the detection of various lipid classes, such as triacylglycerols (TAGs) and phospholipids (PLs), and their oxidation by-products in extracts of small (50-100 μg) samples obtained from painted artworks. Ageing of test specimens under various conditions, including the presence of different pigments, was preliminarily investigated. During ageing, the TAGs and PLs content decreased, whereas the amount of diglycerides, short-chain oxidative products arising from TAGs and PLs, and oxidized TAGs and PLs components increased. The examination of a series of model paint samples gave a clear indication that specific ions produced by oxidative cleavage of PLs and/or TAGs may be used as markers for egg and drying oil-based binders. Their elemental composition and hypothetical structure are also tentatively proposed. Moreover, the simultaneous presence of egg and oil binders can be easily and unambiguously ascertained through the simultaneous occurrence of the relevant specific markers. The potential of the proposed approach was demonstrated for the first time by the analysis of real samples from a polyptych of Bartolomeo Vivarini (fifteenth century) and a "French school" canvas painting (seventeenth century).
Malinowski, Michael E.
2005-01-25
The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.
Neethling, Nikki E; Hoffman, Louwrens C; Britz, Trevor J; O'Neill, Bernadette
2015-06-01
The use of carbon monoxide (CO) and various packaging types has been suggested to improve/stabilise the colour and oxidative processes of red meats, thereby improving the retail value and revenue. The main aim of this study was to investigate the influence of packaging type and CO treatment on the colour and oxidative stability of tuna. The addition of CO significantly increased the redness (a(*) ) of the tuna steaks but the redness was not equally stable for all treatments. The aerobically packaged steaks showed a temporal decrease in redness while the redness of anaerobically packaged steaks remained relatively stable. The addition of CO did not significantly affect (P >0.05) the brownness (b(*) ) (with one exception) and lightness (L(*) ) of the steaks. The anaerobically packaged steaks showed a significant difference (P <0.05) in the b(*) values. No significant differences (P >0.05) in lipid or protein oxidation were observed between treatments. The aerobically packaged steaks had a significant temporal increase (P <0.05) in lipid oxidation while no such trend was apparent in the anaerobically packaged steaks. Protein oxidation remained relatively stable over time for both aerobically and anaerobically packaged steaks. Storing CO treated tuna steaks in anaerobic packaging can improve the oxidative and colour stability of tuna. Such treatment can reduce spoilage and wastage thereby potentially increasing revenue. © 2014 Society of Chemical Industry.
Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide
NASA Astrophysics Data System (ADS)
Yang, Changyuan; Li, Huichu; Chen, Renjie; Xu, Wenxi; Wang, Cuicui; Tse, Lap Ah; Zhao, Zhuohui; Kan, Haidong
2016-07-01
Nitrogen dioxide and ozone are two interrelated oxidative pollutants in the atmosphere. Few studies have evaluated the health effects of combined oxidant capacity (O x ). We investigated the short-term effects of O x on fractional exhaled nitric oxide (FeNO), a well-established biomarker for airway inflammation, in a group of chronic obstructive pulmonary disease patients. Real-time concentrations of O x were obtained by calculating directly the sum of nitrogen dioxide and ozone. Linear mixed-effect models were applied to explore the acute effects of O x on FeNO levels. Short-term exposure to Ox was significantly associated with elevated FeNO. This effect was strongest in the first 24 h after exposure, and was robust to the adjustment of PM2.5. A 10 μg m-3 increase in 24 h average concentrations of O x was associated with 4.28% (95% confidence interval: 1.19%, 7.37%) increase in FeNO. The effect estimates were statistically significant only among males, elders, and those with body mass index ≥24 kg m-2, a comorbidity, higher educational attainment, or moderate airflow limitation. This analysis demonstrated an independent effect of O x on respiratory inflammation, and suggested that a single metric O x might serve as a preferable indicator of atmospheric oxidative capacity in further air pollution epidemiological studies.
Venkatesan, Nandini; Devaraj, S Niranjali; Devaraj, H
2007-01-01
LDL (low-density lipoprotein) oxidation is a key trigger factor for the development of atherosclerosis. Relatively few studies exist on the impact of dietary fibre on LDL oxidation. This study was undertaken to evaluate the influence of a novel fibre mix of fenugreek seed powder, guar gum and wheat bran (Fibernat) on LDL oxidation induced by an atherogenic diet. Male Wistar albino rats were administered one of the following diets: (1) a control diet that was fibre-free (Group I); (2) an atherogenic diet containing 1.5% cholesterol and 0.1% cholic acid (Group II) or (3) an atherogenic diet supplemented with Fibernat (Group III). Peroxidative changes in low-density lipoprotein (LDL) and the oxidative susceptibility of LDL and the LDL + VLDL (very low-density lipoprotein) fraction were determined. As a corollary to the oxidative modification theory, the titer of autoantibodies to oxidised LDL (oxLDL) was determined at various time points of the study. In addition, plasma homocysteine (tHcy) and lipoprotein (Lp (a)), apolipoprotein (apoB), cholesterol, triglyceride, phospholipid and alpha-tocopherol content of LDL were determined. A decrease in malonaldehyde (MDA) content (p<0.05) and relative electrophoretic mobility (REM) of LDL was observed in the group III rats as compared to the group II rats. An increase in lag time to oxidation (p<0.01) and decrease in maximum oxidation (p<0.01) and oxidation rate (p<0.01) were observed in the LDL + VLDL fraction of group III rats. In group II rats, formation of autoantibodies to oxLDL occurred at an earlier time point and at levels greater than in the group III rats. Fibernat, had a sparing effect on LDL alpha-tocopherol, which was about 51% higher in the group III rats than in the group II rats; apo B content of LDL was reduced by 37.6% in group III rats. LDL of group III rats displayed a decrease in free and ester cholesterol (p<0.01) as compared to that of group II. A decrease in plasma homocysteine (p<0.01) and an increase in GSH (p<0.05) were also observed in group III rats when compared with that of group II. Fibernat administration appears to combat oxidative stress resulting in a trend to lower oxidative modification of LDL. In addition, the cholesterol and apo B content of LDL were reduced significantly with a sparing effect on LDL alpha-tocopherol. This novel fibre preparation could be an effective diet therapy and therefore needs further investigation.
Characterization of strain relaxation behavior in Si1- x Ge x epitaxial layers by dry oxidation
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Park, Seran; Ko, Dae-Hong
2017-11-01
We fabricated fully strained Si0.77Ge0.23 epitaxial layers on Si substrates and investigated their strain relaxation behaviors under dry oxidation and the effect of oxidation temperatures and times. After the oxidation process, a Ge-rich layer was formed between the oxide and the remaining Si0.77Ge0.23 layer. Using reciprocal space mapping measurements, we confirmed that the strain of the Si0.77Ge0.23 layers was efficiently relaxed after oxidation, with a maximum relaxation value of 70% after oxidation at 850 °C for 120 min. The surface of Si0.77Ge0.23 layer after strain relaxation by dry oxidation was smoother than a thick Si0.77Ge0.23 layer, which achieved a similar strain relaxation value by increasing the film thickness. Additionally, N2 annealing was performed in order to compare its effect on the relaxation compared to dry oxidation and to identify relaxation mechanisms, other than the thermally driven ones, occurring during dry oxidation.
Nudler, Silvana I; Quinteros, Fernanda A; Miler, Eliana A; Cabilla, Jimena P; Ronchetti, Sonia A; Duvilanski, Beatriz H
2009-03-28
Hexavalent chromium (Cr VI)-containing compounds are known carcinogens which are present in industrial settings and in the environment. The major route of chromium exposure for the general population is oral intake. Previously we have observed that Cr VI affects anterior pituitary secretion and causes oxidative stress in vitro. The aim of the present work was to investigate if in vivo Cr VI treatment (100 ppm of Cr VI in drinking water for up 30 days) causes oxidative stress in hypothalamus and anterior pituitary gland from male rats. This treatment produced a 4-fold increase of chromium content in hypothalamus and 10-fold increase in anterior pituitary gland. Lipid peroxidation showed a significant increase in hypothalamus and anterior pituitary. Cr VI augmented superoxide dismutase activity in anterior pituitary gland and glutathione reductase activity in hypothalamus, but glutathione peroxidase and catalase activities remained unchanged in both tissues. Heme oxygenase-1 mRNA expression significantly rose in both tissues. Metallothionein 1 mRNA content increased in anterior pituitary and metallothionein 3 mRNA increased in hypothalamus. These results show, for the first time, that oral chronic administration of Cr VI produces oxidative stress on the hypothalamus and anterior pituitary gland which may affect normal endocrine function.
Raap, Thomas; Casasole, Giulia; Costantini, David; AbdElgawad, Hamada; Asard, Han; Pinxten, Rianne; Eens, Marcel
2016-10-19
Artificial light at night (ALAN), termed light pollution, is an increasingly important anthropogenic environmental pressure on wildlife. Exposure to unnatural lighting environments may have profound effects on animal physiology, particularly during early life. Here, we experimentally investigated for the first time the impact of ALAN on body mass and oxidative status during development, using nestlings of a free-living songbird, the great tit (Parus major), an important model species. Body mass and blood oxidative status were determined at baseline (=13 days after hatching) and again after a two night exposure to ALAN. Because it is very difficult to generalise the oxidative status from one or two measures we relied on a multi-biomarker approach. We determined multiple metrics of both antioxidant defences and oxidative damage: molecular antioxidants GSH, GSSG; antioxidant enzymes GPX, SOD, CAT; total non-enzymatic antioxidant capacity and damage markers protein carbonyls and TBARS. Light exposed nestlings showed no increase in body mass, in contrast to unexposed individuals. None of the metrics of oxidative status were affected. Nonetheless, our study provides experimental field evidence that ALAN may negatively affect free-living nestlings' development and hence may have adverse consequences lasting throughout adulthood.
Raap, Thomas; Casasole, Giulia; Costantini, David; AbdElgawad, Hamada; Asard, Han; Pinxten, Rianne; Eens, Marcel
2016-01-01
Artificial light at night (ALAN), termed light pollution, is an increasingly important anthropogenic environmental pressure on wildlife. Exposure to unnatural lighting environments may have profound effects on animal physiology, particularly during early life. Here, we experimentally investigated for the first time the impact of ALAN on body mass and oxidative status during development, using nestlings of a free-living songbird, the great tit (Parus major), an important model species. Body mass and blood oxidative status were determined at baseline (=13 days after hatching) and again after a two night exposure to ALAN. Because it is very difficult to generalise the oxidative status from one or two measures we relied on a multi-biomarker approach. We determined multiple metrics of both antioxidant defences and oxidative damage: molecular antioxidants GSH, GSSG; antioxidant enzymes GPX, SOD, CAT; total non-enzymatic antioxidant capacity and damage markers protein carbonyls and TBARS. Light exposed nestlings showed no increase in body mass, in contrast to unexposed individuals. None of the metrics of oxidative status were affected. Nonetheless, our study provides experimental field evidence that ALAN may negatively affect free-living nestlings’ development and hence may have adverse consequences lasting throughout adulthood. PMID:27759087
High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures
NASA Astrophysics Data System (ADS)
Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor
2015-04-01
Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.
Moustafa, Passant E; Abdelkader, Noha F; El Awdan, Sally A; El-Shabrawy, Osama A; Zaki, Hala F
2018-04-27
The peripheral nervous system is one of many organ systems that can be profoundly impacted in diabetes mellitus. Diabetic peripheral neuropathy has a significant negative effect on patients' quality of life as it begins with loss of limbs' sensation and may result in lower limb amputation. This investigation aimed at exploring the effect of sulforaphane on peripheral neuropathy in diabetic rats. Experimental diabetes was induced through single intraperitoneal injections of nicotinamide (50 mg/kg) and streptozotocin (52.5 mg/kg). Rats were divided into five groups. Two groups were treated with saline or sulforaphane (1 mg/kg, p.o.). Three diabetic groups were either untreated or given sulforaphane (1 mg/kg, p.o.) or pregabalin (10 mg/kg, i.p.). Two weeks after drugs' administration, biochemical, behavioral, histopathological, and immunohistochemical investigations were carried out. Treatment with sulforaphane restored animals' body weight, reduced blood glucose, glycated hemoglobin, and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of tail flick test, increased the latency withdrawal time of cold allodynia test, and ameliorated histopathological changes. Treatment of sulforaphane, likewise, decreased sciatic nerve malondialdehyde, nitric oxide, interleukin-6, and matrix metalloproteinase-2 and -9 contents. Similarly, it reduced sciatic nerve DNA fragmentation and expression of cyclooxygenase-2 and nuclear factor kappa-B p65. Meanwhile, it increased sciatic nerve superoxide dismutase and interleukin-10 contents. These results reveal the neuroprotective effect of sulforaphane against peripheral neuropathy in diabetic rats possibly through modulating oxidative stress, inflammation, and extracellular matrix remodeling. Graphical Abstract Diagram that illustrates the effects of sulforaphane in treating experimental diabetic peripheral neuropathy. In NA-STZ model of diabetes mellitus, sulforaphane, restored animals' body weight, reduced blood glucose, glycated hemoglobin and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of tail flick test, increased the latency withdrawal time of cold allodynia test and ameliorated histopathological changes. Treatment of sulforaphane, likewise, decreased sciatic nerve malondialdehyde, nitric oxide, interleukin-6, matrix metalloproteinase-2 and -9 contents. Similarly, it reduced sciatic nerve DNA fragmentation and expression of cyclooxygenase-2 and nuclear factor kappa-B p65. Meanwhile, it increased sciatic nerve superoxide dismutase and interleukin-10 contents.
Permeability of DOPC bilayers under photoinduced oxidation: Sensitivity to photosensitizer.
Bacellar, Isabel O L; Baptista, Mauricio S; Junqueira, Helena C; Wainwright, Mark; Thalmann, Fabrice; Marques, Carlos M; Schroder, André P
2018-06-07
The modification of lipid bilayer permeability is one of the most striking yet poorly understood physical transformations that follow photoinduced lipid oxidation. We have recently proposed that the increase of permeability of photooxidized 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers is controlled by the time required by the oxidized lipid species to diffuse and aggregate into pores. Here we further probe this mechanism by studying photosensitization of DOPC membranes by methylene blue (MB) and DO15, a more hydrophobic phenothiazinium photosensitizer, under different irradiation powers. Our results not only reveal the interplay between the production rate and the diffusion of the oxidized lipids, but highlight also the importance of photosensitizer localization in the kinetics of oxidized membrane permeability. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wang, Yan-Rong; Yang, Hong; Xu, Hao; Wang, Xiao-Lei; Luo, Wei-Chun; Qi, Lu-Wei; Zhang, Shu-Xiang; Wang, Wen-Wu; Yan, Jiang; Zhu, Hui-Long; Zhao, Chao; Chen, Da-Peng; Ye, Tian-Chun
2015-11-01
A multi-deposition multi-annealing technique (MDMA) is introduced into the process of high-k/metal gate MOSFET for the gate last process to effectively reduce the gate leakage and improve the device’s performance. In this paper, we systematically investigate the electrical parameters and the time-dependent dielectric breakdown (TDDB) characteristics of positive channel metal oxide semiconductor (PMOS) under different MDMA process conditions, including the deposition/annealing (D&A) cycles, the D&A time, and the total annealing time. The results show that the increases of the number of D&A cycles (from 1 to 2) and D&A time (from 15 s to 30 s) can contribute to the results that the gate leakage current decreases by about one order of magnitude and that the time to fail (TTF) at 63.2% increases by about several times. However, too many D&A cycles (such as 4 cycles) make the equivalent oxide thickness (EOT) increase by about 1 Å and the TTF of PMOS worsen. Moreover, different D&A times and numbers of D&A cycles induce different breakdown mechanisms. Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601) and the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129).
Nagase, Midori; Yamamoto, Yorihiro; Miyazaki, Yusuke; Yoshino, Hiide
2016-05-01
Compared to age-matched healthy controls (n = 55), patients with amyotrophic lateral sclerosis (ALS) (n = 26) showed increased oxidative stress as indicated by a significantly increased percentage of oxidized coenzyme Q10 (%CoQ10) in total plasma coenzyme Q10, a significantly decreased level of plasma uric acid, and a significantly decreased percentage of polyunsaturated fatty acids in total plasma free fatty acids (FFA). Therefore, the efficacy of edaravone, a radical scavenger, in these ALS patients was examined. Among 26 ALS patients, 17 received edaravone (30 mg/day, one to four times a week) for at least 3 months, and 13 continued for 6 months. Changes in revised ALS functional rating scale (ALSFRS-R) were significantly smaller in these patients than in edaravone-untreated ALS patients (n = 19). Edaravone administration significantly reduced excursions of more than one standard deviation from the mean for plasma FFA levels and the contents of palmitoleic and oleic acids, plasma markers of tissue oxidative damage, in the satisfactory progress group (ΔALSFRS-R ≥ 0) as compared to the ingravescent group (ΔALSFRS-R < -5). Edaravone treatment increased plasma uric acid, suggesting that it is an effective scavenger of peroxynitrite. However, edaravone administration did not decrease %CoQ10. Therefore, combined treatment with agents such as coenzyme Q10 may further reduce oxidative stress in ALS patients.
Effect of H2O and CO2 on The Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dryepondt, Sebastien N; Rouaix-Vande Put, Aurelie; Pint, Bruce A
Cyclic oxidation testing was conducted on alloy MA956 and two different batches of alloy PM2000 at 1100 and 1200 C in different atmospheres rich in O2, H2O and CO2. Compare to 1h cycle in dry O2, exposure in air + 10 vol.% H2O resulted in an increase of the oxidation rate and a decrease of the time to breakaway for both alloys at 1200 C, and a faster consumption of Al in the MA956 alloy. 1h cyclic testing in 50%CO2/50%H2O+0.75% O2 had less of an impact on the oxidation rate but led to an increased formation of voids for alloymore » MA956, which had an impact on the alloy creep resistance. At 1100 C, exposure in 50%CO2/50%H2O resulted in significant oxide spallation compared with oxidation in air, but it was not the case when 0.75% O2 was added to the CO2/H2O mixture as a buffer. The control of impurities levels drastically improved the PM2000 oxidation resistance.« less
Effect of H2O and CO2 on The Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dryepondt, Sebastien N; Pint, Bruce A; Rouaix-Vande Put, Aurelie
Cyclic oxidation testing was conducted on alloy MA956 and two different batches of alloy PM2000 at 1100 and 1200 C in different atmospheres rich in O2, H2O and CO2. Compared to 1h cycles in dry O2, exposure in air+10 vol.% H2O resulted in an increase of the oxidation rate and a decrease of the time to breakaway for all alloys at 1200 C, and a faster consumption of Al in the MA956 alloy. One hour cyclic testing in 49.25%CO2+50%H2O+0.75% O2 had a smaller effect on the oxidation rate but led to increased formation of voids in alloy MA956, which hadmore » an impact on the alloy creep resistance. At 1100 C, exposure in 50%CO2+50%H2O resulted in significant oxide spallation compared with oxidation in air, but this was not the case when 0.75% O2 was added to the CO2/H2O mixture as a buffer. The control of impurity levels drastically improved the oxidation resistance of PM2000.« less
Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Lewandowski, Paul A; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S
2016-09-01
Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring. Copyright © 2016 the American Physiological Society.
Watkins, Deborah J; Ferguson, Kelly K; Anzalota Del Toro, Liza V; Alshawabkeh, Akram N; Cordero, José F; Meeker, John D
2015-03-01
Phenols and parabens are used in a multitude of consumer products resulting in ubiquitous human exposure. Animal and in vitro studies suggest that exposure to these compounds may be related to a number of adverse health outcomes, as well as potential mediators such as oxidative stress and inflammation. We examined urinary phenol (bisphenol A (BPA), triclosan (TCS), benzophenone-3 (BP-3), 2,4-dichlorophenol (24-DCP), 2,5-dichlorophenol (25-DCP)) and paraben (butyl paraben (B-PB), methyl paraben (M-PB), propyl paraben (P-PB)) concentrations measured three times during pregnancy in relation to markers of oxidative stress and inflammation among participants in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) project. Serum markers of inflammation (c-reactive protein (CRP), IL-1β, IL-6, IL-10, and tumor necrosis factor-α (TNF-α)) were measured twice during pregnancy (n=105 subjects, 187 measurements) and urinary markers of oxidative stress (8-hydroxydeoxyguanosine (OHdG) and isoprostane) were measured three times during pregnancy (n=54 subjects, 146 measurements). We used linear mixed models to assess relationships between natural log-transformed exposure and outcome biomarkers while accounting for within individual correlation across study visits. After adjustment for urinary specific gravity, study visit, maternal pre-pregnancy BMI, and maternal education, an interquartile range (IQR) increase in urinary BPA was associated with 21% higher OHdG (p=0.001) and 29% higher isoprostane (p=0.0002), indicating increased oxidative stress. The adjusted increase in isoprostane per IQR increase in marker of exposure was 17% for BP-3, 27% for B-PB, and 20% for P-PB (all p<0.05). An IQR increase in triclosan (TCS) was associated with 31% higher serum concentrations of IL-6 (p=0.007), a pro-inflammatory cytokine. In contrast, IQR increases in BP-3 and B-PB were significantly associated with 16% and 18% lower CRP, a measure of systemic inflammation. Our findings suggest that exposure to BPA, select parabens, and TCS during pregnancy may be related to oxidative stress and inflammation, potential mechanisms by which exposure to these compounds may influence birth outcomes and other adverse health effects, but additional research is needed. Copyright © 2014 Elsevier GmbH. All rights reserved.
Watkins, Deborah J.; Ferguson, Kelly K.; Toro, Liza V. Anzalota Del; Alshawabkeh, Akram N.; Cordero, José F.; Meeker, John D.
2014-01-01
Phenols and parabens are used in a multitude of consumer products resulting in ubiquitous human exposure. Animal and in vitro studies suggest that exposure to these compounds may be related to a number of adverse health outcomes, as well as potential mediators such as oxidative stress and inflammation. We examined urinary phenol (bisphenol A (BPA), triclosan (TCS), benzophenone-3 (BP-3), 2,4-dichlorophenol (24-DCP), 2,5-dichlorophenol (25-DCP)) and paraben (butyl paraben (B-PB), methyl paraben (M-PB), propyl paraben (P-PB)) concentrations measured three times during pregnancy in relation to markers of oxidative stress and inflammation among participants in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) project. Serum markers of inflammation (c-reactive protein (CRP), IL-1β, IL-6, IL-10, and tumor necrosis factor-α (TNF-α)) were measured twice during pregnancy (n=105 subjects, 187 measurements) and urinary markers of oxidative stress (8-hydroxydeoxyguanosine (OHdG) and isoprostane) were measured three times during pregnancy (n=54 subjects, 146 measurements). We used linear mixed models to assess relationships between natural log-transformed exposure and outcome biomarkers while accounting for within individual correlation across study visits. After adjustment for urinary specific gravity, study visit, maternal pre-pregnancy BMI, and maternal education, an interquartile range (IQR) increase in urinary BPA was associated with 21% higher OHdG (p=0.001) and 29% higher isoprostane (p=0.0002), indicating increased oxidative stress. The adjusted increase in isoprostane per IQR increase in marker of exposure was 17% for BP-3, 27% for B-PB, and 20% for P-PB (all p<0.05). An IQR increase in triclosan (TCS) was associated with 31% higher serum concentrations of IL-6 (p=0.007), a pro-inflammatory cytokine. In contrast, IQR increases in BP-3 and B-PB were significantly associated with 16% and 18% lower CRP, a measure of systemic inflammation. Our findings suggest that exposure to BPA, select parabens, and TCS during pregnancy may be related to oxidative stress and inflammation, potential mechanisms by which exposure to these compounds may influence birth outcomes and other adverse health effects, but additional research is needed. PMID:25435060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drechsel, Derek A.; Liang, L.-P.; Patel, Manisha
2007-05-01
Decreased glutathione levels associated with increased oxidative stress are a hallmark of numerous neurodegenerative diseases, including Parkinson's disease. GSH is an important molecule that serves as an anti-oxidant and is also a major determinant of cellular redox environment. Previous studies have demonstrated that neurotoxins can cause changes in reduced and oxidized GSH levels; however, information regarding steady state levels remains unexplored. The goal of this study was to characterize changes in cellular GSH levels and its regulatory enzymes in a dopaminergic cell line (N27) following treatment with the Parkinsonian toxin, 1-methyl-4-phenylpyridinium (MPP{sup +}). Cellular GSH levels were initially significantly decreasedmore » 12 h after treatment, but subsequently recovered to values greater than controls by 24 h. However, oxidized glutathione (GSSG) levels were increased 24 h following treatment, concomitant with a decrease in GSH/GSSG ratio prior to cell death. In accordance with these changes, ROS levels were also increased, confirming the presence of oxidative stress. Decreased enzymatic activities of glutathione reductase and glutamate-cysteine ligase by 20-25% were observed at early time points and partly account for changes in GSH levels after MPP{sup +} exposure. Additionally, glutathione peroxidase activity was increased 24 h following treatment. MPP{sup +} treatment was not associated with increased efflux of glutathione to the medium. These data further elucidate the mechanisms underlying GSH depletion in response to the Parkinsonian toxin, MPP{sup +}.« less
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2015-10-13
Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect.
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2015-01-01
Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect. PMID:26458509
SATB2 participates in regulation of menadione-induced apoptotic insults to osteoblasts.
Wei, Jyh-Ding; Lin, Yi-Ling; Tsai, Cheng-Hsiu; Shieh, Hui-Shan; Lin, Pei-I; Ho, Wei-Pin; Chen, Ruei-Ming
2012-07-01
Special AT-rich sequence binding protein 2 (SATB2), a nuclear matrix attachment region-binding protein, can regulate embryonic development, cell differentiation, and cell survival. Previous studies showed that SATB2 is involved in osteoblast differentiation and skeletal development. In this study, we evaluated the role of SATB2 in oxidative stress-induced apoptotic insults to human osteoblast-like MG63 cells and mouse MC3T3-E1 cells. Exposure of MG63 cells to menadione increased intracellular reactive oxygen species levels in a concentration- and time-dependent manner. Simultaneously, menadione-induced oxidative stress triggered cell shrinkage and decreased cell viability. In addition, treatment of MG63 cells with menadione time-dependently decreased the mitochondrial membrane potential but enhanced caspase-3 activity. As a result, menadione-induced DNA fragmentation and cell apoptosis. As to the mechanism, exposure of MG63 cells to menadione amplified SATB2 messenger (m)RNA and protein expression in a time-dependent manner. Knockdown of translation of SATB2 mRNA using RNA interference led to chromatin disruption and nuclear damage. When MG63 cells and MC3T3-E1 cells were treated with SATB2 small interfering RNA, menadione-induced cell apoptosis was increased. We conclude that menadione causes oxidative stress in human osteoblasts and induces cellular apoptosis via a mitochondrion-caspase protease pathway. In addition, SATB2 may play a crucial role in protecting against oxidative stress-induced osteoblast apoptosis. Copyright © 2012 Orthopaedic Research Society.
Díaz-Castro, Javier; Florido, Jesus; Kajarabille, Naroa; Prados, Sonia; de Paco, Catalina; Ocon, Olga; Pulido-Moran, Mario; Ochoa, Julio J
2015-01-01
The objective of the current study was to investigate for the first time and simultaneously the oxidative stress and inflammatory signaling induced during the delivery in healthy mothers and their neonates. 56 mothers with normal gestational course and spontaneous delivery were selected. Blood samples were taken from mother (before and after delivery) both from vein and artery of umbilical cord. Lower antioxidant enzymes activities were observed in neonates compared with their mothers and lower oxidative stress in umbilical cord artery with respect to vein. There was an overexpression of inflammatory cytokines in the mother, such as IL-6 and TNF-α, and, in addition, PGE2 was also increased. Neonates showed lower levels of IL-6 and TNF-α and higher values of sTNF-RII and PGE2 in comparison with their mothers. Parturition increases oxidative damage in the mother, although the indicators of oxidative damage were lower in umbilical cord artery with respect to umbilical vein. The overexpression of inflammatory cytokines reveals that fetus suffers its own inflammatory process during parturition.
Díaz-Castro, Javier; Florido, Jesus; Prados, Sonia; de Paco, Catalina; Ocon, Olga; Pulido-Moran, Mario; Ochoa, Julio J.
2015-01-01
The objective of the current study was to investigate for the first time and simultaneously the oxidative stress and inflammatory signaling induced during the delivery in healthy mothers and their neonates. 56 mothers with normal gestational course and spontaneous delivery were selected. Blood samples were taken from mother (before and after delivery) both from vein and artery of umbilical cord. Lower antioxidant enzymes activities were observed in neonates compared with their mothers and lower oxidative stress in umbilical cord artery with respect to vein. There was an overexpression of inflammatory cytokines in the mother, such as IL-6 and TNF-α, and, in addition, PGE2 was also increased. Neonates showed lower levels of IL-6 and TNF-α and higher values of sTNF-RII and PGE2 in comparison with their mothers. Parturition increases oxidative damage in the mother, although the indicators of oxidative damage were lower in umbilical cord artery with respect to umbilical vein. The overexpression of inflammatory cytokines reveals that fetus suffers its own inflammatory process during parturition. PMID:25722791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawase, Kazumasa; Uehara, Yasushi; Teramoto, Akinobu
Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) were treated with oxygen radical oxidation using Ar/O{sub 2} plasma excited by microwave. The mass density depth profiles, carrier trap densities, and current-voltage characteristics of the radical-oxidized CVD-SiO{sub 2} films were investigated. The mass density depth profiles were estimated with x ray reflectivity measurement using synchrotron radiation of SPring-8. The carrier trap densities were estimated with x ray photoelectron spectroscopy time-dependent measurement. The mass densities of the radical-oxidized CVD-SiO{sub 2} films were increased near the SiO{sub 2} surface. The densities of the carrier trap centers in these films weremore » decreased. The leakage currents of the metal-oxide-semiconductor capacitors fabricated by using these films were reduced. It is probable that the insulation properties of the CVD-SiO{sub 2} film are improved by the increase in the mass density and the decrease in the carrier trap density caused by the restoration of the Si-O network with the radical oxidation.« less
Xi, Jing-Ru; Liu, Su-Qin; Li, Lin; Liu, Jun-Xin
2014-12-01
The greenhouse effect of methane is 26 times worse than that of carbon dioxide, and wastewater containing high concentrations of sulfate is harmful to water, soil and plants. Therefore, anaerobic oxidation of methane driven by sulfate is one of the effective ways for methane reduction. In this paper, with sulfate as the electron accepter, a microbial consortium capable of oxidating methane under anaerobic condition was cultured. The diversity and characteristics of bacterial and archaeal community were investigated by PCR-DGGE, and phylogenetic analysis of the dominant microorganisms was also carried out. The DGGE fingerprints showed that microbial community structure changed distinctly, and the abundance of methane-oxidizing archea and sulfate-reducing bacteria increased in the acclimatization system added sulfate. After acclimatization, the bacterial diversity increased, while archaea diversity decreased slightly. The representative bands in the DGGE profiles were excised and sequenced. Results indicated that the dominant species in the acclimatization system were Spirochaetes, Desulfuromonadales, Methanosarcinales, Methanosaeta. Methane converted into carbon dioxide while sulfate transformed into hydrogen sulfide and sulfur in the process of anaerobic methane oxidation accompanied by sulphate reduction.
Active and widespread halogen chemistry in the tropical and subtropical free troposphere
Wang, Siyuan; Schmidt, Johan A.; Baidar, Sunil; ...
2015-06-29
Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O 3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O 3 and methane (CH 4) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10°N to 40°S), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric Omore » 3. The observed BrO concentrations increase strongly with altitude (~3.4 pptv at 13.5 km), and are 2–4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5–6.4 pptv total inorganic bromine (Br y), or model overestimated Bry wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Bry source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. Lastly, the halogen-catalyzed loss of tropospheric O 3 needs to be considered when estimating past and future ozone radiative effects.« less
Active and widespread halogen chemistry in the tropical and subtropical free troposphere
Wang, Siyuan; Schmidt, Johan A.; Baidar, Sunil; Coburn, Sean; Dix, Barbara; Koenig, Theodore K.; Apel, Eric; Bowdalo, Dene; Campos, Teresa L.; Eloranta, Ed; Evans, Mathew J.; DiGangi, Joshua P.; Zondlo, Mark A.; Gao, Ru-Shan; Haggerty, Julie A.; Hall, Samuel R.; Hornbrook, Rebecca S.; Jacob, Daniel; Morley, Bruce; Pierce, Bradley; Reeves, Mike; Romashkin, Pavel; ter Schure, Arnout; Volkamer, Rainer
2015-01-01
Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O3 and methane (CH4) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10°N to 40°S), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric O3. The observed BrO concentrations increase strongly with altitude (∼3.4 pptv at 13.5 km), and are 2–4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5–6.4 pptv total inorganic bromine (Bry), or model overestimated Bry wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Bry source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. The halogen-catalyzed loss of tropospheric O3 needs to be considered when estimating past and future ozone radiative effects. PMID:26124148
Galhano, Victor; Peixoto, Francisco; Gomes-Laranjo, José
2010-10-01
Rice fields are frequently exposed to environmental contamination by herbicides and cyanobacteria, as primary producers of these aquatic ecosystems, are adversely affected. Anabaena cylindrica is a cyanobacterium with a significantly widespread occurrence in Portuguese rice fields. This strain was studied throughout 72 h in laboratory conditions for its stress responses to sublethal concentrations (0.75-2 mM) of bentazon, a selective postemergence herbicide recommended for integrated weed management in rice, with special reference to oxidative stress, role of proline and intracellular antioxidant enzymes in herbicide-induced free radicals detoxification. Activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione S-transferase (GST) increased in a time- and herbicide dose-response manner and were higher than those in the control samples after 72 h. A time- and concentration-dependent increase of malondialdehyde (MDA) levels and the enhanced cell membrane leakage following bentazon exposure are indicative of lipid peroxidation, free radicals formation, and oxidative damage, while increased amounts of SOD, CAT, APX, GST, and proline indicated their involvement in free radical scavenging mechanisms. The appreciable decline in the reduced glutathione (GSH) pool after 72 h at higher bentazon concentrations could be explained by the reduction of the NADPH-dependent glutathione reductase (GR) activity. The obtained results suggested that the alterations of antioxidant systems in A. cylindrica might be useful biomarkers of bentazon exposure. As the toxic mechanism of bentazon is a complex phenomenon, this study also adds relevant findings to explain the oxidative stress pathways of bentazon promoting oxidative stress in cyanobacteria. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2010.
Active and widespread halogen chemistry in the tropical and subtropical free troposphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Siyuan; Schmidt, Johan A.; Baidar, Sunil
Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O 3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O 3 and methane (CH 4) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10°N to 40°S), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric Omore » 3. The observed BrO concentrations increase strongly with altitude (~3.4 pptv at 13.5 km), and are 2–4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5–6.4 pptv total inorganic bromine (Br y), or model overestimated Bry wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Bry source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. Lastly, the halogen-catalyzed loss of tropospheric O 3 needs to be considered when estimating past and future ozone radiative effects.« less
Singh, Prabhat K; Kumbhakar, Manoj; Pal, Haridas; Nath, Sukhendu
2008-07-03
Effect of electrostatic interaction on the location of a solubilized molecular probe with ionic character in a supramolecular assembly composed of a triblock copolymer, P123 ((ethylene oxide) 20-(propylene oxide) 70-(ethylene oxide) 20) and a cosurfactant cetyltrimethylammonium chloride (CTAC) in aqueous medium has been studied using steady-state and time-resolved fluorescence measurements. Coumarin-343 dye in its anionic form has been used as the molecular probe. In the absence of the surfactant, CTAC, the probe C343 prefers to reside at the surface region of the P123 micelle, showing a relatively less dynamic Stokes' shift, as a large part of the Stokes' shift is missed in the present measurements due to faster solvent relaxation at micellar surface region. As the concentration of CTAC is increased in the solution, the percentage of the total dynamic Stokes' shift observed from time-resolved measurements gradually increases until it reaches a saturation value. Observed results have been rationalized on the basis of the mixed micellar structure of the supramolecular assembly, where the hydrocarbon chain of the CTAC surfactant dissolves into the nonpolar poly(propylene oxide) (PPO) core of the P123 micelle and the positively charged headgroup of CTAC resides at the interfacial region between the central PPO core and the surrounding hydrated poly(ethylene oxide) (PEO) shell or the corona region. The electrostatic attraction between the anionic probe molecule and the positively charged surface of the PPO core developed by the presence of CTAC results in a gradual shift of the probe in the deeper region of the micellar corona region with an increase in the CTAC concentration, as clearly manifested from the solvation dynamics results.
Antón, Ricardo López; González, Juan A.; Andrés, Juan P.; Normile, Peter S.; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M.; De Toro, José A.
2017-01-01
Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved. PMID:28336895
Antón, Ricardo López; González, Juan A; Andrés, Juan P; Normile, Peter S; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M; De Toro, José A
2017-03-11
Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved.
NASA Astrophysics Data System (ADS)
Yan, Huiru; Jia, Haihong; Wang, Xiuling; Gao, Hongru; Guo, Xingqi; Xu, Baohua
2013-02-01
Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee ( Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5'-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees.
Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces
Wang, Yingge; Michel, F. Marc; Choi, Yongseong; ...
2016-05-09
Here, mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) ( 0.0004%) between Elliott Soil Humic Acid (ESHA) coatings andmore » three model single-crystal metal-oxide substrates: α-Al 2O 3 (0 0 0 1), α-Al 2O 3 (1 1 0 2), and α-Fe 2O 3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al 2O 3 (1 1 0 2) and α-Fe 2O 3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe 2O 3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time).« less
Casasole, Giulia; Raap, Thomas; Costantini, David; AbdElgawad, Hamada; Asard, Han; Pinxten, Rianne; Eens, Marcel
2017-08-01
Increasing urbanization is responsible for road-related pollutants and causes an unprecedented increase in light and noise pollution, with potential detrimental effects for individual animals, communities and ecosystems. These stressors rarely act in isolation but studies dissecting the effects of these multiple stressors are lacking. Moreover, studies on urban stressors have mainly focused on adults, while exposure in early-life may be detrimental but is largely ignored. To fill this important knowledge gap, we studied if artificial light at night, anthropogenic noise and road-related pollution (using distance from roads as a proxy) explain variation in oxidative status in great tit nestlings (Parus major) in an urban population. Artificial light at night, anthropogenic noise and distance from roads were not associated with variation of the nine studied metrics of oxidative status (superoxide dismutase-SOD-, glutathione peroxidase-GPX, catalase-CAT-, non-enzymatic total antioxidant capacity-TAC-, reduced glutathione-GSH-, oxidized glutathione-GSSG-, ratio GSH/GSSG, protein carbonyls and thiobarbituric acid reactive substances-TBARS). Interestingly, for all oxidative status metrics, we found that there was more variation in oxidative status among individuals of the same nest compared to between different nests. We also showed an increase in protein carbonyls and a decrease of the ratio GSH/GSSG as the day advanced, and an increase of GPX when weather conditions deteriorated. Our study suggests that anthropogenic noise, artificial light at night and road-related pollution are not the most important sources of variation in oxidative status in great tit nestlings. It also highlights the importance of considering bleeding time and weather conditions in studies with free-living animals. Copyright © 2017. Published by Elsevier Inc.
Sarmiento, Alvaro; Diaz-Castro, Javier; Pulido-Moran, Mario; Moreno-Fernandez, Jorge; Kajarabille, Naroa; Chirosa, Ignacio; Guisado, Isabel M; Javier Chirosa, Luis; Guisado, Rafael; Ochoa, Julio J
2016-11-12
Studies about Coenzyme Q 10 (CoQ 10 ) supplementation on strenuous exercise are scarce, especially those related with oxidative stress associated with physical activity and virtually nonexistent with the reduced form, Ubiquinol. The objective of this study was to determine, for the first time, whether a short-term supplementation with Ubiquinol can prevent oxidative stress associated to strenuous exercise. The participants (n = 100 healthy and well trained, but not on an elite level) were classified in two groups: Ubiquinol (experimental group), and placebo group (control). The protocol consisted of conducting two identical strenuous exercise tests with a rest period between tests of 24 h. Blood and urine samples were collected from the participants before supplementation (basal value) (T1), after supplementation (2 weeks) (T2), after first physical exercise test (T3), after 24 h of rest (T4), and after second physical exercise test (T5).The increase observed in the lactate, isoprostanes, DNA damage, and hydroperoxide levels reveals the severity of the oxidative damage induced by the exercise. There was a reduction in the isoprostanes, 8-OHdG, oxidized LDL, and hydroperoxydes in the supplemented Ubiquinol group, an increase in total antioxidant status, fat soluble antioxidant (both plasma and membrane), and CAT activity. Also, NO in the Ubiquinol-supplemented group was maintained within a narrow range. Oxidative stress induced by strenuous exercise is accumulative and increases transiently in subsequent sessions of physical activity. A short-term supplementation (2 weeks) with Ubiquinol (200 mg/day) before strenuous exercise, decreases oxidative stress and increases plasma NO, fact that could improve endothelial function, energetic substrate supply, and muscle recovery after strenuous exercise. © 2016 BioFactors, 42(6):612-622, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Association of military training with oxidative stress and overreaching.
Tanskanen, Minna M; Uusitalo, Arja L; Kinnunen, Hannu; Häkkinen, Keijo; Kyröläinen, Heikki; Atalay, Mustafa
2011-08-01
We hypothesized that increased oxidative stress and disrupted redox balance may be predisposing factors and markers for overreaching (OR). The study's purpose was to examine whether oxidative stress markers and antioxidant status and physical fitness are related to OR during an 8-wk military basic training (BT) period. Oxidative stress and antioxidant status were evaluated in the beginning and after 4 and 7 wk of training in 35 males (age = 19.7 ± 0.3 yr) at rest and immediately after a 45-min submaximal exercise. Physical activity (PA) was monitored by an accelerometer throughout BT. Indicators of OR were also examined. From baseline to week 4, increased daytime moderate to vigorous PA led to concomitant decreases in the ratio of oxidized to total glutathione (GSSG/TGSH) and GSSG. After 4 wk of BT, GSSG/TGSH and GSSG returned to the baseline values at rest, whereas PA remained unchanged. At every time point, acute exercise decreased TGSH and increased GSSG and GSSG/TGSH, whereas a decrease was observed in antioxidant capacity after 4 wk of training. In the beginning of BT, OR subjects (11 of the 35 males) had higher GSSG, GSSG/TGSH, and malondialdehyde (a marker of lipid peroxidation) at rest (P < 0.01-0.05) and lower response of GSSG and GSSG/TGSH ratio (P < 0.01) to exercise than non-OR subjects. Moreover, OR subjects had higher PA during BT than non-OR (P < 0.05). The sustained training load during the last 4 wk of BT led to oxidative stress observable both at rest and after submaximal exercise. Increased oxidative stress may be a marker of insufficient recovery leading possibly to OR.
Li, Yang; Li, Lei; Chen, Zi-Xi; Zhang, Jie; Gong, Li; Wang, Yi-Xuan; Zhao, Han-Qing; Mu, Yang
2018-02-01
Advanced oxidation processes offer effective solutions in treating wastewater from various industries. This study is the first time to investigate the potential of carbonate-activated hydrogen peroxide (CAP) oxidation process for the removal of organic pollutant from highly alkaline wastewaters. Azo dye acid orange 7 (AO7) was selected as a model pollutant. The influences of various parameters on AO7 decolorization by the CAP oxidation were evaluated. Furthermore, the active species involved in AO7 degradation were explored using scavenger experiments and electron spin resonance analysis. Additionally, AO7 degradation products by the CAP oxidation were identified to elucidate possible transformation pathways. Results showed that the CAP oxidation had better AO7 decolorization performance compared to bicarbonate-activated hydrogen peroxide method. The AO7 decolorization efficiency augmented from 3.70 ± 0.76% to 54.27 ± 2.65% when carbonate concentration was increased from 0 to 50 mM at pH 13.0, and then changed slightly with further increasing carbonate concentration to 70 mM. It increased almost linearly from 5.95 ± 0.32% to 94.03 ± 0.39% as H 2 O 2 concentration was increased from 5 to 50 mM. Moreover, trace amount of Co(II) could facilitate AO7 decolorization by the CAP reaction. Superoxide and carbonate radicals might be the main reactive oxygen species involved in the CAP process. Finally, a possible degradation pathway of AO7 by the CAP oxidation was proposed based on the identified products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Muguruma, Masako; Nishimura, Jihei; Jin, Meilan; Kashida, Yoko; Moto, Mitsuyoshi; Takahashi, Miwa; Yokouchi, Yusuke; Mitsumori, Kunitoshi
2006-12-07
Piperonyl butoxide (PBO), alpha-[2-(2-butoxyethoxy)ethoxy]-4,5-methylene-dioxy-2-propyltoluene, is widely used as a synergist for pyrethrins. In order to clarify the possible mechanism of non-genotoxic hepatocarcinogenesis induced by PBO, molecular pathological analyses consisting of low-density microarray analysis and real-time reverse transcriptase (RT)-PCR were performed in male ICR mice fed a basal powdered diet containing 6000 or 0 ppm PBO for 1, 4, or 8 weeks. The animals were sacrificed at weeks 1, 4, and 8, and the livers were histopathologically examined and analyzed for gene expression using the microarray at weeks 1 and 4 followed by real-time RT-PCR at each time point. Reactive oxygen species (ROS) products were also measured using liver microsomes. At each time point, the hepatocytes of PBO-treated mice showed centrilobular hypertrophy and increased lipofuscin deposition in Schmorl staining. The ROS products were significantly increased in the liver microsomes of PBO-treated mice. In the microarray analysis, the expression of oxidative and metabolic stress-related genes--cytochrome P450 (Cyp) 1A1, Cyp2A5 (week 1 only), Cyp2B9, Cyp2B10, and NADPH-cytochrome P450 oxidoreductase (Por) was over-expressed in mice given PBO at weeks 1 and 4. Fluctuations of these genes were confirmed by real-time RT-PCR in PBO-treated mice at each time point. In additional real-time RT-PCR, the expression of Cyclin D1 gene, key regulator of cell-cycle progression, and Xrcc5 gene, DNA damage repair-related gene, was significantly increased at each time point and at week 8, respectively. These results suggest the possibility that PBO has the potential to generate ROS via the metabolic pathway and to induce oxidative stress, including oxidative DNA damage, resulting in the induction of hepatocellular tumors in mice.
NASA Astrophysics Data System (ADS)
Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan
2018-01-01
The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.
The transient oxidation of single crystal NiAl+Zr. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Doychak, J. K.
1983-01-01
The 800 C oxidation of oriented single crystals of Zr doped beta-NiAl was studied using transmission electron microscopy. The oxide phases and metal-oxide orientation relationships were determined to characterize the transient stages of oxidation prior to the transformation to or formation of alpha-Al2O3. On (001) and (012) metal orientations, NiAl2O4 was the first oxide to form followed by delta-Al2O3 which becomes the predominant oxide phase. All oxides were highly epitaxially related to the metal; the orientation relationships being function of parallel cation close-packed directions in the meta and oxide. On (011) and (111) metal orientations, gamma-Al2O3 became the predominant oxide phase rather than delta-Al2O3, indicating a structural stability from the highly epitaxial oxides. The relative concentration of aluminum in the oxide scales increased with time indicating preferential gamma-or delta-Al2O3 growth. The striking feature common to the orientation relationships is the alignment of 100 m and 110 ox directions, believed to result from the minimal 3 percent mismatch between the corresponding (100)m and (110)ox planes.
NASA Astrophysics Data System (ADS)
Langmuir, C. H.
2014-12-01
The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized material, and oxygen could rise. Once the ocean becomes fully oxidized, a substantial subduction flux operates as a negative feedback. Plate tectonic geochemical cycles may have played a very significant role in the oxygen balance in both the ancient and modern Earth.
Dietary moderately oxidized oil activates the Nrf2 signaling pathway in the liver of pigs.
Varady, Juliane; Gessner, Denise K; Most, Erika; Eder, Klaus; Ringseis, Robert
2012-02-24
Previous studies have shown that administration of oxidized oils increases gene expression and activities of various enzymes involved in xenobiotic metabolism and stress response in the liver of rats and guinea pigs. As these genes are controlled by nuclear factor erythroid-derived 2-like 2 (Nrf2), we investigated the hypothesis that feeding of oxidized fats causes an activation of that transcription factor in the liver which in turn activates the expression of antioxidant, cytoprotective and detoxifying genes. Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil (fresh fat group) or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h (oxidized fat group). After 29 days of feeding, pigs of the oxidized fat group had a markedly increased nuclear concentration of the transcription factor Nrf2 and a higher activity of cellular superoxide dismutase and T4-UDP glucuronosyltransferase in liver than the fresh fat group (P < 0.05). In addition, transcript levels of antioxidant and phase II genes in liver, like superoxide dismutase 1, heme oxygenase 1, glutathione peroxidase 1, thioredoxin reductase 1, microsomal glutathione-S-transferase 1, UDP glucuronosyltransferase 1A1 and NAD(P)H:quinone oxidoreductase 1 in the liver were higher in the oxidized fat group than in the fresh fat group (P < 0.05). Moreover, pigs of the oxidized fat group had an increased hepatic nuclear concentration of the transcription factor NF-κB which is also an important transcription factor mediating cellular stress response. The present study shows for the first time that administration of an oxidized fat activates the Nrf2 in the liver of pigs which likely reflects an adaptive mechanism to prevent cellular oxidative damage. Activation of the NF-κB pathway might also contribute to this effect of oxidized fat.
Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary
2016-01-01
Key points Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress.The objective of this study was to assess vascular response to flow‐induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS‐fed rats in vitro.The novelty of this study is in demonstrating impaired flow‐induced dilatation of MCAs and down‐regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID.In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake.Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. Abstract The aim of this study was to determine flow‐induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)‐fed rats. Healthy male Sprague‐Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10–Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N ω‐nitro‐l‐arginine methyl ester (l‐name). mRNA levels of antioxidative enzymes, NAPDH‐oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real‐time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values. PMID:27061200
Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary; Drenjancevic, Ines
2016-09-01
Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Abbott, Marcia J; Bogachus, Lindsey D; Turcotte, Lorraine P
2011-07-01
AMP-activated protein kinase (AMPK) is a fuel sensor in skeletal muscle with multiple downstream signaling targets that may be triggered by increases in intracellular Ca(2+) concentration ([Ca(2+)]). The purpose of this study was to determine whether increases in intracellular [Ca(2+)] induced by caffeine act solely via AMPKα(2) and whether AMPKα(2) is essential to increase glucose uptake, fatty acid (FA) uptake, and FA oxidation in contracting skeletal muscle. Hindlimbs from wild-type (WT) or AMPKα(2) dominant-negative (DN) transgene mice were perfused during rest (n = 11), treatment with 3 mM caffeine (n = 10), or muscle contraction (n = 11). Time-dependent effects on glucose and FA uptake were uncovered throughout the 20-min muscle contraction perfusion period (P < 0.05). Glucose uptake rates did not increase in DN mice during muscle contraction until the last 5 min of the protocol (P < 0.05). FA uptake rates were elevated at the onset of muscle contraction and diminished by the end of the protocol in DN mice (P < 0.05). FA oxidation rates were abolished in the DN mice during muscle contraction (P < 0.05). The DN transgene had no effect on caffeine-induced FA uptake and oxidation (P > 0.05). Glucose uptake rates were blunted in caffeine-treated DN mice (P < 0.05). The DN transgene resulted in a greater use of intramuscular triglycerides as a fuel source during muscle contraction. The DN transgene did not alter caffeine- or contraction-mediated changes in the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase I or ERK1/2 (P > 0.05). These data suggest that AMPKα(2) is involved in the regulation of substrate uptake in a time-dependent manner in contracting muscle but is not necessary for regulation of FA uptake and oxidation during caffeine treatment.
Torigoe, Akira; Sato, Emiko; Mori, Takefumi; Ieiri, Norio; Takahashi, Chika; Ishida, Yoko; Hotta, Osamu; Ito, Sadayoshi
2016-10-01
Introduction Oxidative stress is one of the main mediators of progression of chronic kidney diseases (CKD). Nuclear factor E2-related factor 2 (Nrf2) is the transcription factor of antioxidant and detoxifying enzymes and related proteins which play an important role in cellular defense. Long-time hemodialysis (HD) therapy (8 hours) has been considered to be more beneficial compared to normal HD therapy (4 hours). We investigated oxidative response related to Nrf2 in peripheral blood mononuclear cells (PBMCs) of long-time HD and normal HD patients. Methods Eight adult long-time HD therapy patients (44.5 ± 3.0 years) and 10 normal HD therapy patients (68.1 ± 2.7 years) were enrolled. PBMCs were isolated and processed for expression of Nrf2 and its related genes by qRT-PCR. Plasma indoxyl sulfate, amino acids, and body constituents were measured. Findings Plasma indoxyl sulfate was significantly low after long-time HD therapy compare to that of normal HD therapy. Although, skeletal muscle mass, lean body mass, mineral and protein were significantly decreased 2 months in normal HD patients, those in long-time HD patients were significantly increased after 2 months. Almost of amino acids were significantly decreased after HD therapy in both HD therapies. Plasma amino acids were significantly low in long-time HD patients compared to normal HD patients. In PBMCs, the expression of Nrf2 was significantly decreased and hemooxygenase-1 expression was significantly increased in long-time HD compared to normal HD. Conclusion These observations indicate the beneficial effects of in long-time HD in improving oxidative stress in patients. © 2016 International Society for Hemodialysis.
Bacterial sulfur disproportionation constrains timing of neoproterozoic oxygenation
Kunzmann, Marcus; Bui, Thi Hao; Crockford, Peter W.; Halverson, Galen P.; Scott, Clinton T.; Lyons, Timothy W.; Wing, Boswell A.
2017-01-01
Various geochemical records suggest that atmospheric O2 increased in the Ediacaran (635–541 Ma), broadly coincident with the emergence and diversification of large animals and increasing marine ecosystem complexity. Furthermore, geochemical proxies indicate that seawater sulfate levels rose at this time too, which has been hypothesized to reflect increased sulfide oxidation in marine sediments caused by sediment mixing of the newly evolved macrofauna. However, the exact timing of oxygenation is not yet understood, and there are claims for significant oxygenation prior to the Ediacaran. Furthermore, recent evidence suggests that physical mixing of sediments did not become important until the late Silurian. Here we report a multiple sulfur isotope record from a ca. 835–630 Ma succession from Svalbard, further supported by data from Proterozoic strata in Canada, Australia, Russia, and the United States, in order to investigate the timing of oxygenation. We present isotopic evidence for onset of globally significant bacterial sulfur disproportionation and reoxidative sulfur cycling following the 635 Ma Marinoan glaciation. Widespread sulfide oxidation helps to explain the observed first-order increase in seawater sulfate concentration from the earliest Ediacaran to the Precambrian-Cambrian boundary by reducing the amount of sulfur buried as pyrite. Expansion of reoxidative sulfur cycling to a global scale also indicates increasing environmental O2 levels. Thus, our data suggest that increasing atmospheric O2 levels may have played a role in the emergence of the Ediacaran macrofauna and increasing marine ecosystem complexity.
Sun, Jing; Wang, Shaochuang; Zhao, Dong; Hun, Fei Han; Weng, Lei; Liu, Hui
2011-10-01
Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe(2)O(3)), iron(II,III) oxide (Fe(3)O(4)), magnesium oxide (MgO), aluminum oxide (Al(2)O(3)), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12-24 h and 0.001-100 μg/ml of exposure). The results indicated that Fe(2)O(3), Fe(3)O(4), and Al(2)O(3) NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time. © Springer Science+Business Media B.V. 2011
NASA Astrophysics Data System (ADS)
Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B.
2014-06-01
Recently, biosynthesis of nanoparticles has attracted scientists' attention because of the necessity to develop new clean, cost-effective and efficient synthesis techniques. In particular, metal oxide nanoparticles are receiving increasing attention in a large variety of applications. However, up to now, the reports on the biopreparation and characterization of nanocrystalline copper oxide are relatively few compared to some other metal oxides. In this paper, we report for the first time the use of brown alga ( Bifurcaria bifurcata) in the biosynthesis of copper oxide nanoparticles of dimensions 5-45 nm. The synthesized nanomaterial is characterized by UV-visible absorption spectroscopy and Fourier transform infrared spectrum analysis. X-ray diffraction confirms the formation and the crystalline nature of copper oxide nanomaterial. Further, these nanoparticles were found to exhibit high antibacterial activity against two different strains of bacteria Enterobacter aerogenes (Gram negative) and Staphylococcus aureus (Gram positive).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi
Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics inmore » oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. - Highlights: • Demonstrated first time the link between the mPTP to mitochondrial dynamics. • The role of Cyclophilin D in the regulation of Drp1-mediated mitochondrial fission. • CsA as a potential target for governing oxidative stress related neuropathology.« less
Enhanced performance of VOx-based bolometer using patterned gold black absorber
NASA Astrophysics Data System (ADS)
Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.
2015-06-01
Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.
Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline
Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze
2008-01-01
The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2’-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ~1.3 fold in the nuclear protein extracts (NE) and ~1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ~1.5 fold higher, whereas in the MEs it was ~1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative DNA lesions in the spleen following exposure to aniline could play a critical role in the tumorigenic process. PMID:18793663
Traiphol, Nisanart; Faisadcha, Kunruethai; Potai, Ruttayapon; Traiphol, Rakchart
2015-02-01
An ability to control the thermochromic behaviors of polydiacetylene (PDA)-based materials is very important for their utilization. Recently, our group has developed the PDA/zinc oxide (ZnO) nanocomposites, which exhibit reversible thermochromism (Traiphol et al., 2011). In this study, we present our continuation work demonstrating a rather simple method for fine tuning their color-transition temperature. The PDA/ZnO nanocomposites are prepared by varying photopolymerization time, which in turn affects the length of PDA conjugated backbone. We have found that the increase of photopolymerization time from 1 to 120min results in systematically decrease of the color-transition temperature from about 85 to 40°C. These PDA/ZnO nanocomposites still exhibit reversible thermochromism. The PDA/ZnO nanocomposites embedded in polyvinyl alcohol films show two-step color-transition processes, the reversible blue to purple and then irreversible purple to orange. Interestingly, the increase of photopolymerization time causes an increase of the irreversible color-transition temperature. Our method is quite simple and cheap, which can provide a library of PDA-based materials with controllable color-transition temperature. Copyright © 2014 Elsevier Inc. All rights reserved.
Kinetic models of controllable pore growth of anodic aluminum oxide membrane
NASA Astrophysics Data System (ADS)
Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin
2012-06-01
An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.
Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.
2015-01-01
Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863
Farrokhzadeh, Hasti; Hettiaratchi, J Patrick A; Jayasinghe, Poornima; Kumar, Sunil
2017-09-01
Aiming to improve conventional methane biofilter performance, a multiple-level aeration biofilter design is proposed. Laboratory flow-through column experiments were conducted to evaluate three actively-aerated methane biofilter configurations. Columns were aerated at one, two, and three levels of the bed depth, with air introduced at flow rates calculated from methane oxidation reaction stoichiometry. Inlet methane loading rates were increased in five stages between 6 and 18mL/min. The effects of methane feeding rate, levels of aeration, and residence time on methane oxidation rates were determined. Samples collected after completion of flow-through experiments were used to determine methane oxidation kinetic parameters, V max , K m , and methanotrophic community distribution across biofilter columns. Results obtained from mixed variances analysis and response surfaces, as well as methanotrophic activity data, suggested that, biofilter column with two aeration levels has the most even performance over time, maintaining 85.1% average oxidation efficiency over 95days of experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of early lipid oxidation in smoked, comminuted pork or poultry sausages with spices.
Olsen, Elisabeth; Vogt, Gjermund; Veberg, Annette; Ekeberg, Dag; Nilsson, Astrid
2005-09-21
Dynamic headspace/gas chromatography-mass spectrometry (GC-MS), front-face fluorescence spectroscopy, and a gas-sensor array technique (electronic nose) have previously detected lipid oxidation in pork back fat or mechanically recovered poultry meat earlier than or at the same time as a sensory panel. The present study was focused on measurement of early lipid oxidation in a more complicated product (freeze-stored, smoked sausages with spices). During the storage time, formation of components contributing to rancid odor and flavor (e.g., hexanal and 1-penten-3-ol) could be monitored with dynamic headspace/GC-MS. The GC-MS data also showed a decrease in 2-furancarboxaldehyde, which could indicate loss of Maillard type components often associated with acidic or meat odor and flavor. The fluorescence spectra were difficult to interpret, probably due to the simultaneous influence from increasing levels of lipid oxidation products and loss of fluorescent Maillard or spice components. The gas-sensor array responses were dominated by signals from, e.g., spice and smoke compounds.
A study on the reaction of Zircaloy-4 tube with hydrogen/steam mixture
NASA Astrophysics Data System (ADS)
Lee, Ji-Min; Kook, Dong-Hak; Cho, Il-Je; Kim, Yong-Soo
2017-08-01
In order to fundamentally understand the secondary hydriding mechanism of zirconium alloy cladding, the reaction of commercial Zircaloy-4 tubes with hydrogen and steam mixture was studied using a thermo-gravimetric analyser with two variables, H2/H2O ratio and temperature. Phenomenological analysis revealed that in the steam starvation condition, i.e., when the H2/H2O ratio is greater than 104, hydriding is the dominant reaction and the weight gain increases linearly after a short incubation time. On the other hand, when the gas ratio is 5 × 102 or 103, both hydriding and oxidation reactions take place simultaneously, leading to three distinct regimes: primary hydriding, enhanced oxidation, and massive hydriding. Microstructural changes of oxide demonstrate that when the weight gain exceeds a certain critical value, massive hydriding takes place due to the significant localized crack development within the oxide, which possibly simulates the secondary hydriding failure in a defective fuel operation. This study reveals that the steam starvation condition above the critical H2/H2O ratio is only a necessary condition for the secondary hydriding failure and, as a sufficient condition, oxide needs to grow sufficiently to reach the critical thickness that produces substantial crack development. In other words, in a real defective fuel operation incident, the secondary failure is initiated only when both steam starvation and oxide degradation conditions are simultaneously met. Therefore, it is concluded that the indispensable time for the critical oxide growth primarily determines the triggering time of massive hydriding failure.
Methane oxidation at a surface-sealed boreal landfill.
Einola, Juha; Sormunen, Kai; Lensu, Anssi; Leiskallio, Antti; Ettala, Matti; Rintala, Jukka
2009-07-01
Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005-June 2006) were 0.86-6.2 m(3) ha(-1) h(-1). Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1-3 points showed significantly higher methane fluxes into the soil cover (20-135 m(3) ha(-1) h(-1)) and methane emissions (6-135 m(3) ha(-1) h(-1)) compared to the other points (< 20 m(3) ha(-1) h(-1) and < 10 m(3) ha(-1) h(-1), respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.
Bhattacharya, Rahul; Singh, Poonam; John, Jebin Jacob; Gujar, Niranjan L
2018-04-03
Cyanide-induced chemical hypoxia is responsible for pronounced oxidative damage in the central nervous system. The disruption of mitochondrial oxidative metabolism has been associated with upregulation of uncoupling proteins (UCPs). The present study addresses the dose- and time-dependent effect of sub-acute cyanide exposure on various non-enzymatic and enzymatic oxidative stress markers and their correlation with inducible-nitric oxide synthase (iNOS) and uncoupling protein-2 (UCP-2) expression. Animals received (oral) triple distilled water (vehicle control), 0.25 LD50 potassium cyanide (KCN) or 0.50 LD50 KCN daily for 21 d. Animals were sacrificed on 7, 14 and 21 d post-exposure to measure serum cyanide and nitrite, and brain malondialdehyde (MDA), reduced glutathione (GSH), glutathione disulfide (GSSG), cytochrome c oxidase (CCO), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CA) levels, together with iNOS and UCP-2 expression, and DNA damage. The study revealed that a dose- and time-dependent increase in cyanide concentration was accompanied by corresponding CCO inhibition and elevated MDA levels. Decrease in GSH levels was not followed by reciprocal change in GSSG levels. Diminution of SOD, GPx, GR and CA activity was congruent with elevated nitrite levels and upregulation of iNOS and UCP-2 expression, without any DNA damage. It was concluded that long-term cyanide exposure caused oxidative stress, accompanied by upregulation of iNOS. The upregulation of UCP-2 further sensitized the cells to cyanide and accentuated the oxidative stress, which was independent of DNA damage.
Mariana Balu, Alina; Pineda, Antonio; Yoshida, Kenta; Manuel Campelo, Juan; Gai, Pratibha L; Luque, Rafael; Angel Romero, Antonio
2010-11-07
A synergetic Fe-Al effect in Fe(2)O(3) nanoparticles supported on mesoporous aluminosilicates compared to pure siliceous silicates has been demonstrated, for the first time, by a remarkably superior catalytic activity of the former in the microwave-assisted selective oxidation of benzyl alcohol to benzaldehyde. This significant finding, that also deeply influences the acidity of the materials (increasing total and particularly Lewis acidity), can have important consequences in the improved efficiency of these systems in related oxidations as well as in acid catalysed processes.
Spengler, Annette; Wanninger, Lena; Pflugmacher, Stephan
2017-09-01
The present study focused on oxidative stress effects in the aquatic macrophyte Hydrilla verticillata after exposure to titanium dioxide nanoparticles (TiO 2 -NPs). Experiments were conducted with different TiO 2 -NPs and concentrations (0.1 mg/L and 10 mg/L) in a time-dependent manner (0 h, 24 h, 48 h, 96 h, 168 h). To assess various levels of the oxidative stress response in H. verticillata, the level of hydrogen peroxide (H 2 O 2 ), the ratio of reduced to oxidized glutathione (GSH/GSSG), and activities of the antioxidative enzymes catalase (CAT) and glutathione reductase (GR) were evaluated. Study results imply oxidative stress effects after TiO 2 -NP exposure as adaptations in plant metabolism became apparent to counteract increased ROS formation. All TiO 2 -NPs caused elevated activities of the enzymes CAT and GR. Moreover, decreased ratios of GSH/GSSG indicated an activation of GSH-dependent pathways counteracting ROS formation. Plants exposed to a bulk-sized control revealed a size-dependent influence on the antioxidative stress response. As H 2 O 2 level increases were solely detected after exposure to 10 mg/L TiO 2 -NPs and nano-exposed plants showed normalization in its antioxidative stress response after 168h of exposure, it can be suggested that macrophytes are able to cope with currently predicted low-level exposures to TiO 2 -NPs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Jiliang; Huang, Zhan; Wang, Chaoxia
2018-05-01
Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.
[Catalytic degradation of PCB77 by microwave-induced nano-particle metal oxides in diatomite].
Huang, Guan-yi; Zhao, Ling; Dong, Yuan-hua
2009-08-15
The degradation of PCB77 in diatomite by microwave-induced catalytic oxidation was studied in a sealed vial, including four effects such as microwave (MV) radiating time, addition of different nano-particle metal oxides, concentration and type of acids and dosage of MnO2. The results indicated that PCB77 could be removed significantly by microwave-induced catalytic oxidation. Compared to control reactor (without MV radiation), the removal rate of PCB77 increased by twice after 1 min. In addition, the removal rate of PCB77 under MV radiation was gradually increased with time of radiation and then reached equilibrium after 10 min. The removal rates are about 50% and 20% by addition of H2SO4 and ultrapure water respectively. No significant removal was observed by addition of NaOH and without aqueous media. Moreover, catalytic degradation of PCB77 by microwave-induced nano-particle MnO2 had best removal rate was up to 90% after 1 min, in contrast with addition of nano-particle Fe2O3, CuO and Al2O3. The removal rate raised from 37.0% to 98.5% rapidly with the concentration of H2SO4 ranged from 1 mol/L to 8 mol/L, and H2SO4 mainly played a role of acidification but not oxidation. The addition of 0.01, 0.03 and 0.05 g MnO2 showed the similar result.
Erxleben, C; Hermann, A
2001-03-16
Invertebrate skeletal muscle contraction is regulated by calcium influx through voltage-dependent calcium channels in the sarcolemmal membrane. In present study we investigated the effects of nitric oxide (NO) donors on calcium currents of single skeletal muscle fibres from the marine isopod, Idotea baltica, using two-electrode voltage clamp recording techniques. The NO donors, S-nitrosocysteine, S-nitroso-N-acetyl-penicillamine or hydroxylamine reversibly increased calcium inward currents in a time dependent manner. The increase of the current was prevented by methylene blue. Our experiments suggest that NO increases calcium inward currents. NO, by acting on calcium ion channels in the sarcolemmal membrane, therefore, may directly be involved in the modulation of muscle contraction.
Charunwatthana, Prakaykaew; Faiz, M. Abul; Ruangveerayut, Ronnatrai; Maude, Richard; Rahman, M. Ridwanur; Roberts, L. Jackson; Moore, Kevin; Yunus, Emran Bin; Hoque, M. Gofranul; Hasan, Mahatab Uddin; Lee, Sue J.; Pukrittayakamee, Sasithon; Newton, Paul N.; White, Nicholas J.; Day, Nicholas P.J.; Dondorp, Arjen M.
2009-01-01
Objective Markers of oxidative stress are reported to be increased in severe malaria. It has been suggested that the antioxidant N-acetylcysteine (NAC) may be beneficial in treatment. We studied the efficacy and safety of parenteral N-acetylcysteine as an adjunct to artesunate treatment of severe falciparum malaria. Design A randomized double-blind placebo controlled trial on the use of high dose intravenous NAC as adjunctive treatment to artesunate. Setting A provincial hospital in Western Thailand and a tertiary referral hospital in Chittagong, Bangladesh. Patients One hundred and eight adult patients with severe falciparum malaria. Interventions Patients were randomized to receive N-acetylcysteine or placebo as adjunctive treatment to intravenous artesunate. Measurements and main results A total of 56 patients were treated with NAC and 52 received placebo. NAC had no significant effect on mortality, lactate clearance times (p=0.74) or coma recovery times (p=0.46). Parasite clearance time was increased from 30h (range 6h to 144h) to 36h (range 6h to 120h) (p=0.03), but this could be explained by differences in admission parasitemia. Urinary F2-isoprostane metabolites, measured as a marker of oxidative stress, were increased in severe malaria compared to patients with uncomplicated malaria and healthy volunteers. Admission red cell rigidity correlated with mortality, but did not improve with NAC. Conclusion Systemic oxidative stress is increased in severe malaria. Treatment with N-acetylcysteine had no effect on outcome in patients with severe falciparum malaria in this setting. PMID:19114891
Ahmad, Azlan; Lajis, Mohd Amri
2017-01-01
Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future. PMID:28925963
Ahmad, Azlan; Lajis, Mohd Amri; Yusuf, Nur Kamilah
2017-09-19
Solid-state recycling, which involves the direct recycling of scrap metal into bulk material using severe plastic deformation, has emerged as a potential alternative to the conventional remelting and recycling techniques. Hot press forging has been identified as a sustainable direct recycling technique that has fewer steps and maintains excellent material performance. An experimental investigation was conducted to explore the hardness and density of a recycled aluminum-based metal matrix composite by varying operating temperature and holding time. A mixture of recycled aluminum, AA6061, and aluminum oxide were simultaneously heated to 430, 480, and 530 °C and forged for 60, 90, and 120 min. We found a positive increase in microhardness and density for all composites. The hardness increased approximately 33.85%, while density improved by about 15.25% whenever the temperature or the holding time were increased. Based on qualitative analysis, the composite endures substantial plastic deformation due to the presence of hardness properties due to the aluminum oxide embedded in the aluminum matrix. These increases were significantly affected by the operating temperature; the holding time also had a subordinate role in enhancing the metal matrix composite properties. Furthermore, in an effort to curb the shortage of primary resources, this study reviewed the promising performance of secondary resources produced by using recycled aluminum and aluminum oxide as the base matrix and reinforcement constituent, respectively. This study is an outline for machining practitioners and the manufacturing industry to help increase industry sustainability with the aim of preserving the Earth for our community in the future.
NASA Technical Reports Server (NTRS)
Barrett, Charles A.
1987-01-01
Cobalt levels were systematically varied in the Ni-base turbine alloys U-700 (cast), U-700m (PM/HIP), Waspaloy, Mar-M-247, In-738, Nimonic-115, U-720, and SX-R-150. the cobalt levels ranged from 0 wt pct to the nominal commercial content in each alloy. the alloys were tested in cyclic oxidation in static air at 1000, 1100 and 1150 C for 500, 200, and 100 hr, respectively. An oxidation attack parameter, Ka, derived from the specific weight change versus time data was used to evaluate the oxidation behavior of the alloys along with X-ray diffraction analysis of the surface oxides. The alloys tend to form either Cr2O3/chromite spinel or Al2O3/aluminate spinel depending on the Cr/Al ratio in the alloys. Alloys with a ratio of 3.5 or higher tend to favor the Cr oxides while those under 3.0 form mostly Al oxides. In general the Al2O3/aluminate spinel forming alloys have the better oxidation resistance. Increased cobalt content lowers the scaling resistance of the higher Cr allys while a 5.0 wt pct Co content is optimum for the Al controlling alloys. The refractory metals, particularly Ta, appear beneficial to both types of oxides, perhaps due to the formation of the omnipresent trirutile Ni(Ta, Cb, Mo, W)2O6. Both scales break down as increasing amounts of NiO are formed.
Supercritical gasification for the treatment of o-cresol wastewater.
Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo
2006-01-01
The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.
Board, Mary; Lopez, Colleen; van den Bos, Christian; Callaghan, Richard; Clarke, Kieran; Carr, Carolyn
2017-07-01
Stem cells have been assumed to demonstrate a reliance on anaerobic energy generation, suited to their hypoxic in vivo environment. However, we found that human mesenchymal stem cells (hMSCs) have an active oxidative metabolism with a range of substrates. More ATP was consistently produced from substrate oxidation than glycolysis by cultured hMSCs. Strong substrate preferences were shown with the ketone body, acetoacetate, being oxidised at up to 35 times the rate of glucose. ROS-generation was 45-fold lower during acetoacetate oxidation compared with glucose and substrate preference may be an adaptation to reduce oxidative stress. The UCP2 inhibitor, genipin, increased ROS production with either acetoacetate or glucose by 2-fold, indicating a role for UCP2 in suppressing ROS production. Addition of pyruvate stimulated acetoacetate oxidation and this combination increased ATP production 27-fold, compared with glucose alone, which has implications for growth medium composition. Oxygen tension during culture affected metabolism by hMSCs. Between passages 2 and 5, rates of both glycolysis and substrate-oxidation increased at least 2-fold for normoxic (20% O 2 )- but not hypoxic (5% O 2 )-cultured hMSCs, despite declining growth rates and no detectable signs of differentiation. Culture of the cells with 3-hydroxybutyrate abolished the increased rates of these pathways. These findings have implications for stem cell therapy, which necessarily involves in vitro culture of cells, since low passage number normoxic cultured stem cells show metabolic adaptations without detectable changes in stem-like status. Copyright © 2017. Published by Elsevier Ltd.
Bureau, A; Lahet, J-J; Lenfant, F; Bouyer, F; Petitjean, M; Chaillot, B; Freysz, M
2005-08-01
The aggression of erythrocytes by an oxidative stress induces hemolysis. This paper aims to valid a model of erythrocytes in terms of composition of the phosphate buffer solution and of concentration of a well-known oxidant, AAPH. Three compositions of phosphate buffer solution are mixed with three concentrations of oxidant. The influence of these two parameters on hemolysis is independently studied by a variance analysis and a Kruskal-Wallis test when ANOVA is not available. The hemolysis rate increases with time at fixed oxidant concentration, but is not influenced by the composition of the buffer solution. The highest hemolysis rate, 90%, was only measured within 2 h with the highest oxidant concentration. If we retain this concentration of oxidant, the lower concentration of the buffer can by eliminated by a significant less hemolysis and the highest concentration of the buffer can by chosen in regard of the better precision for a similar hemolysis compared to the mean buffer. We hope to study the effect of anti-oxidant agent with such a model of erythrocytes.
Evaluation of mixed valent iron oxides as reactive adsorbents for arsenic removal.
Mishra, Dhananjay; Farrell, James
2005-12-15
The objective of this research was to determine if Fe(II)-bearing iron oxides generate ferric hydroxides at sufficient rates for removing low levels of arsenic in packed-bed reactors, while at the same time avoiding excessive oxide production that contributes to bed clogging in oxygenated waters. Column experiments were performed to determine the effectiveness of three media for arsenic removal over a range in empty bed contact times, influent arsenic concentrations, dissolved oxygen (DO) levels, and solution pH values. Corrosion rates of the media as a function of the water composition were determined using batch and electrochemical methods. Rates of arsenic removal were first order in the As(V) concentration and were greater for media with higher corrosion rates. As(V) removal increased with increasing DO levels primarily due to faster oxidation of the Fe2+ released by media corrosion. To obtain measurable amounts of arsenic removal in 15 mM NaCl electrolyte solutions containing 50 microg/L As(V), the rate of Fe2+ released by the media needed to be at least 15 times greater than the As(V) feed rate into the column. In waters containing 30 mg/L of silica and 50 microg/L of As(V), measurable amounts of arsenic removal were obtained only for Fe2+ release rates that were at least 200 times greater than the As(V) feed rate. Although all columns showed losses in hydraulic conductivity overthe course of 90 days of operation, the conductivity values remained high, and the losses could be reversed by backwashing the media. The reaction products produced by the media in domestic tap water had average As-to-Fe ratios that were approximately 25% higher than those for a commercially available adsorbent.
Gonzalez, Oriol; Welearegay, Tesfalem G; Vilanova, Xavier; Llobet, Eduard
2018-04-26
Here we report on the use of pulsed UV light for activating the gas sensing response of metal oxides. Under pulsed UV light, the resistance of metal oxides presents a ripple due to light-induced transient adsorption and desorption phenomena. This methodology has been applied to tungsten oxide nanoneedle gas sensors operated either at room temperature or under mild heating (50 °C or 100 °C). It has been found that by analyzing the rate of resistance change caused by pulsed UV light, a fast determination of gas concentration is achieved (ten-fold improvement in response time). The technique is useful for detecting both oxidizing (NO₂) and reducing (NH₃) gases, even in the presence of different levels of ambient humidity. Room temperature operated sensors under pulsed UV light show good response towards ammonia and nitrogen dioxide at low power consumption levels. Increasing their operating temperature to 50 °C or 100 °C has the effect of further increasing sensitivity.
Protective potential of Black grapes against lead induced oxidative stress in rats.
Lakshmi, B V S; Sudhakar, M; Aparna, M
2013-05-01
From time immemorial Vitis vinifera (Black grapes) have been used both for medicinal and nourishment purposes. The aim of this study is to investigate the protective effect of Black grapes against lead nitrate induced oxidative stress. Exposure to lead significantly increased malondialdehyde levels with a significant decrease in superoxide dismutase and catalase activities, and the concentration of GSH in the liver and kidneys of rats. Significantly increased levels of AST, ALT, ALP, BUN and serum creatinine and decreased levels of total protein were observed. The administration of lead significantly decreased the body weight and organ weights at the end of the experimental period. Statistically significant decrease in hemoglobin, red blood cell and total leukocyte count was observed. Pretreatment of hydroalcoholic extract of Black grapes to lead exposed rats significantly ameliorated lead-induced oxidative stress in tissues and produced improvement in hematological parameters over lead-exposed rats, indicating the beneficial role of Black grapes to counteract the lead-induced oxidative stress. Copyright © 2013 Elsevier B.V. All rights reserved.
Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11.
Lee, Eun Young; Lee, Nae Yoon; Cho, Kyung-Suk; Ryu, Hee Wook
2006-04-01
Toxic H2S gas is an important industrial pollutant that is applied to biofiltration. Here, we examined the effects of factors such as inlet concentration and space velocity on the removal efficiency of a bacterial strain capable of tolerating high sulfate concentrations and low pH conditions. We examined three strains of Acidithiobacillus thiooxidans known to have sulfur-oxidizing activity, and identified strain AZ11 as having the highest tolerance for sulfate. A. thiooxidans AZ11 could grow at pH 0.2 in the presence of 74 g l(-1) sulfate, the final oxidation product of elemental sulfur, in the culture broth. Under these conditions, the specific sulfur oxidation rate was 2.9 g-S g-DCW (dry cell weight)(-1) d(-1). The maximum specific sulfur oxidation rate of A. thiooxidans AZ11 was 21.2 g-S g-DCW(-1) d(-1), which was observed in the presence of 4.2 g-SO4(2-) l(-1) and pH 1.5, in the culture medium. To test the effects of various factors on biofiltration by this strain, A. thiooxidans AZ11 was inoculated into a porous ceramic biofilter. First, a maximum inlet loading of 670 g-S m(-3) h(-1) was applied with a constant space velocity (SV) of 200 h(-1) (residence time, 18 s) and the inlet concentration of H2S was experimentally increased from 200 ppmv to 2200 ppmv. Under these conditions, less than 0.1 ppmv H2S was detected at the biofilter outlet. When the inlet H2S was maintained at a constant concentration of 200 ppmv and the SV was increased from 200 h(-1) to 400 h(-1) (residence time, 9 s), an H2S removal of 99.9% was obtained. However, H2S removal efficiencies decreased to 98% and 94% when the SV was set to 500 h(-1) (residence time, 7.2 s) and 600 h(-1) (residence time, 6 s), respectively. The critical elimination capacity guaranteeing 96% removal of the inlet H2S was determined to be 160 g-S m(-3) h(-1) at a space velocity of 600 h(-1). Collectively, these findings show for the first time that a sulfur oxidizing bacterium has a high sulfate tolerance and a high sulfur oxidizing activity below pH 1.
Removal of organic pollutants from produced water using Fenton oxidation
NASA Astrophysics Data System (ADS)
Afzal, Talia; Hasnain Isa, Mohamed; Mustafa, Muhammad Raza ul
2018-03-01
Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.
NASA Astrophysics Data System (ADS)
Arkhurst, Barton Mensah; Kim, Jeoung Han
2018-05-01
Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y-Ti-O, Y-Ti-Si-O, Y-Si-O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y-Ti-O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.
Kang, J; Ma, X; Meng, L; Ma, D
1999-05-01
To study the separation of p-aminobenzenearsonic acid (PABAA) and its oxide, p-aminophenylarsine oxide (PAPAO), both the absorption spectra were scanned at the wavelengths from 200 nm to 380 nm. PABAA had absorption maximum at 254 nm and PAPAO 258 nm. The effects of salt concentration, column temperature, methanol and ion-pair agent concentrations on the capacity factor were investigated. Compounds of high polarity showed almost no retention on reversed-phase column; as the volume fraction of the methanol decreased from 90% to 10%, the retention time of PABAA gradually increased with broad peak, and partially eluted when methanol volume fraction being below 20%. With temperature rising, the retention time of PABAA was decreased. But PABAA capacity factor can be increased by selecting an appropriate salt concentration for the mobile phase. The cetyltrimethyl and tetrabutyl ammonium ions were separately added as ion-pair agents to the mobile phase containing methanol in phosphate buffer of 10 mmol/L, the changes of retention time were observed. The mechanism of retention based on reversed phase ion-pair model is proposed. Besides, the retention behaviour is also influenced by size exclusion in stationary phase as well as polar interactions with residual silanol group on the silica surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaofei; Zink, Peter; Pal, Uday
2012-03-11
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process ismore » employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.« less
Cook, Sarah F.; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D.; Deutsch, Nina; Williams, Elaine F.; Wilkins, Diana G.; van den Anker, John N.
2017-01-01
Objectives This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CLformation) of oxidative pathway metabolites. Methods Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (<28 weeks’ gestation) or seven 15-mg/kg doses at 8-h intervals (≥28 weeks’ gestation). Plasma and urine were sampled throughout the 72-h study period. Concentration-time data for paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. Results The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CLformation for all metabolites increased with weight; CLformation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CLformation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038–0.062; 62 %) for glucuronidation, 0.21 L/h (0.17–0.24; 33 %) for sulfation, and 0.058 L/h (0.044–0.078; 72 %) for oxidation. Expression of individual oxidation CLformation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CLformation increased <15 % when plotted against weight or postnatal age. Conclusions The parent-metabolite model successfully characterized the pharmacokinetics of intravenous paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability. PMID:27209292
Cook, Sarah F; Stockmann, Chris; Samiee-Zafarghandy, Samira; King, Amber D; Deutsch, Nina; Williams, Elaine F; Wilkins, Diana G; Sherwin, Catherine M T; van den Anker, John N
2016-11-01
This study aimed to model the population pharmacokinetics of intravenous paracetamol and its major metabolites in neonates and to identify influential patient characteristics, especially those affecting the formation clearance (CL formation ) of oxidative pathway metabolites. Neonates with a clinical indication for intravenous analgesia received five 15-mg/kg doses of paracetamol at 12-h intervals (<28 weeks' gestation) or seven 15-mg/kg doses at 8-h intervals (≥28 weeks' gestation). Plasma and urine were sampled throughout the 72-h study period. Concentration-time data for paracetamol, paracetamol-glucuronide, paracetamol-sulfate, and the combined oxidative pathway metabolites (paracetamol-cysteine and paracetamol-N-acetylcysteine) were simultaneously modeled in NONMEM 7.2. The model incorporated 259 plasma and 350 urine samples from 35 neonates with a mean gestational age of 33.6 weeks (standard deviation 6.6). CL formation for all metabolites increased with weight; CL formation for glucuronidation and oxidation also increased with postnatal age. At the mean weight (2.3 kg) and postnatal age (7.5 days), CL formation estimates (bootstrap 95% confidence interval; between-subject variability) were 0.049 L/h (0.038-0.062; 62 %) for glucuronidation, 0.21 L/h (0.17-0.24; 33 %) for sulfation, and 0.058 L/h (0.044-0.078; 72 %) for oxidation. Expression of individual oxidation CL formation as a fraction of total individual paracetamol clearance showed that, on average, fractional oxidation CL formation increased <15 % when plotted against weight or postnatal age. The parent-metabolite model successfully characterized the pharmacokinetics of intravenous paracetamol and its metabolites in neonates. Maturational changes in the fraction of paracetamol undergoing oxidation were small relative to between-subject variability.
NASA Astrophysics Data System (ADS)
Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.
2017-12-01
Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( < 10-5 SI). An increase of both phase peak and relaxation time was found with increasing grain size of the sorted Fe-sand. Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.
Min, Y N; Niu, Z Y; Sun, T T; Wang, Z P; Jiao, P X; Zi, B B; Chen, P P; Tian, D L; Liu, F Z
2018-04-01
This study aimed to evaluate the effects of vitamin C and vitamin E on antioxidant capacity and immune function in oxidative-stressed breeder roosters. One hundred twenty 45-week-old Lveyang black-boned breeder roosters were randomly assigned to 5 dietary treatments, including negative control group (NC), positive control group (PC), and 3 trial groups, which were fed the diets containing 300 mg/kg VC, 200 mg/kg VE, or 300 mg/kg VC and 200 mg/kg VE (VC+VE). At 47 wk of age, the positive control and trial groups were subcutaneously injected 3 times every other d with dexamethasone (DEX) 4 mg/kg of body weight, the negative control group was injected with saline. The experiment lasted for 35 d. The results showed that at 50 wk of age, average daily feed intake of birds challenged with DEX significantly increased (P < 0.05). During post-stress recovery period (52 wk of age), dietary supplemental VE or VC+VE notably increased body weight under oxidative stress (P < 0.01). Oxidative stress induced by DEX could significantly decrease superoxide dismutase (SOD), IgM, antibody titer of ND and mRNA expression of SOD or glutathion peroxidase activity (GSH-Px), increase serous malondialdehyde (MDA) (P < 0.05). Supplementation of VC or VE significantly decreased serous MDA, and increased SOD under oxidative stress (P < 0.05). Supplementation of VC or VE, or their combination significantly increased the relative expression of GSH-Px mRNA when compared to the oxidative-stressed control treatment (P < 0.05), whereas did not alleviate the relative expression of SOD mRNA (P > 0.05). Therefore, the results suggest that addition of 300 mg/kg VC, 200 mg/kg VE or their combination could improve antioxidant ability and immune performance in oxidative-stressed breeder roosters through up-regulating the expression of GSH-Px gene.
Cukier, Alexandre M O; Therond, Patrice; Didichenko, Svetlana A; Guillas, Isabelle; Chapman, M John; Wright, Samuel D; Kontush, Anatol
2017-09-01
High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low-density lipoprotein; PBS, phosphate-buffered saline; PC, phosphatidylcholine; PL, phospholipid; PCOOH, phosphatidylcholine hydroperoxide; PLOOH, phospholipid hydroperoxide. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nadesalingam, Manori Prasadika
Transition metal oxides (TMOs) exhibit a rich collection of interesting and intriguing properties which can be used for wide variety of applications. In this dissertation, I will discuss the first PAES measurements on vacuum anneal induced changes in the surface layers of Cu2O/Ta, Cu 2O/TCO and oxidized Cu(100) prepared by spray coated, electrochemically deposition and thermal oxidation techniques respectively. PAES measurements on Cu2O/TCO shows that the a very large increase in the intensity of the Cu (M2,3 VV) Auger peak after annealing at 250°C. Similar but significantly smaller changes were observed in the EAES spectra consistent with the fact that PAES is primarily sensitive to the top-most atomic layer due to the fact that the positrons are trapped just outside the surface prior to annihilation while EAES samples several atomic layers. While PAES measurements on oxidized Cu(100) show a large monotonic increase in the intensity of the annihilation induced Cu (M2,3 VV) Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300°C. The intensity then decreases monotonically as the annealing temperature is increase to ˜500°C. These results provide a clear demonstration of the thermal reduction of the copper oxide surface after annealing at 300°C followed by re-oxidation of the copper surface at the higher annealing temperatures presumably due to the diffusion of subsurface oxygen to the surface.
NASA Astrophysics Data System (ADS)
Platt, P.; Wedge, S.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.
2015-04-01
As a cladding material used to encapsulate nuclear fuel pellets, zirconium alloys are the primary barrier separating the fuel and a pressurised steam or lithiated water environment. Degradation mechanisms such as oxidation can be the limiting factor in the life-time of the fuel assembly. Key to controlling oxidation, and therefore allowing increased burn-up of fuel, is the development of a mechanistic understanding of the corrosion process. In an autoclave, the oxidation kinetics for zirconium alloys are typically cyclical, with periods of accelerated kinetics being observed in steps of ∼2 μm oxide growth. These periods of accelerated oxidation are immediately preceded by the development of a layer of lateral cracks near the metal-oxide interface, which may be associated with the development of interface roughness. The present work uses scanning electron microscopy to carry out a statistical analysis of changes in the metal-oxide interface roughness between three different alloys at different stages of autoclave oxidation. The first two alloys are Zircaloy-4 and ZIRLO™ for which analysis is carried out at stages before, during and after first transition. The third alloy is an experimental low tin alloy, which under the same oxidation conditions and during the same time period does not appear to go through transition. Assessment of the metal-oxide interface roughness is primarily carried out based on the root mean square of the interface slope known as the Rdq parameter. Results show clear trends with relation to transition points in the corrosion kinetics. Discussion is given to how this relates to the existing mechanistic understanding of the corrosion process, and the components required for possible future modelling approaches.
The effect of processing conditions on the GaAs/plasma-grown insulator interface
NASA Technical Reports Server (NTRS)
Hshieh, F. I.; Borrego, J. M.; Ghandhi, S. K.
1986-01-01
The effect of processing conditions on the interface state density was evaluated from C-V measurements on metal-oxide-semiconductor capacitors. The optimum processing conditions for the minimum surface state density was found to be related to the postoxidation annealing temperature and time, and was independent of chemical treatments prior to oxidation. Annealing at the optimum condition (i.e., at 350 C for 1 h in either nitrogen or hydrogen gas, with or without an aluminum pattern on the oxide) reduces the fast surface state density by about one order of magnitude. By using a nitrogen/oxygen plasma, the static dielectric constant of the oxide decreased as the N/O ratio was increased, and nitrogen was incorporated into the oxide. In addition, the fast surface state density was reduced as a result of this nitridation process.
Hydrogen pickup mechanism of zirconium alloys
NASA Astrophysics Data System (ADS)
Couet, Adrien
Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes to directly measure the evolution of sigma oxe as function of exposure time. The results show that sigmao xe decreases as function of exposure time and that its variations are directly correlated to the instantaneous hydrogen pickup fraction variations. The electron transport through the oxide layer is thus altered as the oxide grows, reasons for which are yet to be exactly determined. Preliminary results also show that sigma oxe of ZrNb alloys would be much higher compared with Zircaloy-4. Thus, it is confirmed that sigmaox e is a key parameter in the hydrogen and oxidation mechanism. Because the mechanism whereby alloying elements are incorporated into the oxide layer is critical to changing sigmao xe, the evolution of the oxidation state of two common alloying elements, Fe and Nb, when incorporated into the growing oxide layers is investigated using X-Ray Absorption Near-Edge Spectroscopy (XANES) using micro-beam synchrotron radiation on cross sectional oxide samples. The results show that the oxidation of both Fe and Nb is delayed in the oxide layer compared to that of Zr, and that this oxidation delay is related to the variations of the instantaneous hydrogen pick-up fraction with exposure time. The evolution of Nb oxidation as function of oxide depth is also compatible with space charge compensation in the oxide and with an increase in sigmaox e of ZrNb alloys compared to Zircaloys. Finally, various successively complex models from the well-known Wagner oxidation theory to the more complex effect of space charge on oxidation kinetics have been developed. The general purpose of the modeling effort is to provide a rationale for the sub-parabolic oxidation kinetics and demonstrate the correlation with hydrogen pickup fraction. It is directly demonstrated that parabolic oxidation kinetics is associated with high sigmao xe and low space charges in the oxide whereas sub-parabolic oxidation kinetics is associated with lower sigmaox e and higher space charge in the oxide. All these observations helped us to propose a general corrosion mechanism of zirconium alloys involving both oxidation and hydrogen pickup mechanism to better understand and predict the effect of alloying additions on the behavior of zirconium alloys.
Surface Behavior of Iron Sulfide Ore during Grinding with Alumina Media
NASA Astrophysics Data System (ADS)
Martín, Reyes P.; Elia, Palácios B.; Patiño, Francisco C.; Escudero, Ramiro G.; Mizraim, Uriel Flores G.; Reyes, Iván A. D.; Palazuelos, Laura Angeles
This research was conducted to study the oxidation and surface modification of pyrite in an inert mill and alumina grinding media at different pH values. The extent and progress of the oxidation function of milling time, by measuring some physicochemical variables, zeta potential (ZP), infrared analysis and monitoring. The results indicate pyrite oxidation during grinding, releasing iron and sulfur ions to the solution increasing its concentration with the initial pH and the milling time, the ORP and DO decrease the grinding time, on the other hand presents negative values ZP pH of 9, 11 and 12, whereas at pH 5, 7 and 13, the ZP is positive, FTIR generally detect the presence of free sulfate ion molecule 1084 cm-1, goethite with the absorption band at about 794 cm-1, also occurs in a band assigned to 470 cm-1 lepidocrocite oxy iron hydroxide γ- FeOOH, nucleated species or formed during milling.
Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress.
Saher, Shady; Piqueras, Abel; Hellin, Eladio; Olmos, Enrique
2004-01-01
The physiology of hyperhydricity in relation to oxidative stress, mineral nutrients, antioxidant enzymes and ethylene has been studied in three micropropagated carnation cultivars under experimentally induced hyperhydricity. A marked increase in Fe content in comparison with normal tissues was observed in the hyperhydric tissues from the three cultivars. The levels of ethylene, solute leakage and malondialdehyde content were also significantly higher in the hyperhydric tissues. In relation to the time course of H(2)O(2) production measured by fluorescence quenching, a similar trend could be observed for the three cultivars, with a clear increase in the generation of hydrogen peroxide in hyperhydric tissues. The activities of all the antioxidative enzymes studied, except lipoxygenase, were higher in the hyperhydric shoots. Phenylalanine ammonia-lyase (PAL) showed a significant decrease in activity in the hyperhydric tissues in comparison with the controls for the three cultivars. Soluble guaiacol peroxidase had a strong increase in activity in hyperhydric shoots of the three cultivars. These results provide, for the first time, direct evidence of H(2)O(2) generation in hyperhydric tissues, characterize the response of the antioxidant system to an oxidative stress during hyperhydricity in carnation leaves and point to the accumulation of toxic forms of oxygen as the inducer of some of the abnormalities observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzell, Kelsey B.; Fan, Lei; Beidaghi, Majid
2014-05-05
In this study, we examine the use of a percolating network of metal oxide (MnO2) as the active material in a suspension electrode as a way to increase the capacitance and energy density of an electrochemical flow capacitor. Amorphous manganese oxide was synthesized via a low-temperature hydrothermal approach and combined with carbon black to form composite flowable electrodes of different compositions. All suspension electrodes were tested in static configurations and consisted of an active solid material (MnO2 or activated carbon) immersed in aqueous neutral electrolyte (1 M Na2SO4). Increasing concentrations of carbon black led to better rate performance but atmore » the cost of capacitance and viscosity. Furthermore, it was shown that an expanded voltage window of 1.6 V could be achieved when combining a composite MnO2-carbon black (cathode) and an activated carbon suspension (anode) in a charge balanced asymmetric device. The expansion of the voltage window led to a significant increase in the energy density to ~11 Wh kg–1 at a power density of ~50 W kg–1. These values are ~3.5 times and ~2 times better than a symmetric suspension electrode based on activated carbon.« less
NASA Astrophysics Data System (ADS)
Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng
A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.
Role of oxidative stress in a rat model of radiation-induced erectile dysfunction.
Kimura, Masaki; Rabbani, Zahid N; Zodda, Andrew R; Yan, Hui; Jackson, Isabel L; Polascik, Thomas J; Donatucci, Craig F; Moul, Judd W; Vujaskovic, Zeljko; Koontz, Bridget F
2012-06-01
Chronic oxidative stress is one of the major factors playing an important role in radiation-induced normal tissue injury. However, the role of oxidative stress in radiation-induced erectile dysfunction (ED) has not been fully investigated. Aims. To investigate role of oxidative stress after prostate-confined irradiation in a rat model of radiation-induced ED. Fifty-four young adult male rats (10-12 weeks of age) were divided into age-matched sham radiotherapy (RT) and RT groups. Irradiated animals received prostate-confined radiation in a single 20 Gy fraction. Intracavernous pressure (ICP) measurements with cavernous nerve electrical stimulation were conducted at 2, 4, and 9 weeks following RT. The protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox4 and gp91(phox)), markers of oxidative DNA damage (8-hydroxy-2'-deoxyguanosine [8-OHdG]), lipid peroxidation (4-hydroxynonenal [4HNE]), and inflammatory response including inducible nitric oxide synthase, macrophage activation (ED-1), and nitrotyrosine, and endogenous antioxidant defense by nuclear factor erythroid 2-related factor (Nrf2) were evaluated in irradiated prostate tissue and corpora cavernosa (CC). In addition, we investigated the relationships between results of ICP/mean arterial pressure (MAP) ratios and expression level of oxidative stress markers. In the RT group, hemodynamic functional studies demonstrated a significant time-dependent decrease in ICP. Increased expression of Nox4, gp91(phox), 8-OHdG, and 4HNE were observed in the prostate and CC after RT. Similarly, expressions of inflammatory markers were significantly increased. There was a trend for increased Nrf2 after 4 weeks. ICP/MAP ratio negatively correlated with higher expression level of oxidative markers. NADPH oxidase activation and chronic oxidative stress were observed in irradiated prostate tissue and CC, which correlated with lower ICP/MAP ratio. Persistent inflammatory responses were also found in both tissues after RT. These findings suggest that oxidative stress plays a crucial role in the development of radiation-induced ED. © 2012 International Society for Sexual Medicine.
Nieman, David C; Capps, Courtney L; Capps, Christopher R; Shue, Zack L; McBride, Jennifer E
2018-05-03
This double-blind, randomized, placebo-controlled crossover trial determined if ingestion of a supplement containing a tomato complex with lycopene, phytoene, and phytofluene (T-LPP) and other compounds for 4 weeks would attenuate inflammation, muscle damage, and oxidative stress postexercise and during recovery from a 2-hr running bout that included 30 min of -10% downhill running. Study participants ingested the T-LPP supplement or placebo with the evening meal for 4 weeks prior to running 2 hr at high intensity. Blood samples and delayed onset muscle soreness ratings were taken pre- and post-4-week supplementation, and immediately following the 2-hr run, and then 1-hr, 24-hr, and 48-hr postrun. After a 2-week washout period, participants crossed over to the opposite treatment and repeated all procedures. Plasma lycopene, phytoene, and phytofluene increased significantly in T-LPP compared with placebo (p < .001 for each). Significant time effects were shown for serum creatine kinase, delayed onset muscle soreness, C-reactive protein, myoglobin, 9- and 13-hydroxyoctadecadienoic acids, ferric reducing ability of plasma, and six plasma cytokines (p < .001 for each). The pattern of increase for serum myoglobin differed between T-LPP and placebo (interaction effect, p = .016, with lower levels in T-LPP), but not for creatine kinase, delayed onset muscle soreness, C-reactive protein, the six cytokines, 9- and 13-hydroxyoctadecadienoic acids, and ferric reducing ability of plasma. No significant time or interaction effects were measured for plasma-oxidized low-density lipoprotein or serum 8-hydroxy-2'-deoxyguanosine. In summary, supplementation with T-LPP over a 4-week period increased plasma carotenoid levels 73% and attenuated postexercise increases in the muscle damage biomarker myoglobin, but not inflammation and oxidative stress.
Parameters of oxidative metabolism in neonates suffering from sepsis and anemia.
Sanodze, N; Uberi, N; Uberi, E; Kulumbegov, B
2006-11-01
Neonatal sepsis still remains as one of the actual problems in modern medicine due to its high morbidity and mortality rates determined by diagnostic difficulties and absence of sufficient evidence for effective therapy. Literature data have shown that essential role in pathogenesis of sepsis belongs to the cellular oxidation-reduction misballance and development of the oxidative stress. The aim of our work was to assess indices of pro- and antioxidant systems in term neonates with sepsis on the background of anemia and without it. A total of 41 neonates (17 male, 24 female) with the age range from 3 to 7 days, with early sepsis, and in 2003-2005 years treated at the department of neonates' therapy and intensive care unit of pediatric clinics of the Tbilisi State Medical University were under observation. The control group involved 17 practically healthy neonates of the same age range. In consequence of the analyses there was ascertained, that with anemia increases intensification free-radical oxidation process. At the same time, antioxidant system activity was not change significantly in the sepsis with anemia, than other one. Pathogenesis of anemia may was founded undergo hemolitic anemia results by oxidative stress. According to the results of investigations could be concluded that in case of anemia developed at neonatal sepsis supports intensify of oxidative stress and at the same time anemia is the result of the oxidative stress.
Yang, Hsin-Ling; Korivi, Mallikarjuna; Lin, Ming-Kuem; Chang, Hebron Chun-Wei; Wu, Chi-Rei; Lee, Meng-Shiou; Chen, William Tzu-Liang; Hseu, You-Cheng
2017-10-01
Pearl powder, a well-known traditional mineral medicine, is reported to be used for well-being and to treat several diseases from centuries in Taiwan and China. We investigated the in vitro antihemolytic and antioxidant properties of pearl powder that could protect erythrocytes against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage to membrane proteins/lipids. Human erythrocytes were incubated with different concentrations of pearl powder (50-200 μg/mL) for 30 minutes and then exposed to AAPH for 2-6 hours. We found that AAPH alone time dependently increased the oxidative hemolysis of erythrocytes, while pearl powder pretreatment substantially inhibited the hemolysis in a concentration-/time-dependent manner. AAPH-induced oxidative damage to erythrocyte membrane lipids was evidenced by the elevated malondialdehyde (MDA) levels. However, pearl powder remarkably inhibited the malondialdehyde formation, and the 200 μg/mL concentration showed almost similar malondialdehyde values to the control. Furthermore, pearl powder suppressed the AAPH-induced high-molecular-weight protein formation and concomitantly increased the low-molecular-weight proteins in erythrocytes. Antioxidant potential that was measured as superoxide dismutase activity and glutathione content was significantly dropped by AAPH incubation, which suggests the vulnerability of erythrocytes to AAPH-induced oxidative stress. Noteworthy, erythrocytes pretreated with pearl powder showed restored superoxide dismutase activity and glutathione levels against AAPH-induced loss. Our findings conclude that pearl powder attenuate free radical-induced hemolysis and oxidative damage to erythrocyte membrane lipids/proteins. The potent antioxidant property of pearl powder may offer protection from free radical-related diseases. Copyright © 2016. Published by Elsevier B.V.
[Effect of inducible nitric oxide on intracellular homeostasis of hepatocytes].
Tang, Xi-Feng; Zhou, Dong-Yao; Kang, Ge-Fei
2002-02-01
To investigate the effects of inducible nitric oxide (NO) and exogenous NO on the intracellular homeostasis of the hepatocytes. Endogenous NO was induced by combined action of lipopolysaccharide (LPS) and cytokines in cultured rat hepatocytes, and exogenous NO was supplied by sodium nitroprusside (SNP) to stimulate the hepatocytes. The changes in intracellular malondialdehyde (MDA), reduced glutathione(GSH) and free calcium ([Ca2+]i) were observed. substantial increase by 7.97 times in intracellular MDA level and a decrease by 57.9% in GSH occurred in the hepatocytes after the cells had been incubated with LPS and cytokines for 24 h, which were reversed by 43.5% and 98.4% respectively by treatment with N(G)-monomethyl-L-arginine (NMMA), a competitive nitric oxide synthase (NOS) inhibitor. Verapamil significantly reduced both endogenous NO production and oxidative stress, while the effect of A23187 was not conspicuous. Incubation with chlorpromazine and Vitamine E (VitE), however, did not result in decreased release of NO by LPS- and cytokines-induced hepatocytes. After SNP exposure of the hepatocytes, the oxidative status was reversibly enhanced in a time-dependent manner. Short exposure to SNP led to a concentration-dependent inhibition of the rapid and transient increase in free calcium induced by K(+) depolarization and hepatopoietin-coupled calcium mobilization. Inducible NO may initiate and play a key role in the latter stages of metabolic and functional stress responses of hepatocytes against endotoxin and cytokines, when the reduction occurs in the capacity of NO to independently mediate lipid peroxidation and counteract oxidation. The inhibitory effect of NO on [Ca2+]i mobilization may be an important autoregulatory mechanism by means of negative feedback on protein kinase C-associated NOS induction.
NASA Astrophysics Data System (ADS)
Jadko, Sergiy
Early increasing of reactive oxygen species (ROS) concentration, including H2O2, occur in plant cells under various impacts and these ROS can function as signaling molecules in starting of cell stress responses. Peroxiredoxins (Prx) and thioredoxins (Trx) are significant cell ROS/H2O2 sensors and transmitters. Prx besides its antioxidant activity, participate in creating of stress redox signals by destroying of H2O2 and reducing of Trx. Than these reduced Trx lead to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study aimed to investigate early increasing of ROS and H2O2 contents and Prx and Trx activities in pea roots and arabidopsis tissue culture cells under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12 days old tissue culture of Arabidopsis thaliana from leaves were studied. Pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and Prx and Trx activities were determined. All experiments were repeated by 3-4 times. Early increasing of ChL intensity and H2O2 content in the pea roots and arabidopsis tissue culture cells took place under hypergravity and oxidative stresses and its were higher corresponding controls on average on 25, 21 and 17 percents to 30, 60 and 90 min. At the same time Prx and Trx activities increased on 7, 13 and 16 percents. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers can lead to ROS/H2O2-dependent increasing of Prx and Trx activities with creating of H2O2-Prx-Trx signaling pathway.
Temperature dependence of autoxidation of perilla oil and tocopherol degradation.
Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok
2010-08-01
Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.
Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M
2015-09-01
To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL) . A prospective, repeated-measures design . Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment . Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety . Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms . Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.
Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria
2018-06-14
Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.
Processing Ti-25Ta-5Zr Bioalloy via Anodic Oxidation Procedure at High Voltage
NASA Astrophysics Data System (ADS)
Ionita, Daniela; Grecu, Mihaela; Dilea, Mirela; Cojocaru, Vasile Danut; Demetrescu, Ioana
2011-12-01
The current paper reports the processing of Ti-25Ta-5Zr bioalloy via anodic oxidation in NH4BF4 solution under constant potentiostatic conditions at high voltage to obtain more suitable properties for biomedical application. The maximum efficiency of the procedure is reached at highest applied voltage, when the corrosion rate in Hank's solution is decreased approxomately six times. The topography of the anodic layer has been studied using atomic force microscopy (AFM), and the results indicated that the anodic oxidation process increases the surface roughness. The AFM images indicated a different porosity for the anodized surfaces as well. After anodizing, the hydrophilic character of Ti-25Ta-5Zr samples has increased. A good correlation between corrosion rate obtained from potentiodynamic curves and corrosion rate from ions release analysis was obtained.
Bacterial Fe(II) oxidation distinguished by long-range correlation in redox potential
NASA Astrophysics Data System (ADS)
Enright, Allison M. L.; Ferris, F. Grant
2016-05-01
The kinetics of bacterial Fe(II) oxidation was investigated 297 m underground at the Äspö Hard Rock Laboratory (near Oskarshamn, Sweden) under steady state groundwater flow conditions in a flow-through cell containing well-developed flocculent mats of bacteriogenic iron oxides (BIOS). Pseudo first-order rate constants of 0.004 min-1 and 0.009 min-1 were obtained for chemical and bacterial Fe(II) oxidation, respectively, based on the 104 min retention time of groundwater in the flow cell, inlet Fe(II) concentration of 21.0 ± 0.5 µm, outlet Fe(II) concentration of 8.5 ± 0.7 µm, as well as constant pH = - log H+ of 7.42 ± 0.01, dissolved O2 concentration of 0.11 ± 0.01 mg/L, and groundwater temperature of 12.4 ± 0.1°C. Redox potential was lower at the BIOS-free inlet (-135.4 ± 1.16 mV) compared to inside BIOS within the flow cell (-112.6 ± 1.91 mV), consistent with the Nernst relationship and oxidation of Fe(II) to Fe(III). Further evaluation of the redox potential time series data using detrended fluctuation analysis (DFA) revealed power law scaling in the amplitude of fluctuations over increasing intervals of time with significantly different (p < 0.01) DFA α scaling exponents of 1.89 ± 0.03 for BIOS and 1.67 ± 0.06 at the inlet. These α values not only signal the presence of long-range correlation in the redox potential time series measurements but also distinguish between the slower rate of chemical Fe(II) oxidation at the inlet and faster rate accelerated by FeOB in BIOS.
Cobalt Oxide on N-Doped Carbon for 1-Butene Oligomerization to Produce Linear Octenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongting; Xu, Zhuoran; Chada, Joseph P.
Cobalt oxide supported on N-doped carbon catalysts were investigated for 1-butene oligomerization. The materials were synthesized by treating activated carbon with nitric acid and subsequently with NH3 at 200, 400, 600, and 800 °C, followed by impregnation with cobalt. The 1-butene oligomerization selectivity increased with ammonia treatment temperature of the carbon support. The oligomerization selectivity of cobalt oxide on N-doped carbon synthesized at 800 °C (800A-CoOx/N-C) is 2.6 times higher than previously reported cobalt oxide on N-doped carbon synthesized with NH4OH (2A-CoOx/N-C). Over 70% of the butene dimers were linear C8 olefins for all catalysts. The oligomerization selectivity increased withmore » 1-butene conversion. The catalysts were characterized by elemental analysis, N2 adsorption, X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). The nitrogen content of the catalysts increases with ammonia treatment temperature as confirmed by elemental analysis. The surface content of pyridinic nitrogen with a binding energy of 398.4 ± 0.1 eV increased with ammonia treatment temperature as evidenced by deconvolution of N 1s XPS spectra.« less
Benedetti, Serena; Benvenuti, Francesca; Pagliarani, Silvia; Francogli, Sonia; Scoglio, Stefano; Canestrari, Franco
2004-09-24
Aphanizomenon flos-aquae (AFA) is a fresh water unicellular blue-green alga (cyanophyta) rich in phycocyanin (PC), a photosynthetic pigment with antioxidant and anti-inflammatory properties. The purpose of this study was to evaluate the ability of a novel natural extract from AFA enriched with PC to protect normal human erythrocytes and plasma samples against oxidative damage in vitro. In red blood cells, oxidative hemolysis and lipid peroxidation induced by the aqueous peroxyl radical generator [2,2'-Azobis (2-amidinopropane) dihydrochloride, AAPH] were significantly lowered by the AFA extract in a time- and dose-dependent manner; at the same time, the depletion of cytosolic glutathione was delayed. In plasma samples, the natural extract inhibited the extent of lipid oxidation induced by the pro-oxidant agent cupric chloride (CuCl2); a concomitant increase of plasma resistance to oxidation was observed as evaluated by conjugated diene formation. The involvement of PC in the antioxidant protection of the AFA extract against the oxidative damage was demonstrated by investigating the spectral changes of PC induced by AAPH or CuCl2. The incubation of the extract with the oxidizing agents led to a significant decrease in the absorption of PC at 620 nm accompanied with disappearance of its blue color, thus indicating a rapid oxidation of the protein. In the light of these in vitro results, the potential clinical applications of this natural compound are under investigation.
Middle atmosphere NO/x/ production due to ion propulsion induced radiation belt proton precipitation
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Jackman, C. H.
1980-01-01
The suggestion that keV Ar(+) resulting from ion propulsion operations during solar power satellite construction could cause energetic proton precipitation from the inner radiation belt is examined to determine if such precipitation could cause significant increases in middle atmosphere nitric oxide concentrations thereby adversely affecting stratospheric ozone. It is found that the initial production rate of NO (mole/cu cm-sec) at 50 km is 130 times that due to nitrous oxide reacting with excited oxygen. However, since the time required to empty the inner belt of protons is about 1 sec and short compared to the replenishment time due to neutron decay, precipitation of inner radiation belt protons will have no adverse atmospheric environmental effect.
Pathways for Intracellular Generation of Oxidants and Tyrosine Nitration by a Macrophage Cell Line†
Palazzolo-Ballance, Amy M.; Suquet, Christine; Hurst, James K.
2008-01-01
Two transformed murine macrophage cell lines (RAW 264.7 ATCC TIB-71 and CRL-2278) were examined for oxidant production at various times following activation by using a set of fluorescence and ESR-active probes. Stimulation with a soluble agonist or activation with bacterial lipopolysaccharide plus γ-interferon caused only very small initial increases in O2 consumption above basal rates; however, at 2-4 h post-activation, respiration increased to 2-3 fold and remained at these elevated levels over the subsequent lifetime of the cell (20-30 h). Oxidation reactions were confined primarily within the cell, as was demonstrated by using phagocytosable dichlorodihydrofluorescein-conjugated latex beads and cyclic hydroxylamines with differing membrane permeabilities. From the intrinsic reactivities of these probes and the time course of their oxidations, one infers induction of apparent peroxidase activity beginning at ∼2 h post-activation, coinciding with the increase in overall respiratory rate; this acquired capability was accompanied by accumulation of a stable horseradish peroxidase-reactive oxidant, presumably H2O2, in the extracellular medium,. Nitrite ion rapidly accumulated in the extracellular medium over a period of 5-8 h post-activation in both cell lines, indicating the presence of active nitric oxide synthase (iNOS) during that period. Prostaglandin endoperoxide H synthase (COX-2) activity was detected at 15-20 h post-activation by use of sensitive peroxide assay in conjunction with a COX-2 specific inhibitor (DuP-697). Superoxide formation was detected by reaction with hydroethidine within the first hour following activation, but not thereafter. Consistent with the absence of significant respiratory stimulation, the amount of O2·- formed was very small; comparative reactions of cyclic hydroxylamine probes indicated that virtually none of the O2·- was discharged into the external medium. Myeloperoxidase (MPO) activity was probed at various times post-activation by using fluorescein-conjugated polyacrylamide beads, which efficiently trap MPO-generated HOCl in neutrophils to give stable chlorofluorescein products. However, chlorination of the dye was not detected under any conditions in RAW cells, virtually precluding MPO involvement in their intracellular reactions. This same probe was used to determine changes in intraphagosomal pH, which increased slowly from ∼6.5 to ∼8.2 over a 20 h post-phagocytosis period. The cumulative data suggest activation is followed by sequential induction of an endogenous peroxidase, iNOS, and COX-2, with NADPH oxidase-derived O2·- playing a minimal role in direct generation of intracellular oxidants. To account for reported observations of intracellular tyrosine nitration late in the life cycles of macrophages, we propose a novel mechanism wherein iNOS-generated NO2- is used by COX-2 to produce NO2· as a terminal microbicidal oxidant and nitrating agent. PMID:17530864
Herrick, R T; Tavárez, M A; Harsh, B N; Mellencamp, M A; Boler, D D; Dilger, A C
2016-07-01
The objectives of this study were to determine the effect of 1) immunological castration (Improvest, a gonadotropin releasing factor analog-diphtheria toxoid conjugate) management strategy (age at slaughter and time of slaughter after second dose) and 2) sex on lipid oxidation and sensory characteristics of bacon stored under simulated food service conditions. For Objective 1, immunological castration management strategies included 24-wk-old immunologically castrated (IC) barrows 4, 6, 8, or 10 wk after the second Improvest dose (ASD); 26-wk-old IC barrows 6 wk ASD; and 28-wk-old IC barrows 8 wk ASD ( = 63). Objective 2 ( = 97) included IC barrows, physically castrated (PC) barrows, and gilts slaughtered at 24, 26, and 28 wks of age. Bellies from 2 slaughter dates were manufactured into bacon under commercial conditions. Bacon slices were laid out on parchment paper, packaged in oxygen-permeable poly-vinyl-lined boxes, and frozen (-33°C) for 1, 4, 8, or 12 wk to simulate food service conditions. At the end of each storage period, bacon was evaluated for lipid oxidation, moisture and lipid content, and sensory characteristics. Data from both objectives were analyzed using the MIXED procedure in SAS with belly as the experimental unit. For both objectives, as storage time increased, lipid oxidation of bacon increased ( < 0.01), regardless of management strategy or sex. Also, there was no sex or management strategy × week of frozen storage interaction for any traits evaluated ( ≥ 0.25). For Objective 1, lipid content of bacon from IC barrows increased as time of slaughter ASD increased ( < 0.05), regardless of age at slaughter. Additionally, there were no differences in sensory attributes of bacon across management strategies. For the evaluation of sex effects in Objective 2, lipid oxidation was greater ( < 0.05) in IC barrows compared with PC barrows but was not different than gilts ( > 0.05). After 12 wk of frozen storage, lipid oxidation values for IC barrows, PC barrows, and gilts were still below 0.5 mg malondialdehyde/kg of meat, the threshold at which trained panelists may deem a food to be rancid. In conclusion, bacon shelf life characteristics were not altered by the immunological castration management strategy and bacon from IC barrows was similar to bacon from gilts. Therefore, bacon from IC barrows would result in shelf life and sensory quality similar to PC barrows and gilts.
Duan, Liang; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W
2013-12-01
This study investigated the nitrifying bacterial community in membrane bioreactor (MBR) at short solids retention times (SRTs) of 3, 5 and 10 days. The denaturing gradient gel electrophoresis results showed that different types of ammonia-oxidizing bacteria (AOB) can survive at different operating conditions. The diversity of AOB increased as the SRT increased. The real-time PCR results showed that the amoA gene concentrations were similar when MBRs were stabilized, and it can be a good indicator of stabilized nitrification. The results of clone library indicated that Nitrosomonas was the dominant group of AOB in three reactors. The microarray results showed that Nitrospira was the dominant group of nitrite-oxidizing bacteria (NOB) in the system. All groups of AOB and NOB except Nitrosolobus and Nitrococcus were found in MBR, indicated that the nitrifying bacterial community structure was more complicated. The combination of some molecular tools can provide more information of microbial communities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Degirmenci, Sinan; Olgar, Yusuf; Durak, Aysegul; Tuncay, Erkan; Turan, Belma
2018-07-01
Intracellular labile (free) Zn 2+ -level ([Zn 2+ ] i ) is low and increases markedly under pathophysiological conditions in cardiomyocytes. High [Zn 2+ ] i is associated with alterations in excitability and ionic-conductances while exact mechanisms are not clarified yet. Therefore, we examined the elevated-[Zn 2+ ] i on some sarcolemmal ionic-mechanisms, which can mediate cardiomyocyte dysfunction. High-[Zn 2+ ] i induced significant changes in action potential (AP) parameters, including depolarization in resting membrane-potential and prolongations in AP-repolarizing phases. We detected also the time-dependent effects such as induction of spontaneous APs at the time of ≥ 3 min following [Zn 2+ ] i increases, a manner of cellular ATP dependent and reversible with disulfide-reducing agent dithiothreitol, DTT. High-[Zn 2+ ] i induced inhibitions in voltage-dependent K + -channel currents, such as transient outward K + -currents, I to , steady-state currents, I ss and inward-rectifier K + -currents, I K1 , reversible with DTT seemed to be responsible from the prolongations in APs. We, for the first time, demonstrated that lowering cellular ATP level induced significant decreaeses in both I ss and I K1 , while no effect on I to . However, the increased-[Zn 2+ ] i could induce marked activation in ATP-sensitive K + -channel currents, I KATP , depending on low cellular ATP and thiol-oxidation levels of these channels. The mRNA levels of Kv4.3, Kv1.4 and Kv2.1 were depressed markedly with increased-[Zn 2+ ] i with no change in mRNA level of Kv4.2, while the mRNA level of I KATP subunit, SUR2A was increased significantly with increased-[Zn 2+ ] i , being reversible with DTT. Overall we demonstrated that high-[Zn 2+ ] i, even if nanomolar levels, alters cardiac function via prolonged APs of cardiomyocytes, at most, due to inhibitions in voltage-dependent K + -currents, although activation of I KATP is playing cardioprotective role, through some biochemical changes in cellular ATP- and thiol-oxidation levels. It seems, a well-controlled [Zn 2+ ] i can be novel therapeutic target for cardiac complications under pathological conditions including oxidative stress. Copyright © 2018 Elsevier GmbH. All rights reserved.
Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D
2017-01-01
Both fresh and slightly oxidized sunflower oils, as models of omega-6 rich lipids, were submitted to in vitro gastrointestinal digestion and studied by 1 H NMR and SPME-GC/MS. Changes in lipolysis degree, lipid composition and oxidative level were studied by 1 H NMR. Three quantitative approaches were used and several equations were newly developed. In oxidized oil digestates slightly lower hydrolysis and a higher advance of oxidation took place during digestion. This latter was evidenced by a greater decrease of lipid unsaturation degree and enhanced generation of oxidation products (cis,trans-hydroperoxy-octadecadienoates, cis,trans- and trans,trans-hydroxy-octadecadienoates). For the first time, the generation of hydroxy-octadecadienoates during in vitro digestion is reported. Furthermore, SPME-GC/MS study of non-digested and digested samples headspaces confirmed that lipid oxidation occurred: abundances of volatile markers increased (including potentially toxic alpha,beta-unsaturated aldehydes), especially in oxidized oils digestates. Markers of Maillard-type and esterification reactions were also detected in the digestates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cyclical Annealing Technique To Enhance Reliability of Amorphous Metal Oxide Thin Film Transistors.
Chen, Hong-Chih; Chang, Ting-Chang; Lai, Wei-Chih; Chen, Guan-Fu; Chen, Bo-Wei; Hung, Yu-Ju; Chang, Kuo-Jui; Cheng, Kai-Chung; Huang, Chen-Shuo; Chen, Kuo-Kuang; Lu, Hsueh-Hsing; Lin, Yu-Hsin
2018-02-26
This study introduces a cyclical annealing technique that enhances the reliability of amorphous indium-gallium-zinc-oxide (a-IGZO) via-type structure thin film transistors (TFTs). By utilizing this treatment, negative gate-bias illumination stress (NBIS)-induced instabilities can be effectively alleviated. The cyclical annealing provides several cooling steps, which are exothermic processes that can form stronger ionic bonds. An additional advantage is that the total annealing time is much shorter than when using conventional long-term annealing. With the use of cyclical annealing, the reliability of the a-IGZO can be effectively optimized, and the shorter process time can increase fabrication efficiency.
Acylcarnitines: potential implications for skeletal muscle insulin resistance.
Aguer, Céline; McCoin, Colin S; Knotts, Trina A; Thrush, A Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H; Adams, Sean H; Harper, Mary-Ellen
2015-01-01
Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance. © FASEB.
Cannabis-induced impairment of learning and memory: effect of different nootropic drugs.
Abdel-Salam, Omar M E; Salem, Neveen A; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A
2013-01-01
Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ(9)-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose availability as well as alterations in brain monoamine neurotransmitter levels. Piracetam is more effective in ameliorating the cognitive impairments than other nootropics by alleviating the alterations in glucose, nitric oxide and dopamine in brain.
Cannabis-induced impairment of learning and memory: effect of different nootropic drugs
Abdel-Salam, Omar M.E.; Salem, Neveen A.; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A.
2013-01-01
Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ9-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose availability as well as alterations in brain monoamine neurotransmitter levels. Piracetam is more effective in ameliorating the cognitive impairments than other nootropics by alleviating the alterations in glucose, nitric oxide and dopamine in brain. PMID:26417227
Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products.
Salminen, Hanna; Herrmann, Kurt; Weiss, Jochen
2013-03-01
The oxidative and physical stabilities of oil-in-water emulsions containing n-3 fatty acids (25 wt.% oil, 2.5 wt.% whey protein, pH 3.0 or pH 6.0), and their subsequent incorporation into meat products were investigated. The physical stability of fish oil emulsions was excellent and neither coalescence nor aggregation occurred during storage. Oxidative stability was better at pH 6.0 compared to pH 3.0 likely due to antioxidative continuous phase proteins. Incorporation of fish oil emulsions into pork sausages led to an increase in oxidation compared to sausages without the added fish oil emulsion. Confocal microscopy of pork sausages with fish oil emulsions revealed that droplets had coalesced in the meat matrix over time which may have contributed to the decreased oxidative stability. Results demonstrate that although interfacial engineering of n-3 fatty acids containing oil-in-water emulsions provides physical and oxidative stability of the base-emulsion, their incorporation into complex meat matrices is a non-trivial undertaking and products may incur changes in quality over time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Void formation in INCONEL MA-754 by high temperature oxidation
NASA Astrophysics Data System (ADS)
Rosenstein, Alan H.; Tien, John K.; Nix, William D.
1986-01-01
Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1980-01-01
The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.
NASA Astrophysics Data System (ADS)
Su, Po-Cheng; Hsu, Chun-Chi; Du, Sin-I.; Wang, Tahui
2017-12-01
Read operation induced disturbance in SET-state in a tungsten oxide resistive switching memory is investigated. We observe that the reduction of oxygen vacancy density during read-disturb follows power-law dependence on cumulative read-disturb time. Our study shows that the SET-state read-disturb immunity progressively degrades by orders of magnitude as SET/RESET cycle number increases. To explore the cause of the read-disturb degradation, we perform a constant voltage stress to emulate high-field stress effects in SET/RESET cycling. We find that the read-disturb failure time degradation is attributed to high-field stress-generated oxide traps. Since the stress-generated traps may substitute for some of oxygen vacancies in forming conductive percolation paths in a switching dielectric, a stressed cell has a reduced oxygen vacancy density in SET-state, which in turn results in a shorter read-disturb failure time. We develop an analytical read-disturb degradation model including both cycling induced oxide trap creation and read-disturb induced oxygen vacancy reduction. Our model can well reproduce the measured read-disturb failure time degradation in a cycled cell without using fitting parameters.
A novel solution for hydroxylated PAHs removal by oxidative coupling reaction using Mn oxide.
Kang, Ki-Hoon; Lim, Dong-Min; Shin, Hyun-Sang
2008-01-01
In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of the natural Mn oxides present in soil, was investigated in various experimental conditions (reaction time, Mn oxide loadings, pH). The removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-visible and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, k, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amounts of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, the surface area normalised specific rate constant, k(surf), was also determined to be 9.3 x 10(-4) (L/m(2).min) for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4. (c) IWA Publishing 2008.
Wang, Jing; Xu, Wenjing; Ali, Syed F; Angulo, Jesus A
2008-10-01
Methamphetamine (METH) is a widely used "club drug" that produces neural damage in the brain, including the loss of some neurons. METH-induced striatal neuronal loss has been attenuated by pretreatment with the neurokinin-1 receptor antagonist WIN-51,708 in mice. Using a histologic method, we have observed the internalization of the neurokinin-1 receptor into endosomes in the striatal somatostatin/NPY/nitric oxide synthase interneurons. To investigate the role of this interneuron in the striatal cell death induced by METH, we assessed by immunohistochemistry the number of striatal nitric oxide synthase-positive neurons in the presence of METH at 8 and 16 hours after systemic injection of a bolus of METH (30 mg/kg, i.p.). We found the number of striatal nitric oxide synthase-positive neurons unchanged at these time points after METH. In a separate experiment we measured the levels of striatal 3-nitrotyrosine (3-NT) by HPLC (high-pressure liquid chromatography) as an indirect index of nitric oxide synthesis. METH increased the levels of 3-nitrotyrosine in the striatum and this increase was significantly attenuated by pretreatment with a selective neurokinin-1 receptor antagonist. These observations suggest a causal relationship between the neurokinin-1 receptor and the activation of neuronal nitric oxide synthase that warrants further investigation.
Degradation of caffeine by conductive diamond electrochemical oxidation.
Indermuhle, Chloe; Martín de Vidales, Maria J; Sáez, Cristina; Robles, José; Cañizares, Pablo; García-Reyes, Juan F; Molina-Díaz, Antonio; Comninellis, Christos; Rodrigo, Manuel A
2013-11-01
The use of Conductive-Diamond Electrochemical Oxidation (CDEO) and Sonoelectrochemical Oxidation (CDSEO) has been evaluated for the removal of caffeine of wastewater. Effects of initial concentration, current density and supporting electrolyte on the process efficiency are assessed. Results show that caffeine is very efficiently removed with CDEO and that depletion of caffeine has two stages depending on its concentration. At low concentrations, opposite to what it is expected in a mass-transfer controlled process, the efficiency increases with current density very significantly, suggesting a very important role of mediated oxidation processes on the removal of caffeine. In addition, the removal of caffeine is faster than TOC, indicating the formation of reaction intermediates. The number and relative abundance of them depend on the operating conditions and supporting electrolyte used. In chloride media, removal of caffeine is faster and more efficiently, although the occurrence of more intermediates takes place. CDSEO does not increase the efficiency of caffeine removal, but it affects to the formation of intermediates. A detailed characterization of intermediates by liquid chromatography time-of-flight mass spectrometry seems to indicate that the degradation of caffeine by CDEO follows an oxidation pathway similar to mechanism proposed by other advanced oxidation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fabrication of Oxide Dispersion Strengthened Bond Coats with Low Al2O3 Content
NASA Astrophysics Data System (ADS)
Bergholz, Jan; Pint, Bruce A.; Unocic, Kinga A.; Vaßen, Robert
2017-06-01
Nanoscale oxide dispersions have long been used to increase the oxidation and wear resistance of alloys used as bond coatings in thermal barrier coatings. Their manufacturing via mechanical alloying is often accompanied by difficulties regarding their particle size, homogeneous distribution of the oxide dispersions inside the powder, involving considerable costs, due to cold welding of the powder during milling. A significant improvement in this process can be achieved by the use of process control agent (PCA) to achieve the critical balance between cold welding and fracturing, thereby enhancing the process efficiency. In this investigation, the influence of the organic additive stearic acid on the manufacturing process of Al2O3-doped CoNiCrAlY powder was investigated. Powders were fabricated via mechanical alloying at different milling times and PCA concentrations. The results showed a decrease in particle size, without hindering the homogeneous incorporation of the oxide dispersions. Two powders manufactured with 0.5 and 1.0 wt.% PCA were deposited by high velocity oxygen fuel (HVOF) spraying. Results showed that a higher content of elongated particles in the powder with the higher PCA content led to increased surface roughness, porosity and decreased coating thickness, with areas without embedded oxide particles.
LDL oxidation by THP-1 monocytes: implication of HNP-1, SgIII and DMT-1.
He, Chunyan; Huang, Rui; Du, Fen; Zheng, Fang; Wei, Lei; Wu, Junzhu
2009-04-01
Oxidized low-density lipoprotein (oxLDL) plays an important role in the pathogenesis of atherosclerosis. However, the mechanisms of the initiation and progression of LDL oxidation by cells are still unknown. We investigated the molecular mechanism underlying THP-1 cell-mediated LDL oxidation. LDL oxidation was monitored at 234 nm by detecting the formation of conjugated dienes. cDNA array analysis was applied to profile changes in gene expression of human THP-1 monocytes in response to LDL stimulation. The mRNA and protein levels of secretogranin III (SgIII), divalent metal transporter (DMT-1) and human alpha-defensin 1 (HNP-1) were determined by real-time RT-PCR and Western blotting respectively. Eukaryotic expression vectors containing full-length cDNA sequence of HNP-1 (pEGFP-C1/HNP-1) SgIII (pEGFP-C1/SgIII) or DMT-1 (pEGFP-C1/DMT-1) were constructed and transfected to THP-1 cells. The effects of overexpression of these three genes on THP-1 cell-mediated LDL oxidation were observed. LDL oxidation was most pronounced after LDL was incubated with THP-1 cells for 9 h. 1651 genes in total were detected by cDNA array analysis in THP-1 cells with or without LDL treatment for 9 h. Thirteen genes with >2-fold relative expression difference were identified, including nine genes whose expression was up-regulated and four genes whose expression was down-regulated. Among the up-regulated genes, SgIII, DMT-1 and HNP-1 were reported to be associated with atherosclerosis. The increased mRNA expressions of these three genes were confirmed by real-time RT-PCR. Western blotting analysis demonstrated that protein expressions of SgIII and DMT-1 were also enhanced in THP-1 cells in response to LDL. Furthermore, transient overexpression of HNP-1, SgIII or DMT-1 in THP-1 cells significantly increased THP-1 cell-mediated LDL oxidation. Our data suggest that SgIII, DMT-1 and HNP-1 are implicated in cell-mediated LDL oxidation.
Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.
Oosthuyse, T; Carstens, M; Millen, A M E
2015-07-01
The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only. © Georg Thieme Verlag KG Stuttgart · New York.
Carteri, Randhall B; Lopes, André Luis; Schöler, Cinthia M; Correa, Cleiton Silva; Macedo, Rodrigo C; Gross, Júlia Silveira; Kruger, Renata Lopes; Homem de Bittencourt, Paulo I; Reischak-Oliveira, Álvaro
2016-06-01
Since exercise increases the production of reactive oxygen species in different tissues, the objective of this study is to evaluate, compare and correlate the acute effects of aerobic and resistance exercise in circulatory markers of oxidative stress and acylated ghrelin (AG) in postmenopausal women. Ten postmenopausal women completed different protocols: a control session (CON), an aerobic exercise session (AERO); and a single-set (SSR) or 3-set (MSR) resistance exercise protocol. After exercise, both MSR (P = .06) and AERO (P = .02) sessions showed significant increased lipid peroxidation compared with baseline levels. CON and SSR sessions showed no differences after exercise. No differences were found between sessions at any time for total glutathione, glutathione dissulfide or AG concentrations. Exercise significantly increased lipid peroxidation compared with baseline values. As pro oxidant stimuli is necessary to promote chronic adaptations to the antioxidant defenses induced by exercise, our findings are important to consider when evaluating exercise programs prescription variables aiming quality of life in this population.
Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces.
Nyan, Myat; Hao, Jia; Miyahara, Takayuki; Noritake, Kanako; Rodriguez, Reena; Kasugai, Shohei
2014-10-01
With increasing application of dental implants in poor-quality bones, the need for implant surfaces ensuring accelerated osseointegration and enhanced peri-implant bone regeneration is increased. A study was performed to evaluate the osseointegration and bone formation on novel simvastatin-loaded porous titanium oxide surface. Titanium screws were treated by micro-arc oxidation to form porous oxide surface and 25 or 50 μg of simvastatin was loaded. The nontreated control, micro-arc oxidized, and simvastatin-loaded titanium screws were surgically implanted into the proximal tibia of 16-week-old male Wistar rats (n = 36). Peri-implant bone volume, bone-implant contact, and mineral apposition rates were measured at 2 and 4 weeks. Data were analyzed by one-way analysis of variance followed by Tukey's post hoc test. New bone was formed directly on the implant surface in the bone marrow cavity in simvastatin-loaded groups since 2 weeks. Bone-implant contact values were significantly higher in simvastatin-loaded groups than control and micro-arc oxidized groups at both time points (p < .05). Peri-implant bone volume and mineral apposition rate of simvastatin-loaded groups were significantly higher than control and micro-arc oxidized groups at 2 weeks (p < .05). These data suggested that simvastatin-loaded porous titanium oxide surface provides faster osseointegration and peri-implant bone formation and it would be potentially applicable in poor-quality bones. © 2013 Wiley Periodicals, Inc.
Withee, Eric D; Tippens, Kimberly M; Dehen, Regina; Tibbitts, Deanne; Hanes, Douglas; Zwickey, Heather
2017-01-01
Oxidative stress and muscle damage occur during exhaustive bouts of exercise, and many runners report pain and soreness as major influences on changes or breaks in training regimens, creating a barrier to training persistence. Methylsulfonylmethane (MSM) is a sulfur-based nutritional supplement that is purported to have pain and inflammation-reducing effects. To investigate the effects of MSM in attenuating damage associated with physical exertion, this randomized, double-blind, placebo-controlled study evaluated the effects of MSM supplementation on exercise-induced pain, oxidative stress and muscle damage. Twenty-two healthy females ( n = 17) and males ( n = 5) (age 33.7 ± 6.9 yrs.) were recruited from the 2014 Portland Half-Marathon registrant pool. Participants were randomized to take either MSM (OptiMSM®) ( n = 11), or a placebo ( n = 11) at 3 g/day for 21 days prior to the race and for two days after (23 total). Participants provided blood samples for measurement of markers of oxidative stress, and completed VAS surveys for pain approximately one month prior to the race (T 0 ), and at 15 min (T 1 ), 90 min (T 2 ), 1 Day (T 3 ), and 2 days (T 4 ) after race finish. The primary outcome measure 8-hydroxy-2-deoxyguanine (8-OHdG) measured oxidative stress. Secondary outcomes included malondialdehyde (MDA) for oxidative stress, creatine kinase (CK) and lactate dehydrogenase (LDH) as measures of muscle damage, and muscle (MP) and joint pain (JP) recorded using a 100 mm Visual Analogue Scale (VAS). Data were analyzed using repeated and multivariate ANOVAs, and simple contrasts compared post-race time points to baseline, presented as mean (SD) or mean change (95% CI) where appropriate. Running a half-marathon induced significant increases in all outcome measures ( p < 0.001). From baseline, 8-OHdG increased significantly at T 1 by 1.53 ng/mL (0.86-2.20 ng/mL CI, p < 0.001) and T 2 by 1.19 ng/mL (0.37-2.01 ng/mL CI, p < 0.01), and fell below baseline levels at T 3 by -0.46 ng/mL (-1.18-0.26 CI, p > 0.05) and T 4 by -0.57 ng/mL (-1.27-0.13 CI, p > 0.05). MDA increased significantly at T 1 by 7.3 μM (3.9-10.7 CI, p < 0.001). Muscle damage markers CK and LDH saw significant increases from baseline at all time-points ( p < 0.01). Muscle and joint pain increased significantly from baseline at T 1 , T 2 , and T 3 ( p < 0.01) and returned to baseline levels at T 4 . Time-by-treatment results did not reach statistical significance for any outcome measure, however, the MSM group saw clinically significant (Δ > 10 mm) reductions in both muscle and joint pain. Participation in a half-marathon was associated with increased markers of oxidative stress, muscle damage, and pain. MSM supplementation was not associated with a decrease from pre-training levels of oxidative stress or muscle damage associated with an acute bout of exercise. MSM supplementation attenuated post-exercise muscle and joint pain at clinically, but not statistically significant levels.
Yuan, Xiao-Hua; Fan, Yang-Yang; Yang, Chun-Rong; Gao, Xiao-Rui; Zhang, Li-Li; Hu, Ying; Wang, Ya-Qin; Jun, Hu
2016-01-01
The role of progesterone on the cardiovascular system is controversial. Our present research is to specify the effect of progesterone on arterial endothelial cells in response to oxidative stress. Our result showed that H2O2 (150 μM and 300 μM) induced cellular antioxidant response. Glutathione (GSH) production and the activity of Glutathione peroxidase (GPx) were increased in H2O2-treated group. The expression of glutamate cysteine ligase catalytic subunit (GCLC) and modifier subunit (GCLM) was induced in response to H2O2. However, progesterone absolutely abolished the antioxidant response through increasing ROS level, inhibiting the activity of Glutathione peroxidase (GPx), decreasing GSH level and reducing expression of GClC and GCLM. In our study, H2O2 induced nitrogen monoxide (NO) production and endothelial nitric oxide synthase (eNOS) expression, and progesterone promoted H2O2-induced NO production. Progesterone increased H2O2-induced expression of hypoxia inducible factor-α (HIFα) which in turn regulated eNOS expression and NO synthesis. Further study demonstrated that progesterone increased H2O2 concentration of culture medium which may contribute to NO synthesis. Exogenous GSH decreased the content of H2O2 of culture medium pretreated by progesterone combined with H2O2 or progesterone alone. GSH also inhibited expression of HIFα and eNOS, and abolished NO synthesis. Collectively, our study demonstrated for the first time that progesterone inhibited cellular antioxidant effect and increased oxidative stress, promoted NO production of arterial endothelial cells, which may be due to the increasing H2O2 concentration and amplified oxidative stress signal. Copyright © 2015. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lei, Yanju; Zhang, Wenbing; Xu, Wei; Zhang, Yanjiao; Zhou, Huihui; Mai, Kangsen
2015-06-01
The aim of this study was to compare the effects of waterborne copper (Cu) and cadmium (Cd) on survival, anti-oxidative response, lipid peroxidation and metal accumulation in abalone Haliotis discus hannai. Experimental animals (initial weight: 7.49 g ± 0.01 g) were exposed to graded concentrations of waterborne Cu (0.02, 0.04, 0.06, 0.08 mg L-1) or Cd (0.025, 0.05, 0.25, 0.5 mg L-1) for 28 days, respectively. Activities of the anti-oxidative enzymes (catalase, CAT; superoxide dismutase, SOD; glutathione peroxidases, GPx; glutathione S-transferase, GST), contents of the reduced glutathione (GSH) and malondiadehyde (MDA) in the hepatopancreas, and metal accumulation in hepatopancreas and muscles were analyzed after 0, 1, 3, 6, 10, 15, 21, 28 days of metal exposure, respectively. Results showed that 0.04 mg L-1, 0.06 mg L--1 and 0.08 mg L-1 Cu caused 100% death of abalone on the 21st, 10th and 6th day, respectively. However, no dead abalone was found during the 28-day waterborne Cd exposure at all experimental concentrations. Generally, activities of SOD and GST in hepatopancreas under all Cu concentrations followed a decrease trend as the exposure time prolonged. However, these activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Activities of CAT in all Cu exposure treatments were higher than those in the control. These activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Contents of MDA in hepatopancreas in all Cu treatments significantly increased first and then decreased to the control level. However, the MDA contents in hepatopancreas were not significantly changed during the 28-day Cd exposure. The metals accumulation in both hepatopancreas and muscles of abalone significantly increased with the increase of waterborne metals concentration and exposure time. These results indicated that H. discus hannai has a positive anti-oxidative defense against Cu or Cd. In conclusion, anti-oxidative mechanism in abalone to resist waterborne Cu did not follow the same pattern as that for waterborne Cd.
Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.
Angelopoulou, A; Voulgari, E; Diamanti, E K; Gournis, D; Avgoustakis, K
2015-06-01
To investigate the application of water-dispersible poly(lactide)-poly(ethylene glycol) (PLA-PEG) copolymers for the stabilization of graphene oxide (GO) aqueous dispersions and the feasibility of using the PLA-PEG stabilized GO as a delivery system for the potent anticancer agent paclitaxel. A modified Staudenmaier method was applied to synthesize graphene oxide (GO). Diblock PLA-PEG copolymers were synthesized by ring-opening polymerization of dl-lactide in the presence of monomethoxy-poly(ethylene glycol) (mPEG). Probe sonication in the presence of PLA-PEG copolymers was applied in order to reduce the hydrodynamic diameter of GO to the nano-size range according to dynamic light scattering (DLS) and obtain nano-graphene oxide (NGO) composites with PLA-PEG. The composites were characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), and DLS. The colloidal stability of the composites was evaluated by recording the size of the composite particles with time and the resistance of composites to aggregation induced by increasing concentrations of NaCl. The composites were loaded with paclitaxel and the in vitro release profile was determined. The cytotoxicity of composites against A549 human lung cancer cells in culture was evaluated by flow cytometry. The uptake of FITC-labeled NGO/PLA-PEG by A549 cells was also estimated with flow cytometry and visualized with fluorescence microscopy. The average hydrodynamic diameter of NGO/PLA-PEG according to DLS ranged between 455 and 534 nm, depending on the molecular weight and proportion of PLA-PEG in the composites. NGO/PLA-PEG exhibited high colloidal stability on storage and in the presence of high concentrations of NaCl (far exceeding physiological concentrations). Paclitaxel was effectively loaded in the composites and released by a highly sustained fashion. Drug release could be regulated by the molecular weight of the PLA-PEG copolymer and its proportion in the composite. The paclitaxel-loaded composites exhibited cytotoxicity against A549 cancer cells which increased with incubation time, in conjunction with the increasing with time uptake of composites by the cancer cells. Graphene oxide aqueous dispersions were effectively stabilized by water-dispersible, biocompatible and biodegradable PLA-PEG copolymers. The graphene oxide/PLA-PEG composites exhibited satisfactory paclitaxel loading capacity and sustained in vitro drug release. The paclitaxel-loaded composites could enter the A549 cancer cells and exert cytotoxicity. The results justify further investigation of the suitability of PLA-PEG stabilized graphene oxide for the controlled delivery of paclitaxel. Copyright © 2015 Elsevier B.V. All rights reserved.
Cheserek, Maureen Jepkorir; Wu, Guirong; Li, Longnan; Li, Lirong; Karangwa, Eric; Shi, Yonghui; Le, Guowei
2016-07-01
This study investigated possible mechanisms for cardioprotective effects of lipoic acid (LA), quercetin (Q) and resveratrol (R) on oxidative stress related to thyroid hormone alterations in long-term obesity. Female C57BL/6 mice were fed on high-fat diet (HFD), HFD+LA, HFD+R, HFD+Q and normal diet for 26weeks. Body weight, blood pressure, thyroid hormones, oxidative stress markers, angiotensin converting enzyme (ACE), nitric oxide synthase (NOS) and ion pump activities were measured, and expression of cardiac genes was analyzed by real-time polymerase chain reaction. HFD induced marked increase (P<.05) in body weight, blood pressure and oxidative stress, while plasma triidothyronine levels reduced. ACE activity increased (P<.05) in HFD mice (0.69±0.225U/mg protein) compared with controls (0.28±0.114U/mg protein), HFD+LA (0.231±0.02U/mg protein) and HFD+Q (0.182±0.096U/mg protein) at 26weeks. Moreover, Na(+)/K(+)-ATPase and Ca(2+)-ATPase activities increased in HFD mice whereas NOS reduced. A 1.5-fold increase in TRα1 and reduction in expression of the deiodinase iodothyronine DIO1, threonine protein kinase and NOS3 as well as up-regulation of AT1α, ACE, ATP1B1, GSK3β and Cja1 genes also occurred in HFD mice. Conversely, LA, Q and R inhibited weight gain; reduced TRα1 expression as well as increased DIO1; reduced ACE activity and AT1α, ATP1B1 and Cja1 gene expression as well as inhibited GSK3β; increased total antioxidant capacity, GSH and catalase activity; and reduced blood pressure. In conclusion, LA, resveratrol and quercetin supplementation reduces obesity thereby restoring plasma thyroid hormone levels and attenuating oxidative stress in the heart and thus may have therapeutic potential in heart diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Song, Ji Youn; Kang, Hyun A; Kim, Mi-Yeon; Park, Young Min; Kim, Hyung Ok
2004-03-01
Superficial chemical peeling and microdermabrasion have become increasingly popular methods for producing facial rejuvenation. However, there are few studies reporting the skin barrier function changes after these procedures. To evaluate objectively the degree of damage visually and the time needed for the skin barrier function to recover after glycolic acid peeling and aluminum oxide crystal microdermabrasion using noninvasive bioengineering methods. Superficial chemical peeling using 30%, 50%, and 70% glycolic acid and aluminum oxide crystal microdermabrasion were used on the volar forearm of 13 healthy women. The skin response was measured by a visual observation and using an evaporimeter, corneometer, and colorimeter before and after peeling at set time intervals. Both glycolic acid peeling and aluminum oxide crystal microdermabrasion induced significant damage to the skin barrier function immediately after the procedure, and the degree of damage was less severe after the aluminum oxide crystal microdermabrasion compared with glycolic acid peeling. The damaged skin barrier function had recovered within 24 hours after both procedures. The degree of erythema induction was less severe after the aluminum oxide crystal microdermabrasion compared with the glycolic acid peeling procedure. The degree of erythema induced after the glycolic acid peeling procedure was not proportional to the peeling solution concentration used. The erythema subsided within 1 day after the aluminum oxide crystal microdermabrasion procedure and within 4 days after the glycolic acid peeling procedure. These results suggest that the skin barrier function is damaged after the glycolic acid peeling and aluminum oxide crystal microdermabrasion procedure but recovers within 1 to 4 days. Therefore, repeating the superficial peeling procedure at 2-week intervals will allow sufficient time for the damaged skin to recover its barrier function.
Thamilselvan, Vijayalakshmi; Menon, Mani
2013-01-01
Oxalate-induced oxidative cell injury is one of the major mechanisms implicated in calcium oxalate nucleation, aggregation and growth of kidney stones. We previously demonstrated that oxalate-induced NADPH oxidase-derived free radicals play a significant role in renal injury. Since NADPH oxidase activation requires several regulatory proteins, the primary goal of this study was to characterize the role of Rac GTPase in oxalate-induced NADPH oxidase-mediated oxidative injury in renal epithelial cells. Our results show that oxalate significantly increased membrane translocation of Rac1 and NADPH oxidase activity of renal epithelial cells in a time-dependent manner. We found that NSC23766, a selective inhibitor of Rac1, blocked oxalate-induced membrane translocation of Rac1 and NADPH oxidase activity. In the absence of Rac1 inhibitor, oxalate exposure significantly increased hydrogen peroxide formation and LDH release in renal epithelial cells. In contrast, Rac1 inhibitor pretreatment, significantly decreased oxalate-induced hydrogen peroxide production and LDH release. Furthermore, PKC α and δ inhibitor, oxalate exposure did not increase Rac1 protein translocation, suggesting that PKC resides upstream from Rac1 in the pathway that regulates NADPH oxidase. In conclusion, our data demonstrate for the first time that Rac1-dependent activation of NADPH oxidase might be a crucial mechanism responsible for oxalate-induced oxidative renal cell injury. These findings suggest that Rac1 signaling plays a key role in oxalate-induced renal injury, and may serve as a potential therapeutic target to prevent calcium oxalate crystal deposition in stone formers and reduce recurrence. PMID:21814770
Antioxidant and anti-atherogenic activities of three Piper species on atherogenic diet fed hamsters.
Agbor, Gabriel A; Vinson, Joe A; Sortino, Julianne; Johnson, Robert
2012-05-01
Atherogenic diet is known to induce high plasma lipid concentration, oxidative stress and early atherosclerosis. Antioxidants have potentials to counter the effect of atherogenic diet. The present research aims at evaluating the antioxidant and anti-atherosclerotic activities of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) on atherogenic diet fed hamsters. Hamsters divided into 8 groups: normal control, atherosclerotic control and six test groups. The normal animals fed normal rodent chow, the atherosclerotic control animals fed the same rodent chow supplemented with 0.2% cholesterol and 10% coconut oil (high cholesterol diet). The 6 test groups' animals fed same diet as the atherosclerotic control group but with additional supplementation of 2 graded doses (1 and 0.25 mg/kg body weight, o.p.) of plant extracts for 12 weeks. The atherogenic diet induced a collapse of the erythrocyte antioxidant defense system (significant decrease in superoxide dismutase, catalase and glutathione peroxidase activities). Atherogenic diet also induced an increase in plasma total cholesterol, triglyceride, thiobarbituric acid reactive substances (TBARS), oxidation of low density lipoprotein cholesterol (LDL) and accumulation of foam cells in the aorta a hall mark for atherosclerosis. Administration of the Piper species prevented the collapse of the antioxidant system and the increase of plasma parameters maintaining them towards normality. The Piper species also prevented LDL oxidation by increasing the time (lag time) for its oxidation. The results suggest that these Piper species have significant antioxidant and anti-atherogenic effect against atherogenic diet intoxication. Copyright © 2010 Elsevier GmbH. All rights reserved.
Mizutani, Yusuke; Maeno, Shohei; Zhu, Qianqian; Fukushima, Masami
2014-01-01
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA), commercially used halogenated flame retardants, can be found in leachates from landfills, because hydrophobic interactions with humic acids (HAs), major organic components in landfills, result in an increase in their solubility. The oxidation characteristics of TBBPA and TCBPA in the presence of HA were compared using a catalytic system comprised of a combination of iron(III)-tetrakis(p-sulfophenyl)porphyrin (FeTPPS) and KHSO5 that can mimic the enzymatic reactions that occur in landfills. The levels of degradation and dehalogenation of TBBPA and TCBPA at pH 4 were significantly lower than at pH 8, which is a typical pH value for landfill leachates. In the presence of HA at pH 8, 2-hydroxyisopropyl-2,6 -dihalophenols (2HIP-26DXPs) were detected as major by-products. These compounds are likely produced via the β-carbon scission of the substrates, and their levels decreased with increasing reaction time. The levels of coupling compounds between 2,6-dihalopnenols and TBBPA or TCBPA increased with reaction time. The 27% of Br in the degraded TBBPA and 50% of Cl in the degraded TCBPA were incorporated into the HA as a result of catalytic oxidation via the FeTPPS/KHSO5 system. These results suggest that TCBPA is incorporated into HA more readily than TBBPA. The coupling compounds between HA and halogenated intermediates from TBBPA or TCBPA were assigned by pyrolysis-gas chromatography/mass spectrometry.
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Gilek, Dominika; Gawlak, Karolina; Jaskuła, Marian; Sulka, Grzegorz D.
2016-12-01
A simple anodic oxidation of metallic tin in fluoride-free alkaline electrolyte at low potentials was proposed as a new and effective strategy for fabrication of crack-free nanoporous tin oxide layers. A low-purity Sn foil (98.8%) was used as a starting material, and a series of anodizations were performed in 1 M NaOH at different conditions such as anodizing potential, and duration of the process. It was proved for the first time that nanostructured tin oxides with ultra-small nanochannels having diameters of <15 nm can be synthesized by simple anodization of metallic tin at a potential of 2 V in 1 M NaOH electrolyte. Increasing anodizing potential to 3 and 4 V allowed for formation of tin oxide layers with much larger pores (40-50 nm in diameter) which were still free from internal cracks and transversal pores. Applying such low potentials significantly reduces the oxide growth rate and suppresses vigorous oxygen evolution at the anode. As a result mechanical deterioration of the oxide structure is prevented while strongly alkaline electrolyte is responsible for formation of the porous layer with completely open pores even at such low potentials. On the contrary, when anodization was carried out at potentials of 5 and 6 V, much faster formation of anodic layer, accompanied by vigorous oxygen gas formation, was observed. In consequence, as grown oxide layers exhibited typical cracked or even stacked internal structure. Finally, we demonstrated for the first time that nanoporous tin oxide layers with segments of different channel sizes can be successfully obtained by simple altering potential during anodization.
Lu, Qifeng; Zhao, Chun; Mu, Yifei; Zhao, Ce Zhou; Taylor, Stephen; Chalker, Paul R
2015-07-29
A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrO x ; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N₂ ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 10 12 cm -2 for as-deposited sample to 4.55 × 10 12 cm -2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10 - ⁶ A/cm² at V g = +0.5 V for the as-deposited sample to 10 -3 A/cm² at V g = +0.5 V for the 900 °C annealed one.
Nondestructive characterization of thermal barrier coating by noncontact laser ultrasonic technique
NASA Astrophysics Data System (ADS)
Zhao, Yang; Chen, Jianwei; Zhang, Zhenzhen
2015-09-01
We present the application of a laser ultrasonic technique in nondestructive characterization of the bonding layer (BL) in a thermal barrier coating (TBC). A physical mode of a multilayered medium is established to describe the propagation of a longitudinal wave generated by a laser in a TBC system. Furthermore, the theoretical analysis on the ultrasonic transmission in TBC is carried out in order to derive the expression of the BL transmission coefficient spectrum (TCS) which is used to determine the velocity of the longitudinal wave in the BL. We employ the inversion method combined with TCS to ascertain the attenuation coefficient of the BL. The experimental validations are performed with TBC specimens produced by an electron-beam physical vapor deposition method. In those experiments, a pulsed laser with a width of 10 ns is used to generate an ultrasonic signal while a two-wave mixing interferometer is created to receive the ultrasonic signals. By introducing the wavelet soft-threshold method that improves the signal-to-noise ratio, the laser ultrasonic testing results of TBC with an oxidation of 1 cycle, 10 cycles, and 100 cycles show that the attenuation coefficients of the BL become larger with an increase in the oxidation time, which is evident for the scanning electron microscopy observations, in which the thickness of the thermally grown oxide increases with oxidation time.
Szymula, M
2004-01-01
The antioxidant efficiency of two hydrophilic species, ascorbic acid (AA) and propyl gallate (PG), in an anionic surfactant system are studied. Ascorbic acid and propyl gallate are dissolved/solubilized in a microemulsion formed by water, pentanol, and sodium dodecyl sulfate. The determination of propyl gallate decomposition/oxidation kinetics shows enhanced oxidation of PG with increasing pentanol concentration in the system. When ascorbic acid and propyl gallate are both present in water, in surfactant aqueous solution, and in the studied microemulsion systems, the molecular complex AAPG is formed. After some time the complex decomposes.
Joh, Dong Woo; Park, Jeong Hwa; Kim, Doyeub; Wachsman, Eric D; Lee, Kang Taek
2017-03-15
A functionally graded Bi 1.6 Er 0.4 O 3 (ESB)/Y 0.16 Zr 0.84 O 1.92 (YSZ) bilayer electrolyte is successfully developed via a cost-effective screen printing process using nanoscale ESB powders on the tape-cast NiO-YSZ anode support. Because of the highly enhanced oxygen incorporation process at the cathode/electrolyte interface, a novel bilayer solid oxide fuel cell (SOFC) yields extremely high power density of ∼2.1 W cm -2 at 700 °C, which is a 2.4 times increase compared to that of the YSZ single electrolyte SOFC.
NASA Astrophysics Data System (ADS)
Baranovskiy, Andrei; Amouyal, Yaron
2017-02-01
The electrical transport properties of CaO(CaMnO3)m (m = 1, 2, 3, ∞) compounds are studied applying the density functional theory (DFT) in terms of band structure at the vicinity of the Fermi level (EF). It is shown that the total density of states (DOS) values at EF increase with increase in the m-values, which implies an increase in the electrical conductivity, σ, with increasing m-values, in full accordance with experimental results. Additionally, the calculated values of the relative slopes of the DOS at EF correlate with the experimentally measured Seebeck coefficients. The electrical conductivity and Seebeck coefficients were calculated in the framework of the Boltzmann transport theory applying the constant relaxation time approximation. By the analysis of experimental and calculated σ(Τ) dependences, the electronic relaxation time and mean free path values were estimated. It is shown that the electrical transport is dominated by electron scattering on the boundaries between perovskite (CaMnO3) and Ca oxide (CaO) layers inside the crystal lattice.
Smeraglio, Anne C.; Kennedy, Emily K.; Horgan, Angela; Purnell, Jonathan Q.; Gillingham, Melanie B.
2013-01-01
Oral fructose decreases fat oxidation and increases carbohydrate (CHO) oxidation in obese subjects, but the metabolic response to fructose in lean individuals is less well understood. The purpose of this study was to assess the effects of a single fructose-rich mixed meal on substrate oxidation in young healthy non-obese males. We hypothesized that a decrease in fat oxidation and an increase in carbohydrate oxidation would be observed following a fructose-rich mixed meal compared to a glucose-rich mixed meal. Twelve healthy males, normal to overweight and age 23–31 years old, participated in a double-blind, cross-over study. Each participant completed two study visits, eating a mixed meal containing 30% of the calories from either fructose or glucose. Blood samples for glucose, insulin, triglycerides, and leptin as well as gas exchange by indirect calorimetry were measured intermittently for 7 hours. Serum insulin was higher after a fructose mixed meal but plasma glucose, plasma leptin and serum triglycerides were not different. Mean postprandial respiratory quotient and estimated fat oxidation did not differ between the fructose and glucose meals. The change in fat oxidation between the fructose and glucose rich meals negatively correlated with BMI (r=−0.59, P=0.04 and r=−0.59, P=0.04 at the 4 and 7 hour time points, respectively). In healthy non-obese males, BMI correlates with altered postprandial fat oxidation after a high-fructose mixed meal. The metabolic response to a high fructose meal may be modulated by BMI. PMID:23746558
Supercritical water oxidation of landfill leachate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shuzhong, E-mail: s_z_wang@yahoo.cn; Guo Yang; Chen Chongming
2011-09-15
Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is themore » main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.« less
Orszaghova, Zuzana; Laubertova, Lucia; Sabaka, Peter; Rohdewald, Peter; Durackova, Zdenka; Muchova, Jana
2014-01-01
We examined in vitro antioxidant capacity of polyphenolic extract obtained from the wood of oak Quercus robur (QR), Robuvit, using TEAC (Trolox equivalent antioxidant capacity) method and the effect of its intake on markers of oxidative stress, activity of antioxidant enzymes, and total antioxidant capacity in plasma of 20 healthy volunteers. Markers of oxidative damage to proteins, DNA, and lipids and activities of Cu/Zn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined in the erythrocytes. We have found an in vitro antioxidant capacity of Robuvit of 6.37 micromole Trolox equivalent/mg of Robuvit. One month intake of Robuvit in daily dose of 300 mg has significantly decreased the serum level of advanced oxidation protein products (AOPP) and lipid peroxides (LP). Significantly increased activities of SOD and CAT as well as total antioxidant capacity of plasma after one month intake of Robuvit have been shown. In conclusion, we have demonstrated for the first time that the intake of Robuvit is associated with decrease of markers of oxidative stress and increase of activity of antioxidant enzymes and total antioxidant capacity of plasma in vivo. PMID:25254080
Novel active stabilization technology in highly crosslinked UHMWPEs for superior stability
NASA Astrophysics Data System (ADS)
Oral, Ebru; Neils, Andrew L.; Wannomae, Keith K.; Muratoglu, Orhun K.
2014-12-01
Radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing of choice in joint arthroplasty. The demands on the longevity of this polymer are likely to increase with the recently advancing deterioration of the performance of alternative metal-on-metal implants. Vitamin E-stabilized, cross-linked UHMWPEs are considered the next generation of improved UHMWPE bearing surfaces for improving the oxidation resistance of the polymer. It was recently discovered that in the absence of radiation-induced free radicals, lipids absorbed into UHMWPE from the synovial fluid can initiate oxidation and result in new free radical-mediated oxidation mechanisms. In the presence of radiation-induced free radicals, it is possible for the polymer to oxidize through both existing free radicals at the time of implantation and through newly formed free radicals in vivo. Thus, we showed that reducing the radiation-induced free radicals in vitamin E-stabilized UHMWPE would increase its oxidative stability and presumably lead to improved longevity. We describe mechanical annealing and warm irradiation of irradiated vitamin E blends as novel methods to eliminate 99% of radiation-induced free radicals without sacrificing crystallinity. These are significant improvements in the processing of highly cross-linked UHMWPE for joint implants with improved longevity.
Bloomer, Richard J; Smith, Webb A
2009-01-01
The purpose of this study is to compare the oxidative stress response to aerobic and anaerobic power testing, and to determine the impact of exercise training with or without glycine propionyl-L-carnitine (GPLC) in attenuating the oxidative stress response. Thirty-two subjects were assigned (double blind) to placebo, GPLC-1 (1g PLC/d), GPLC-3 (3g PLC/d) for 8 weeks, plus aerobic exercise. Aerobic (graded exercise test: GXT) and anaerobic (Wingate cycle) power tests were performed before and following the intervention. Blood was taken before and immediately following exercise tests and analyzed for malondialdehyde (MDA), hydrogen peroxide (H2O2), and xanthine oxidase activity (XO). No interaction effects were noted. MDA was minimally effected by exercise but lower at rest for both GPLC groups following the intervention (p = 0.044). A time main effect was noted for H2O2 (p = 0.05) and XO (p = 0.003), with values increasing from pre- to postexercise. Both aerobic and anaerobic power testing increase oxidative stress to a similar extent. Exercise training plus GPLC can decrease resting MDA, but it has little impact on exercise-induced oxidative stress biomarkers.
Chen, Hongjian; Wang, Yong; Cao, Peirang; Liu, Yuanfa
2017-11-01
Effect of temperatures on thermal oxidation of palmitic acid was studied by the combination of EPR and GC-MS/MS. DMPO was used as the spin trap. The experimental spectrum was simulated with alkyl and alkoxyl spin adducts. Total amount of spins, a parameter to indicate radical concentrations, detected at 180°C was nearly 10 times higher than that at 175°C. Besides, total amounts of spins detected at 180°C decreased rapidly because of the reaction between radical adducts and newly formed radicals. Signal intensities of alkyl radical adducts increased rapidly from 0.405 to 4.785 from 175°C to 180°C. Besides, more palmitic acid degraded to oxidized compounds from 175°C to 180°C than that of other temperature ranges. The C-C linkages between carbons 2 to 6 were easier to be oxidized at 180°C. The results all implied that oxidation rates of palmitic acid samples increased rapidly from 175°C to 180°C. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ren, Zheng; Wu, Zili; Gao, Puxian; ...
2015-06-09
Low temperature propane oxidation has been achieved by Co 3O 4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co 3O 4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O 2 in the reaction feed does not directly participate in CO 2 formation. The Ni doping promotes the formation of less stable carbonates on the surfacemore » to facilitate the CO 2 desorption. The thermal stability of Ni doped Co 3O 4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co 3O 4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.« less
Yu, Yang; Yang, Zijun; Guo, Kai; Li, Zhe; Zhou, Hongzi; Wei, Yanli; Li, Jishun; Zhang, Xinjian; Harvey, Paul; Yang, Hetong
2015-04-01
Trichoderma harzianum is an important commercial biocontrol fungal agent. The temperature has been shown to be an important parameter and strain-specific to the mycelia growth of fungi, but less report makes the known of the mechanisms in T. harzianum. In our study, a 6-h treatment of heat increased the thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) concentration in mycelia to 212 and 230 % the level of the control, respectively. The exogenous NO donor sodium nitroprusside (150 μM) reduced the TBARS concentration to 53 % of that under heat stress (HS). At the same time, the NO-specific scavenger at 250 μM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxyl-3-oxide, prevented the exogenous NO-relieved TBARS accumulation under HS. The increased NO concentration under HS was reduced 41 % by the NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester, but not the nitrate reductase (NR) inhibitor tungstate. Our study exhibited that NO can protect the mycelia of T. harzianum from HS and reduce the oxidative damage by enhancing the activity of NOS and NR.
Leckey, Jill J; Hoffman, Nolan J; Parr, Evelyn B; Devlin, Brooke L; Trewin, Adam J; Stepto, Nigel K; Morton, James P; Burke, Louise M; Hawley, John A
2018-06-01
High-fat, low-carbohydrate (CHO) diets increase whole-body rates of fat oxidation and down-regulate CHO metabolism. We measured substrate utilization and skeletal muscle mitochondrial respiration to determine whether these adaptations are driven by high fat or low CHO availability. In a randomized crossover design, 8 male cyclists consumed 5 d of a high-CHO diet [>70% energy intake (EI)], followed by 5 d of either an isoenergetic high-fat (HFAT; >65% EI) or high-protein diet (HPRO; >65% EI) with CHO intake clamped at <20% EI. During the intervention, participants undertook daily exercise training. On d 6, participants consumed a high-CHO diet before performing 100 min of submaximal steady-state cycling plus an ∼30-min time trial. After 5 d of HFAT, skeletal muscle mitochondrial respiration supported by octanoylcarnitine and pyruvate, as well as uncoupled respiration, was decreased at rest, and rates of whole-body fat oxidation were higher during exercise compared with HPRO. After 1 d of high-CHO diet intake, mitochondrial respiration returned to baseline values in HFAT, whereas rates of substrate oxidation returned toward baseline in both conditions. These findings demonstrate that high dietary fat intake, rather than low-CHO intake, contributes to reductions in mitochondrial respiration and increases in whole-body rates of fat oxidation after a consuming a high-fat, low-CHO diet.-Leckey, J. J., Hoffman, N. J., Parr, E. B., Devlin, B. L., Trewin, A. J., Stepto, N. K., Morton, J. P., Burke, L. M., Hawley, J. A. High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans.
Oxidative stress in the hydrocoral Millepora alcicornis exposed to CO2-driven seawater acidification
NASA Astrophysics Data System (ADS)
Luz, Débora Camacho; Zebral, Yuri Dornelles; Klein, Roberta Daniele; Marques, Joseane Aparecida; Marangoni, Laura Fernandes de Barros; Pereira, Cristiano Macedo; Duarte, Gustavo Adolpho Santos; Pires, Débora de Oliveira; Castro, Clovis Barreira e.; Calderon, Emiliano Nicolas; Bianchini, Adalto
2018-06-01
Global impacts are affecting negatively coral reefs' health worldwide. Ocean acidification associated with the increasing CO2 partial pressure in the atmosphere can potentially induce oxidative stress with consequent cellular damage in corals and hydrocorals. In the present study, parameters related to oxidative status were evaluated in the hydrocoral Millepora alcicornis exposed to three different levels of seawater acidification using a mesocosm system. CO2-driven acidification of seawater was performed until reaching 0.3, 0.6 and 0.9 pH units below the current pH of seawater pumped from the coral reef adjacent to the mesocosm. Therefore, treatments corresponded to control (pH 8.1), mild (pH 7.8), intermediate (pH 7.5) and severe (pH 7.2) seawater acidification. After 0, 16 and 30 d of exposure, hydrocorals were collected and the following parameters were analyzed in the holobiont: antioxidant capacity against peroxyl radicals (ACAP), total glutathione (GSHt) concentration, reduced (GSH) and oxidized (GSSG) glutathione ratio (GSH/GSSG), lipid peroxidation (LPO) and protein carbonyl group (PC) levels. ACAP was increased in hydrocorals after 16 d of exposure to intermediate levels of seawater acidification. GSHt and GSH/GSSG did not change over the experimental period. LPO was increased at any level of seawater acidification, while PC content was increased in hydrocorals exposed to intermediate and severe seawater acidification for 30 d. These findings indicate that the antioxidant defense system of M. alcicornis is capable of coping with acidic conditions for a short period of time (16 d). Additionally, they clearly show that a long-term (30 d) exposure to seawater acidification induces oxidative stress with consequent oxidative damage to lipids and proteins, which could compromise hydrocoral health.
Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts.
García-Sancho, Cristina; Sádaba, Irantzu; Moreno-Tost, Ramón; Mérida-Robles, Josefa; Santamaría-González, José; López-Granados, Manuel; Maireles-Torres, Pedro
2013-04-01
A series of silica-based MCM-41-supported niobium-oxide catalysts are prepared, characterized by using XRD, N2 adsorption-desorption, X-ray photoelectron spectroscopy, Raman spectroscopy, and pyridine adsorption coupled to FTIR spectroscopy, and tested for the dehydration of D-xylose to furfural. Under the operating conditions used all materials are active in the dehydration of xylose to furfural (excluding the MCM-41 silica support). The xylose conversion increases with increasing Nb2 O5 content. At a loading of 16 wt % Nb2 O5 , 74.5 % conversion and a furfural yield of 36.5 % is achieved at 170 °C, after 180 min reaction time. Moreover, xylose conversion and furfural yield increase with the reaction time and temperature, attaining 82.8 and 46.2 %, respectively, at 190 °C and after 100 min reaction time. Notably, the presence of NaCl in the reaction medium further increases the furfural yield (59.9 % at 170 °C after 180 min reaction time). Moreover, catalyst reutilization is demonstrated by performing at least three runs with no loss of catalytic activity and without the requirement for an intermediate regeneration step. No significant niobium leaching is observed, and a relationship between the structure of the catalyst and the activity is proposed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jeong, Chan-Yong; Kim, Hee-Joong; Hong, Sae-Young; Song, Sang-Hun; Kwon, Hyuck-In
2017-08-01
In this study, we show that the two-stage unified stretched-exponential model can more exactly describe the time-dependence of threshold voltage shift (ΔV TH) under long-term positive-bias-stresses compared to the traditional stretched-exponential model in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). ΔV TH is mainly dominated by electron trapping at short stress times, and the contribution of trap state generation becomes significant with an increase in the stress time. The two-stage unified stretched-exponential model can provide useful information not only for evaluating the long-term electrical stability and lifetime of the a-IGZO TFT but also for understanding the stress-induced degradation mechanism in a-IGZO TFTs.
NASA Astrophysics Data System (ADS)
Aria, Adrianus Indrat
In this thesis, dry chemical modification methods involving UV/ozone, oxygen plasma, and vacuum annealing treatments are explored to precisely control the wettability of CNT arrays. The effect of oxidation using UV/ozone and oxygen plasma treatments is highly reversible as long as the O/C ratio of the CNT arrays is kept below 18%. At O/C ratios higher than 18%, the effect of oxidation is no longer reversible. This irreversible oxidation is caused by irreversible changes to the CNT atomic structure during the oxidation process. During the oxidation process, CNT arrays undergo three different processes. For CNT arrays with O/C ratios lower than 40%, the oxidation process results in the functionalization of CNT outer walls by oxygenated groups. Although this functionalization process introduces defects, vacancies and micropores opening, the graphitic structure of the CNT is still largely intact. For CNT arrays with O/C ratios between 40% and 45%, the oxidation process results in the etching of CNT outer walls. This etching process introduces large scale defects and holes that can be obviously seen under TEM at high magnification. Most of these holes are found to be several layers deep and, in some cases, a large portion of the CNT side walls are cut open. For CNT arrays with O/C ratios higher than 45%, the oxidation process results in the exfoliation of the CNT walls and amorphization of the remaining CNT structure. This amorphization process can be implied from the disappearance of C-C sp2 peak in the XPS spectra associated with the pi-bond network. The impact behavior of water droplet impinging on superhydrophobic CNT arrays in a low viscosity regime is investigated for the first time. Here, the experimental data are presented in the form of several important impact behavior characteristics including critical Weber number, volume ratio, restitution coefficient, and maximum spreading diameter. As observed experimentally, three different impact regimes are identified while another impact regime is proposed. These regimes are partitioned by three critical Weber numbers, two of which are experimentally observed. The volume ratio between the primary and the secondary droplets is found to decrease with the increase of Weber number in all impact regimes other than the first one. In the first impact regime, this is found to be independent of Weber number since the droplet remains intact during and subsequent to the impingement. Experimental data show that the coefficient of restitution decreases with the increase of Weber number in all impact regimes. The rate of decrease of the coefficient of restitution in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Experimental data also show that the maximum spreading factor increases with the increase of Weber number in all impact regimes. The rate of increase of the maximum spreading factor in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Phenomenological approximations and interpretations of the experimental data, as well as brief comparisons to the previously proposed scaling laws, are shown here. Dry oxidation methods are used for the first time to characterize the influence of oxidation on the capacitive behavior of CNT array EDLCs. The capacitive behavior of CNT array EDLCs can be tailored by varying their oxygen content, represented by their O/C ratio. The specific capacitance of these CNT arrays increases with the increase of their oxygen content in both KOH and Et4NBF4/PC electrolytes. As a result, their gravimetric energy density increases with the increase of their oxygen content. However, their gravimetric power density decreases with the increase of their oxygen content. The optimally oxidized CNT arrays are able to withstand more than 35,000 charge/discharge cycles in Et4NBF4/PC at a current density of 5 A/g while only losing 10% of their original capacitance. (Abstract shortened by UMI.)
Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Särhammar, Erik, E-mail: erik.sarhammar@angstrom.uu.se; Berg, Sören; Nyberg, Tomas
2014-07-01
This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition ratemore » from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.« less
Kinetic study of the oxidation of 4-hydroxyanisole catalyzed by tyrosinase.
Espín, J C; Varón, R; Tudela, J; García-Cánovas, F
1997-05-01
Despite the importance of the substrate 4-hydroxyanisole in melanoma therapy, the kinetics of its oxidation catalyzed by tyrosinase has never been properly characterized. This approach is reported here for the first time. The applicability to 4-hydroxyanisole of the reaction mechanism of tyrosinase previously proposed for other monophenols has been corroborated. The Michaelis constant for the oxidation of 4-hydroxyanisole catalyzed by mushroom tyrosinase was (62 +/- 1.5) microM at pH 7 and increased when the pH decreased, reaching a value of (195 +/- 5) microM at pH 5.5. However the maximum steady-state rate, whose value was (0.54 +/- 0.01) microM/min, did not change with the pH. The apparent catalytic constant was (184 +/- 5) s-1, around twenty three times higher than that previously described for L-tyrosine (8 s-1).
Comparison of oxidative stress in four Tillandsia species exposed to cadmium.
Kováčik, Jozef; Babula, Petr; Klejdus, Bořivoj; Hedbavny, Josef
2014-07-01
This is first study comparing four morphologically variable species of the genus Tillandsia and therefore various responses to the cadmium (Cd) action were expected. In accordance, Cd accumulation increased in order Tillandsia fasciculata < Tillandsia brachycaulos < Tillandsia pruinosa < Tillandsia capillaris, reaching 29.6 and 197.4 μg g(-1) DW in first and last species after watering with 2 μM Cd(2+) solution over 30 days. Fluorescence visualization of oxidative stress confirmed increase in ROS and especially elevation in hydroperoxides though no visible symptoms appeared on the plants. At the same time, nitric oxide generation and nitroso-glutathione depletion by Cd treatment were typically observed. Fluorescence staining of Cd using two dyes (PhenGreen and Leadmium) showed that Leadmium fits better with AAS quantification. Macro- and micro-nutrients were not considerably affected except for zinc. Reduced glutathione content was the highest in control T. fasciculata while oxidized glutathione in T. capillaris. Ascorbic acid amount revealed extreme quantitative differences among species and decreased in T. fasciculata only. Free amino acids accumulation was similar among species except for T. capillaris and Cd caused both depletion and increase but without high quantitative differences. Data are explanatively discussed in the context of limited literature related to oxidative stress in epiphytic plants and with general responses of plants to cadmium/heavy metals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Abdel Moneim, Ahmed E
2014-01-01
The primary aimed of this study was to investigate the potential protective effects of methanolic extract of citrus peel (MECP) on acute cyanide (KCN) poisoning-induced seizures and oxidative stress in rats. The intraperitoneal LD50 value of KCN (6.3 mg/Kg bwt), based on 24 hrs mortality, was significantly increased by 9, 52 or 113% by oral administration of MECP (500 mg/Kg bwt) pre-administered for 1, 2 and 3 days, respectively, in rats in a time-dependent manner. Intraperitoneal injection of the sublethal dose of KCN (3 mg/Kg bwt) into rats increased, 24 hrs later, lipid peroxidation (LPO), nitric oxide (NO), glutamate levels and acetylcholinesterase (AChE) activity in hippocampus, striatum and cerebral cortex. KCN also decreased brain glutathione (GSH) level and superoxide dismutase (SOD) and catalase (CAT) activities in these animals. Pre-treatment of rats with MECP inhibited KCN-induced increases in LPO, NO, and glutamate levels and AChE activity as well as decreases in brain GSH level and SOD and CAT activities. In addition, KCN significantly decreased norepinephrine, dopamine and serotonin levels in different brain regions which were resolved by MECP. From the present results, it can be concluded that the neuroprotective effects of MECP against KCN-induced seizures and oxidative stress may be due to the inhibition of oxidative stress overproduction and maintenance of antioxidant defense mechanisms.
Albendazole as a promising molecule for tumor control.
Castro, L S E P W; Kviecinski, M R; Ourique, F; Parisotto, E B; Grinevicius, V M A S; Correia, J F G; Wilhelm Filho, D; Pedrosa, R C
2016-12-01
This work evaluated the antitumor effects of albendazole (ABZ) and its relationship with modulation of oxidative stress and induction of DNA damage. The present results showed that ABZ causes oxidative cleavage on calf-thymus DNA suggesting that this compound can break DNA. ABZ treatment decreased MCF-7 cell viability (EC 50 =44.9 for 24h) and inhibited MCF-7 colony formation (~67.5% at 5μM). Intracellular ROS levels increased with ABZ treatment (~123%). The antioxidant NAC is able to revert the cytotoxic effects, ROS generation and loss of mitochondrial membrane potential of MCF-7 cells treated with ABZ. Ehrlich carcinoma growth was inhibited (~32%) and survival time was elongated (~50%) in animals treated with ABZ. Oxidative biomarkers (TBARS and protein carbonyl levels) and activity of antioxidant enzymes (CAT, SOD and GR) increased, and reduced glutathione (GSH) was depleted in animals treated with ABZ, indicating an oxidative stress condition, leading to a DNA damage causing phosphorylation of histone H2A variant, H2AX, and triggering apoptosis signaling, which was confirmed by increasing Bax/Bcl-xL rate, p53 and Bax expression. We propose that ABZ induces oxidative stress promoting DNA fragmentation and triggering apoptosis and inducing cell death, making this drug a promising leader molecule for development of new antitumor drugs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Mechanism of the anticataract effect of liposomal magnesium taurate in galactose-fed rats
Iezhitsa, Igor; Saad, Sarah Diyana Bt; Zakaria, Fatin Kamilah Bt; Agarwal, Puneet; Krasilnikova, Anna; Rahman, Thuhairah Hasrah Abdul; Rozali, Khairul Nizam Bin; Spasov, Alexander; Ozerov, Alexander; Alyautdin, Renad; Ismail, Nafeeza Mohd
2016-01-01
Purpose Increased lenticular oxidative stress and altered calcium/magnesium (Ca/Mg) homeostasis underlie cataractogenesis. We developed a liposomal formulation of magnesium taurate (MgT) and studied its effects on Ca/Mg homeostasis and lenticular oxidative and nitrosative stress in galactose-fed rats. Methods The galactose-fed rats were topically treated with liposomal MgT (LMgT), liposomal taurine (LTau), or corresponding vehicles twice daily for 28 days with weekly anterior segment imaging. At the end of the experimental period, the lenses were removed and subjected to analysis for oxidative and nitrosative stress, Ca and Mg levels, ATP content, Ca2+-ATPase, Na+,K+-ATPase, and calpain II activities. Results The LTau and LMgT groups showed significantly lower opacity index values at all time points compared to the corresponding vehicle groups (p<0.001). However, the opacity index in the LMgT group was lower than that in the LTau group (p<0.05). Significantly reduced oxidative and nitrosative stress was observed in the LTau and LMgT groups. The lens Ca/Mg ratio in LMgT group was decreased by 1.15 times compared to that in the LVh group. Calpain II activity in the LMgT group was decreased by 13% compared to the LVh group. The ATP level and Na+,K+-ATPase and Ca2+-ATPase activities were significantly increased in the LMgT group compared to the LVh group (p<0.05). Conclusions Topical liposomal MgT delays cataractogenesis in galactose-fed rats by maintaining the lens mineral homeostasis and reducing lenticular oxidative and nitrosative stress. PMID:27440992
Barman, Susmita; Pradeep, Seetur R; Srinivasan, Krishnapura
2018-04-01
Zinc deficiency during diabetes projects a role for zinc nutrition in the management of diabetic nephropathy. The current study explored whether zinc supplementation protects against diabetic nephropathy through modulation of kidney oxidative stress and stress-induced expression related to the inflammatory process in streptozotocin-induced diabetic rats. Groups of hyperglycemic rats were exposed to dietary interventions for 6 weeks with zinc supplementation (5 times and 10 times the normal level). Supplemental-zinc-fed diabetic groups showed a significant reversal of increased kidney weight and creatinine clearance. There was a significant reduction in hyperlipidemic condition along with improved PUFA:SFA ratio in the renal tissue. Expression of the lipid oxidative marker and expression of inflammatory markers, cytokines, fibrosis factors and apoptotic regulatory proteins observed in diabetic kidney were beneficially modulated by zinc supplementation, the ameliorative effect being concomitant with elevated antiapoptosis. There was a significant reduction in advanced glycation, expression of the receptor of the glycated products and oxidative stress markers. Zinc supplementation countered the higher activity and expression of polyol pathway enzymes in the kidney. Overexpression of the glucose transporters, as an adaptation to the increased need for glucose transport in diabetic condition, was minimized by zinc treatment. The pathological abnormalities in the renal architecture of diabetic animals were corrected by zinc intervention. Thus, dietary zinc supplementation has a significant beneficial effect in the control of diabetic nephropathy. This was exerted through a protective influence on oxidative-stress-induced cytokines, inflammatory proliferation and consequent renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.