Temporal and geographic patterns in population trends of brown-headed cowbirds
Peterjohn, B.G.; Sauer, J.R.; Schwarz, S.
2000-01-01
The temporal and geographic patterns in the population trends of Brown-headed Cowbirds are summarized from the North American Breeding Bird Survey. During 1966-1992, the survey-wide population declined significantly, a result of declining populations in the Eastern BBS Region, southern Great Plains, and the Pacific coast states. Increasing populations were most evident in the northern Great Plains. Cowbird populations were generally stable or increasing during 1966-1976, but their trends became more negative after 1976. The trends in cowbird populations were generally directly correlated with the trends of both host and nonhost species, suggesting that large-scale factors such as changing weather patterns, land use practices, or habitat availability were responsible for the observed temporal and geographic patterns in the trends of cowbirds and their hosts.
Christine, Paul J; Diez Roux, Ana V; Wing, Jeffrey J; Alazraqui, Marcio; Spinelli, Hugo
2015-04-01
We investigated temporal trends in BMI, and assessed hypothesized predictors of trends including socio-economic position (SEP) and province-level economic development, in Argentina. Using multivariable linear regression, we evaluated cross-sectional patterning and temporal trends in BMI and examined heterogeneity in these associations by SEP and province-level economic development with nationally representative samples from Argentina in 2005 and 2009. We calculated mean annual changes in BMI for men and women to assess secular trends. Women, but not men, exhibited a strong cross-sectional inverse association between SEP and BMI, with the lowest-SEP women having an average BMI 2.55 kg/m(2) greater than the highest-SEP women. Analysis of trends revealed a mean annual increase in BMI of 0.19 kg/m(2) and 0.15 kg/m(2) for women and men, respectively, with slightly greater increases occurring in provinces with greater economic growth. No significant heterogeneity in trends existed by individual SEP. BMI is increasing rapidly over time in Argentina irrespective of various sociodemographic characteristics. Higher BMI remains more common in women of lower SEP compared with those of higher SEP.
Assessment of short- and long-term memory in trends of major climatic variables over Iran: 1966-2015
NASA Astrophysics Data System (ADS)
Mianabadi, Ameneh; Shirazi, Pooya; Ghahraman, Bijan; Coenders-Gerrits, A. M. J.; Alizadeh, Amin; Davary, Kamran
2018-02-01
In arid and semi-arid regions, water scarcity is the crucial issue for crop production. Identifying the spatial and temporal trends in aridity, especially during the crop-growing season, is important for farmers to manage their agricultural practices. This will become especially relevant when considering climate change projections. To reliably determine the actual trends, the influence of short- and long-term memory should be removed from the trend analysis. The objective of this study is to investigate the effect of short- and long-term memory on estimates of trends in two aridity indicators—the inverted De Martonne (ϕ IDM ) and Budyko (ϕ B ) indices. The analysis is done using precipitation and temperature data over Iran for a 50-year period (1966-2015) at three temporal scales: annual, wheat-growing season (October-June), and maize-growing season (May-November). For this purpose, the original and the modified Mann-Kendall tests (i.e., modified by three methods of trend free pre-whitening (TFPT), effective sample size (ESS), and long-term persistence (LTP)) are used to investigate the temporal trends in aridity indices, precipitation, and temperature by taking into account the effect of short- and long-term memory. Precipitation and temperature data were provided by the Islamic Republic of Iran Meteorological Organization (IRIMO). The temporal trend analysis showed that aridity increased from 1966 to 2015 at the annual and wheat-growing season scales, which is due to a decreasing trend in precipitation and an increasing trend in mean temperature at these two timescales. The trend in aridity indices was decreasing in the maize-growing season, since precipitation has an increasing trend for most parts of Iran in that season. The increasing trend in aridity indices is significant in Western Iran, which can be related to the significantly more negative trend in precipitation in the West. This increasing trend in aridity could result in an increasing crop water requirement and a significant reduction in the crop production and water use efficiency. Furthermore, the modified Mann-Kendall tests indicated that unlike temperature series, precipitation, ϕ IDM , and ϕ B series are not affected by short- and long-term memory. Our results can help decision makers and water resource managers to adopt appropriate policy strategies for sustainable development in the field of irrigated agriculture and water resources management.
Exploring Potential Reasons for the Temporal Trend in Dialysis-Requiring AKI in the United States
McCulloch, Charles E.; Heung, Michael; Saran, Rajiv; Shahinian, Vahakn B.; Pavkov, Meda E.; Burrows, Nilka Ríos; Powe, Neil R.; Hsu, Chi-yuan
2016-01-01
Background and objectives The population incidence of dialysis-requiring AKI has risen substantially in the last decade in the United States, and factors associated with this temporal trend are not well known. Design, setting, participants, & measurements We conducted a retrospective cohort study using data from the Nationwide Inpatient Sample, a United States nationally representative database of hospitalizations from 2007 to 2009. We used validated International Classification of Diseases, Ninth Revision codes to identify hospitalizations with dialysis-requiring AKI and then, selected the diagnostic and procedure codes most highly associated with dialysis-requiring AKI in 2009. We applied multivariable logistic regression adjusting for demographics and used a backward selection technique to identify a set of diagnoses or a set of procedures that may be a driver for this changing risk in dialysis-requiring AKI. Results From 2007 to 2009, the population incidence of dialysis-requiring AKI increased by 11% per year (95% confidence interval, 1.07 to 1.16; P<0.001). Using backward selection, we found that the temporal trend in the six diagnoses, septicemia, hypertension, respiratory failure, coagulation/hemorrhagic disorders, shock, and liver disease, sufficiently and fully accounted for the temporal trend in dialysis-requiring AKI. In contrast, temporal trends in 15 procedures most commonly associated with dialysis-requiring AKI did not account for the increasing dialysis–requiring AKI trend. Conclusions The increasing risk of dialysis-requiring AKI among hospitalized patients in the United States was highly associated with the changing burden of six acute and chronic conditions but not with surgeries and procedures. PMID:26683890
Linking plant functional trait plasticity and the large increase in forest water use efficiency
NASA Astrophysics Data System (ADS)
Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Gough, Christopher M.; Fatichi, Simone
2017-09-01
Elevated atmospheric CO2 concentrations are expected to enhance photosynthesis and reduce stomatal conductance, thus increasing plant water use efficiency. A recent study based on eddy covariance flux observations from Northern Hemisphere forests showed a large increase in inherent water use efficiency (IWUE). Here we used an updated version of the same data set and robust uncertainty quantification to revisit these contemporary IWUE trends. We tested the hypothesis that the observed IWUE increase could be attributed to interannual trends in plant functional traits, potentially triggered by environmental change. We found that IWUE increased by 1.3% yr-1, which is less than previously reported but still larger than theoretical expectations. Numerical simulations with the Tethys-Chloris ecosystem model using temporally static plant functional traits cannot explain this increase. Simulations with plant functional trait plasticity, i.e., temporal changes in model parameters such as specific leaf area and maximum Rubisco capacity, match the observed trends in IWUE. Our results show that trends in plant functional traits, equal to 1.0% yr-1, can explain the observed IWUE trends. Thus, at decadal or longer time scales, trait plasticity could potentially influence forest water, carbon, and energy fluxes with profound implications for both the monitoring of temporal changes in plant functional traits and their representation in Earth system models.
Echouffo-Tcheugui, Justin B; Xu, Haolin; DeVore, Adam D; Schulte, Phillip J; Butler, Javed; Yancy, Clyde W; Bhatt, Deepak L; Hernandez, Adrian F; Heidenreich, Paul A; Fonarow, Gregg C
2016-12-01
The contribution of diabetes to the burden of heart failure (HF) remains largely undescribed. Assessing diabetes temporal trends among US patients hospitalized with HF and their relation with quality measures in real-world practice can help to define this burden. Using data from the Get With the Guidelines-Heart Failure registry, we assessed temporal trends in diabetes prevalence among patients with HF and in subgroups with reduced ejection fraction (HFrEF; EF < 40%), borderline EF (HFbEF; 40%≤EF <50%), or preserved EF (HFpEF; EF ≥ 50%), hospitalized between 2005 and 2015. Logistic regression was used to assess whether in-hospital outcomes and HF quality of care were related to trends. Among 364,480 HF hospitalizations, 160,171 had diabetes (44.0% overall, 41.8% in HFrEF, 46.7% in HFbEF, 45.5% in HFpEF). There was a temporal increase in diabetes frequency in HF patients (43.2%-45.8%; P trend <.0001), including among those with HFrEF (42.0%-43.6%; P trend <.0001), HFbEF (46.0%-49.2%; P trend <.0001), or HFpEF (43.6%-46.8%, P trend <.0001). Diabetic patients had a longer hospital stay (adjusted odds ratio 1.14, 95% CI 1.12-1.16), but lower in-hospital mortality (adjusted odds ratio 0.93 [0.89-0.97]) compared with those without diabetes, with limited differences in quality measures. Temporal trends in diabetes were not associated with in-hospital mortality or length of stay. There were no temporal interactions of most HF quality measures with diabetes status. Approximately 44% of hospitalized HF patients have diabetes, and this proportion has been increasing over the past 10years, particularly among those patients with new-onset HFpEF. Copyright © 2016 Elsevier Inc. All rights reserved.
Rigét, Frank; Vorkamp, Katrin; Muir, Derek
2010-12-01
Hg and legacy POPs were analysed in muscle tissue of a landlocked Arctic char (Salvelinus alpinus) population from a small lake in southwest Greenland. Hg concentrations were available for six years and OC concentrations for five years during the period 1994 to 2008. For two years, stable isotope values of nitrogen (δ(15)N) were analysed in muscle tissue in order to infer trophic effects. Hg, Σ10-PCB, ΣDDT and trans-nonachlor concentrations (OC on wet weight basis) showed an increase with increasing fish length, which had to be accounted for when assessing temporal trends. δ(15)N values had a narrow range, and there was no indication of increasing δ(15)N values with char length confirming the sampled char did not vary in trophic morphs as often seen in Arctic lakes. Length-adjusted Hg concentrations showed a significantly increasing trend during the period 1994 to 2008, while Σ10-PCB, ΣDDT, ΣHCH and trans-nonachlor showed a significantly decreasing trend when expressed on wet weight, and decreasing but not significantly when expressed on lipid weight. The reason for this was that the lipid content of muscle showed a significantly decreasing trend with time. The sum of mean monthly air temperature during May to August measured at a nearby meteorological station showed an increasing trend during the study period, and changing temperature conditions probably influenced the temporal trend of especially Hg concentrations and the lipid content.
A 15-Year Review of Trends in Representation of Female Subjects in Islamic Bioethics Research.
Hussain, Zeenat; Kuzian, Edyta; Hussain, Naveed
2017-02-01
Gender representation in Islamic bioethics research in the twenty-first century has not been studied. To study temporal trends in representation of female subjects in Islamic bioethics research, PubMed-listed publications on Islamic bioethics from years 2000 to 2014 were reviewed for gender participation in human subjects' research. There were temporal trends of increasing publications of Islamic bioethics-related human subjects' research (64 papers over 15 years; R 2 = 0.72; p < 0.0004). Female subjects were well represented with a trend toward increasing participation. This was true for women from Muslim-majority countries even in non-gender-focused studies over the past 15 years.
Oliveira, Carla Maria; Alves, Sandra Maria; Pina, Maria Fátima
2016-08-01
Socioeconomic factors may influence changes in hip fracture (HF) incidence over time. We analysed HF temporal trends during the Bone and Joint Decade in Portugal (BJD-Portugal), 2000-2010, by regional socioeconomic status (SES), sex and age. We selected registers of patients aged 50+ years with HF (International Classification of Diseases, V.9-Clinical Modification, ICD9-CM) caused by traumas of low/moderate energy, from the National Hospital Discharge Database. Annual time series of age-specific incidence rates were calculated by sex and regional SES (deprived, medium, affluent). Generalised additive models were fitted to identify shape/turning points in temporal trends. We selected 96 905 HF (77.3% in women). Women were older than men at admission (81.2±8.5 vs 78.2±10.1 years-old, p<0.001). For women 65-79 years, a continuously decreasing trend (1.7%/year) only in affluent and increasing trends (3.3-3.4%/year) after 2006/2007 in medium and deprived was observed. For men, trends were stable or increased in almost all age/SES groups (only two decreasing periods). For the oldest women, all SES present similar trends: turning points around 2003 (initiating decreasing periods: 1.8-2.9%/year) and around 2007 (initiating increasing periods: 3.7-3.3%/year). There were SES-sex-age inequalities in temporal trends during BJD-Portugal: marked SES inequalities among women aged 65-79 years (a persistent, decreasing trend only in the affluent) vanished among the oldest women; the same was not observed in men, for them, there were almost no declining periods; women aged ≥80 years, presented increasing trends around 2007, as in most deprived/age/sex groups. Despite some successful periods of decreasing trends, incidence rates did not improve overall in almost all age groups and both sexes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Variability of tornado occurrence over the continental United States since 1950
NASA Astrophysics Data System (ADS)
Guo, Li; Wang, Kaicun; Bluestein, Howard B.
2016-06-01
The United States experiences the most tornadoes of any country in the world. Given the catastrophic impact of tornadoes, concern has arisen regarding the variation in climatology of U.S. tornadoes under the changing climate. A recent study claimed that the temporal variability of tornado occurrence over the continental U.S. has increased since the 1970s. However, that study ignored the highly regionalized climatology of U.S. tornadoes. To address this issue, we examined the long-term trend of tornado temporal variability in each continental U.S. state. Based on the 64 year tornado records (1950-2013), we found that the trends in tornado temporal variability varied across the U.S., with only one third of the continental area or three out of 10 contiguous states (mostly from the Great Plains and Southeast, but where the frequency of occurrence of tornadoes is greater) displaying a significantly increasing trend. The other two-thirds area, where 60% of the U.S. tornadoes were reported (but the frequency of occurrence of tornadoes is less), however, showed a decreasing or a near-zero trend in tornado temporal variability. Furthermore, unlike the temporal variability alone, the combined spatial-temporal variability of U.S. tornado occurrence has remained nearly constant since 1950. Such detailed information on the climatological variability of U.S. tornadoes refines the claim of previous study and can be helpful for local mitigation efforts toward future tornado risks.
NASA Astrophysics Data System (ADS)
Li, Zhen; Pan, Jinghu
2018-03-01
Net primary productivity (NPP) is recognized as an important index of ecosystem conditions and a key variable of the terrestrial carbon cycle. It also represents the comprehensive effects of climate change and anthropogenic activity on terrestrial vegetation. In this study, the temporal-spatial pattern of NPP for the period 2001-2012 was analyzed using a remote sensing-based carbon model (i.e., the Carnegie-Ames-Stanford Approach, CASA) in addition to other methods, such as linear trend analysis, standard deviation, and the Hurst index. Temporally, NPP showed a significant increasing trend for the arid region of Northwest China (ARNC), with an annual increase of 2.327 g C. Maximum and minimum productivity values appeared in July and December, respectively. Spatially, the NPP was relatively stable in the temperate and warm-temperate desert regions of Northwest China, while temporally, it showed an increasing trend. However, some attention should be given to the northwestern warm-temperate desert region, where there is severe continuous degradation and only a slight improvement trend.
Luan, Hui; Law, Jane; Quick, Matthew
2015-12-30
Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks.
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O; Cohn, Emily; Mekaru, Sumiko R; Brownstein, John S; Ramakrishnan, Naren
2017-01-19
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks
NASA Astrophysics Data System (ADS)
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren
2017-01-01
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren
2017-01-01
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations. PMID:28102319
Canadian population trends in leisure-time physical activity levels, 1981-1998.
Bruce, Marny J; Katzmarzyk, Peter T
2002-12-01
Age, sex, geographic and temporal trends in leisure-time physical activity levels were examined using data from five national surveys conducted between 1981 and 1998. Physical activity energy expenditure (AEE) was higher among men compared to women, and in younger versus older adults. AEE increased from Eastern to Western Canada, with a significant temporal trend of increasing AEE. The prevalence of physical inactivity (expending <12.6 kJ x kg(-1) x day(-1) has decreased; however, it remains high (women: 77%; men: 74%). The high prevalence of physical inactivity emphasizes the importance of population-level physical activity surveillance and interventions.
Querying temporal clinical databases on granular trends.
Combi, Carlo; Pozzi, Giuseppe; Rossato, Rosalba
2012-04-01
This paper focuses on the identification of temporal trends involving different granularities in clinical databases, where data are temporal in nature: for example, while follow-up visit data are usually stored at the granularity of working days, queries on these data could require to consider trends either at the granularity of months ("find patients who had an increase of systolic blood pressure within a single month") or at the granularity of weeks ("find patients who had steady states of diastolic blood pressure for more than 3 weeks"). Representing and reasoning properly on temporal clinical data at different granularities are important both to guarantee the efficacy and the quality of care processes and to detect emergency situations. Temporal sequences of data acquired during a care process provide a significant source of information not only to search for a particular value or an event at a specific time, but also to detect some clinically-relevant patterns for temporal data. We propose a general framework for the description and management of temporal trends by considering specific temporal features with respect to the chosen time granularity. Temporal aspects of data are considered within temporal relational databases, first formally by using a temporal extension of the relational calculus, and then by showing how to map these relational expressions to plain SQL queries. Throughout the paper we consider the clinical domain of hemodialysis, where several parameters are periodically sampled during every session. Copyright © 2011 Elsevier Inc. All rights reserved.
Spatial and Temporal Temperature trends on Iraq during 1980-2015
NASA Astrophysics Data System (ADS)
Al-Timimi, Yassen K.; Al-Khudhairy, Aws A.
2018-05-01
Monthly Mean surface air temperature at 23 stations in Iraq were analyzed for temporal trends and spatial variation during 1980-2015. Seasonal and annual temperature was analyzed using Mann-Kendall test to detect the significant trend. The results of temporal analysis showed that during winter, spring, summer and Autumn have a positive trend in all the parts of Iraq. A tendency has also been observed towards warmer years, with significantly warmer summer and spring periods and slightly warmer autumn and winter, the highest increase is (3.5)°C in Basrah during the summer. The results of spatial analyze using the ArcGIS showed that the seasonal temperature can be divided into two or three distinct areas with high temperature in the south and decreasing towards north, where the trend of spatial temperature were decreasing from south to the north in all the four seasons.
Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; Fisk, Aaron T; Peacock, Elizabeth; Sonne, Christian
2011-08-01
Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg(2+)-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements.
Routti, H.; Letcher, R.J.; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Fisk, A.T.; Peacock, E.; Sonne, C.
2011-01-01
Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg 2+-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements. ?? 2011 The Royal Society of Chemistry.
Leimu, Roosa; Koricheva, Julia
2004-01-01
Temporal changes in the magnitude of research findings have recently been recognized as a general phenomenon in ecology, and have been attributed to the delayed publication of non-significant results and disconfirming evidence. Here we introduce a method of cumulative meta-analysis which allows detection of both temporal trends and publication bias in the ecological literature. To illustrate the application of the method, we used two datasets from recently conducted meta-analyses of studies testing two plant defence theories. Our results revealed three phases in the evolution of the treatment effects. Early studies strongly supported the hypothesis tested, but the magnitude of the effect decreased considerably in later studies. In the latest studies, a trend towards an increase in effect size was observed. In one of the datasets, a cumulative meta-analysis revealed publication bias against studies reporting disconfirming evidence; such studies were published in journals with a lower impact factor compared to studies with results supporting the hypothesis tested. Correlation analysis revealed neither temporal trends nor evidence of publication bias in the datasets analysed. We thus suggest that cumulative meta-analysis should be used as a visual aid to detect temporal trends and publication bias in research findings in ecology in addition to the correlative approach. PMID:15347521
Baldys, Stanley; Ham, L.K.; Fossum, K.D.
1995-01-01
Summary statistics and temporal trends for 19 water-chemistry constituents and for turbidity were computed for 13 study sites in the Gila River basin, Arizona and New Mexico. A nonparametric technique, the seasonal Kendall tau test for flow-adjusted data, was used to analyze temporal changes in water-chemistry data. For the 19 selected constituents and turbidity, decreasing trends in concentrations outnumbered increasing trends by more than two to one. Decreasing trends in concentrations of constituents were found for 49 data sets at the 13 study sites. Gila River at Calva and Gila River above diversions, at Gillespie Dam (eight each) had the most decreasing trends for individual sites. The largest number of decreasing trends measured for a constituent was six for dissolved lead. The next largest number of decreasing trends for a constituent was for dissolved solids and total manganese (five each). Hardness, dissolved sodium, and dissolved chloride had decreasing trends at four of the study sites. Increasing trends in concen- trations of constituents were found for 24 data sets at the 13 study sites. The largest number of increasing trends measured for a single constituent was for pH (four), dissolved sulfate (three), dissolved chromium (three) and total manganese (three). Increased concentrations of constituents generally were found in three areas in the basin-at Pinal Creek above Inspiration Dam, at sites above reservoirs, and at sites on the main stem of the Gila River from Gillespie Dam to the mouth.
Spatio-temporal Trends of Climate Variability in North Carolina
NASA Astrophysics Data System (ADS)
Sayemuzzaman, Mohammad
Climatic trends in spatial and temporal variability of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The Mann-Kendall (MK), the Theil-Sen Approach (TSA) and the Sequential Mann-Kendall (SQMK) tests were applied to quantify the significance of trend, magnitude of trend and the trend shift, respectively. The lag-1 serial correlation and double mass curve techniques were used to address the data independency and homogeneity. The pre-whitening technique was used to eliminate the effect of auto correlation of the data series. The difference between minimum and maximum temperatures, and so the diurnal temperature range (DTR), at some stations was found to be decreasing on both an annual and a seasonal basis, with an overall increasing trend in the mean temperature. For precipitation, a statewide increasing trend in fall (highest in November) and decreasing trend in winter (highest in February) were detected. No pronounced increasing/decreasing trends were detected in annual, spring, and summer precipitation time series. Trend analysis on a spatial scale (for three physiographic regions: mountain, piedmont and coastal) revealed mixed results. Coastal zone exhibited increasing mean temperature (warming) trend as compared to other locations whereas mountain zone showed decreasing trend (cooling). Three main moisture components (precipitation, total cloud cover, and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlative analysis purposes with the temperature (specifically with DTR) and precipitation trends. It appears that the moisture components are associated with DTR more than the circulation modes in North Carolina.
The solar dimming/brightening effect over the Mediterranean Basin in the period 1979-2012
NASA Astrophysics Data System (ADS)
Kambezidis, H. D.; Kaskaoutis, D. G.; Kalliampakos, G. K.; Rashki, A.; Wild, M.
2016-12-01
Numerous studies have shown that the solar radiation reaching the Earth's surface is subjected to multi-decadal variations with significant spatial and temporal heterogeneities in both magnitude and sign. Although several studies have examined the solar radiation trends over Europe, North America and Asia, the Mediterranean Basin has not been studied extensively. This work investigates the evolution and trends in the surface net short-wave radiation (NSWR, surface solar radiation - reflected) over the Mediterranean Basin during the period 1979-2012 using monthly re-analysis datasets from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and aims to shed light on the specific role of clouds on the NSWR trends. The solar dimming/brightening phenomenon is temporally and spatially analyzed over the Mediterranean Basin. The spatially-averaged NSWR over the whole Mediterranean Basin was found to increase in MERRA by +0.36 Wm-2 per decade, with higher rates over the western Mediterranean (+0.82 Wm-2 per decade), and especially during spring (March-April-May; +1.3 Wm-2 per decade). However, statistically significant trends in NSWR either for all-sky or clean-sky conditions are observed only in May. The increasing trends in NSWR are mostly associated with decreasing ones in cloud optical depth (COD), especially for the low (<700 hPa) clouds. The decreasing COD trends (less opaque clouds and/or decrease in absolute cloudiness) are more pronounced during spring, thus controlling the increasing tendency in NSWR. The NSWR trends for cloudless (clear) skies are influenced by changes in the water-vapor content or even variations in surface albedo to a lesser degree, whereas aerosols are temporally constant in MERRA. The slight negative trend (not statistically significant) in NSWR under clear skies for nearly all months and seasons implies a slight increasing trend in water vapor under a warming and more humid climatic scenario over the Mediterranean.
Level and temporal trend of perfluoroalkyl acids in Greenlandic Inuit.
Long, Manhai; Bossi, Rossana; Bonefeld-Jørgensen, Eva C
2012-03-19
Perfluoroalkyl acids (PFAAs) have been detected in human blood, breast milk and umbilical cord blood across the globe. PFAAs do accumulate in the marine food chain in Arctic regions. In Greenland, increasing PFAA concentrations were observed during 1982-2006 in ringed seals and polar bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Cross-section and temporal time trend survey. Serum PFAA levels were determined in 284 Inuit from different Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 1998-2005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Serum PFAA levels were higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 1998-2005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs and legacy POPs was observed for Nuuk Inuit while for non-Nuuk Inuit this correlation was significant. No correlation between PFAAs and legacy POPs was found for male Inuit, whereas significant correlation was observed both for pooled female Inuit and for non-Nuuk Inuit females. We suggest that sources other than seafood intake might contribute to the observed higher PFAA levels in Nuuk Inuit compared to the pooled non-Nuuk Inuit.
Temporal trends in nitrate and selected pesticides in Mid-Atlantic ground water.
Debrewer, Linda M; Ator, Scott W; Denver, Judith M
2008-01-01
Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with changing land and chemical uses when interpreting trends in regional ground-water quality.
Temporal trends of mercury concentrations in Wisconsin walleye (Sander vitreus), 1982-2005.
Rasmussen, Paul W; Schrank, Candy S; Campfield, Patrick A
2007-11-01
The Wisconsin Department of Natural Resources has monitored mercury (Hg) in several species of fish since the early 1970s primarily for fish consumption advisory purposes. We selected skin-on fillets of walleye (Sander vitreus) from inland lakes collected over the years 1982-2005 to assess temporal trends of Hg concentrations. While individual lakes are of interest, sample sizes, and unbalanced collections across fish lengths, seasons, or years prevent estimates of temporal trends of walleye Hg concentrations within most lakes. We evaluated temporal trends over all lakes using mixed effects models (3,024 records from 421 lakes). Relationships between Hg concentrations and a suite of lake chemistry, morphometry, and other variables were also explored. Hg concentrations generally increased with walleye length but the relationship varied among lakes. The best-fitting mixed effects models suggested that the overall rate of change in walleye Hg across all lakes in the dataset varied with latitude. Hg in walleye decreased 0.5% per year in northern lakes, increased 0.8% in southern lakes, and remained constant in middle latitude lakes over the period of 1982-2005. Season of collection was also an important predictor variable. Hg concentrations were highest in walleye captured in the spring and lowest in the fall. Other variables such as gender, lake area, and total alkalinity were also important predictors.
Braune, Birgit M; Gaston, Anthony J; Mallory, Mark L
2016-07-01
We compared temporal trends of total mercury (Hg) in eggs of five seabird species breeding at Prince Leopold Island in the Canadian high Arctic. As changes in trophic position over time have the potential to influence contaminant temporal trends, Hg concentrations were adjusted for trophic position (measured as δ(15)N). Adjusted Hg concentrations in eggs of thick-billed murres (Uria lomvia) and northern fulmars (Fulmarus glacialis) increased from 1975 to the 1990s, followed by a plateauing of levels from the 1990s to 2014. Trends of adjusted Hg concentrations in eggs of murres, fulmars, black guillemots (Cepphus grylle) and black-legged kittiwakes (Rissa tridactyla) had negative slopes between 1993 and 2013. Adjusted Hg concentrations in glaucous gull (Larus hyperboreus) eggs decreased by 50% from 1993 to 2003 before starting to increase again. Glaucous gull eggs had the highest Hg concentrations followed by black guillemot eggs, and black-legged kittiwake eggs had the lowest concentrations consistently in the five years compared between 1993 and 2013. Based on published toxicological thresholds for Hg in eggs, there is little concern for adverse reproductive effects due to Hg exposure in these birds, although the levels in glaucous gull eggs warrant future scrutiny given the increase in Hg concentrations observed in recent years. There is evidence that the Hg trends observed reflect changing anthropogenic Hg emissions. It remains unclear, however, to what extent exposure to Hg on the overwintering grounds influences the Hg trends observed in the seabird eggs at Prince Leopold Island. Future research should focus on determining the extent to which Hg exposure on the breeding grounds versus the overwintering areas contribute to the trends observed in the eggs. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
2010-07-22
definite trend was observed, with an approximate 3-fold increase over vehicle control values. Significant IL-6 concentra- tion increases were observed in...differences occurred. How- ever, a strong increasing trend is apparent in both the mRNA (TNF-α and IL-6) and protein data (IL-1β) that is consistent with the...CNS pathologies. Trends Neurosci 1996, 19:409-410. 17. Wang CX, Shuaib A: Involvement of inflammatory cytokines in central nervous system injury
Gotelli, Nicholas J.; Dorazio, Robert M.; Ellison, Aaron M.; Grossman, Gary D.
2010-01-01
Quantifying patterns of temporal trends in species assemblages is an important analytical challenge in community ecology. We describe methods of analysis that can be applied to a matrix of counts of individuals that is organized by species (rows) and time-ordered sampling periods (columns). We first developed a bootstrapping procedure to test the null hypothesis of random sampling from a stationary species abundance distribution with temporally varying sampling probabilities. This procedure can be modified to account for undetected species. We next developed a hierarchical model to estimate species-specific trends in abundance while accounting for species-specific probabilities of detection. We analysed two long-term datasets on stream fishes and grassland insects to demonstrate these methods. For both assemblages, the bootstrap test indicated that temporal trends in abundance were more heterogeneous than expected under the null model. We used the hierarchical model to estimate trends in abundance and identified sets of species in each assemblage that were steadily increasing, decreasing or remaining constant in abundance over more than a decade of standardized annual surveys. Our methods of analysis are broadly applicable to other ecological datasets, and they represent an advance over most existing procedures, which do not incorporate effects of incomplete sampling and imperfect detection.
Level and temporal trend of perfluoroalkyl acids in Greenlandic Inuit
Long, Manhai; Bossi, Rossana; Bonefeld-Jørgensen, Eva C.
2012-01-01
Objectives Perfluoroalkyl acids (PFAAs) have been detected in human blood, breast milk and umbilical cord blood across the globe. PFAAs do accumulate in the marine food chain in Arctic regions. In Greenland, increasing PFAA concentrations were observed during 1982–2006 in ringed seals and polar bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Study design Cross-section and temporal time trend survey. Methods Serum PFAA levels were determined in 284 Inuit from different Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 1998–2005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Results Serum PFAA levels were higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 1998–2005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs and legacy POPs was observed for Nuuk Inuit while for non-Nuuk Inuit this correlation was significant. No correlation between PFAAs and legacy POPs was found for male Inuit, whereas significant correlation was observed both for pooled female Inuit and for non-Nuuk Inuit females. Conclusions We suggest that sources other than seafood intake might contribute to the observed higher PFAA levels in Nuuk Inuit compared to the pooled non-Nuuk Inuit.1 PMID:22456049
Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš
2018-05-15
Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can provide a solid basis for a better understanding of processes in freshwater reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.
Kent, Robert; Landon, Matthew K.
2016-01-01
From 2004 to 2011, the U.S. Geological Survey collected samples from 1686 wells across the State of California as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). From 2007 to 2013, 224 of these wells were resampled to assess temporal trends in water quality. The samples were analyzed for 216 water-quality constituents, including inorganic and organic compounds as well as isotopic tracers. The resampled wells were grouped into five hydrogeologic zones. A nonparametric hypothesis test was used to test the differences between initial sampling and resampling results to evaluate possible step trends in water-quality, statewide, and within each hydrogeologic zone. The hypothesis tests were performed on the 79 constituents that were detected in more than 5 % of the samples collected during either sampling period in at least one hydrogeologic zone. Step trends were detected for 17 constituents. Increasing trends were detected for alkalinity, aluminum, beryllium, boron, lithium, orthophosphate, perchlorate, sodium, and specific conductance. Decreasing trends were detected for atrazine, cobalt, dissolved oxygen, lead, nickel, pH, simazine, and tritium. Tritium was expected to decrease due to decreasing values in precipitation, and the detection of decreases indicates that the method is capable of resolving temporal trends.
Ilic, Milena; Ilic, Irena
2016-06-22
For both men and women worldwide, colorectal cancer is among the leading causes of cancer-related death. This study aimed to assess the mortality trends of colorectal cancer in Serbia between 1991 and 2010, prior to the introduction of population-based screening. Joinpoint regression analysis was used to estimate average annual percent change (AAPC) with the corresponding 95% confidence interval (CI). Furthermore, age-period-cohort analysis was performed to examine the effects of birth cohort and calendar period on the observed temporal trends. We observed a significantly increased trend in colorectal cancer mortality in Serbia during the study period (AAPC = 1.6%, 95% CI 1.3%-1.8%). Colorectal cancer showed an increased mortality trend in both men (AAPC = 2.0%, 95% CI 1.7%-2.2%) and women (AAPC = 1.0%, 95% CI 0.6%-1.4%). The temporal trend of colorectal cancer mortality was significantly affected by birth cohort (P < 0.05), whereas the study period did not significantly affect the trend (P = 0.072). Colorectal cancer mortality increased for the first several birth cohorts in Serbia (from 1916 to 1955), followed by downward flexion for people born after the 1960s. According to comparability test, overall mortality trends for colon cancer and rectal and anal cancer were not parallel (the final selected model rejected parallelism, P < 0.05). We found that colorectal cancer mortality in Serbia increased considerably over the past two decades. Mortality increased particularly in men, but the trends were different according to age group and subsite. In Serbia, interventions to reduce colorectal cancer burden, especially the implementation of a national screening program, as well as treatment improvements and measures to encourage the adoption of a healthy lifestyle, are needed.
Temporal Trends in Exposure to Organophosphate Flame Retardants in the United States
2017-01-01
During the past decade, use of organophosphate compounds as flame retardants and plasticizers has increased. Numerous studies investigating biomarkers (i.e., urinary metabolites) demonstrate ubiquitous human exposure and suggest that human exposure may be increasing. To formally assess temporal trends, we combined data from 14 U.S. epidemiologic studies for which our laboratory group previously assessed exposure to two commonly used organophosphate compounds, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP). Using individual-level data and samples collected between 2002 and 2015, we assessed temporal and seasonal trends in urinary bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP), the metabolites of TDCIPP and TPHP, respectively. Data suggest that BDCIPP concentrations have increased dramatically since 2002. Samples collected in 2014 and 2015 had BDCIPP concentrations that were more than 15 times higher than those collected in 2002 and 2003 (10β = 16.5; 95% confidence interval from 9.64 to 28.3). Our results also demonstrate significant increases in DPHP levels; however, increases were much smaller than for BDCIPP. Additionally, results suggest that exposure varies seasonally, with significantly higher levels of exposure in summer for both TDCIPP and TPHP. Given these increases, more research is needed to determine whether the levels of exposure experienced by the general population are related to adverse health outcomes. PMID:28317001
Ohashi, Shinta; Kuroda, Katsushi; Takano, Tsutomu; Suzuki, Youki; Fujiwara, Takeshi; Abe, Hisashi; Kagawa, Akira; Sugiyama, Masaki; Kubojima, Yoshitaka; Zhang, Chunhua; Yamamoto, Koichi
2017-11-01
To understand the changes in radiocesium ( 137 Cs) concentrations in stem woods after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, we investigated 137 Cs concentrations in the bark, sapwood, heartwood, and whole wood of four major tree species at multiple sites with different levels of radiocesium deposition from the FDNPP accident since 2011 (since 2012 at some sites): Japanese cedar at four sites, hinoki cypress and Japanese konara oak at two sites, and Japanese red pine at one site. Our previous report on 137 Cs concentrations in bark and whole wood samples collected from 2011 to 2015 suggested that temporal variations were different among sites even within the same species. In the present study, we provided data on bark and whole wood samples in 2016 and separately measured 137 Cs concentrations in sapwood and heartwood samples from 2011 to 2016; we further discussed temporal trends in 137 Cs concentrations in each part of tree stems, particularly those in 137 Cs distributions between sapwood and heartwood, in relation to their species and site dependencies. Temporal trends in bark and whole wood samples collected from 2011 to 2016 were consistent with those reported in samples collected from 2011 to 2015. Temporal variations in 137 Cs concentrations in barks showed either a decreasing trend or no clear trend, implying that 137 Cs deposition in barks is inhomogeneous and that decontamination is relatively slow in some cases. Temporal trends in 137 Cs concentrations in sapwood, heartwood, and whole wood were different among species and also among sites within the same species. Relatively common trends within the same species, which were increasing, were observed in cedar heartwood, and in oak sapwood and whole wood. On the other hand, the ratio of 137 Cs concentration in heartwood to that in sapwood (fresh weight basis) was commonly increased to more than 2 in cedar, although distinct temporal trends were not found in the other species, for which the ratio was around 1 in cypress and pine and below 0.5 in oak, suggesting that 137 Cs transfer from sapwood to heartwood shows species dependency. Consequently, the species dependency of 137 Cs transfer within the tree appears easily, while that from the environment to the trees can be masked by various factors. Thus, prediction of 137 Cs concentrations in stem wood should be carried out carefully as it still requires investigations at multiple sites with a larger sample size and an understanding of the species-specific 137 Cs transfer mechanism. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Gummadi, Sridhar; Rao, K. P. C.; Seid, Jemal; Legesse, Gizachew; Kadiyala, M. D. M.; Takele, Robel; Amede, Tilahun; Whitbread, Anthony
2017-12-01
This article summarizes the results from an analysis conducted to investigate the spatio-temporal variability and trends in the rainfall over Ethiopia over a period of 31 years from 1980 to 2010. The data is mostly observed station data supplemented by bias-corrected AgMERRA climate data. Changes in annual and Belg (March-May) and Kiremt (June to September) season rainfalls and rainy days have been analysed over the entire Ethiopia. Rainfall is characterized by high temporal variability with coefficient of variation (CV, %) varying from 9 to 30% in the annual, 9 to 69% during the Kiremt season and 15-55% during the Belg season rainfall amounts. Rainfall variability increased disproportionately as the amount of rainfall declined from 700 to 100 mm or less. No significant trend was observed in the annual rainfall amounts over the country, but increasing and decreasing trends were observed in the seasonal rainfall amounts in some areas. A declining trend is also observed in the number of rainy days especially in Oromia, Benishangul-Gumuz and Gambella regions. Trends in seasonal rainfall indicated a general decline in the Belg season and an increase in the Kiremt season rainfall amounts. The increase in rainfall during the main Kiremt season along with the decrease in the number of rainy days leads to an increase in extreme rainfall events over Ethiopia. The trends in the 95th-percentile rainfall events illustrate that the annual extreme rainfall events are increasing over the eastern and south-western parts of Ethiopia covering Oromia and Benishangul-Gumuz regions. During the Belg season, extreme rainfall events are mostly observed over central Ethiopia extending towards the southern part of the country while during the Kiremt season, they are observed over parts of Oromia, (covering Borena, Guji, Bali, west Harerge and east Harerge), Somali, Gambella, southern Tigray and Afar regions. Changes in the intensity of extreme rainfall events are mostly observed over south-eastern parts of Ethiopia extending to the south-west covering Somali and Oromia regions. Similar trends are also observed in the greatest 3-, 5- and 10-day rainfall amounts. Changes in the consecutive dry and wet days showed that consecutive wet days during Belg and Kiremt seasons decreased significantly in many areas in Ethiopia while consecutive dry days increased. The consistency in the trends over large spatial areas confirms the robustness of the trends and serves as a basis for understanding the projected changes in the climate. These results were discussed in relation to their significance to agriculture.
Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin.
Zhao, Jing; Huang, Qiang; Chang, Jianxia; Liu, Dengfeng; Huang, Shengzhi; Shi, Xiaoyu
2015-05-01
The Wei River is the largest tributary of the Yellow River in China. The relationship between runoff and precipitation in the Wei River Basin has been changed due to the changing climate and increasingly intensified human activities. In this paper, we determine abrupt changes in hydro-climatic variables and identify the main driving factors for the changes in the Wei River Basin. The nature of the changes is analysed based on data collected at twenty-one weather stations and five hydrological stations in the period of 1960-2010. The sequential Mann-Kendall test analysis is used to capture temporal trends and abrupt changes in the five sub-catchments of the Wei River Basin. A non-parametric trend test at the basin scale for annual data shows a decreasing trend of precipitation and runoff over the past fifty-one years. The temperature exhibits an increase trend in the entire period. The potential evaporation was calculated based on the Penman-Monteith equation, presenting an increasing trend of evaporation since 1990. The stations with a significant decreasing trend in annual runoff mainly are located in the west of the Wei River primarily interfered by human activities. Regression analysis indicates that human activity was possibly the main cause of the decline of runoff after 1970. Copyright © 2015. Published by Elsevier Inc.
Lee, Arthur M; Fermin, Cyrelle R; Filipp, Stephanie L; Gurka, Matthew J; DeBoer, Mark D
2017-04-01
We sought to investigate temporal trends in prediabetes prevalence among US adolescents using two definitions and evaluate relationships with obesity and a MetS-severity score. We evaluated data from 5418 non-Hispanic white, non-Hispanic black, and Hispanic adolescents aged 12-19 participating in the National Health and Nutrition Examination Survey 1999-2014 with complete data regarding MetS and hemoglobin A1c (HbA1c). Prediabetes status was defined by American Diabetes Association (ADA) criteria: fasting glucose 100-125 mg/dL or HbA1c 5.7%-6.4%. MetS severity was assessed with a MetS-severity Z-score. Prevalence of prediabetes as defined by HbA1c abnormalities significantly increased from 1999-2014, while prevalence of prediabetes as defined by fasting glucose abnormalities showed no significant temporal trend. There were variations in these trends across different racial/ethnic groups. MetS Z-score was overall more strongly correlated with HbA1c, fasting insulin, and the homeostasis model of insulin resistance than was BMI Z-score. These correlations were true in each racial/ethnic group with the exception that in non-Hispanic white adolescents, in whom the MetS Z-score was not significantly correlated with HbA1c measurements. We found conflicting findings of temporal trends of US adolescent prediabetes prevalence based on the ADA's prediabetes criteria. The increasing prevalence of prediabetes by HbA1c assessment is concerning and raises the urgency for increased awareness and appropriate measures of prediabetes status among physicians and patients.
Nøst, Therese Haugdahl; Sandanger, Torkjel Manning; Nieboer, Evert; Odland, Jon Øyvind; Breivik, Knut
2017-06-01
In this short communication, our focus is on the relationship between human concentrations of select persistent organic pollutants (POPs) and environmental emissions. It is based on a longitudinal study (1979-2007) conducted in Norway. Our aim was to extract general insights from observed and predicted temporal trends in human concentrations of 49 POPs to assist in the design and interpretation of future monitoring studies. Despite considerable decline for polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) since 1986, the sum of the targeted POPs increased from 1979 until 2001, with per- and polyfluorinated alkyl substances (PFASs) dominating recent blood burden measurements. Specifically, the time trends in serum concentrations of POPs, exemplified by PCB-153, 1,1'-(2,2,2-Trichloroethane-1,1-diyl)bis(4-chlorobenzene) (DDT) and perfluorooctane sulfonic acid (PFOS), resembled the trends in available data on their emissions, production or use. These observations suggest that interpretations of human biomonitoring data on persistent compounds must consider historic emissions, which likely vary spatially across the globe. Based on the different temporal trends observed across POP groups, it is evident that generalizations regarding temporal aspects have limitations. The discussion herein underscores the importance of understanding temporal variations in environmental emissions when designing and interpreting human biomonitoring studies. Copyright © 2017 Elsevier GmbH. All rights reserved.
Wagner, Tyler; Vandergoot, Christopher S.; Tyson, Jeff
2011-01-01
Fishery-independent (FI) surveys provide critical information used for the sustainable management and conservation of fish populations. Because fisheries management often requires the effects of management actions to be evaluated and detected within a relatively short time frame, it is important that research be directed toward FI survey evaluation, especially with respect to the ability to detect temporal trends. Using annual FI gill-net survey data for Lake Erie walleyes Sander vitreus collected from 1978 to 2006 as a case study, our goals were to (1) highlight the usefulness of hierarchical models for estimating spatial and temporal sources of variation in catch per effort (CPE); (2) demonstrate how the resulting variance estimates can be used to examine the statistical power to detect temporal trends in CPE in relation to sample size, duration of sampling, and decisions regarding what data are most appropriate for analysis; and (3) discuss recommendations for evaluating FI surveys and analyzing the resulting data to support fisheries management. This case study illustrated that the statistical power to detect temporal trends was low over relatively short sampling periods (e.g., 5–10 years) unless the annual decline in CPE reached 10–20%. For example, if 50 sites were sampled each year, a 10% annual decline in CPE would not be detected with more than 0.80 power until 15 years of sampling, and a 5% annual decline would not be detected with more than 0.8 power for approximately 22 years. Because the evaluation of FI surveys is essential for ensuring that trends in fish populations can be detected over management-relevant time periods, we suggest using a meta-analysis–type approach across systems to quantify sources of spatial and temporal variation. This approach can be used to evaluate and identify sampling designs that increase the ability of managers to make inferences about trends in fish stocks.
Wagner, Tyler; Vandergoot, Christopher S.; Tyson, Jeff
2009-01-01
Fishery-independent (FI) surveys provide critical information used for the sustainable management and conservation of fish populations. Because fisheries management often requires the effects of management actions to be evaluated and detected within a relatively short time frame, it is important that research be directed toward FI survey evaluation, especially with respect to the ability to detect temporal trends. Using annual FI gill-net survey data for Lake Erie walleyes Sander vitreus collected from 1978 to 2006 as a case study, our goals were to (1) highlight the usefulness of hierarchical models for estimating spatial and temporal sources of variation in catch per effort (CPE); (2) demonstrate how the resulting variance estimates can be used to examine the statistical power to detect temporal trends in CPE in relation to sample size, duration of sampling, and decisions regarding what data are most appropriate for analysis; and (3) discuss recommendations for evaluating FI surveys and analyzing the resulting data to support fisheries management. This case study illustrated that the statistical power to detect temporal trends was low over relatively short sampling periods (e.g., 5–10 years) unless the annual decline in CPE reached 10–20%. For example, if 50 sites were sampled each year, a 10% annual decline in CPE would not be detected with more than 0.80 power until 15 years of sampling, and a 5% annual decline would not be detected with more than 0.8 power for approximately 22 years. Because the evaluation of FI surveys is essential for ensuring that trends in fish populations can be detected over management-relevant time periods, we suggest using a meta-analysis–type approach across systems to quantify sources of spatial and temporal variation. This approach can be used to evaluate and identify sampling designs that increase the ability of managers to make inferences about trends in fish stocks.
Chiu, Maria; Maclagan, Laura C; Tu, Jack V; Shah, Baiju R
2015-08-10
To determine ethnic-specific temporal trends in cardiovascular risk factors in Ontario between 2001 and 2012. A population-based repeated cross-sectional study. Ontario, Canada. 219,276 participants of the Canadian Community Health Survey (205,326 white, 5620 South Asian, 4368 Chinese and 3962 black) during the period 2001 to 2012. Age-standardised ethnic-sex-specific prevalence of cardiovascular risk factors for three time periods: 2001-2004, 2005-2008 and 2009-2012 among Canada's four major ethnic groups: white, South Asian, Chinese and black. During the study period, the prevalence of diabetes increased 2.3-fold (p = 0.0001) among South Asian males and 1.9-fold (p = 0.02) among black females. The prevalence of obesity (body mass index ≥ 30 kg/m(2)) increased over time across all ethnic groups, with the largest relative increases observed among males of Chinese (2.1-fold increase, p = 0.04) and black (1.7-fold increase, p = 0.06) descent. The prevalence of hypertension increased the most among black females. Smoking prevalence decreased by more than 20% among South Asian, Chinese and white females. Overall, South Asian males and black males and females showed the greatest declines in cardiovascular health over the study period. We observed important ethnic differences in the temporal trends in cardiovascular risk factor profiles in Ontario. Awareness of the direction and magnitude of these risk factor trends may be useful in informing targeted strategies for preventing cardiovascular diseases in multiethnic populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Advances in Temporal Analysis in Learning and Instruction
ERIC Educational Resources Information Center
Molenaar, Inge
2014-01-01
This paper focuses on a trend to analyse temporal characteristics of constructs important to learning and instruction. Different researchers have indicated that we should pay more attention to time in our research to enhance explanatory power and increase validity. Constructs formerly viewed as personal traits, such as self-regulated learning and…
NASA Astrophysics Data System (ADS)
Luan, Jinkai; Liu, Dengfeng; Zhang, Lianpeng; Huang, Qiang; Feng, Jiuliang; Lin, Mu; Li, Guobao
2018-06-01
Han River is the water source region of the middle route of South-to-North Water Diversion in China and the ecological projects were implemented since many years ago. In order to monitor the change of vegetation in Han River and evaluate the effect of ecological projects, it is needed to reveal the spatial-temporal change of the vegetation in the upper reach of Han River quantitatively. The study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes of the NDVI in August from 2000 to 2016 at pixel scale in the upper reach of Han River Basin. The results show that, the area with increasing NDVI between 0 and 0.005 per year accounts for 62.07 % of the area of upper reach of Han River Basin, and the area with changing rate between -0.005 and 0 per year accounts for 26.65 % of the research area. The area with significant decreasing trend only accounts for 2.76 %, while area significant increasing trend accounts for 13.47 %, and the area with increasing NDVI is much larger than the area with reducing NDVI. The vegetation index of each county is evaluated and found that, the areal proportion with significant decreasing trend in Hantai is the biggest, reaching 35.57 %. The areal proportion with significant increasing trend in Zhenba County, Ziyang County, Xunyang County, Zhashui County, Shangzhou District, Shanyang County and Yun County is larger than the others, and the areal proportions are more than 20 %. The largest areal proportion with significant increasing trend is in Shangzhou District and it reaches 31.11 %. On the whole, the area ratio in all districts and counties with increasing NDVI is much larger than the area ratio with decreasing NDVI.
Urine sodium excretion increased slightly among U.S. adults between 1988 and 2010.
Pfeiffer, Christine M; Hughes, Jeffery P; Cogswell, Mary E; Burt, Vicki L; Lacher, David A; Lavoie, Donna J; Rabinowitz, Daniel J; Johnson, Clifford L; Pirkle, James L
2014-05-01
Little information is available on temporal trends in sodium intake in the U.S. population using urine sodium excretion as a biomarker. Our aim was to assess 1988-2010 trends in estimated 24-h urine sodium (24hUNa) excretion among U.S. adults (age 20-59 y) participating in the cross-sectional NHANES. We used subsamples from a 1988-1994 convenience sample, a 2003-2006 one-third random sample, and a 2010 one-third random sample to comply with resource constraints. We estimated 24hUNa excretion from measured sodium concentrations in spot urine samples by use of calibration equations (for men and women) derived from the International Cooperative Study on Salt, Other Factors, and Blood Pressure study. Estimated 24hUNa excretion increased over the 20-y period [1988-1994, 2003-2006, and 2010; means ± SEMs (n): 3160 ± 38.4 mg/d (1249), 3290 ± 29.4 mg/d (1235), and 3290 ± 44.4 mg/d (525), respectively; P-trend = 0.022]. We observed significantly higher mean estimated 24hUNa excretion in each survey period (P < 0.001) for men compared with women (31-33%) and for persons with a higher body mass index (BMI; 32-35% for obese vs. normal weight) or blood pressure (17-26% for hypertensive vs. normal blood pressure). After adjusting for age, sex, and race-ethnicity, temporal trends in mean estimated 24hUNa excretion remained significant (P-trend = 0.004). We observed no temporal trends in mean estimated 24hUNa excretion among BMI subgroups, nor after adjusting for BMI. Although several limitations apply to this analysis (the use of a convenience sample in 1988-1994 and using estimated 24hUNa excretion as a biomarker of sodium intake), these first NHANES data suggest that mean estimated 24hUNa excretion increased slightly in U.S. adults over the past 2 decades, and this increase may be explained by a shift in the distribution of BMI.
Temporal trends in nitrate and selected pesticides in mid-atlantic ground water
Debrewer, L.M.; Ator, S.W.; Denver, J.M.
2008-01-01
Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with, changing land and chemical uses when interpreting trends in regional ground-water quality. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Spatio-temporal trends in monthly pan evaporation in Aguascalientes, Mexico
NASA Astrophysics Data System (ADS)
Ruiz-Alvarez, Osias; Singh, Vijay P.; Medina, Juan Enciso; Munster, Clyde; Kaiser, Ronald; Ontiveros-Capurata, Ronald Ernesto; Diaz-Garcia, Luis Antonio; dos Santos, Carlos Antonio Costa
2018-05-01
Emission of greenhouse gases is being alleged to be causing climate change in different regions of the world. The objective of this study was to analyze the spatio-temporal trends of monthly evaporation at 52 weather stations in the state of Aguascalientes (Mexico) which have hydrometeorological records of long periods. The autocorrelation was eliminated with an auto-regressive model, and the trend was determined using the Spearman (S) and Kendall (K) tests. The statistical significance of the trend was determined with the Spearman correlation coefficient (r s) and the Z statistic (the test statistic of the normal distribution) both indicated that that there were statistically significant trends in 107 time series, of these 88 series had negative trends and 19 series had positive trends. Negative trends were present in all months of the year, while positive trends occurred from February to May and from October to December only. The reduction of evaporation from - 4.10 to - 20.50 mm/month/year from June to September showed a hopeful future scenario for rainfed agriculture. Irrigated agriculture during dry months could have a reduction of irrigation requirements as a consequence of the reduction in reference and crop evapotranspiration. The evaporation increase during dry months could increase irrigation requirements and pumping, mainly in March, April, and November when there are trends with increases of about 26.90, 24.60, and 23.90 mm/month/year, respectively. The spatial variability of evaporation trend means that other effects of climate change could vary in different parts of the state. Results of this study will be useful for farmers and institutions in charge of the administration of water resources for developing adaptation and mitigation strategies to climate change.
Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.
2014-01-01
We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.
Lottig, Noah R.; Wagner, Tyler; Norton Henry, Emily; Spence Cheruvelil, Kendra; Webster, Katherine E.; Downing, John A.; Stow, Craig A.
2014-01-01
We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity. PMID:24788722
Solaun, O; Rodríguez, J G; Borja, A; González, M; Saiz-Salinas, J I
2013-02-15
Temporal trends in metal concentrations, i.e. Ag, Cd, Cu, Cr, Hg, Ni, Pb and Zn, measured in soft tissues of Mytilus galloprovincialis mussels and Crassostrea gigas oysters collected from estuarine waters within the Basque Country (Bay of Biscay), have been investigated to determine if actions undertaken have improved the environmental quality of rivers and estuaries. Data compiled between 1990 and 2010 have been analysed statistically, applying the Mann-Kendall and the Mann-Whitney-Wilcoxon tests. Moreover, in those cases with significant trends, the Kolmogorov-Zurbenko Adaptive (KZA) filter was applied to detect abrupt changes. Results showed significant decreasing trends for some metals, i.e. Ni, Cu, Pb and Zn, and differences between medians. Trend lines showed abrupt changes occurring between 1998 and 2002. Therefore, observed downward trends were related to increased wastewater treatment and diversions of discharges to ocean, implemented mainly during 2000-2002. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rowe, Gary L.; Shapiro, Stephanie Dunkle; Schlosser, Peter
1999-01-01
Chlorofluorocarbons (CFC method) and tritium and helium isotopes (3H-3He method) were used as environmental tracers to estimate ground-water age in conjunction with efforts to develop a regional ground-water flow model of the buried-valley aquifer in the Dayton area, southwestern Ohio. This report describes results of CFC and water-quality sampling, summarizes relevant aspects of previously published work, and describes the use of 3H-3He ages to characterize temporal trends in ground-water quality of the buried-valley aquifer near Dayton, Ohio. Results of CFC sampling indicate that approximately 25 percent of the 137 sampled wells were contaminated with excess CFC's that rendered the ground water unsuitable for age dating. Evaluation of CFC ages obtained for the remaining samples indicated that the CFC compounds used for dating were being affected by microbial degradation. The degradation occurred under anoxic conditions that are found in most parts of the buried-valley aquifer. As a result, ground-water ages derived by the CFC method were too old and were inconsistent with measured tritium concentrations and independently derived 3H-3He ages. Limited data indicate that dissolved methane may play an important role in the degradation of the CFC's. In contrast, the 3H-3He technique was found to yield ground-water ages that were chemically and hydrologically reasonable. Ground-water ages derived by the 3H-3He technique were compared to values for selected water- quality characteristics to evaluate temporal trends in ground-water quality in the buried- valley aquifer. Distinct temporal trends were not identified for pH, alkalinity, or calcium and magnesium because of rapid equilibration of ground-water with calcite and dolomite in aquifer sediments. Temporal trends in which the amount of scatter and the number of outlier concentrations increased as ground-water age decreased were noted for sodium, potassium, boron, bromide, chloride, ammonia, nitrate, phosphate, sulfate, and organic carbon. Elevated concentrations of these constituents in shallow ground water are probably related to human activities. Temporal trends in which concentrations declined as ground-water age increased may reflect natural processes that reduce constituent concentrations to low levels. For example, the absence of nitrate detections in ground water recharged before 1980 may indicate natural removal of nitrate by bacterially mediated denitrification. Temporal trends observed for dissolved oxygen, iron, nitrate and silica indicate that these constituents may help identify recently (post-1990) recharged ground water.
NASA Astrophysics Data System (ADS)
Xu, Yu; Xu, Youpeng; Wang, Yuefeng; Wu, Lei; Li, Guang; Song, Song
2017-11-01
Reference crop evapotranspiration (ETo) is one of the most important links in hydrologic circulation and greatly affects regional agricultural production and water resource management. Its variation has drawn more and more attention in the context of global warming. We used the Penman-Monteith method of the Food and Agriculture Organization, based on meteorological factors such as air temperature, sunshine duration, wind speed, and relative humidity to calculate the ETo over 46 meteorological stations located in the Yangtze River Delta, eastern China, from 1957 to 2014. The spatial distributions and temporal trends in ETo were analyzed based on the modified Mann-Kendall trend test and linear regression method, while ArcGIS software was employed to produce the distribution maps. The multiple stepwise regression method was applied in the analysis of the meteorological variable time series to identify the causes of any observed trends in ETo. The results indicated that annual ETo showed an obvious spatial pattern of higher values in the north than in the south. Annual increasing trends were found at 34 meteorological stations (73.91 % of the total), which were mainly located in the southeast. Among them, 12 (26.09 % of the total) stations showed significant trends. We saw a dominance of increasing trends in the monthly ETo except for January, February, and August. The high value zone of monthly ETo appeared in the northwest from February to June, mid-south area from July to August, and southeast coastal area from September to January. The research period was divided into two stages—stage I (1957-1989) and stage II (1990-2014)—to investigate the long-term temporal ETo variation. In stage I, almost 85 % of the total stations experienced decreasing trends, while more than half of the meteorological stations showed significant increasing trends in annual ETo during stage II except in February and September. Relative humidity, wind speed, and sunshine duration were identified as the most dominant meteorological variables influencing annual ETo changes. The results are expected to assist water resource managers and policy makers in making better planning decisions in the research region.
Perles, Stephanie J.; Wagner, Tyler; Irwin, Brian J.; Manning, Douglas R.; Callahan, Kristina K.; Marshall, Matthew R.
2014-01-01
Forests are socioeconomically and ecologically important ecosystems that are exposed to a variety of natural and anthropogenic stressors. As such, monitoring forest condition and detecting temporal changes therein remain critical to sound public and private forestland management. The National Parks Service’s Vital Signs monitoring program collects information on many forest health indicators, including species richness, cover by exotics, browse pressure, and forest regeneration. We applied a mixed-model approach to partition variability in data for 30 forest health indicators collected from several national parks in the eastern United States. We then used the estimated variance components in a simulation model to evaluate trend detection capabilities for each indicator. We investigated the extent to which the following factors affected ability to detect trends: (a) sample design: using simple panel versus connected panel design, (b) effect size: increasing trend magnitude, (c) sample size: varying the number of plots sampled each year, and (d) stratified sampling: post-stratifying plots into vegetation domains. Statistical power varied among indicators; however, indicators that measured the proportion of a total yielded higher power when compared to indicators that measured absolute or average values. In addition, the total variability for an indicator appeared to influence power to detect temporal trends more than how total variance was partitioned among spatial and temporal sources. Based on these analyses and the monitoring objectives of theVital Signs program, the current sampling design is likely overly intensive for detecting a 5 % trend·year−1 for all indicators and is appropriate for detecting a 1 % trend·year−1 in most indicators.
NASA Astrophysics Data System (ADS)
Reid, William D. K.; Sweeting, Christopher J.; Wigham, Ben D.; McGill, Rona A. R.; Polunin, Nicholas V. C.
2013-12-01
Demersal fish play an important role in the deep-sea ecosystem by acting as a link to mobile food in the water column, consuming benthic fauna, breaking down large food parcels and dispersing organic matter over large areas. Poor diet resolution from stomach content analysis often impairs the ability to assess differences in inter- and intra-population trophodynamics and therefore understand resource partitioning among deep-sea fishes. Antimora rostrata (predator-scavenger), Coryphaenoides armatus (predator-scavenger), Coryphaenoides brevibarbis (predator) and Halosauropsis macrochir (predator) were collected from 3 stations on the Mid-Atlantic Ridge (MAR) in 2007 and 2009 to investigate trophic ecology using δ13C and δ15N. Variability in lipid-normalised δ13C (δ13Cn) and δ15N was explained by body length in all species but slope and significance of the isotope-length relationships varied both temporally and spatially. δ15N increases with length were observed in A. rostrata at all stations, C. brevibarbis and H. macrochir at one or more stations but were absent in C. armatus. δ13Cn increased with length in A. rostrata but the slope of δ13Cn-length relationships varied spatially and temporally in C. armatus and C. brevibarbis. The co-occurring δ13Cn and δ15N size-based trends in A. rostrata and H. macrochir suggested that size-based trends were a result of increasing trophic position. In C. armatus and C. brevibarbis the isotope-length trends were difficult to distinguish among trophic position increases, shifts in resource use i.e. benthic to pelagic or internal physiology. However, the overall strength, direction and significance of isotope-length trends varied temporally and spatially which suggested varying degrees of overlap in trophic ecology and feeding plasticity among these species.
Wagner, Tyler; Irwin, Brian J.; James R. Bence,; Daniel B. Hayes,
2016-01-01
Monitoring to detect temporal trends in biological and habitat indices is a critical component of fisheries management. Thus, it is important that management objectives are linked to monitoring objectives. This linkage requires a definition of what constitutes a management-relevant “temporal trend.” It is also important to develop expectations for the amount of time required to detect a trend (i.e., statistical power) and for choosing an appropriate statistical model for analysis. We provide an overview of temporal trends commonly encountered in fisheries management, review published studies that evaluated statistical power of long-term trend detection, and illustrate dynamic linear models in a Bayesian context, as an additional analytical approach focused on shorter term change. We show that monitoring programs generally have low statistical power for detecting linear temporal trends and argue that often management should be focused on different definitions of trends, some of which can be better addressed by alternative analytical approaches.
Yang, Ruiqiang; Xie, Ting; Li, An; Yang, Handong; Turner, Simon; Wu, Guangjian; Jing, Chuanyong
2016-07-01
Sediment cores from five lakes across the Tibetan Plateau were used as natural archives to study the time trends of polycyclic aromatic hydrocarbons (PAHs). The depositional flux of PAHs generally showed an increasing trend from the deeper layers towards the upper layer sediments. The fluxes of PAHs were low with little variability before the 1950s, and then gradually increased to the late 1980s, with a faster increasing rate after the 1990s. This temporal pattern is clearly different compared with those remote lakes across the European mountains when PAHs started to decrease during the period 1960s-1980s. The difference of the temporal trend was attributed to differences in the economic development stages and energy structure between these regions. PAHs are dominated by the lighter 2&3-ring homologues with the averaged percentage over 87%, while it is notable that the percentage of heavier 4-6 ring PAHs generally increased in recent years, which suggests the contribution of local high-temperature combustion sources becoming more predominant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010
Wei Qin; Qiankun Guo; Changqing Zuo; Zhijie Shan; Liang Ma; Ge Sun
2016-01-01
Rainfall erosivity is an important factor for estimating soil erosion rates. Understanding the spatial distributionand temporal trends of rainfall erosivity is especially critical for soil erosion risk assessment and soil conservationplanning in mainland China. However, reports on the spatial distribution and temporal trends of rainfall...
Global trends in satellite-based emergency mapping
Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati
2016-01-01
Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.
NASA Astrophysics Data System (ADS)
Li, Jing; Li, Chengcai; Zhao, Chunsheng
2018-03-01
Although the temporal changes in aerosol properties have been widely investigated, the majority of studies has focused on average conditions without much emphasis on the extremes. However, the latter can be more important in terms of human health and climate change. This study uses a previously validated, quality-controlled visibility dataset to investigate the long-term trends (expressed in terms of relative changes) in extreme surface aerosol extinction coefficient (AEC) over China and compares them with the median trends. Two methods are used to independently evaluate the trends, which arrive at consistent results. The signs of extreme and median trends are generally coherent, whereas their magnitudes show distinct spatial and temporal differences. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for northwest China and the North China Plain. In the 1990s, AEC over northeast and northwest China started to decline while the rest of the country still exhibited an increase. The extreme trends continued to dominate in the south while they yielded to the mean trend in the north. After the year 2000, the extreme trend became weaker than the mean trend overall in terms of both the magnitude and significance level. The annual trend can be primarily attributed to winter and fall trends. The results suggest that the decadal changes in pollution in China may be governed by different mechanisms. Synoptic conditions that often result in extreme air quality changes might have dominated in the 1980s, whereas emission increase might have been the main factor for the 2000s.
Bi-phasic trends in mercury concentrations in blood of Wisconsin common loons during 1992–2010
Meyer, Michael W.; Rasmussen, Paul W.; Watras, Carl J.; Fevold, Brick M.; Kenow, Kevin P.
2011-01-01
Wisconsin Department of Natural Resources (WDNR) assessed the ecological risk of mercury (Hg) in aquatic systems by monitoring common loon (Gavia immer) population dynamics and blood Hg concentrations. We report temporal trends in blood Hg concentrations based on 334 samples collected from adults recaptured in subsequent years (resampled 2-9 times) and from 421 blood samples of chicks collected at lakes resampled 2-8 times 1992-2010.. Temporal trends were identified with generalized additive mixed effects models (GAMMs) and mixed effects models to account for the potential lack of independence among observations from the same loon or same lake. Trend analyses indicated that Hg concentrations in the blood of Wisconsin loons declined over the period 1992-2000, and increased during 2002-2010, but not to the level observed in the early 1990s. The best fitting linear mixed effects model included separate trends for the two time periods. The estimated trend in Hg concentration among the adult loon population during 1992-2000 was -2.6% per year and the estimated trend during 2002-2010 was +1.8% per year; chick blood Hg concentrations decreased by -6.5% per year during 1992-2000, but increased 1.8% per year during 2002-2010. This bi-phasic pattern is similar to trends observed for concentrations of methylmercury (meHg) and SO4 in lake water of a well studied seepage lake (Little Rock Lake, Vilas County) within our study area. A cause-effect relationship between these independent trends is hypothesized.
NATIONAL STATUS AND TRENDS PROGRAM
Since 1984, the National Status and Trends (NS&T) Program has monitored, on a national scale, spatial and temporal trends of chemical contamination and biological responses to that contamination. Temporal trends are being monitored through the Mussel Watch project that analyzes m...
Zeng, Lixi; Lam, James C W; Wang, Yawei; Jiang, Guibin; Lam, Paul K S
2015-10-06
Temporal trends of short- (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were examined in blubber samples of 50 finless porpoises (Neophocaena phocaenoides) and 25 Indo-Pacific humpback dolphins (Sousa chinensis) collected from the South China Sea between 2004 and 2014. Elevated levels of SCCPs and MCCPs were detected in all blubber samples of both cetacean species. Concentrations of SCCPs ranged from 280 to 3900 ng·g(-1) dry weight (dw) in porpoises and from 430 to 9100 ng·g(-1) dw in dolphins, while concentrations of MCCPs ranged from 320 to 8600 ng·g(-1) dw in porpoises and from 530 to 23 000 ng·g(-1) dw in dolphins. Significantly higher concentrations were present in dolphins than porpoises due to their exposure levels in their living habitats. Strongly linear correlations existed between SCCPs and MCCPs, but there were no significant concentration differences between the genders of the two cetacean species in the same sampling year. Significantly temporal increasing trends of ∑SCCPs and ∑MCCPs have been observed in both porpoise and dolphin samples over the past decade, which reflect the influence of histories of production and usage on the bioaccumulation of CPs in marine mammals in China. An apparent temporal shift trend from SCCPs to MCCPs was also observed in CP accumulation profiles. Complex environmental fractionation from localized sources in the study region via atmospheric transport, oceanic/offshore water transport, and trophic transfer have resulted in different CP accumulation levels and homologue patterns in the two cetacean species. This is the first report of systematic temporal trends of SCCPs and MCCPs in marine mammals.
Temporal trends in dancing among adults between 1994 and 2012: The Health Survey for England.
Vassallo, Amy Jo; Hiller, Claire E; Pappas, Evangelos; Stamatakis, Emmanuel
2018-01-01
The benefits of physical activity are established, however, increasing population physical activity levels remains a challenge. Participating in activities that are enjoyable and multidimensional, such as dancing, are associated with better adherence. However, the extent to which the general population participates in dancing and its temporal trends has not been well studied. The aim of this study was to investigate temporal trends and patterns and correlates of dance participation in England from 1994 to 2012 using a series of large nationally representative surveys. We used data from the Health Survey for England 1994, 1997, 1998, 1999, 2003, 2004, 2006, 2008 and 2012 to examine dance temporal trends. Temporal trends data were age-standardized and correlates of dance participation were examined for males and females over each study year. Changes in population prevalence of dance participation were determined using multiple logistical regression with 1997 as the reference year. Of all survey participants (n=98,178) 7.8% (95%CI: 7.63-7.96) reported dance participation. There was a marked steady decrease over time, with the steepest decline from 2003 onwards. The multivariable-adjusted odds ratios for dance participation were 0.51 for males (95%CI 0.408-0.630, p<0.001) and 0.69 for females (95%CI: 0.598-0.973, p<0.001) in 2012 compared to 1997. Dance participation in adults in England has decreased markedly over time. This study suggests that dance is not being adequately utilized as a health enhancing physical activity, and therefore further research and resources should be dedicated to supporting dance in the community. Copyright © 2017 Elsevier Inc. All rights reserved.
Sudden cardiac death: epidemiology and risk factors
Adabag, A. Selcuk; Luepker, Russell V.; Roger, Véronique L.; Gersh, Bernard J.
2016-01-01
Sudden cardiac death (SCD) is an important public-health problem with multiple etiologies, risk factors, and changing temporal trends. Substantial progress has been made over the past few decades in identifying markers that confer increased SCD risk at the population level. However, the quest for predicting the high-risk individual who could be a candidate for an implantable cardioverter-defibrillator, or other therapy, continues. In this article, we review the incidence, temporal trends, and triggers of SCD, and its demographic, clinical, and genetic risk factors. We also discuss the available evidence supporting the use of public-access defibrillators. PMID:20142817
NASA Astrophysics Data System (ADS)
Mastrotheodoros, Theodoros; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo; Keenan, Trevor F.; Gentine, Pierre; Fatichi, Simone
2017-04-01
Increasing atmospheric carbon dioxide concentrations stimulate photosynthesis and reduce stomatal conductance, modifying plant water use efficiency. We analyzed eddy covariance flux tower observations from 20 forested ecosystems across the Northern Hemisphere. For these sites, a previous study showed an increase in inherent water use efficiency (IWUE) five times greater than expectations. We used an updated dataset and robust uncertainty quantification to analyze these contemporary trends in IWUE. We found that IWUE increased in the last 15-20 years by roughly 1.4% yr-1, which is less than previously reported, but still 2.8 times greater than theoretical expectations. Numerical simulations by means of an ecosystem model based on temporally static plant functional traits (i.e. model parameters) do not reproduce this increase. We tested the hypothesis that the observed increase in IWUE could be attributed to changes in plant functional traits, potentially triggered by environmental changes. Simulation results accounting for trait plasticity (i.e. by changing model parameters such as specific leaf area and maximum Rubisco capacity) match the observed trends in IWUE, with an increase in both leaf internal CO2 concentration and gross ecosystem production (GEP), and with a negligible trend in evapotranspiration (ET). This supports the hypothesis that changes in plant functional traits of about 1.0% yr-1 can explain the observed IWUE trends and are consistent with observed trends of GEP and ET at larger scales. Our results highlight that at decadal or longer time scales trait plasticity can considerably influence the water, carbon and energy fluxes with implications for both the monitoring of temporal changes in plant traits and their representation in Earth system models.
Burns, Douglas A.; McHale, M.R.; Driscoll, C.T.; Roy, K.M.
2006-01-01
In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984-2001 and 1992-2001) and surface water chemistry (1992-2001) were determined in two of the most acid-sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42-), nitrate (NO3-), and base cation (CB) concentrations and increasing pH during 1984-2001, but few significant trends during 1992-2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42- concentrations at all sites, and decreasing trends in NO3-, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid-neutralizing capacity (ANC increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42- trends, but it caused several significant non-flow-corrected trends in NO3- and ANC to become non-significant, suggesting that trend results for flow-sensitive constituents are affected by flow-related climate variation. SO42- concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation-surface water comparisons, reflecting a strong link between S emissions, precipitation SO42- concentrations, and the processes that affect S cycling within these regions. NO3- and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation-surface water comparisons, indicating that variation in local-scale processes driven by factors such as climate are affecting trends in acid-base chemistry in these two regions. Copyright ?? 2005 John Wiley & Sons, Ltd.
Stubleski, Jordan; Salihovic, Samira; Lind, P Monica; Lind, Lars; Dunder, Linda; McCleaf, Philip; Eurén, Karin; Ahrens, Lutz; Svartengren, Magnus; van Bavel, Bert; Kärrman, Anna
2017-11-01
In 2012, drinking water contaminated with per- and polyfluoroalkyl substances (PFASs), foremost perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) at levels over 20ng/L and 40ng/L, respectively, was confirmed in Uppsala, Sweden. We assessed how a longitudinally sampled cohort's temporal trend in PFAS plasma concentration was influenced by their residential location and determined the plausible association or disparity between the PFASs detected in the drinking water and the trend in the study cohort. The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort provided plasma samples three times from 2001 to 2014. Individuals maintaining the same zip code throughout the study (n = 399) were divided into a reference (no known PFAS exposure), low, intermediate and high exposure area depending on the proportion of contaminated drinking water received. Eight PFASs detected in the majority (75%) of the cohort's plasma samples were evaluated for significant changes in temporal PFAS concentrations using a random effects (mixed) model. PFHxS plasma concentrations continued to significantly increase in individuals living in areas receiving the largest percentage of contaminated drinking water (p < 0.0001), while PFOS showed an overall decrease. The temporal trend of other PFAS plasma concentrations did not show an association to the quality of drinking water received. The distribution of contaminated drinking water had a direct effect on the trend in PFHxS plasma levels among the different exposure groups, resulting in increased concentrations over time, especially in the intermediate and high exposure areas. PFOS and the remaining PFASs did not show the same relationship, suggesting other sources of exposure influenced these PFAS plasma trends. Copyright © 2017 Elsevier Inc. All rights reserved.
Historical trend in river ice thickness and coherence in hydroclimatological trends in Maine
Huntington, T.G.; Hodgkins, G.A.; Dudley, R.W.
2003-01-01
We analyzed long-term records of ice thickness on the Piscataquis River in central Maine and air temperature in Maine to determine whether there were temporal trends that were associated with climate warming. The trend in ice thickness was compared and correlated with regional time series of winter air temperature, heating degree days (HDD), date of river ice-out, seasonal center-of-volume date (SCVD) (date on which half of the stream runoff volume during the period 1 Jan. to 31 May has occurred), water temperature, and lake ice-out date. All of these variables except lake ice-out date showed significant temporal trends during the 20th century. Average ice thickness around 28 February decreased by about 23 cm from 1912 to 2001. Over the period 1900 to 1999, winter air temperature increased by 1.7??C and HDD decreased by about 7.5%. Final ice-out date on the Piscataquis River occurred earlier (advanced), by 0.21 days yr-1 over the period 1931 to 2002, and the SCVD advanced by 0.11 days yr-1 over the period 1903 to 2001. Ice thickness was significantly correlated (P-value < 0.01) with winter air temperature, HDD, river ice-out, and SCVD. These systematic temporal trends in multiple hydrologic indicator variables indicate a coherent response to climate forcing.
Earth's changing global atmospheric energy cycle in response to climate change
Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.
2017-01-01
The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324
Space-time patterns of trends in stratospheric constituents derived from UARS measurements
NASA Astrophysics Data System (ADS)
Randel, William J.; Wu, Fei; Russell, James M.; Waters, Joe
1999-02-01
The spatial and temporal behavior of low-frequency changes (trends) in stratospheric constituents measured by instruments on the Upper Atmosphere Research Satellite (UARS) during 1991-98 is investigated. The data include CH4, H2O, HF, HCl, O3, and NO2 from the Halogen Occultation Experiment (HALOE), and O3, ClO, and HNO3 from the Microwave Limb Sounder (MLS). Time series of global anomalies are analyzed by linear regression and empirical orthogonal function analysis. Each of the constituents show significant linear trends over at least some region of the stratosphere, and the spatial patterns exhibit coupling between the different species. Several of the constituents (namely CH4, H2O, HF, HCl, O3, and NO2) exhibit a temporal change in trend rates, with strong changes prior to 1996 and weaker (or reversed) trends thereafter. Positive trends are observed in upper stratospheric ClO, with a percentage rate during 1993-97 consistent with stratospheric HCl increases and with tropospheric chlorine emission rates. Significant negative trends in ozone in the tropical middle stratosphere are found in both HALOE and MLS data during 1993-97, together with positive trends in the tropics near 25 km. These trends are very different from the decadal-scale ozone trends observed since 1979, and this demonstrates the variability of trends calculated over short time periods. Positive trends in NO2 are found in the tropical middle stratosphere, and spatial coincidence to the observed ozone decreases suggests the ozone is responding to the NO2 increase. Significant negative trends in HNO3 are found in the lower stratosphere of both hemispheres. These coupled signatures offer a fingerprint of chemical evolution in the stratosphere for the UARS time frame.
Wong, Martin C S; Goggins, William B; Wang, Harry H X; Fung, Franklin D H; Leung, Colette; Wong, Samuel Y S; Ng, Chi Fai; Sung, Joseph J Y
2016-11-01
Prostate cancer (PCa) is a leading cause of mortality and morbidity globally, but its specific geographic patterns and temporal trends are under-researched. To test the hypotheses that PCa incidence is higher and PCa mortality is lower in countries with higher socioeconomic development, and that temporal trends for PCa incidence have increased while mortality has decreased over time. Data on age-standardized incidence and mortality rates in 2012 were retrieved from the GLOBOCAN database. Temporal patterns were assessed for 36 countries using data obtained from Cancer incidence in five continents volumes I-X and the World Health Organization mortality database. Correlations between incidence or mortality rates and socioeconomic indicators (human development index [HDI] and gross domestic product [GDP]) were evaluated. The average annual percent change in PCa incidence and mortality in the most recent 10 yr according to join-point regression. Reported PCa incidence rates varied more than 25-fold worldwide in 2012, with the highest incidence rates observed in Micronesia/Polynesia, the USA, and European countries. Mortality rates paralleled the incidence rates except for Africa, where PCa mortality rates were the highest. Countries with higher HDI (r=0.58) and per capita GDP (r=0.62) reported greater incidence rates. According to the most recent 10-yr temporal data available, most countries experienced increases in incidence, with sharp rises in incidence rates in Asia and Northern and Western Europe. A substantial reduction in mortality rates was reported in most countries, except in some Asian countries and Eastern Europe, where mortality increased. Data in regional registries could be underestimated. PCa incidence has increased while PCa mortality has decreased in most countries. The reported incidence was higher in countries with higher socioeconomic development. The incidence of prostate cancer has shown high variations geographically and over time, with smaller variations in mortality. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Changes of the time-varying percentiles of daily extreme temperature in China
NASA Astrophysics Data System (ADS)
Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui
2017-11-01
Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.
Lavery, J A; Friedman, A M; Keyes, K M; Wright, J D; Ananth, C V
2017-04-01
To examine age-period-cohort effects on trends in gestational diabetes mellitus (GDM) prevalence in the US, and to evaluate how these trends have affected the rates of stillbirth and large for gestational age (LGA)/macrosomia. Retrospective cohort study. USA, 1979-2010. Over 125 million pregnancies (3 337 284 GDM cases) associated with hospitalisations. Trends in GDM prevalence were examined via weighted Poisson models to parse out the extent to which GDM trends can be attributed to maternal age, period of delivery, and maternal birth cohort. Multilevel models were used to assess the contribution of population effects to the rate of GDM. Log-linear Poisson regression models were used to estimate the contributions of the increasing GDM rates to changes in the rates of LGA and stillbirth between 1979-81 and 2008-10. Rates and rate ratios (RRs). Compared with 1979-1980 (0.3%), the rate of GDM has increased to 5.8% in 2008-10, indicating a strong period effect. Substantial age and modest cohort effects were evident. The period effect is partly explained by period trends in body mass index (BMI), race, and maternal smoking. The increasing prevalence of GDM is associated with a 184% (95% CI 180-188%) decline in the rate of LGA/macrosomia and a 0.75% (95% CI 0.74-0.76) increase in the rate of stillbirths for 2008-10, compared with 1979-81. The temporal increase in GDM can be attributed to period of pregnancy and age. Increasing BMI appears to partially contribute to the GDM increase in the US. The increasing prevalence of GDM can be attributed to period of delivery and increasing maternal age. © 2016 Royal College of Obstetricians and Gynaecologists.
Spears, D Ross; McNeil, Carrie; Warnock, Eli; Trapp, Jonathan; Oyinloye, Oluremi; Whitehurst, Vanessa; Decker, K C; Chapman, Sandy; Campbell, Morris; Meechan, Paul
2014-06-01
This study evaluates the predictability in temporal absences trends due to all causes (total absenteeism) among employees at a federal agency. The objective is to determine how leave trends vary within the year, and determine whether trends are predictable. Ten years of absenteeism data from an attendance system were analyzed for rates of total absence. Trends over a 10-year period followed predictable and regular patterns during a given year that correspond to major holiday periods. Temporal trends in leave among small, medium, and large facilities compared favorably with the agency as a whole. Temporal trends in total absenteeism rates for an organization can be determined using its attendance system. The ability to predict employee absenteeism rates can be extremely helpful for management in optimizing business performance and ensuring that an organization meets its mission.
Trends in incidence of primary brain cancer in New Zealand, 1995 to 2010.
Kim, Stella J-H; Ioannides, Sally J; Elwood, J Mark
2015-04-01
Case-control studies have linked mobile phone use to an increased risk of glioma in the most exposed brain areas, the temporal and parietal lobes, although inconsistently. We examined time trends in the incidence rates of brain malignancies in New Zealand from 1995 to 2010. Data from the New Zealand Cancer Registry was used to calculate incidence rates of primary brain cancer, by age, gender, morphology and anatomical site. Log-linear regression analysis was used to assess trends in the annual incidence of primary brain cancer; annual percentage changes and their 95% confidence intervals were estimated. No consistent increases in all primary brain cancer, glioma, or temporal or parietal lobe glioma were seen. At ages 10-69, the incidence of all brain cancers declined significantly. Incidence of glioma increased at ages over 70. In New Zealand, there has been no consistent increase in incidence rates of primary brain cancers. An increase in glioma at ages over 70 is likely to be due to improvements in diagnosis. As with any such studies, a small effect, or one with a latent period of more than 10 to 15 years, cannot be excluded. © 2015 Public Health Association of Australia.
Temporal trends in emergency department visits for bronchiolitis in the United States, 2006 to 2010.
Hasegawa, Kohei; Tsugawa, Yusuke; Brown, David F M; Mansbach, Jonathan M; Camargo, Carlos A
2014-01-01
To examine temporal trends in emergency departments (EDs) visits for bronchiolitis among US children between 2006 and 2010. Serial, cross-sectional analysis of the Nationwide Emergency Department Sample, a nationally representative sample of ED patients. We used International Classification of Diseases, Ninth Revision, Clinical Modification code 466.1 to identify children <2 years of age with bronchiolitis. Primary outcome measures were rate of bronchiolitis ED visits, hospital admission rate and ED charges. Between 2006 and 2010, weighted national discharge data included 1,435,110 ED visits with bronchiolitis. There was a modest increase in the rate of bronchiolitis ED visits, from 35.6 to 36.3 per 1000 person-years (2% increase; Ptrend = 0.008), due to increases in the ED visit rate among children from 12 months to 23 months (24% increase;Ptrend < 0.001). By contrast, there was a significant decline in the ED visit rate among infants (4% decrease; Ptrend < 0.001). Although unadjusted admission rate did not change between 2006 and 2010 (26% in both years), admission rate declined significantly after adjusting for potential patient- and ED-level confounders (adjusted odds ratio for comparison of 2010 with 2006, 0.84; 95% confidence interval: 0.76-0.93; P < 0.001). Nationwide ED charges for bronchiolitis increased from $337 million to $389 million (16% increase; Ptrend < 0.001), adjusted for inflation. This increase was driven by a rise in geometric mean of ED charges per case from $887 to $1059 (19% increase; Ptrend < 0.001). Between 2006 and 2010, we found a divergent temporal trend in the rate of bronchiolitis ED visits by age group. Despite a significant increase in associated ED charges, ED-associated hospital admission rates for bronchiolitis significantly decreased over this same period.
Editorial for Journal of Hydrology: Regional Studies
Willems, Patrick; Batelaan, Okke; Hughes, Denis A.; Swarzenski, Peter W.
2014-01-01
Hydrological regimes and processes show strong regional differences. While some regions are affected by extreme drought and desertification, others are under threat of increased fluvial and/or pluvial floods. Changes to hydrological systems as a consequence of natural variations and human activities are region-specific. Many of these changes have significant interactions with and implications for human life and ecosystems. Amongst others, population growth, improvements in living standards and other demographic and socio-economic trends, related changes in water and energy demands, change in land use, water abstractions and returns to the hydrological system (UNEP, 2008), introduce temporal and spatial changes to the system and cause contamination of surface and ground waters. Hydro-meteorological boundary conditions are also undergoing spatial and temporal changes. Climate change has been shown to increase temporal and spatial variations of rainfall, increase temperature and cause changes to evapotranspiration and other hydro-meteorological variables (IPCC, 2013). However, these changes are also region specific. In addition to these climate trends, (multi)-decadal oscillatory changes in climatic conditions and large variations in meteorological conditions will continue to occur.
McGuire, Chris R; Nufio, César R; Bowers, M Deane; Guralnick, Robert P
2012-01-01
Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953-2008) and a shorter 20-year (1989-2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change.
Zhou, Jie; Tan, Xiaodong; Song, Xiangjing; Zhang, Kaining; Fang, Jing; Peng, Lin; Qi, Wencai; Nie, Zonghui; Li, Ming; Deng, Rui; Yan, Chaofang
2015-03-01
Copper-bearing intrauterine device (IUD) insertion for long-term contraceptive use is high in China, but there has been evidence that first-year discontinuation rate of copper-bearing IUD has also increased rapidly in recent years especially among rural married women. To investigate long-term use of copper-bearing IUD, the authors examined the 7-year temporal trends of copper-bearing IUD discontinuation in a population-based birth-cohort study among 720 rural married women in China, from 2004 to 2012. Women requesting contraception were followed-up twice per year after the insertion of IUD. The gross cumulative life table discontinuation rates were calculated for each of the main reasons for discontinuation as well as for all reasons combined. By the end of 7 years, 384 discontinuations were observed. With a stepped-up trend, the gross cumulative life table rate for discontinuation increased from 10.06 (95% confidence interval = 7.86-12.27) per 100 women by the first year to 52.69 (95% confidence interval = 48.94-56.44) per 100 women by the end of 7 years, which increased rapidly in the first 2 years after copper-bearing IUD insertion, flattened out gradually in the following 2 years, then increased again in the last 3 years. Among reported method failure, expulsion and side effects were the main reasons for discontinuation of the copper-bearing IUD but not pregnancy. Personal reasons, such as renewal by personal will had influenced copper-bearing IUD use since the second year and should not be neglected. Based on this study, the temporal trends of copper-bearing IUD discontinuation was in a stepped-up trend in 7 years after insertion. Both reported method failure (expulsion and side effect) and personal reason had effect on the discontinuation of copper-bearing IUD, but pregnancy was no more the most important reason affecting the use of copper-bearing IUD. © 2014 APJPH.
McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.
2012-01-01
Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change. PMID:22970205
2011-01-01
Background Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Methods Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. Results State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Conclusions Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes. PMID:22142274
Goovaerts, Pierre; Xiao, Hong
2011-12-05
Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes.
NASA Astrophysics Data System (ADS)
Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.
2011-08-01
Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. Aerosol Optical Thickness (AOT) and Ångström Exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) spectral observations. Additionally, temporal trends of Coarse- and Fine-mode dominant AOTs (CAOT and FAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström Exponent Difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation and (2) Number of Observations (NO) per month. Temporal increase of FAOTs prevails over regions dominated by emerging economy or slash-burn agriculture in East Asia and South Africa. On the other hand, insignificant or negative trends for FAOTs are detected over Western Europe and North America. Over desert regions, both increase and decrease of CAOTs are observed depending on meteorological conditions.
NASA Astrophysics Data System (ADS)
Pascaud, A.; Sauvage, S.; Coddeville, P.; Nicolas, M.; Croisé, L.; Mezdour, A.; Probst, A.
2016-12-01
The long-distance effect of atmospheric pollution on ecosystems has led to the conclusion of international agreements to regulate atmospheric emissions and monitor their impact. This study investigated variations in atmospheric deposition chemistry in France using data gathered from three different monitoring networks (37 stations) over the period from 1995 to 2007. Despite some methodological differences (e.g. type of collector, frequency of sampling and analysis), converging results were found in spatial variations, seasonal patterns and temporal trends. With regard to spatial variations, the mean annual pH in particular ranged from 4.9 in the north-east to 5.8 in the south-east. This gradient was related to the concentration of NO3- and non-sea-salt SO42- (maximum volume-weighted mean of 38 and 31 μeq l-1 respectively) and of acid-neutralising compounds such as non-sea-salt Ca2+ and NH4+. In terms of seasonal variations, winter and autumn pH were linked to lower acidity neutralisation than during the warm season. The temporal trends in atmospheric deposition varied depending on the chemical species and site location. The most significant and widespread trend was the decrease in non-sea-salt SO42- concentrations (significant at 65% of the stations). At the same time, many stations showed an increasing trend in annual pH (+0.3 on average for 16 stations). These two trends are probably due to the reduction in SO2 emissions that has been imposed in Europe since the 1980s. Temporal trends in inorganic N concentrations were rather moderate and not consistent with the trends reported in emission estimates. Despite the reduction in NOx emissions, NO3- concentrations in atmospheric deposition remained mostly unchanged or even increased at three stations (+0.43 μeq l-1 yr-1 on average). In contrast NH4+ concentrations in atmospheric deposition decreased at several stations located in western and northern areas, while the estimates of NH3 emissions remained fairly stable. The decrease in non-sea-salt SO42- and NH4+ concentrations was mainly due to a decrease in summer values and can in part be related to a dilution process since the precipitation amount showed an increasing trend during the summer. Furthermore, increasing trends in NO3- concentrations in the spring and, to a lesser extent, in NH4+ concentrations suggested that other atmospheric physicochemical processes should also be taken into account.
Temporal trends of young-of-year fishes in Lake Erie and comparison of diel sampling periods
Stapanian, M.A.; Bur, M.T.; Adams, J.V.
2007-01-01
We explored temporal trends of young-of-year (YOY) fishes caught in bottom trawl hauls at an established offshore monitoring site in Lake Erie in fall during 1961–2001. Sampling was conducted during morning, afternoon, and night in each year. Catches per hour (CPH) of alewife (Alosa pseudoharengus) YOY were relatively low and exhibited no temporal trend. This result was consistent with the species’ intolerance to Lake Erie’s adverse winter water temperatures. Gizzard shad (Dorosoma cepedianum) YOY decreased sharply after 1991, which was consistent with recent oligotrophication of the lake. Following the establishment in 1979 and rapid increase of white perch (Morone americana) YOY, white bass (Morone chrysops) and freshwater drum (Aplodinotus grunniens) YOY decreased. Trout-perch (Percopsis omiscomaycus) YOY decreased during 1986–1991, but recovered to previous levels during 1991–2001. The recovery coincided with the resurgence of mayflies (Ephemoptera) in the lake. CPH of spottail shiner (Notropis hudsonius) and emerald shiner (N. atherinoides) YOY exhibited no temporal trend between 1961 and the late 1970s to early 1980s. CPH of yellow perch (Perca flavescens) YOY decreased during 1961–1988, and walleye (Sander vitreum) YOY increased overall during the time series. These observations were consistent with published studies of adults in the region. CPH of 4 of the 10 species of YOY considered were greatest during night. CPH for walleye YOY was higher in the morning than in the afternoon, but there was no significant difference between night and morning abundances. The results suggest that (1) CPH of YOY fishes may be a useful monitoring tool for Lake Erie, and (2) offshore monitoring programs that do not include night sampling periods may underestimate recruitment for several common species.
Spatio-temporal variation of anthropogenic marine debris on Chilean beaches.
Hidalgo-Ruz, Valeria; Honorato-Zimmer, Daniela; Gatta-Rosemary, Magdalena; Nuñez, Paloma; Hinojosa, Iván A; Thiel, Martin
2018-01-01
We examined the hypothesis that in an emerging economy such as Chile the abundances of Anthropogenic Marine Debris (AMD) on beaches are increasing over time. The citizen science program Científicos de la Basura ("Litter Scientists") conducted three national surveys (2008, 2012 and 2016) to determine AMD composition, abundance, spatial patterns and temporal trends. AMD was found on all beaches along the entire Chilean coast. Highest percentages of AMD in all surveys were plastics and cigarette butts, which can be attributed to local sources (i.e. beach users). The Antofagasta region in northern Chile had the highest abundance of AMD compared with all other zones. Higher abundances of AMD were found at the upper stations from almost all zones. No significant tendency of increasing or decreasing AMD densities was observed during the 8years covered by our study, which suggests that economic development alone cannot explain temporal trends in AMD densities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global trends in satellite-based emergency mapping.
Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati
2016-07-15
Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.
2017-10-01
Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.
Temporal and Longitudinal Mercury Trends in Burbot (Lota lota) in the Russian Arctic.
Pelletier, Alexander R; Castello, Leandro; Zhulidov, Alexander V; Gurtovaya, Tatiana Yu; Robarts, Richard D; Holmes, Robert M; Zhulidov, Daniel A; Spencer, Robert G M
2017-11-21
Current understanding of mercury (Hg) dynamics in the Arctic is hampered by a lack of data in the Russian Arctic region, which comprises about half of the entire Arctic watershed. This study quantified temporal and longitudinal trends in total mercury (THg) concentrations in burbot (Lota lota) in eight rivers of the Russian Arctic between 1980 and 2001, encompassing an expanse of 118 degrees of longitude. Burbot THg concentrations declined by an average of 2.6% annually across all eight rivers during the study period, decreasing by 39% from 0.171 μg g -1 wet weight (w.w.) in 1980 to 0.104 μg g -1 w.w. in 2001. THg concentrations in burbot also declined by an average of 1.8% per 10° of longitude from west to east across the study area between 1988 and 2001. These results, in combination with those of previous studies, suggest that Hg trends in Arctic freshwater fishes before 2001 were spatially and temporally heterogeneous, as those in the North American Arctic were mostly increasing while those in the Russian Arctic were mostly decreasing. It is suggested that Hg trends in Arctic animals may be influenced by both depositional and postdepositional processes.
Temporal trends in physical activity: a systematic review.
Knuth, Alan G; Hallal, Pedro C
2009-09-01
In spite of all accumulated scientific knowledge on the benefits of physical activity (PA) for health, high rates of sedentary lifestyle are still observed worldwide. The aim of this study was to systematically review articles on temporal trends of PA and fitness, with emphasis on differences between children/ adolescents and adults. An electronic search at the Medline/PubMed database was carried out using the following combination of keywords: temporal trends or trends or surveillance or monitoring and PA or exercise or physical fitness or motor activity or sedentary or fitness. By using this strategy, 23,088 manuscripts were detected. After examination, 41 articles fulfilled all inclusion criteria, and were, therefore, included. The data currently available in the literature for adults shows that leisure-time activity levels tend to be increasing over time, while occupational-related PA is decreasing over time. Youth PA seems to be decreasing over time, including a lower level of activity in physical education classes. As a consequence, fitness levels are also declining. PA surveillance must be strongly encouraged in all settings and age groups. Special attention must be paid to low and middle-income countries, where PA surveillance is virtually inexistent.
Age at stroke: temporal trends in stroke incidence in a large, biracial population.
Kissela, Brett M; Khoury, Jane C; Alwell, Kathleen; Moomaw, Charles J; Woo, Daniel; Adeoye, Opeolu; Flaherty, Matthew L; Khatri, Pooja; Ferioli, Simona; De Los Rios La Rosa, Felipe; Broderick, Joseph P; Kleindorfer, Dawn O
2012-10-23
We describe temporal trends in stroke incidence stratified by age from our population-based stroke epidemiology study. We hypothesized that stroke incidence in younger adults (age 20-54) increased over time, most notably between 1999 and 2005. The Greater Cincinnati/Northern Kentucky region includes an estimated population of 1.3 million. Strokes were ascertained in the population between July 1, 1993, and June 30, 1994, and in calendar years 1999 and 2005. Age-, race-, and gender-specific incidence rates with 95 confidence intervals were calculated assuming a Poisson distribution. We tested for differences in age trends over time using a mixed-model approach, with appropriate link functions. The mean age at stroke significantly decreased from 71.2 years in 1993/1994 to 69.2 years in 2005 (p < 0.0001). The proportion of all strokes under age 55 increased from 12.9% in 1993/1994 to 18.6% in 2005. Regression modeling showed a significant change over time (p = 0.002), characterized as a shift to younger strokes in 2005 compared with earlier study periods. Stroke incidence rates in those 20-54 years of age were significantly increased in both black and white patients in 2005 compared to earlier periods. We found trends toward increasing stroke incidence at younger ages. This is of great public health significance because strokes in younger patients carry the potential for greater lifetime burden of disability and because some potential contributors identified for this trend are modifiable.
Alvarez, David A.; Perkins, Stephanie D.; Nilsen, Elena B.; Morace, Jennifer L.
2014-01-01
The Lower Columbia River in Oregon and Washington, USA, is an important resource for aquatic and terrestrial organisms, agriculture, and commerce. An 86-mile stretch of the river was sampled over a 3 year period in order to determine the spatial and temporal trends in the occurrence and concentration of water-borne organic contaminants. Sampling occurred at 10 sites along this stretch and at 1 site on the Willamette River using the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) passive samplers. Contaminant profiles followed the predicted trends of lower numbers of detections and associated concentrations in the rural areas to higher numbers and concentrations at the more urbanized sites. Industrial chemicals, plasticizers, and PAHs were present at the highest concentrations. Differences in concentrations between sampling periods were related to the amount of rainfall during the sampling period. In general, water concentrations of wastewater-related contaminants decreased and concentrations of legacy contaminants slightly increased with increasing rainfall amounts.
NASA Astrophysics Data System (ADS)
Dhakal, S.; Ojha, S.
2017-12-01
Climate change and its impact of water resource have gained tremendous attention among scientific committee, governments and other stakeholders since last couple of decades, especially in Himalayan region. In this study, we purpose remotely sensed measurements to monitor snow cover, both spatially and temporal, and assess climate change impact on water resource. The snow cover data from MODIS satellite (2000-2010) have been used to analyze some climate change indicators. In particular, the variability in the maximum snow extent with elevations, its temporal variability (8-day, monthly, seasonal and annual), its variation trend and its relation with temperature have been analyzed. The snow products used in this study are the maximum snow extent and fractional snow covers, which come in 8-day temporal and 500m and 0.05 degree spatial resolutions, respectively. The results showed a tremendous potential of the MODIS snow product for studying the spatial and temporal variability of snow as well as the study of climate change impact in large and inaccessible regions like the Himalayas. The snow area extent (SAE) (%) time series exhibits similar patterns during seven hydrological years, even though there are some deviations in the accumulation and melt periods. The analysis showed relatively well inverse relation between the daily mean temperature and SAE during the melting period. Some important trends of snow fall are also observed. In particular, the decreasing trend in January and increasing trend in late winter and early spring may be interpreted as a signal of a possible seasonal shift. However, it requires more years of data to verify this conclusion.
NASA Astrophysics Data System (ADS)
Zhang, Leishi; Lee, Chih Sheng; Zhang, Ruiqin; Chen, Liangfu
2017-04-01
Tropospheric NO2 and SO2 concentrations are of great importance with regard to air quality, atmospheric chemistry, and climate change. Due to lack of surface monitoring stations, this study analyzes long term trend of NO2 and SO2 levels (2005-2014), retrieved from Ozone Monitoring Instrument (OMI) board on the NASA's Aura satellite, in an important region of China - Henan Province. Henan Province, located in North China Plain, has encountered serious air pollution problems including extremely high PM2.5 concentrations and as one of the most polluted region in China. The satellite spatial images clearly show that high levels of both NO2 and SO2 are concentrated in north and northeastern regions with much lower levels observed in other parts of Henan. Both pollutants exhibit the highest levels in winter with the least in summer/spring. The temporal trend analysis based on moving average of deseasonalized and decyclic data indicates that for NO2, there is a continuous increasing pattern from 2005 to 2011 at 6.4% per year, thereafter, it shows a decreasing trend (10.6% per year). As for SO2, the increasing trend is about 16% per year from 2005 to 2007 with decreasing rate 7% per year from 2007 to 2014. The economic development with incredible annual 11% GDP growth in Henan is responsible for increasing levels of NO2 and SO2. The observed decreasing SO2 level starting in 2007 is due to reduced SO2 emission, utilization of flue gas desulfurization (FGD) devices and to some extent, in preparation of Beijing 2008 Olympic Games. On the other hand, increasing vehicle numbers (155% from 2006 to 2012) and coal consumption (37% during the same span), along with the lack of denitration process for removing flue/exhaust gas NOx are responsible for increasing NO2 trend until 2011. The ratio of SO2/NO2 started decreasing in 2007 and dropped significantly from 2011 to 2013 indicating good performance of FGD and ever increasing NOx contribution from mobile sources. Unlike those observed in developed countries (US, EU and Japan) where a decreasing trend for both SO2 and NO2 has been observed since 1990s, the observed upward and downward trend found in Henan is similar to those found in North China Plain and other parts of China. The spatial and temporal trend analyses of SO2 and NO2 in four other regions in Henan further indicate a similar trend to those observed in Henan Province, albeit with different increasing and decreasing rate. The results provide regulatory agency to develop action plans to combat air pollution problem in general and SO2 and NO2 problems in particular in Henan. The implications of our findings and recommendations for decision makers are discussed in the paper.
Zemore, Sarah E; Karriker-Jaffe, Katherine J; Mulia, Nina
2013-09-28
Economic conditions and drinking norms have been in considerable flux over the past 10 years. Accordingly, research is needed to evaluate both overall trends in alcohol problems during this period and whether changes within racial/ethnic groups have affected racial/ethnic disparities. We used 3 cross-sectional waves of National Alcohol Survey data (2000, 2005, and 2010) to examine a) temporal trends in alcohol dependence and consequences overall and by race/ethnicity, and b) the effects of temporal changes on racial/ethnic disparities. Analyses involved bivariate tests and multivariate negative binomial regressions testing the effects of race/ethnicity, survey year, and their interaction on problem measures. Both women and men overall showed significant increases in dependence symptoms in 2010 (vs. 2000); women also reported increases in alcohol-related consequences in 2010 (vs. 2000). (Problem rates were equivalent across 2005 and 2000.) However, increases in problems were most dramatic among Whites, and dependence symptoms actually decreased among Latinos of both genders in 2010. Consequently, the long-standing disparity in dependence between Latino and White men was substantially reduced in 2010. Post-hoc analyses suggested that changes in drinking norms at least partially drove increased problem rates among Whites. Results constitute an important contribution to the literature on racial/ethnic disparities in alcohol problems. Findings are not inconsistent with the macroeconomic literature suggesting increases in alcohol problems during economic recession, but the pattern of effects across race/ethnicity and findings regarding norms together suggest, at the least, a revised understanding of how recessions affect drinking patterns and problems.
Temporal trends and ethnic variations in asthma mortality in Singapore, 1976-1995.
Ng, T P; Tan, W C
1999-11-01
A study was undertaken to examine temporal trends and ethnic differences in the asthma mortality rate in Singapore. Asthma mortality rates in Singapore were estimated from vital data for the years from 1976 to 1995. Trends in sex and age specific (5-14, 15-34, 35-59, 60+ years) rates were obtained for four periods (1976-80, 1981-85, 1986-90, 1991-95) and for Chinese, Malay, and Indian subjects for the years when these data were available (1989-95). An increase in asthma mortality was observed in children aged 5-14 years from 0.21 per 100,000 person years in 1976-80 to 0.72 per 100,000 person years in 1991-95. No increases were noted in the other age groups but a small decrease was observed in the 1991-95 period for the 35-59 year age group. Marked ethnic differences in mortality rates were observed. In the group aged 5-34 years the asthma mortality rates were 0.5 per 100,000 in Chinese subjects, 1.3 per 100,000 in Indians, and 2.5 per 100,000 in Malay subjects. Similar 2-4 fold differences were observed in all other age groups. Apart from genetic factors, environmental exposures and medical care factors which influence asthma prevalence and severity are most likely to be the causes of the observed temporal trends and ethnic differences in the asthma mortality rate in Singapore, but further studies are needed to elucidate these more fully.
NASA Astrophysics Data System (ADS)
Pandey, Brij Kishor; Khare, Deepak
2018-02-01
Precipitation and reference evapotranspiration are key parameters in hydro-meteorological studies and used for agricultural planning, irrigation system design and management. Precipitation and evaporative demand are expected to be alter under climate change and affect the sustainable development. In this article, spatial variability and temporal trend of precipitation and reference evapotranspiration (ETo) were investigated over Narmada river basin (India), a humid tropical climatic region. In the present study, 12 and 28 observatory stations were selected for precipitation and ETo, respectively of 102-years period (1901-2002). A rigorous analysis for trend detection was carried out using non parametric tests such as Mann-Kendall (MK) and Spearman Rho (SR). Sen's slope estimator was used to analyze the rate of change in long term series. Moreover, all the stations of basin exhibit positive trend for annual ETo, while 8% stations indicate significant negative trend for mean annual precipitation, respectively. Change points of annual precipitation were identified around the year 1962 applying Buishand's and Pettit's test. Annual mean precipitation reduced by 9% in upper part while increased maximum by 5% in lower part of the basin due temporal changes. Although annual mean ETo increase by 4-12% in most of the region. Moreover, results of the study are very helpful in planning and development of agricultural water resources.
Temperature trends and Urban Heat Island intensity mapping of the Las Vegas valley area
NASA Astrophysics Data System (ADS)
Black, Adam Leland
Modified urban climate regions that are warmer than rural areas at night are referred to as Urban Heat Islands or UHI. Islands of warmer air over a city can be 12 degrees Celsius greater than the surrounding cooler air. The exponential growth in Las Vegas for the last two decades provides an opportunity to detect gradual temperature changes influenced by an increasing presence of urban materials. This thesis compares ground based thermometric observations and satellite based remote sensing temperature observations to identify temperature trends and UHI areas caused by urban development. Analysis of temperature trends between 2000 and 2010 at ground weather stations has revealed a general cooling trend in the Las Vegas region. Results show that urban development accompanied by increased vegetation has a cooling effect in arid climates. Analysis of long term temperature trends at McCarran and Nellis weather stations show 2.4 K and 1.2 K rise in temperature over the last 60 years. The ground weather station temperature data is related to the land surface temperature images from the Landsat Thematic Mapper to estimate and evaluate urban heat island intensity for Las Vegas. Results show that spatial and temporal trends of temperature are related to the gradual change in urban landcover. UHI are mainly observed at the airport and in the industrial areas. This research provides useful insight into the temporal behavior of the Las Vegas area.
Prescriptions, Nonmedical Use, and Emergency Department Visits Involving Prescription Stimulants
Chen, Lian-Yu; Crum, Rosa M.; Strain, Eric C.; CalebAlexander, G.; Kaufmann, Christopher; Mojtabai, Ramin
2018-01-01
Objective Little is known regarding the temporal trends in prescription, nonmedical use and emergency department (ED) visits involving prescription stimulants in the United States. We aimed to examine the three national trends involving dextroamphetamine-amphetamin (Adderall) and methylphenidate in adults and adolescents. Method Three national surveys conducted between 2006-2011 were used: National Disease and Therapeutic Index (NDTI), a survey of office-based practices, National Survey on Drug Use and Health (NSDUH), a population survey of substance use, and Drug Abuse Warning Network (DAWN), a survey of ED visits. Ordinary least square regression was used to examine temporal changes over time and the associations between these three trends. Results In adolescents, treatment visits involving dextroamphetamine-amphetamine and methylphenidate decreased over time; nonmedical dextroamphetamine-amphetamine use remained stable while nonmedical methylphenidate use declined by 54.4% in 6 years. ED visits involving either medication remained stable. In adults, treatment visits involving dextroamphetamine-amphetamine remained unchanged while nonmedical use went up by 67% and ED visits went up by 156%. These three trends involving methylphenidate remained unchanged. The major source for both medications was a friend or relative across age groups; two-thirds of these friends/relatives had obtained the medication from a physician. Conclusions Trends of prescriptions for stimulants do not correspond to trends in reports of nonmedical use and ED visits. Increased nonmedical stimulant use may not be simply attributed to increased prescribing trends. Future studies should focus on deeper understanding of the proportion, risk factors and motivations for drug diversions. PMID:26890573
Raach, Meriem; Lebeuf, Michel; Pelletier, Emilien
2011-03-01
Due to their lipophilic properties, persistent organic pollutants (POPs) are commonly assessed using the blubber of marine mammals. However, these chemicals are also accumulating in other tissues including the liver. Some pollutants, namely perfluorinated alkyl acids, are found predominately in the liver and blood of marine mammals, and thus monitored in those tissues. This raises the question whether any tissue would represent an identical trend of POPs in the SLE beluga. The current study reports the first temporal trends of PBDEs and PCBs in the liver of 65 SLE belugas. Neither ∑₇PBDEs nor major individual PBDE-homolog group concentrations showed significant trends between 1993 and 2007. Also, ∑₃₂PCBs did not change over years, although, tetra-, penta- and hepta-PCB decreased by 7.1, 6.8 and 8.5%, respectively, in males, whereas tetra-, penta- and octa-PCBs declined by 11, 12 and 12.9%, respectively, in females. In order to compare the distribution of POPs between liver and blubber, a lipid normalised concentration ratio R (blubber/liver) for PBDEs and PCBs was calculated for each individual beluga. For all PBDE and several PCB homolog groups, mean R values were not statistically different from unity indicating that the partitioning of these POPs is governed by the tissue lipid-content. Temporal trends of R ratios of PBDEs and PCBs were also examined. There were generally no significant temporal trends except for PBDEs in males where R increased in average by 12.7 ± 2.9% yearly. The stratification of the blubber into a metabolically active (inner) and less active layers (outer blubber) may result in a slower response time of the blubber (full depth) than the liver to the recent change of contamination in the environment and explain the time trend differences between both tissues. This study suggests that the liver is more representative of recent exposure to lipophilic contaminants.
Sutphin, D.M.; Drew, L.J.; Schuenemeyer, J.H.; Burton, W.C.
2001-01-01
Loudoun County, Virginia, which is located about 50 km to the west of Washington, DC, was the site of intensive suburban development during the 1980s and 1990s. In the western half of the county, the source of water for domestic use has been from wells drilled into the fractured crystalline bedrock of the Blue Ridge Geologic Province. A comprehensive digital database that contains information on initial yield, location, depth, elevation, and other data for 3651 wells drilled in this 825.5-km2 area was combined with a digital geologic map to form the basis for a study of geologic and temporal controls on water-well yields. Statistical modeling procedures were used to determine that mean yields for the wells were significantly different as a function of structural setting, genetic rock type, and geologic map unit. The Bonferroni procedure then was used to determine which paired comparisons contributed to these significant differences. The data were divided into 15 temporal drilling increments to determine if the time-dependent trends that exist for the Loudoun County data are similar to those discovered in a previous study of water-well yields in the Pinardville 7.5-min quadrangle, New Hampshire. In both regions, trends, which include increasing proportions of very low yield wells and increasing well depths through time, and the counterintuitive result of increasing mean well yields through time, were similar. In addition, a yield-to-depth curve similar to that discovered in the Pinardville quadrangle was recognized in this study. Thus, the temporal model with a feed-forward-loop mechanism to explain the temporal trends in well characteristics proposed for the New Hampshire study appears to apply to western Loudoun County. ?? 2001 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei
2017-08-01
Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.
Kehm, Rebecca D; Osypuk, Theresa L; Poynter, Jenny N; Vock, David M; Spector, Logan G
2018-03-01
Since 1975, childhood cancer incidence rates have gradually increased in the United States; however, few studies have conducted analyses across time to unpack this temporal rise. The aim of this study was to test the hypothesis that increasing cancer incidence rates are due to secular trends in pregnancy characteristics that are established risk factors for childhood cancer incidence including older maternal age, higher birthweight, and lower birth order. We also considered temporal trends in sociodemographic characteristics including race/ethnicity and poverty. We conducted a time series county-level ecologic analysis using linked population-based data from Surveillance, Epidemiology, and End Results cancer registries (1975-2013), birth data from the National Center for Health Statistics (1970-2013), and sociodemographic data from the US Census (1970-2010). We estimated unadjusted and adjusted average annual percent changes (AAPCs) in incidence of combined (all diagnoses) and individual types of cancer among children, ages 0-4 years, from Poisson mixed models. There was a statistically significant unadjusted temporal rise in incidence of combined childhood cancers (AAPC = 0.71%; 95% CI = 0.55-0.86), acute lymphoblastic leukemia (0.78%; 0.49-1.07), acute myeloid leukemia (1.86%; 1.13-2.59), central nervous system tumors (1.31%; 0.94-1.67), and hepatoblastoma (2.70%; 1.68-3.72). Adjustment for county-level maternal age reduced estimated AAPCs between 8% (hepatoblastoma) and 55% (combined). However, adjustment for other county characteristics did not attenuate AAPCs, and AAPCs remained significantly above 0% in models fully adjusted for county-level characteristics. Although rising maternal age may account for some of the increase in childhood cancer incidence over time, other factors, not considered in this analysis, may also contribute to temporal trends. © 2017 Wiley Periodicals, Inc.
On the temporal and spatial characteristics of tornado days in the United States
NASA Astrophysics Data System (ADS)
Moore, Todd W.
2017-02-01
More tornadoes are produced per year in the United States than in any other country, and these tornadoes have produced tremendous losses of life and property. Understanding how tornado activity will respond to climate change is important if we wish to prepare for future changes. Trends in various tornado and tornado day characteristics, including their annual frequencies, their temporal variability, and their spatial distributions, have been reported in the past few years. This study contributes to this body of literature by further analyzing the temporal and spatial characteristics of tornado days in the United States. The analyses performed in this study support previously reported findings in addition to providing new perspectives, including that the temporal trends are observed only in low-frequency and high-frequency tornado days and that the eastward shift in tornado activity is produced, in part, by the increasing number of high-frequency tornado days, which tend to occur to the east of the traditionally depicted tornado alley in the Great Plains.
Temporal trends in organic carbon content in the main Swiss rivers, 1974-2010.
Rodríguez-Murillo, J C; Zobrist, J; Filella, M
2015-01-01
Increases in dissolved organic carbon (DOC) concentrations have often been reported in rivers and lakes of the Northern Hemisphere over the last few decades. High-quality organic carbon (OC) concentration data have been used to study the change in DOC and total (TOC) organic carbon concentrations in the main rivers of Switzerland (Rhône, Rhine, Thur and Aar) between 1974 and 2010. These rivers are characterized by high discharge regimes (due to their Alpine origin) and by running in populated areas. Small long term trends (a general statistically significant decrease in TOC and a less clear increase in DOC concentrations), on the order of 1% of mean OC concentration per year, have been observed. An upward trend before 1999 reversed direction to a more marked downward trend from 1999 to 2010. Of the potential causes of OC temporal variation analysed (water temperature, dissolved reactive phosphorus and river discharge), only discharge explains a significant, albeit still small, part of TOC variability (8-31%), while accounting for barely 2.5% of DOC variability. Estimated anthropogenic TOC and DOC loads (treated sewage) to the rivers could account for a maximum of 4-20% of the temporal trends. Such low predictability is a good example of the limitations faced when studying causality and drivers behind small variations in complex systems. River export of OC from Switzerland has decreased significantly over the period. Since about 5.5% of estimated NEP of Switzerland is exported by the rivers, riverine OC fluxes should be taken into account in a detailed carbon budget of the country. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming
2017-09-01
Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.
Trend analysis of air temperature and precipitation time series over Greece: 1955-2010
NASA Astrophysics Data System (ADS)
Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.
2012-04-01
In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.
Santacatterina, Michele; Bratt, Göran; Gisslén, Magnus; Albert, Jan; Sonnerborg, Anders
2014-01-01
Background HIV-1 subtype B (HIV-1B) still dominates in resource-rich countries but increased migration contributes to changes in the global subtype distribution. Also, spread of non-B subtypes within such countries occurs. The trend of the subtype distribution from the beginning of the epidemic in the country has earlier not been reported in detail. Thus the primary objective of this study is to describe the temporal trend of the subtype distribution from the beginning of the HIV-1 epidemic in Sweden over three decades. Methods HIV-1 pol sequences from patients (n = 3967) diagnosed in Sweden 1983– 2012, corresponding to >40% of patients ever diagnosed, were re-subtyped using several automated bioinformatics tools. The temporal trends of subtypes and recombinants during three decades were described by a multinomial logistic regression model. Results All eleven group M HIV-1 subtypes and sub-subtypes (78%), 17 circulating recombinant forms (CRFs) (19%) and 32 unique recombinants forms (URF) (3%) were identified. When all patients were analysed, there was an increase of newly diagnosed HIV-1C (RR, 95%CI: 1.10, 1.06–1.14), recombinants (1.20, 1.17–1.24) and other pure subtypes (1.11, 1.07–1.16) over time compared to HIV-1B. The same pattern was found when all patients infected in Sweden (n = 1165) were analysed. Also, for MSM patients infected in Sweden (n = 921), recombinant forms and other pure subtypes increased. Significance Sweden exhibits one of the most diverse subtype epidemics outside Africa. The increase of non-B subtypes is due to migration and to a spread among heterosexually infected patients and MSM within the country. This viral heterogeneity may become a hotspot for development of more diverse and complex recombinant forms if the epidemics converge. PMID:24922326
Neogi, Ujjwal; Häggblom, Amanda; Santacatterina, Michele; Bratt, Göran; Gisslén, Magnus; Albert, Jan; Sonnerborg, Anders
2014-01-01
HIV-1 subtype B (HIV-1B) still dominates in resource-rich countries but increased migration contributes to changes in the global subtype distribution. Also, spread of non-B subtypes within such countries occurs. The trend of the subtype distribution from the beginning of the epidemic in the country has earlier not been reported in detail. Thus the primary objective of this study is to describe the temporal trend of the subtype distribution from the beginning of the HIV-1 epidemic in Sweden over three decades. HIV-1 pol sequences from patients (n = 3967) diagnosed in Sweden 1983-2012, corresponding to >40% of patients ever diagnosed, were re-subtyped using several automated bioinformatics tools. The temporal trends of subtypes and recombinants during three decades were described by a multinomial logistic regression model. All eleven group M HIV-1 subtypes and sub-subtypes (78%), 17 circulating recombinant forms (CRFs) (19%) and 32 unique recombinants forms (URF) (3%) were identified. When all patients were analysed, there was an increase of newly diagnosed HIV-1C (RR, 95%CI: 1.10, 1.06-1.14), recombinants (1.20, 1.17-1.24) and other pure subtypes (1.11, 1.07-1.16) over time compared to HIV-1B. The same pattern was found when all patients infected in Sweden (n = 1165) were analysed. Also, for MSM patients infected in Sweden (n = 921), recombinant forms and other pure subtypes increased. Sweden exhibits one of the most diverse subtype epidemics outside Africa. The increase of non-B subtypes is due to migration and to a spread among heterosexually infected patients and MSM within the country. This viral heterogeneity may become a hotspot for development of more diverse and complex recombinant forms if the epidemics converge.
Cavalcante, Gigliana Maria Sobral; de Macedo Bernardino, Ítalo; da Nóbrega, Lorena Marques; Ferreira, Raquel Conceição; Ferreira E Ferreira, Efigênia; d'Avila, Sérgio
2018-06-01
The aim of study was to describe trends in physical violence among Brazilian victims and investigate spatial vulnerability of the location of victim's residences. This study performed an ecological-level longitudinal analysis, examining violence rates over 4 years. Cases of 4795 victims of physical aggression attended at a Center of Legal Medicine were investigated. Trend analysis was used to evaluate the data, with the creation of polynomial regression models (p < 0.05). Violence rates showed significant temporal variations according to sociodemographic characteristics of victims (p < 0.05) and the circumstances of aggressions (p < 0.05). Moreover, there was a significant increase in violence rate in the North (R 2 = 16.1%; p = 0.019) and South (R 2 = 18.4%; p = 0.010), whereas the rural zone (R 2 = 10.1%; p = 0.028) presented a decrease. The findings highlight the need for protection policies that address spatial-temporal aspects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data
NASA Astrophysics Data System (ADS)
Robinson, Emma L.; Blyth, Eleanor M.; Clark, Douglas B.; Finch, Jon; Rudd, Alison C.
2017-02-01
Observations of climate are often available on very different spatial scales from observations of the natural environments and resources that are affected by climate change. In order to help bridge the gap between these scales using modelling, a new dataset of daily meteorological variables was created at 1 km resolution over Great Britain for the years 1961-2012, by interpolating coarser resolution climate data and including the effects of local topography. These variables were used to calculate atmospheric evaporative demand (AED) at the same spatial and temporal resolution. Two functions that represent AED were chosen: one is a standard form of potential evapotranspiration (PET) and the other is a derived PET measure used by hydrologists that includes the effect of water intercepted by the canopy (PETI). Temporal trends in these functions were calculated, with PET found to be increasing in all regions, and at an overall rate of 0.021 ± 0.021 mm day-1 decade-1 in Great Britain. PETI was found to be increasing at a rate of 0.019 ± 0.020 mm day-1 decade-1 in Great Britain, but this was not statistically significant. However, there was a trend in PETI in England of 0.023 ± 0.023 mm day-1 decade-1. The trends were found to vary by season, with spring PET increasing by 0.043 ± 0.019 mm day-1 decade-1 (0.038 ± 0.018 mm day-1 decade-1 when the interception correction is included) in Great Britain, while there is no statistically significant trend in other seasons. The trends were attributed analytically to trends in the climate variables; the overall positive trend was predominantly driven by rising air temperature, although rising specific humidity had a negative effect on the trend. Recasting the analysis in terms of relative humidity revealed that the overall effect is that falling relative humidity causes the PET to rise. Increasing downward short- and longwave radiation made an overall positive contribution to the PET trend, while decreasing wind speed made a negative contribution to the trend in PET. The trend in spring PET was particularly strong due to a strong decrease in relative humidity and increase in downward shortwave radiation in the spring.
Scherb, Hagen; Voigt, Kristina
2011-06-01
Ever since the discovery of the mutagenic properties of ionizing radiation, the possibility of birth sex odds shifts in exposed human populations was considered in the scientific community. Positive evidence, however weak, was obtained after the atomic bombing of Japan. We previously investigated trends in the sex odds before and after the Chernobyl Nuclear Power Plant accident. In a pilot study, combined data from the Czech Republic, Denmark, Finland, Germany, Hungary, Norway, Poland, and Sweden between 1982 and 1992 showed a downward trend in the sex odds and a significant jump in 1987, the year immediately after Chernobyl. Moreover, a significant positive association of the sex odds between 1986 and 1991 with Chernobyl fallout at the district level in Germany was observed. Both of these findings, temporality (effect after exposure) and dose response association, yield evidence of causality. The primary aim of this study was to investigate longer time periods (1950-2007) in all of Europe and in the USA with emphasis on the global atmospheric atomic bomb test fallout and on the Chernobyl accident. To obtain further evidence, we also analyze sex odds data near nuclear facilities in Germany and Switzerland. DATA AND STATISTICAL METHODS: National gender-specific annual live births data for 39 European countries from 1975 to 2007 were compiled using the pertinent internet data bases provided by the World Health Organization, United Nations, Council of Europe, and EUROSTAT. For a synoptic re-analysis of the period 1950 to 1990, published data from the USA and from a predominantly western and less Chernobyl-exposed part of Europe were studied additionally. To assess spatial, temporal, as well as spatial-temporal trends in the sex odds and to investigate possible changes in those trends after the atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities, we applied ordinary linear logistic regression. Region-specific and eventually changing spatial-temporal trends were analyzed using dummy variables coding for continents, countries, districts, municipalities, time periods, and appropriate spatial-temporal interactions. The predominantly western European sex odds trend together with the US sex odds trend (1950-1990 each) show a similar behavior. Both trends are consistent with a uniform reduction from 1950 to 1964, an increase from 1964 to 1975 that may be associated with delayed global atomic bomb test fallout released prior to the Partial Test Ban Treaty in 1963 and again a more or less constant decrease from 1975 to 1990. In practically all of Europe, including eastern European countries, from 1975 to 1986, and in the USA from 1975 to 2002, there were highly significant uniform downward trends in the sex odds with a reduction of 0.22% to 0.25% per 10 years. In contrast to the USA, in Europe there was a highly significant jump of the sex odds of 0.20% in the year 1987 following Chernobyl. From 1987 to 2000, the European sex odds trend reversed its sign and went upward, highly significantly so, with 0.42% per 10 years relative to the downward trend before Chernobyl. The global secular trend analyses are corroborated by the analysis of spatial-temporal sex odds trends near nuclear facilities (NF) in Germany and Switzerland. Within 35 km distance from those NF, the sex odds increase significantly in the range of 0.30% to 0.40% during NF operating time. The atmospheric atomic bomb test fallout affected the human sex odds at birth overall, and the Chernobyl fallout had a similar impact in Europe and parts of Asia. The birth sex odds near nuclear facilities are also distorted. The persistently disturbed secular human sex odds trends allow the estimation of the global deficit of births in the range of several millions.
Development of A Dust Climate Indicator for the US National Climate Assessment
NASA Astrophysics Data System (ADS)
Tong, D.; Wang, J. X. L.; Gill, T. E.; Van Pelt, S.; Kim, D.
2016-12-01
Dust activity is a relatively simple but practical indicator to document the response of dryland ecosystems to climate change, making it an integral part of the National Climate Assessment (NCA). We present here a multi-agency collaboration that aims at developing a suite of dust climate indicators to document and monitor the long-term variability and trend of dust storm activity in the western United States. Recent dust observations have revealed rapid intensification of dust storm activity in the western United States. This trend is also closely correlated with a rapid increase in dust deposition in rainwater and "valley fever" hospitalization in southwestern states. It remains unclear, however, if such a trend, when enhanced by predicted warming and rainfall oscillation in the Southwest, will result in irreversible environmental development such as desertification or even another "Dust Bowl". Based on continuous ground aerosol monitoring, we have reconstructed a long-term dust storm climatology in the western United States. We report here direct evidence of rapid intensification of dust storm activity over US deserts in the past decades (1990 to 2013), in contrast to the decreasing trends in Asia and Africa. The US trend is spatially and temporally correlated with incidences of valley fever, an infectious disease caused by soil-dwelling fungus that has increased eight-fold in the past decade. We further investigate the linkage between dust variations and possible climate drivers and find that the regional dust trends are likely driven by large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation (PDO). Future study will explore the link between the temporal and spatial trends of increase in dustiness and vegetation change in southwestern semi-arid and arid ecosystems.
Lee, Arthur M.; Fermin, Cyrelle R.; Filipp, Stephanie L.; Gurka, Matthew J.; DeBoer, Mark D.
2017-01-01
Introduction Prediabetes is a reversible state of glycemic abnormalities that is frequently associated with obesity and the metabolic syndrome (MetS). There has been controversy over determining the most effective methods of determining prediabetes status in adolescents. We sought to investigate temporal trends in prediabetes prevalence among U.S. adolescents using two definitions and evaluate relationships with obesity and a MetS-severity score. Methods We evaluated data from 5418 non-Hispanic-white, non-Hispanic-black, and Hispanic adolescents aged 12–19 participating in the National Health and Nutrition Examination Survey 1999–2014 with complete data regarding MetS and hemoglobin A1c (HbA1c). Prediabetes status was defined by American Diabetes Association (ADA) criteria: fasting glucose 100–125 mg/dL or HbA1c 5.7%–6.4%. MetS severity was assessed with a MetS-severity Z-score. Results Prevalence of prediabetes as defined by HbA1c abnormalities significantly increased from 1999–2014, while prevalence of prediabetes as defined by fasting glucose abnormalities showed no significant temporal trend. There were variations in these trends across different racial/ethnic groups. MetS Z-score was overall more strongly correlated with HbA1c, fasting insulin, and the homeostasis-model-of-insulin-resistance than was BMI Z-score. These correlations were true in each racial/ethnic group with the exception that in non-Hispanic-white adolescents, in whom the MetS Z-score was not significantly correlated to HbA1c measurements. Conclusion We found conflicting findings of temporal trends of U.S. adolescent prediabetes prevalence based on the ADA’s prediabetes criteria. The increasing prevalence of prediabetes by HbA1c assessment is concerning and raises the urgency for increased awareness and appropriate measures of prediabetes status among physicians and patients. PMID:28070750
Risch, Martin R.; Gay, David A.; Fowler, Kathleen K.; Keeler, Gerard J.; Backus, Sean M.; Blanchard, Pierrette; Barres, James A.; Dvonch, J. Timothy
2012-01-01
Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002-2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002-2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation.
Priskorn, L; Nordkap, L; Bang, A K; Krause, M; Holmboe, S A; Egeberg Palme, D L; Winge, S B; Mørup, N; Carlsen, E; Joensen, U N; Blomberg Jensen, M; Main, K M; Juul, A; Skakkebaek, N E; Jensen, T K; Jørgensen, N
2018-06-01
How are temporal trends in lifestyle factors, including exposure to maternal smoking in utero, associated to semen quality in young men from the general population? Exposure to maternal smoking was associated with lower sperm counts but no overall increase in sperm counts was observed during the study period despite a decrease in this exposure. Meta-analyses suggest a continuous decline in semen quality but few studies have investigated temporal trends in unselected populations recruited and analysed with the same protocol over a long period and none have studied simultaneous trends in lifestyle factors. Cross-sectional population-based study including ~300 participants per year (total number = 6386) between 1996 and 2016. The study is based on men from the Greater Copenhagen area, Denmark, with a median age of 19 years, and unselected with regard to fertility status and semen quality. The men delivered a semen sample, had a blood sample drawn and a physical examination performed and answered a comprehensive questionnaire, including information on lifestyle and the mother's pregnancy. Temporal trends in semen quality and lifestyle were illustrated graphically, and trends in semen parameters and the impact of prenatal and current lifestyle factors were explored in multiple regression analyses. Throughout the study period, 35% of the men had low semen quality. Overall, there were no persistent temporal trends in semen quality, testicular volume or levels of follicle-stimulating hormone over the 21 years studied. The men's alcohol intake was lowest between 2011 and 2016, whereas BMI, use of medication and smoking showed no clear temporal trends. Parental age increased, and exposure in utero to maternal smoking declined from 40% among men investigated in 1996-2000 to 18% among men investigated in 2011-2016. Exposure to maternal smoking was associated with lower sperm counts but no overall increase in sperm counts was observed despite the decrease in this exposure. Information of current and prenatal lifestyle was obtained by self-report, and the men delivered only one semen sample each. The significant decline in in utero exposure to maternal smoking, which was not reflected in an overall improvement of semen quality at the population level, suggest that other unknown adverse factors may maintain the low semen quality among Danish men. The study has received financial support from the ReproUnion; the Research fund of Rigshospitalet, Copenhagen University Hospital; the European Union (Contract numbers BMH4-CT96-0314,QLK4-CT-1999-01422, QLK4-CT-2002-00603, FP7/2007-2013, DEER Grant agreement no. 212844); the Danish Ministry of Health; the Danish Environmental Protection Agency; A.P. Møller and wife Chastine McKinney Møllers foundation; and Svend Andersens Foundation. None of the funders had any role in the study design, collection, analysis or interpretation of data, writing of the paper or publication decisions. N/A.
Van Metre, P.C.; Callender, E.
1996-01-01
Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.
Knapik, Joseph J; T Jean, Rosenie; Austin, Krista G; Steelman, Ryan A; Gannon, Julia; Farina, Emily K; Lieberman, Harris R
2016-10-01
Dietary supplements (DSs) can be obtained over-the-counter but can also be prescribed by health-care providers for therapeutic reasons. Few studies have documented this later source despite the fact that 79% of physicians and 82% of nurses have recommended DSs to patients. This investigation assessed prevalence and temporal trends in oral DS prescriptions filled by all United States service members (SMs) from 2005 to 2013 (n = 1 427 080 ± 22 139, mean ± standard deviation (SD)/y). We hypothesize that there would be temporal variations in specific types of DSs. Data obtained from Department of Defense Pharmacy Data Transaction System were grouped by American Hospital Formulary System pharmacologic-therapeutic classifications and prevalence examined over time. About 11% of SMs filled one or more DS prescriptions of 235 180 ± 4926 (mean ± SD) prescriptions/y over the 9-year period. Curve-fitting techniques indicated significant linear declines over time for multivitamins (P = .004), iron preparations (P < .001), antacids (P < .001), and vitamin B and B complex vitamins (P < .001). There were significant quadratic trends indicating a rise in early years followed by a leveling off in later years for replacement preparations (P < .001) and vitamin C (P < .001). There were significant quadratic trends (P < .001) for vitamin E indicating a decline in early years and leveling off in later years, and vitamin D indicating little change in early years followed by a large rise subsequently (P < .001). This study identified temporal trends in specific DS categories that may be associated with changing perceptions of prescribers and/or patients of the appropriate roles of DSs in medicine and public health. Published by Elsevier Inc.
Miller, Aroha; Hedman, Jenny E; Nyberg, Elisabeth; Haglund, Peter; Cousins, Ian T; Wiberg, Karin; Bignert, Anders
2013-08-15
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyl (dl-PCBs) concentrations in Baltic herring (Clupea harengus) have been relatively stable since the mid to late 1990s. It is unclear why concentrations in Baltic herring are not following the observed decreases in other environmental matrices. Here, changes in long-term temporal trends in Baltic herring were examined. A number of biological variables were examined alongside the temporal trends to investigate whether fish biology e.g., growth (length, weight, age), lipid content, reproductive phase or fishing date may provide an explanation for the temporal trends observed. Significant (p<0.05) decreasing trends were observed for PCDD/F toxic equivalents (TEQPCDD/F) at three of the four sites (lipid weight (lw) and wet weight (ww), Swedish west coast lw only); however, other TEQ values e.g., TEQPCDD, TEQPCDF, TEQdl-PCB, TEQPCDD/F+dl-PCB were inconsistent, decreasing at some sites but not others. In the most recent 10 years of data, fewer significant decreases were seen overall. Over the examined time period, significant decreases (Bothnian Bay, p<0.01, southern Baltic Proper, p<0.02) and increases (Swedish west coast, p<0.02) in lipid content, growth dilution or lack thereof, and significant changes in age were observed. However herring were not randomly selected which biases this result. Continual efforts to decrease PCDD/F and dl-PCB emissions and to locate/reduce hotspots are necessary, while bearing in mind that herring biology may be impeding faster decreases of these chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goovaerts, Pierre
2013-06-01
Analyzing temporal trends in health outcomes can provide a more comprehensive picture of the burden of a disease like cancer and generate new insights about the impact of various interventions. In the United States such an analysis is increasingly conducted using joinpoint regression outside a spatial framework, which overlooks the existence of significant variation among U.S. counties and states with regard to the incidence of cancer. This paper presents several innovative ways to account for space in joinpoint regression: (1) prior filtering of noise in the data by binomial kriging and use of the kriging variance as measure of reliability in weighted least-square regression, (2) detection of significant boundaries between adjacent counties based on tests of parallelism of time trends and confidence intervals of annual percent change of rates, and (3) creation of spatially compact groups of counties with similar temporal trends through the application of hierarchical cluster analysis to the results of boundary analysis. The approach is illustrated using time series of proportions of prostate cancer late-stage cases diagnosed yearly in every county of Florida since 1980s. The annual percent change (APC) in late-stage diagnosis and the onset years for significant declines vary greatly across Florida. Most counties with non-significant average APC are located in the north-western part of Florida, known as the Panhandle, which is more rural than other parts of Florida. The number of significant boundaries peaked in the early 1990s when prostate-specific antigen (PSA) test became widely available, a temporal trend that suggests the existence of geographical disparities in the implementation and/or impact of the new screening procedure, in particular as it began available.
Trends and Variations of Ocean Surface Latent Heat Flux: Results from GSSTF2c Data Set
NASA Technical Reports Server (NTRS)
Gao, Si; Chiu, Long S.; Shie, Chung-Lin
2013-01-01
Trends and variations of Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) version 2c (GSSTF2c) latent heat flux (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in sea surface saturated air humidity, and the decrease in near-surface air humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of air-sea humidity difference trends.
Storminess trends in the Gulf and Mexican Caribbean
NASA Astrophysics Data System (ADS)
Mendoza, E. T.; Ojeda, E.; Appendini, C. M.
2016-12-01
Numerous studies have focused on whether the attributes of tropical cyclones have varied, or how they are expected to vary in a warming climate and yet, a defined conclusion has not been reached. However, an increase in storm intensity, with the inherent increase of wave height and storm surge, will be responsible of heavy economic loss on coastal areas. This contribution analyzes possible variations in the long term storminess pattern observed in 10 nearshore locations along the southern coasts of the Gulf of Mexico and the Mexican Caribbean using modeled wave data from the last 30 years (Appendini et al., 2013). Storminess is studied in terms of wave energy content focusing on extreme event conditions. Wave storm events are obtained using the Peak Over Threshold method. The wave conditions during the events are separated into those caused by tropical cyclones (TC) and extratropical storm (ETS) events because they are expected to behave differently in response to changing climate conditions. In order to characterize the waves generated by these different phenomena the data set is inspected separating individual storm events into TC and ETS using the IBtracks information. The trend and Mann-Kendall test are performed for each node to account for possible trends in the frequency, mean and maximum significant wave heights, and the mean energy content (taken as E=integral(Hs*dt) of TC and ETS. For the TC and ETS events, the results of the MK test show an absence of significant temporal trends for the majority of the nodes even at the 90% confidence interval. The significant trends in the number of ETS events show differential results (negative trend in the northernmost node and positive trends in the two Caribbean nodes and the easternmost GoM node). Regarding the TC events, the two nodes located in the Caribbean Sea present significant temporal (positive) trends in the energy content of the events. However, this trend is related to an increase in the magnitude of storms and in the probability of their occurrence.
Ghani, Khurshid R; Sammon, Jesse D; Karakiewicz, Pierre I; Sun, Maxine; Bhojani, Naeem; Sukumar, Shyam; Peabody, James O; Menon, Mani; Trinh, Quoc-Dien
2013-07-01
To determine trends in demographics and treatment for inpatient upper urinary tract calculi in the USA using a population-based cohort. All patients with a primary or secondary diagnosis of kidney or ureteric calculus between 1999 and 2009 in the US Nationwide Inpatient Sample were extracted and weighted. Temporal trend analyses were used to determine trends in gender, race and age presentation, as well as utilization rates of interventions. Temporal trends were quantified using the estimated annual percent change (EAPC) using least squares linear regression analysis. Overall, 2 109 455 patients were hospitalized with upper urinary tract calculi over the 11-year period. The majority of admissions were for ureteric calculi (63.4%). Admissions for renal calculus increased by 12.1% during the study period (EAPC + 0.92%, P = 0.039, 95% CI: 0.17-1.66), whilst discharges for ureteric calculus remained stable. A significant increase (25.4%) in hospitalizations for women was found (EAPC + 2.21%, P < 0.001, 95% CI: 1.40-3.03); by 2006, more women than men were admitted to hospital (95 953 vs. 94 556, respectively). There were significant increases in hospitalization for black, Hispanic and older patients. Significant changes in the use of all studied interventions were found except for ureteroscopy, extracorporeal shockwave lithotripsy and nephrectomy. In this nationally representative sample of inpatient discharges, significant increases were found in admissions for renal compared with ureteric calculi, and for black, Hispanic and older patients. With regard to surgical intervention, the largest increase was found in the use of procedures for kidney calculi. Women now comprise the majority in the inpatient management of stone disease. © 2013 BJU International.
Trends in thermal discomfort indices over western coastal cities of India
NASA Astrophysics Data System (ADS)
Desai, Manasi S.; Dhorde, Amit G.
2018-02-01
The present research aimed at analyzing temporal trends in thermal discomfort indices for a period of 46 years from 1969 to 2014 over western coastal region of India for seven urban centers during the months of pre-monsoon and monsoon seasons. Direct thermal discomfort indices employed for this purpose were thermo-hygrometric index (THI) and heat index (HI). Statistical techniques applied for obtaining temporal trends were linear regression model and Mann-Kendall (MK) rank test. Statistical significance of the obtained trends was evaluated at 95% confidence level. Sequential MK (SQ-MK) test was used for change point detection. To investigate actual incidences of thermal discomfort, daily index values were averaged for standard meteorological weeks (SMWs) over the study period and decadal percentage of thermal discomfort during SMWs was estimated. Trend analysis of selected meteorological parameters such as dry bulb temperature (DBT), wet bulb temperature (WBT), relative humidity (RH), and wind speed (WS) were investigated, which might be responsible for variation in thermal discomfort over the period. The results obtained depicted significant increase in thermal discomfort over the cities located on the southern part of west coast, while significant increase was observed during monsoon season months compared to pre-monsoon season. Decadal variation in percentage of SMWs falling in various discomfort categories was studied. At majority of the stations, moderate and high-risk SMWs have increased over the last two decades. The results of change point detection for THI and HI denoted significant increase at most of the stations after 1990s. The study validates increase in thermal discomfort vulnerability, particularly at thriving urban centers of western coastal region of India.
Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau.
Wang, Yuanyuan; Zhang, Yongqiang; Chiew, Francis H S; McVicar, Tim R; Zhang, Lu; Li, Hongxia; Qin, Guanghua
2017-11-13
As the "Asian Water Tower", the Tibetan Plateau (TP) provides water resources for more than 1.4 billion people, but suffers from climatic and environmental changes, followed by the changes in water balance components. We used state-of-the-art satellite-based products to estimate spatial and temporal variations and trends in annual precipitation, evapotranspiration and total water storage change across eastern TP, which were then used to reconstruct an annual runoff variability series for 2003-2014. The basin-scale reconstructed streamflow variability matched well with gauge observations for five large rivers. Annual runoff increased strongly in dry part because of increases in precipitation, but decreased in wet part because of decreases in precipitation, aggravated by noticeable increases in evapotranspiration in the north of wet part. Although precipitation primarily governed temporal-spatial pattern of runoff, total water storage change contributed greatly to runoff variation in regions with wide-spread permanent snow/ice or permafrost. Our study indicates that the contrasting runoff trends between the dry and wet parts of eastern TP requires a change in water security strategy, and attention should be paid to the negative water resources impacts detected for southwestern part which has undergone vast glacier retreat and decreasing precipitation.
Hung, Hayley; Katsoyiannis, Athanasios A; Brorström-Lundén, Eva; Olafsdottir, Kristin; Aas, Wenche; Breivik, Knut; Bohlin-Nizzetto, Pernilla; Sigurdsson, Arni; Hakola, Hannele; Bossi, Rossana; Skov, Henrik; Sverko, Ed; Barresi, Enzo; Fellin, Phil; Wilson, Simon
2016-10-01
Temporal trends of Persistent Organic Pollutants (POPs) measured in Arctic air are essential in understanding long-range transport to remote regions and to evaluate the effectiveness of national and international chemical control initiatives, such as the Stockholm Convention (SC) on POPs. Long-term air monitoring of POPs is conducted under the Arctic Monitoring and Assessment Programme (AMAP) at four Arctic stations: Alert, Canada; Stórhöfði, Iceland; Zeppelin, Svalbard; and Pallas, Finland, since the 1990s using high volume air samplers. Temporal trends observed for POPs in Arctic air are summarized in this study. Most POPs listed for control under the SC, e.g. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and chlordanes, are declining slowly in Arctic air, reflecting the reduction of primary emissions during the last two decades and increasing importance of secondary emissions. Slow declining trends also signifies their persistence and slow degradation under the Arctic environment, such that they are still detectable after being banned for decades in many countries. Some POPs, e.g. hexachlorobenzene (HCB) and lighter PCBs, showed increasing trends at specific locations, which may be attributable to warming in the region and continued primary emissions at source. Polybrominated diphenyl ethers (PBDEs) do not decline in air at Canada's Alert station but are declining in European Arctic air, which may be due to influence of local sources at Alert and the much higher historical usage of PBDEs in North America. Arctic air samples are screened for chemicals of emerging concern to provide information regarding their environmental persistence (P) and long-range transport potential (LRTP), which are important criteria for classification as a POP under SC. The AMAP network provides consistent and comparable air monitoring data of POPs for trend development and acts as a bridge between national monitoring programs and SC's Global Monitoring Plan (GMP). Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kanniah, Kasturi Devi; Lim, Hui Qi; Kaskaoutis, Dimitris G.; Cracknell, Arthur P.
2014-03-01
Spatio-temporal variation and trends in atmospheric aerosols as well as their impact on solar radiation and clouds are crucial for regional and global climate change assessment. These topics are not so well-documented over Malaysia, the fact that it receives considerable amounts of pollutants from both local and trans-boundary sources. The present study aims to analyse the spatio-temporal evolution and decadal trend of Aerosol Optical Depth (AOD) from Terra and Aqua MODIS sensors, to identify different types and origin of aerosols and explore the link between aerosols and solar radiation. AOD and fine-mode fraction (FMF) products from MODIS, AOD and Ångström Exponent (AE) values from AERONET stations along with ground-based PM10 measurements and solar radiation recordings at selected sites in Peninsular Malaysia are used for this scope. The MODIS AODs exhibit a wide spatio-temporal variation over Peninsular Malaysia, while Aqua AOD is consistently lower than that from Terra. The AOD shows a neutral-to-declining trend during the 2000s (Terra satellite), while that from Aqua exhibits an increasing trend (~ 0.01 per year). AERONET AODs exhibit either insignificant diurnal variation or higher values during the afternoon, while their short-term availability does not allow for a trend analysis. Moreover, the PM10 concentrations exhibit a general increasing trend over the examined locations. The sources and destination of aerosols are identified via the HYSPLIT trajectory model, revealing that aerosols during the dry season (June to September) are mainly originated from the west and southwest (Sumatra, Indonesia), while in the wet season (November to March) they are mostly associated with the northeast monsoon winds from the southern China Sea. Different aerosol types are identified via the relationship of AOD with FMF, revealing that the urban and biomass-burning aerosols are the most abundant over the region contributing to a significant reduction (~- 0.21 MJ m- 2) of the solar radiation.
Guglielminotti, Jean; Wong, Cynthia A; Landau, Ruth; Li, Guohua
2015-11-01
Cesarean delivery (CD) is associated with significantly increased risks of anesthesia-related adverse events (ARAEs) and nonanesthetic perioperative morbidity compared with vaginal delivery. Temporal trends in these adverse outcomes remain unknown despite efforts to improve maternal safety. This study examines temporal trends in ARAEs and nonanesthetic perioperative complications in CDs in New York hospitals. Data are from the State Inpatient Database for New York, 2003-2012. ARAEs, including minor and major ARAEs, and nonanesthetic perioperative complications were identified through International Classification of Diseases, Ninth Revision, Clinical Modification codes. Statistical significance in time trends was assessed using the Cochran-Armitage test and multivariable logistic regression. Of the 785,854 CDs studied, 5,715 (730 per 100,000; 95% CI, 710 to 750) had at least one ARAE and 7,040 had at least one perioperative complication (890 per 100,000; 95% CI, 870 to 920). The overall annual rate of ARAEs decreased from 890 per 100,000 in 2003 to 660 in 2012 (25% decrease; 95% CI, 16 to 34; P < 0.0001). The rate of minor ARAEs decreased 23% (95% CI, 13 to 32) and of major ARAEs decreased 43% (95% CI, 23 to 63). No decrease was observed in the rate of ARAEs for CDs performed under general anesthesia. The rate of nonanesthetic complications increased 47% (95% CI, 31 to 63; P < 0.0001). Anesthesia-related outcomes in cesarean deliveries appear to have improved significantly across hospitals in New York in the past decade. Perioperative nonanesthetic complications remain a serious healthcare issue.
Study on temporal and spatial variations of urban land use based on land change data
NASA Astrophysics Data System (ADS)
Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang
2009-10-01
With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.
Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China
NASA Astrophysics Data System (ADS)
Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao
2014-03-01
Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD.
Epidemiology of hypospadias in Europe: a registry-based study.
Bergman, Jorieke E H; Loane, Maria; Vrijheid, Martine; Pierini, Anna; Nijman, Rien J M; Addor, Marie-Claude; Barisic, Ingeborg; Béres, Judit; Braz, Paula; Budd, Judith; Delaney, Virginia; Gatt, Miriam; Khoshnood, Babak; Klungsøyr, Kari; Martos, Carmen; Mullaney, Carmel; Nelen, Vera; Neville, Amanda J; O'Mahony, Mary; Queisser-Luft, Annette; Randrianaivo, Hanitra; Rissmann, Anke; Rounding, Catherine; Tucker, David; Wellesley, Diana; Zymak-Zakutnia, Natalya; Bakker, Marian K; de Walle, Hermien E K
2015-12-01
Hypospadias is a common congenital malformation. The prevalence of hypospadias has a large geographical variation, and recent studies have reported both increasing and decreasing temporal trends. It is unclear whether hypospadias prevalence is associated with maternal age. To analyze the prevalence and trends of total hypospadias, isolated hypospadias, hypospadias with multiple congenital anomalies, hypospadias with a known cause, and hypospadias severity subtypes in Europe over a 10-year period and to investigate whether maternal age is associated with hypospadias. We included all children with hypospadias born from 2001 to 2010 who were registered in 23 EUROCAT registries. Information on the total number of births and maternal age distribution for the registry population was also provided. We analyzed the total prevalence of hypospadias and relative risks by maternal age. From 2001 to 2010, 10,929 hypospadias cases were registered in 5,871,855 births, yielding a total prevalence of 18.61 per 10,000 births. Prevalence varied considerably between different registries, probably due to differences in ascertainment of hypospadias cases. No significant temporal trends were observed with the exceptions of an increasing trend for anterior and posterior hypospadias and a decreasing trend for unspecified hypospadias. After adjusting for registry effects, maternal age was not significantly associated with hypospadias. Total hypospadias prevalence was stable in 23 EUROCAT registries from 2001 to 2010 and was not significantly influenced by maternal age.
González-Mesa, Ernesto; Herrera, José A; Urgal, Amaya; Lazarraga, Cristina; Benítez, María J; Gómez, Cristina
2012-08-01
This paper shows temporal trends of latency period and perinatal survival after preterm premature rupture of membranes at or before 28 weeks (very early PPROM). We have studied retrospectively medical records of all cases of very early PPROM attended in our Obstetric Department from January 1, 2000 to December 31, 2010. A total of 327 cases of very early PPROM were attended, representing 0.4 % of all deliveries, 3.68 % of all preterm births and 15 % of cases all of PPROM. The mean gestational age at delivery was 27 weeks (range 20-34). The mean duration of latency period for the total of 327 cases was 12.1 days (range 0-83, SD 13.3), with a clear trend to its increase from 2005 (p < 0.05). The mean duration of latency period was largest in 2010 (p < 0.05). For the whole period 2000-2010, perinatal deaths reached 30.6 % of all cases, with a clear trend to decrease as gestational age at diagnosis increased, and over the years of study. We have also found a high rate of obstetric complications and a high rate of cesarean deliveries. The upward trend in the duration of latency period in all groups over the years of study and the encouraging perinatal survival observed, even in previable PPROM, are incentives to follow expectant/conservative management in these cases.
NASA Astrophysics Data System (ADS)
Pfeifer, Christian; Höller, Peter; Zeileis, Achim
2018-02-01
In this article we analyzed spatial and temporal patterns of fatal Austrian avalanche accidents caused by backcountry and off-piste skiers and snowboarders within the winter periods 1967/1968-2015/2016. The data were based on reports of the Austrian Board for Alpine Safety and reports of the information services of the federal states. Using the date and the location of the recorded avalanche accidents, we were able to carry out spatial and temporal analyses applying generalized additive models and Markov random-field models. As a result of the trend analysis we noticed an increasing trend of backcountry and off-piste avalanche fatalities within the winter periods 1967/1968-2015/2016 (although slightly decreasing in recent years), which is in contradiction to the widespread opinion in Austria that the number of fatalities is constant over time. Additionally, we compared Austrian results with results of Switzerland, France, Italy and the US based on data from the International Commission of Alpine Rescue (ICAR). As a result of the spatial analysis, we noticed two hot spots of avalanche fatalities (Arlberg-Silvretta
and Sölden
). Because of the increasing trend and the rather narrow
regional distribution of the fatalities, initiatives aimed at preventing avalanche accidents were highly recommended.
NASA Astrophysics Data System (ADS)
Orlando, P.; Vo, D.; Giossi, C.; George, L.
2017-12-01
With the world-wide increase in urbanization and the increasing usage of combustion vehicles in urban areas, traffic-related air pollution is a growing health hazard. However, there are limited studies that examine the spatial and temporal impacts of traffic-related pollutants within cities. In particular, there are few studies that look at traffic management and its potential for pollution mitigation. In a previous study we examined roadway pollution and traffic parameters with one roadway station instrumented with standard measurement instruments. With the advent of low-cost air pollution sensors, we have expanded our work by observing multiple sites within a neighborhood to understand spatial and temporal exposures. We have deployed a high-density sensor network around urban arterial corridors in SE Portland, Oregon. This network consisted of ten nodes measuring CO, NO, NO2 and O3, and ten nodes measuring CO, CO2, VOC and PM2.5. The co-location of standard measurement instruments provided insight towards the utility of our low-cost sensor network, as the different nodes varied in cost, and potentially in quality. We have identified near-real-time temporal trends and local-scale spatial patterns during the summer of 2017. Meteorological and traffic data were included to further characterize these patterns, exploring the potential for pollution mitigation.
NASA Astrophysics Data System (ADS)
Liu, Pei; Han, Ruimei; Wang, Shuangting
2014-11-01
According to the merits of remotely sensed data in depicting regional land cover and Land changes, multi- objective information processing is employed to remote sensing images to analyze and simulate land cover in mining areas. In this paper, multi-temporal remotely sensed data were selected to monitor the pattern, distri- bution and trend of LUCC and predict its impacts on ecological environment and human settlement in mining area. The monitor, analysis and simulation of LUCC in this coal mining areas are divided into five steps. The are information integration of optical and SAR data, LULC types extraction with SVM classifier, LULC trends simulation with CA Markov model, landscape temporal changes monitoring and analysis with confusion matrixes and landscape indices. The results demonstrate that the improved data fusion algorithm could make full use of information extracted from optical and SAR data; SVM classifier has an efficient and stable ability to obtain land cover maps, which could provide a good basis for both land cover change analysis and trend simulation; CA Markov model is able to predict LULC trends with good performance, and it is an effective way to integrate remotely sensed data with spatial-temporal model for analysis of land use / cover change and corresponding environmental impacts in mining area. Confusion matrixes are combined with landscape indices to evaluation and analysis show that, there was a sustained downward trend in agricultural land and bare land, but a continues growth trend tendency in water body, forest and other lands, and building area showing a wave like change, first increased and then decreased; mining landscape has undergone a from small to large and large to small process of fragmentation, agricultural land is the strongest influenced landscape type in this area, and human activities are the primary cause, so the problem should be pay more attentions by government and other organizations.
DVT Management and Outcome Trends, 2001 to 2014.
Morillo, Raquel; Jiménez, David; Aibar, Miguel Ángel; Mastroiacovo, Daniela; Wells, Philip S; Sampériz, Ángel; Saraiva de Sousa, Marta; Muriel, Alfonso; Yusen, Roger D; Monreal, Manuel
2016-08-01
A comprehensive evaluation of temporal trends in the treatment of patients who have DVT may assist with identification of modifiable factors that contribute to short-term outcomes. We assessed temporal trends in length of hospital stay and use of pharmacological and interventional therapies among 26,695 adults with DVT enrolled in the Registro Informatizado de la Enfermedad TromboEmbólica registry between 2001 and 2014. We also examined temporal trends in risk-adjusted rates of all-cause, pulmonary embolism-related, and bleeding-related death to 30 days after diagnosis. The mean length of hospital stay decreased from 9.0 days in 2001 to 2005 to 7.6 days in 2010 to 2014 (P < .01). For initial DVT treatment, the use of low-molecular-weight heparin decreased from 98% to 90% (P < .01). Direct oral anticoagulants use increased from 0.5% in 2010 to 13.4% in 2014 (P < .001). Risk-adjusted rates of 30-day all-cause mortality decreased from 3.9% in 2001 to 2005 to 2.7% in 2010 to 2014 (adjusted rate ratio per year, 0.84; 95% CI, 0.74-0.96; P < .01). VTE-related mortality showed a nonstatistically significant downward trend (adjusted rate ratio per year, 0.70; 95% CI, 0.44-1.10; P = .13), whereas 30-day bleeding-related mortality significantly decreased from 0.5% in 2001 to 2005 to 0.1% in 2010-2014 (adjusted rate ratio per year, 0.55; 95% CI, 0.40-0.77; P < .01). This international registry-based temporal analysis identified reductions in length of stay for adults hospitalized for DVT. The study also found a decreasing trend in adjusted rates of all-cause and bleeding-related mortality. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Rizkallah, Jacques; Sin, Don D.
2010-01-01
Background Impact factor (IF) is a commonly used surrogate for assessing the scientific quality of journals and articles. There is growing discontent in the medical community with the use of this quality assessment tool because of its many inherent limitations. To help address such concerns, Eigenfactor (ES) and Article Influence scores (AIS) have been devised to assess scientific impact of journals. The principal aim was to compare the temporal trends in IF, ES, and AIS on the rank order of leading medical journals over time. Methods The 2001 to 2008 IF, ES, AIS, and number of citable items (CI) of 35 leading medical journals were collected from the Institute of Scientific Information (ISI) and the http://www.eigenfactor.org databases. The journals were ranked based on the published 2008 ES, AIS, and IF scores. Temporal score trends and variations were analyzed. Results In general, the AIS and IF values provided similar rank orders. Using ES values resulted in large changes in the rank orders with higher ranking being assigned to journals that publish a large volume of articles. Since 2001, the IF and AIS of most journals increased significantly; however the ES increased in only 51% of the journals in the analysis. Conversely, 26% of journals experienced a downward trend in their ES, while the rest experienced no significant changes (23%). This discordance between temporal trends in IF and ES was largely driven by temporal changes in the number of CI published by the journals. Conclusion The rank order of medical journals changes depending on whether IF, AIS or ES is used. All of these metrics are sensitive to the number of citable items published by journals. Consumers should thus consider all of these metrics rather than just IF alone in assessing the influence and importance of medical journals in their respective disciplines. PMID:20419115
Temporal trends in symptom experience predict the accuracy of recall PROs
Schneider, Stefan; Broderick, Joan E.; Junghaenel, Doerte U.; Schwartz, Joseph E.; Stone, Arthur A.
2013-01-01
Objective Patient-reported outcome measures with reporting periods of a week or more are often used to evaluate the change of symptoms over time, but the accuracy of recall in the context of change is not well understood. This study examined whether temporal trends in symptoms that occur during the reporting period impact the accuracy of 7-day recall reports. Methods Women with premenstrual symptoms (n = 95) completed daily reports of anger, depression, fatigue, and pain intensity for 4 weeks, as well as 7-day recall reports at the end of each week. Latent class growth analysis was used to categorize recall periods based on the direction and rate of change in the daily reports. Agreement (level differences and correlations) between 7-day recall and aggregated daily scores was compared for recall periods with different temporal trends. Results Recall periods with positive, negative, and flat temporal trends were identified and they varied in accordance with weeks of the menstrual cycle. Replicating previous research, 7-day recall scores were consistently higher than aggregated daily scores, but this level difference was more pronounced for recall periods involving positive and negative trends compared with flat trends. Moreover, correlations between 7-day recall and aggregated daily scores were lower in the presence of positive and negative trends compared with flat trends. These findings were largely consistent for anger, depression, fatigue, and pain intensity. Conclusion Temporal trends in symptoms can influence the accuracy of recall reports and this should be considered in research designs involving change. PMID:23915773
Counihan, Timothy D.; Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.
2018-01-01
Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.
Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian S.; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.
2018-01-01
Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers. PMID:29364953
Wavelet Analyses of Oil Prices, USD Variations and Impact on Logistics
NASA Astrophysics Data System (ADS)
Melek, M.; Tokgozlu, A.; Aslan, Z.
2009-07-01
This paper is related with temporal variations of historical oil prices and Dollar and Euro in Turkey. Daily data based on OECD and Central Bank of Turkey records beginning from 1946 has been considered. 1D-continuous wavelets and wavelet packets analysis techniques have been applied on data. Wavelet techniques help to detect abrupt changing's, increasing and decreasing trends of data. Estimation of variables has been presented by using linear regression estimation techniques. The results of this study have been compared with the small and large scale effects. Transportation costs of track show a similar variation with fuel prices. The second part of the paper is related with estimation of imports, exports, costs, total number of vehicles and annual variations by considering temporal variation of oil prices and Dollar currency in Turkey. Wavelet techniques offer a user friendly methodology to interpret some local effects on increasing trend of imports and exports data.
Donner, D.M.; Probst, J.R.; Ribic, C.A.
2008-01-01
Kirtland's warblers (Dendroica kirtlandii) persist in a naturally patchy environment of young, regenerating jack pine forests (i.e., 5-23 years old) created after wildfires and human logging activities. We examined how changing landscape structure from 26 years of forest management and wildfire disturbances influenced population size and spatial dispersion of male Kirtland's warblers within their restricted breeding range in northern Lower Michigan, USA. The male Kirtland's warbler population was six times larger in 2004 (1,322) compared to 1979 (205); the change was nonlinear with 1987 and 1994 identified as significant points of change. In 1987, the population trend began increasing after a slowly declining trend prior to 1987, and the rate of increase appeared to slow after 1994. Total amount of suitable habitat and the relative area of wildfire-regenerated habitat were the most important factors explaining population trend. Suitable habitat increased 149% primarily due to increasing plantations from forest management. The relative amount and location of wildfire-regenerated habitat modified the distribution of males among various habitat types, and the spatial variation in their abundance across the primary breeding range. These findings indicate that the Kirtland's warbler male population shifted its use of habitat types temporally and spatially as the population increased and as the relative availability of habitats changed through time. We demonstrate that researchers and managers need to consider not only habitat quality, but the temporal and the spatial context of habitat availability and population levels when making habitat restoration decisions. ?? 2008 Springer Science+Business Media B.V.
Behavioral Ecology of Narwhals in a Changing Arctic
2013-09-30
What are the spatial and temporal trends in the occurrence of killer whales in West Greenland? Given the loss of annual sea ice and purported...increase in killer whales in the Canadian Arctic, do killer whale catch and observation data from West Greenland follow this trend and have narwhals been...sampling in the Northeast Atlantic have documented killer whales (Orcinus orca), the largest delphinid, produce whistles with the highest
Shao, Diwei; Zhan, Yu; Zhou, Wenjun; Zhu, Lizhong
2016-12-01
While the spatial distributions of heavy metals in farmland soil of China have been comprehensively delineated, their temporal trends are rarely investigated but are important for environmental risk management. In this study, the current status and temporal trends of heavy metals in the farmland soil of Yangtze River Delta (YRD) were evaluated through field survey and meta-analysis. The field survey conducted in 2014 showed that the concentrations of Cd, Pb, Cu, Zn, and Ni in the farmland topsoil were 0.23 ± 0.14, 37.63 ± 15.60, 25.83 ± 41.62, 88.38 ± 43.30, and 29.21 ± 12.41 mg kg -1 (mean ± standard deviation), respectively. The heavy metals showed relatively higher concentrations on the borders among Zhejiang, Jiangsu, and Shanghai. In the meta-analysis, we selected 68 published studies related to heavy metal pollution in farmland topsoil of YRD from 2000 to the year (2014) when the field survey was conducted. The results show an increasing trend for Cd (p < 0.05; 0.0081 mg kg -1 year -1 ), a decreasing trend for Cu (p < 0.05; -0.80 mg kg -1 year -1 ), and no significant trend for Pb (p = 0.155), Zn (p = 0.746), and Ni (p = 0.305). The increasing rate of Cd from the meta-analysis is consistent with the rate (0.0013 mg kg -1 year -1 ) derived from the mass balance calculation for Cd, where atmospheric deposition originated from intensive coal combustion is considered as the main source of Cd in the topsoil. The decreasing trend of Cu is likely due to largely reduced application of copper-based agrochemicals. Environmental regulation and soil remediation are needed to protect food safety and ecosystem from heavy metal pollution, especially Cd. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to examine the recent temporal trends and current determinants of discretionary salt use in the United States. We used data from the National Health and Nutrition Examination Survey (NHANES), 2003-2012. We used multiple logistic regression to assess temporal trends ...
Possible Explanation of the Different Temporal Behaviors of Various Classes of Sunspot Groups
NASA Astrophysics Data System (ADS)
Gao, Peng-Xin; Li, Ke-Jun; Li, Fu-Yu
2017-09-01
In order to investigate the periodicity and long-term trends of various classes of sunspot groups (SGs), we separated SGs into two categories: simple SGs (A/U ≤ 4.5, where A represents the total corrected whole spot area of the group in millionths of the solar hemisphere (msh), and U represents the total corrected umbral area of the group in msh); and complex SGs (A/U > 6.2). Based on the revised version of the Greenwich Photoheliographic Results sunspot catalogue, we investigated the periodic behaviors and long-term trends of simple and complex SGs from 1875 to 1976 using the Hilbert-Huang Transform method, and we confirm that the temporal behaviors of simple and complex SGs are quite different. Our main findings are as follows. i) For simple and complex SGs, the values of the Schwabe cycle wax and wane, following the solar activity cycle. ii) There are significant phase differences (almost antiphase) between the periodicity of 53.50 ± 3.79 years extracted from yearly simple SG numbers and the periodicity of 56.21 ± 2.92 years extracted from yearly complex SG numbers. iii) The adaptive trends of yearly simple and complex SG numbers are also quite different: for simple SGs, the values of the adaptive trend gradually increase during the time period of 1875 - 1949, then they decrease gradually from 1949 to 1976, similar to the rise and the maximum phase of a sine curve; for complex SGs, the values of the adaptive trend first slowly increase and then quickly increase, similar to the minimum and rise phase of a sine curve.
Brain cancer incidence trends in relation to cellular telephone use in the United States.
Inskip, Peter D; Hoover, Robert N; Devesa, Susan S
2010-11-01
The use of cellular telephones has grown explosively during the past two decades, and there are now more than 279 million wireless subscribers in the United States. If cellular phone use causes brain cancer, as some suggest, the potential public health implications could be considerable. One might expect the effects of such a prevalent exposure to be reflected in general population incidence rates, unless the induction period is very long or confined to very long-term users. To address this issue, we examined temporal trends in brain cancer incidence rates in the United States, using data collected by the Surveillance, Epidemiology, and End Results (SEER) Program. Log-linear models were used to estimate the annual percent change in rates among whites. With the exception of the 20-29-year age group, the trends for 1992-2006 were downward or flat. Among those aged 20-29 years, there was a statistically significant increasing trend between 1992 and 2006 among females but not among males. The recent trend in 20-29-year-old women was driven by a rising incidence of frontal lobe cancers. No increases were apparent for temporal or parietal lobe cancers, or cancers of the cerebellum, which involve the parts of the brain that would be more highly exposed to radiofrequency radiation from cellular phones. Frontal lobe cancer rates also rose among 20-29-year-old males, but the increase began earlier than among females and before cell phone use was highly prevalent. Overall, these incidence data do not provide support to the view that cellular phone use causes brain cancer.
NASA Astrophysics Data System (ADS)
Tedesco, M.; Alexander, P.; Porter, D. F.; Fettweis, X.; Luthcke, S. B.; Mote, T. L.; Rennermalm, A.; Hanna, E.
2017-12-01
Despite recent changes in Greenland surface mass losses and atmospheric circulation over the Arctic, little attention has been given to the potential role of large-scale atmospheric processes on the spatial and temporal variability of mass loss and partitioning of the GrIS mass loss. Using a combination of satellite gravimetry measurements, outputs of the MAR regional climate model and reanalysis data, we show that changes in atmospheric patterns since 2013 over the North Atlantic region of the Arctic (NAA) modulate total mass loss trends over Greenland together with the spatial and temporal distribution of mass loss partitioning. For example, during the 2002 - 2012 period, melting persistently increased, especially along the west coast, as a consequence of increased insulation and negative NAO conditions characterizing that period. Starting in 2013, runoff along the west coast decreased while snowfall increased substantially, when NAO turned to a more neutral/positive state. Modeled surface mass balance terms since 1950 indicate that part of the GRACE-period, specifically the period between 2002 and 2012, was exceptional in terms of snowfall over the east and northeast regions. During that period snowfall trend decreased to almost 0 Gt/yr from a long-term increasing trend, which presumed again in 2013. To identify the potential impact of atmospheric patterns on mass balance and its partitioning, we studied the spatial and temporal correlations between NAO and snowfall/runoff. Our results indicate that the correlation between summer snowfall and NAO is not stable during the 1950 - 2015 period. We further looked at changes in patterns of circulation using self organizing maps (SOMs) to identify the atmospheric patterns characterizing snowfall during different periods. We discuss potential implications for past changes and future GCM and RCM simulations.
Barbier, François; Roux, Antoine; Canet, Emmanuel; Martel-Samb, Patricia; Aegerter, Philippe; Wolff, Michel; Guidet, Bertrand; Azoulay, Elie
2014-12-01
Multicentre data are limited to appraise the management and prognosis of critically ill human immunodeficiency virus (HIV)-infected patients. We sought to describe temporal trends in demographic and clinical characteristics, indications for intensive care and outcome in this patient population. We conducted a cohort study of unselected HIV-infected patients admitted between 1999 and 2010 to 34 French ICUs contributing to the CUB-Réa prospective database. We included 6,373 consecutive patients. Over the 12-year period, increases occurred in median age (39 years in 1999-2001; 47 years in 2008-2010, p < 0.0001) and prevalence of comorbidities (notably malignancies, from 6.7 to 16.4%, p < 0.0001). Admissions for respiratory failure (39.8% overall), shock (8.1%) and coma (22.7%) decreased (p < 0.0001), while those for sepsis (19.3%) remained stable. The main final diagnoses were bacterial sepsis (24.6%) and non-bacterial acquired immune deficiency syndrome (AIDS)-defining diseases (steady decline from 26.0 to 17.5%, p < 0.0001). Patients increasingly received mechanical ventilation (from 42.9 to 54.0%) and renal replacement therapy (from 9.6 to 16.8%) (p < 0.0001), whereas vasopressor use remained stable (27.4%). ICU readmissions increased after 2004 (p < 0.0001). ICU and hospital mortality (17.6 and 26.9%, respectively) dropped markedly in the most severely ill patients requiring multiple life-sustaining therapies. Malignancies and chronic liver disease were heavily associated with hospital mortality by multivariate analysis, while the most common AIDS-defining complications (Pneumocystis jirovecii pneumonia, cerebral toxoplasmosis and tuberculosis) had no independent impact. Progressive ageing, increasing prevalence of comorbidities (mainly malignancies), a steady decline in AIDS-related illnesses and improved benefits from life-sustaining therapies were the main temporal trends in HIV-infected patients requiring ICU admission.
Bengtson, Lindsay G S; Chen, Lin Y; Chamberlain, Alanna M; Michos, Erin D; Whitsel, Eric A; Lutsey, Pamela L; Duval, Sue; Rosamond, Wayne D; Alonso, Alvaro
2014-09-01
Atrial fibrillation (AF) frequently coexists in the setting of myocardial infarction (MI), being associated with increased mortality. Nonetheless, temporal trends in the occurrence of AF complicating MI and in the prognosis of these patients are not well described. We examined temporal trends in prevalence of AF in the setting of MI and the effect of AF on prognosis in the community. We studied a population-based sample of 20,049 validated first-incident nonfatal hospitalized MIs among 35- to 74-year old residents of 4 communities in the Atherosclerosis Risk in Communities (ARIC) Study from 1987 through 2009. Prevalence of AF in the setting of MI increased from 11% to 15% during the 23-year study period. The multivariable adjusted odds ratio for prevalent AF, per 5-year increment, was 1.11 (95% confidence interval 1.04 to 1.19). Overall, in patients with MI, AF was associated with increased 1-year case fatality (odds ratio 1.47, 95% confidence interval 1.07 to 2.01) compared with those without AF. However, there was no evidence that the impact of AF on MI survival changed over time or differed over time by sex, race, or MI classification (all p values >0.10). In conclusion, co-occurrence of AF in MI slightly increased between 1987 and 2009. The adverse impact of AF on survival in the setting of MI was consistent throughout. In the setting of MI, co-occurrence of AF should be viewed as a critical clinical event, and treatment needs unique to this population should be explored further. Copyright © 2014 Elsevier Inc. All rights reserved.
Kolpin, D.W.; Sneck-Fahrer, D.; Hallberg, G.R.; Libra, R.D.
1997-01-01
Since 1982, the Iowa Groundwater Monitoring (IGWM) Program has been used to sample untreated groundwater from Iowa municipal wells for selected agricultural chemicals. This long-term database was used to determine if concentrations of select agricultural chemicals in groundwater have changed with time. Nitrate, alachlor [2-chloro-2′-6′-diethyl-N-(methoxymethyl)-acetanilide], atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile)], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were selected for this temporal analysis of the data. Conclusive temporal changes in frequency of detection and median chemical concentrations were found only for atrazine (decrease) and metolachlor (increase). The greatest temporal chemical changes occurred in the shallowest wells and in alluvial aquifers—both relating to groups of wells generally having the youngest groundwater age. The temporal patterns found for atrazine and metolachlor are consistent with their patterns of chemical use and/or application rates and are suggestive of a causal relation. Only continued data collection, however, will indicate if the trends in chemical concentrations described here represent long-term temporal patterns or only short-term changes in groundwater. No definitive answers could be made in regards to the question of overall improvements in groundwater quality with respect to agricultural chemical contamination and time, due to the inherent problems with the simplistic measurement of overall severity (summation of alachlor + atrazine + cyanazine + metolachlor concentrations) examined for this study. To adequately determine if there is an actual decreasing trend in the overall severity of contamination (improving groundwater quality), the collection of additional water-chemistry data and the investigation of other measures of severity are needed.
Lam, James C W; Lyu, Jinling; Kwok, Karen Y; Lam, Paul K S
2016-07-05
Perfluorinated sulfonic acids (PFSAs) and perfluorinated carboxylic acids (PFCAs), as well as the replacement for the phase-out C8 PFSAs were determined in the liver samples of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from the South China Sea between 2002 and 2014. Levels of total perfluoroalkyl substances (PFASs) in samples ranged from 136-15,300 and 30.5-2,720 ng/g dw for dolphin and porpoise, respectively. Significant increasing trends of several individual PFCAs and perfluorobutane sulfonate (PFBS) were found in cetacean samples from 2002 to 2014, whereas no significant temporal trends of ∑PFASs appeared over the sampling period. This pattern may be attributed to the increasing usage of PFCAs and C4-based PFSAs following the restriction/voluntary withdrawal of the production and use of perfluorooctane sulfonate (PFOS) related products. In addition, significantly increasing temporal shifting trends of PFOS to PFBS were observed in the dolphin liver samples. This pattern may be attributed to the substitution of PFOS by its alternative, PFBS. The highest levels of PFOS were observed in the liver samples of dolphin as compared with other marine mammal studies published since 2006, indicating high contamination of PFAS in the South China region. An assessment of relatively high concentrations of C8-based PFASs in the liver samples of cetaceans predicted that concentrations of PFOS would be expected to affect some proportion of the cetacean populations studied, based on the toxicity thresholds derived.
A temporal study of Salmonella serovars in animals in Alberta between 1990 and 2001
2005-01-01
Abstract Passive laboratory-based surveillance data from Alberta Agriculture Food and Rural Development were analyzed for common Salmonella serovars, prevalences, trends, and for the presence of temporal clusters. There were 1767 isolates between October 1990 and December 2001 comprising 63 different serovars, including 961 isolates from chickens, 418 from cattle, 108 from pigs, 102 from turkeys, and 178 from all other species combined. Salmonella Typhimurium, Heidelberg, Hadar, Kentucky, and Thompson were the 5 most frequently isolated serovars. Approximately 60% of the S. Typhimurium were isolated from cattle, whereas over 90% of the S. Heidelberg, Hadar, Kentucky, and Thompson were isolated from chickens. Salmonella Enteritidis was rarely isolated. There was an increasing trend in isolates from chickens, cattle, and pigs, and a decreasing trend in isolates from turkeys. Temporal clusters were observed in 11 of 15 serovars examined in chickens (S. Anatum, Heidelberg, Infantis, Kentucky, Mbandaka, Montevideo, Nienstedten, Oranienburg, Thompson, Typhimurium, and Typhimurium var. Copenhagen), 5 of 5 serovars in cattle (S. Dublin, Montevideo, Muenster, Typhimurium, and Typhimurium var. Copenhagen), and 1 of 3 serovars in pigs (S. Typhimurium). Short-duration clusters may imply point source infections, whereas long-duration clusters may indicate an increase in the prevalence of the serovar, farm-to-farm transmission, or a wide-spread common source. A higher concentration of clusters in the winter months may reflect greater confinement, reduced ventilation, stressors, or increased exposure to wildlife vectors that are sharing housing during the winter. Detection of large clusters of Salmonella may have public health implications in addition to animal health concerns. PMID:15971672
Relationship between Trends in Land Precipitation and Tropical SST Gradient
NASA Technical Reports Server (NTRS)
Chung, Chul Eddy; Ramanathan, V.
2007-01-01
In this study, we examined global zonal/annual mean precipitation trends. Land precipitation trend from 1951 to 2002 shows widespread drying between 10 S to 20 N but the trend from 1977 to 2002 shows partial recovery. Based on general circulation model sensitivity studies, we suggested that these features are driven largely by the meridional SST gradient trend in the tropics. Our idealized CCM3 experiments substantiated that land precipitation is more sensitive to meridional SST gradient than to an overall tropical warming. Various simulations produced for the IPCC 4th assessment report demonstrate that increasing CO2 increases SST in the entire tropics non-uniformly and increases land precipitation only in certain latitude belts, again pointing to the importance of SST gradient change. Temporally varying aerosols in the IPCC simulations alter meridional SST gradient and land precipitation substantially. Anthropogenic aerosol direct solar forcing without its effects on SST is shown by the CCM3 to have weak but non-negligible influence on land precipitation.
Trends in the temporal distribution of park use
Robert E. Manning; Paula L. Cormier
1980-01-01
The purpose of this paper is to examine trends in the temporal distribution of park use. Plots of daily attendance data trace changes in temporal use distributions over time. A use concentration index quantifies and reduces to a single numerical indicator the degree of unevenness of recreation attendance data. The percent of total annual use accounted for by selected...
Temporal trends in human vulnerability to excessive heat
NASA Astrophysics Data System (ADS)
Sheridan, Scott C.; Allen, Michael J.
2018-04-01
Over recent decades, studies have examined various morbidity and mortality outcomes associated with heat exposure. This review explores the collective knowledge of the temporal trends of heat on human health, with regard to the hypothesis that humans are less vulnerable to heat events presently than in the past. Using Web of Science and Scopus, the authors identified all peer-reviewed articles that contained keywords on human impact (e.g. mortality, morbidity) and meteorological component (e.g. heat, heatwave). After sorting, a total of 71 articles, both case studies and epidemiological studies, contained explicit assessments of temporal trends in human vulnerability, and thus were used in this review. Most of the studies utilized mortality data, focused on the developed world, and showed a general decrease in heat sensitivity. Factors such as the implementation of a heat warning system, increased awareness, and improved quality of life were cited as contributing factors that led to the decreased impact of heat. Despite the overall recent decreases in heat vulnerability, spatial variability was shown, and differences with respect to health outcomes were also discussed. Several papers noted increases in heat’s impact on human health, particularly when unprecedented conditions occurred. Further, many populations, from outdoor workers to rural residents, in addition to the populations in much of the developing world, have been significantly underrepresented in research to date, and temporal changes in their vulnerability should be assessed in future studies. Moreover, continued monitoring and improvement of heat intervention is needed; with projected changes in the frequency, duration, and intensity of heat events combined with shifts in demographics, heat will remain a major public health issue moving forward.
Levinton, Jeffrey S; Pochron, Sharon T
2008-08-01
We analyzed a New York (USA) state database of mercury concentrations in muscle tissue for five species of fish (striped bass, yellow perch, largemouth bass, smallmouth bass, and carp) over a range of locations in the Hudson River (USA) between 1970 and 2004. We used regression models to discern temporal and geographic change in the fish while controlling for a positive correlation between mercury concentration and body mass. Mercury concentrations significantly increased in fish from New York Harbor waters to the mid-Hudson River. Striped bass and yellow perch showed a shallower increase in mercury concentration with river mile than did carp, largemouth bass, and smallmouth bass. Mercury concentrations declined over the 34-year period. These results imply that a geographically restricted source of mercury may be spread throughout the watershed by toxin-laden dispersing species. The increase of mercury toward the north may relate to a point source in the mid-Hudson River, or it may indicate mercury released from the Adirondack watershed. The decline of mercury over three decades corresponds to a reduction of various inputs in the region. The temporal and geographic pattern of mercury in sediments corresponds to the geographic trend of mercury in fish.
Sarkkola, Sakari; Koivusalo, Harri; Laurén, Ari; Kortelainen, Pirkko; Mattsson, Tuija; Palviainen, Marjo; Piirainen, Sirpa; Starr, Mike; Finér, Leena
2009-12-15
Temporal trends in stream water total organic carbon (TOC) concentration and export were studied in 8 forested headwater catchments situated in eastern Finland. The Seasonal Kendall test was conducted to identify the trends and a mixed model regression analysis was used to describe how catchment characteristics and hydrometeorological variables (e.g. precipitation, air and stream water temperatures, and atmospheric deposition) related to the variation in the concentration and export of stream water TOC. The 8 catchments varied in size from 29 to 494 ha and in the proportion of peatland they contained, from 8 to 70%. Runoff and TOC concentration were monitored for 15-29 years (1979-2006). Trends and variation in TOC levels were analysed from annual and seasonal time series. Mean annual TOC concentration increased significantly in seven of the eight catchments. The trends were the strongest in spring and most apparent during the last decade of the study period. The slopes of the trends were generally smaller than the variation in TOC concentration between years and seasons and between catchments. The annual TOC export showed no clear trends and values were largely determined by the temporal variability in runoff. Annual runoff showed a decreasing trend in two of the eight catchments. Mean annual air and stream water temperatures showed increasing trends, most clearly seen in the summer and autumn series. According to our modeling results, stream water temperature, precipitation and peatland percentage were the most important variables explaining annual and most seasonal TOC concentrations. The atmospheric deposition of SO4, NH4, and NO3 decreased significantly over the study period, but no significant link with TOC concentration was found. Precipitation was the main hydrometeorological driver of the TOC export. We concluded that stream water TOC concentrations and exports are mainly driven by catchment characteristics and hydrometeorological factors rather than trends in atmospheric acid deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xin; Ou, Xiaomin; Xu, Tingting
Purpose: To determine dosimetric risk factors for the occurrence of temporal lobe necrosis (TLN) among nasopharyngeal carcinoma (NPC) patients treated with intensity modulated radiation therapy (IMRT) and to investigate the impact of dose-volume histogram (DVH) parameters on the volume of TLN lesions (V-N). Methods and Materials: Forty-three NPC patients who had developed TLN following IMRT and 43 control subjects free of TLN were retrospectively assessed. DVH parameters included maximum dose (Dmax), minimum dose (Dmin), mean dose (Dmean), absolute volumes receiving specific dose (Vds) from 20 to 76 Gy (V20-V76), and doses covering certain volumes (Dvs) from 0.25 to 6.0 cm{sup 3} (D0.25-D6.0).more » V-Ns were quantified with axial magnetic resonance images. Results: DVH parameters were ubiquitously higher in temporal lobes with necrosis than in healthy temporal lobes. Increased Vds and Dvs were significantly associated with higher risk of TLN occurrence (P<.05). In particular, Vds at a dose of ≥70 Gy were found with the highest odds ratios. A common increasing trend was detected between V-N and DVH parameters through trend tests (P for trend of <.05). Linear regression analysis showed that V45 had the strongest predictive power for V-N (adjusted R{sup 2} = 0.305, P<.0001). V45 of <15.1 cm{sup 3} was relatively safe as the dose constraint for preventing large TLN lesions with V-N of >5 cm{sup 3}. Conclusions: Dosimetric parameters are significantly associated with TLN occurrence and the extent of temporal lobe injury. To better manage TLN, it would be important to avoid both focal high dose and moderate dose delivered to a large area in TLs.« less
Austen, Emily J; Weis, Arthur E
2014-07-01
Adaptive explanations for variation in sex allocation centre on variation in resource status and variation in the mating environment. The latter can occur when dichogamy causes siring opportunity to vary across the flowering season. In this study, it is hypothesized that the widespread tendency towards declining fruit-set from first to last flowers on plants can similarly lead to a varying mating environment by causing a temporal shift in the quality (not quantity) of siring opportunities. A numerical model was developed to examine the effects of declining fruit-set on the expected male versus female reproductive success (functional gender) of first and last flowers on plants, and of early- and late-flowering plants. Within- and among-plant temporal variation in pollen production, ovule production and fruit-set in 70 Brassica rapa plants was then characterized to determine if trends in male and female investment mirror expected trends in functional gender. Under a wide range of model conditions, functional femaleness decreased sharply in the last flowers on plants, and increased from early- to late-flowering plants in the population. In B. rapa, pollen production decreased more rapidly than ovule production from first to last flowers, leading to a within-plant increase in phenotypic femaleness. Among plants, ovule production decreased from early- to late-flowering plants, causing a temporal decrease in phenotypic femaleness. The numerical model confirmed that declining fruit-set can drive temporal variation in functional gender, especially among plants. The discrepancy between observed trends in phenotypic gender in B. rapa and expected functional gender predicted by the numerical model does not rule out the possibility that male reproductive success decreases with later flowering onset. If so, plants may experience selection for early flowering through male fitness. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones
NASA Astrophysics Data System (ADS)
Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.
2016-12-01
The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest that the DTR changes are influenced by both, local and global factors working in tandem, since a warmed up ocean produces contradictory DTR trends in different climatic zones. It can be inferred from this study that the impact of a global change in a region will depend on the regional climate.
Wand, Handan; Knight, Vickie; Lu, Heng; McNulty, Anna
2017-12-21
Sexually transmitted infections (STIs) remain a significant public health problem worldwide. We aimed to describe the temporal trends and relative contributions of established risk factors to STIs among sexual health center attendees. This retrospective study included more than 90,000 individuals who attended a sexual health center in Sydney, Australia, during the period 1998-2013. Multivariable logistic regression models were used to identify the correlates of STI diagnoses for three groups: men who have sex with men (MSM), heterosexual men, and women separately. Trends in population attributable risk percentages (PAR%) were estimated to assess the relative contributions of the risk factors on STI diagnosis. STI diagnosis rates among sexual health clinic attendees increased by 75% from 16 to 28% among MSM and more than doubled among heterosexual men and women (7-15 and 5-12%, respectively). Inconsistent condom use, three or more sex partners, sex overseas, past STI diagnosis, and contact with an STI case collectively contributed 61, 74 and 55% of the STI diagnoses among MSM, heterosexual men and women, respectively. Increase in STI diagnosis associated with temporal trends in combined risk factors including condomless sex, multiple sex partners, past STI diagnosis, and contact with an STI case. Although the majority of the factors considered in this study have been significantly associated with STI positivity in all three groups, their overall population level contributions to the epidemic have changed substantially. Our results indicated significant disparities between the MSM and heterosexual men and women as well as sex-specific differences in terms of sexual behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Yuan-Kuen; Wang, Yi-Ming; Muglach, Karin
2014-06-01
We analyzed 27 solar wind (SW) intervals during the declining phase of cycle 23, whose source coronal holes (CHs) can be unambiguously identified and are associated with one of the polar CHs. We found that the SW ions have a temporal trend of decreasing ionization state, and such a trend is different between the slow and fast SW. The photospheric magnetic field, both inside and at the outside boundary of the CH, also exhibits a trend of decrease with time. However, EUV line emissions from different layers of the atmosphere exhibit different temporal trends. The coronal emission inside the CHmore » generally increases toward the CH boundary as the underlying field increases in strength and becomes less unipolar. In contrast, this relationship is not seen in the coronal emission averaged over the entire CH. For C and O SW ions that freeze-in at lower altitude, stronger correlation between their ionization states and field strength (both signed and unsigned) appears in the slow SW, while for Fe ions that freeze-in at higher altitude, stronger correlation appears in the fast SW. Such correlations are seen both inside the CH and at its boundary region. On the other hand, the coronal electron temperature correlates well with the SW ion composition only in the boundary region. Our analyses, although not able to determine the likely footpoint locations of the SW of different speeds, raise many outstanding questions for how the SW is heated and accelerated in response to the long-term evolution of the solar magnetic field.« less
Pre- and postnatal stress and asthma in children: Temporal- and sex-specific associations
Lee, Alison; Chiu, Yueh-Hsiu Mathilda; Rosa, Maria José; Jara, Calvin; Wright, Robert O.; Coull, Brent A.; Wright, Rosalind J.
2016-01-01
BACKGROUND Temporal- and sex-specific effects of perinatal stress have not been examined for childhood asthma. OBJECTIVES We examined associations between pre- and/or postnatal stress and children's asthma (n=765) and effect modification by sex in a prospective cohort study. METHODS Maternal negative life events (NLEs) were ascertained prenatally and postpartum. NLEs scores were categorized as 0, 1-2, 3-4, or ≥5 to assess exposure-response relationships. We examined effects of pre- and postnatal stress on children's asthma by age 6 years modeling each as independent predictors; mutually adjusting for prenatal and postnatal stress; and finally considering interactions between pre- and postnatal stress. Effect modification by sex was examined in stratified analyses and by fitting interaction terms. RESULTS When considering stress in each period independently, among boys a dose-response relationship was evident for each level increase on the ordinal scale prenatally (OR=1.38, 95% CI 1.06, 1.79; p-for-trend=0.03) and postnatally (OR=1.53, 95% CI 1.16, 2.01; p-for-trend=0.001); among girls only the postnatal trend was significant (OR=1.60, 95% CI 1.14, 2.22; p-for-trend=0.005). Higher stress in both the pre- and postnatal periods was associated with increased odds of being diagnosed with asthma in girls [OR=1.37, 95% CI 0.98, 1.91 (pinteraction=0.07)] but not boys [OR=1.08, 95% CI 0.82, 1.42 (pinteraction=0.61)]. CONCLUSIONS While boys were more vulnerable to stress during the prenatal period, girls were more impacted by postnatal stress and cumulative stress across both periods in relation to asthma. Understanding sex and temporal differences in response to early life stress may provide unique insight into asthma etiology and natural history. PMID:26953156
Evaluation of non-stationarity of floods in the Northeastern and Upper Midwest United States
NASA Astrophysics Data System (ADS)
Dhakal, N.; Palmer, R. N.
2017-12-01
Climate change is likely to impact precipitation as well as snow accumulation and melt in the Northeastern and Upper Midwest Unites States, ultimately affecting the quantity and seasonal distribution of streamflow. Such information is crucial for flood protection polices for example for regional flood frequency analysis. The objective of this study is to analyze seasonality and magnitude of long-term daily annual maximum streamflow (AMF) records and its changes for 158 sites in Northeastern and Upper Midwest Unites States. Temporal trends were analyzed based on two 30-year blocks (1951-1980 and 1981-2010) of AMF. Seasonality is assessed based on nonparametric directional/circular statistical method that allows for an adaptive estimation of seasonal density. The results for temporal change in seasonality showed mixed pattern/trend across the stations. While for majority of the stations, the distribution of AMF timing is strongly unimodal (concentrated around Spring season) for the earlier time period, the strength in the modes have gotten weaker during the recent time period for a number of stations along the coastal states indicating the emergence of multiple modes and change in seasonality therein. Assessment of the temporal change in magnitude of AMF based on the Mann-Kendall nonparametric test shows that majority of the stations do not show significant increasing or decreasing trend for either time period. It is also observed that comparatively more stations show increasing trends in magnitude based on AMF from earlier time period and most of these stations are coastal sites concentrated in the southeastern part of the region. Our study focused on both seasonality and magnitude of AMF has important implications for flood management and mitigation.
Loft, Mathias Dyrberg; Berg, Kasper Drimer; Kjaer, Andreas; Iversen, Peter; Ferrari, Michelle; Zhang, Chiyuan A; Brasso, Klaus; Brooks, James D; Røder, Martin Andreas
2017-09-06
To analyze how prostate-specific antigen (PSA) screening and practice patterns has affected trends in tumor characteristics in men undergoing radical prostatectomy (RP) in the United States and Denmark. Unlike in the United States, PSA screening has not been recommended in Denmark. We performed an observational register study using pre- and postoperative data on 2168 Danish patients from Rigshospitalet, Copenhagen, Denmark, and 2236 patients from Stanford University Hospital, Stanford, CA, who underwent RP between 1995 and 2013. Patients were stratified according to Cancer of the Prostate Risk Assessment-Postsurgical (CAPRA-S) risk groups and D'Amico risk classification and were clustered into 4 time periods (1995-1999, 2000-2004, 2005-2009, and 2010-2013). Temporal trends in the proportions of patients of a given variable at the 2 institutions were evaluated with Cochran-Armitage test for trends and chi-square testing. A total of 4404 patients were included. Temporal changes in preoperative PSA, age, grade, and stage was found in both cohorts. Median preoperative PSA declined in both cohorts, while median age increased, with the Danish cohort showing the greatest changes in both PSA and age. In both cohorts, there was a trend for higher-risk preoperative features before RP over time. In 2010-2013, 27.7% and 21.8% of the patients were in the D'Amico high-risk group at Copenhagen and Stanford, respectively. Despite recommendation against PSA screening in Denmark, Danish men undergoing RP at Rigshospitalet to a considerable extent now resemble American men undergoing RP at Stanford. At both sites, there is continued trend to reduce the number of men undergoing RP for low-risk prostate cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Study of temporal trends in mercury concentrations in the primary flight feathers of Strix aluco.
Varela, Z; García-Seoane, R; Fernández, J A; Carballeira, A; Aboal, J R
2016-08-01
Temporal trends in Hg concentrations were determined in the primary flight feathers of 146 specimens of Strix aluco which had died in various Wildlife Recovery Centres in Galicia (NW Spain) between 1997 and 2014. The aim of the study was to determine whether standardization of a primary flight feather (or feathers) in this species is essential for identifying temporal trends in Hg concentrations. For this purpose, we had to first standardize the feather(s) analyzed to enable comparison of the levels of Hg detected in different feathers. The results show a high degree of both inter and intra-individual variability but despite that, it was possible to identify P5 as the most representative feather taking into account the amount of metal excreted in each feather and the intra-individual variability: its median was 133ng, which represents 15% (from 7% to 15%) of the total Hg present in all the primary feathers. However, this "standard feather" did not reveal any temporal trend in Hg concentrations for the study period. This lack of trend was found irrespective of the feather considered and it is expected that detection of any existing trend would also not depend on the feather considered. We conclude that use of any particular feather is not essential for identifying temporal trends in Hg concentrations, because the pattern will be identified regardless of the feather selected. Copyright © 2016 Elsevier Inc. All rights reserved.
SOMA: A Proposed Framework for Trend Mining in Large UK Diabetic Retinopathy Temporal Databases
NASA Astrophysics Data System (ADS)
Somaraki, Vassiliki; Harding, Simon; Broadbent, Deborah; Coenen, Frans
In this paper, we present SOMA, a new trend mining framework; and Aretaeus, the associated trend mining algorithm. The proposed framework is able to detect different kinds of trends within longitudinal datasets. The prototype trends are defined mathematically so that they can be mapped onto the temporal patterns. Trends are defined and generated in terms of the frequency of occurrence of pattern changes over time. To evaluate the proposed framework the process was applied to a large collection of medical records, forming part of the diabetic retinopathy screening programme at the Royal Liverpool University Hospital.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Rashid; Zhao, Fang; de Jong, Rogier
The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. We used a combination of the most recent NDVI and model–based NPP estimates (from five models of the TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 80% and 67% of the global land area showed positive NPP and NDVI values, respectively, for this period. The global NPP was estimated to be about 63 Pg C y -1, with an increase of 0.214 Pgmore » C y -1 y -1. Similarly, the global mean NDVI was estimated to be 0.33, with an increasing trend of 0.00041 y-1. The spatial patterns of NPP and NDVI demonstrated substantial variability, especially at the regional level, for most part of the globe. However, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except for few years (e.g. 1990 and 1995-98). Generally, the Northern Hemisphere showed stronger NDVI and NPP increasing trends over time compared to the Southern Hemisphere; however, NDVI showed larger trends in Temperate regions while NPP showed larger trends in Boreal regions. Among the five models, the maximum and minimum NPP were produced by JULES (72.4 Pg C y -1) and LPJ (53.72 Pg C y -1) models, respectively. At latitudinal level, the NDVI and NPP ranges were ~0.035 y -1 to ~-0.016 y -1 and ~0.10 Pg C y -1 y -1 to ~-0.047 Pg C y -1 y -1, respectively. Overall, the results of this study suggest that the modeled NPP generally correspond to the NDVI trends in the temporal dimension. Lastly, the significant variability in spatial patterns of NPP and NDVI trends points to a need for research to understand the causes of these discrepancies between molded and observed ecosystem dynamics, and the carbon cycle.« less
Spatio-temporal patterns of gun violence in Syracuse, New York 2009-2015.
Larsen, David A; Lane, Sandra; Jennings-Bey, Timothy; Haygood-El, Arnett; Brundage, Kim; Rubinstein, Robert A
2017-01-01
Gun violence in the United States of America is a large public health problem that disproportionately affects urban areas. The epidemiology of gun violence reflects various aspects of an infectious disease including spatial and temporal clustering. We examined the spatial and temporal trends of gun violence in Syracuse, New York, a city of 145,000. We used a spatial scan statistic to reveal spatio-temporal clusters of gunshots investigated and corroborated by Syracuse City Police Department for the years 2009-2015. We also examined predictors of areas with increased gun violence using a multi-level zero-inflated Poisson regression with data from the 2010 census. Two space-time clusters of gun violence were revealed in the city. Higher rates of segregation, poverty and the summer months were all associated with increased risk of gun violence. Previous gunshots in the area were associated with a 26.8% increase in the risk of gun violence. Gun violence in Syracuse, NY is both spatially and temporally stable, with some neighborhoods of the city greatly afflicted.
Spatio-temporal patterns of gun violence in Syracuse, New York 2009-2015
Lane, Sandra; Jennings-Bey, Timothy; Haygood-El, Arnett; Brundage, Kim; Rubinstein, Robert A.
2017-01-01
Gun violence in the United States of America is a large public health problem that disproportionately affects urban areas. The epidemiology of gun violence reflects various aspects of an infectious disease including spatial and temporal clustering. We examined the spatial and temporal trends of gun violence in Syracuse, New York, a city of 145,000. We used a spatial scan statistic to reveal spatio-temporal clusters of gunshots investigated and corroborated by Syracuse City Police Department for the years 2009–2015. We also examined predictors of areas with increased gun violence using a multi-level zero-inflated Poisson regression with data from the 2010 census. Two space-time clusters of gun violence were revealed in the city. Higher rates of segregation, poverty and the summer months were all associated with increased risk of gun violence. Previous gunshots in the area were associated with a 26.8% increase in the risk of gun violence. Gun violence in Syracuse, NY is both spatially and temporally stable, with some neighborhoods of the city greatly afflicted. PMID:28319125
Temporal dynamics of emergency department and hospital admissions of pediatric asthmatics
NASA Technical Reports Server (NTRS)
Kimes, Daniel; Levine, Elissa; Timmins, Sidey; Weiss, Sheila R.; Bollinger, Mary E.; Blaisdell, Carol
2004-01-01
Asthma is a chronic disease that can result in exacerbations leading to urgent care in emergency departments (EDs) and hospitals. We examined seasonal and temporal trends in pediatric asthma ED (1997-1999) and hospital (1986-1999) admission data so as to identify periods of increased risk of urgent care by age group, gender, and race. All pediatric ED and hospital admission data for Maryland residents occurring within the state of Maryland were evaluated. Distinct peaks in pediatric ED and hospital asthma admissions occurred each year during the winter-spring and autumn seasons. Although the number and timing of these peaks were consistent across age and racial groups, the magnitude of the peaks differed by age and race. The same number, timing, and relative magnitude of the major peaks in asthma admissions occurred statewide, implying that the variables affecting these seasonal patterns of acute asthma exacerbations occur statewide. Similar gross seasonal trends are observed worldwide. Although several environmental, infectious, and psychosocial factors have been linked with increases in asthma exacerbations among children, thus far they have not explained these seasonal patterns of admissions. The striking temporal patterns of pediatric asthma admissions within Maryland, as described here, provide valuable information in the search for causes.
Nightlights along the Eastern Alpine river network in Austria and Italy as a proxy of human presence
NASA Astrophysics Data System (ADS)
Ceola, Serena; Montanari, Alberto; Parajka, Juraj; Viglione, Alberto; Bloeschl, Guenter
2016-04-01
Understanding the spatial and temporal distribution of human settlements and economic activities in relation to the geographical location of streams and rivers is of fundamental concern for several hydrologic issues such as flood risk and drought management, water pollution and exploitation, as well as stream ecological purposes. Indeed, the human presence close to streams and rivers is known to have consistently increased worldwide, therefore introducing dramatic anthropogenic and environmental changes. This research study analyses the spatial and temporal evolution of human settlements and associated economic activity, derived from nighttime lights, in the Eastern Alpine region. Nightlights, available at a 1 km spatial resolution and for a 22-year period, constitute an excellent data base, which allows to explore in details human signatures. In this experiment, nightlights are associated to five distinct distance-from-river classes, by using the CCM river network data base. From the temporal perspective, nightlights in correspondence of each distance-from-river class within each study region show an overall increasing trend, whereas the spatial trends differs among the study regions. More information about the analysis and project are available at: http://www.water-switch-on.eu/.
NASA Astrophysics Data System (ADS)
Martin-Hernandez, Natalia; Vicente-Serrano, Sergio; Azorin-Molina, Cesar; Begueria-Portugues, Santiago; Reig-Gracia, Fergus; Zabalza-Martínez, Javier
2017-04-01
We have analysed trends in the Normalized Difference Vegetation Index (NDVI) in the Iberian Peninsula and The Balearic Islands over the period 1981 - 2015 using a new high resolution data set from the entire available NOAA - AVHRR images (IBERIAN NDVI dataset). After a complete processing including geocoding, calibration, cloud removal, topographic correction and temporal filtering, we obtained bi-weekly time series. To assess the accuracy of the new IBERIAN NDVI time-series, we have compared temporal variability and trends of NDVI series with those results reported by GIMMS 3g and MODIS (MOD13A3) NDVI datasets. In general, the IBERIAN NDVI showed high reliability with these two products but showing higher spatial resolution than the GIMMS dataset and covering two more decades than the MODIS dataset. Using the IBERIAN NDVI dataset, we analysed NDVI trends by means of the non-parametric Mann-Kendall test and Theil-Sen slope estimator. In average, vegetation trends in the study area show an increase over the last decades. However, there are local spatial differences: the main increase has been recorded in humid regions of the north of the Iberian Peninsula. The statistical techniques allow finding abrupt and gradual changes in different land cover types during the analysed period. These changes are related with human activity due to land transformations (from dry to irrigated land), land abandonment and forest recovery.
NASA Astrophysics Data System (ADS)
Boerner, Audrey R.; Gates, John B.
2015-05-01
Impacts of environmental changes on groundwater carbon cycling are poorly understood despite their potentially high relevance to terrestrial carbon budgets. This study focuses on streambed groundwater chemistry during a period of drought-induced river drying and consequent disconnection between surface water and groundwater. Shallow groundwater underlying vegetated and bare portions of a braided streambed in the Platte River (Nebraska, USA) was monitored during drought conditions in summer 2012. Water temperature and dissolved inorganic carbon (dominated by HCO3-) in streambed groundwater were correlated over a 3 month period coinciding with a decline in river discharge from 35 to 0 m3 s-1. Physical, chemical, and isotopic parameters were monitored to investigate mechanisms affecting the HCO3- trend. Equilibrium thermodynamic modeling suggests that an increase of pCO2 near the water table, coupled with carbonate mineral weathering, can explain the trend. Stronger temporal trends in Ca2+ and Mg2+ compared to Cl- are consistent with carbonate mineral reequilibria rather than evaporative concentration as the primary mechanism of the increased HCO3-. Stable isotope trends are not apparent, providing further evidence of thermodynamic controls rather than evaporation from the water table. A combination of increased temperature and O2 in the dewatered portion of the streambed is the most likely driver of increased pCO2 near the water table. Results of this study highlight potential linkages between surface environmental changes and groundwater chemistry and underscore the need for high-resolution chemical monitoring of alluvial groundwater in order to identify environmental change impacts.
NASA Astrophysics Data System (ADS)
Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.
2012-06-01
Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.
NASA Astrophysics Data System (ADS)
Xu, Y.; Seshadri, P.; Amin, V.; Heim, N. A.; Payne, J.
2013-12-01
Over time, organisms have adapted to changing environments by evolving to be larger or smaller. Scientists have described body-size trends using two generalized theories. Bergmann's rule states that body size is inversely related to temperature, and Cope's rule establishes an increase over time. Cope's rule has been hypothesized as a temporal manifestation of Bergmann's rule, as the temperature of the Earth has consistently decreased over time and mean body size has increased. However, during times of constant temperature increase, Bergmann's rule and Cope's rule predict opposite effects on body size. Our goal was to clarify this relationship using both accessible proxies of historic temperature - atmospheric CO2 levels and paleo-latitude. We measured ostracod lengths throughout the Paleozoic and Mesozoic eras (using the Catalogue of Ostracoda) and utilized ostracod latitudinal information from the Paleobiology Database. By closely studying body-size trends during four time periods of constant CO2 increase across spectrums of time and latitude, we were able to compare the effects of Cope's and Bergmann's rule. The correlation, p-values, and slopes of each of our graphs showed that there is no clear relationship between body size and each of these rules in times of temperature increase, both latitudinally and temporally. Therefore, both Cope's and Bergmann's rule act on marine ostracods and no rule is dominant, though our results more strongly disprove the latitudinal variation in ostracod size.
Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...
2015-10-09
The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less
Temporal and spatial variations of rainfall erosivity in Southern Taiwan
NASA Astrophysics Data System (ADS)
Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang
2014-05-01
Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.
Spatial and Temporal Variability and Trends in 2001-2016 Global Fire Activity
NASA Astrophysics Data System (ADS)
Earl, Nick; Simmonds, Ian
2018-03-01
Fire regimes across the globe have great spatial and temporal variability, and these are influence by many factors including anthropogenic management, climate, and vegetation types. Here we utilize the satellite-based "active fire" product, from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, to statistically analyze variability and trends in fire activity from the global to regional scales. We split up the regions by economic development, region/geographical land use, clusters of fire-abundant areas, or by religious/cultural influence. Weekly cycle tests are conducted to highlight and quantify part of the anthropogenic influence on fire regime across the world. We find that there is a strong statistically significant decline in 2001-2016 active fires globally linked to an increase in net primary productivity observed in northern Africa, along with global agricultural expansion and intensification, which generally reduces fire activity. There are high levels of variability, however. The large-scale regions exhibit either little change or decreasing in fire activity except for strong increasing trends in India and China, where rapid population increase is occurring, leading to agricultural intensification and increased crop residue burning. Variability in Canada has been linked to a warming global climate leading to a longer growing season and higher fuel loads. Areas with a strong weekly cycle give a good indication of where fire management is being applied most extensively, for example, the United States, where few areas retain a natural fire regime.
NASA Astrophysics Data System (ADS)
Xu, C. Y.; Gong, L. B.; Tong, J.; Chen, D. L.
2006-07-01
This study deals with temporal trends in the Penman-Monteith reference evapotranspiration estimated from standard meteorological observations, observed pan evaporation, and four related meteorological variables during 1970-2000 in the Yangtze River catchment. Relative contributions of the four meteorological variables to changes in the reference evapotranspiration are quantified. The results show that both the reference evapotranspiration and the pan evaporation have significant. decreasing trends in the upper, the middle as well as in the whole Changjiang (Yangtze) River catchment at the 5% significance level, while the air temperature shows a significant increasing trend. The decreasing trend detected in the reference evapotranspiration can be attributed to the significant decreasing trends in the net radiation and the wind speed.
NASA Astrophysics Data System (ADS)
Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez Hidalgo, Jose Carlos; Brunetti, Michele
2017-04-01
In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of spring and its corresponding months (March, April, May) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal Tmax shows that global trend was positive and significant until the mid 80's with higher values than 75% from between 1954-2010 to 1979-2010, being reduced after to the north region. So, from 1985-2010 no significant trend have been detected. Monthly analyses show differences. March trend is not significant (<20% of area) since 1974-2010, while significant trend in April and May varies between 1961-2010/1979-2010 and 1965-2010/1980-2010 respectively, clearly located in northern midland and Mediterranean coastland. • Spring Tmin trend analyses is significantly (>20%) during all temporal windows, notwithstanding NW do not show global significant trend, and in the most recent temporal windows only affect significantly SE. Monthly analyses also differ. Not significant trend is detected in March from 1979-2010, and from 1985-2010 in May, being April the month in any temporal windows with more than 20% of land affected by significant trend. • Spatial differences are detected between windows (South-North in March, East-West in April-May. We can conclude Tmax trend varies accordingly temporal windows dramatically in spring and no significance has been detected in the recent decades. Northern areas and Mediterranean coastland seems to be the most affected. Monthy Tmax trend spatial analyses confirm the heterogeneity of diurnal temperatures; different spatial gradients in windows have been detected between months. Seasonal Tmin show a more global temporal pattern. Spatial gradients of significance between months have been detected, in some sense contraries to the observed in Tmax.
Chen, Bei-Bei; Gong, Hui-Li; Li, Xiao-Juan; Lei, Kun-Chao; Duan, Guang-Yao; Xie, Jin-Rong
2014-04-01
Long-term over-exploitation of underground resources, and static and dynamic load increase year by year influence the occurrence and development of regional land subsidence to a certain extent. Choosing 29 scenes Envisat ASAR images covering plain area of Beijing, China, the present paper used the multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, and obtained monitoring information of regional land subsidence. Under different situation of space development and utilization, the authors chose five typical settlement areas; With classified information of land-use, multi-spectral remote sensing image, and geological data, and adopting GIS spatial analysis methods, the authors analyzed the time series evolution characteristics of uneven settlement. The comprehensive analysis results suggests that the complex situations of space development and utilization affect the trend of uneven settlement; the easier the situation of space development and utilization, the smaller the settlement gradient, and the less the uneven settlement trend.
NASA Astrophysics Data System (ADS)
Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez HIgaldo, Jose Carlos; Brunetti, MIchele
2017-04-01
In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of autumn and its corresponding months (September, October, November) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal trend analyses of Autumn Tmax show no significance at any temporal Windows. Trends of Tmin are significant in more than 20% of land until 1974-2010. The area affected in Tmin progressively increase from SE to NW. • Monthly trend analyses not detect any significance in Tmax, while in Tmin, particularly in October, an extended area is detected in temporal windows in between 1951-2010 to 1978-2010, but clearly concentrated in the starting years of initial 70´s. Spatial pattern of areas affected significantly seems to be from SE to NW for October, and South-North in September. To conclude autumn trend analyses of Tmax and Tmin in Spanish mainland only detect significant trend in Tmin, mostly located in the 70´s and extending from SE to central areas of study area.
Design tradeoffs for trend assessment in aquatic biological monitoring programs
Gurtz, Martin E.; Van Sickle, John; Carlisle, Daren M.; Paulsen, Steven G.
2013-01-01
Assessments of long-term (multiyear) temporal trends in biological monitoring programs are generally undertaken without an adequate understanding of the temporal variability of biological communities. When the sources and levels of variability are unknown, managers cannot make informed choices in sampling design to achieve monitoring goals in a cost-effective manner. We evaluated different trend sampling designs by estimating components of both short- and long-term variability in biological indicators of water quality in streams. Invertebrate samples were collected from 32 sites—9 urban, 6 agricultural, and 17 relatively undisturbed (reference) streams—distributed throughout the United States. Between 5 and 12 yearly samples were collected at each site during the period 1993–2008, plus 2 samples within a 10-week index period during either 2007 or 2008. These data allowed calculation of four sources of variance for invertebrate indicators: among sites, among years within sites, interaction among sites and years (site-specific annual variation), and among samples collected within an index period at a site (residual). When estimates of these variance components are known, changes to sampling design can be made to improve trend detection. Design modifications that result in the ability to detect the smallest trend with the fewest samples are, from most to least effective: (1) increasing the number of years in the sampling period (duration of the monitoring program), (2) decreasing the interval between samples, and (3) increasing the number of repeat-visit samples per year (within an index period). This order of improvement in trend detection, which achieves the greatest gain for the fewest samples, is the same whether trends are assessed at an individual site or an average trend of multiple sites. In multiple-site surveys, increasing the number of sites has an effect similar to that of decreasing the sampling interval; the benefit of adding sites is greater when a new set of different sites is selected for each sampling effort than when the same sites are sampled each time. Understanding variance components of the ecological attributes of interest can lead to more cost-effective monitoring designs to detect trends.
Smith, D.R.; Michels, S.F.
2006-01-01
As in John Godfrey Saxe's poem about six blind men and an elephant, conclusions drawn from a monitoring program depend critically on where and when observations are made. We examined results from the Delaware Bay horseshoe crab (Limulus polyphemus) spawning survey to evaluate the effect of spatial and temporal coverage on conclusions about spawning activity. Declines due to previously unregulated harvest triggered an increase in monitoring. Although we detected no apparent trend in bay-wide spawning activity for 1999-2005, conclusions would have differed depending on where and when observations were made. For example, spawning activity in May during the shorebird stopover was a poor predictor of spawning activity over the whole season. Observations made only during peak spawning incorrectly suggested that spawning activity increased during 2001-2005. Trends at one place in the bay were not indicative of trends for the whole bay. Many natural resource issues begin like the blind men and the elephant with dispute partially caused by an incomplete picture of the resource. As sufficient time and funds are directed to gathering necessary data using effective sampling designs, a more complete picture can emerge.
A power analysis for multivariate tests of temporal trend in species composition.
Irvine, Kathryn M; Dinger, Eric C; Sarr, Daniel
2011-10-01
Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.
Extent of Night Warming Differentiates the Temporal Trend of Tropical Greenness over 2001-2015
NASA Astrophysics Data System (ADS)
Yu, M.; Gao, Q.; Gao, C.; Wang, C.
2016-12-01
Tropical forests have essential functions in global C dynamic but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and associated mechanisms are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated trend of greenness in the Greater Antilles Caribbean during 2000 - 2015 and further analyzed the trend of vegetation patches without LCLUC to separate the climate impacts. We hypothesized that rainfall decrease or/and warming would reduce EVI in this tropical region. All five countries showed significantly decreasing EVI except Cuba of which EVI was increasing partly due to strong reforestation. Haiti has the steepest decreasing EVI due to its deforestation for charcoals. EVI trend varied greatly even for patches without LCLUC, tending to decrease in the windward but increase in the leeward of the island Puerto Rico. Contrary to our intuition, the rainfall was mostly increasing. However the rising night temperature significantly and negatively correlates with the spatial pattern of EVI trends. Although the cooled daytime and increased rainfall might enhance EVI, night warming dominated the climate impacts and differentiated the EVI trend.
What Factors Control the Trend of Increasing AAOD Over the United States in the Last Decade?
NASA Technical Reports Server (NTRS)
Zhang, Li; Henze, Daven K.; Grell, Georg A.; Torres, Omar; Jethva, Hiren; Lamsal, Lok N.
2017-01-01
We examine the spatial and temporal trends of absorbing aerosol optical depth (AAOD) in the last decade over the United States (U.S.) observed by the Ozone Monitoring Instrument (OMI). Monthly average OMI AAOD has increased over broad areas of the central U.S. from 2005 to 2015, by up to a factor of 4 in some grid cells (60 km resolution). The AAOD increases in all seasons, although the percentage increases are larger in summer (June-July-August) than in winter (December-January-February) by a factor of 3. Despite enhancements in AAOD, OMI AOD exhibits insignificant trend over most of the U.S. except parts of the central and western U.S., the latter which may partly be due to decreases in precipitation. Trends in AAOD contrast with declining trends in surface concentrations of black carbon (BC) aerosol. Interannual variability of local biomass burning emissions of BC may contribute to the positive trend in AAOD over the western U.S. Changes in both dust aerosol measured at the surface (in terms of concentration and size) and dust AAOD indicate distinct enhancements, especially over the central U.S. by 50-100%, which appears to be one of the major factors that impacts positive trends in AAOD.
Spatial and Temporal Patterns In Ecohydrological Separation
NASA Astrophysics Data System (ADS)
Jarvis, S. K.; Barnard, H. R.; Singha, K.; Harmon, R. E.; Szutu, D.
2017-12-01
The model of ecohydrological separation suggests that trees source water from a different subsurface pool than what is contributing to stream flow during dry periods, however diel fluctuations in stream flow and transpiration are tightly coupled. To better understand the mechanism of this coupling, this study examines spatiotemporal patterns in water isotopic relationships between tree, soil, and stream water. Preliminary analysis of data collected in 2015 show a trend in δ18O enrichment in xylem water, suggesting an increased reliance on enriched soil water not flowing to the stream as the growing season progresses, while xylem samples from 2016, a particularly wet year, do not have this trend. Variations in these temporal trends are explored with regard to distance from stream, aspect of hillslope, position in the watershed, size of the tree, and soil depth. Additionally, a near-stream site is examined at high resolution using water isotope data, sap flow, and electrical resistivity surveying to examine soil moisture and water use patterns across the riparian-hillslope transition.
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Elias, E.; Eischens, A.; Shilts, M.; Rango, A.; Steele, R.
2017-12-01
The collaborative synthesis of existing datasets, such as long-term climate observations and farmers' crop insurance payments, can increase their overall collective value and societal application. The U.S. Department of Agriculture (USDA) Climate Hubs were created to develop and deliver science-based information and technologies to agricultural and natural resource managers to enable climate-informed decision-making. As part of this mission, Hubs work across USDA and other climate service agencies to synthesize existing information. The USDA Risk Management Agency (RMA) is responsible for overseeing the Federal crop insurance program which currently insures over $100 billion in crops annually. RMA hosts data describing the cause for loss (e.g. drought, wind, irrigation failure) and indemnity amount (i.e. total cost of loss) at multiple spatio-temporal scales (i.e. state, county, year, month). The objective of this paper is to link climate information with indemnities, and their associated cause of loss, to assess climate risk on agricultural production and provide regionally-relevant information to stakeholders to promote resilient working landscapes. We performed a retrospective trend analysis at the state-level for the American Southwest (SW). First, we assessed indemnity-only trends by cause of loss and crop type at varying temporal scales. Historical monthly weather data (i.e. precipitation and temperature) and long-term drought indices (e.g. Palmer Drought Severity Index) were then linked with indemnities and grouped by different causes of loss. Climatological ranks were used to integrate historical comparative intensity of acute and long-term climatic events. Heat and drought as causes of loss were most correlated with temperature and drought indicators, respectively. Across all SW states increasing indemnities were correlated with warmer conditions. Multiple statistical trend analyses suggest a framework is necessary to appropriately measure the biophysical signals in crop insurance trends taking into account spatio-temporal characteristics. Based on stakeholder feedback, we also developed a web-based information browser to visualize and assess indemnity trends providing useful and usable knowledge to support informed land management decisions and ecosystem resilience.
Tripathi, Byomesh; Arora, Shilpkumar; Kumar, Varun; Abdelrahman, Mohamed; Lahewala, Sopan; Dave, Mihir; Shah, Mahek; Tan, Bryan; Savani, Sejal; Badheka, Apurva; Gopalan, Radha; Shantha, Ghanshyam Palamaner Subash; Viles-Gonzalez, Juan; Deshmukh, Abhishek
2018-05-01
Catheter ablation is widely accepted intervention for atrial fibrillation (AF) refractory to antiarrhythmic drugs, but limited data are available regarding contemporary trends in major complications and in-hospital mortality due to the procedure. This study was aimed at exploring the temporal trends of in-hospital mortality, major complications, and impact of hospital volume on frequency of AF ablation-related outcomes. The Nationwide Inpatient Sample database was utilized to identify the AF patients treated with catheter ablation. In-hospital death and common complications including vascular access complications, cardiac perforation and/or tamponade, pneumothorax, stroke, and transient ischemic attack, were identified using International Classification of Disease (ICD-9-CM) codes. In-hospital mortality rate of 0.15% and overall complication rate of 5.46% were noted among AF ablation recipients (n = 50,969). Significant increase in complications during study period (relative increase 56.37%, P-trend < 0.001) was observed. Cardiac (2.65%), vascular (1.33%), and neurological (1.05%) complications were most common. On multivariate analysis (odds ratio [OR]; 95% confidence interval [95% CI]; P value), significant predictors of complications were female sex (OR = 1.40; CI = 1.17-1.68; P value < 0.001), high burden of comorbidity as indicated by Charlson Comorbidity Index ≥2 (OR = 2.84; CI = 2.29-3.52; P value < 0.001), and low hospital volume (< 50 procedures). Our study noted a decline in AF ablation-related hospitalizations and complications associated with the procedure. These findings largely reflect shifting trends of outpatient performance of the procedure and increasing safety profile due to improved institutional expertise and catheter techniques. © 2018 Wiley Periodicals, Inc.
Schleicher, Rosemary L; Sternberg, Maya R; Lacher, David A; Sempos, Christopher T; Looker, Anne C; Durazo-Arvizu, Ramon A; Yetley, Elizabeth A; Chaudhary-Webb, Madhulika; Maw, Khin L; Pfeiffer, Christine M; Johnson, Clifford L
2016-08-01
Temporal trends in the US population's vitamin D status have been uncertain because of nonstandardized serum 25-hydroxyvitamin D [25(OH)D] measurements. To accurately assess vitamin D status trends among those aged ≥12 y, we used data from the cross-sectional NHANESs. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for measuring 25(OH)D (sum of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3), calibrated to standard reference materials, was used to predict LC-MS/MS-equivalent concentrations from radioimmunoassay data (1988-2006 surveys; n = 38,700) and to measure LC-MS/MS concentrations (2007-2010 surveys; n = 12,446). Weighted arithmetic means and the prevalence of 25(OH)D above or below cutoff concentrations were calculated to evaluate long-term trends. Overall, mean predicted 25(OH)D showed no time trend from 1988 to 2006, but during 2007-2010 the mean measured 25(OH)D was 5-6 nmol/L higher. Those groups who showed the largest 25(OH)D increases (7-11 nmol/L) were older, female, non-Hispanic white, and vitamin D supplement users. During 1988-2010, the proportions of persons with 25(OH)D <40 nmol/L were 14-18% (overall), 46-60% (non-Hispanic blacks), 21-28% (Mexican Americans), and 6-10% (non-Hispanic whites). An accurate method for measuring 25(OH)D showed stable mean concentrations in the US population (1988-2006) and recent modest increases (2007-2010). Although it is unclear to what extent supplement usage compared with different laboratory methods explain the increases in 25(OH)D, the use of higher vitamin D supplement dosages coincided with the increase. Marked race-ethnic differences in 25(OH)D concentrations were apparent. These data provide the first standardized information about temporal trends in the vitamin D status of the US population. © 2016 American Society for Nutrition.
Long-term trends in Anopheles gambiae insecticide resistance in Côte d'Ivoire.
Edi, Constant A V; Koudou, Benjamin G; Bellai, Louise; Adja, Akre M; Chouaibou, Mouhamadou; Bonfoh, Bassirou; Barry, Sarah J E; Johnson, Paul C D; Müller, Pie; Dongus, Stefan; N'Goran, Eliezer K; Ranson, Hilary; Weetman, David
2014-11-28
Malaria control is heavily dependent on the use of insecticides that target adult mosquito vectors via insecticide treated nets (ITNs) or indoor residual spraying (IRS). Four classes of insecticide are approved for IRS but only pyrethroids are available for ITNs. The rapid rise in insecticide resistance in African malaria vectors has raised alarms about the sustainability of existing malaria control activities. This problem might be particularly acute in Côte d'Ivoire where resistance to all four insecticide classes has recently been recorded. Here we investigate temporal trends in insecticide resistance across the ecological zones of Côte d'Ivoire to determine whether apparent pan-African patterns of increasing resistance are detectable and consistent across insecticides and areas. We combined data on insecticide resistance from a literature review, and bioassays conducted on field-caught Anopheles gambiae mosquitoes for the four WHO-approved insecticide classes for ITN/IRS. The data were then mapped using Geographical Information Systems (GIS) and the IR mapper tool to provide spatial and temporal distribution data on insecticide resistance in An. gambiae sensu lato from Côte d'Ivoire between 1993 and 2014. Bioassay mortality decreased over time for all insecticide classes, though with significant spatiotemporal variation, such that stronger declines were observed in the southern ecological zone for DDT and pyrethroids than in the central zone, but with an apparently opposite effect for the carbamate and organophosphate. Variation in relative abundance of the molecular forms, coupled with dramatic increase in kdr 1014F frequency in M forms (An. coluzzii) seems likely to be a contributory factor to these patterns. Although records of resistance across insecticide classes have become more common, the number of classes tested in studies has also increased, precluding a conclusion that multiple resistance has also increased. Our analyses attempted synthesis of 22 years of bioassay data from Côte d'Ivoire, and despite a number of caveats and potentially confounding variables, suggest significant but spatially-variable temporal trends in insecticide resistance. In the light of such spatio-temporal dynamics, regular, systematic and spatially-expanded monitoring is warranted to provide accurate information on insecticide resistance for control programme management.
NASA Astrophysics Data System (ADS)
Amin, Asad; Nasim, Wajid; Mubeen, Muhammad; Kazmi, Dildar Hussain; Lin, Zhaohui; Wahid, Abdul; Sultana, Syeda Refat; Gibbs, Jim; Fahad, Shah
2017-09-01
Unpredictable precipitation trends have largely influenced by climate change which prolonged droughts or floods in South Asia. Statistical analysis of monthly, seasonal, and annual precipitation trend carried out for different temporal (1996-2015 and 2041-2060) and spatial scale (39 meteorological stations) in Pakistan. Statistical downscaling model (SimCLIM) was used for future precipitation projection (2041-2060) and analyzed by statistical approach. Ensemble approach combined with representative concentration pathways (RCPs) at medium level used for future projections. The magnitude and slop of trends were derived by applying Mann-Kendal and Sen's slop statistical approaches. Geo-statistical application used to generate precipitation trend maps. Comparison of base and projected precipitation by statistical analysis represented by maps and graphical visualization which facilitate to detect trends. Results of this study projects that precipitation trend was increasing more than 70% of weather stations for February, March, April, August, and September represented as base years. Precipitation trend was decreased in February to April but increase in July to October in projected years. Highest decreasing trend was reported in January for base years which was also decreased in projected years. Greater variation in precipitation trends for projected and base years was reported in February to April. Variations in projected precipitation trend for Punjab and Baluchistan highly accredited in March and April. Seasonal analysis shows large variation in winter, which shows increasing trend for more than 30% of weather stations and this increased trend approaches 40% for projected precipitation. High risk was reported in base year pre-monsoon season where 90% of weather station shows increasing trend but in projected years this trend decreased up to 33%. Finally, the annual precipitation trend has increased for more than 90% of meteorological stations in base (1996-2015) which has decreased for projected year (2041-2060) up to 76%. These result revealed that overall precipitation trend is decreasing in future year which may prolonged the drought in 14% of weather stations under study.
Miller, Matthew P.; Brasher, Anne M.D.; Keenen, Jonathan G.
2013-01-01
Biotic assemblages in aquatic ecosystems are excellent integrators and indicators of changing environmental conditions within a watershed. Therefore, temporal changes in abiotic environmental variables often can be inferred from temporal changes in biotic assemblages. Algae, macroinvertebrate, and fish assemblage data were collected from 91 sampling sites in 4 geographic regions (northeastern/north-central, southeastern, south-central, and western), collectively encompassing the continental United States, from 1993 to 2009 as part of the U.S. Geological Survey National Water-Quality Assessment Program. This report uses a multivariate approach to synthesize temporal trends in biotic assemblages and correlations with relevant abiotic parameters as a function of biotic assemblage, geographic region, and land use. Of the three groups of biota, algal assemblages had temporal trends at the greatest percentage of sites. Of the regions, a greater percentage of sites in the northeastern/north-central and western regions had temporal trends in biotic assemblages. In terms of land use, a greater percentage of watersheds draining agricultural, urban, and undeveloped areas had significant temporal changes in biota, as compared to watersheds with mixed use. Correlations between biotic assemblages and abiotic variables indicate that, in general, macroinvertebrate assemblages correlated with water quality and fish assemblages correlated with physical habitat. Taken together, results indicate that there are regional differences in how individual biotic assemblages (algae, macroinvertebrates, and fish) respond to different abiotic drivers of change.
NASA Astrophysics Data System (ADS)
Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao
2017-01-01
Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.
Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao
2017-01-01
Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000–2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend. PMID:28120949
Flexural subsidence and basement tectonics of the Cretaceous Western Interior basin, United States
NASA Astrophysics Data System (ADS)
Pang, Ming; Nummedal, Dag
1995-02-01
The flexural subsidence history recorded in Cenomanian to early Campanian (97 to 80 Ma) strata in the Cretaceous U.S. Western Interior basin was studied with two-dimensional flexural backstripping techniques. Results indicate that the flexural subsidence resulting from thrust loading was superimposed on epeirogenic subsidence in the foreland basin. The flexural component exhibits significant spatial and temporal variations along both the strike and dip relative to the Sevier thrust belt. The greatest cumulative subsidence occurred in southwestern Wyoming and northern Utah. Concurrent subsidence in northwestern Montana and southern Utah was insignificant. Temporal trends in subsidence also show a distinct regional pattern. From the Cenomanian to late Turonian (97 to 90 Ma), subsidence rates were high in Utah and much lower in Wyoming and Montana. In contrast, during the Coniacian and Santonian (90 to 85 Ma) subsidence accelerated rapidly in Wyoming, increased slightly in Montana, and decreased in Utah. We suggest that these spatially and temporally varying subsidence patterns reflect the interplay of several geodynamic factors, including: (1) temporal and spatial variation in emplacement of the thrust loads, (2) segmentation of the basement into adjacent blocks with different rheological properties, (3) reactivation of basement fault trends, and (4) regional dynamic topographic effects.
Gerke, Alicia K; Tang, Fan; Cavanaugh, Joseph E; Doerschug, Kevin C; Polgreen, Philip M
2015-11-18
Extracorporeal membrane oxygenation (ECMO) has been increasingly studied as a life support modality, but it is unclear if its use has changed over time. Recent publication shows no significant trend in use of ECMO over time; however, this report does not include more recent data. We performed trend analysis to determine if and when the use of ECMO changed in the past decade. We identified hospitalizations (2000-2011) in the Nationwide Inpatient Sample during which ECMO was recorded. We used a segmented linear regression model to determine trend and to identify a temporal change point when rate of ECMO use increased. ECMO use gradually grew until 2007, at which time there was a dramatic increase in the rate (p = 0.0003). There was no difference in mortality after 2007 (p = 0.3374), but there was longer length of stay (p = 0.0001) and smaller percentage of women (p = 0.005). There has been a marked increase in ECMO use since 2007. As ECMO use becomes more common, further study regarding indications, cost-effectiveness, and outcomes is warranted to guide optimal use.
Rice, Karen C.; Hirsch, Robert M.
2012-01-01
Long-term streamflow data within the Chesapeake Bay watershed and surrounding area were analyzed in an attempt to identify trends in streamflow. Data from 30 streamgages near and within the Chesapeake Bay watershed were selected from 1930 through 2010 for analysis. Streamflow data were converted to runoff and trend slopes in percent change per decade were calculated. Trend slopes for three runoff statistics (the 7-day minimum, the mean, and the 1-day maximum) were analyzed annually and seasonally. The slopes also were analyzed both spatially and temporally. The spatial results indicated that trend slopes in the northern half of the watershed were generally greater than those in the southern half. The temporal analysis was done by splitting the 80-year flow record into two subsets; records for 28 streamgages were analyzed for 1930 through 1969 and records for 30 streamgages were analyzed for 1970 through 2010. The mean of the data for all sites for each year were plotted so that the following datasets were analyzed: the 7-day minimum runoff for the north, the 7-day minimum runoff for the south, the mean runoff for the north, the mean runoff for the south, the 1-day maximum runoff for the north, and the 1-day maximum runoff for the south. Results indicated that the period 1930 through 1969 was statistically different from the period 1970 through 2010. For the 7-day minimum runoff and the mean runoff, the latter period had significantly higher streamflow than did the earlier period, although within those two periods no significant linear trends were identified. For the 1-day maximum runoff, no step trend or linear trend could be shown to be statistically significant for the north, although the south showed a mixture of an upward step trend accompanied by linear downtrends within the periods. In no case was a change identified that indicated an increasing rate of change over time, and no general pattern was identified of hydrologic conditions becoming "more extreme" over time.
NASA Astrophysics Data System (ADS)
Meena, Hari Mohan; Machiwal, Deepesh; Santra, Priyabrata; Moharana, Pratap Chandra; Singh, D. V.
2018-05-01
Knowledge of rainfall variability is important for regional-scale planning and management of water resources in agriculture. This study explores spatio-temporal variations, trends, and homogeneity in monthly, seasonal, and annual rainfall series of 62 stations located in arid region of Rajasthan, India using 55 year (1957-2011) data. Box-whisker plots indicate presence of outliers and extremes in annual rainfall, which made the distribution of annual rainfall right-skewed. Mean and coefficient of variation (CV) of rainfall reveals a high inter-annual variability (CV > 200%) in the western portion where the mean annual rainfall is very low. A general gradient of the mean monthly, seasonal, and annual rainfall is visible from northwest to southeast direction, which is orthogonal to the gradient of CV. The Sen's innovative trend test is found over-sensitive in evaluating statistical significance of the rainfall trends, while the Mann-Kendall test identifies significantly increasing rainfall trends in June and September. Rainfall in July shows prominently decreasing trends although none of them are found statistically significant. Monsoon and annual rainfall show significantly increasing trends at only four stations. The magnitude of trends indicates that the rainfall is increasing at a mean rate of 1.11, 2.85, and 2.89 mm year-1 in August, monsoon season, and annual series. The rainfall is found homogeneous over most of the area except for few stations situated in the eastern and northwest portions where significantly increasing trends are observed. Findings of this study indicate that there are few increasing trends in rainfall of this Indian arid region.
Griffith, J.A.; Stehman, S.V.; Sohl, Terry L.; Loveland, Thomas R.
2003-01-01
Temporal trends in landscape pattern metrics describing texture, patch shape and patch size were evaluated in the US Middle Atlantic Coastal Plain Ecoregion. The landscape pattern metrics were calculated for a sample of land use/cover data obtained for four points in time from 1973-1992. The multiple sampling dates permit evaluation of trend, whereas availability of only two sampling dates allows only evaluation of change. Observed statistically significant trends in the landscape pattern metrics demonstrated that the sampling-based monitoring protocol was able to detect a trend toward a more fine-grained landscape in this ecoregion. This sampling and analysis protocol is being extended spatially to the remaining 83 ecoregions in the US and temporally to the year 2000 to provide a national and regional synthesis of the temporal and spatial dynamics of landscape pattern covering the period 1973-2000.
Qekwana, Daniel N; Oguttu, James W; Sithole, Fortune; Odoi, Agricola
2017-04-28
Antimicrobial resistance in staphylococci, often associated with treatment failure, is increasingly reported in veterinary medicine. The aim of this study was to investigate patterns and predictors of antimicrobial resistance among Staphylococcus spp. isolates from canine samples submitted to the bacteriology laboratory at the University of Pretoria academic veterinary hospital between 2007 and 2012. Retrospective data of 334 Staphylococcus isolates were used to calculate the proportion of samples resistant to 15 antimicrobial agents. The Cochran-Armitage trend test was used to investigate temporal trends and logistic regression models were used to investigate predictors of antimicrobial resistance in Staphylococcus aureus and Staphylococcus pseudintermedius. Results show that 98.2% (55/56) of the S. aureus isolates were resistant to at least one drug while 42.9% were multidrug resistant. Seventy-seven percent (214/278) of the S. pseudintermedius isolates were resistant to at least one drug and 25.9% (72/278) were multidrug resistant. Resistance to lincospectin was more common among S. aureus (64.3%) than S. pseudintermedius (38.9%). Similarly, resistance to clindamycin was higher in S. aureus (51.8%) than S. pseudintermedius (31.7%) isolates. There was a significant (p = 0.005) increase in S. aureus resistance to enrofloxacin over the study period. Similarly, S. pseudintermedius exhibited significant increasing temporal trend in resistance to trimethoprim-sulphamethoxazole (p = 0.004), clindamycin (p = 0.022) and orbifloxacin (p = 0.042). However, there was a significant decreasing temporal trend in the proportion of isolates resistant to doxycycline (p = 0.041), tylosin (p = 0.008), kanamycin (p = 0.017) and amoxicillin/clavulanic acid (p = 0.032). High levels of multidrug resistance and the increasing levels of resistance to sulphonamides, lincosamides and fluoroquinolones among Staphylococcus spp. isolates in this study are concerning. Future studies will need to investigate local drivers of antimicrobial resistance to better guide control efforts to address the problem.
Temporal variability of selected air toxics in the United States
NASA Astrophysics Data System (ADS)
McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.
Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.
Observationally derived rise in methane surface forcing mediated by water vapour trends
NASA Astrophysics Data System (ADS)
Feldman, D. R.; Collins, W. D.; Biraud, S. C.; Risser, M. D.; Turner, D. D.; Gero, P. J.; Tadić, J.; Helmig, D.; Xie, S.; Mlawer, E. J.; Shippert, T. R.; Torn, M. S.
2018-04-01
Atmospheric methane (CH4) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH4. However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m2 yr-1. The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH4. However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H2O) and CH4 to explain the observations fully. Thus, the determination of CH4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH4 and the vertically resolved trends in H2O.
Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.
2014-01-01
Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate + sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen–Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate + sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.
Stets, E G; Kelly, V J; Crawford, C G
2014-08-01
Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate+sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen-Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate+sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state. Published by Elsevier B.V.
Miller, Aroha; Elliott, John E; Elliott, Kyle H; Guigueno, Mélanie F; Wilson, Laurie K; Lee, Sandi; Idrissi, Abde
2014-12-01
Polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) are bioaccumulative flame retardants. PBDEs increased in many ecosystems during the late 20th century, but recently have declined in some environments. To examine trends in the northern Pacific, we analysed PBDEs, HBCDD and carbon and nitrogen stable isotopes (δ13C and δ15N) to account for dietary effects in archived eggs of three seabird species from British Columbia, Canada, 1990-2011 (rhinoceros auklets, Cerorhinca monocerata; Leach's storm-petrels, Oceanodroma leucorhoa; ancient murrelets, Synthliboramphus antiquus, 2009 only). PBDEs increased until approximately 2000 and then decreased, while HBCDD increased exponentially throughout the examined period. No significant changes in dietary tracers were observed. HBCDD and ΣPBDE levels varied among species; ΣPBDE also varied among sites. Temporal changes in contaminant concentrations are unlikely to have been caused by dietary changes, and likely reflect the build-up followed by decreases associated with voluntary phase-outs and regulations implemented in North America to control PBDEs. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
A Novel Approach for Evaluation of Water Quality Trends in Gulf Coast Estuaries
Water quality data form the backbone of management programs aimed at protecting environmental resources. The increasing availability of long-term monitoring data for estuaries can improve detection of temporal and spatial changes in water quality. However, the relatively simple...
Chao, Lu-men; Sun, Jian-xin
2009-12-01
Temporal changes in air temperature and urban heat island (UHI) effects during 1956-1998 were compared between a coastal city, Ji' nan, and an inland city, Xi' an, which were similar in latitude, size and development. During 1956-1978, except that the annual mean minimum temperature in Ji' nan increased by 0.37 degrees C x 10 a(-1), the temperature variables in the two cities did not display any apparent trend. During 1979-1998, all temperature variables of the two cities showed an increasing trend. Comparing with that in Ji' nan, the increasing rate of annual mean maximum temperature and annual mean temperature in Xi' an was greater, but that of annual mean minimum temperature was smaller. In the two cities, heat island effect occurred during 1956-1978 but without any apparent trend, whereas during 1979-1998, this effect increased with time, especially in Xi' an where the annual mean minimum temperature and annual mean temperature increased by 0.22 degrees C x 10 a(-1) and 0.32 degrees C x 10 a(-1), respectively. Both the level and the inter-annual variation of the heat island effect were much greater in Ji' nan than in Xi' an, but the increasing rate of this effect was greater in Xi' an than in Ji' nan. Obvious differences were observed in the increasing rate of annual mean maximum air temperature, annual mean air temperature, and annual mean minimum temperature as well as the heat island effect in Ji' nan, whereas negligible differences were found in Xi' an. Among the three temperature variables, annual mean minimum temperature displayed the most obvious increasing trend and was most affected by heat island effect, while annual mean maximum temperature was most variable inter-annually. Geographical location not only affected the magnitude of urban warming, but also affected the mode of urban warming and the strength of heat island effect.
A spatiotemporal analysis of U.S. station temperature trends over the last century
NASA Astrophysics Data System (ADS)
Capparelli, V.; Franzke, C.; Vecchio, A.; Freeman, M. P.; Watkins, N. W.; Carbone, V.
2013-07-01
This study presents a nonlinear spatiotemporal analysis of 1167 station temperature records from the United States Historical Climatology Network covering the period from 1898 through 2008. We use the empirical mode decomposition method to extract the generally nonlinear trends of each station. The statistical significance of each trend is assessed against three null models of the background climate variability, represented by stochastic processes of increasing temporal correlation length. We find strong evidence that more than 50% of all stations experienced a significant trend over the last century with respect to all three null models. A spatiotemporal analysis reveals a significant cooling trend in the South-East and significant warming trends in the rest of the contiguous U.S. It also shows that the warming trend appears to have migrated equatorward. This shows the complex spatiotemporal evolution of climate change at local scales.
Comparison of temporal trends in VOCs as measured with PDB samplers and low-flow sampling methods
Harte, P.T.
2002-01-01
Analysis of temporal trends in tetrachloroethylene (PCE) concentration determined by two sample techniques showed that passive diffusion bag (pdb) samplers adequately sample the large variation in PCE concentrations at the site. The slopes of the temporal trends in concentrations were comparable between the two techniques, and the pdb sample concentration generally reflected the instantaneous concentration sampled by the low-flow technique. Thus, the pdb samplers provided an appropriate sampling technique for PCE at these wells. One or two wells did not make the case for widespread application of pdb samples at all sites. However, application of pdb samples in some circumstances was appropriate for evaluating temporal and spatial variations in VOC concentrations, thus, should be considered as a useful tool in hydrogeology.
Assessment of long-term monthly and seasonal trends of warm (cold), wet (dry) spells in Kansas, USA
NASA Astrophysics Data System (ADS)
Dokoohaki, H.; Anandhi, A.
2013-12-01
A few recent studies have focused on trends in rainfall, temperature, and frost indicators at different temporal scales using centennial weather station data in Kansas; our study supplements this work by assessing the changes in spell indicators in Kansas. These indicators provide the duration between temperature-based (warm and cold) and precipitation-based (wet and dry) spells. For wet (dry) spell calculations, a wet day is defined as a day with precipitation ≥1 mm, and a dry day is defined as one with precipitation ≤1 mm. For warm (cold) spell calculations, a warm day is defined as a day with maximum temperature >90th percentile of daily maximum temperature, and a cold day is defined as a day with minimum temperature <10th percentile of daily minimum temperature. The percentiles are calculated for 1971-2000, and four spell indicators are calculated: Average Wet Spell Length (AWSL), Dry Spell Length (ADSL), Average Warm Spell Days (AWSD) and Average Cold Spell Days (ACSD) are calculated. Data were provided from 23 centennial weather stations across Kansas, and all calculations were done for four time periods (through 1919, 1920-1949, 1950-1979, and 1980-2009). The definitions and software provided by Expert Team on Climate Change Detection and Indices (ETCCDI) were adapted for application to Kansas. The long- and short-term trends in these indices were analyzed at monthly and seasonal timescales. Monthly results indicate that ADSL is decreasing and AWSL is increasing throughout the state. AWSD and ACSD both showed an overall decreasing trend, but AWSD trends were variable during the beginning of the Industrial Revolution. Results of seasonal analysis revealed that the fall season recorded the greatest increasing trend for ACSD and the greatest decreasing trend for AWSD across the whole state and during all time periods. Similarly, the greatest increasing and decreasing trends occurred in winter for AWSL and ADSL, respectively. These variations can be important indicators of climatic change that may not be represented in mean conditions. Detailed geographical and temporal variations of the spell indices also can be beneficial for updating management decisions and providing adaptation recommendations for local and regional agricultural production.
Ma, Qi Yun; Zhang, Ji Quan; Lai, Quan; Zhang, Feng; Dong, Zhen Hua; A, Lu Si
2017-06-18
Fourteen extreme climatic indices related with main regional meteorological disasters and vegetation growth were calculated based on daily data from 13 meteorological stations during 1960-2014 in Songnen Grassland, Northeast China. Then, the variation trend and the spatial and temporal patterns of climatic extreme events were analyzed by using regression analysis, break trend analy-sis, Mann-Kendall test, Sen's slope estimator and moving t-test method. The results indicated that summer days (SU25), warm days (TX90P), warm nights (TN90P) and warm spell duration (WSDI) representing extremely high temperatures showed significant increasing trends (P<0.05). Meanwhile, frost days (FD0), cold days (TX10P), cold nights (TN10P) and cold spell duration indicator (CSDI) representing extremely low temperatures showed obviously decreasing trends. The magnitudes of changes in cold indices (FD0, TX10P, TN10P and CSDI) were clearly greater than those of warm indices (SU25, TX90P, TN90P and WSDI), and that changes in night indices were larger than those of day indices. Regional climate warming trend was obvious from 1970 to 2009, and the most occurrences of the abrupt changes in these indices were identified in this period. The extreme precipitation indices did not show obvious trend, in general, SDII and CDD experienced a slightly decreasing trend while RX5D, R95P, PRCPTOT and CWD witnessed a mildly increasing trend. It may be concluded that regional climate changed towards warming and slightly wetting in Songnen Grassland. The most sensitive region for extreme temperature was distributed in the south and north region. Additionally, the extreme temperature indices showed clearly spatial difference between the south and the north. As for the spatial variations of extreme precipitation indices, the climate could be characterized by becoming wetter in northern region, and getting drier in southern region, especially in southwestern region with a high drought risk.
Seasonal and annual precipitation time series trend analysis in North Carolina, United States
NASA Astrophysics Data System (ADS)
Sayemuzzaman, Mohammad; Jha, Manoj K.
2014-02-01
The present study performs the spatial and temporal trend analysis of the annual and seasonal time-series of a set of uniformly distributed 249 stations precipitation data across the state of North Carolina, United States over the period of 1950-2009. The Mann-Kendall (MK) test, the Theil-Sen approach (TSA) and the Sequential Mann-Kendall (SQMK) test were applied to quantify the significance of trend, magnitude of trend, and the trend shift, respectively. Regional (mountain, piedmont and coastal) precipitation trends were also analyzed using the above-mentioned tests. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation of precipitation data series. The application of the above-mentioned procedures has shown very notable statewide increasing trend for winter and decreasing trend for fall precipitation. Statewide mixed (increasing/decreasing) trend has been detected in annual, spring, and summer precipitation time series. Significant trends (confidence level ≥ 95%) were detected only in 8, 7, 4 and 10 nos. of stations (out of 249 stations) in winter, spring, summer, and fall, respectively. Magnitude of the highest increasing (decreasing) precipitation trend was found about 4 mm/season (- 4.50 mm/season) in fall (summer) season. Annual precipitation trend magnitude varied between - 5.50 mm/year and 9 mm/year. Regional trend analysis found increasing precipitation in mountain and coastal regions in general except during the winter. Piedmont region was found to have increasing trends in summer and fall, but decreasing trend in winter, spring and on an annual basis. The SQMK test on "trend shift analysis" identified a significant shift during 1960 - 70 in most parts of the state. Finally, the comparison between winter (summer) precipitations with the North Atlantic Oscillation (Southern Oscillation) indices concluded that the variability and trend of precipitation can be explained by the Oscillation indices for North Carolina.
Kennen, Jonathan G.; Sullivan, Daniel J.; May, Jason T.; Bell, Amanda H.; Beaulieu, Karen M.; Rice, Donald E.
2012-01-01
Many management agencies seek to evaluate temporal changes in aquatic assemblages at monitoring sites, but few have sites with ecological time series that are long enough for this purpose. Trends in aquatic-invertebrate and fish assemblage composition were assessed at 27 long-term monitoring sites in the north-central and northeastern United States. Temporal changes were identified using serial trend analysis. Sites with significant serial trends were further evaluated by relating explanatory environmental variables (e.g., streamflow, habitat, and water chemistry) to changes in assemblage composition. Significant trends were found at 19 of 27 study sites; however, differences in the sensitivity of the aquatic fauna to environmental stressors were identified. For example, significant trends in fish assemblages were found at more sites (15 of 27) than for aquatic-invertebrate assemblages (10 of 27 sites). In addition, trends in the invertebrate assemblage were most often explained by changes in streamflow processes (e.g., duration and magnitude of low- and high-flows, streamflow variability, and annual rates of change), whereas trends in the fish assemblage were more related to changes in water chemistry. Results illustrate the value of long-term monitoring for the purpose of assessing temporal trends in aquatic assemblages. The ability to detect trends in assemblage composition and to attribute these changes to environmental factors is necessary to understand mechanistic pathways and to further our understanding of how incremental anthropogenic alterations modify aquatic assemblages over time. Finally, this study's approach to trends analysis can be used to better inform the design of monitoring programs as well as support the ongoing management needs of stakeholders, water-resource agencies, and policy makers.
Brandt, Martin; Tappan, G. Gray; Aziz Diouf, Abdoul; Beye, Gora; Mbow, Cheikh; Fensholt, Rasmus
2017-01-01
The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall) led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.
Smith, David R.; Robinson, Timothy J.
2015-01-01
A Delaware Bay, USA, standardized survey of spawning horseshoe crabs, Limulus polyphemus, was carried out in 1999 − 2013 through a citizen science network. Previous trend analyses of the data were at the state (DE or NJ) or bay-wide levels. Here, an alternative mixed-model regression analysis was used to estimate trends in female and male spawning densities at the beach level (n = 26) with the objective of inferring their causes. For females, there was no overall trend and no single explanation applies to the temporal and spatial patterns in their densities. Individual beaches that initially had higher densities tended to experience a decrease, while beaches that initially had lower densities tended to experience an increase. As a result, densities of spawning females at the end of the study period were relatively similar among beaches, suggesting a redistribution of females among the beaches over the study period. For males, there was a positive overall trend in spawning abundance from 1999 to 2013, and this increase occurred broadly among beaches. Moreover, the beaches with below-average initial male density tended to have the greatest increases. Possible explanations for these patterns include harvest reduction, sampling artifact, habitat change, density-dependent habitat selection, or mate selection. The broad and significant increase in male spawning density, which occurred after enactment of harvest controls, is consistent with the harvest reduction explanation, but there is no single explanation for the temporal or spatial pattern in female densities. These results highlight the continued value of a citizen-science-based spawning survey in understanding horseshoe crab ecology and conservation.
Baker, Tyler F; Jett, Robert Trent; Smith, John G.; ...
2016-02-25
A dike failure at the Tennessee Valley Authority Kingston Fossil Plant in East Tennessee, United States, in December 2008, released approximately 4.1 million m3 of coal ash into the Emory River. From 2009 through 2012, samples of mayfly nymphs ( Hexagenia bilineata) were collected each spring from sites in the Emory, Clinch, and Tennessee Rivers upstream and downstream of the spill. Samples were analyzed for 17 metals. Concentrations of metals were generally highest the first 2 miles downstream of the spill, and then decreased with increasing distance from the spill. Arsenic, B, Ba, Be, Mo, Sb, Se, Sr, and Vmore » appeared to have strong ash signatures, whereas Co, Cr, Cu, Ni, and Pb appeared to be associated with ash and other sources. Furthermore, the concentrations for most of these contaminants were modest and are unlikely to cause widespread negative ecological effects. Trends in Hg, Cd, and Zn suggested little (Hg) or no (Cd, Zn) association with ash. Temporal trends suggested that concentrations of ash-related contaminants began to subside after 2010, but because of the limited time period of that analysis (4 yr), further monitoring is needed to verify this trend. The present study provides important information on the magnitude of contaminant exposure to aquatic receptors from a major coal ash spill, as well as spatial and temporal trends for transport of the associated contaminants in a large open watershed. Environ Toxicol Chem 2016;35:1159 1171. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.« less
Miller, Aroha; Elliott, John E; Elliott, Kyle H; Lee, Sandi; Cyr, Francois
2015-08-01
Perfluoroalkyl substances (PFAS) such as perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) have become virtually ubiquitous throughout the environment, and, based on laboratory studies, have known toxicological consequences. Various national and international voluntary phase-outs and restrictions on these compounds have been implemented over the last 10 to 15 years. In the present study, we examine trends (1990/1991-2010/2011) in aquatic birds (ancient murrelet, Synthliboramphus antiquus [2009 only]; Leach's storm-petrels, Oceanodroma leucorhoa; rhinoceros auklets, Cerorhinca monocerata; double-crested cormorants, Phalacrocorax auritus; and great blue herons, Ardea herodias). The PFCA, PFSA, and stable isotope (δ(15) N and δ(13) C) data collected from these species from the Pacific coast of Canada, ranging over 20 to 30 years, were used to investigate temporal changes in PFAS coupled to dietary changes. Perfluorooctane sulfonic acid (PFOS), the dominant PFSA compound in all 4 species, increased and subsequently decreased in auklet and cormorant eggs in line with the manufacturing phase-out of PFOS and perfluorooctanoic acid (PFOA), but concentrations continuously increased in petrel eggs and remained largely unchanged in heron eggs. Dominant PFCA compounds varied between the offshore and coastal species, with increases seen in the offshore species and little or variable changes seen in the coastal species. Little temporal change was seen in stable isotope values, indicating that diet alone is not driving observed PFAS concentrations. © 2015 SETAC.
Kierkegaard, A; Bignert, A; Sellström, U; Olsson, M; Asplund, L; Jansson, B; De Wit, C A
2004-07-01
Temporal trends of five tetra- to hexabromodiphenyl ethers [BDE47, BDE99, BDE100, BDE153 and BDE154) and two methoxy-tetraBDEs [6-methoxy-2,2',4,4'- tetraBDE (6-MeO-BDE47) and 2'-methoxy-2,3',4,5'- tetraBDE (2'-MeO-BDE68)] in pike from Lake Bolmen for the years 1967-2000, are presented. All BDE congeners show increasing trends up to the mid-1980s (Sigma5PBDE from 60 to 1600 pg/g wet weight in 1989, i.e. a more than 25-fold increase), and then decrease or level off. The decreasing trends of PBDEs after the 1980s were considerably slower in the present study than was found in a study of an environmental matrix from the Baltic Proper covering the same time period. This difference suggests local sources near Lake Bolmen. The MeO-BDEs show initially decreasing concentrations, which for 6-MeO-BDE47 continues until the early 1990s. The concentrations of 6-MeO-BDE47 in herring from five locations along the Swedish coast increased from south to north in the Baltic Sea. No correlation between the concentrations of the BDE congeners and the MeO-BDEs was observed, indicating sources other than PBDEs for these compounds. The presence of MeO-BDEs in fish from lakes with different characteristics suggests a natural production not favoured by eutrophication, or dependent on sampling season and geographical location.
Trends in diabetes-related visits to US EDs from 1997 to 2007.
Menchine, Michael D; Wiechmann, Warren; Peters, Anne L; Arora, Sanjay
2012-06-01
The aims of the study were to describe temporal trends in the number, proportion, and per capita use of diabetes-related emergency department (ED) visits and to examine any racial/ethnic disparity in ED use for diabetes-related reasons. We analyzed the ED portion of the National Hospital Ambulatory Medical Care Survey from 1997 through 2007. Diabetes-related ED visits were identified by International Classification of Diseases, Ninth Revision codes. Descriptive statistics were developed. Weighted linear and logistic regression models were used to determine significance of temporal trends, and multivariate logistic regression was used to examine racial/ethnic disparities. A total of 20.2 million (1.69%; 95% confidence interval [CI], 1.59%-1.78%) ED visits were diabetes-related during the study period. We observed significant increases in the number and proportion of diabetes-related ED visits. Overall, there was a 5.6% relative annual increase in the proportion of ED visits that were diabetes-related during the study period. However, the per capita ED use among the population with diabetes did not change over time (P>.05 for trend). On multivariate analysis, black race (odds ratio, 1.8; 95% CI, 1.7-2.0), Hispanic ethnicity (odds ratio, 1.6; 95% CI, 1.4-1.8), and advancing age were associated with significantly higher odds of having a diabetes-related visit. Despite a marked increase in number and proportion of diabetes-related ED visits during the study period, the per capita use of ED services for diabetes-related visits among the diabetic population remained stable. Copyright © 2012 Elsevier Inc. All rights reserved.
Modeling evapotranspiration over China's landmass from 1979-2012 using three surface models
NASA Astrophysics Data System (ADS)
Sun, Shaobo; Chen, Baozhang; Zhang, Huifang; Lin, Xiaofeng
2017-04-01
Land surface models (LSMs) are useful tools to estimate land evapotranspiration at a grid scale and for a long-term applications. Here, the Community Land Model 4.0 (CLM4.0), Dynamic Land Model (DLM) and Variable Infiltration Capacity (VIC) model were driven with observation-based forcing data sets, and a multiple LSM ensemble-averaged evapotranspiration (ET) product (LSMs-ET) was developed and its spatial-temporal variations were analyzed for the China landmass over the period 1979-2012. Evaluations against measurements from nine flux towers at site scale and surface water budget based ET at regional scale showed that the LSMs-ET had good performance in most areas of China's landmass. The inter-comparisons between the ET estimates and the independent ET products from remote sensing and upscaling methods suggested that there were a fairly consistent patterns between each data sets. The LSMs-ET produced a mean annual ET of 351.24±10.7 mm yr-1 over 1979-2012, and its spatial-temporal variation analyses showed that (i) there was an overall significant ET increasing trend, with a value of 0.72 mm yr-1 (p < 0.01); (ii) 36.01% of Chinese land had significant increasing trends, ranging from 1 to 9 mm yr-1, while only 6.41% of the area showed significant decreasing trends, ranging from -6.28 to -0.08 mm yr-1. Analyses of ET variations in each climate region clearly showed that the Tibetan Plateau areas were the main contributors to the overall increasing ET trends of China.
Zhu, Q.; Jiang, H.; Liu, J.; Wei, X.; Peng, C.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.; Ju, W.
2010-01-01
The Integrated Biosphere Simulator is used to evaluate the spatial and temporal patterns of the crucial hydrological variables [run-off and actual evapotranspiration (AET)] of the water balance across China for the period 1951–2006 including a precipitation analysis. Results suggest three major findings. First, simulated run-off captured 85% of the spatial variability and 80% of the temporal variability for 85 hydrological gauges across China. The mean relative errors were within 20% for 66% of the studied stations and within 30% for 86% of the stations. The Nash–Sutcliffe coefficients indicated that the quantity pattern of run-off was also captured acceptably except for some watersheds in southwestern and northwestern China. The possible reasons for underestimation of run-off in the Tibetan plateau include underestimation of precipitation and uncertainties in other meteorological data due to complex topography, and simplified representations of the soil depth attribute and snow processes in the model. Second, simulated AET matched reasonably with estimated values calculated as the residual of precipitation and run-off for watersheds controlled by the hydrological gauges. Finally, trend analysis based on the Mann–Kendall method indicated that significant increasing and decreasing patterns in precipitation appeared in the northwest part of China and the Yellow River region, respectively. Significant increasing and decreasing trends in AET were detected in the Southwest region and the Yangtze River region, respectively. In addition, the Southwest region, northern China (including the Heilongjiang, Liaohe, and Haihe Basins), and the Yellow River Basin showed significant decreasing trends in run-off, and the Zhemin hydrological region showed a significant increasing trend.
NASA Astrophysics Data System (ADS)
Scheifinger, Helfried; Menzel, Annette; Koch, Elisabeth; Peter, Christian; Ahas, Rein
2002-11-01
A data set of 17 phenological phases from Germany, Austria, Switzerland and Slovenia spanning the time period from 1951 to 1998 has been made available for analysis together with a gridded temperature data set (1° × 1° grid) and the North Atlantic Oscillation (NAO) index time series. The disturbances of the westerlies constitute the main atmospheric source for the temporal variability of phenological events in Europe. The trend, the standard deviation and the discontinuity of the phenological time series at the end of the 1980s can, to a great extent, be explained by the NAO. A number of factors modulate the influence of the NAO in time and space. The seasonal northward shift of the westerlies overlaps with the sequence of phenological spring phases, thereby gradually reducing its influence on the temporal variability of phenological events with progression of spring (temporal loss of influence). This temporal process is reflected by a pronounced decrease in trend and standard deviation values and common variability with the NAO with increasing year-day. The reduced influence of the NAO with increasing distance from the Atlantic coast is not only apparent in studies based on the data set of the International Phenological Gardens, but also in the data set of this study with a smaller spatial extent (large-scale loss of influence). The common variance between phenological and NAO time series displays a discontinuous drop from the European Atlantic coast towards the Alps. On a local and regional scale, mountainous terrain reduces the influence of the large-scale atmospheric flow from the Atlantic via a proposed decoupling mechanism. Valleys in mountainous terrain have the inclination to harbour temperature inversions over extended periods of time during the cold season, which isolate the valley climate from the large-scale atmospheric flow at higher altitudes. Most phenological stations reside at valley bottoms and are thus largely decoupled in their temporal variability from the influence of the westerly flow regime (local-scale loss of influence). This study corroborates an increasing number of similar investigations that find that vegetation does react in a sensitive way to variations of its atmospheric environment across various temporal and spatial scales.
2009-01-01
Background The wide variability in prevalence of childhood asthma across Asia Pacific is well documented, but less is known about its trends in mortality and hospitalization. Objectives To examine pediatric asthma mortality and hospitalization trends of selected countries across Asia Pacific, and also patterns of asthma drug utilization. Materials and Methods Mortality and population data were sourced from the World Health Organization's mortality database. Data on hospitalization were obtained by direct inquiry and from government and scientific publications. Drug use for asthma was expressed as a controller-to-reliever (C:R) ratio (ie, units of inhaled corticosteroids/units of short-acting β-agonists, sold in each country). Time-series regression analyses were used to examine temporal patterns and study association between deaths, hospitalizations, and drug use. Results Japan showed a decreasing trend in pediatric asthma mortality whereas an increase was observed in Thailand. Hospitalizations decreased in Australia and Singapore but increased in Taiwan, Republic of China. C:R ratios increased significantly across the countries. Conclusions Mixed trends in pediatric asthma mortality and hospitalization rates were observed, which coincided with a uniform increase in C:R ratios. This may reflect importance of other aspects of asthma management besides pharmacotherapy. PMID:23283014
Rising air and stream-water temperatures in Chesapeake Bay region, USA
Rice, Karen C.; Jastram, John D.
2015-01-01
Monthly mean air temperature (AT) at 85 sites and instantaneous stream-water temperature (WT) at 129 sites for 1960–2010 are examined for the mid-Atlantic region, USA. Temperature anomalies for two periods, 1961–1985 and 1985–2010, relative to the climate normal period of 1971–2000, indicate that the latter period was statistically significantly warmer than the former for both mean AT and WT. Statistically significant temporal trends across the region of 0.023 °C per year for AT and 0.028 °C per year for WT are detected using simple linear regression. Sensitivity analyses show that the irregularly sampled WT data are appropriate for trend analyses, resulting in conservative estimates of trend magnitude. Relations between 190 landscape factors and significant trends in AT-WT relations are examined using principal components analysis. Measures of major dams and deciduous forest are correlated with WT increasing slower than AT, whereas agriculture in the absence of major dams is correlated with WT increasing faster than AT. Increasing WT trends are detected despite increasing trends in streamflow in the northern part of the study area. Continued warming of contributing streams to Chesapeake Bay likely will result in shifts in distributions of aquatic biota and contribute to worsened eutrophic conditions in the bay and its estuaries.
Charles, Rhys Gareth; Douglas, Peter; Hallin, Ingrid Liv; Matthews, Ian; Liversage, Gareth
2017-02-01
Precious metal (PM) and copper content of dynamic-RAM modules placed on the market during 1991-2008 has been analysed by AAS following comminution and acid digestion. Linear regression analysis of compositional data ordered according to sample chronology was used to identify historic temporal trends in module composition resulting from changes in manufacturing practices, and to project future trends for use in more accurate assessment of future recycling potential. DRAM was found to be 'high grade' waste with: stable levels of gold and silver over time; 80% reduction in palladium content during 1991-2008; and 0.23g/module/year increase in copper content with a 75% projected increase from 2008 by 2020. The accuracy of future recycling potential projections for WEEE using current methods based on static compositional data from current devices is questionable due to likely changes in future device composition. The impact on recycling potential projections of waste laptops, smart phones, cell phones and tablets arising in Europe in 2020 resulting from a 75% increase in copper content is considered against existing projections using static compositional data. The results highlight that failing to consider temporal variations in PM content may result in significant discrepancies between projections and future recycling potential. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiu, Bingwen; Chen, Gong; Tang, Zhenghong; Lu, Difei; Wang, Zhuangzhuang; Chen, Chongchen
2017-11-01
The Three-North Shelter Forest Program (TNSFP) in China has been intensely invested for approximately 40 years. However, the efficacy of the TNSFP has been debatable due to the spatiotemporal complexity of vegetation changes. A novel framework was proposed for characterizing vegetation changes in the TNSFP region through Combining Trend and Temporal Similarity trajectory (COTTS). This framework could automatically and continuously address the fundamental questions on where, what, how and when vegetation changes have occurred. Vegetation trend was measured by a non-parametric method. The temporal similarity trajectory was tracked by the Jeffries-Matusita (JM) distance of the inter-annual vegetation indices temporal profiles and modeled using the logistic function. The COTTS approach was applied to examine the afforestation efforts of the TNSFP using 500 m 8-day composites MODIS datasets from 2001 to 2015. Accuracy assessment from the 1109 reference sites reveals that the COTTS is capable of automatically determining vegetation dynamic patterns, with an overall accuracy of 90.08% and a kappa coefficient of 0.8688. The efficacy of the TNSFP was evaluated through comprehensive considerations of vegetation, soil and wetness. Around 45.78% areas obtained increasing vegetation trend, 2.96% areas achieved bare soil decline and 4.50% areas exhibited increasing surface wetness. There were 4.49% areas under vegetation degradation & desertification. Spatiotemporal heterogeneity of efficacy of the TNSFP was revealed: great vegetation gain through the abrupt dynamic pattern in the semi-humid and humid regions, bare soil decline & potential efficacy in the semi-arid region and remarkable efficacy in functional region of Eastern Ordos.
Spatial and temporal trends of deer harvest and deer-vehicle accidents in Ohio
Aaron L. Iverson; Louis R. Iverson
1999-01-01
White-tailed deer (Odocoileus virginianus} have been increasing dramatically in the eastern United States, with concomitant increases in impacts resulting from deer browsing and deer-vehicle collisions. In Ohio, the number of deer were estimated at near zero in 1940 to over 450,000 in 1995. We analyzed estimates of deer harvest and deer-vehicle...
Socio-demographic, ecological factors and dengue infection trends in Australia.
Akter, Rokeya; Naish, Suchithra; Hu, Wenbiao; Tong, Shilu
2017-01-01
Dengue has been a major public health concern in Australia. This study has explored the spatio-temporal trends of dengue and potential socio- demographic and ecological determinants in Australia. Data on dengue cases, socio-demographic, climatic and land use types for the period January 1999 to December 2010 were collected from Australian National Notifiable Diseases Surveillance System, Australian Bureau of Statistics, Australian Bureau of Meteorology, and Australian Bureau of Agricultural and Resource Economics and Sciences, respectively. Descriptive and linear regression analyses were performed to observe the spatio-temporal trends of dengue, socio-demographic and ecological factors in Australia. A total of 5,853 dengue cases (both local and overseas acquired) were recorded across Australia between January 1999 and December 2010. Most the cases (53.0%) were reported from Queensland, followed by New South Wales (16.5%). Dengue outbreak was highest (54.2%) during 2008-2010. A highest percentage of overseas arrivals (29.9%), households having rainwater tanks (33.9%), Indigenous population (27.2%), separate houses (26.5%), terrace house types (26.9%) and economically advantage people (42.8%) were also observed during 2008-2010. Regression analyses demonstrate that there was an increasing trend of dengue incidence, potential socio-ecological factors such as overseas arrivals, number of households having rainwater tanks, housing types and land use types (e.g. intensive uses and production from dryland agriculture). Spatial variation of socio-demographic factors was also observed in this study. In near future, significant increase of temperature was also projected across Australia. The projected increased temperature as well as increased socio-ecological trend may pose a future threat to the local transmission of dengue in other parts of Australia if Aedes mosquitoes are being established. Therefore, upgraded mosquito and disease surveillance at different ports should be in place to reduce the chance of mosquitoes and dengue cases being imported into all over Australia.
Hothem, R.L.; Roster, D.L.; King, K.A.; Keldsen, T.J.; Marois, Katherine C.; Wainwright, S.E.
1995-01-01
Between 1989 and 1991, reproduction by black-crowned night-herons (Nycticorax nycticorax) and snowy egrets (Egretta thula) was studied at sites in San Francisco Bay. Eggs were collected from these and other bay sites and from South Wilbur Flood Area, a reference site in California's San Joaquin Valley. Eggs were analyzed for inorganic trace elements, organochlorine pesticides, and polychlorinated biphenyls (PCBs). Results were compared among sites and years and with results of previous studies. There was some evidence of impaired reproduction, but concentrations of contaminants were generally lower than threshold levels for such effects. Egg hatchability was generally good, with predation being the factor that most limited reproductive success. Mean PCB concentrations were generally higher in eggs from the south end of San Francisco Bay than from the north, but the only temporal change, an increase, was observed at Alcatraz Island. There were spatial differences for p,p'-DDE in night-heron eggs in 1990, but the highest mean concentration of DDE was in night-heron eggs from South Wilbur in 1991. Temporal declines in maximum concentrations of DDE in eggs were observed in the bay, but means did not change significantly over time, At Bair Island in the southern end of the bay, mean concentrations of mercury decreased while selenium increased in night-heron eggs over time, but there were no clear bay-wide spatial or temporal trends for either element.
Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012.
Law, Robin J; Covaci, Adrian; Harrad, Stuart; Herzke, Dorte; Abdallah, Mohamed A-E; Fernie, Kim; Toms, Leisa-Maree L; Takigami, Hidetaka
2014-04-01
In this paper, we have compiled and reviewed the most recent literature, published in print or online from January 2010 to December 2012, relating to the human exposure, environmental distribution, behaviour, fate and concentration time trends of polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants, in order to establish their current trends and priorities for future study. More data are now becoming available for remote areas not previously studied, Indian Ocean islands, for example. Decreasing time trends for penta-mix PBDE congeners were seen for soils in northern Europe, sewage sludge in Sweden and the USA, carp from a US river, trout from three of the Great Lakes and in Arctic and UK marine mammals and many birds, but increasing time trends continue in polar bears and some birds at high trophic levels in northern Europe. This may be partially a result of the time delay inherent in long-range atmospheric transport processes. In general, concentrations of BDE209 (the major component of the deca-mix PBDE product) are continuing to increase. Of major concern is the possible/likely debromination of the large reservoir of BDE209 in soils and sediments worldwide, to yield lower brominated congeners which are both more mobile and more toxic, and we have compiled the most recent evidence for the occurrence of this degradation process. Numerous studies reported here reinforce the importance of this future concern. Time trends for HBCDs are mixed, with both increases and decreases evident in different matrices and locations and, notably, with increasing occurrence in birds of prey. Temporal trends for both PBDEs and HBCD in Asia are unclear currently. A knowledge gap has been noted in relation to metabolism and/or debromination of BDE209 and HBCD in birds. Further monitoring of human exposure and environmental contamination in areas of e-waste recycling, particularly in Asia and Africa, is warranted. More data on temporal trends of BDE and HBCD concentrations in a variety of matrices and locations are needed before the current status of these compounds can be fully assessed, and the impact of regulation and changing usage patterns among different flame retardants determined. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Dong, Wen; Yang, Kun; Xu, Quanli; Liu, Lin; Chen, Juan
2017-10-24
A large number (n = 460) of A(H7N9) human infections have been reported in China from March 2013 through December 2014, and H7N9 outbreaks in humans became an emerging issue for China health, which have caused numerous disease outbreaks in domestic poultry and wild bird populations, and threatened human health severely. The aims of this study were to investigate the directional trend of the epidemic and to identify the significant presence of spatial-temporal clustering of influenza A(H7N9) human cases between March 2013 and December 2014. Three distinct epidemic phases of A(H7N9) human infections were identified in this study. In each phase, standard deviational ellipse analysis was conducted to examine the directional trend of disease spreading, and retrospective space-time permutation scan statistic was then used to identify the spatio-temporal cluster patterns of H7N9 outbreaks in humans. The ever-changing location and the increasing size of the three identified standard deviational ellipses showed that the epidemic moved from east to southeast coast, and hence to some central regions, with a future epidemiological trend of continue dispersing to more central regions of China, and a few new human cases might also appear in parts of the western China. Furthermore, A(H7N9) human infections were clustering in space and time in the first two phases with five significant spatio-temporal clusters (p < 0.05), but there was no significant cluster identified in phase III. There was a new epidemiologic pattern that the decrease in significant spatio-temporal cluster of A(H7N9) human infections was accompanied with an obvious spatial expansion of the outbreaks during the study period, and identification of the spatio-temporal patterns of the epidemic can provide valuable insights for better understanding the spreading dynamics of the disease in China.
Louie, Janice K; Hsu, Ling Chin; Osmond, Dennis H; Katz, Mitchell H; Schwarcz, Sandra K
2002-10-01
To understand recent temporal trends in acquired immunodeficiency syndrome (AIDS) mortality in the era of highly active antiretroviral therapy (HAART), trends in causes of death among persons with AIDS in San Francisco who died between 1994 and 1998 were analyzed. Among 5234 deaths, the mortality rate for human immunodeficiency virus (HIV)-related or AIDS-related deaths declined after 1995 (P<.01), whereas the mortality rate for non-HIV- or non-AIDS-related deaths remained stable. The proportion of deaths of persons with AIDS associated with septicemia, non-AIDS-defining malignancy, chronic liver disease, viral hepatitis, overdose, obstructive lung disease, coronary artery disease, and pancreatitis increased (P<.05). The standardized mortality ratio was high for these causes in both pre- and post-HAART periods, except for pancreatitis, a possible complication of HAART, which demonstrated an increasing standardized mortality ratio trend after 1996. With increasing AIDS survival, prevention of chronic diseases, assessment of long-term toxicity from HAART, and surveillance for additional causes of mortality will become increasingly important.
Incidence and mortality of lung cancer: global trends and association with socioeconomic status.
Wong, Martin C S; Lao, Xiang Qian; Ho, Kin-Fai; Goggins, William B; Tse, Shelly L A
2017-10-30
We examined the correlation between lung cancer incidence/mortality and country-specific socioeconomic development, and evaluated its most recent global trends. We retrieved its age-standardized incidence rates from the GLOBOCAN database, and temporal patterns were assessed from global databases. We employed simple linear regression analysis to evaluate their correlations with Human Development Index (HDI) and Gross Domestic Product (GDP) per capita. The average annual percent changes (AAPC) of the trends were evaluated from join-point regression analysis. Country-specific HDI was strongly correlated with age-standardized incidence (r = 0.70) and mortality (r = 0.67), and to a lesser extent GDP (r = 0.24 to 0.55). Among men, 22 and 30 (out of 38 and 36) countries showed declining incidence and mortality trends, respectively; whilst among women, 19 and 16 countries showed increasing incidence and mortality trends, respectively. Among men, the AAPCs ranged from -2.8 to -0.6 (incidence) and -3.6 to -1.1 (mortality) in countries with declining trend, whereas among women the AAPC range was 0.4 to 8.9 (incidence) and 1 to 4.4 (mortality) in countries with increasing trend. Among women, Brazil, Spain and Cyprus had the greatest incidence increase, and all countries in Western, Southern and Eastern Europe reported increasing mortality. These findings highlighted the need for targeted preventive measures.
Calafat, Antonia M.; Woodruff, Tracey J.
2014-01-01
Background: Phthalates are ubiquitous environmental contaminants. Because of potential adverse effects on human health, butylbenzyl phthalate [BBzP; metabolite, monobenzyl phthalate (MBzP)], di-n-butyl phthalate [DnBP; metabolite, mono-n-butyl phthalate (MnBP)], and di(2-ethylhexyl) phthalate (DEHP) are being replaced by substitutes including other phthalates; however, little is known about consequent trends in population-level exposures. Objective: We examined temporal trends in urinary concentrations of phthalate metabolites in the general U.S. population and whether trends vary by sociodemographic characteristics. Methods: We combined data on 11 phthalate metabolites for 11,071 participants from five cycles of the National Health and Nutrition Examination Survey (2001–2010). Percent changes and least square geometric means (LSGMs) were calculated from multivariate regression models. Results: LSGM concentrations of monoethyl phthalate, MnBP, MBzP, and ΣDEHP metabolites decreased between 2001–2002 and 2009–2010 [percent change (95% CI): –42% (–49, –34); –17% (–23, –9); –32% (–39, –23) and –37% (–46, –26), respectively]. In contrast, LSGM concentrations of monoisobutyl phthalate, mono(3-carboxypropyl) phthalate (MCPP), monocarboxyoctyl phthalate, and monocarboxynonyl phthalate (MCNP) increased over the study period [percent change (95% CI): 206% (178, 236); 25% (8, 45); 149% (102, 207); and 15% (1, 30), respectively]. Trends varied by subpopulations for certain phthalates. For example, LSGM concentrations of ΣDEHP metabolites, MCPP, and MCNP were higher in children than adults, but the gap between groups narrowed over time (pinteraction < 0.01). Conclusions: Exposure of the U.S. population to phthalates has changed in the last decade. Data gaps make it difficult to explain trends, but legislative activity and advocacy campaigns by nongovernmental organizations may play a role in changing trends. Citation: Zota AZ, Calafat AM, Woodruff TJ. 2014. Temporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001–2010. Environ Health Perspect 122:235–241; http://dx.doi.org/10.1289/ehp.1306681 PMID:24425099
Lebeuf, Michel; Noël, Michelle; Trottier, Steve; Measures, Lena
2007-09-20
Temporal trends of persistent, bioaccumulative and toxic (PBT) chemicals were examined in beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary (SLE), Canada. Blubber samples of 86 adult belugas were collected from animals stranded on the shore of the SLE between 1987 and 2002 and analyzed for several regulated PBTs, including polychlorinated biphenyls (PCBs), p,p'dichlorodiphenyltrichloroethane (DDT) and its metabolites, chlordane (CHL) and related compounds, hexachlorocyclohexane (HCH) isomers, hexachlorobenzene (HCB) and Mirex. In addition, time trends of tris(4-chlorophenyl)methane (TCPMe) and tris(4-chlorophenyl)methanol (TCPMOH), two compounds that may origin from DDT formulations, were also examined. Concentrations of most of the PBTs examined had exponentially decreased by at least a factor of two (half-life time (t(1/2))<15 years) in beluga between 1987 and 2002 while no increasing trends were observed for any of the PBTs measured. The decreasing trends of PBT concentrations in SLE beluga may be due to a decline in contamination of its diet following North American and international regulations on the use and production of these compounds or by a change in its diet itself or by a combination of both. Some PBTs did not exhibit any significant trends in beluga possibly because the most intense elimination phase subsequent to legislative regulations occurred prior to the 1987-2002 time period. Other chemicals, such gamma-HCH, did not significantly decrease likely because they are still currently used in some restricted applications. Conversely, alpha-HCH showed a significant decreasing trend indicating that SigmaHCHs is not representative of all HCHs. Both TCPMe and TCPMOH exhibited no trends in beluga during the time period examined. The metabolic capacity of SLE beluga has apparently accelerated the depletion of at least one PBT, namely CB-28/31. A significant relationship between the half-life of PBTs in beluga and log Kow was observed for most of the chemicals examined. Several factors are expected to have influenced the temporal changes of PBT concentrations in beluga which limit the usefulness of this species as a bioindicator of changes in PBT contamination in the SLE ecosystem.
Increasing hip fractures in patients receiving hemodialysis and peritoneal dialysis.
Mathew, Anna T; Hazzan, Azzour; Jhaveri, Kenar D; Block, Geoffrey A; Chidella, Shailaja; Rosen, Lisa; Wagner, John; Fishbane, Steve
2014-01-01
Dialysis patients are at increased risk for hip fractures. Because changes in treatment of metabolic bone disease in this population may have impacted bone fragility, this study aims to analyze the longitudinal risk for fractures in hemodialysis (HD) and peritoneal dialysis (PD) patients. Using the United States Renal Data System database from 1992 to 2009, the temporal trend in hip fractures requiring hospitalization was analyzed using an overdispersed Poisson regression model. Generalized Estimating Equations were used to assess the adjusted effect of dialysis modality on hip fractures. 842,028 HD and 87,086 PD patients were included. There was a significant temporal increase in hip fractures in both HD and PD with stabilization of rates after 2005. With stratification, the increase in fractures occurred in patients who were white and over 65 years of age. In adjusted analyses, HD patients had 1.6 times greater odds of hip fracture than PD patients (OR 1.60 95% CI 1.52, 1.68, p < 0.001). In contrast to the declining hip fracture rates in the general population, we identified a temporal rise in incidence of hip fractures in HD and PD patients. HD patients were at a higher risk for hip fractures than PD patients after adjustment for recognized bone fragility risk factors. The increase in fracture rate over time was limited to older white patients in both HD and PD, the demographics being consistent with osteoporosis risk. Further research is indicated to better understand the longitudinal trend in hip fractures and the discordance between HD and PD. © 2014 S. Karger AG, Basel.
Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China
NASA Astrophysics Data System (ADS)
Zuo, Depeng; Cai, Siyang; Xu, Zongxue; Li, Fulin; Sun, Wenchao; Yang, Xiaojing; Kan, Guangyuan; Liu, Pin
2018-01-01
The temporal variations and spatial patterns of drought in Shandong Province of Eastern China were investigated by calculating the standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, 6-, 12-, and 24-month time scales. Monthly precipitation and air temperature time series during the period 1960-2012 were collected at 23 meteorological stations uniformly distributed over the region. The non-parametric Mann-Kendall test was used to explore the temporal trends of precipitation, air temperature, and the SPEI drought index. S-mode principal component analysis (PCA) was applied to identify the spatial patterns of drought. The results showed that an insignificant decreasing trend in annual total precipitation was detected at most stations, a significant increase of annual average air temperature occurred at all the 23 stations, and a significant decreasing trend in the SPEI was mainly detected at the coastal stations for all the time scales. The frequency of occurrence of extreme and severe drought at different time scales generally increased with decades; higher frequency and larger affected area of extreme and severe droughts occurred as the time scale increased, especially for the northwest of Shandong Province and Jiaodong peninsular. The spatial pattern of drought for SPEI-1 contains three regions: eastern Jiaodong Peninsular and northwestern and southern Shandong. As the time scale increased to 3, 6, and 12 months, the order of the three regions was transformed into another as northwestern Shandong, eastern Jiaodong Peninsular, and southern Shandong. For SPEI-24, the location identified by REOF1 was slightly shifted from northwestern Shandong to western Shandong, and REOF2 and REOF3 identified another two weak patterns in the south edge and north edge of Jiaodong Peninsular, respectively. The potential causes of drought and the impact of drought on agriculture in the study area have also been discussed. The temporal variations and spatial patterns of drought obtained in this study provide valuable information for water resources planning and drought disaster prevention and mitigation in Eastern China.
Leslie, William D; Lix, Lisa M; Yogendran, Marina S; Morin, Suzanne N; Metge, Colleen J; Majumdar, Sumit R
2014-04-01
Diverging international trends in fracture rates have been observed, with most reports showing that fracture rates have stabilized or decreased in North American and many European populations. We studied two complementary population-based historical cohorts from the Province of Manitoba, Canada (1996-2006) to determine whether declining osteoporotic fracture rates in Canada are attributable to trends in obesity, osteoporosis treatment, or bone mineral density (BMD). The Population Fracture Registry included women aged 50 years and older with major osteoporotic fractures, and was used to assess impact of changes in osteoporosis treatment. The BMD Registry included all women aged 50 years and older undergoing BMD tests, and was used to assess impact of changes in obesity and BMD. Model-based estimates of temporal changes in fracture rates (Fracture Registry) were calculated. Temporal changes in obesity and BMD and their association with fracture rates (BMD Registry) were estimated. In the Fracture Registry (n=27,341), fracture rates declined 1.6% per year (95% confidence interval [CI], 1.3% to 2.0%). Although osteoporosis treatment increased from 5.6% to 17.4%, the decline in fractures was independent of osteoporosis treatment. In the BMD Registry (n=36,587), obesity increased from 12.7% to 27.4%. Femoral neck BMD increased 0.52% per year and lumbar spine BMD increased 0.32% per year after covariate adjustment (p<0.001). Major osteoporotic fracture rates decreased in models that did not include femoral neck BMD (fully adjusted annual change -1.8%; 95% CI, -2.9 to -0.5), but adjusting for femoral neck BMD accounted for the observed reduction (annual change -0.5%; 95% CI, -1.8 to +1.0). In summary, major osteoporotic fracture rates declined substantially and linearly from 1996 to 2006, and this was explained by improvements in BMD rather than greater rates of obesity or osteoporosis treatment. © 2014 American Society for Bone and Mineral Research.
Dramatic increase in sea otter mortality from white sharks in California
Tinker, M. Tim; Hatfield, Brian B.; Harris, Michael D.; Ames, Jack A.
2016-01-01
Although southern sea otters (Enhydra lutris nereis) are not considered prey for white sharks (Carcharodon carcharias), sharks do nonetheless bite sea otters. We analyzed spatial and temporal trends in shark bites on sea otters in California, assessing the frequency of shark bite wounds in 1,870 carcasses collected since 1985. The proportion of stranded sea otters having shark bites has increased sharply since 2003, and white shark bites now account for >50% of recovered carcasses. The trend was most pronounced in the southern part of the range, from Estero Bay to Point Conception, where shark bite frequency has increased eightfold. Seasonal trends were also evident: most shark-bitten carcasses are recovered in late summer and fall; however, the period of elevated shark bite frequency has lengthened. The causes of these trends are unclear, but possible contributing factors include increased white shark abundance and/or changes in white shark behavior and distribution. In particular, the spatiotemporal patterns of shark-bitten sea otters match increases in pinniped populations, and the increased availability of marine mammal prey for white sharks may have led to more sharks spending more time in nearshore waters utilized by both sea otters and pinnipeds.
Steben, Marc; Ouhoummane, Najwa; Rodier, Caroline; Brassard, Paul
2013-04-01
We assessed temporal trend in the incidence and prevalence of genital warts (GWs) in the province of Quebec, Canada, between 1998 and 2007 as a baseline for future assessment of the impact of Quebec human papillomavirus vaccination program. Data on GWs were obtained from the linkage of the physician service claims and the public insurance drug plan databases. Genital warts were identified through a prescription of podofilox, a medical procedure code specific to GWs or a diagnosis code for viral warts followed by a prescription of imiquimod or fluorouracil within 2 weeks. An episode was considered incident if it was preceded by a 12-month interval period free of GWs care. During the study period, a total of 27,138 episodes of GWs occurred among 24,267 individuals. The age-standardized incidence rate increased over time in men and women. The highest incidence was observed in women aged 20 to 24 years (391.9/100,000) and in men aged 25 to 29 years (383.3/100,000). Similar trends in prevalence were observed. The incidence and prevalence of GWs has increased among the population covered by the public insurance drug plan in Quebec.
NASA Astrophysics Data System (ADS)
Sánchez de la Campa, A. M.; de la Rosa, J. D.
2014-12-01
A temporal series study of atmospheric aerosol was performed over the last ten years (2003-2012) in an urban background monitoring station with ceramic industrial influence, in Bailén, SE Spain. Temporal trends of major and minor chemical components of PM10 for a long term data series were investigated, showing that PM10 concentrations have been steadily decreasing over almost a decade, with a statistical significance. Measurements indicate a reduction of elements and components related to the industrial activity of brick-ceramic production (V, Cd, Rb, La, Cr, Ni, As, Pb and SO42-). Conversely, Cu levels define an increasing trend from the beginning of the study period but with the highest step trend since 2011-2012, coinciding with the beginning of the financial and economic crisis in 2008. A similar time evolution pattern of Cu and OC, EC, and K levels may be a tracer of domestic local combustion source, and a new biomass burning source has been identified. Chemical composition of olive tree logs suggest as the combustion of wood with high concentration of Cu can imply an increase of Cu concentration in the atmospheric particles compared with other sources such as traffic.
NASA Astrophysics Data System (ADS)
Zeb, Naila; Fahim Khokhar, Muhammad; Murtaza, Rabbia; Noreen, Asma; Khalid, Tameem
2016-07-01
Air pollution is the expected key environmental issue of Pakistan in coming years due to its ongoing rapid economic growth and this trend suggests only worst air quality over time. In 2014, World bank reported the Pakistan's urban air quality among the most severe in the world and intimated the government to make improvement in air quality as a priority policy agenda. In addition it is recommended to strengthen the institutional and technical capacity of organizations responsible for air quality management. Therefore, the study is designed to put efforts in highlighting air quality issues. The study will provide first database for tropospheric trace gases over Pakistan. The study aims to analyse tropospheric concentrations of CO, TOC, NO2 and HCHO over Pakistan using multisensory data from January 2005 to January 2014. Spatio-temporal and seasonal variability of tropospheric trace gases is observed over the decade to explore long term trend. Hotspots are identified to see variation of species with latitude and to highlight possible sources of trace gases over the Pakistan. High concentrations of trace gases are mainly observed over the Punjab region, which may be attributed to its metropolitan importance. It is the major agricultural, industrialized and urbanized (nearly 60% of the Pakistan's population) sector of the country. Overall significant decreasing trend of CO is identified by MOPITT with relative change of 12.4%. Tropospheric ozone column (TOC) showed insignificant increasing trend with temporal increase of 10.4% whereas NO2 exhibited a significant temporal increase of about 28%. For formaldehyde (HCHO), an increase of about 3.8% is calculated for SCIAMACHY data. Well defined seasonal cycles for these trace gases are observed over the whole study period. CO concentrations showed peak in winter months (November/December/January/February) and dip in the months of Summer/Monsoon (June/July/August). In spite of CO, TCO increases gradually in March and peaks in June (Summer/Monsoon). For NO2, the highest concentrations are observed during Winter and the lowest concentrations are found in Summer/Monsoon. Like TOC, the HCHO showed seasonal maxima during summer and minima during winter. The expected sources are the crop residue burning, biomass/fossil fuel burning for heating purposes, urbanization, industrialization and meterological variations. Further focus is made on exploring the association of trace gases in atmosphere and their source identification.
Luyssaert, Sebastiaan; Sulkava, Mika; Raitio, Hannu; Hollmén, Jaakko
2004-02-01
This paper introduces the use of nutrition profiles as a first step in the development of a concept that is suitable for evaluating forest nutrition on the basis of large-scale foliar surveys. Nutrition profiles of a tree or stand were defined as the nutrient status, which accounts for all element concentrations, contents and interactions between two or more elements. Therefore a nutrition profile overcomes the shortcomings associated with the commonly used concepts for evaluating forest nutrition. Nutrition profiles can be calculated by means of a neural network, i.e. a self-organizing map, and an agglomerative clustering algorithm with pruning. As an example, nutrition profiles were calculated to describe the temporal variation in the mineral composition of Scots pine and Norway spruce needles in Finland between 1987 and 2000. The temporal trends in the frequency distribution of the nutrition profiles of Scots pine indicated that, between 1987 and 2000, the N, S, P, K, Ca, Mg and Al decreased, whereas the needle mass (NM) increased or remained unchanged. As there were no temporal trends in the frequency distribution of the nutrition profiles of Norway spruce, the mineral composition of the needles of Norway spruce needles subsequently did not change. Interpretation of the (lack of) temporal trends was outside the scope of this example. However, nutrition profiles prove to be a new and better concept for the evaluation of the mineral composition of large-scale surveys only when a biological interpretation of the nutrition profiles can be provided.
NASA Astrophysics Data System (ADS)
Zhu, Liang; Wang, Youguo
2018-07-01
In this paper, a rumor diffusion model with uncertainty of human behavior under spatio-temporal diffusion framework is established. Take physical significance of spatial diffusion into account, a diffusion threshold is set under which the rumor is not a trend topic and only spreads along determined physical connections. Heterogeneity of degree distribution and distance distribution has also been considered in theoretical model at the same time. The global existence and uniqueness of classical solution are proved with a Lyapunov function and an approximate classical solution in form of infinite series is constructed with a system of eigenfunction. Simulations and numerical solutions both on Watts-Strogatz (WS) network and Barabási-Albert (BA) network display the variation of density of infected connections from spatial and temporal dimensions. Relevant results show that the density of infected connections is dominated by network topology and uncertainty of human behavior at threshold time. With increase of social capability, rumor diffuses to the steady state in a higher speed. And the variation trends of diffusion size with uncertainty are diverse on different artificial networks.
Regional-Scale Declines in Productivity of Pink and Chum Salmon Stocks in Western North America
Malick, Michael J.; Cox, Sean P.
2016-01-01
Sockeye salmon (Oncorhynchus nerka) stocks throughout the southern part of their North American range have experienced declines in productivity over the past two decades. In this study, we tested the hypothesis that pink (O. gorbuscha) and chum (O. keta) salmon stocks have also experienced recent declines in productivity by investigating temporal and spatial trends in productivity of 99 wild North American pink and chum salmon stocks. We used a combination of population dynamics and time series models to quantify individual stock trends as well as common temporal trends in pink and chum salmon productivity across local, regional, and continental spatial scales. Our results indicated widespread declines in productivity of wild chum salmon stocks throughout Washington (WA) and British Columbia (BC) with 81% of stocks showing recent declines in productivity, although the exact form of the trends varied among regions. For pink salmon, the majority of stocks in WA and BC (65%) did not have strong temporal trends in productivity; however, all stocks that did have trends in productivity showed declining productivity since at least brood year 1996. We found weaker evidence of widespread declines in productivity for Alaska pink and chum salmon, with some regions and stocks showing declines in productivity (e.g., Kodiak chum salmon stocks) and others showing increases (e.g., Alaska Peninsula pink salmon stocks). We also found strong positive covariation between stock productivity series at the regional spatial scale for both pink and chum salmon, along with evidence that this regional-scale positive covariation has become stronger since the early 1990s in WA and BC. In general, our results suggest that common processes operating at the regional or multi-regional spatial scales drive productivity of pink and chum salmon stocks in western North America and that the effects of these process on productivity may change over time. PMID:26760510
NASA Astrophysics Data System (ADS)
Demaria, E. M.; Goodrich, D. C.; Keefer, T.
2017-12-01
Observed sub-daily precipitation intensities from contrasting hydroclimatic environments in the USA are used to evaluate temporal trends and to develop Intensity-Duration Frequency (IDF) curves under stationary and nonstationary climatic conditions. Analyses are based on observations from two United States Department of Agriculture (USDA)-Agricultural Research Service (ARS) experimental watersheds located in a semi-arid and a temperate environment. We use an Annual Maximum Series (AMS) and a Partial Duration Series (PDS) approach to identify temporal trends in maximum intensities for durations ranging from 5- to 1440-minutes. A Bayesian approach with Monte Carlo techniques is used to incorporate the effect of non-stationary climatic assumptions in the IDF curves. The results show increasing trends in observed AMS sub-daily intensities in both watersheds whereas trends in the PDS observations are mostly positive in the semi-arid site and a mix of positive and negative in the temperate site. Stationary climate assumptions lead to much lower estimated sub-daily intensities than those under non-stationary assumptions with larger absolute differences found for shorter durations and smaller return periods. The risk of failure (R) of a hydraulic structure is increased for non-stationary effects over those of stationary effects, with absolute differences of 25% for a 100-year return period (T) and a project life (n) of 100 years. The study highlights the importance of considering non-stationarity, due to natural variability or to climate change, in storm design.
NASA Astrophysics Data System (ADS)
Alshawaf, Fadwa; Dick, Galina; Heise, Stefan; Balidakis, Kyriakos; Schmidt, Torsten; Wickert, Jens
2017-04-01
Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research although they may not be sufficiently long. In this work, we compare the trend estimated from GNSS time series with that estimated from European Center for Medium-RangeWeather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements.We aim at evaluating climate evolution in Central Europe by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates (>70%) with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using the meteorological measurements. The results show a positive trend in the PWV time series with an increase of 0.2-0.7 mm/decade with a mean standard deviations of 0.016 mm/decade. In this paper, we present the results at three GNSS stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.
An experimental study of the fluid mechanics associated with porous walls
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.
Rafique, Rashid; Zhao, Fang; de Jong, Rogier; ...
2016-02-25
The net primary productivity (NPP) is commonly used for understanding the dynamics of terrestrial ecosystems and their role in carbon cycle. We used a combination of the most recent NDVI and model–based NPP estimates (from five models of the TRENDY project) for the period 1982-2012, to study the role of terrestrial ecosystems in carbon cycle under the prevailing climate conditions. We found that 80% and 67% of the global land area showed positive NPP and NDVI values, respectively, for this period. The global NPP was estimated to be about 63 Pg C y -1, with an increase of 0.214 Pgmore » C y -1 y -1. Similarly, the global mean NDVI was estimated to be 0.33, with an increasing trend of 0.00041 y-1. The spatial patterns of NPP and NDVI demonstrated substantial variability, especially at the regional level, for most part of the globe. However, on temporal scale, both global NPP and NDVI showed a corresponding pattern of increase (decrease) for the duration of this study except for few years (e.g. 1990 and 1995-98). Generally, the Northern Hemisphere showed stronger NDVI and NPP increasing trends over time compared to the Southern Hemisphere; however, NDVI showed larger trends in Temperate regions while NPP showed larger trends in Boreal regions. Among the five models, the maximum and minimum NPP were produced by JULES (72.4 Pg C y -1) and LPJ (53.72 Pg C y -1) models, respectively. At latitudinal level, the NDVI and NPP ranges were ~0.035 y -1 to ~-0.016 y -1 and ~0.10 Pg C y -1 y -1 to ~-0.047 Pg C y -1 y -1, respectively. Overall, the results of this study suggest that the modeled NPP generally correspond to the NDVI trends in the temporal dimension. Lastly, the significant variability in spatial patterns of NPP and NDVI trends points to a need for research to understand the causes of these discrepancies between molded and observed ecosystem dynamics, and the carbon cycle.« less
Time trends (1998-2007) in brain cancer incidence rates in relation to mobile phone use in England.
de Vocht, Frank; Burstyn, Igor; Cherrie, John W
2011-07-01
Mobile phone use in the United Kingdom and other countries has risen steeply since the early 1990's when the first digital mobile phones were introduced. There is an ongoing controversy about whether radio frequency (RF) exposure from mobile phones increases the risk of brain cancer. However, given the widespread use and nearly two decades elapsing since mobile phones were introduced, an association should have produced a noticeable increase in the incidence of brain cancer by now. Trends in rates of newly diagnosed brain cancer cases in England between 1998 and 2007 were examined. There were no time trends in overall incidence of brain cancers for either gender, or any specific age group. Systematic increases in rates for cancers of the temporal lobe in men (0.04 new cases/year) and women (0.02/year) were observed, along with decreases in the rates of cancers of the parietal lobe (-0.03/year), cerebrum (-0.02/year) and cerebellum (-0.01/year) in men only. The increased use of mobile phones between 1985 and 2003 has not led to a noticeable change in the incidence of brain cancer in England between 1998 and 2007. The observed increase in the rate of cancers in the temporal lobe, if caused by mobile phone use, would constitute <1 additional case per 100,000 people in that period. These data do not indicate a pressing need to implement a precautionary principle by means of population-wide interventions to reduce RF exposure from mobile phones. Copyright © 2011 Wiley-Liss, Inc.
Short-term Aerosol Trends: Reality or Myth?
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Zubko, Viktor
2009-01-01
The main questions addressed in this slide presentation involve short-term trends of MODIS aerosol optical thickness (AOT) over 6 years: (1) Why are the trends different in different regions? (2) How are these trends so high? (3) Why are they "coherent" in many areas? (4) Are these changes in aerosol concentrations real, i.e., are they monotonic changes in emissions? Several views of the Spatial Distribution of AOT from Terra are shown. In conclusion there are several trends: (1) There is a broad spatial inhomogenueity in AOT trends over 6 years of MODIS Terra and Aqua (2) Some of the areas demonstrate clear positive trends related to increase of emission (e.g., Eastern China) (3) Strong trends in some other areas are superficial and might be attributed, in part, to: (3a) Least squares linear trend sensitivity to outliers (need to use more robust linear fitting method) (3b) Spatial and temporal shifts or trends in meteorological conditions, especially in wind patterns responsible for aerosol transport (6) Aerosol trends should be studied together with changes in meteorology patterns as they might closely linked together
NASA Astrophysics Data System (ADS)
Snyder, C. D.; Jastram, J. D.; Hitt, N. P.; Woffod, J.; Rice, K. C.
2012-12-01
Global climate-change models predict warmer stream temperatures, but there have been few studies that document such effects on stream communities. In Shenandoah National Park, Virginia, long-term temperature records indicate that stream temperatures show an increasing trend over the last 20 years and especially over the last 10 years. Stream temperatures have increased apparently due to atmospheric warming (i.e., stream temperatures are strongly correlated with regional air temperature patterns). Across 14 monitored stream sites, the median increase in maximum annual water temperature was 0.32oC per year for the 10-yr period between 2000 and 2009, and all 14 sites had positive trend slopes. Moreover, in contrast to water-chemistry trends, temperature trends showed no spatial structure and were consistent throughout the park. The observed warming is consistent with global warming projections, but other factors, including the North Atlantic Oscillation and forest defoliation due to gypsy moth (Lepidoptera: Lymantriidae), also may have contributed to warming trends. We summarized benthic macroinvertebrate community composition and structure from samples collected at 24 stream sites over the last 20 years and evaluated temporal patterns in the context of observed temperature trends. We found that a substantial amount of temporal variation in both taxonomic composition and community structure could be explained by temperature trends, even after accounting for water-chemistry changes. We observed significant declines in community diversity as well as a decline in the abundance of several stonefly (Plecoptera) taxa, a cold-water-dependent taxonomic group. We hypothesize that temperature-induced changes in the diversity and composition of macroinvertebrate communities could cascade to other faunal groups and other parts of the watershed. For instance, reduced abundances of stoneflies, an important component of the shredder functional group, may lead to reduced export of fine particulate organic matter from headwaters, disrupting food webs and reducing productivity to stream reaches farther downstream.
Distant drivers or local signals: where do mercury trends in western Arctic belugas originate?
Loseto, L L; Stern, G A; Macdonald, R W
2015-03-15
Temporal trends of contaminants are monitored in Arctic higher trophic level species to inform us on the fate, transport and risk of contaminants as well as advise on global emissions. However, monitoring mercury (Hg) trends in species such as belugas challenge us, as their tissue concentrations reflect complex interactions among Hg deposition and methylation, whale physiology, dietary exposure and foraging patterns. The Beaufort Sea beluga population showed significant increases in Hg during the 1990 s; since that time an additional 10 years of data have been collected. During this time of data collection, changes in the Arctic have affected many processes that underlie the Hg cycle. Here, we examine Hg in beluga tissues and investigate factors that could contribute to the observed trends after removing the effect of age and size on Hg concentrations and dietary factors. Finally, we examine available indicators of climate variability (Arctic Oscillation (AO), the Pacific Decadal Oscillation (PDO) and sea-ice minimum (SIM) concentration) to evaluate their potential to explain beluga Hg trends. Results reveal a decline in Hg concentrations from 2002 to 2012 in the liver of older whales and the muscle of large whales. The temporal increases in Hg in the 1990 s followed by recent declines do not follow trends in Hg emission, and are not easily explained by diet markers highlighting the complexity of feeding, food web dynamics and Hg uptake. Among the regional-scale climate variables the PDO exhibited the most significant relationship with beluga Hg at an eight year lag time. This distant signal points us to consider beluga winter feeding areas. Given that changes in climate will impact ecosystems; it is plausible that these climate variables are important in explaining beluga Hg trends. Such relationships require further investigation of the multiple connections between climate variables and beluga Hg. Copyright © 2014 Elsevier B.V. All rights reserved.
Chang, Man-Huei; Moonesinghe, Ramal; Athar, Heba M; Truman, Benedict I
2016-01-01
Temporal trends in disparities in the leading causes of death within and between US demographic subgroups indicate the need for and success of interventions to prevent premature death in vulnerable populations. Studies that report recent trends are limited and outdated. To describe temporal trends in disparities in death rates by sex and race/ethnicity for the 10 leading causes of death in the United States during 1999-2010. We used underlying cause of death data and population estimates from the National Vital Statistics System to calculate age-adjusted death rates for the 10 leading causes of death during 1999-2010. We measured absolute and relative disparities by sex and race/ethnicity for each cause and year of death; we used weighted linear regression to test for significance of trends over time. Of the 10 leading causes of death, age-adjusted death rates by sex and race/ethnicity declined during 1999-2010 for 6 causes and increased for 4 causes. But sex and racial/ethnic disparities between groups persisted for each year and cause of death. In the US population, the decreasing trend during 1999-2010 was greatest for cerebrovascular disease (-36.5%) and the increasing trend was greatest for Alzheimer disease (52.4%). For each sex and year, the disparity in death rates between Asian/Pacific Islanders (API) and other groups varied significantly by cause of death. In 2010, the API-non-Hispanic black disparity was largest for heart disease, malignant neoplasms, cerebrovascular diseases, and nephritis; the API-American Indian/Alaska Native disparity was largest for unintentional injury, diabetes mellitus, influenza and pneumonia, and suicide; and the API-non-Hispanic white disparity was largest for chronic lower respiratory diseases and Alzheimer disease. Public health practitioners can use these findings to improve policies and practices and to evaluate progress in eliminating disparities and their social determinants in vulnerable populations.
Spatio-temporal changes in precipitation over Beijing-Tianjin-Hebei region, China
NASA Astrophysics Data System (ADS)
Zhao, Na; Yue, Tianxiang; Li, Han; Zhang, Lili; Yin, Xiaozhe; Liu, Yi
2018-04-01
Changes in precipitation have a large effect on human society and are of primary importance for many scientific fields such as hydrology, agriculture and eco-environmental sciences. The present study intended to investigate the spatio-temporal characteristics of precipitation in Beijing-Tianjin-Hebei (BTH) region by using 316 meteorological stations during the period 1965-2014. Geographical Weighted Regression (GWR) method and High Accuracy Surface Modeling (HASM) method were applied to produce the precipitation patterns at different time scales. Mann-Kendall (MK) statistical test was applied to analyze the precipitation temporal variations. Results indicated that annual precipitation over the past 50 years appeared to be a non-periodic oscillation phenomenon; the number of wet years was approximately the same as that of dry years; significant positive trends were observed in spring during 1978-2014 and summer during 1996-2014; on the whole, precipitation in May, June, September, and December showed increasing trends at the 95% confidence level; and significant positive trends were also identified in July during 2000-2013 and August during 1997-2010, while slight decreasing trends were observed in February and November. Summer (June, July, and August) was the wettest season, accounting for 68.73% of annual totals in BTH. In general, northeastern BTH received the highest range of precipitation while northwestern area had the lowest. It was found that precipitation variation in this region had been closely linked to latitude, Digital Elevation Model (DEM), distance to the sea, and urbanization rate. In addition, land use played an important role in the decadal precipitation changes in BTH.
Dong, Zhiwen; Kang, Shichang; Qin, Dahe; Qin, Xiang; Yan, Fangping; Du, Wentao; Wei, Ting
2017-03-01
An evaluation of glacial meltwater chemistry is needed under recent dramatic glacier melting when water resources might be significantly impacted. This study investigated trace elements variation in the meltwater stream, and its related aquatic environmental information, at the Laohugou (LHG) glacier basin (4260 m a.s.l.) at a remote location in northeast Tibetan Plateau. We focused on the spatial, temporal and diurnal change of trace elements during the glacier ablation period. Results showed evident elements spatial difference on the glacier surface meltwater, as most of the elements showed increased concentration at the terminus compared to higher elevations sites. Dominant elements in the meltwater were Ba, Sr and Cr, whereas elements with high enrichment factors (EFs) were Sb, Ni, Mo and Zn. Temporal change of some trace elements concentration (e.g. Sc, Cu, and Rb) indicated increasing trend with accelerated snow-ice melting, whereas others (e.g. Ni, Zn, and Pb) showed decreasing trend. We find that, trace elements showed evident diurnal change and a peak value of concentration was observed each day at about 15:00-17:00, and the diurnal change was influenced by runoff level and pH. Moreover, EFs calculations revealed that heavy metals were partially originated from regional anthropogenic sources. Overall, the accelerated diurnal and temporal snow-ice melting (with high runoff level) were correlated to increased elemental concentration, pH, EC and elemental change mode, and thus this work is of great importance for evaluating the impacts of accelerated glacier melting to meltwater chemistry and downstream ecosystem in the northeast Tibetan Plateau. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stagličić, N.; Matić-Skoko, S.; Pallaoro, A.; Grgičević, R.; Kraljević, M.; Tutman, P.; Dragičević, B.; Dulčić, J.
2011-09-01
Long-term interannual changes in abundance, biomass, diversity and structure of littoral fish assemblages were examined between 1993 and 2009 by experimental trammel net fishing up to six times per year, within the warm period - May to September, at multiple areas along the eastern Adriatic coast with the aim of testing for the consistency of patterns of change across a large spatial scale (˜600 km). The results revealed spatially consistent increasing trends of total fish abundance and biomass growing at an average rate of 15 and 14% per year, respectively. Of the diversity indices analysed, the same pattern of variability was observed for Shannon diversity, while Pielou evenness and average taxonomic distinctness measures Δ ∗ and Δ + showed spatial variability with no obvious temporal trends. Multivariate fish assemblage structure underwent a directional change displaying a similar pattern through time for all the areas. The structural change in fish assemblages generally involved most of the species present in trammel net catches. A large pool of fish species responsible for producing the temporal pattern of assemblage change was relatively different in each of the areas reflecting a large geographic range covered by the study. An analysis of 4 fish species ( Symphodus tinca, Pagellus erythrinus, Mullus surmuletus, Scorpaena porcus) common to each of the study areas as the ones driving the temporal change indicated that there were clear increasing trends of their mean catches across the years at all the study areas. A common pattern among time trajectories across the spatial scale studied implies that the factor affecting the littoral fish assemblages is not localised but regional in nature. As an underlying factor having the potential to induce such widespread and consistent improvements in littoral fish assemblages, a more restrictive artisanal fishery management that has progressively been put in place during the study period, is suggested and discussed.
Pajević, Tina; Glišić, Branislav
2017-05-01
Anthropological studies have reported that tooth size decreases in the context of diet changes. Some investigations have found a reverse trend in tooth size from the prehistoric to the modern times. The aims of this study were to analyze tooth size in skeletal samples from Mesolithic-Neolithic Age, Bronze Age, and Roman to Medieval times to determine sex differences and establish a temporal trend in tooth size in the aforementioned periods. Well-preserved permanent teeth were included in the investigation. The mesiodistal (MD) diameter of all teeth and buccolingual (BL) diameter of the molars were measured. Effects of sex and site were tested by one-way ANOVA, and the combined effect of these factors was analyzed by UNIANOVA. Sexual dimorphism was present in the BL diameters of all molars and MD diameters of the upper first and the lower third molar. The lower canine was the most dimorphic tooth in the anterior region. The MD diameter of most teeth showed no significant difference between the groups, (sample from: Mesolithic-Neolithic Age-group 1; Bronze Age-group 2; Roman times-group 3; Medieval times-group 4), whereas the BL diameters of the upper second and the lower first molar were the largest in the first group. Multiple comparisons revealed a decrease in the BL diameter of the upper second and the lower first molar from the first to the later groups. Lower canine MD diameter exhibited an increase in the fourth group compared to the second group. On the basis of the MD diameter, a temporal trend could not be observed for most of the teeth. The lower canine exhibited an increase in the MD diameter from the prehistoric to the Medieval times. Changes of BL diameter were more homogeneous, suggesting that the temporal trend of molar size decreased from the Mesolithic-Neolithic to Medieval times in Serbia. Copyright © 2017. Published by Elsevier Ltd.
Prenatal and postnatal stress and asthma in children: Temporal- and sex-specific associations.
Lee, Alison; Mathilda Chiu, Yueh-Hsiu; Rosa, Maria José; Jara, Calvin; Wright, Robert O; Coull, Brent A; Wright, Rosalind J
2016-09-01
Temporal- and sex-specific effects of perinatal stress have not been examined for childhood asthma. We examined associations between prenatal and/or postnatal stress and children's asthma (n = 765) and effect modification by sex in a prospective cohort study. Maternal negative life events were ascertained prenatally and postpartum. Negative life event scores were categorized as 0, 1 to 2, 3 to 4, or 5 or greater to assess exposure-response relationships. We examined effects of prenatal and postnatal stress on children's asthma by age 6 years, modeling each as independent predictors, mutually adjusting for prenatal and postnatal stress, and finally considering interactions between prenatal and postnatal stress. Effect modification by sex was examined in stratified analyses and by fitting interaction terms. When considering stress in each period independently, among boys, a dose-response relationship was evident for each level increase on the ordinal scale prenatally (odds ratio [OR], 1.38; 95% CI, 1.06-1.79; P value for trend = .03) and postnatally (OR, 1.53; 95% CI, 1.16-2.01; P value for trend = .001); among girls, only the postnatal trend was significant (OR, 1.60; 95% CI, 1.14-2.22; P value for trend = .005). Higher stress in both the prenatal and postnatal periods was associated with increased odds of receiving a diagnosis of asthma in girls (OR, 1.37; 95% CI, 0.98-1.91; Pinteraction = .07) but not boys (OR, 1.08; 95% CI, 0.82-1.42; Pinteraction = .61). Although boys were more vulnerable to stress during the prenatal period, girls were more affected by postnatal stress and cumulative stress across both periods in relation to asthma. Understanding sex and temporal differences in response to early-life stress might provide unique insight into the cause and natural history of asthma. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Muir, Derek; Wang, Xiaowa; Bright, Doug; Lockhart, Lyle; Köck, Günter
2005-12-01
Spatial and temporal trends of mercury (Hg) and 22 other elements were examined in landlocked Arctic char (Salvelinus alpinus) from six lakes in the Canadian Arctic (Char, Resolute and North Lakes, and Amituk Lake on Cornwallis Island, Sapphire Lake on Devon Island and Boomerang Lake on Somerset Island). The objectives of the study were to compare recent concentrations of Hg and other metals in char with older data from Amituk, Resolute and Char Lakes, in order to examine temporal trends as well as to investigate factors influencing spatial trends in contaminant levels such as lake characteristics, trophic position, size and age of the fish. Geometric mean Hg concentrations in dorsal muscle ranged from 0.147 microg/g wet weight (ww) in Resolute Lake to 1.52 microg/g ww in Amituk Lake for samples collected over the period 1999-2003. Char from Amituk Lake also had significantly higher selenium (Se). Mercury in char from Resolute Lake was strongly correlated with fish length, weight, and age, as well as with thallium, lead and Se. In 5 of 6 lakes, Hg concentrations were correlated with stable nitrogen isotope ratios (delta15N) and larger char were feeding at a higher trophic level presumably due to feeding on smaller char. Weight adjusted mean Hg concentrations in char from Amituk Lake, and unadjusted geometric means in Char Lake and Resolute Lakes, did not show any statistically significant increase from the early 1990s to 2003. However, small sample sizes from 1999-2003 for fish <1000 g limited the power of this comparison in Char and Amituk Lakes. In Resolute Lake char, manganese, strontium and zinc showed consistent decreases from 1997 or 1999 to 2003 while nickel generally increased over the 6 year period. Differences in char trophic level inferred from delta15N values best explained the higher concentrations of Hg in Amituk Lake compared to the other lakes.
Georgakis, Marios K; Panagopoulou, Paraskevi; Papathoma, Paraskevi; Tragiannidis, Athanasios; Ryzhov, Anton; Zivkovic-Perisic, Snezana; Eser, Sultan; Taraszkiewicz, Łukasz; Sekerija, Mario; Žagar, Tina; Antunes, Luis; Zborovskaya, Anna; Bastos, Joana; Florea, Margareta; Coza, Daniela; Demetriou, Anna; Agius, Domenic; Strahinja, Rajko M; Sfakianos, Georgios; Nikas, Ioannis; Kosmidis, Sofia; Razis, Evangelia; Pourtsidis, Apostolos; Kantzanou, Maria; Dessypris, Nick; Petridou, Eleni Th
2017-11-01
To present incidence of central nervous system (CNS) tumours among adolescents and young adults (AYAs; 15-39 years) derived from registries of Southern and Eastern Europe (SEE) in comparison to the Surveillance, Epidemiology and End Results (SEER), US and explore changes due to etiological parameters or registration improvement via evaluating time trends. Diagnoses of 11,438 incident malignant CNS tumours in AYAs (1990-2014) were retrieved from 14 collaborating SEE cancer registries and 13,573 from the publicly available SEER database (1990-2012). Age-adjusted incidence rates (AIRs) were calculated; Poisson and joinpoint regression analyses were performed for temporal trends. The overall AIR of malignant CNS tumours among AYAs was higher in SEE (28.1/million) compared to SEER (24.7/million). Astrocytomas comprised almost half of the cases in both regions, albeit the higher proportion of unspecified cases in SEE registries (30% versus 2.5% in SEER). Similar were the age and gender distributions across SEE and SEER with a male-to-female ratio of 1.3 and an overall increase of incidence by age. Increasing temporal trends in incidence were documented in four SEE registries (Greater Poland, Portugal North, Turkey-Izmir and Ukraine) versus an annual decrease in Croatia (-2.5%) and a rather stable rate in SEER (-0.3%). This first report on descriptive epidemiology of AYAs malignant CNS tumours in the SEE area shows higher incidence rates as compared to the United States of America and variable temporal trends that may be linked to registration improvements. Hence, it emphasises the need for optimisation of cancer registration processes, as to enable the in-depth evaluation of the observed patterns by disease subtype. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kang, Su Yun; Battle, Katherine E; Gibson, Harry S; Ratsimbasoa, Arsène; Randrianarivelojosia, Milijaona; Ramboarina, Stéphanie; Zimmerman, Peter A; Weiss, Daniel J; Cameron, Ewan; Gething, Peter W; Howes, Rosalind E
2018-05-23
Reliable measures of disease burden over time are necessary to evaluate the impact of interventions and assess sub-national trends in the distribution of infection. Three Malaria Indicator Surveys (MISs) have been conducted in Madagascar since 2011. They provide a valuable resource to assess changes in burden that is complementary to the country's routine case reporting system. A Bayesian geostatistical spatio-temporal model was developed in an integrated nested Laplace approximation framework to map the prevalence of Plasmodium falciparum malaria infection among children from 6 to 59 months in age across Madagascar for 2011, 2013 and 2016 based on the MIS datasets. The model was informed by a suite of environmental and socio-demographic covariates known to influence infection prevalence. Spatio-temporal trends were quantified across the country. Despite a relatively small decrease between 2013 and 2016, the prevalence of malaria infection has increased substantially in all areas of Madagascar since 2011. In 2011, almost half (42.3%) of the country's population lived in areas of very low malaria risk (<1% parasite prevalence), but by 2016, this had dropped to only 26.7% of the population. Meanwhile, the population in high transmission areas (prevalence >20%) increased from only 2.2% in 2011 to 9.2% in 2016. A comparison of the model-based estimates with the raw MIS results indicates there was an underestimation of the situation in 2016, since the raw figures likely associated with survey timings were delayed until after the peak transmission season. Malaria remains an important health problem in Madagascar. The monthly and annual prevalence maps developed here provide a way to evaluate the magnitude of change over time, taking into account variability in survey input data. These methods can contribute to monitoring sub-national trends of malaria prevalence in Madagascar as the country aims for geographically progressive elimination.
TEMPORAL TRENDS IN THE HEALTH OF SOUTH FLORIDA CORAL REEFS
Barron, M.G., D.L. Santavy, L. MacLaughlin, E. Mueller, E. Peters, B. Quarles and J. Campbell. In press. Temporal Trends in the Health of South Florida Coral Reefs (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R100...
Turner-McGrievy, Gabrielle M; Beets, Michael W
2015-06-01
Few studies have used social networking sites to track temporal trends in health-related posts, particularly around weight loss. To examine the temporal relationship of Twitter messages about weight loss over 1 year (2012). Temporal trends in #weightloss mentions and #fitness, #diet, and #health tweets which also had the word "weight" in them were examined using three a priori time periods: (1) holidays: pre-winter holidays, holidays, and post-holidays; (2) Season: winter and summer; and (3) New Year's: pre-New Year's and post-New Year's. Regarding #weightloss, there were 145 (95 % CI 79, 211) more posts/day during holidays and 143 (95 % CI 76, 209) more posts/day after holidays as compared to 480 pre-holiday posts/day; 232 (95 % CI 178, 286) more posts/day during the winter versus summer (441 posts/day); there was no difference in posts around New Year's. Examining social networks for trends in health-related posts may aid in timing interventions when individuals are more likely to be discussing weight loss.
Analysis of spatial and temporal rainfall trends in Sicily during the 1921-2012 period
NASA Astrophysics Data System (ADS)
Liuzzo, Lorena; Bono, Enrico; Sammartano, Vincenzo; Freni, Gabriele
2016-10-01
Precipitation patterns worldwide are changing under the effects of global warming. The impacts of these changes could dramatically affect the hydrological cycle and, consequently, the availability of water resources. In order to improve the quality and reliability of forecasting models, it is important to analyse historical precipitation data to account for possible future changes. For these reasons, a large number of studies have recently been carried out with the aim of investigating the existence of statistically significant trends in precipitation at different spatial and temporal scales. In this paper, the existence of statistically significant trends in rainfall from observational datasets, which were measured by 245 rain gauges over Sicily (Italy) during the 1921-2012 period, was investigated. Annual, seasonal and monthly time series were examined using the Mann-Kendall non-parametric statistical test to detect statistically significant trends at local and regional scales, and their significance levels were assessed. Prior to the application of the Mann-Kendall test, the historical dataset was completed using a geostatistical spatial interpolation technique, the residual ordinary kriging, and then processed to remove the influence of serial correlation on the test results, applying the procedure of trend-free pre-whitening. Once the trends at each site were identified, the spatial patterns of the detected trends were examined using spatial interpolation techniques. Furthermore, focusing on the 30 years from 1981 to 2012, the trend analysis was repeated with the aim of detecting short-term trends or possible changes in the direction of the trends. Finally, the effect of climate change on the seasonal distribution of rainfall during the year was investigated by analysing the trend in the precipitation concentration index. The application of the Mann-Kendall test to the rainfall data provided evidence of a general decrease in precipitation in Sicily during the 1921-2012 period. Downward trends frequently occurred during the autumn and winter months. However, an increase in total annual precipitation was detected during the period from 1981 to 2012.
Black Sea thermohaline properties: Long‐term trends and variations
Stips, A.; Garcia‐Gorriz, E.; Macias Moy, D.
2017-01-01
Abstract The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960–1970, 1970–1995, 1995–2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large‐scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes. PMID:28989833
Temporal and spatial variation of heat-related illness using 911 medical dispatch data.
Bassil, Kate L; Cole, Donald C; Moineddin, Rahim; Craig, Alan M; Lou, W Y Wendy; Schwartz, Brian; Rea, Elizabeth
2009-07-01
The adverse effect of hot weather on health in urban communities is of increasing public health concern, particularly given trends in climate change. To demonstrate the potential public health applications of monitoring 911 medical dispatch data for heat-related illness (HRI), using historical data for the summer periods (June 1-August 31) during 2002-2005 in Toronto, Ontario, Canada. The temporal distribution of the medical dispatch calls was described in relation to a current early warning system and emergency department data from the National Ambulatory Care Reporting System (NACRS). Geospatial methods were used to map the percentage of heat-related calls in each Toronto neighborhood over the study period. The temporal pattern of 911 calls for HRI was similar, and sometimes peaked earlier, than current heat health warning systems (HHWS). The pattern of calls was similar to NACRS HRI visits, with the exception of 2005 where 911 calls peaked earlier. Areas of the city with a relatively higher burden of HRI included low income inner-city neighborhoods, areas with high rates of street-involved individuals, and areas along the waterfront which include summer outdoor recreational activities. Identifying the temporal trends and geospatial patterns of these important environmental health events has the potential to direct targeted public health interventions to mitigate associated morbidity and mortality.
Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights.
Mallory, Mark L; Braune, Birgit M
2012-07-01
Levels and trends of persistent organic pollutants and trace elements in seabirds breeding in the vast Canadian Arctic have been monitored since 1975. Data from this monitoring have indicated both spatial and temporal variation across the region, attributable in part to differences in species' diets, differences in regional deposition patterns, and unidirectional trends in contaminants reaching this area from emissions in temperate and tropical areas to the south. Seabird tissues have served as effective biomonitors to examine this variation, and national and international collaboration in this monitoring effort has promoted valuable synthetic assessments of spatial and temporal patterns in Arctic contaminants. Here we review the history of the monitoring program, the critical role played by Environment Canada's National Wildlife Specimen Bank, and we summarize important spatial and temporal trends in various contaminants in Canadian Arctic seabirds. Copyright © 2012 Elsevier Ltd. All rights reserved.
Trends in obesity and energy supply in the WHO MONICA Project.
Silventoinen, K; Sans, S; Tolonen, H; Monterde, D; Kuulasmaa, K; Kesteloot, H; Tuomilehto, J
2004-05-01
To examine the relationship between secular trends in energy supply and body mass index (BMI) among several countries. Aggregate level analyses of annually reported country food data against anthropometric data collected in independent cross-sectional samples from 34 populations in 21 countries from the early 1980s to the mid-1990s. Population randomly selected participants aged 35-64 y. BMI data were obtained from the WHO MONICA Project. Food energy supply data were derived from the Food Balance Sheet of the Food and Agriculture Organization of the United Nations. Mean BMI as well as the prevalence of overweight (BMI > or =25 kg/m2) increased in virtually all Western European countries, Australia, the USA, and China. Decreasing trends in BMI were seen in Central and Eastern European countries. Increasing trends in total energy supply per capita were found in most high-income countries and China while decreasing trends existed in Eastern European countries. Between country differences in temporal trends of total energy supply per capita explained 41% of the variation of trends in mean BMI; the effect was similar upon the prevalence of overweight and obesity. Trends in percent of energy supply from total fat per capita had a slight effect on the trends in mean BMI (+7% increment in R2) when the total energy supply per capita was adjusted for, while energy supply from total sweeteners per capita had no additional effect. Increasing energy supply is closely associated with the increase of overweight and obesity in western countries. This emphasizes the importance of dietary issues when coping with the obesity epidemic.
Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.
Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping
2011-02-01
The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment is thus believed to have potentials to offer new insights into water management and advance the source apportionment framework as an operational basis for national and local governments. © 2010 Elsevier Ltd. All rights reserved.
Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F
2012-01-01
Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.
Total ozone trend significance from space time variability of daily Dobson data
NASA Technical Reports Server (NTRS)
Wilcox, R. W.
1981-01-01
Estimates of standard errors of total ozone time and area means, as derived from ozone's natural temporal and spatial variability and autocorrelation in middle latitudes determined from daily Dobson data are presented. Assessing the significance of apparent total ozone trends is equivalent to assessing the standard error of the means. Standard errors of time averages depend on the temporal variability and correlation of the averaged parameter. Trend detectability is discussed, both for the present network and for satellite measurements.
Funk, Sebastian; Bogich, Tiffany L; Jones, Kate E; Kilpatrick, A Marm; Daszak, Peter
2013-01-01
The proper allocation of public health resources for research and control requires quantification of both a disease's current burden and the trend in its impact. Infectious diseases that have been labeled as "emerging infectious diseases" (EIDs) have received heightened scientific and public attention and resources. However, the label 'emerging' is rarely backed by quantitative analysis and is often used subjectively. This can lead to over-allocation of resources to diseases that are incorrectly labelled "emerging," and insufficient allocation of resources to diseases for which evidence of an increasing or high sustained impact is strong. We suggest a simple quantitative approach, segmented regression, to characterize the trends and emergence of diseases. Segmented regression identifies one or more trends in a time series and determines the most statistically parsimonious split(s) (or joinpoints) in the time series. These joinpoints in the time series indicate time points when a change in trend occurred and may identify periods in which drivers of disease impact change. We illustrate the method by analyzing temporal patterns in incidence data for twelve diseases. This approach provides a way to classify a disease as currently emerging, re-emerging, receding, or stable based on temporal trends, as well as to pinpoint the time when the change in these trends happened. We argue that quantitative approaches to defining emergence based on the trend in impact of a disease can, with appropriate context, be used to prioritize resources for research and control. Implementing this more rigorous definition of an EID will require buy-in and enforcement from scientists, policy makers, peer reviewers and journal editors, but has the potential to improve resource allocation for global health.
Assessing the burden of intestinal parasites affecting newly arrived immigrants in Qatar.
Abu-Madi, Marawan A; Behnke, Jerzy M; Ismail, Ahmed; Boughattas, Sonia
2016-12-01
In the last decades, the enormous influx of immigrants to industrialized countries has led to outbreaks of parasitic diseases, with enteric infections being amongst the most frequently encountered. In its strategy to control such infection, Qatar has established the Pre-Employment Certificate (PEC) program which requires medical inspection before arrival in Qatar and which is mandatory for immigrant workers travelling to the country. To assess the reliability of the PEC, we conducted a survey of intestinal parasites, based on examination of stool samples provided by immigrant workers (n = 2,486) recently arrived in Qatar. Overall prevalence of helminths was 7.0% and that of protozoa was 11.7%. Prevalence of combined helminths was highest among the western Asians and the highest prevalence of combined protozoan parasites was among workers from North to Saharan Africa. Analysis of temporal changes showed an increasing trend of protozoan infections over the investigated 3 years. A major contribution to this temporal change in prevalence came from Blastocystis hominis as well as from other protozoan species: Giardia duodenalis and Endolimax nana. Analysis of the temporal trend in species richness of the protozoan species showed a significant increase in the mean number of species harboured per subject across this period. The increase of protozoan infections over recent years raises some concerns. It suggests that screening protocols for applicants for visas/work permits needs to be revised giving more careful attention to the intestinal protozoan infections that potential immigrants may harbor.
Xu, Xi-bao; Yang, Gui-shan; Li, Heng-peng
2009-08-15
Based on the long-term agricultural statistics data at the county scale, the estimation of nitrogen balance from 1980 to 2005 for agricultural land in Three Gorges Reservoir Area was made by the OECD soil surface nitrogen balance model with some suitable modification. The spatio-temporal changes of nitrogen balance and its drivers were analyzed. The results showed that the total inputs and total surplus of nitrogen from 1980 to 2005 presented increasing trends continuously, from 23.4 x 10(4) t and 14.4 x 104 t to 45.6 x 10(4) t and 30 x 10(4) t respectively. The total output of nitrogen in 1980-1995 was at the increasing trend, from 9.0 x 10(4) t to 16.7 x 10(4) t, while that of 1996-2005 was keeping steady. The average unit surplus of nitrogen in 1980-1998 was also at the increasing trend, from 133.4 kg/hm2 to 310.3 kg/hm(2); and the trend inclined to be steady after 1998, while the spatial differential pattern toned up. The great spatial changes for nitrogen surplus from 1980 to 2005, mainly centralized at the head and the middle of the Three Gorges Reservoir Area, similar to the spatial distribution of the resettlement. Fertilizer, manure and biological fixation were the main contributors of nitrogen input sources, accumulatively totaled for above 90%. Nitrogen balance changes were mainly influenced by the macro-environment of fertilizer utilization before 1995, while which were influenced by the large amounts of the resettlement for Three Gorges Project after 1995. However, how much the effects of the resettlement on nitrogen balance need to be further explored. Developing sideline, agricultural structure transition or ecological resettlement should be considered to control nitrogen emission.
Trends in the leading causes of death in Korea, 1983-2012.
Lim, Daroh; Ha, Mina; Song, Inmyung
2014-12-01
This study aimed to analyze trends in the 10 leading causes of death in Korea from 1983 to 2012. Death rates were derived from the Korean Statistics Information Service database and age-adjusted to the 2010 population. Joinpoint regression analysis was used to identify the points when statistically significant changes occurred in the trends. Between 1983 and 2012, the age-standardized death rate (ASR) from all causes decreased by 61.6% for men and 51.2% for women. ASRs from malignant neoplasms, diabetes mellitus, and transport accidents increased initially before decreasing. ASRs from hypertensive diseases, heart diseases, cerebrovascular diseases and diseases of the liver showed favorable trends (ASR % change: -94.4%, -53.8%, -76.0%, and -78.9% for men, and -77.1%, -36.5%, -67.8%, and -79.9% for women, respectively). ASRs from pneumonia decreased until the mid-1990s and thereafter increased. ASRs from intentional self-harm increased persistently since around 1990 (ASR % change: 122.0% for men and 217.4% for women). In conclusion, death rates from all causes in Korea decreased significantly in the last three decades except in the late 1990s. Despite the great strides made in the overall mortality, temporal trends varied widely by cause. Mortality trends for malignant neoplasms, diabetes mellitus, pneumonia and intentional self-harm were unfavorable.
Anderson, J.; Perry, J.
1999-01-01
The Intergovernmental Task Force on Monitoring has suggested studies on ambient (in-stream) and compliance (wastewater) data to determine if monitoring can be reduced locally or nationally. The similarity in temporal trends between retrospective ambient and compliance water-quality data collected from Pool 2 of the Mississippi River, USA, was determined for 1985–1995. Constituents studied included the following trace elements: arsenic (As), cadmium (Cd), chromium (Cr), hexavalent chromium (Cr61), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), zinc (Zn), and polychlorinated biphenyls (PCBs). Water-column, bed-sediment, and fish-tissue (fillets) data collected by five government agencies comprised the ambient data set; effluent data from five registered facilities comprised the compliance data set. The nonparametric MannKendall trend test indicated that 33% of temporal trends in all data were statistically significant (P , 0.05). Possible reasons for this were low sample sizes, and a high percentage of samples below the analytical detection limit. Trends in compliance data were more distinct; most trace elements decreased significantly, probably due to improvements in wastewater treatment. Seven trace elements (Cr, Cd, Cu, Pb, Hg, Ni, and Zn) had statistically significant decreases in wastewater and portions of either or both ambient water and bed sediment. No trends were found in fish tissue. Inconsistency in trends between ambient and compliance data were often found for individual constituents, making overall similarity between the data sets difficult to determine. Logistical differences in monitoring programs, such as varying field and laboratory methods among agencies, made it difficult to assess ambient temporal trends.
National trends in anterior cervical fusion procedures.
Marawar, Satyajit; Girardi, Federico P; Sama, Andrew A; Ma, Yan; Gaber-Baylis, Licia K; Besculides, Melanie C; Memtsoudis, Stavros G
2010-07-01
Population-based database analysis. To analyze trends in patient- and healthcare-system-related characteristics, utilization and outcomes associated with anterior cervical spine fusions. Anterior cervical decompression and spine fusion (ACDF) is one of the most commonly performed surgical procedures of the spine. However, few data analyzing trends in patient- and healthcare-system-related characteristics, utilization and outcomes exist. Data from 1990 to 2004 collected in the National Hospital Discharge Survey were accessed. ACDF procedures were identified. Five-year periods of interest (POI) were created for temporal analysis and changes in the prevalence and utilization of this procedure as well as in patient- and healthcare-system-related variables were examined. The changes in the occurrence of procedure-related complications were evaluated. An estimated total of 771,932 discharges after ACDF were identified. Temporally, an almost 8-fold increase in total prevalence was accompanied by a similar increase in utilization (23/100.000 civilians/POI to 157/100.000/civilians/POI). The highest increase in utilization was observed in those > or =65 years (28-fold). Average age increased from 47.2 years to 50.5 years over time. Length of hospital stay decreased from 5.17 days to 2.38 days. Overall procedure-related complication rates decreased from 4.6% to 3.03%. The prevalence of hypertension, diabetes mellitus, hypercholesterolemia, obesity, pulmonary, and coronary artery increased over time among patients undergoing ACDF. Despite limitations inherent to secondary analysis of large databases, we identified a number of significant changes in the utilization, demographics, and outcomes associated with ACDF, which can be used to assess the effect of changes in medical care, direct health care resources, and future research. The effect of the increased prevalence of comorbidities on medical practice remains to be evaluated. Further studies are necessary to evaluate causal relationships.
Dietz, Rune; Rigét, Frank F; Sonne, Christian; Born, Erik W; Bechshøft, Thea; McKinney, Melissa A; Drimmie, Robert J; Muir, Derek C G; Letcher, Robert J
2013-09-01
Brominated flame retardants were determined in adipose tissues from 294 polar bears (Ursus maritimus) sampled in East Greenland in 23 of the 28years between 1983 and 2010. Significant linear increases were found for sum polybrominated diphenyl ether (ΣPBDE), BDE100, BDE153, and hexabromocyclododecane (HBCD). Average increases of 5.0% per year (range: 2.9-7.6%/year) were found for the subadult polar bears. BDE47 and BDE99 concentrations did not show a significant linear trend over time, but rather a significant non-linear trend peaking between 2000 and 2004. The average ΣPBDE concentrations increased 2.3 fold from 25.0ng/g lw (95% C.I.: 15.3-34.7ng/g lw) in 1983-1986 to 58.5ng/g lw (95% C.I.: 43.6-73.4ng/g lw) in 2006-2010. Similar but fewer statistically significant trends were found for adult females and adult males likely due to smaller sample size and years. Analyses of δ(15)N and δ(13)C stable isotopes in hair revealed no clear linear temporal trends in trophic level or carbon source, respectively, and non-linear trends differed among sex and age groups. These increasing concentrations of organobromine contaminants contribute to complex organohalogen mixture, already causing health effects to the East Greenland polar bears. Copyright © 2012 Elsevier Ltd. All rights reserved.
Govoni, Vittorio; Cesnik, Edward; Casetta, Ilaria; Tugnoli, Valeria; Tola, Maria Rosaria; Granieri, Enrico
2012-08-01
Data about the temporal trend of amyotrophic lateral sclerosis (ALS) incidence in southern Europe are scarce. Incidence studies on ALS have been carried out in the health district of Ferrara, Italy, since 1960s. We expanded the previous studies from 1964 to 2009. The study was prospective with a subsequent retrospective intensive survey of multiple sources of case ascertainment. All patients with a definite and probable ALS according to the original El Escorial criteria were selected. There were 130 incident cases in the years 1964-2009 giving an average annual crude incidence of 1.82 per 100,000 population (95% CI 1.53-2.17). An incidence increase during the study period was estimated in women (χ(2) test for trend = 7.19, p < 0.01) and in the elderly (χ(2) test for trend = 7.803, p < 0.01). The age-adjusted incidence was stable over time in both women (1.19 per 100,000, 95% CI 0.90-1.52) and men (1.45 per 100,000, 95% CI 0.12-1.84). The annual number of new ALS cases in the study population followed the Poisson distribution in both sexes as well as in the elderly group of the population. The present findings suggest that ALS incidence is nearly stable over time. The crude incidence increase we estimated over time among women is mainly explained by population ageing. The increasing incidence in the elderly population was likely the consequence of an increasing precision in ALS diagnosis in the elderly since the increasing attention and care over time of neurologic elderly patients that likely concern elderly women more than previous time periods rather than better case ascertainment of diagnosed patients. The present findings do not support the role of specific environmental factors in ALS pathogenesis.
Giroud, Marie; Delpont, Benoit; Daubail, Benoit; Blanc, Christelle; Durier, Jérôme; Giroud, Maurice; Béjot, Yannick
2017-04-01
We evaluated temporal trends in stroke incidence between men and women to determine whether changes in the distribution of vascular risk factors have influenced sex differences in stroke epidemiology. Patients with first-ever stroke including ischemic stroke, spontaneous intracerebral hemorrhage, subarachnoid hemorrhage, and undetermined stroke between 1987 and 2012 were identified through the population-based registry of Dijon, France. Incidence rates were calculated for age groups, sex, and stroke subtypes. Sex differences and temporal trends (according to 5-year time periods) were evaluated by calculating incidence rate ratios (IRRs) with Poisson regression. Four thousand six hundred and fourteen patients with a first-ever stroke (53.1% women) were recorded. Incidence was lower in women than in men (112 versus 166 per 100 000/y; IRR, 0.68; P <0.001), especially in age group 45 to 84 years, and for both ischemic stroke and intracerebral hemorrhage. From 1987 to 2012, the lower incidence of overall stroke in women was stable (IRR ranging between 0.63 and 0.72 according to study periods). When considering stroke subtype, a slight increase in the incidence of ischemic stroke was observed in both men (IRR, 1.011; 95% confidence interval, 1.005-1.016; P =0.001) and women (IRR, 1.013; 95% confidence interval, 1.007-1.018; P =0.001). The sex gap in incidence remained unchanged in ischemic stroke and intracerebral hemorrhage. Conversely, the lower subarachnoid hemorrhage incidence in women vanished with time because of an increasing incidence. The sex gap in stroke incidence did not change with time except for subarachnoid hemorrhage. Despite lower rates, more women than men experience an incident stroke each year because of a longer life expectancy. © 2017 American Heart Association, Inc.
Global latitudinal-asymmetric vegetation growth trends and their driving mechanisms: 1982-2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E
2013-01-01
Using a recent Leaf Area Index (LAI) dataset and the Community Land Model version 4 (CLM4), we investigate percent changes and controlling factors of global vegetation growth for the period 1982 to 2009. Over that 28-year period, both the remote-sensing estimate and model simulation show a significant increasing trend in annual vegetation growth. Latitudinal asymmetry appeared in both products, with small increases in the Southern Hemisphere (SH) and larger increases at high latitudes in the Northern Hemisphere (NH). The south-to-north asymmetric land surface warming was assessed to be the principal driver of this latitudinal asymmetry of LAI trend. Heterogeneous precipitationmore » functioned to decrease this latitudinal LAI gradient, and considerably regulated the local LAI change. CO2 fertilization during the last three decades, was simulated to be the dominant cause for the enhanced vegetation growth. Our study, though limited by observational and modeling uncertainties, adds further insight into vegetation growth trends and environmental correlations. These validation exercises also provide new quantitative and objective metrics for evaluation of land ecosystem process models at multiple spatio-temporal scales.« less
Time trend of malaria in relation to climate variability in Papua New Guinea.
Park, Jae-Won; Cheong, Hae-Kwan; Honda, Yasushi; Ha, Mina; Kim, Ho; Kolam, Joel; Inape, Kasis; Mueller, Ivo
2016-01-01
This study was conducted to describe the regional malaria incidence in relation to the geographic and climatic conditions and describe the effect of altitude on the expansion of malaria over the last decade in Papua New Guinea. Malaria incidence was estimated in five provinces from 1996 to 2008 using national health surveillance data. Time trend of malaria incidence was compared with rainfall and minimum/maximum temperature. In the Eastern Highland Province, time trend of malaria incidence over the study period was stratified by altitude. Spatio-temporal pattern of malaria was analyzed. Nationwide, malaria incidence was stationary. Regionally, the incidence increased markedly in the highland region (292.0/100000/yr, p =0.021), and remained stationary in the other regions. Seasonality of the malaria incidence was related with rainfall. Decreasing incidence of malaria was associated with decreasing rainfall in the southern coastal region, whereas it was not evident in the northern coastal region. In the Eastern Highland Province, malaria incidence increased in areas below 1700 m, with the rate of increase being steeper at higher altitudes. Increasing trend of malaria incidence was prominent in the highland region of Papua New Guinea, while long-term trend was dependent upon baseline level of rainfall in coastal regions.
Adaptation of a Weighted Regression Approach to Evaluate Water Quality Trends in Tampa Bay, Florida
The increasing availability of long-term monitoring data can improve resolution of temporal and spatial changes in water quality. In many cases, the fact that changes have occurred is no longer a matter of debate. However, the relatively simple methods that have been used to ev...
Temporal dynamic responses of roots in contrasting tomato genotypes to cadmium tolerance.
Borges, Karina Lima Reis; Salvato, Fernanda; Alcântara, Berenice Kussumoto; Nalin, Rafael Storto; Piotto, Fernando Ângelo; Azevedo, Ricardo Antunes
2018-04-01
Despite numerous studies on cadmium (Cd) uptake and accumulation in crops, relatively little is available considering the temporal dynamic of Cd uptake and responses to stress focused on the root system. Here we highlighted the responses to Cd-induced stress in roots of two tomato genotypes contrasting in Cd-tolerance: the tolerant Pusa Ruby and the sensitive Calabash Rouge. Tomato genotypes growing in the presence of 35 μM CdCl 2 exhibited a similar trend of Cd accumulation in tissues, mainly in the root system and overall plants exhibited reduction in the dry matter weight. Both genotypes showed similar trends for malondialdehyde and hydrogen peroxide accumulation with increases when exposed to Cd, being this response more pronounced in the sensitive genotype. When the antioxidant machinery is concerned, in the presence of Cd the reduced glutathione content was decreased in roots while ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST) activities were increased in the presence of Cd in the tolerant genotype. Altogether these results suggest APX, GR and GST as the main players of the antioxidant machinery against Cd-induced oxidative stress.
Measurement of Temporal Awareness in Air Traffic Control
NASA Technical Reports Server (NTRS)
Rantanen, E.M.
2009-01-01
Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.
Temporal trends of β-haemolytic streptococcal osteoarticular infections in western Norway.
Oppegaard, Oddvar; Skrede, Steinar; Mylvaganam, Haima; Kittang, Bård Reiakvam
2016-10-04
Beta-haemolytic streptococci are important contributors to the global burden of osteoarticular infections (OAI). Knowledge on the disease traits specific for streptococcal OAI, however, remains scarce. We wished to explore temporal trends of OAI caused by Group A Streptococci (GAS), Group B Streptococci (GBS) and Group C and G Streptococci (GCGS), and furthermore, to describe the associated host and pathogen characteristics. All cases of microbiologically verified β-haemolytic streptococcal OAI in Health Region Bergen, Norway, in the period 1999-2013 were retrospectively identified. Clinical data were extracted from medical records. Microbial isolates were submitted to antibiotic susceptibility testing and molecular typing. A total of 24 GAS, 45 GBS and 42 GCGS acute OAI were identified. The cumulative incidence of GCGS OAI, but not GAS or GBS OAI, increased significantly from the first to the last 5-year period (IRR 5.7, p = 0.0003), with the annual incidence peaking at 1.9/100 000 in 2013. GAS OAI generally produced the most acute and severe clinical presentation, whereas GBS and GCGS predominantly affected the elderly, and were significantly associated with the presence of host risk factors of systemic and focal origin, respectively. We found a significantly increasing incidence of GCGS OAI, likely related to the presence of host susceptibility factors, including prosthetic material and pre-existing joint disease. With an increasing application of therapeutic and diagnostic bone and joint procedures, the rising trend of OAI caused by GCGS is likely to continue. Sustained epidemiological attentiveness to GCGS seems warranted.
The changing spatio-temporal dynamics of thaw lake development, Seward Peninsula, Alaska.
NASA Astrophysics Data System (ADS)
Cooper, Michael; Rees, Gareth; Bartsch, Annett
2014-05-01
Contemporary anthropogenic climatic warming is having an accelerated, and more pronounced effect upon Arctic regions than any other environment on Earth. Increased surface temperatures have led to widespread permafrost degradation and a shift in dynamics. One landscape manifestation of localised permafrost decay, seen to be ubiquitous across low-lying tundra regions of Alaska, Canada and Siberia, is the thermokarst lake - or 'thaw' lake. These features are seen to be truly dynamic, with a relatively rapid evolution and decay. The exact impacts of climatic perturbation on thaw lake development are in contention; however, recent studies have suggested an increased vulnerability of these features, owing to the susceptibility of the fundamental processes of initiation, expansion and drainage to climatic variation. It is often hypothesised that with current trends, thaw lakes will see a net increase in expansion rate, and areal extent, with a potential for increased drainage events. Increased permafrost thaw and thermokarst activity has also led to shifts in biogeochemical cycles, leading to an amplified release from large carbon reservoirs currently sequestered within permafrost. An example of carbon release exhibited from thaw lakes is that of methane ebullition (gas bubble formation); this has been theorised to have the potential to initiate a major positive climatic feedback leading to a continued rise in global temperatures. Due to the remote nature and large area over which these landforms occur, remotely sensed data has been widely used in order to both accurately classify features and measure change over spatially large and great temporal extents. As well as studies interpreting data collected in the visible and near-infrared spectra, studies have recently made use of radar or microwave products in order to capture imagery avoiding adverse atmospheric conditions, most notably cloud cover. Data from Envisat ASAR operating in Wide Swath Mode was acquired for this study region; however, the core of this research relied upon the analysis of the changing lake morphology using visible and near-infrared spectra from MODIS and Landsat products. This research explored: (1) intra-annual variability of freeze-thaw cycles and resultant effects on thaw lake development; and (2) the spatio-temporal trends and changing dynamism of thaw lake activity. Research presented here within suggests that although climatic trends do indeed influence widespread changes within thaw lake characteristics, site-specific phenomena of sediment type and ice-content and fluvial activity also play integral roles. Understanding and observing changing spatio-temporal dynamics, particularly on an intra-annual basis, has helped to gather more information concerning complex lake processes, and increase the understanding of permafrost decay and thaw lake development.
Braune, B M; Outridge, P M; Fisk, A T; Muir, D C G; Helm, P A; Hobbs, K; Hoekstra, P F; Kuzyk, Z A; Kwan, M; Letcher, R J; Lockhart, W L; Norstrom, R J; Stern, G A; Stirling, I
2005-12-01
This review summarizes and synthesizes the significant amount of data which was generated on mercury (Hg) and persistent organic pollutants (POPs) in Canadian Arctic marine biota since the first Canadian Arctic Contaminants Assessment Report (CACAR) was published in 1997. This recent body of work has led to a better understanding of the current levels and spatial and temporal trends of contaminants in biota, including the marine food species that northern peoples traditionally consume. Compared to other circumpolar countries, concentrations of many organochlorines (OCs) in Canadian Arctic marine biota are generally lower than in the European Arctic and eastern Greenland but are higher than in Alaska, whereas Hg concentrations are substantially higher in Canada than elsewhere. Spatial coverage of OCs in ringed seals, beluga and seabirds remains a strength of the Arctic contaminant data set for Canada. Concentrations of OCs in marine mammals and seabirds remain fairly consistent across the Canadian Arctic although subtle differences from west to east and south to north are found in the proportions of various chemicals. The most significant development since 1997 is improvement in the temporal trend data sets, thanks to the use of archived tissue samples from the 1970s and 1980s, long-term studies using archeological material, as well as the continuation of sampling. These data cover a range of species and chemicals and also include retrospective studies on new chemicals such as polybrominated diphenyl ethers. There is solid evidence in a few species (beluga, polar bear, blue mussels) that Hg at some locations has significantly increased from pre-industrial times to the present; however, the temporal trends of Hg over the past 20-30 years are inconsistent. Some animal populations exhibited significant increases in Hg whereas others did not. Therefore, it is currently not possible to determine if anthropogenic Hg is generally increasing in Canadian Arctic biota. It is also not yet possible to evaluate whether the recent Hg increases observed in some biota may be due solely to increased anthropogenic inputs or are in part the product of environmental change, e.g., climate warming. Concentrations of most "legacy" OCs (PCBs, DDT, etc.) significantly declined in Canadian Arctic biota from the 1970s to the late 1990s, and today are generally less than half the levels of the 1970s, particularly in seabirds and ringed seals. Chlorobenzenes and endosulfan were among the few OCs to show increases during this period while summation operatorHCH remained relatively constant in most species. A suite of new-use chemicals previously unreported in Arctic biota (e.g., polybrominated diphenyl ethers (PBDEs), short chain chlorinated paraffins (SCCPs), polychlorinated naphthalenes (PCNs), perfluoro-octane sulfonic acid (PFOS) and perfluorocarboxylic acids (PFCAs)) has recently been found, but there is insufficient information to assess species differences, spatial patterns or food web dynamics for these compounds. Concentrations of these new chemicals are generally lower than legacy OCs, but there is concern because some are rapidly increasing in concentration (e.g., PBDEs), while others such as PFOS have unique toxicological properties, and some were not expected to be found in the Arctic because of their supposedly low potential for long-range transport. Continuing temporal monitoring of POPs and Hg in a variety of marine biota must be a priority.
Bjorndal, Karen A.; Schroeder, Barbara A.; Foley, Allen M.; Witherington, Blair E.; Bresette, Michael; Clark, David; Herren, Richard M.; Arendt, Michael D.; Schmid, Jeffrey R.; Meylan, Anne B.; Meylan, Peter A.; Provancha, Jane A.; Hart, Kristen M.; Lamont, Margaret M.; Carthy, Raymond R.; Bolten, Alan B.
2013-01-01
In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (<24°N) than in USA waters. Growth dynamics in southern waters in the NWA need more study because sample size was small. Within USA waters, the significant spatial effect in growth rates of immature loggerheads did not exhibit a consistent latitudinal trend. Growth rates declined significantly from 1997 through 2007 and then leveled off or increased. During this same interval, annual nest counts in Florida declined by 43 % (Witherington et al. in Ecol Appl 19:30–54, 2009) before rebounding. Whether these simultaneous declines reflect responses in productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.
Canadian trends in filicide by gender of the accused, 1961-2011.
Dawson, Myrna
2015-09-01
This paper provides a comprehensive historical and contemporary picture of filicide in Canada for more than half a century. Focusing on 1,612 children under age 18 that were killed by their parents between 1961 and 2011, regional and temporal trends in the gender of accused are examined as well as differences in maternal and paternal filicides by the gender and age of the victim, the age and marital status of the accused, type of parental relationship, cause of death, motive, history of family violence, and clearance status. Results show that there are significant differences in filicides by mothers and fathers. Five possible emerging trends were identified: an increasing gender gap in accused, increasing presence of relationship breakdown, growing number of cases involving stepfathers and a prior history of family violence, and declines in accused who committed suicide. Implications of these trends for interventions and prevention are discussed and future research priorities highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Songbai; Yu, Minghui; Chen, Li
2017-02-01
The slope effect on flow erosivity and soil erosion still remains a controversial issue. This theoretical framework explained and quantified the direct slope effect by coupling the modified Green-Ampt equation accounting for slope effect on infiltration, 1-D kinematic wave overland flow routing model, and WEPP soil erosion model. The flow velocity, runoff rate, shear stress, interrill, and rill erosion were calculated on 0°-60° isotropic slopes with equal horizontal projective length. The results show that, for short-duration rainfall events, the flow erosivity and erosion amounts exhibit a bell-shaped trend which first increase with slope gradient, and then decrease after a critical slope angle. The critical slope angles increase significantly or even vanish with increasing rainfall duration but are nearly independent of the slope projective length. The soil critical shear stress, rainfall intensity, and temporal patterns have great influences on the slope effect trend, while the other soil erosion parameters, soil type, hydraulic conductivity, and antecedent soil moisture have minor impacts. Neglecting the slope effect on infiltration would generate smaller erosion and reduce critical slope angles. The relative slope effect on soil erosion in physically based model WEPP was compared to those in the empirical models USLE and RUSLE. The trends of relative slope effect were found quite different, but the difference may diminish with increasing rainfall duration. Finally, relatively smaller critical slope angles could be obtained with the equal slope length and the range of variation provides a possible explanation for the different critical slope angles reported in previous studies.
Thomas, Benjamin S; Jafarzadeh, S Reza; Warren, David K; McCormick, Sandra; Fraser, Victoria J; Marschall, Jonas
2015-11-24
Recent reports using administrative claims data suggest the incidence of community- and hospital-onset sepsis is increasing. Whether this reflects changing epidemiology, more effective diagnostic methods, or changes in physician documentation and medical coding practices is unclear. We performed a temporal-trend study from 2008 to 2012 using administrative claims data and patient-level clinical data of adult patients admitted to Barnes-Jewish Hospital in St. Louis, Missouri. Temporal-trend and annual percent change were estimated using regression models with autoregressive integrated moving average errors. We analyzed 62,261 inpatient admissions during the 5-year study period. 'Any SIRS' (i.e., SIRS on a single calendar day during the hospitalization) and 'multi-day SIRS' (i.e., SIRS on 3 or more calendar days), which both use patient-level data, and medical coding for sepsis (i.e., ICD-9-CM discharge diagnosis codes 995.91, 995.92, or 785.52) were present in 35.3 %, 17.3 %, and 3.3 % of admissions, respectively. The incidence of admissions coded for sepsis increased 9.7 % (95 % CI: 6.1, 13.4) per year, while the patient data-defined events of 'any SIRS' decreased by 1.8 % (95 % CI: -3.2, -0.5) and 'multi-day SIRS' did not change significantly over the study period. Clinically-defined sepsis (defined as SIRS plus bacteremia) and severe sepsis (defined as SIRS plus hypotension and bacteremia) decreased at statistically significant rates of 5.7 % (95 % CI: -9.0, -2.4) and 8.6 % (95 % CI: -4.4, -12.6) annually. All-cause mortality, SIRS mortality, and SIRS and clinically-defined sepsis case fatality did not change significantly during the study period. Sepsis mortality, based on ICD-9-CM codes, however, increased by 8.8 % (95 % CI: 1.9, 16.2) annually. The incidence of sepsis, defined by ICD-9-CM codes, and sepsis mortality increased steadily without a concomitant increase in SIRS or clinically-defined sepsis. Our results highlight the need to develop strategies to integrate clinical patient-level data with administrative data to draw more accurate conclusions about the epidemiology of sepsis.
Rosenkrantz, Andrew B; Hughes, Danny R; Duszak, Richard
2016-04-01
To determine recent trends related to temporal as well as national and statewide geographic variation in the U.S. radiologist and radiology resident workforce. This retrospective HIPAA-compliant study was exempted from the internal review board. Federal Area Health Resources Files and Medicare 5% research identifiable files were used to compute parameters related to the radiologist workforce. Geographic variation and annual temporal trends were analyzed. Pearson and Spearman correlations were assessed. Nationally, the number of radiology trainees increased 84.2% from a nadir in 1997 (3080 trainees) to 2011 (5674 trainees) and showed high state-to-state variation (range, 0-678 trainees in 2011). However, total radiologists nationally increased 39.2% from 1995 (27 906 radiologists) to 2011 (38 875 radiologists), and radiologists per 100 000 population nationally increased by 7.5% from 1995 (10.62%) to 2011 (11.42%), while showing high state-to-state variation (highest-to-lowest state ratio of 4.3). Radiologists' share of the overall physician workforce declined nationally by 8.8% from 1995 (4.0%) to 2011 (3.7%), with moderate state-to-state variation (highest-to-lowest state ratio of 1.7). Radiology trainee numbers exhibited weak-to-moderate positive state-by-state correlation with radiologists per 100 000 population (r = 0.292-0.532), but moderate-to-strong inverse correlation with the percentage of radiologists in rural practice (r = -0.464 to -0.635). Although the number of radiology trainees dramatically increased, radiologists per 100 000 population increased only slightly, and radiologists' share of the overall physician workforce declined. State-to-state variations in radiologist and radiology resident workforces are high, which suggests a potential role for geographic redistribution rather than changes in the overall workforce size.
Osnas, E.E.; Heisey, D.M.; Rolley, R.E.; Samuel, M.D.
2009-01-01
Emerging infectious diseases threaten wildlife populations and human health. Understanding the spatial distributions of these new diseases is important for disease management and policy makers; however, the data are complicated by heterogeneities across host classes, sampling variance, sampling biases, and the space-time epidemic process. Ignoring these issues can lead to false conclusions or obscure important patterns in the data, such as spatial variation in disease prevalence. Here, we applied hierarchical Bayesian disease mapping methods to account for risk factors and to estimate spatial and temporal patterns of infection by chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus) of Wisconsin, USA. We found significant heterogeneities for infection due to age, sex, and spatial location. Infection probability increased with age for all young deer, increased with age faster for young males, and then declined for some older animals, as expected from disease-associated mortality and age-related changes in infection risk. We found that disease prevalence was clustered in a central location, as expected under a simple spatial epidemic process where disease prevalence should increase with time and expand spatially. However, we could not detect any consistent temporal or spatiotemporal trends in CWD prevalence. Estimates of the temporal trend indicated that prevalence may have decreased or increased with nearly equal posterior probability, and the model without temporal or spatiotemporal effects was nearly equivalent to models with these effects based on deviance information criteria. For maximum interpretability of the role of location as a disease risk factor, we used the technique of direct standardization for prevalence mapping, which we develop and describe. These mapping results allow disease management actions to be employed with reference to the estimated spatial distribution of the disease and to those host classes most at risk. Future wildlife epidemiology studies should employ hierarchical Bayesian methods to smooth estimated quantities across space and time, account for heterogeneities, and then report disease rates based on an appropriate standardization. ?? 2009 by the Ecological Society of America.
Fortunato, John E; Tegeler, Catherine L; Gerdes, Lee; Lee, Sung W; Pajewski, Nicholas M; Franco, Meghan E; Cook, Jared F; Shaltout, Hossam A; Tegeler, Charles H
2016-03-01
Autonomic dysregulation and heterogeneous symptoms characterize postural orthostatic tachycardia syndrome (POTS). This study evaluated the effect of high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM(®)), a noninvasive, allostatic neurotechnology for relaxation and auto-calibration of neural oscillations, on heart rate variability, brain asymmetry, and autonomic symptoms, in adolescents with POTS. Seven subjects with POTS (three males, ages 15-18) underwent a median of 14 (10-16) HIRREM sessions over 13 (8-17) days. Autonomic function was assessed from 10-min continuous heart rate and blood pressure recordings, pre- and post-HIRREM. One-minute epochs of temporal high-frequency (23-36 Hz) brain electrical activity data (T3 and T4, eyes closed) were analyzed from baseline HIRREM assessment and subsequent sessions. Subjects rated autonomic symptoms before and after HIRREM. Four of seven were on fludrocortisone, which was stopped before or during their sessions. Heart rate variability in the time domain (standard deviation of the beat-to-beat interval) increased post-HIRREM (mean increase 51%, range 10-143, p = 0.03), as did baroreflex sensitivity (mean increase in high-frequency alpha 65%, range -6 to 180, p = 0.05). Baseline temporal electrical asymmetry negatively correlated with change in asymmetry from assessment to the final HIRREM session (p = 0.01). Summed high-frequency amplitudes at left and right temporal lobes decreased a median of 3.8 μV (p = 0.02). There was a trend for improvements in self-reported symptoms related to the autonomic nervous system. Use of HIRREM was associated with reduced sympathetic bias in autonomic cardiovascular regulation, greater symmetry and reduced amplitudes in temporal lobe high-frequency electrical activity, and a trend for reduced autonomic symptoms. Data suggest the potential for allostatic neurotechnology to facilitate increased flexibility in autonomic cardiovascular regulation, possibly through more balanced activity at regions of the neocortex responsible for autonomic management. Clinical trial registry "Tilt Table with Suspected postural orthostatic tachycardia syndrome (POTS) Subjects," Protocol Record: WFUBAHA01.
Ruppel, Meri M; Gustafsson, Örjan; Rose, Neil L; Pesonen, Antto; Yang, Handong; Weckström, Jan; Palonen, Vesa; Oinonen, Markku J; Korhola, Atte
2015-12-15
Black carbon (BC) is fine particulate matter produced by the incomplete combustion of biomass and fossil fuels. It has a strong climate warming effect that is amplified in the Arctic. Long-term trends of BC play an important role in assessing the climatic effects of BC and in model validation. However, few historical BC records exist from high latitudes. We present five lake-sediment soot-BC (SBC) records from the Fennoscandian Arctic and compare them with records of spheroidal carbonaceous fly-ash particles (SCPs), another BC component, for ca. the last 120 years. The records show spatial and temporal variation in SBC fluxes. Two northernmost lakes indicate declining values from 1960 to the present, which is consistent with modeled BC deposition and atmospheric measurements in the area. However, two lakes located closer to the Kola Peninsula (Russia) have recorded increasing SBC fluxes from 1970 to the present, which is likely caused by regional industrial emissions. The increasing trend is in agreement with a Svalbard ice-core-BC record. The results suggest that BC deposition in parts of the European Arctic may have increased over the last few decades, and further studies are needed to clarify the spatial extent of the increasing BC values and to ascertain the climatic implications.
Identification of hydrological model parameter variation using ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao
2016-12-01
Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.
Kent, Robert; Landon, Matthew K.
2013-01-01
Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p < 0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from − 0.44 to 0.91 mg/L/yr for nitrate (as N) and − 8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.
Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldys, S.
1990-01-01
Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less
Coastal ocean acidification and increasing total alkalinity in the northwestern Mediterranean Sea
NASA Astrophysics Data System (ADS)
Kapsenberg, Lydia; Alliouane, Samir; Gazeau, Frédéric; Mousseau, Laure; Gattuso, Jean-Pierre
2017-05-01
Coastal time series of ocean carbonate chemistry are critical for understanding how global anthropogenic change manifests in near-shore ecosystems. Yet, they are few and have low temporal resolution. At the time series station Point B in the northwestern Mediterranean Sea, seawater was sampled weekly from 2007 through 2015, at 1 and 50 m, and analyzed for total dissolved inorganic carbon (CT) and total alkalinity (AT). Parameters of the carbonate system such as pH (pHT, total hydrogen ion scale) were calculated and a deconvolution analysis was performed to identify drivers of change. The rate of surface ocean acidification was -0.0028 ± 0.0003 units pHT yr-1. This rate is larger than previously identified open-ocean trends due to rapid warming that occurred over the study period (0.072 ± 0.022 °C yr-1). The total pHT change over the study period was of similar magnitude as the diel pHT variability at this site. The acidification trend can be attributed to atmospheric carbon dioxide (CO2) forcing (59 %, 2.08 ± 0.01 ppm CO2 yr-1) and warming (41 %). Similar trends were observed at 50 m but rates were generally slower. At 1 m depth, the increase in atmospheric CO2 accounted for approximately 40 % of the observed increase in CT (2.97 ± 0.20 µmol kg-1 yr-1). The remaining increase in CT may have been driven by the same unidentified process that caused an increase in AT (2.08 ± 0.19 µmol kg-1 yr-1). Based on the analysis of monthly trends, synchronous increases in CT and AT were fastest in the spring-summer transition. The driving process of the interannual increase in AT has a seasonal and shallow component, which may indicate riverine or groundwater influence. This study exemplifies the importance of understanding changes in coastal carbonate chemistry through the lens of biogeochemical cycling at the land-sea interface. This is the first coastal acidification time series providing multiyear data at high temporal resolution. The data confirm rapid warming in the Mediterranean Sea and demonstrate coastal acidification with a synchronous increase in total alkalinity.
NASA Astrophysics Data System (ADS)
Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar
2014-08-01
As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.
Spatial pattern and temporal trend of mortality due to tuberculosis 10
de Queiroz, Ana Angélica Rêgo; Berra, Thaís Zamboni; Garcia, Maria Concebida da Cunha; Popolin, Marcela Paschoal; Belchior, Aylana de Souza; Yamamura, Mellina; dos Santos, Danielle Talita; Arroyo, Luiz Henrique; Arcêncio, Ricardo Alexandre
2018-01-01
ABSTRACT Objectives: To describe the epidemiological profile of mortality due to tuberculosis (TB), to analyze the spatial pattern of these deaths and to investigate the temporal trend in mortality due to tuberculosis in Northeast Brazil. Methods: An ecological study based on secondary mortality data. Deaths due to TB were included in the study. Descriptive statistics were calculated and gross mortality rates were estimated and smoothed by the Local Empirical Bayesian Method. Prais-Winsten’s regression was used to analyze the temporal trend in the TB mortality coefficients. The Kernel density technique was used to analyze the spatial distribution of TB mortality. Results: Tuberculosis was implicated in 236 deaths. The burden of tuberculosis deaths was higher amongst males, single people and people of mixed ethnicity, and the mean age at death was 51 years. TB deaths were clustered in the East, West and North health districts, and the tuberculosis mortality coefficient remained stable throughout the study period. Conclusions: Analyses of the spatial pattern and temporal trend in mortality revealed that certain areas have higher TB mortality rates, and should therefore be prioritized in public health interventions targeting the disease. PMID:29742272
Inglez-Dias, Aline; Hahn, Judith A; Lum, Paula J; Evans, Jennifer; Davidson, Peter; Page-Shafer, Kimberly
2008-05-01
To describe temporal trends in methamphetamine use among young injection drug users (IDU) in San Francisco. Secondary analysis of cross-sectional baseline data collected for a longitudinal study of young IDU from 1998 to 2004. Participants were 1445 young IDU (<30 years old) who reported injection in the previous month, English-speaking, and recruited by street outreach methods. We examined trends for: lifetime (ever) and recent (30-day) methamphetamine use, including injected and non-injected, and by age group and sexual risk behaviour [men who have sex with men injecting drug users (MSM-IDU), male IDU (non-MSM) and female IDU]. In 1998, 1999, 2000, 2001, 2003 and 2004 we interviewed 237, 276, 431, 310, 147 and 44 participants, respectively. Overall, median age was 22 years [interquartile range (IQR) 20-25], 30.3% were women and median duration of injecting was 4.4 years (IQR 2-7). Prevalence of methamphetamine use was high, with 50.1% reporting recent injection, but overall there were no temporal increases in reported 'ever' injected use. Recent methamphetamine injection (past 30 days) increased significantly, and peaked at 60% in 2003. MSM-IDU had higher methamphetamine injection ever (92.3%) and recently (59.5%) compared to heterosexual male (non-MSM) IDU (81.6% and 47.3%, respectively) and to female IDU (78.4% and 46.1%, respectively). Despite reports of ubiquitous increases in methamphetamine use, there were no significant increases in 6 years in ever injecting methamphetamine overall among young IDU. MSM-IDU who reported the highest methamphetamine use overall reported some increases in recent injected use. The methamphetamine 'epidemic' was probably under way among young IDU earlier than other populations.
NASA Astrophysics Data System (ADS)
Ahmadalipour, A.; Beal, B.; Moradkhani, H.
2015-12-01
Changing climate and potential future increases in global temperature are likely to have impacts on drought characteristics and hydrologic cylce. In this study, we analyze changes in temporal and spatial extent of meteorological and hydrological droughts in future, and their trends. Three statistically downscaled datasets from NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), Multivariate Adaptive Constructed Analogs (MACA), and Bias Correction and Spatial Disagregation (BCSD-PSU) each consisting of 10 CMIP5 Global Climate Models (GCM) are utilized for RCP4.5 and RCP8.5 scenarios. Further, Precipitation Runoff Modeling System (PRMS) hydrologic model is used to simulate streamflow from GCM inputs and assess the hydrological drought characteristics. Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) are the two indexes used to investigate meteorological and hydrological drought, respectively. Study is done for Willamette Basin with a drainage area of 29,700 km2 accommodating more than 3 million inhabitants and 25 dams. We analyze our study for annual time scale as well as three future periods of near future (2010-2039), intermediate future (2040-2069), and far future (2070-2099). Large uncertainty is found from GCM predictions. Results reveal that meteorological drought events are expected to increase in near future. Severe to extreme drought with large areal coverage and several years of occurance is predicted around year 2030 with the likelihood of exceptional drought for both drought types. SPI is usually showing positive trends, while SDI indicates negative trends in most cases.
Agriculture-related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin
Saad, D.A.
2008-01-01
Measuring and understanding trends in groundwater quality is necessary for determining whether changes in land-management practices have an effect on groundwater quality. This paper describes an approach that was used to measure and understand trends using data from two groundwater studies conducted in central Wisconsin as part of the USGS NAWQA program. One of the key components of this approach, determining the age of sampled groundwater, gave a temporal component to the snapshots of water quality that were obtained through synoptic-sampling efforts. This approach can be used at other locations where groundwater quality data are collected, groundwater age can be determined, and associated temporal data are available. Results of these studies indicate measured concentrations of nitrate and atrazine plus deethylatrazine were correlated to historical patterns of fertilizer and atrazine use. Concentrations of nitrate in groundwater have increased over time; concentrations of atrazine plus deethylatrazine increased and then decreased. Concentrations of nitrate also were correlated to screen depth below the water level and concentrations of dissolved O2; concentrations of atrazine plus deethylatrazine were correlated to dissolved O2 and annual precipitation. To measure trends in concentrations of atrazine plus deethylatrazine, the data, collected over a near-decadal period, were adjusted to account for changes in laboratory-reporting levels and analytical recoveries. Only after accounting for these changes was it apparent that the median concentrations of atrazine plus deethylatrazine decreased over the near-decadal interval between sampling efforts. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Naresh; Jaswal, A. K.; Mohapatra, M.; Kore, P. A.
2017-08-01
Spatial and temporal variations in summer and winter extreme temperature indices are studied by using daily maximum and minimum temperatures data from 227 surface meteorological stations well distributed over India for the period 1969-2012. For this purpose, time series for six extreme temperature indices namely, hot days (HD), very hot days (VHD), extremely hot days (EHD), cold nights (CN), very cold nights (VCN), and extremely cold nights (ECN) are calculated for all the stations. In addition, time series for mean extreme temperature indices of summer and winter seasons are also analyzed. Study reveals high variability in spatial distribution of threshold temperatures of extreme temperature indices over the country. In general, increasing trends are observed in summer hot days indices and decreasing trends in winter cold night indices over most parts of the country. The results obtained in this study indicate warming in summer maximum and winter minimum temperatures over India. Averaged over India, trends in summer hot days indices HD, VHD, and EHD are significantly increasing (+1.0, +0.64, and +0.32 days/decade, respectively) and winter cold night indices CN, VCN, and ECN are significantly decreasing (-0.93, -0.47, and -0.15 days/decade, respectively). Also, it is observed that the impact of extreme temperature is higher along the west coast for summer and east coast for winter.
NASA Astrophysics Data System (ADS)
Zhao, Yifei; Zou, Xinqing; Cao, Liguo; Yao, Yulong; Fu, Guanghe
2017-07-01
This study investigated the spatial-temporal patterns and trends of potential evapotranspiration (ET0) and aridity index (AI) over Southwest China during 1960-2013 based on daily temperature, precipitation, wind speed, sunshine duration, total solar radiation, and relative humidity data from 108 meteorological stations. The Penman-Monteith model, Mann-Kendall (M-K) test, moving t test, and Morlet wavelet method were used. The results indicated that ET0 and AI across the region displayed decreasing trends, but the former was significant. After 2000, regionally average trends in ET0 and AI increased rapidly, indicating that droughts increased over Southwest China in recent years. Spatially, the changes of ET0 and AI were dissimilar and not clustered, either. Temporally, both ET0 and AI displayed obvious abrupt change points over different timescales and that of AI was during the winter monsoon period. Significant periodic variations with periods of 27, 13, and 5 years were found in ET0, but only of 13 and 5 years existed in AI. Correlation analysis revealed that the sunshine duration and wind speed were the dominant factors affecting ET0 and that AI showed strong negative correlation with precipitation. The findings of this study enhance the understanding of the relationship between climate change and drought in Southwest China, while the mechanism controlling the variation in drought requires further study.
Elbarouni, Basem; Elmanfud, Omran; Yan, Raymond T; Fox, Keith A A; Kornder, Jan M; Rose, Barry; Spencer, Frederick A; Welsh, Robert C; Wong, Graham C; Goodman, Shaun G; Yan, Andrew T
2010-09-01
Although randomized controlled trials support the use of intensive medical and invasive therapies for non-ST segment elevation acute coronary syndromes (NSTE-ACS), major bleeding is a serious treatment complication. We sought to determine the temporal trend of in-hospital major bleeding among patients with NSTE-ACS, in relation to the evolving management pattern. We identified 14 111 NSTE-ACS patients enrolled in 4 successive, prospective, multicenter registries (ACS I, 1999-2001; ACS II, 2002-2003; GRACE, 2004-2007; and CANRACE, 2008) in Canada between 1999 and 2008. We collected data on patient characteristics, use of cardiac medications and procedures on standardized case report forms. In all registries, major bleeding was defined a priori as life threatening or fatal bleeding, bleeding requiring transfusion of ≥2 U of packed red cells, or resulting in an absolute decrease in hemoglobin of >30g/L. A total of 14 111 patients had a final diagnosis of NSTE-ACS and were included in this study (3294 in the ACS-I registry, 1956 in the ACS-II registry, 7543 in GRACE, and 1318 in CANRACE). Over time, there was a substantial increase in the use of dual anti-platelet (aspirin and thienopyridine) therapy (P for trend <.001), and in rates of in-hospital cardiac catheterization and percutaneous coronary intervention (both Ps for trend <.001). Overall, major bleeding was relatively infrequent (1.7%). There was no significant increase in the unadjusted rates of major bleeding over time (P for trend = .19). In multivariable analysis adjusting for GRACE risk score and intensive treatment, enrolment period was not an independent predictor of bleeding (P for trend = .98). There was no interaction between the enrolment period and the use of intensive medical and invasive management. Despite more widespread use of dual anti-platelet therapies and invasive cardiac procedures in the management of NSTE-ACS, the rate of major bleeding remains relatively low and has not increased significantly over time. Our findings suggest that physicians selectively target treatment for their patients, and these evidence-based therapies can be safely administered to ACS patients in clinical practice. 2010 Mosby, Inc. All rights reserved.
Khera, Rohan; Cram, Peter; Lu, Xin; Vyas, Ankur; Gerke, Alicia; Rosenthal, Gary E.; Horwitz, Phillip A.; Girotra, Saket
2016-01-01
Importance Percutaneous ventricular assist devices (PVADs) provide robust hemodynamic support compared with intra-aortic balloon pumps (IABPs), but clinical use patterns are unknown. Objective To examine contemporary patterns in PVAD use in the United States and compare them with use of IABPs. Design, Setting, and Participants Retrospective study of adults older than 18 years who received a PVAD or IABP while hospitalized in the United States (2007-2012). Main Outcomes and Measures Temporal trends in utilization, patient and hospital characteristics, in-hospital mortality, and cost of PVAD use compared with IABP. Results During 2007 through 2012, utilization of PVADs increased 30-fold (4.6 per million discharges in 2007 to 138 per million discharges in 2012; P for trend < .001) while utilization of IABPs decreased from 1738 per million discharges in 2008 to 1608 per million discharges in 2012 (P for trend = .02). In 2007, an estimated 72 hospitals used PVADs, increasing to 477 in 2011 (P for trend < .001). The number of hospitals with an annual volume of 10 or more PVAD procedures per year increased from 0 in 2007 to 102 in 2011 (21.4% ofPVAD-using hospitals; P for trend < .001). Among PVAD recipients, 67.3% had a diagnosis of cardiogenic shock or acute myocardial infarction (AMI). There was a temporal increase in the use of PVADs in older patients and patients with AMI, hypertension, diabetes mellitus, and chronic kidney disease (P for trend < .001 for all). Overall, mortality in PVAD recipients was 28.8%, and mean (SE) hospitalization cost was $85 580 ($4165); both were significantly higher in PVAD recipients with cardiogenic shock (mortality, 47.5%; mean [SE] cost, $113 695 [$6260]; P < .001 for both). The PVAD recipients were less likely than IABP recipients to have cardiogenic shock (34.3% vs 41.2%; P = .001), AMI (48.0% vs68.6%; P < .001), and undergo coronary artery bypass graft surgery (6.2% vs 43.2%; P < .001), but more likely to undergo percutaneous coronary intervention (70.9% vs 40.4%; P < .001). In propensity-matched analysis, PVADs were associated with higher mortality compared with IABP (odds ratio, 1.23 [95% CI, 1.06-1.43]; P = .007). Conclusions and Relevance There has been a substantial increase in the use of PVADs in recent years with an accompanying decrease in the use of IABPs. Given the high mortality, associated cost, and uncertain evidence for a clear benefit, randomized clinical trials are needed to determine whether use of PVADs leads to improved patient outcomes. PMID:25822170
Low validity of Google Trends for behavioral forecasting of national suicide rates.
Tran, Ulrich S; Andel, Rita; Niederkrotenthaler, Thomas; Till, Benedikt; Ajdacic-Gross, Vladeta; Voracek, Martin
2017-01-01
Recent research suggests that search volumes of the most popular search engine worldwide, Google, provided via Google Trends, could be associated with national suicide rates in the USA, UK, and some Asian countries. However, search volumes have mostly been studied in an ad hoc fashion, without controls for spurious associations. This study evaluated the validity and utility of Google Trends search volumes for behavioral forecasting of suicide rates in the USA, Germany, Austria, and Switzerland. Suicide-related search terms were systematically collected and respective Google Trends search volumes evaluated for availability. Time spans covered 2004 to 2010 (USA, Switzerland) and 2004 to 2012 (Germany, Austria). Temporal associations of search volumes and suicide rates were investigated with time-series analyses that rigorously controlled for spurious associations. The number and reliability of analyzable search volume data increased with country size. Search volumes showed various temporal associations with suicide rates. However, associations differed both across and within countries and mostly followed no discernable patterns. The total number of significant associations roughly matched the number of expected Type I errors. These results suggest that the validity of Google Trends search volumes for behavioral forecasting of national suicide rates is low. The utility and validity of search volumes for the forecasting of suicide rates depend on two key assumptions ("the population that conducts searches consists mostly of individuals with suicidal ideation", "suicide-related search behavior is strongly linked with suicidal behavior"). We discuss strands of evidence that these two assumptions are likely not met. Implications for future research with Google Trends in the context of suicide research are also discussed.
Has upwelling strengthened along worldwide coasts over 1982-2010?
NASA Astrophysics Data System (ADS)
Varela, R.; Álvarez, I.; Santos, F.; Decastro, M.; Gómez-Gesteira, M.
2015-05-01
Changes in coastal upwelling strength have been widely studied since 1990 when Bakun proposed that global warming can induce the intensification of upwelling in coastal areas. Whether present wind trends support this hypothesis remains controversial, as results of previous studies seem to depend on the study area, the length of the time series, the season, and even the database used. In this study, temporal and spatial trends in the coastal upwelling regime worldwide were investigated during upwelling seasons from 1982 to 2010 using a single wind database (Climate Forecast System Reanalysis) with high spatial resolution (0.3°). Of the major upwelling systems, increasing trends were only observed in the coastal areas of Benguela, Peru, Canary, and northern California. A tendency for an increase in upwelling-favourable winds was also identified along several less studied regions, such as the western Australian and southern Caribbean coasts.
Has upwelling strengthened along worldwide coasts over 1982-2010?
Varela, R.; Álvarez, I.; Santos, F.; deCastro, M.; Gómez-Gesteira, M.
2015-01-01
Changes in coastal upwelling strength have been widely studied since 1990 when Bakun proposed that global warming can induce the intensification of upwelling in coastal areas. Whether present wind trends support this hypothesis remains controversial, as results of previous studies seem to depend on the study area, the length of the time series, the season, and even the database used. In this study, temporal and spatial trends in the coastal upwelling regime worldwide were investigated during upwelling seasons from 1982 to 2010 using a single wind database (Climate Forecast System Reanalysis) with high spatial resolution (0.3°). Of the major upwelling systems, increasing trends were only observed in the coastal areas of Benguela, Peru, Canary, and northern California. A tendency for an increase in upwelling-favourable winds was also identified along several less studied regions, such as the western Australian and southern Caribbean coasts. PMID:25952477
NASA Astrophysics Data System (ADS)
Pierini, J. O.; Restrepo, J. C.; Aguirre, J.; Bustamante, A. M.; Velásquez, G. J.
2017-04-01
A measure of the variability in seasonal extreme streamflow was estimated for the Colombian Caribbean coast, using monthly time series of freshwater discharge from ten watersheds. The aim was to detect modifications in the streamflow monthly distribution, seasonal trends, variance and extreme monthly values. A 20-year length time moving window, with 1-year successive shiftments, was applied to the monthly series to analyze the seasonal variability of streamflow. The seasonal-windowed data were statistically fitted through the Gamma distribution function. Scale and shape parameters were computed using the Maximum Likelihood Estimation (MLE) and the bootstrap method for 1000 resample. A trend analysis was performed for each windowed-serie, allowing to detect the window of maximum absolute values for trends. Significant temporal shifts in seasonal streamflow distribution and quantiles (QT), were obtained for different frequencies. Wet and dry extremes periods increased significantly in the last decades. Such increase did not occur simultaneously through the region. Some locations exhibited continuous increases only at minimum QT.
Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere
Pogge von Strandmann, Philip A. E.; Stüeken, Eva E.; Elliott, Tim; Poulton, Simon W.; Dehler, Carol M.; Canfield, Don E.; Catling, David C.
2015-01-01
Neoproterozoic (1,000–542 Myr ago) Earth experienced profound environmental change, including ‘snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ82/76Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ82/76Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ82/76Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution. PMID:26679529
Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604
Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R
2016-01-01
This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.
Decadal trends in Indian Ocean ambient sound.
Miksis-Olds, Jennifer L; Bradley, David L; Niu, Xiaoyue Maggie
2013-11-01
The increase of ocean noise documented in the North Pacific has sparked concern on whether the observed increases are a global or regional phenomenon. This work provides evidence of low frequency sound increases in the Indian Ocean. A decade (2002-2012) of recordings made off the island of Diego Garcia, UK in the Indian Ocean was parsed into time series according to frequency band and sound level. Quarterly sound level comparisons between the first and last years were also performed. The combination of time series and temporal comparison analyses over multiple measurement parameters produced results beyond those obtainable from a single parameter analysis. The ocean sound floor has increased over the past decade in the Indian Ocean. Increases were most prominent in recordings made south of Diego Garcia in the 85-105 Hz band. The highest sound level trends differed between the two sides of the island; the highest sound levels decreased in the north and increased in the south. Rate, direction, and magnitude of changes among the multiple parameters supported interpretation of source functions driving the trends. The observed sound floor increases are consistent with concurrent increases in shipping, wind speed, wave height, and blue whale abundance in the Indian Ocean.
Disentangling nutrient concentrations trends in transfer pathways of agricultural watersheds
NASA Astrophysics Data System (ADS)
Mellander, P. E.; Jordan, P.
2017-12-01
Targeted schemes designed to attenuate agricultural pollution to water are needed to reach goals of sustainable food production. Such approaches require insight into temporal and spatial variability in the most representative flows and active pollution transfer pathways. Interpreting changes in total stream flow can be misleading since some changes may only be apparent in specific pathways. The aim of this study was to investigate changing land use pressures on water quality. The objectives were to assess intra-annual and inter-annual changes in phosphorus (P) and nitrogen (N) concentrations and loads in apportioned pathways. Pathways were separated using hydrograph and loadograph separation techniques on a seven-year dataset of sub-hourly river discharge and concentrations of NO3-N, reactive P and total P in two intensively managed agricultural watersheds of contrasting hydrology in Ireland. Active transfer pathways were dictated by soil drainage. There were intra-annual variability in both P and N concentrations in different pathways and loads, and these had the largest influence of all-year baseflow (BF) concentrations and summer quickflow (QF) concentrations. Nutrient loss responded to seasonality in the river discharge in all pathways in both watersheds and was mostly transport limited. In both watersheds there were inter-annual trends in P concentration in some pathways and seasons that did not correspond to the trend of total river P concentration. The response in stream water quality to management, mitigation measures and changes in weather may be hidden by counteracting responses in different pathways. The hydrology had a major impact on seasonal changes in N and P loss. By apportioning different transfer pathways more information on the temporal and site-specific nature of nutrient transfer was provided. BF and QF pathways largely contributed to the river P concentrations in summer while all pathways contributed to the P and N loads in wintertime. The data indicated that increasing trends in river P concentrations were mostly linked to trends in BF concentration in both catchment types. This may be explained by increased point source influence, increased vertical transfer through increased soil P loading, or decreased stream bed attenuation. Each will require different policy considerations.
Monitoring tree secies diversity over large spatial and temporal scales
James F. Rosson; Clifford C. Amundsen
2004-01-01
The prospect of decline in biological diversity has become a central concern in the life sciences, both around the world and across the United States. Anthropogenic disturbance has been identified as a major factor affecting species diversity trends. An increase in the harvesting of naturally diverse timber stands in the South has become an important issue. The...
Spatial and temporal patterns of dissolved oxygen (DO) in Yaquina Estuary, Oregon (USA) are examined using historic and recent data. There was a significant increasing trend in DO in the upstream portion of the estuary during the years 1960–1985. Historically, minimum dry season ...
Bao, Changjun; Hu, Jianli; Liu, Wendong; Liang, Qi; Wu, Ying; Norris, Jessie; Peng, Zhihang; Yu, Rongbin; Shen, Hongbing; Chen, Feng
2014-01-01
Objective This study aimed to describe the spatial and temporal trends of Shigella incidence rates in Jiangsu Province, People's Republic of China. It also intended to explore complex risk modes facilitating Shigella transmission. Methods County-level incidence rates were obtained for analysis using geographic information system (GIS) tools. Trend surface and incidence maps were established to describe geographic distributions. Spatio-temporal cluster analysis and autocorrelation analysis were used for detecting clusters. Based on the number of monthly Shigella cases, an autoregressive integrated moving average (ARIMA) model successfully established a time series model. A spatial correlation analysis and a case-control study were conducted to identify risk factors contributing to Shigella transmissions. Results The far southwestern and northwestern areas of Jiangsu were the most infected. A cluster was detected in southwestern Jiangsu (LLR = 11674.74, P<0.001). The time series model was established as ARIMA (1, 12, 0), which predicted well for cases from August to December, 2011. Highways and water sources potentially caused spatial variation in Shigella development in Jiangsu. The case-control study confirmed not washing hands before dinner (OR = 3.64) and not having access to a safe water source (OR = 2.04) as the main causes of Shigella in Jiangsu Province. Conclusion Improvement of sanitation and hygiene should be strengthened in economically developed counties, while access to a safe water supply in impoverished areas should be increased at the same time. PMID:24416167
Climate reddening increases the chance of critical transitions
NASA Astrophysics Data System (ADS)
van der Bolt, Bregje; van Nes, Egbert H.; Bathiany, Sebastian; Vollebregt, Marlies E.; Scheffer, Marten
2018-06-01
Climate change research often focuses on trends in the mean and variance. However, analyses of palaeoclimatic and contemporary dynamics reveal that climate memory — as measured for instance by temporal autocorrelation — may also change substantially over time. Here, we show that elevated temporal autocorrelation in climatic variables should be expected to increase the chance of critical transitions in climate-sensitive systems with tipping points. We demonstrate that this prediction is consistent with evidence from forests, coral reefs, poverty traps, violent conflict and ice sheet instability. In each example, the duration of anomalous dry or warm events elevates chances of invoking a critical transition. Understanding the effects of climate variability thus requires research not only on variance, but also on climate memory.
2018-01-01
Fire as a dominant disturbance has profound implications on the terrestrial carbon cycle. We present the first ever multi-decadal, spatially-explicit, 30 meter assessment of fire regimes across the forested ecoregions of Canada at an annual time-step. From 1985 to 2015, 51 Mha burned, impacting over 6.5% of forested ecosystems. Mean annual area burned was 1,651,818 ha and varied markedly (σ = 1,116,119), with 25% of the total area burned occurring in three years: 1989, 1995, and 2015. Boreal forest types contained 98% of the total area burned, with the conifer-dominated Boreal Shield containing one-third of all burned area. While results confirm no significant national trend in burned area for the period of 1985 to 2015, a significant national increasing trend (α = 0.05) of 11% per year was evident for the past decade (2006 to 2015). Regionally, a significant increasing trend in total burned area from 1985 to 2015 was observed in the Montane Cordillera (2.4% increase per year), while the Taiga Plains and Taiga Shield West displayed significant increasing trends from 2006 to 2015 (26.1% and 12.7% increases per year, respectively). The Atlantic Maritime, which had the lowest burned area of all ecozones (0.01% burned per year), was the only ecozone to display a significant negative trend (2.4% decrease per year) from 1985 to 2015. Given the century-long fire return intervals in many of these ecozones, and large annual variability in burned area, short-term trends need to be interpreted with caution. Additional interpretive cautions are related to year used for trend initiation and the nature and extents of spatial regionalizations used for summarizing findings. The results of our analysis provide a baseline for monitoring future national and regional trends in burned area and offer spatially and temporally detailed insights to inform science, policy, and management. PMID:29787562
Coops, Nicholas C; Hermosilla, Txomin; Wulder, Michael A; White, Joanne C; Bolton, Douglas K
2018-01-01
Fire as a dominant disturbance has profound implications on the terrestrial carbon cycle. We present the first ever multi-decadal, spatially-explicit, 30 meter assessment of fire regimes across the forested ecoregions of Canada at an annual time-step. From 1985 to 2015, 51 Mha burned, impacting over 6.5% of forested ecosystems. Mean annual area burned was 1,651,818 ha and varied markedly (σ = 1,116,119), with 25% of the total area burned occurring in three years: 1989, 1995, and 2015. Boreal forest types contained 98% of the total area burned, with the conifer-dominated Boreal Shield containing one-third of all burned area. While results confirm no significant national trend in burned area for the period of 1985 to 2015, a significant national increasing trend (α = 0.05) of 11% per year was evident for the past decade (2006 to 2015). Regionally, a significant increasing trend in total burned area from 1985 to 2015 was observed in the Montane Cordillera (2.4% increase per year), while the Taiga Plains and Taiga Shield West displayed significant increasing trends from 2006 to 2015 (26.1% and 12.7% increases per year, respectively). The Atlantic Maritime, which had the lowest burned area of all ecozones (0.01% burned per year), was the only ecozone to display a significant negative trend (2.4% decrease per year) from 1985 to 2015. Given the century-long fire return intervals in many of these ecozones, and large annual variability in burned area, short-term trends need to be interpreted with caution. Additional interpretive cautions are related to year used for trend initiation and the nature and extents of spatial regionalizations used for summarizing findings. The results of our analysis provide a baseline for monitoring future national and regional trends in burned area and offer spatially and temporally detailed insights to inform science, policy, and management.
Ying Ouyang; Prem B. Parajuli; Yide Li; Theodor D. Leininger; Gary Feng
2017-01-01
Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature...
H. Tyler Pittman; William W. Bowerman; Leland H. Grim; Teryl G. Grubb; William C. Bridges; Michael R. Wierda
2015-01-01
The bald eagle (Haliaeetus leucocephalus) population at Voyageurs National Park (VNP) provides an opportunity to assess long-term temporal and spatial trends of persistent environmental contaminants. Nestling bald eagle plasma samples collected from 1997 to 2010 were analyzed for polychlorinated biphenyls (PCBs) and organochlorine pesticides. Trends of total PCBs,...
Does adaptation to vertebrate codon usage relate to flavivirus emergence potential?
Freire, Caio César de Melo
2018-01-01
Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host. PMID:29385205
Ma, Xiaohua; Han, Xiuxiu; Jiang, Quanliang; Huang, Changchun; Huang, Tao; Yang, Hao; Yao, Ling
2018-04-12
Two sediment cores were collected from Dianchi Lake, a plateau lake in Southwest China, to study the temporal trends and to investigate the sources of sedimentary deposited polycyclic aromatic hydrocarbon. The ΣPAH16 concentration in the two sediment cores ranged from 172.5 to 2244.8 ng/g and from 211.4 to 1777.8 ng/g, with mean values of 1106.2 and 865.1 ng/g, respectively. Three temporal trends for the ΣPAH16 concentration and the composition of PAHs in Dianchi Lake all showed three typical changing stages: (1) slight changes in deeper segments before the 1950s; (2) a rapid increase in PAH concentrations between the 1960s and 1990s; and (3) a slight reduction from the 1990s onward. These trends differ from those observed in developed countries due to differences in the timing of industrialization and urbanization processes. According to the results of the molecular ratios and principal component analysis, the PAH deposition was dominated by coal combustion, wood combustion, and vehicle emissions before and after the 1960s, respectively.
NASA Astrophysics Data System (ADS)
Santos, Juliana; Künne, Annika; Kralisch, Sven; Fink, Manfred; Brenning, Alexander
2016-04-01
The Muriaé River basin in SE Brazil has been experiencing an increasing pressure on water resources, due to the population growth of the Rio de Janeiro urban area connected with the growth of the industrial and agricultural sector. This leads to water scarcity, riverine forest degradation, soil erosion and water quality problems among other impacts. Additionally the region has been suffering with seasonal precipitation variations leading to extreme events such as droughts, floods and landslides. Climate projections for the near future indicate a high inter-annual variability of rainfall with an increase in the frequency and intensity of heavy rainfall events combined with a statistically significant increase in the duration of dry periods and a reduced duration of wet periods. This may lead to increased soil erosion during the wet season, while the longer dry periods may reduce the vegetation cover, leaving the soil even more exposed and vulnerable to soil erosion. In consequence, it is crucial to understand how climate affects the interaction between the timing of extreme rainfall events, hydrological processes, vegetation growth, soil cover and soil erosion. In this context, physically-based hydrological modelling can contribute to a better understanding of spatial-temporal process dynamics in the Earth's system and support Integrated Water Resourses Management (IWRM) and adaptation strategies. The study area is the Muriaé river basin which has an area of approx. 8000 km² in Minas Gerais and Rio de Janeiro States. The basin is representative of a region of domain of hillslopes areas with the predominancy of pasture for livestock production. This study will present some of the relevant analyses which have been carried out on data (climate and streamflow) prior to using them for hydrological modelling, including consistency checks, homogeneity, pattern and statistical analyses, or annual and seasonal trends detection. Several inconsistencies on the raw data were detected and excluded from the dataset. Statistically significant annual and seasonal trends have been detected such as an increasing trend for annual mean temperature, a decreasing trend for annual relative humidity and an increasing trend for precipitation during the wet season. Moreover, the physically-based and fully distributed hydrological model JAMS/J2K-S has been applied and the spatial-temporal visualization of the climate data as well as an evaluation of spatial uncertainty will be presented.
NASA Astrophysics Data System (ADS)
Herath, Imali Kaushalya; Ye, Xuchun; Wang, Jianli; Bouraima, Abdel-Kabirou
2018-02-01
Reference evapotranspiration (ETr) is one of the important parameters in the hydrological cycle. The spatio-temporal variation of ETr and other meteorological parameters that influence ETr were investigated in the Jialing River Basin (JRB), China. The ETr was estimated using the CROPWAT 8.0 computer model based on the Penman-Montieth equation for the period 1964-2014. Mean temperature (MT), relative humidity (RH), sunshine duration (SD), and wind speed (WS) were the main input parameters of CROPWAT while 12 meteorological stations were evaluated. Linear regression and Mann-Kendall methods were applied to study the spatio-temporal trends while the inverse distance weighted (IDW) method was used to identify the spatial distribution of ETr. Stepwise regression and partial correlation methods were used to identify the meteorological variables that most significantly influenced the changes in ETr. The highest annual ETr was found in the northern part of the basin, whereas the lowest rate was recorded in the western part. In the autumn, the highest ETr was recorded in the southeast part of JRB. The annual ETr reflected neither significant increasing nor decreasing trends. Except for the summer, ETr is slightly increasing in other seasons. The MT significantly increased whereas SD and RH were significantly decreased during the 50-year period. Partial correlation and stepwise regression methods found that the impact of meteorological parameters on ETr varies on an annual and seasonal basis while SD, MT, and RH contributed to the changes of annual and seasonal ETr in the JRB.
Vora, Amit N; Dai, Dadi; Gurm, Hitinder; Amin, Amit P; Messenger, John C; Mahmud, Ehtisham; Mauri, Laura; Wang, Tracy Y; Roe, Matthew T; Curtis, Jeptha; Patel, Manesh R; Dauerman, Harold L; Peterson, Eric D; Rao, Sunil V
2016-03-01
Because of recent changes in criteria for coverage for inpatient hospital stays, most nonacute percutaneous coronary intervention (PCI) procedures are reimbursed on an outpatient basis regardless of underlying patient risk. Downstream effects of these changes on the risk profile of patients undergoing outpatient PCI have not been evaluated. Using the American College of Cardiology National Cardiovascular Data Registry's CathPCI Registry, we assessed temporal trends in risk profiles and rates of hospital admission among 999 279 patients undergoing PCI qualifying for outpatient reimbursement. We estimated mortality and bleeding risk using validated models from the registry. From 2009 to 2014, the proportion of outpatients not admitted to a hospital after PCI increased from 32.8% to 66.3% (P<0.001). Patients who were admitted after PCI were older, had greater comorbidities, and experienced more post-PCI complications (all P<0.001). Among those not admitted, the proportion of patients at high risk for predicted mortality increased significantly from 17.0% to 19.8% during the study period (P<0.001). In contrast, 16.7% of patients admitted after PCI were at low risk for mortality. Among patients undergoing PCI procedures that qualify for outpatient reimbursement, there has been a temporal decrease in postprocedure hospital admission. Concomitantly, the proportion of these outpatients at high risk for mortality has significantly increased over time. These data suggest that current reimbursement classification could be improved by incorporating patient risk to appropriately match the necessary resources to the needed level of care. © 2016 American Heart Association, Inc.
Historical patterns of acidification and increasing CO2 flux associated with Florida springs
Barrera, Kira E.; Robbins, Lisa L.
2017-01-01
Florida has one of the highest concentrations of springs in the world, with many discharging into rivers and predominantly into eastern Gulf of Mexico coast, and they likely influence the hydrochemistry of these adjacent waters; however, temporal and spatial trends have not been well studied. We present over 20 yr of hydrochemical, seasonally sampled data to identify temporal and spatial trends of pH, alkalinity, partial pressure of carbon dioxide (pCO2), and CO2flux from five first-order-magnitude (springs that discharge greater than 2.83 m3 s−1) coastal spring groups fed by the Floridan Aquifer System that ultimately discharge into the Gulf of Mexico. All spring groups had pCO2 levels (averages 3174.3–6773.2 μatm) that were much higher than atmospheric levels of CO2 and demonstrated statistically significant temporal decreases in pH and increases in CO2 flux, pCO2, and alkalinity. Total carbon flux emissions increased from each of the spring groups by between 3.48 × 107 and 2.856 × 108 kg C yr−1 over the time period. By 2013 the Springs Groups in total emitted more than 1.1739 × 109 kg C yr−1. Increases in alkalinity and pCO2 varied from 90.9 to 347.6 μmol kg−1 and 1262.3 to 2666.7 μatm, respectively. Coastal data show higher CO2 evasion than the open Gulf of Mexico, which suggests spring water influences nearshore waters. The results of this study have important implications for spring water quality, dissolution of the Florida carbonate platform, and identification of the effect and partitioning of carbon fluxes to and within coastal and marine ecosystems.
Sampling scales define occupancy and underlying occupancy-abundance relationships in animals.
Steenweg, Robin; Hebblewhite, Mark; Whittington, Jesse; Lukacs, Paul; McKelvey, Kevin
2018-01-01
Occupancy-abundance (OA) relationships are a foundational ecological phenomenon and field of study, and occupancy models are increasingly used to track population trends and understand ecological interactions. However, these two fields of ecological inquiry remain largely isolated, despite growing appreciation of the importance of integration. For example, using occupancy models to infer trends in abundance is predicated on positive OA relationships. Many occupancy studies collect data that violate geographical closure assumptions due to the choice of sampling scales and application to mobile organisms, which may change how occupancy and abundance are related. Little research, however, has explored how different occupancy sampling designs affect OA relationships. We develop a conceptual framework for understanding how sampling scales affect the definition of occupancy for mobile organisms, which drives OA relationships. We explore how spatial and temporal sampling scales, and the choice of sampling unit (areal vs. point sampling), affect OA relationships. We develop predictions using simulations, and test them using empirical occupancy data from remote cameras on 11 medium-large mammals. Surprisingly, our simulations demonstrate that when using point sampling, OA relationships are unaffected by spatial sampling grain (i.e., cell size). In contrast, when using areal sampling (e.g., species atlas data), OA relationships are affected by spatial grain. Furthermore, OA relationships are also affected by temporal sampling scales, where the curvature of the OA relationship increases with temporal sampling duration. Our empirical results support these predictions, showing that at any given abundance, the spatial grain of point sampling does not affect occupancy estimates, but longer surveys do increase occupancy estimates. For rare species (low occupancy), estimates of occupancy will quickly increase with longer surveys, even while abundance remains constant. Our results also clearly demonstrate that occupancy for mobile species without geographical closure is not true occupancy. The independence of occupancy estimates from spatial sampling grain depends on the sampling unit. Point-sampling surveys can, however, provide unbiased estimates of occupancy for multiple species simultaneously, irrespective of home-range size. The use of occupancy for trend monitoring needs to explicitly articulate how the chosen sampling scales define occupancy and affect the occupancy-abundance relationship. © 2017 by the Ecological Society of America.
Recurrent jellyfish blooms are a consequence of global oscillations.
Condon, Robert H; Duarte, Carlos M; Pitt, Kylie A; Robinson, Kelly L; Lucas, Cathy H; Sutherland, Kelly R; Mianzan, Hermes W; Bogeberg, Molly; Purcell, Jennifer E; Decker, Mary Beth; Uye, Shin-ichi; Madin, Laurence P; Brodeur, Richard D; Haddock, Steven H D; Malej, Alenka; Parry, Gregory D; Eriksen, Elena; Quiñones, Javier; Acha, Marcelo; Harvey, Michel; Arthur, James M; Graham, William M
2013-01-15
A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.
Loureiro, Adriana; Almendra, Ricardo; Costa, Cláudia; Santana, Paula
2018-01-31
Suicide is considered a public health priority. It is a complex phenomenon resulting from the interaction of several factors, which do not depend solely on individual conditions. This study analyzes the spatio-temporal evolution of suicide mortality between 1980 and 2015, identifying areas of high risk, and their variation, in the 278 municipalities of Continental Portugal. Based on the number of self-inflicted injuries and deaths from suicide and the resident population, the spatio-temporal evolution of the suicide mortality rate was assessed via: i) a Poisson joinpoint regression model, and ii) spatio-temporal clustering methods. The suicide mortality rate evolution showed statistically significant increases over three periods (1980 - 1984; 1999 - 2002 and 2006 - 2015) and two statistically significant periods of decrease (1984 - 1995 and 1995 - 1999). The spatio-temporal analysis identified five clusters of high suicide risk (relative risk >1) and four clusters of low suicide risk (relative risk < 1). The periods when suicide mortality increases seem to overlap with times of economic and financial instability. The geographical pattern of suicide risk has changed: presently, the suicide rates from the municipalities in the Center and North are showing more similarity with those seen in the South, thus increasing the ruralization of the phenomenon of suicide. Between 1980 and 2015 the spacio-temporal pattern of mortality from suicide has been changing and is a phenomenon that is currently experiencing a growing trend (since 2006) and is of higher risk in rural areas.
NASA Astrophysics Data System (ADS)
Pleijel, Håkan; Grundström, Maria; Karlsson, Gunilla Pihl; Karlsson, Per Erik; Chen, Deliang
2016-02-01
Annual anomalies in air pollutant concentrations, and deposition (bulk and throughfall) of sulphate, nitrate and ammonium, in the Gothenburg region, south-west Sweden, were correlated with optimized linear combinations of the yearly frequency of Lamb Weather Types (LWTs) to determine the extent to which the year-to-year variation in pollution exposure can be partly explained by weather related variability. Air concentrations of urban NO2, CO, PM10, as well as O3 at both an urban and a rural monitoring site, and the deposition of sulphate, nitrate and ammonium for the period 1997-2010 were included in the analysis. Linear detrending of the time series was performed to estimate trend-independent anomalies. These estimated anomalies were subtracted from observed annual values. Then the statistical significance of temporal trends with and without LWT adjustment was tested. For the pollutants studied, the annual anomaly was well correlated with the annual LWT combination (R2 in the range 0.52-0.90). Some negative (annual average [NO2], ammonia bulk deposition) or positive (average urban [O3]) temporal trends became statistically significant (p < 0.05) when the LWT adjustment was applied. In all the cases but one (NH4 throughfall, for which no temporal trend existed) the significance of temporal trends became stronger with LWT adjustment. For nitrate and ammonium, the LWT based adjustment explained a larger fraction of the inter-annual variation for bulk deposition than for throughfall. This is probably linked to the longer time scale of canopy related dry deposition processes influencing throughfall being explained to a lesser extent by LWTs than the meteorological factors controlling bulk deposition. The proposed novel methodology can be used by authorities responsible for air pollution management, and by researchers studying temporal trends in pollution, to evaluate e.g. the relative importance of changes in emissions and weather variability in annual air pollution exposure.
Cummings, Kevin J; Aprea, Victor A; Altier, Craig
2014-01-01
Monitoring antimicrobial resistance trends among bacteria isolated from food animals and people is necessary to inform risk analyses and guide public policy regarding antimicrobial use. Our objectives were to describe the antimicrobial resistance status of Escherichia coli isolates from dairy cattle in the northeastern United States and to identify trends in resistance to selected antimicrobial agents over time. We collected data retrospectively for all bovine E. coli isolates that were obtained from samples submitted to Cornell University's Animal Health Diagnostic Center between January 1, 2004 and December 31, 2011. We investigated temporal trends in the prevalence of resistant E. coli for each antimicrobial agent using the Cochran-Armitage trend test. Antimicrobial susceptibility testing was performed on 3373 bovine E. coli isolates from clinical samples submitted during the study period. Overall resistance to each antimicrobial agent ranged from 2.7% (enrofloxacin) to 91.3% (oxytetracycline). There was evidence of a significantly decreasing trend in prevalence of resistance to several agents: chlortetracycline, florfenicol, neomycin, oxytetracycline, spectinomycin, and trimethoprim/sulfamethoxazole. However, a significantly increasing trend in prevalence of resistance to enrofloxacin was also evident. These results do not support the idea that current antimicrobial use practices on dairy operations are driving a general increase in the emergence and dissemination of drug-resistant E. coli in the region served by the laboratory. However, resistance to some drugs remained consistently high during the study period, and increasing resistance to enrofloxacin is a key area of concern.
Rand, Troy J.; Myers, Sara A.; Kyvelidou, Anastasia; Mukherjee, Mukul
2015-01-01
A healthy biological system is characterized by a temporal structure that exhibits fractal properties and is highly complex. Unhealthy systems demonstrate lowered complexity and either greater or less predictability in the temporal structure of a time series. The purpose of this research was to determine if support surface translations with different temporal structures would affect the temporal structure of the center of pressure (COP) signal. Eight healthy young participants stood on a force platform that was translated in the anteroposterior direction for input conditions of varying complexity: white noise, pink noise, brown noise, and sine wave. Detrended fluctuation analysis was used to characterize the long-range correlations of the COP time series in the AP direction. Repeated measures ANOVA revealed differences among conditions (P < .001). The less complex support surface translations resulted in a less complex COP compared to normal standing. A quadratic trend analysis demonstrated an inverted-u shape across an increasing order of predictability of the conditions (P < .001). The ability to influence the complexity of postural control through support surface translations can have important implications for rehabilitation. PMID:25994281
Increasing Base Cations in Streams: Another Legacy of Deicing Salts?
NASA Astrophysics Data System (ADS)
Helton, A. M.; Barclay, J. R.; Bellucci, C.; Rittenhouse, C.
2017-12-01
Elevated use of deicing salts directly increases sodium chloride inputs to watersheds. Sodium can accumulate in soils over time and has the potential to leach other cations (e.g., calcium, magnesium, and potassium) from the soil through cation exchange. We hypothesize that increased use of deicing salts results in a legacy of soils depleted in non-sodium base cations with loss of cations to receiving waters. The goal of this project is to quantify temporal trends in base cations and chloride in streams and rivers across the United States. We used Weighted Regressions on Time, Discharge, and Season (WRTDS) to analyze trends in base cations. Our preliminary analysis of 10 rivers in Connecticut with chemical periods of record ranging from 24 - 64 years (median = 55 years), shows that the flux of base cations is increasing in all sites (25 - 366 103 meq ha-1 yr-1 yr-1), driven largely by increases in sodium (23 - 222 103 meq ha-1 yr-1 yr-1), the dominant cation in 7 of the sites. Chloride is also increasing at all sites (26 - 261 103 meq ha-1 yr-1 yr-1), which, in combination with salt use trends, suggests a road salt source for the increased sodium. Non-sodium cations are also increasing in 9 of the sites (8 - 54 103 meq ha-1 yr-1 yr-1), though they are not directly added with most deicing salts. We will compare these trends to other long-term sites across the United States, and quantify relationships between cation trends and land cover, road density, and snowfall.
Temporal trends in hyperuricaemia in the Irish health system from 2006-2014: A cohort study.
Kumar A U, Arun; Browne, Leonard D; Li, Xia; Adeeb, Fahd; Perez-Ruiz, Fernando; Fraser, Alexander D; Stack, Austin G
2018-01-01
Elevated serum uric acid (sUA) concentrations are common in the general population and are associated with chronic metabolic conditions and adverse clinical outcomes. We evaluated secular trends in the burden of hyperuricaemia from 2006-2014 within the Irish health system. Data from the National Kidney Disease Surveillance Programme was used to determine the prevalence of elevated sUA in adults, age > 18 years, within the Irish health system. Hyperuricaemia was defined as sUA > 416.4 μmol/L in men and > 339.06 μmol/L in women, and prevalence was calculated as the proportion of patients per year with mean sUA levels above sex-specific thresholds. Temporal trends in prevalence were compared from 2006 to 2014 while general estimating equations (GEE) explored variation across calendar years expressed as odds ratios (OR) and 95% Confidence intervals (CI). From 2006 to 2014, prevalence of hyperuricaemia increased from 19.7% to 25.0% in men and from 20.5% to 24.1% in women, P<0.001. The corresponding sUA concentrations increased significantly from 314.6 (93.9) in 2006 to 325.6 (96.2) in 2014, P<0.001. Age-specific prevalence increased in all groups from 2006 to 2014, and the magnitude of increase was similar for each age category. Adjusting for baseline demographic characteristics and illness indicators, the likelihood of hyperuricemia was greatest for patients in 2014; OR 1.45 (1.26-1.65) for men and OR 1.47 (1.29-1.67) in women vs 2006 (referent). Factors associated with hyperuricaemia included: worsening kidney function, elevated white cell count, raised serum phosphate and calcium levels, elevated total protein and higher haemoglobin concentrations, all P<0.001. The burden of hyperuricaemia is substantial in the Irish health system and has increased in frequency over the past decade. Advancing age, poorer kidney function, measures of nutrition and inflammation, and regional variation all contribute to increasing prevalence, but these do not fully explain emerging trends.
Waruru, Anthony; Achia, Thomas N O; Muttai, Hellen; Ng'ang'a, Lucy; Zielinski-Gutierrez, Emily; Ochanda, Boniface; Katana, Abraham; Young, Peter W; Tobias, James L; Juma, Peter; De Cock, Kevin M; Tylleskär, Thorkild
2018-01-01
Using spatial-temporal analyses to understand coverage and trends in elimination of mother-to-child transmission of HIV (e-MTCT) efforts may be helpful in ensuring timely services are delivered to the right place. We present spatial-temporal analysis of seven years of HIV early infant diagnosis (EID) data collected from 12 districts in western Kenya from January 2007 to November 2013, during pre-Option B+ use. We included in the analysis infants up to one year old. We performed trend analysis using extended Cochran-Mantel-Haenszel stratified test and logistic regression models to examine trends and associations of infant HIV status at first diagnosis with: early diagnosis (<8 weeks after birth), age at specimen collection, infant ever having breastfed, use of single dose nevirapine, and maternal antiretroviral therapy status. We examined these covariates and fitted spatial and spatial-temporal semiparametric Poisson regression models to explain HIV-infection rates using R-integrated nested Laplace approximation package. We calculated new infections per 100,000 live births and used Quantum GIS to map fitted MTCT estimates for each district in Nyanza region. Median age was two months, interquartile range 1.5-5.8 months. Unadjusted pooled positive rate was 11.8% in the seven-years period and declined from 19.7% in 2007 to 7.0% in 2013, p < 0.01. Uptake of testing ≤8 weeks after birth was under 50% in 2007 and increased to 64.1% by 2013, p < 0.01. By 2013, the overall standardized MTCT rate was 447 infections per 100,000 live births. Based on Bayesian deviance information criterion comparisons, the spatial-temporal model with maternal and infant covariates was best in explaining geographical variation in MTCT. Improved EID uptake and reduced MTCT rates are indicators of progress towards e-MTCT. Cojoined analysis of time and covariates in a spatial context provides a robust approach for explaining differences in programmatic impact over time. During this pre-Option B+ period, the prevention of mother to child transmission program in this region has not achieved e-MTCT target of ≤50 infections per 100,000 live births. Geographical disparities in program achievements may signify gaps in spatial distribution of e-MTCT efforts and could indicate areas needing further resources and interventions.
Achia, Thomas N.O.; Muttai, Hellen; Ng’ang’a, Lucy; Zielinski-Gutierrez, Emily; Ochanda, Boniface; Katana, Abraham; Tobias, James L.; Juma, Peter; De Cock, Kevin M.
2018-01-01
Introduction Using spatial–temporal analyses to understand coverage and trends in elimination of mother-to-child transmission of HIV (e-MTCT) efforts may be helpful in ensuring timely services are delivered to the right place. We present spatial–temporal analysis of seven years of HIV early infant diagnosis (EID) data collected from 12 districts in western Kenya from January 2007 to November 2013, during pre-Option B+ use. Methods We included in the analysis infants up to one year old. We performed trend analysis using extended Cochran–Mantel–Haenszel stratified test and logistic regression models to examine trends and associations of infant HIV status at first diagnosis with: early diagnosis (<8 weeks after birth), age at specimen collection, infant ever having breastfed, use of single dose nevirapine, and maternal antiretroviral therapy status. We examined these covariates and fitted spatial and spatial–temporal semiparametric Poisson regression models to explain HIV-infection rates using R-integrated nested Laplace approximation package. We calculated new infections per 100,000 live births and used Quantum GIS to map fitted MTCT estimates for each district in Nyanza region. Results Median age was two months, interquartile range 1.5–5.8 months. Unadjusted pooled positive rate was 11.8% in the seven-years period and declined from 19.7% in 2007 to 7.0% in 2013, p < 0.01. Uptake of testing ≤8 weeks after birth was under 50% in 2007 and increased to 64.1% by 2013, p < 0.01. By 2013, the overall standardized MTCT rate was 447 infections per 100,000 live births. Based on Bayesian deviance information criterion comparisons, the spatial–temporal model with maternal and infant covariates was best in explaining geographical variation in MTCT. Discussion Improved EID uptake and reduced MTCT rates are indicators of progress towards e-MTCT. Cojoined analysis of time and covariates in a spatial context provides a robust approach for explaining differences in programmatic impact over time. Conclusion During this pre-Option B+ period, the prevention of mother to child transmission program in this region has not achieved e-MTCT target of ≤50 infections per 100,000 live births. Geographical disparities in program achievements may signify gaps in spatial distribution of e-MTCT efforts and could indicate areas needing further resources and interventions. PMID:29576942
Annual and seasonal distribution of day and night Land Surface Temperature trend over Greece.
NASA Astrophysics Data System (ADS)
Lakshmi, V.; Gemitzi, A.; Eleftheriou, D.; Kalea, A.; Kalmintzis, G.; Kiachidis, K.; Koumadoraki, P.; Mpantasis, C.; Spathara, M. E.; Tsolaki, A.; Tzampazidou, M. I.
2017-12-01
Climate change is one of the most challenging research topics during the last few decades, as temperature rise has already posed a significant impact on earth's functions affecting thus all life of the planet. The present study investigates the distribution of day and night Land Surface Temperature (LST) trends over Greece, a country in Mediterranean area which is identified as one of the main ``hot-spots" of climate change projections. Remotely sensed LST data were obtained from MODIS sensor in the form of 8-day composites of day and night values at a resolution of 1km for a 17-year period, i.e. from 2000 to 2017. Spatial aggregates of 10km x 10km were computed and the annual and seasonal temporal trends were determined for each one of those sub-areas. Results showed that annual trends of daily LST in the majority of areas demonstrated decrease ranging from -1*10-2 oC to -1.3*10-3 oC, with some sporadic parts showing a slight increase. A totally different outcome is observed in the fate of night LST, with all areas over Greece demonstrating increasing annual trends ranging from 4.6 * 10-5 oC to 3.1 * 10-3 oC, with highest values in the South-East parts of the country. Seasonal trends in day and night LST showed the same pattern, i.e., a general decrease in the day LST and a definite increase in night. An interesting finding is the increase in winter LST trends observed both for day and night LST, indicating that the absolute minimum annual LST observed during winter in Greece increases. Our results also indicate that the difference between the day and night LST is decreasing.
Evolving trends in sinus surgery: What is the impact of balloon sinus dilation?
Svider, Peter F; Darlin, Spencer; Bobian, Michael; Sekhsaria, Vibhav; Harvey, Richard J; Gray, Stacey T; Baredes, Soly; Folbe, Adam J; Eloy, Jean Anderson
2018-06-01
Balloon dilation (BD) represents a minimally invasive alternative to endoscopic sinus surgery (ESS). Although BD was introduced in 2006, distinct Current Procedural Terminology (CPT) codes were not available until 2011, making prior analysis of population-based trends difficult. Our objectives were to evaluate these trends and compare any changes to the use of traditional ESS techniques. Geographic trends also were evaluated. Medicare Part B national datasets encompassing procedures from 2011 to 2015 were obtained. ESS CPT codes (frontal sinusotomy, maxillary antrostomy with/without tissue removal, sphenoidotomy) and BD codes were searched to determine temporal trends in their use. Additionally, state carriers were individually evaluated for geographic trends. National use of BD increased greater than five-fold (39,193 from 7,496 among Medicare patients), whereas the use of ESS increased by only 5.9%. This increase in BD was observed across all sites, including the sphenoid (7.0x), maxillary (5.1x), and frontal (4.7x) sinuses. In the most recent year for which data was available (2015), a significantly greater portion of sinus procedures in these sites utilized BD in the South (42.1%) compared to the Northeast (30.6%), West (29.5%), and Midwest (25.3%) regions (P < 0.0001). The performance of BD has increased markedly in recent years. Because the use of ESS codes remain stable, observed BD trends are unlikely to be due simply to greater familiarity with newer CPT coding. The reasons for the striking increase in BD popularity are speculative and beyond the scope of this analysis, but further study may be needed. NA. Laryngoscope, 128:1299-1303, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Leichliter, Jami S.; Haderxhanaj, Laura T.; Chesson, Harrell W.; Aral, Sevgi O.
2017-01-01
Little is known about national trends in sexual behavior among MSM in the U.S. Data from the 2002 and 2006–10 National Survey of Family Growth were used to compare sexual behaviors of sexually active MSM. Mean number of recent male partners significantly decreased from 2.9 in 2002 to 2.1 in 2006–10 (p=.027), particularly among young MSM. Other sexual risk behaviors did not change or decreased over time. Our findings that sexual risk decreased as HIV and syphilis increased among MSM suggest that factors in addition to individual-level sexual risk should also be examined in relation to recent disease increases. PMID:23466645
Lewington, Sarah; Li, LiMing; Murugasen, Serini; Hong, Lai-san; Yang, Ling; Guo, Yu; Bian, Zheng; Collins, Rory; Chen, Junshi; He, Hui; Wu, Ming; He, Tianyou; Ren, Xiaolan; Meng, Jinhuai; Peto, Richard; Chen, Zhengming
2014-08-01
Chinese women's reproductive patterns have changed significantly over the past several decades. However, relatively little is known about the pace and characteristics of these changes either overall or by region and socioeconomic status. We examined the cross-sectional data from the China Kadoorie Biobank cohort study that recruited 300 000 women born between 1930 and 1974 (mean age: 51 years) from 10 socially diverse urban and rural regions of China. Temporal trends in several self-reported reproductive characteristics, and effect modification of these trends by area and education (as a surrogate for socioeconomic status), were examined. The overall mean age at menarche was 15.4 (standard deviation 1.9) years, but decreased steadily over the 45 birth cohorts from 16.1 to 14.3 years, except for an anomalous increase of ∼1 year for women exposed to the 1958-61 famine in early adolescence. Similarly large changes were seen for other characteristics: mean parity fell (urban: 4.9 to 1.1; rural: 5.9 to 1.4); mean age at first birth increased (urban: 19.0 to 25.9 years; rural: 18.3 to 23.8 years); and birth spacing increased after 1980 to over 5 years. Breastfeeding declined after 1950 in urban and, after 1980, in rural women; and 68% of urban and 48% of rural women experienced a terminated pregnancy. Mean age at menopause increased from 47.9 to 49.3 years. There have been striking changes in reproductive factors over time and between areas among these Chinese women. Their effects on major chronic diseases should be investigated. © The Author 2014. Published by Oxford University Press on behalf of the International Epidemiological Association.
Kontopantelis, Evangelos; Mamas, Mamas A; van Marwijk, Harm; Buchan, Iain; Ryan, Andrew M; Doran, Tim
2018-07-01
At a low geographical level, little is known about the associations between population characteristics and deprivation, and their trends, which would be directly affected by the house market, labour pressures and government policies. We describe temporal trends in health and overall deprivation in England by age, sex, urbanity and ethnicity. Repeated cross-sectional whole population study for England, 2004-2015, at a low geographical level (average 1500 residents). We calculated weighted medians of the Index of Multiple Deprivation (IMD) for each subgroup of interest. Over time, we observed increases in relative deprivation for people aged under 30, and aged 30-59, while median deprivation decreased for those aged 60 or over. Subgroup analyses indicated that relative overall deprivation was consistently higher for young adults (aged 20-29) and infants (aged 0-4), with increases in deprivation for the latter. Levels of overall deprivation in 2004 greatly varied by ethnicity, with the lowest levels observed for White British and the highest for Blacks. Over time, small reductions were observed in the deprivation gap between White British and all other ethnic groups. Findings were consistent across overall IMD and its health and disability subdomain, but large regional variability was also observed. Government policies, the financial crisis of 2008, education funding and the increasing cost of houses relative to real wages are important parameters in interpreting our findings. Socioeconomic deprivation is an important determinant of health and the inequalities this work highlights may have significant implications for future fiscal and healthcare policy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Yue, H.; Liu, Y.
2018-04-01
As a key factor affecting the biogeochemical cycle of human existence, terrestrial vegetation is vulnerable to natural environment and human activities, with obvious temporal and spatial characteristics. The change of vegetation cover will affect the ecological balance and environmental quality to a great extent. Therefore, the research on the causes and influencing factors of vegetation cover has become the focus of attention of scholars at home and abroad. In the evolution of human activities and natural environment, the vegetation coverage in Shaanxi has changed accordingly. Using MODIS/NDVI 2000-2014 time series data, using the method of raster pixel trend analysis, stability evaluation, rescaled range analysis and correlation analysis, the climatic factors in Shaanxi province were studied in the near 15 years vegetation spatial and temporal variation and influence of vegetation NDVI changes. The results show that NDVI in Shaanxi province in the near 15 years increased by 0.081, the increase of NDVI in Northern Shaanxi was obvious, and negative growth was found in some areas of Guanzhong, southern Shaanxi NDVI overall still maintained at a high level; the trend of vegetation change in Shaanxi province has obvious spatial differences, most of the province is a slight tendency to improve vegetation, there are many obvious improvement areas in Northern Shaanxi Province. Guanzhong area vegetation area decreased, the small range of variation of vegetation in Shaanxi province; the most stable areas are mainly concentrated in the southern, southern Yanan, Yulin, Xi'an area of Weinan changed greatly; Shaanxi Province in recent 15 a, the temperature and precipitation have shown an increasing trend, and the vegetation NDVI is more closely related to the average annual rainfall, with increase of 0.48 °C/10 years and 69.5 mm per year.
Social disorganization and homicide mortality rate trajectories in Brazil between 1991 and 2010.
Peres, Maria Fernanda Tourinho; Nivette, Amy
2017-10-01
Since the 1990s, researchers have noted declining trends in crime and violence, particularly homicide, in Western countries. Studies have explored national and sub-national trends using latent trajectory analysis techniques and identified several factors associated with declining and/or increasing trajectories. Social disorganization (SD) has been consistently linked to increases in homicide rates over time, explaining at least some of the spatial and temporal heterogeneity of homicide. Similar studies have not yet been carried out in Latin America's cities. In this paper we use Group Based Trajectory models to study homicide mortality rate [HMR] trajectories in Brazilian municipalities between 1991 and 2010. Then, through binary and multinomial logistic regression we investigated the association between SD in 1991, and the likelihood of an increasing HMR trajectory. We carried out an ecological time series study using all Brazilian municipalities in the period between 1991 and 2010 (n = 4491). Data on homicide deaths were collected from the Mortality Information System of the Ministry of Health and standardized by age to calculate HMR per 100,000 population. Socioeconomic and demographic data for 1991 were used to compose the composite measure of SD. Our results highlight the spatial and temporal heterogeneity of homicide mortality in Brazilian municipalities. While national trends are steadily increasing, disaggregating municipal trajectories shows that this is driven by a small proportion of municipalities in the country. We found that SD is associated with an ascending homicide trajectory. This result generally supports the notion that poor social structural conditions can create 'space' for criminal behavior and groups and, consequently, violent death. Copyright © 2017 Elsevier Ltd. All rights reserved.
ENSO Dynamics and Trends, AN Alternate View
NASA Astrophysics Data System (ADS)
Rojo Hernandez, J. D.; Lall, U.; Mesa, O. J.
2017-12-01
El Niño - Southern Oscillation (ENSO) is the most important inter-annual climate fluctuation on a planetary level with great effects on the hydrological cycle, agriculture, ecosystems, health and society. This work demonstrates the use of the Non-Homogeneus hidden Markov Models (NHMM) to characterize ENSO using a set of discrete states with variable transition probabilities matrix using the data of sea surface temperature anomalies (SSTA) of the Kaplan Extended SST v2 between 120E -90W, 15N-15S from Jan-1856 to Dec-2016. ENSO spatial patterns, their temporal distribution, the transition probabilities between patterns and their temporal evolution are the main results of the NHHMM applied to ENSO. The five "hidden" states found appear to represent the different "Flavors" described in the literature: the Canonical El Niño, Central El Niño, a Neutral state, Central La Niña and the Canonical Niña. Using the whole record length of the SSTA it was possible to identify trends in the dynamic system, with a decrease in the probability of occurrence of the cold events and a significant increase of the warm events, in particular of Central El Niño events whose probability of occurrence has increased Dramatically since 1960 coupled with increases in global temperature.
Multi-Decadal Surface Water Dynamics in North American Tundra
NASA Technical Reports Server (NTRS)
Carroll, Mark L.; Loboda, Tatiana V.
2017-01-01
Over the last several decades, warming in the Arctic has outpaced the already impressive increases in global mean temperatures. The impact of these increases in temperature has been observed in a multitude of ecological changes in North American tundra including changes in vegetative cover, depth of active layer, and surface water extent. The low topographic relief and continuous permafrost create an ideal environment for the formation of small water bodies - a definitive feature of tundra surface. In this study, water bodies in Nunavut territory in northern Canada were mapped using a long-term record of remotely sensed observations at 30 meters spatial resolution from the Landsat suite of instruments. The temporal trajectories of water extent between 1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-year study period with over 168,000 showing a significant (probability is less than 0.05) trend in surface area. Approximately 55 percent of water bodies with a significant trend were increasing in size while the remaining 45 percent were decreasing in size. The overall net trend for water bodies with a significant trend is 0.009 hectares per year per water body.
Tack, Ayco J. M.; Mononen, Tommi; Hanski, Ilkka
2015-01-01
Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly (Melitaea cinxia) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics. PMID:25854888
Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li
2015-01-01
It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263
Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li
2015-10-20
It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.
Steiner, Wolfgang; Leisch, Friedrich; Hackländer, Klaus
2014-05-01
The increasing number of deer-vehicle-accidents (DVAs) and the resulting economic costs have promoted numerous studies on behavioural and environmental factors which may contribute to the quantity, spatiotemporal distribution and characteristics of DVAs. Contrary to the spatial pattern of DVAs, data of their temporal pattern is scarce and difficult to obtain because of insufficient accuracy in available datasets, missing standardization in data aquisition, legal terms and low reporting rates to authorities. Literature of deer-traffic collisions on roads and railways is reviewed to examine current understanding of DVA temporal trends. Seasonal, diurnal and lunar peak accident periods are identified for deer, although seasonal pattern are not consistent among and within species or regions and data on effects of lunar cycles on DVAs is almost non-existent. Cluster analysis of seasonal DVA data shows nine distinct clusters of different seasonal DVA pattern for cervid species within the reviewed literature. Studies analyzing the relationship between time-related traffic predictors and DVAs yield mixed results. Despite the seasonal dissimilarity, diurnal DVA pattern are comparatively constant in deer, resulting in pronounced DVA peaks during the hours of dusk and dawn frequently described as bimodal crepuscular pattern. Behavioural aspects in activity seem to have the highest impact in DVAs temporal trends. Differences and variations are related to habitat-, climatic- and traffic characteristics as well as effects of predation, hunting and disturbance. Knowledge of detailed temporal DVA pattern is essential for prevention management as well as for the application and evaluation of mitigation measures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dou, Ming; Zhang, Yan; Li, Guiqiu
2016-09-01
Based on the monitoring data of 78 monitoring stations from 2003 to 2012, five key water quality indexes (biochemical oxygen demand: BOD5, permanganate index: CODMn, dissolved oxygen: DO, ammonium nitrogen: NH3-N, and total phosphorus: TP) were selected to analyze their temporal and spatial characteristics in the highly disturbed Huaihe River Basin via Mann-Kendall trend analysis and boxplot analysis. The temporal and spatial variations of water pollutant concentrations in the Huaihe River Basin were investigated and analyzed to provide a scientific basis for water pollution control, water environment protection, and ecological restoration. The results indicated that the Yinghe River, Quanhe River, Honghe River, Guohe River, and Baohe River were the most seriously polluted rivers, followed by Hongze Lake, Luoma Lake, Yishuhe River, and Nansi Lake. BOD5, CODMn, and NH3-N were the major pollution indexes, for which the monitoring stations reported that more than 40 % of the water quality concentrations exceeded the class IV level. There were 21, 50, 36, and 21 monitoring stations that recorded significantly decreasing trends for BOD5, CODMn, NH3-N, and TP, respectively, and 39 monitoring stations showed a significantly increasing trend for DO. Moreover, the water quality concentrations had a certain concentricity and volatility according to boxplot analysis for the 20 monitoring stations. The majority of monitoring stations recorded a large fluctuation for the monitoring indexes in 2003 and 2004, which indicated that the water quality concentrations were unstable. According to the seasonal variations of the water quality concentrations in the mainstream of Huaihe River, the monthly variation trends of the BOD5, CODMn, DO, NH3-N, and TP concentrations were basically consistent among the seven monitoring stations. The BOD5, CODMn, NH3-N, and TP concentrations were affected by the change of the stream discharge; changes in DO and NH3-N concentrations were influenced by the regional environmental temperature, and the DO and NH3-N concentrations decreased when the water temperature increased.
Bjerregaard, Peter; Pedersen, Henning Sloth; Nielsen, Nina O; Dewailly, Eric
2013-06-01
The purpose of the study was to analyse temporal trends (1993-2009) of the concentrations of organochlorine contaminants (14 congeners of polychlorinated biphenyls (PCB) and 11 pesticides) in the blood of Greenland Inuit according to age and urbanisation. Statistical determinants for the contaminant concentrations included (for PCB congener 153) age (Δr(2)=0.35), marine diet (Δr(2)=0.10), smoking (Δr(2)=0.02), and sex (Δr(2)=0.01) with comparable results for other organochlorine contaminants. After adjustment for age, diet, smoking, and sex a significant decreasing trend was present for all contaminants ranging from 41% for mirex to 56% for hexachlorobenzene. The temporal trend was most pronounced among participants below the age of 65 years. The decrease started later in villages than in towns. The decrease was present in all age groups and in the capital, other towns, and villages. The decrease is probably due to a combination of reduced concentrations of the contaminants in the wildlife and a slight temporal reduction in the consumption of marine mammals. The significant downwards trend of legacy POPs shows that the legislation works but it must be kept in mind that according to the cumulated scientific evidence there are a multitude of non-regulated persistent organic contaminants in the diet as well as high levels of methylmercury. Copyright © 2013 Elsevier B.V. All rights reserved.
Clément, Nicolas; Businger, Adrian; Lindner, Gregor; Müller, Wolfgang P; Hüsler, J; Zimmermann, Heinz; Exadaktylos, Aristomenis K
2012-12-01
Injury from interpersonal violence is a major social and medical problem in the industrialized world. Little is known about the trends in prevalence and injury pattern or about the demographic characteristics of the patients involved. In this retrospective analysis, we screened the database of the Emergency Department of a large university hospital for all patients who were admitted for injuries due to interpersonal violence over an 11 year period. For all patients identified, we gathered data on age, country of origin, quality of injury, and hospitalization or outpatient management. A trend analysis was performed using Kendall's tau-b correlation coefficients for regression analysis. The overall number of patients admitted to our Emergency Department remained stable over the study period. Non-Swiss nationals were overrepresented in comparison to the demographics of the region where the study was conducted. There was a trend toward a more severe pattern of injury, such as an increase in the number of severe head injuries. Although the overall number of patients remained stable over the study period, there was an alarming trend toward a more severe pattern of injury, expressed by an increase in severe head traumas.
Spatial and Temporal Trends of Snowfall in Central New York - A Lake Effect Dominated Region
NASA Astrophysics Data System (ADS)
Hartnett, Justin Joseph
Central New York is located in one of the snowiest regions in the United States, with the city of Syracuse, New York the snowiest metropolis in the nation. Snowfall in the region generally begins in mid-November and lasts until late-March. Snow accumulation occurs from a multitude of conditions: frontal systems, mid-latitude cyclones, Nor'easters, and most notably lake-effect storms. Lake effect snowfall (LES) is a difficult parameter to forecast due to the isolated and highly variable nature of the storm. Consequently, studies have attempted to determine changes in snowfall for lake-effect dominated regions. Annual snowfall patterns are of particular concern as seasonal snowfall totals are vital for water resources, winter businesses, agriculture, government and state agencies, and much more. Through the use of snowfall, temperature, precipitation, and location data from the National Weather Service's Cooperative Observer Program (COOP), spatial and temporal changes in snowfall for Central New York were determined. In order to determine climatic changes in snowfall, statistical analyses were performed (i.e. least squares estimation, correlations, principal component analyses, etc.) and spatial maps analyzed. Once snowfall trends were determined, factors influencing the trends were examined. Long-term snowfall trends for CNY were positive for original stations (˜0.46 +/- 0.20 in. yr -1) and homogenously filtered stations (0.23 +/- 0.20 in. yr -1). However, snowfall trends for shorter time-increments within the long-term period were not consistent, as positive, negative, and neutral trends were calculated. Regional differences in snowfall trends were observed for CNY as typical lake-effect areas (northern counties, the Tug Hill Plateau and the Southern Hills) experienced larger snowfall trends than areas less dominated by LES. Typical lake-effect months (December - February) experienced the greatest snowfall trend in CNY compared to other winter months. The influence of teleconnections on seasonal snowfall in CNY was not pronounced; however, there was a slight significant (5%) correlation (< 0.35) with the Atlantic Multidecadal Oscillation. It was not clear if changes in air temperature or changes in precipitation were the cause of variations in snowfall trends. It was also inconclusive if the elevation or distance from Lake Ontario resulted in increased snowfall trends. Results from this study will aid in seasonal snowfall forecasts in CNY, which can be used to predict future snowfall. Even though the study area is regionally specific, the methods may be applied to other lake effect dominated areas to determine temporal and spatial variations in snowfall. This study will enhance climatologists and operational forecasters' awareness and understanding of snowfall, especially lake effect snowfall in CNY.
Trends in LST over the peninsular Spain as derived from the AVHRR imagery data
NASA Astrophysics Data System (ADS)
Khorchani, Makki; Vicente-Serrano, Sergio M.; Azorin-Molina, Cesar; Garcia, Monica; Martin-Hernandez, Natalia; Peña-Gallardo, Marina; El Kenawy, Ahmed; Domínguez-Castro, Fernando
2018-07-01
This study analyzes the spatio-temporal variability and trends of land surface temperature (LST) over peninsular Spain, considering all the available historical satellite imagery data from the NOAA-AVHRR product from July 1981 to June 2015 and explores whether changes in LST are related to the observed changes in air temperature, solar radiation and land cover. We found that LST showed a significant increase between 1982 and 2014, with an average increase on the order of 0.71 °C decade-1, being stronger during summertime (1.53 °C decade-1). The results also indicate a strong spatial coherence between LST and NDVI changes. The areas that experienced an increase in the LST were spatially consistent with those areas with no changes or even a dominant decrease in vegetation coverage. In addition, the strong increase of LST is coherent with observations of the recent radiative forcing affecting Spain, particularly during summertime. The confidence of the obtained LST trends during summer is also reinforced by the spatial differences recorded in trends, in addition to the differences found between land cover types. Specifically, the magnitude of this increase was much higher in the dryland non-permanent agricultural areas, which are usually harvested during summer, when soil is dominantly nude. In contrast, in well-developed forests, the magnitude of LST was much lower. Our results on the observed LST trends and their spatial patterns can contribute to better understanding of the recent eco-hydrological processes in peninsular Spain.
Trends in initial management of prostate cancer in New Hampshire.
Ingimarsson, Johann P; Celaya, Maria O; Laviolette, Michael; Rees, Judy R; Hyams, Elias S
2015-06-01
Prostate cancer management strategies are evolving with increased understanding of the disease. Specifically, there is emerging evidence that "low-risk" cancer is best treated with observation, while localized "high-risk" cancer requires aggressive curative therapy. In this study, we evaluated trends in management of prostate cancer in New Hampshire to determine adherence to evidence-based practice. From the New Hampshire State Cancer Registry, cases of clinically localized prostate cancer diagnosed in 2004-2011 were identified and classified according to D'Amico criteria. Initial treatment modality was recorded as surgery, radiation therapy, expectant management, or hormone therapy. Temporal trends were assessed by Chi-square for trend. Of 6,203 clinically localized prostate cancers meeting inclusion criteria, 34, 30, and 28% were low-, intermediate-, and high-risk disease, respectively. For low-risk disease, use of expectant management (17-42%, p < 0.001) and surgery (29-39%, p < 0.001) increased, while use of radiation therapy decreased (49-19 %, p < 0.001). For intermediate-risk disease, use of surgery increased (24-50%, p < 0.001), while radiation decreased (58-34%, p < 0.001). Hormonal therapy alone was rarely used for low- and intermediate-risk disease. For high-risk patients, surgery increased (38-47%, p = 0.003) and radiation decreased (41-38%, p = 0.026), while hormonal therapy and expectant management remained stable. There are encouraging trends in the management of clinically localized prostate cancer in New Hampshire, including less aggressive treatment of low-risk cancer and increasing surgical treatment of high-risk disease.
Huntington, Thomas G.; Richardson, Andrew D.; McGuire, Kevin J.; Hayhoe, Katharine
2009-01-01
We review twentieth century and projected twenty-first century changes in climatic and hydrologic conditions in the northeastern United States and the implications of these changes for forest ecosystems. Climate warming and increases in precipitation and associated changes in snow and hydrologic regimes have been observed over the last century, with the most pronounced changes occurring since 1970. Trends in specific climatic and hydrologic variables differ in their responses spatially (e.g., coastal vs. inland) and temporally (e.g., spring vs. summer). Trends can differ depending on the period of record analyzed, hinting at the role of decadal-scale climatic variation that is superimposed over the longer-term trend. Model predictions indicate that continued increases in temperature and precipitation across the northeastern United States can be expected over the next century. Ongoing increases in growing season length (earlier spring and later autumn) will most likely increase evapotranspiration and frequency of drought. In turn, an increase in the frequency of drought will likely increase the risk of fire and negatively impact forest productivity, maple syrup production, and the intensity of autumn foliage coloration. Climate and hydrologic changes could have profound effects on forest structure, composition, and ecological functioning in response to the changes discussed here and as described in related articles in this issue of the Journal.
Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting
Valerie J. Kurth; Anthony W. D' Amato; Brian J. Palik; John B. Bradford
2014-01-01
The substitution of forest-derived woody biofuels for fossil fuel energy has garnered increasing attention in recent years, but information regarding the mid- and long-term effects on soil productivity is limited. We investigated 15-yr temporal trends in forest floor and mineral soil (0-30 cm) C and N pools in response to organic matter removal treatments (OMR; stem-...
Fuchs, Erich; Gruber, Christian; Reitmaier, Tobias; Sick, Bernhard
2009-09-01
Neural networks are often used to process temporal information, i.e., any kind of information related to time series. In many cases, time series contain short-term and long-term trends or behavior. This paper presents a new approach to capture temporal information with various reference periods simultaneously. A least squares approximation of the time series with orthogonal polynomials will be used to describe short-term trends contained in a signal (average, increase, curvature, etc.). Long-term behavior will be modeled with the tapped delay lines of a time-delay neural network (TDNN). This network takes the coefficients of the orthogonal expansion of the approximating polynomial as inputs such considering short-term and long-term information efficiently. The advantages of the method will be demonstrated by means of artificial data and two real-world application examples, the prediction of the user number in a computer network and online tool wear classification in turning.
Sellström, Ulla; Bignert, Anders; Kierkegaard, Amelie; Häggberg, Lisbeth; de Wit, Cynthia A; Olsson, Mats; Jansson, Bo
2003-12-15
Guillemot eggs from the Baltic Sea, sampled between 1969 and 2001, were analyzed for tetra- and pentabromodiphenyl ethers (2,2',4,4'-tetraBDE (BDE-47), 2,2',4,4',5-pentaBDE (BDE-99), and 2,2',4,4',6-pentaBDE (BDE-100)), and hexabromocyclododecane (HBCD). This temporal trend study indicates that the concentrations of the polybrominated diphenyl ether compounds increased from the 1970s to the 1980s, peaking around the mid- to the late-1980s. These peaks are then followed by a rapid decrease in concentrations during the rest of the study period, with the concentrations of the major BDE congener below 100 ng/g lipid weight at the end of the period. This corresponds to less than 10% of its peak values. The concentrations of HBCD show a different pattern over time. After a peak in the middle of the 1970s followed by a decrease, the concentrations increased during the latter part of the 1980s. During the recent 10-yr period no significant change has occurred, and the annual mean concentrations are more or less stable at a higher level as compared to the beginning of the study period.
Zhang, Zai-Wang; Sun, Yu-Xin; Sun, Kai-Feng; Xu, Xiang-Rong; Yu, Shen; Zheng, Tian-Ling; Luo, Xiao-Jun; Tian, Yun; Hu, Yong-Xia; Diao, Zeng-Hui; Mai, Bi-Xian
2015-03-01
Sediments were collected from three mangrove wetlands in the Pearl River Estuary (PRE) of South China to investigate spatial and temporal distributions of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE). Concentrations of ΣPBDEs, DBDPE and BTBPE in mangrove sediments of the PRE ranged from 1.25-206, 0.364-34.9, and not detected-0.794 ng g(-1) dry weight, respectively. The highest concentrations of ΣPBDEs, DBDPE and BTBPE were found at the mangrove wetland from Shenzhen, followed by Zhuhai and Guangzhou, showing the dependence on the proximity to urban areas. PBDEs were the predominant brominated flame retardants (BFRs) in mangrove sediments. The concentrations of ΣPBDEs, DBDPE and BTBPE in sediment cores showed an increasing trend from the bottom to top layers, reflecting the increasing usage of these BFRs. The inventories of ΣPBDEs, DBDPE and BTBPE in mangrove sediments were 1962, 245, and 4.10 ng cm(-2), respectively. This is the first study to report the occurrence of DBDPE and BTBPE in mangrove ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mercury transport and human exposure from global marine fisheries.
Lavoie, Raphael A; Bouffard, Ariane; Maranger, Roxane; Amyot, Marc
2018-04-30
Human activities have increased the global circulation of mercury, a potent neurotoxin. Mercury can be converted into methylmercury, which biomagnifies along aquatic food chains and leads to high exposure in fish-eating populations. Here we quantify temporal trends in the ocean-to-land transport of total mercury and methylmercury from fisheries and we estimate potential human mercury intake through fish consumption in 175 countries. Mercury export from the ocean increased over time as a function of fishing pressure, especially on upper-trophic-level organisms. In 2014, over 13 metric tonnes of mercury were exported from the ocean. Asian countries were important contributors of mercury export in the last decades and the western Pacific Ocean was identified as the main source. Estimates of per capita mercury exposure through fish consumption showed that populations in 38% of the 175 countries assessed, mainly insular and developing nations, were exposed to doses of methylmercury above governmental thresholds. Our study shows temporal trends and spatial patterns of Hg transport by fisheries. Given the high mercury intake through seafood consumption observed in several understudied yet vulnerable coastal communities, we recommend a comprehensive assessment of the health exposure risk of those populations.
Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems.
Guerrero-Ramírez, Nathaly R; Craven, Dylan; Reich, Peter B; Ewel, John J; Isbell, Forest; Koricheva, Julia; Parrotta, John A; Auge, Harald; Erickson, Heather E; Forrester, David I; Hector, Andy; Joshi, Jasmin; Montagnini, Florencia; Palmborg, Cecilia; Piotto, Daniel; Potvin, Catherine; Roscher, Christiane; van Ruijven, Jasper; Tilman, David; Wilsey, Brian; Eisenhauer, Nico
2017-11-01
The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.
NASA Astrophysics Data System (ADS)
Chen, A.; Tan, J.; Piao, S.
2014-12-01
Weather events that are located in the tails of a weather distribution are called weather extremes. Weather extremes, including severe drought, flooding, heat and cold waves, usually can cause greatest damage to human lives and properties, and have profound implication on ecosystem productivity and carbon cycles. There is mounting evidence suggests that the frequency of temperature and hydrological weather extremes have steadily increased over the last decades, largely due to the ongoing climate change. On the other hand, the distribution and trend of weather extremes can be regionally heterogeneous, which have not been well understood. Here we investigate the spatial distribution and temporal trend of weather extremes in the Northern Hemisphere (NH) over the past half century (1961-2010), with emphasis on the intercontinental comparisons. Our results suggest that warming extremes have increased significantly in East Asia and West Europe; while coldness extremes have decreased globally. Heavy precipitation extremes significantly increased in eastern Northern America, boreal Eurasia, and some parts of China; while drought events showed an increasing trend in northern China-southern Mongolia and some parts of western United States. Our results highlight the regional difference in the trend of weather extremes, which need to be incorporated in the mitigation measures.
Assessing the influence of small fires on trends in fire regime features at mainland Spain
NASA Astrophysics Data System (ADS)
Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan
2017-04-01
Small fires, i.e. fires smaller than 1 Ha, represent a huge proportion of total wildfire occurrence in the Mediterranean region. In the case of Spain, around 53% of fires in the period 1988-2013 fall into this category according to the Spanish EGIF statistics. However, the proportion of small fires is not stationary over time. Small fires are usually excluded from most analysis, given the chance of introducing or falling into temporal bias, being almost mandatory in those assessments using data before the 90s. Inconsistences and inhomogeneity problems related to the diversity of criteria and/or registration procedures among Autonomous Regions are found before that date, although it is widely agreed that small fires are consistently registered starting from 1988. Nevertheless, in terms of fire regimen characterization it is important to know to what extent small fires contribute to the overall fire behaviour. The aim of this study is to analyse spatial-temporal trends of several fire features such as total number of fires and burned area, number and burned area of natural and human fires, and the proportion of natural/human cause in the period 1988-2013 at province level (NUTS3). The analysis is conducted at the mainland Spain at annual and seasonal time scales. We are mainly interested in exploring differences in spatial-temporal trends including or excluding small fires and dealing with them separately as well. This allows determining the extent to which small fires may affect fire regime characterization. We employed a Mann-Kendall test for trend detection and Sen's slope to evaluate the magnitude of the change. Both tests were applied for each fire feature aggregated at NUTS3 level for both autumn-winter and spring-summer seasons. Our results show significant changes in the evolution of annual wildfire frequency; especially strong when small fires are accounted for. A similar outcome was observed in natural and human number fires during the spring-summer season. The increase in number of fires seems to be reversed during autumn-winter. At seasonal scale, the inclusion of small fires allows to detect significant trends in all of fire frequency features, except natural fires. In turn, neither burned area features do not significantly affect the trends through incorporating small fires. Therefore, the inclusion/exclusion of small fires do influence observed trends mostly in terms of fire frequency.
Virta, L J; Saarinen, M M; Kolho, K-L
2017-12-01
The frequency of coeliac disease (CD) has been on the rise over the past decades, especially in Western Europe, but current trends are unclear. To research the recent temporal changes in the incidence of adult, biopsy-verified coeliac disease and dermatitis herpetiformis (DH) in Finland, a country with a high frequency of coeliac disease. All coeliac disease and DH cases diagnosed at age 20-79 years during 2005-2014 were retrieved from a nationwide database documenting all applicants for monthly compensation to cover the extra cost of maintaining a gluten-free diet. This benefit is granted on the basis of histology, not socioeconomic status. Temporal trends in the annual incidences were estimated using Poisson regression analyses. The total incidence of coeliac disease decreased from 33/100 000 during the years 2005-2006 to 29/100 000 during 2013-2014. The mean annual incidence of coeliac disease was nearly twice as high among women as among men, 42 vs 22 per 100 000, respectively. For middle- and old-aged women, the average rate of decrease in incidence was 4.8% (95% CI 3.9-5.7) per year and for men 3.0% (1.8-4.1) (P for linear trend <.001, for both). Similarly, the annual incidence of DH declined. For young adults, the rate of change remained low and nonsignificant throughout the period 2005-2014. Although the awareness of coeliac disease has increased during the past decades, the incidence of biopsy-verified diagnoses is not increasing, which suggests that exposure to yet unidentified triggering factors for coeliac disease has plateaued among the Finnish adult population. © 2017 John Wiley & Sons Ltd.
Low validity of Google Trends for behavioral forecasting of national suicide rates
Niederkrotenthaler, Thomas; Till, Benedikt; Ajdacic-Gross, Vladeta; Voracek, Martin
2017-01-01
Recent research suggests that search volumes of the most popular search engine worldwide, Google, provided via Google Trends, could be associated with national suicide rates in the USA, UK, and some Asian countries. However, search volumes have mostly been studied in an ad hoc fashion, without controls for spurious associations. This study evaluated the validity and utility of Google Trends search volumes for behavioral forecasting of suicide rates in the USA, Germany, Austria, and Switzerland. Suicide-related search terms were systematically collected and respective Google Trends search volumes evaluated for availability. Time spans covered 2004 to 2010 (USA, Switzerland) and 2004 to 2012 (Germany, Austria). Temporal associations of search volumes and suicide rates were investigated with time-series analyses that rigorously controlled for spurious associations. The number and reliability of analyzable search volume data increased with country size. Search volumes showed various temporal associations with suicide rates. However, associations differed both across and within countries and mostly followed no discernable patterns. The total number of significant associations roughly matched the number of expected Type I errors. These results suggest that the validity of Google Trends search volumes for behavioral forecasting of national suicide rates is low. The utility and validity of search volumes for the forecasting of suicide rates depend on two key assumptions (“the population that conducts searches consists mostly of individuals with suicidal ideation”, “suicide-related search behavior is strongly linked with suicidal behavior”). We discuss strands of evidence that these two assumptions are likely not met. Implications for future research with Google Trends in the context of suicide research are also discussed. PMID:28813490
Detection of the relationship between peak temperature and extreme precipitation
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, J.; Zhiyong, Y.
2017-12-01
Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.
Using Combined Diagnostic Test Results to Hindcast Trends of Infection from Cross-Sectional Data
Rydevik, Gustaf; Innocent, Giles T.; Marion, Glenn; White, Piran C. L.; Billinis, Charalambos; Barrow, Paul; Mertens, Peter P. C.; Gavier-Widén, Dolores; Hutchings, Michael R.
2016-01-01
Infectious disease surveillance is key to limiting the consequences from infectious pathogens and maintaining animal and public health. Following the detection of a disease outbreak, a response in proportion to the severity of the outbreak is required. It is thus critical to obtain accurate information concerning the origin of the outbreak and its forward trajectory. However, there is often a lack of situational awareness that may lead to over- or under-reaction. There is a widening range of tests available for detecting pathogens, with typically different temporal characteristics, e.g. in terms of when peak test response occurs relative to time of exposure. We have developed a statistical framework that combines response level data from multiple diagnostic tests and is able to ‘hindcast’ (infer the historical trend of) an infectious disease epidemic. Assuming diagnostic test data from a cross-sectional sample of individuals infected with a pathogen during an outbreak, we use a Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate time of exposure, and the overall epidemic trend in the population prior to the time of sampling. We evaluate the performance of this statistical framework on simulated data from epidemic trend curves and show that we can recover the parameter values of those trends. We also apply the framework to epidemic trend curves taken from two historical outbreaks: a bluetongue outbreak in cattle, and a whooping cough outbreak in humans. Together, these results show that hindcasting can estimate the time since infection for individuals and provide accurate estimates of epidemic trends, and can be used to distinguish whether an outbreak is increasing or past its peak. We conclude that if temporal characteristics of diagnostics are known, it is possible to recover epidemic trends of both human and animal pathogens from cross-sectional data collected at a single point in time. PMID:27384712
Changes in temporal variability of precipitation over land due to anthropogenic forcings
Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby
2017-02-02
This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcings (ALL) with simulations of natural forcings only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005,more » our results indicate that anthropogenic forcings have resulted in decreased uniformity (i.e., increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. Lastly, the results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.« less
Van Nguyen, On; Kawamura, Kensuke; Trong, Dung Phan; Gong, Zhe; Suwandana, Endan
2015-07-01
Temporal changes in the land surface temperature (LST) in urbanization areas are important for studying an urban heat island (UHI) and regional climate change. This study examined the LST trends under different land use categories in the Red River Delta, Vietnam, using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A2) and land cover type product (MCD12Q1) for 11 years (2002-2012). Smoothened time-series MODIS LST data were reconstructed by the Harmonic Analysis of Time Series (HANTS) algorithm. The reconstructed LST (maximum and minimum temperatures) was assessed using the hourly air temperature dataset in two land-based meteorological stations provided by the National Climatic Data Center (NCDC). Significant correlation was obtained between MODIS LST and the air temperature for the daytime (R (2) = 0.73, root mean square error [RMSE] = 1.66 °C) and night time (R (2) = 0.84, RMSE = 1.79 °C). Statistical analysis also showed that LST trends vary strongly depending on the land cover type. Forest, wetland, and cropland had a slight tendency to decline, whereas cropland and urban had sharper increases. In urbanized areas, these increasing trends are even more obvious. This is undeniable evidence of the negative impact of urbanization on a surface urban heat island (SUHI) and global warming.
Stern, Harry; Kovacs, Kit M.; Lowry, Lloyd; Moore, Sue E.; Regehr, Eric V.; Ferguson, Steven H.; Wiig, Øystein; Boveng, Peter; Angliss, Robyn P.; Born, Erik W.; Litovka, Dennis; Quakenbush, Lori; Lydersen, Christian; Vongraven, Dag; Ugarte, Fernando
2015-01-01
Abstract Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979–2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5–10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation. PMID:25783745
Spatial and temporal trends in the mortality burden of air pollution in China: 2004–2012
Liu, Miaomiao; Huang, Yining; Ma, Zongwei; Jin, Zhou; Liu, Xingyu; Wang, Haikun; Liu, Yang; Wang, Jinnan; Jantunen, Matti; BiDr, Jun; KinneyDr, Patrick L.
2017-01-01
While recent assessments have quantified the burden of air pollution at the national scale in China, air quality managers would benefit from assessments that disaggregate health impacts over regions and over time. We took advantage of a new 10 × 10 km satellite-based PM2.5 dataset to analyze spatial and temporal trends of air pollution health impacts in China, from 2004 to 2012. Results showed that national PM2.5 related deaths from stroke, ischemic heart disease and lung cancer increased from approximately 800,000 cases in 2004 to over 1.2 million cases in 2012. The health burden exhibited strong spatial variations, with high attributable deaths concentrated in regions including the Beijing–Tianjin Metropolitan Region, Yangtze River Delta, Pearl River Delta, Sichuan Basin, Shandong, Wuhan Metropolitan Region, Changsha–Zhuzhou–Xiangtan, Henan, and Anhui, which have heavy air pollution, high population density, or both. Increasing trends were found in most provinces, but with varied growth rates. While there was some evidence for improving air quality in recent years, this was offset somewhat by the countervailing influences of in–migration together with population growth. We recommend that priority areas for future national air pollution control policies be adjusted to better reflect the spatial hotspots of health burdens. Satellite-based exposure and health impact assessments can be a useful tool for tracking progress on both air quality and population health burden reductions. PMID:27745948
Spatial and temporal trends in the mortality burden of air pollution in China: 2004-2012.
Liu, Miaomiao; Huang, Yining; Ma, Zongwei; Jin, Zhou; Liu, Xingyu; Wang, Haikun; Liu, Yang; Wang, Jinnan; Jantunen, Matti; Bi, Jun; Kinney, Patrick L
2017-01-01
While recent assessments have quantified the burden of air pollution at the national scale in China, air quality managers would benefit from assessments that disaggregate health impacts over regions and over time. We took advantage of a new 10×10km satellite-based PM 2.5 dataset to analyze spatial and temporal trends of air pollution health impacts in China, from 2004 to 2012. Results showed that national PM 2.5 related deaths from stroke, ischemic heart disease and lung cancer increased from approximately 800,000 cases in 2004 to over 1.2 million cases in 2012. The health burden exhibited strong spatial variations, with high attributable deaths concentrated in regions including the Beijing-Tianjin Metropolitan Region, Yangtze River Delta, Pearl River Delta, Sichuan Basin, Shandong, Wuhan Metropolitan Region, Changsha-Zhuzhou-Xiangtan, Henan, and Anhui, which have heavy air pollution, high population density, or both. Increasing trends were found in most provinces, but with varied growth rates. While there was some evidence for improving air quality in recent years, this was offset somewhat by the countervailing influences of in-migration together with population growth. We recommend that priority areas for future national air pollution control policies be adjusted to better reflect the spatial hotspots of health burdens. Satellite-based exposure and health impact assessments can be a useful tool for tracking progress on both air quality and population health burden reductions. Copyright © 2016. Published by Elsevier Ltd.
Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E
2012-01-01
The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experiencemore » temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konapala, Goutam; Mishra, Ashok; Leung, L. Ruby
This study investigated the anthropogenic influence on the temporal variability of annual precipitation for the period 1950-2005 as simulated by the CMIP5 models. The temporal variability of both annual precipitation amount (PRCPTOT) and intensity (SDII) was first measured using a metric of statistical dispersion called the Gini coefficient. Comparing simulations driven by both anthropogenic and natural forcings (ALL) with simulations of natural forcings only (NAT), we quantified the anthropogenic contributions to the changes in temporal variability at global, continental and sub-continental scales as a relative difference of the respective Gini coefficients of ALL and NAT. Over the period of 1950-2005,more » our results indicate that anthropogenic forcings have resulted in decreased uniformity (i.e., increase in unevenness or disparity) in annual precipitation amount and intensity at global as well as continental scales. In addition, out of the 21 sub-continental regions considered, 14 (PRCPTOT) and 17 (SDII) regions showed significant anthropogenic influences. The human impacts are generally larger for SDII compared to PRCTOT, indicating that the temporal variability of precipitation intensity is generally more susceptible to anthropogenic influence than precipitation amount. Lastly, the results highlight that anthropogenic activities have changed not only the trends but also the temporal variability of annual precipitation, which underscores the need to develop effective adaptation management practices to address the increased disparity.« less
Spatio-temporal variability of several eco-precipitation indicators in China
NASA Astrophysics Data System (ADS)
Guo, B. B.; Zhang, J.; Wang, F.
2016-12-01
Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of λ and 1/θ with a saltation point in the year 1997 and 1992, respectively. This study indicates that uniform and concentrated extreme precipitation significantly increased in China under the climate change, which brings severer challenge in constructing eco-hydrological models to make rational countermeasures.
Biomechanics meets the ecological niche: the importance of temporal data resolution.
Kearney, Michael R; Matzelle, Allison; Helmuth, Brian
2012-03-15
The emerging field of mechanistic niche modelling aims to link the functional traits of organisms to their environments to predict survival, reproduction, distribution and abundance. This approach has great potential to increase our understanding of the impacts of environmental change on individuals, populations and communities by providing functional connections between physiological and ecological response to increasingly available spatial environmental data. By their nature, such mechanistic models are more data intensive in comparison with the more widely applied correlative approaches but can potentially provide more spatially and temporally explicit predictions, which are often needed by decision makers. A poorly explored issue in this context is the appropriate level of temporal resolution of input data required for these models, and specifically the error in predictions that can be incurred through the use of temporally averaged data. Here, we review how biomechanical principles from heat-transfer and metabolic theory are currently being used as foundations for mechanistic niche models and consider the consequences of different temporal resolutions of environmental data for modelling the niche of a behaviourally thermoregulating terrestrial lizard. We show that fine-scale temporal resolution (daily) data can be crucial for unbiased inference of climatic impacts on survival, growth and reproduction. This is especially so for species with little capacity for behavioural buffering, because of behavioural or habitat constraints, and for detecting temporal trends. However, coarser-resolution data (long-term monthly averages) can be appropriate for mechanistic studies of climatic constraints on distribution and abundance limits in thermoregulating species at broad spatial scales.
Sediment cores as archives of historical changes in floodplain lake hydrology.
Lintern, Anna; Leahy, Paul J; Zawadzki, Atun; Gadd, Patricia; Heijnis, Henk; Jacobsen, Geraldine; Connor, Simon; Deletic, Ana; McCarthy, David T
2016-02-15
Anthropogenic activities are contributing to the changing hydrology of rivers, often resulting in their degradation. Understanding the drivers and nature of these changes is critical for the design and implementation of effective mitigation strategies for these systems. However, this can be hindered by gaps in historical measured flow data. This study therefore aims to use sediment cores to identify historical hydrological changes within a river catchment. Sediment cores from two floodplain lakes (billabongs) in the urbanised Yarra River catchment (Melbourne, South-East Australia) were collected and high resolution images, trends in magnetic susceptibility and trends in elemental composition through the sedimentary records were obtained. These were used to infer historical changes in river hydrology to determine both average trends in hydrology (i.e., coarse temporal resolution) as well as discrete flood layers in the sediment cores (i.e., fine temporal resolution). Through the 20th century, both billabongs became increasingly disconnected from the river, as demonstrated by the decreasing trends in magnetic susceptibility, particle size and inorganic matter in the cores. Additionally the number of discrete flood layers decreased up the cores. These reconstructed trends correlate with measured flow records of the river through the 20th century, which validates the methodology that has been used in this study. Not only does this study provide evidence on how natural catchments can be affected by land-use intensification and urbanisation, but it also introduces a general analytical framework that could be applied to other river systems to assist in the design of hydrological management strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, D.; Su, F.; Wang, J.
2017-12-01
More accurate evaluation of the state of Arctic tundra vegetation is important for our understanding of Arctic and global systems. Arctic tundra greening has been reported, increasing vegetation cover and productivity in many regions, but browning has been also reported, based on satellite-observed Normalized Difference Vegetation Index (NDVI) from 2011 until recently. Here we demonstrate a satellite-based method of estimating tundra greenness trend. A more direct indicator of greenness (spatially downscaling solar-induced fluorescence, SIF) was used to analyze the spatial and temporal patterns of Arctic tundra greenness trends based on ordinary least square regression (2007-2013). Meanwhile, two other greenness indices were used for the comparison, which were two NDVI products: GIMMS NDVI3g, and MOD13Q1 Collection 6. Generally, the Arctic tundra was not consistently greening, browning also existed. For the spatial trends, the results showed that most parts of the Arctic tundra below 75ºN was browning (-0.0098 mW/m2/sr/nm/year) using SIF, whereas spatially heterogeneous trends (greening or browning) were obtained based on the two NDVI products. For the temporal trends, the greenness value of Eurasia Arctic tundra is higher than Northern America and the whole Arctic tundra for the three greenness indices. From 2010, the Arctic tundra was greening based on MOD13Q1, whereas is browning using GIMMS NDVI3g. However, the Arctic tundra was obviously browning using SIF data. This study demonstrates a way of investigating the variation of Arctic tundra vegetation via new satellite-observed data.
NASA Astrophysics Data System (ADS)
Padalia, H.; Mondal, P. P.
2014-11-01
Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.
Veley, Ronald J.; Moran, Michael J.
2012-01-01
The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.
Emerging moxifloxacin resistance in Pseudomonas aeruginosa keratitis isolates in South India
Oldenburg, Catherine E.; Lalitha, Prajna; Srinivasan, Muthiah; Rajaraman, Revathi; Ravindran, Meenakshi; Mascarenhas, Jeena; Borkar, Durga S.; Ray, Kathryn J; Zegans, Michael E.; McLeod, Stephen D.; Porco, Travis C.; Lietman, Thomas M.; Acharya, Nisha R.
2013-01-01
Purpose To describe temporal trends in Pseudomonas aeruginosa resistance to moxifloxacin in keratitis isolates from South India. Methods The Steroids for Corneal Ulcers Trial (SCUT) was a randomized, double-masked, placebo-controlled trial assessing outcomes in patients with culture positive bacterial corneal ulcers randomized to receive prednisolone phosphate or placebo. All patients received moxifloxacin, and susceptibility to moxifloxacin was measured at baseline using Etest. We investigated trends in moxifloxacin susceptibility of P. aeruginosa during 2007, 2008, and 2009 isolated in SCUT in South India. Results There were 89 P. aeruginosa isolates during 2007, 2008, and 2009 in SCUT that were eligible for this study. There was an increase in the proportion of resistant isolates from 19% in 2007 to 52% in 2009 (P=0.02, Chi-square test for trend). Logistic regression showed that there was a 2-fold increase in odds of resistance per one year increase during the study period (OR 2.16, 95% CI 1.09 to 4.26, P=0.027). Conclusions We found a sharp increase in the proportion of isolates that were resistant to moxifloxacin from 2007 to 2009. Further work needs to be done to characterize the nature of this increase. PMID:23662986
Emerging moxifloxacin resistance in Pseudomonas aeruginosa keratitis isolates in South India.
Oldenburg, Catherine E; Lalitha, Prajna; Srinivasan, Muthiah; Rajaraman, Revathi; Ravindran, Meenakshi; Mascarenhas, Jeena; Borkar, Durga S; Ray, Kathryn J; Zegans, Michael E; McLeod, Stephen D; Porco, Travis C; Lietman, Thomas M; Acharya, Nisha R
2013-06-01
To describe temporal trends in Pseudomonas aeruginosa resistance to moxifloxacin in keratitis isolates from South India. The Steroids for Corneal Ulcers Trial (SCUT) was a randomized, double-masked, placebo-controlled trial assessing outcomes in patients with culture positive bacterial corneal ulcers randomized to receive prednisolone phosphate or placebo. All patients received moxifloxacin, and susceptibility to moxifloxacin was measured at baseline using Etest. We investigated trends in moxifloxacin susceptibility of P. aeruginosa during 2007, 2008, and 2009 isolated in SCUT in South India. There were 89 P. aeruginosa isolates during 2007, 2008, and 2009 in SCUT that were eligible for this study. There was an increase in the proportion of resistant isolates from 19% in 2007 to 52% in 2009 (p = 0.02, χ(2) test for trend). Logistic regression showed that there was a 2-fold increase in odds of resistance per 1 year increase during the study period (odds ratio 2.16, 95% confidence interval 1.09-4.26, p = 0.027). We found a sharp increase in the proportion of isolates that were resistant to moxifloxacin from 2007 to 2009. Further work needs to be done to characterize the nature of this increase.
Nicol, Samuel; Roach, Jennifer K.; Griffith, Brad
2013-01-01
Over the past 50 years, the number and size of high-latitude lakes have decreased throughout many regions; however, individual lake trends have been variable in direction and magnitude. This spatial heterogeneity in lake change makes statistical detection of temporal trends challenging, particularly in small analysis areas where weak trends are difficult to separate from inter- and intra-annual variability. Factors affecting trend detection include inherent variability, trend magnitude, and sample size. In this paper, we investigated how the statistical power to detect average linear trends in lake size of 0.5, 1.0 and 2.0 %/year was affected by the size of the analysis area and the number of years of monitoring in National Wildlife Refuges in Alaska. We estimated power for large (930–4,560 sq km) study areas within refuges and for 2.6, 12.9, and 25.9 sq km cells nested within study areas over temporal extents of 4–50 years. We found that: (1) trends in study areas could be detected within 5–15 years, (2) trends smaller than 2.0 %/year would take >50 years to detect in cells within study areas, and (3) there was substantial spatial variation in the time required to detect change among cells. Power was particularly low in the smallest cells which typically had the fewest lakes. Because small but ecologically meaningful trends may take decades to detect, early establishment of long-term monitoring will enhance power to detect change. Our results have broad applicability and our method is useful for any study involving change detection among variable spatial and temporal extents.
Population-based Incidence of Pulmonary Nontuberculous Mycobacterial Disease in Oregon 2007 to 2012.
Henkle, Emily; Hedberg, Katrina; Schafer, Sean; Novosad, Shannon; Winthrop, Kevin L
2015-05-01
Pulmonary nontuberculous mycobacteria (NTM) disease is a chronic, nonreportable illness, making it difficult to monitor. Although recent studies suggest an increasing prevalence of NTM disease in the United States, the incidence and temporal trends are unknown. To describe incident cases and calculate the incidence and temporal trends of pulmonary NTM disease in Oregon. We contacted all laboratories performing mycobacterial cultures on Oregon residents and collected demographic and specimen information for patients with NTM isolated during 2007 to 2012. We defined a case of pulmonary NTM disease using the 2007 American Thoracic Society/Infectious Disease Society of America microbiologic criteria. We used similar state-wide mycobacterial laboratory data from 2005 to 2006 to exclude prevalent cases from our calculations. We calculated annual pulmonary NTM disease incidence within Oregon during 2007 to 2012, described cases demographically and microbiologically, and evaluated incidence trends over time using a Poisson model. We identified 1,146 incident pulmonary NTM cases in Oregon residents from 2007 to 2012. The median age was 69 years (range, 0.9-97 yr). Cases were more likely female (56%), but among patients less than 60 years old, disease was more common in male subjects (54%). Most (86%) were Mycobacterium avium/intracellulare cases; 68 (6%) were Mycobacterium abscessus/chelonae cases. Although not statistically significant, incidence increased from 4.8/100,000 in 2007 to 5.6/100,000 in 2012 (P for trend, 0.21). Incidence increased with age, to more than 25/100,000 in patients 80 years of age or older. This is the first population-based estimate of pulmonary NTM disease incidence in a region within the United States. In Oregon, disease incidence rose slightly during 2007 to 2012, and although more common in female individuals overall, disease was more common among male individuals less than 60 years of age.
Population-based Incidence of Pulmonary Nontuberculous Mycobacterial Disease in Oregon 2007 to 2012
Hedberg, Katrina; Schafer, Sean; Novosad, Shannon; Winthrop, Kevin L.
2015-01-01
Rationale: Pulmonary nontuberculous mycobacteria (NTM) disease is a chronic, nonreportable illness, making it difficult to monitor. Although recent studies suggest an increasing prevalence of NTM disease in the United States, the incidence and temporal trends are unknown. Objectives: To describe incident cases and calculate the incidence and temporal trends of pulmonary NTM disease in Oregon. Methods: We contacted all laboratories performing mycobacterial cultures on Oregon residents and collected demographic and specimen information for patients with NTM isolated during 2007 to 2012. We defined a case of pulmonary NTM disease using the 2007 American Thoracic Society/Infectious Disease Society of America microbiologic criteria. We used similar state-wide mycobacterial laboratory data from 2005 to 2006 to exclude prevalent cases from our calculations. We calculated annual pulmonary NTM disease incidence within Oregon during 2007 to 2012, described cases demographically and microbiologically, and evaluated incidence trends over time using a Poisson model. Measurements and Main Results: We identified 1,146 incident pulmonary NTM cases in Oregon residents from 2007 to 2012. The median age was 69 years (range, 0.9–97 yr). Cases were more likely female (56%), but among patients less than 60 years old, disease was more common in male subjects (54%). Most (86%) were Mycobacterium avium/intracellulare cases; 68 (6%) were Mycobacterium abscessus/chelonae cases. Although not statistically significant, incidence increased from 4.8/100,000 in 2007 to 5.6/100,000 in 2012 (P for trend, 0.21). Incidence increased with age, to more than 25/100,000 in patients 80 years of age or older. Conclusions: This is the first population-based estimate of pulmonary NTM disease incidence in a region within the United States. In Oregon, disease incidence rose slightly during 2007 to 2012, and although more common in female individuals overall, disease was more common among male individuals less than 60 years of age. PMID:25692495
NASA Astrophysics Data System (ADS)
Patra, Anindita; Bhaskaran, Prasad K.
2017-08-01
The head Bay region bordering the northern Bay of Bengal is a densely populated area with a complex geomorphologic setting, and highly vulnerable to extreme water levels along with other factors like sea level rise and impact of tropical cyclones. The influence of climate change on wind-wave regime from this region of Bay of Bengal is not known well and that requires special attention, and there is a need to perform its long-term assessment for societal benefits. This study provides a comprehensive analysis on the temporal variability in domain averaged wind speed, significant wave height (SWH) utilizing satellite altimeter data (1992-2012) and mean wave period using ECMWF reanalysis products ERA-Interim (1992-2012) and ERA-20C (1992-2010) over this region. The SWH derived from WAVEWATCH III (WW3) model along with the ERA-Interim reanalysis supplements the observed variability in satellite altimeter observations. Further, the study performs an extensive error estimation of SWH and mean wave period with ESSO-NIOT wave atlas that shows a high degree of under-estimation in the wave atlas mean wave period. Annual mean and wind speed maxima from altimeter show an increasing trend, and to a lesser extent in the SWH. Interestingly, the estimated trend is higher for maxima compared to the mean conditions. Analysis of decadal variability exhibits an increased frequency of higher waves in the present decade compared to the past. Linear trend analysis show significant upswing in spatially averaged ERA-20C mean wave period, whereas the noticed variations are marginal in the ERA-Interim data. A separate trend analysis for the wind-seas, swell wave heights and period from ERA-20C decipher the fact that distant swells governs the local wind-wave climatology over the head Bay region, and over time the swell activity have increased in this region.
A 10-year spatial and temporal trend of sulfate across the United States
NASA Astrophysics Data System (ADS)
Malm, William C.; Schichtel, Bret A.; Ames, Rodger B.; Gebhart, Kristi A.
2002-11-01
Legislative and regulatory mandates have resulted in reduced sulfur dioxide (SO2) emissions in both the eastern and western United States with anticipation that concurrent levels of ambient SO2, SO42-, and rainwater acidity would decrease. This paper examines spatial and temporal trends in ambient SO42- concentration from 1988 to 1999, SO2 emissions from 1990 to 1999, and the relationship between these two variables. The SO42- concentration data came from combining data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Clean Air Status and Trends Network (CASTNet). Over 70 sites spread across the continental United States are considered in this analysis. From a spatial perspective, the 90th percentile summer sulfate concentrations are highest along the Ohio River Valley and in central Tennessee where the emission density of SO2 is greatest. These concentrations are a factor of 2 greater than the Northeast, northern Michigan, and coastal areas of the Southeast and about a factor of 15 greater than the central western United States. In the East, the largest SO42- decreases in the 80th percentile concentrations occurred north of the Ohio River Valley, while most monitoring sites south of Kentucky and Virginia showed increasing and decreasing trends that were not statistically significant. Big Bend National Park, Texas, Cranberry, North Carolina, and Lassen Volcanic National Park, California, are the only areas that show a statistically significant increase in SO42- mass concentrations. The 1990-1999 annual 80th percentile SO42- time series were compared to the annual SO2 emissions over four broad United States regions. Each region had a unique time series pattern with the SO42- concentrations and SO2 emissions closely tracking each other over the 10-year period. Both the SO42- and SO2 emissions decreased in the Northeast (28%) and the West (15%), while there was little change in the Southeast and a 15% increase over Texas, New Mexico, and Colorado.
Hydrology and water quality of lakes and streams in Orange County, Florida
German, Edward R.; Adamski, James C.
2005-01-01
Orange County, Florida, is continuing to experience a large growth in population. In 1920, the population of Orange County was less than 20,000; in 2000, the population was about 896,000. The amount of urban area around Orlando has increased considerably, especially in the northwest part of the County. The eastern one-third of the County, however, had relatively little increase in urbanization from 1977-97. The increase of population, tourism, and industry in Orange County and nearby areas changed land use; land that was once agricultural has become urban, industrial, and major recreation areas. These changes could impact surface-water resources that are important for wildlife habitat, for esthetic reasons, and potentially for public supply. Streamflow characteristics and water quality could be affected in various ways. As a result of changing land use, changes in the hydrology and water quality of Orange County's lakes and streams could occur. Median runoff in 10 selected Orange County streams ranges from about 20 inches per year (in/yr) in the Wekiva River to about 1.1 in/yr in Cypress Creek. The runoff for the Wekiva River is significantly higher than other river basins because of the relatively constant spring discharge that sustains streamflow, even during drought conditions. The low runoff for the Cypress Creek basin results from a lack of sustained inflow from ground water and a relatively large area of lakes within the drainage basin. Streamflow characteristics for 13 stations were computed on an annual basis and examined for temporal trends. Results of the trend testing indicate changes in annual mean streamflow, 1-day high streamflow, or 7-day low streamflow at 8 of the 13 stations. However, changes in 7-day low streamflow are more common than changes in annual mean or 1-day high streamflow. There is probably no single reason for the changes in 7-day low streamflows, and for most streams, it is difficult to determine definite reasons for the flow increases. Low flows in the Econlockhatchee River at Chuluota have increased because of discharge of treated wastewater since 1982. However, trends in increasing 7-day low streamflow are evident before 1982, which cannot be attributed to wastewater discharge. Some of the increases in 7-day low flows may be related to drainage changes resulting from increased development in Orange County. Development for most purposes, including those as diverse as cattle grazing and residential construction, may involve modification of surface drainage through stream channelization and construction of canals. These changes in land drainage can lower the water table, resulting in reductions of regional evapotranspiration rates and increased streamflow. Another possible cause of increasing low flows in streams is use of water from the Floridan aquifer system for irrigation. Runoff of irrigation water or increased seepage from irrigated areas to streams could increase base streamflow compared to natural conditions. Water-level data were analyzed to determine temporal trends from 83 lakes that had more than 15 years of record. There were significant temporal trends in 33 of the 83 lakes (40 percent) over the entire period of record. Of these 33 lakes, 14 had increasing water levels and 19 lakes had decreasing water levels. The downward trends in long-term lake levels could in part be due to high rainfall accumulation in 1960-1961, which included precipitation from Hurricane Donna (September 1960). The high rainfall resulted in historical high-water levels in many lakes in 1960 or 1961. A large range of water-quality conditions exists in lakes and streams of Orange County (2000-01). Specific conductance in lake samples ranged from 57 to 1,185 microsiemens per centimeter. Values of pH ranged from 3.2 to 8.7 in stream samples and 4.6 to 9.6 in lake samples. Total nitrogen concentrations ranged from less than 0.2 to 7.1 milligrams per liter (mg/L) as nitrogen in stream samples, and
Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli
2013-01-01
Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.
NASA Astrophysics Data System (ADS)
Legave, Jean Michel; Blanke, Michael; Christen, Danilo; Giovannini, Daniela; Mathieu, Vincent; Oger, Robert
2013-03-01
In the current context of global warming, an analysis is required of spatially-extensive and long-term blooming data in fruit trees to make up for insufficient information on regional-scale blooming changes and determinisms that are key to the phenological adaptation of these species. We therefore analysed blooming dates over long periods at climate-contrasted sites in Western Europe, focusing mainly on the Golden Delicious apple that is grown worldwide. On average, blooming advances were more pronounced in northern continental (10 days) than in western oceanic (6-7 days) regions, while the shortest advance was found on the Mediterranean coastline. Temporal trends toward blooming phase shortenings were also observed in continental regions. These regional differences in temporal variability across Western Europe resulted in a decrease in spatial variability, i.e. shorter time intervals between blooming dates in contrasted regions (8-10-day decrease for full bloom between Mediterranean and continental regions). Fitted sequential models were used to reproduce phenological changes. Marked trends toward shorter simulated durations of forcing period (bud growth from dormancy release to blooming) and high positive correlations between these durations and observed blooming dates support the notion that blooming advances and shortenings are mainly due to faster satisfaction of the heating requirement. However, trends toward later dormancy releases were also noted in oceanic and Mediterranean regions. This could tend toward blooming delays and explain the shorter advances in these regions despite similar or greater warming. The regional differences in simulated chilling and forcing periods were consistent with the regional differences in temperature increases.
Adjustment of Pesticide Concentrations for Temporal Changes in Analytical Recovery, 1992-2006
Martin, Jeffrey D.; Stone, Wesley W.; Wydoski, Duane S.; Sandstrom, Mark W.
2009-01-01
Recovery is the proportion of a target analyte that is quantified by an analytical method and is a primary indicator of the analytical bias of a measurement. Recovery is measured by analysis of quality-control (QC) water samples that have known amounts of target analytes added ('spiked' QC samples). For pesticides, recovery is the measured amount of pesticide in the spiked QC sample expressed as percentage of the amount spiked, ideally 100 percent. Temporal changes in recovery have the potential to adversely affect time-trend analysis of pesticide concentrations by introducing trends in environmental concentrations that are caused by trends in performance of the analytical method rather than by trends in pesticide use or other environmental conditions. This report examines temporal changes in the recovery of 44 pesticides and 8 pesticide degradates (hereafter referred to as 'pesticides') that were selected for a national analysis of time trends in pesticide concentrations in streams. Water samples were analyzed for these pesticides from 1992 to 2006 by gas chromatography/mass spectrometry. Recovery was measured by analysis of pesticide-spiked QC water samples. Temporal changes in pesticide recovery were investigated by calculating robust, locally weighted scatterplot smooths (lowess smooths) for the time series of pesticide recoveries in 5,132 laboratory reagent spikes; 1,234 stream-water matrix spikes; and 863 groundwater matrix spikes. A 10-percent smoothing window was selected to show broad, 6- to 12-month time scale changes in recovery for most of the 52 pesticides. Temporal patterns in recovery were similar (in phase) for laboratory reagent spikes and for matrix spikes for most pesticides. In-phase temporal changes among spike types support the hypothesis that temporal change in method performance is the primary cause of temporal change in recovery. Although temporal patterns of recovery were in phase for most pesticides, recovery in matrix spikes was greater than recovery in reagent spikes for nearly every pesticide. Models of recovery based on matrix spikes are deemed more appropriate for adjusting concentrations of pesticides measured in groundwater and stream-water samples than models based on laboratory reagent spikes because (1) matrix spikes are expected to more closely match the matrix of environmental water samples than are reagent spikes and (2) method performance is often matrix dependent, as was shown by higher recovery in matrix spikes for most of the pesticides. Models of recovery, based on lowess smooths of matrix spikes, were developed separately for groundwater and stream-water samples. The models of recovery can be used to adjust concentrations of pesticides measured in groundwater or stream-water samples to 100 percent recovery to compensate for temporal changes in the performance (bias) of the analytical method.
Koenig, Serena P.; Bernard, Daphne; Dévieux, Jessy G.; Atwood, Sidney; McNairy, Margaret L.; Severe, Patrice; Marcelin, Adias; Julma, Pierrot; Apollon, Alexandra; Pape, Jean W.
2016-01-01
Background High attrition during the period from HIV testing to antiretroviral therapy (ART) initiation is widely reported. Though treatment guidelines have changed to broaden ART eligibility and services have been widely expanded over the past decade, data on the temporal trends in pre-ART outcomes are limited; such data would be useful to guide future policy decisions. Methods We evaluated temporal trends and predictors of retention for each step from HIV testing to ART initiation over the past decade at the GHESKIO clinic in Port-au-Prince Haiti. The 24,925 patients >17 years of age who received a positive HIV test at GHESKIO from March 1, 2003 to February 28, 2013 were included. Patients were followed until they remained in pre-ART care for one year or initiated ART. Results 24,925 patients (61% female, median age 35 years) were included, and 15,008 (60%) had blood drawn for CD4 count within 12 months of HIV testing; the trend increased over time from 36% in Year 1 to 78% in Year 10 (p<0.0001). Excluding transfers, the proportion of patients who were retained in pre-ART care or initiated ART within the first year after HIV testing was 84%, 82%, 64%, and 64%, for CD4 count strata ≤200, 201 to 350, 351 to 500, and >500 cells/mm3, respectively. The trend increased over time for each CD4 strata, and in Year 10, 94%, 95%, 79%, and 74% were retained in pre-ART care or initiated ART for each CD4 strata. Predictors of pre-ART attrition included male gender, low income, and low educational status. Older age and tuberculosis (TB) at HIV testing were associated with retention in care. Conclusions The proportion of patients completing assessments for ART eligibility, remaining in pre-ART care, and initiating ART have increased over the last decade across all CD4 count strata, particularly among patients with CD4 count ≤350 cells/mm3. However, additional retention efforts are needed for patients with higher CD4 counts. PMID:26901795
The trend of the multi-scale temporal variability of precipitation in Colorado River Basin
NASA Astrophysics Data System (ADS)
Jiang, P.; Yu, Z.
2011-12-01
Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.
Long-Term Vegetation Trends Detected In Northern Canada Using Landsat Image Stacks
NASA Astrophysics Data System (ADS)
Fraser, R.; Olthof, I.; Carrière, M.; Deschamps, A.; Pouliot, D.
2011-12-01
Evidence of recent productivity increases in arctic vegetation comes from a variety of sources. At local scales, long-term plot measurements in North America are beginning to record increases in vascular plant cover and biomass. At landscape scales, expansion and densification of shrubs has been observed using repeat oblique photographs. Finally, continental-scale increases in vegetation "greenness" have been documented based on analysis of coarse resolution (≥ 1 km) NOAA-AVHRR satellite imagery. In this study we investigated intermediate, regional-level changes occurring in tundra vegetation since 1984 using the Landsat TM and ETM+ satellite image archive. Four study areas averaging 13,619 km2 were located over widely distributed national parks in northern Canada (Ivvavik, Sirmilik, Torngat Mountains, and Wapusk). Time-series image stacks of 16-41 growing-season Landsat scenes from overlapping WRS-2 frames were acquired spanning periods of 17-25 years. Each pixel's unique temporal database of clear-sky values was then analyzed for trends in four indices (NDVI, Tasseled Cap Brightness, Greenness and Wetness) using robust linear regression. The trends were further related to changes in the fractional cover of functional vegetation types using regression tree models trained with plot data and high resolution (≤ 10 m) satellite imagery. We found all four study areas to have a larger proportion of significant (p<0.05) positive greenness trends (range 6.1-25.5%) by comparison to negative trends (range 0.3-4.1%). For the three study areas where regression tree models could be derived, consistent trends of increasing shrub or vascular fractional cover and decreasing bare cover were predicted. The Landsat-based observations were associated with warming trends in each park over the analysis periods. Many of the major changes observed could be corroborated using published studies or field observations.
Rivera-Sepulveda, Andrea; Garcia-Rivera, Enid J
2017-01-01
Little is known about the epidemiology of bronchiolitis as a clinical diagnosis and its impact on emergency department visits and hospitalizations in tropical and semitropical regions. We described the epidemiology of bronchiolitis emergency visits and hospitalizations, its temporal trend and geographic distribution in Puerto Rico between 2010 and 2014. We performed a retrospective descriptive analysis of a representative sample of privately insured children with bronchiolitis from January 2010 to December 2014. Data was provided by the largest private health insurer in Puerto Rico and identified children < 24 months of age with bronchiolitis by International Classification of Diseases, Ninth Revision code 466, 466.11, and 466.19. Chi-square and one-way ANOVA compared sex, age, diagnosis, and severity across the years. Joinpoint Poisson regression analysis evaluated the temporal trend distribution of bronchiolitis hospitalizations per calendar year. A P value less than 0.05 was statistically significant. During the study period, the annual proportion of emergency department visits and hospitalizations due to bronchiolitis increased from 3 to 5%, and 26 to 38%, respectively. The annual incidence rate of hospitalizations was 3.2 per 1000 privately insured children < 24 months. Non-RSV bronchiolitis was the most frequent diagnosis (51%). Hospitalizations occurred year-round, but increased significantly from August through December. Most children hospitalized resided in the metropolitan San Juan (35%) and surrounding urban areas. Total hospital charges decreased from $3.78 to $3.74 million, with an average cost per hospitalization of $4320.12 (11.3% increase; P = 0.0015). This is the first study that evaluates the epidemiological characteristics of bronchiolitis in a primarily Hispanic population, living in a tropical country, and using data from a privately insured population. We found a small but significant increase in proportion of emergency visits and hospitalizations. Temporal trend shows year-round hospitalizations with an earlier seasonal peak and longer duration, consistent with Puerto Rico's seasonal rainfall throughout the study period. Further studies are needed to elucidate whether this epidemiologic pattern can also be seen in publicly insured children and whether Hispanic ethnicity is a risk factor for increased hospitalizations or is related to health disparities in the US healthcare system.
NASA Technical Reports Server (NTRS)
Entzian, G.; Grasnick, K. H.; Taubenheim, J.
1989-01-01
The long term trends (least square linear regression with time) of ozone content at seven European, seven North American, three Japanese and two tropical stations during 21 years (1964 to 1984) are analyzed. In all regions negative trends are observed during the 1970s, but are partly compensated by limited periods of positive trends during the late 1960s and late 1970s. Solely the North American ozone data show negative trends in all 10 year periods. When the long term ozone trends are evaluated for each month of the year separately, a seasonal variation is revealed, which in Europe and North America has largest negative trends in late winter and spring. While in Europe the negative trends in winter/spring are partly compensated by positive trends in summer, in North America the summer values reach only zero, retaining the significant negative trend in annual mean values. In contrast to the antarctic ozone hole, the spring reduction of ozone in Europe and in North America is associated with stratospheric temperatures increasing in the analyzed period and therefore is consistent with the major natural ozone production and loss processes.
Codling, Garry; Hosseini, Soheil; Corcoran, Margaret B; Bonina, Solidea; Lin, Tian; Li, An; Sturchio, Neil C; Rockne, Karl J; Ji, Kyunghee; Peng, Hui; Giesy, John P
2018-05-01
Current and historical concentrations of 22 poly- and perfluorinated compounds (PFASs) in sediment collected from Lake Superior and northern Lake Michigan in 2011 and Lake Huron in 2012 are reported. The sampling was performed in two ways, Ponar grabs of surface sediments for current spatial distribution across the lake and dated cores for multi-decadal temporal trends. Mean concentrations of the sum of PFASs (∑PFASs) were 1.5, 4.6 and 3.1 ng g -1 dry mas (dm) in surface sediments for Lakes Superior, Michigan and Huron, respectively. Of the five Laurentian Lakes, the watersheds of Superior and Huron are the less densely populated by humans, and concentrations observed were typically less and from more diffuse sources, due to lesser urbanization and industrialization. However, some regions of greater concentrations were observed and might indicate more local, point sources. In core samples concentrations ranged from
Champoux, Louise; Boily, Monique
2017-12-31
Since 1991, great blue heron (Ardea herodias) eggs have been collected and analyzed for mercury (Hg), persistent organic contaminants (OCs), brominated and non-brominated flame retardants (FRs) as well as stable isotopes δ 13 C and δ 15 N. In the present study, temporal trends of contaminants were analyzed in eggs sampled in four regions along the St. Lawrence River (Quebec, Canada) and inland sites using new and previously published data. Most contaminants declined significantly over time in most regions. Globally, the highest annual change, -17.5%, was found for pp'-DDD, while the smallest annual decline, -0.54%, was observed for Hg. Concentrations of ΣDDT and ΣFR 8 (sum of 8 congeners) decreased by -11.6% and -7.3%, respectively. Declines in ΣPCBs differed among regions, from -5.6% in the fluvial section to -14.7% in the inland region. The highest concentration of ΣFR 8 was measured in eggs from Grande Ile in the fluvial section of the river in 1996 (2.39μg/g). Stable isotope ratios also showed temporal trends in some regions: δ 13 C decreased in the fluvial section and increased in Gulf region, while δ 15 N decreased in the fluvial section and increased in the upper estuary. Significant positive relationships were found between ΣDDT, ΣPCBs and ΣFRs and δ 15 N and δ 13 C in freshwater colonies, but not in estuarine or marine colonies. These results suggest that changes in trophic level and foraging areas over time were influential factors with respect to contaminant burden in great blue heron eggs in the fluvial section, but not in the other regions. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
van Diepen, Sean; Girotra, Saket; Abella, Benjamin S; Becker, Lance B; Bobrow, Bentley J; Chan, Paul S; Fahrenbruch, Carol; Granger, Christopher B; Jollis, James G; McNally, Bryan; White, Lindsay; Yannopoulos, Demetris; Rea, Thomas D
2017-09-22
The HeartRescue Project is a multistate public health initiative focused on establishing statewide out-of-hospital cardiac arrest (OHCA) systems of care to improve case capture and OHCA care in the community, by emergency medical services (EMS), and at hospital level. From 2011 to 2015 in the 5 original HeartRescue states, all adults with EMS-treated OHCA due to a presumed cardiac cause were included. In an adult population of 32.8 million, a total of 64 988 OHCAs-including 10 046 patients with a bystander-witnessed OHCA with a shockable rhythm-were treated by 330 EMS agencies. From 2011 to 2015, the case-capture rate for all-rhythm OHCA increased from an estimated 39.0% (n=6762) to 89.2% (n=16 103; P <0.001 for trend). Overall survival to hospital discharge was 11.4% for all rhythms and 34.0% in the subgroup with bystander-witnessed OHCA with a shockable rhythm. We observed modest temporal increases in bystander cardiopulmonary resuscitation (41.8-43.5%, P <0.001 for trend) and bystander automated external defibrillator application (3.2-5.6%, P <0.001 for trend) in the all-rhythm group, although there were no temporal changes in survival. There were marked all-rhythm survival differences across the 5 states (8.0-16.1%, P <0.001) and across participating EMS agencies (2.7-26.5%, P <0.001). In the initial 5 years, the HeartRescue Project developed a population-based OHCA registry and improved statewide case-capture rates and some processes of care, although there were no early temporal changes in survival. The observed survival variation across states and EMS systems presents a future challenge to elucidate the characteristics of high-performing systems with the goal of improving OHCA care and survival. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Hydrochemical evaluation of river water quality—a case study: Horroud River
NASA Astrophysics Data System (ADS)
Falah, Fatemeh; Haghizadeh, Ali
2017-12-01
Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.
NASA Astrophysics Data System (ADS)
Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui
2013-04-01
Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.
Xu, Changchun; Chen, Yaning; Chen, Yapeng; Zhao, Ruifeng; Ding, Hui
2013-04-01
Based on hydrological and climatic data and land use/cover change data covering the period from 1957 to 2009, this paper investigates the hydrological responses to climate change and to human activities in the arid Tarim River basin (TRB). The results show that the surface runoff of three headstreams (Aksu River, Yarkant River and Hotan River) of the Tarim River exhibited a significant increasing trend since 1960s and entered an even higher-runoff stage in 1994. In the contrary, the surface runoff of Tarim mainstream displayed a persistent decreasing trend since 1960s. The increasing trend of surface runoff in the headstreams can be attributed to the combined effects of both temperature and precipitation changes during the past five decades. But, the decreasing trend of surface runoff in the mainstream and the observed alterations of the temporal and spatial distribution patterns were mainly due to the adverse impacts of human activities. Specifically, increasingly intensified water consumption for irrigation and the associated massive constructions of water conservancy projects were responsible for the decreasing trend of runoff in the mainstream. And, the decreasing trend has been severely jeopardizing the ecological security in the lower reaches. It is now unequivocally clear that water-use conflicts among different sectors and water-use competitions between upper and lower reaches are approaching to dangerous levels in TRB that is thus crying for implementing an integrated river basin management scheme.
Fan, Hang; Wang, Xiujun; Zhang, Haibo; Yu, Zhitong
2018-05-22
The Yellow-Bohai Sea (YBS) is a typical marginal sea in the Northwest Pacific Ocean; however, little is known about the dynamics of particulate organic carbon (POC) and underlying mechanisms. Here, we analyze the spatial and temporal variations of surface POC derived from MODIS-Aqua during 2002-2016. Overall, POC is higher in the Bohai Sea (315-588 mg m -3 ) than in the Yellow Sea (181-492 mg m -3 ), and higher in the nearshore than in the offshore. Surface POC is highest in spring in the YBS, and lowest in winter (summer) in the Bohai Sea (the Yellow Sea). The spatial and seasonal patterns of POC are due to combined influences of primary productivity, water exchange, sediment resuspension and terrestrial inputs. Surface POC shows an overall decreasing trend prior to 2012 followed by an upward trend until 2015 in the YBS, which is almost opposite to chlorophyll; the decrease (increase) may result from strengthened (weakened) water exchange with the East China Sea through the Yellow Sea Warm Current. Declined terrestrial runoff is also partly responsible for the decrease prior to 2012. Our study suggests that water exchange and sediment resuspension are dominant factors regulating the spatial and temporal variability of POC in the YBS.
Zhou, Li-Fang; Zhang, Mao-Xin; Kong, Ling-Qian; Lyman, Gary H; Wang, Ke; Lu, Wei; Feng, Qi-Ming; Wei, Bo; Zhao, Lue Ping
2017-05-28
Lung cancer is a common disease with high mortality in China. Recent economic advances have led to improved medical capabilities, while costs associated with treating this disease have increased. Such change contributes to a commonly held belief that healthcare costs are out of control. However, few studies have examined this issue. Here, we use 34,678 hospitalization summary reports from 67 Guangxi hospitals (period 2013-2016) to document costs, temporal trends, and associated factors. Findings from this study are surprising in that they debunk the myth of uncontrolled healthcare costs. In addition, results and experiences from Guangxi are informative for other comparable regions.
Aadahl, Mette; Andreasen, Anne Helms; Hammer-Helmich, Lene; Buhelt, Lone; Jørgensen, Torben; Glümer, Charlotte
2013-11-01
Prevalence of sedentary behaviour is high in many countries, but little is known about temporal trends in sitting time. To examine temporal changes in sleep and domain-specific sedentary behaviour and moderate to vigorous leisure time physical activity (MVPA). Two cross-sectional population-based surveys of 25-79-year-old inhabitants were conducted in The Capital Region of Denmark in 2007 (N = 69.800, response rate 52.3%) and 2010 (N = 77.517, response rate 54.8%). Information on sedentary behaviour and physical activity was obtained from self-report questionnaire and sociodemographic information from central registers. Data were weighted for survey design and for non-response and were analysed by multiple regression analyses. In 2007, the entire survey population reported a mean daily sleeping duration of 7.4 hours, leisure time sitting of 3.4 hours per day, occupational sitting of 4.4 hours per day, MVPA of 0.87 hours per day and a total 24-hour energy expenditure of 40.12 METs per day. In 2010, duration of sleep was unaltered (p = 0.1), sedentary leisure time and sedentary work time had increased by 12.6 minutes (p < 0.0001) and 13.2 minutes (p < 0.0001) per day, respectively. Time spent on MVPA had increased by 2.9 minutes per day (p < 0.0001). The 24-hour energy expenditure had decreased by 0.41 METs (p < 0.0001). Adult Danish men and women spend an increased amount of time sitting down at work and during leisure time, but also on leisure time MVPA. As duration of sleep is unaltered findings suggest that low intensity physical activity may be displaced in everyday life.
Evaluation of the temporal variations of air quality in Taipei City, Taiwan, from 1994 to 2003.
Chang, Shuenn-Chin; Lee, Chung-Te
2008-03-01
Data collected from the five air-quality monitoring stations established by the Taiwan Environmental Protection Administration in Taipei City from 1994 to 2003 are analyzed to assess the temporal variations of air quality. Principal component analysis (PCA) is adopted to convert the original measuring pollutants into fewer independent components through linear combinations while still retaining the majority of the variance of the original data set. Two principal components (PCs) are retained together explaining 82.73% of the total variance. PC1, which represents primary pollutants such as CO, NO(x), and SO(2), shows an obvious decrease over the last 10 years. PC2, which represents secondary pollutants such as ozone, displays a yearly increase over the time period when a reduction of primary pollutants is obvious. In order to track down the control measures put forth by the authorities, 47 days of high PM(10) concentrations caused by transboundary transport have been eliminated in analyzing the long-term trend of PM(10) in Taipei City. The temporal variations over the past 10 years show that the moderate peak in O(3) demonstrates a significant upward trend even when the local primary pollutants have been well under control. Monthly variations of PC scores demonstrate that primary pollution is significant from January to April, while ozone increases from April to August. The results of the yearly variations of PC scores show that PM(10) has gradually shifted from a strong correlation with PC1 during the early years to become more related to PC2 in recent years. This implies that after a reduction of primary pollutants, the proportion of secondary aerosols in PM(10) may increase. Thus, reducing the precursor concentrations of secondary aerosols will be an effective way to lower PM(10) concentrations.
Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology
NASA Technical Reports Server (NTRS)
Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus
2013-01-01
Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.
Elkhorn Slough: Detecting Eutrophication through Geospatial Modeling Applications
NASA Astrophysics Data System (ADS)
Caraballo Álvarez, I. O.; Childs, A.; Jurich, K.
2016-12-01
Elkhorn Slough in Monterey, California, has experienced substantial nutrient loading and eutrophication over the past 21 years as a result of fertilizer-rich runoff from nearby agricultural fields. This study seeks to identify and track spatial patterns of eutrophication hotspots and the correlation to land use changes, possible nutrient sources, and general climatic trends using remotely sensed and in situ data. Threats of rising sea level, subsiding marshes, and increased eutrophication hotspots demonstrate the necessity to analyze the effects of increasing nutrient loads, relative sea level changes, and sedimentation within Elkhorn Slough. The Soil & Water Assessment Tool (SWAT) model integrates specified inputs to assess nutrient and sediment loading and their sources. TerrSet's Land Change Modeler forecasts the future potential of land change transitions for various land cover classes around the slough as a result of nutrient loading, eutrophication, and increased sedimentation. TerrSet's Earth Trends Modeler provides a comprehensive analysis of image time series to rapidly assess long term eutrophication trends and detect spatial patterns of known hotspots. Results from this study will inform future coastal management practices and provide greater spatial and temporal insight into Elkhorn Slough eutrophication dynamics.
Trends in ethnic disparities in stroke incidence in Auckland, New Zealand, during 1981 to 2003.
Carter, Kristie; Anderson, Craig; Hacket, Maree; Feigin, Valery; Barber, P Alan; Broad, Joanna B; Bonita, Ruth
2006-01-01
Although geographical variations in stroke rates are well documented, limited data exist on temporal trends in ethnic-specific stroke incidence. We assessed trends in ethnic-specific stroke rates using standard diagnostic criteria and community-wide surveillance procedures in Auckland, New Zealand (NZ) in 1981 to 1982, 1991 to 1992, and 2002 to 2003. Indirect and direct methods were used to adjust first-ever (incident) and total (attack) rates for changes in the structure of the population and reported with 95% CIs. Ethnicity was self-defined and categorized as "NZ/European," "Maori," "Pacific peoples," and "Asian and other." Stroke attack (19%; 95% CI, 11% to 26%) and incidence rates (19%; 95% CI, 12% to 24%) declined significantly in NZ/Europeans from 1981 to 1982 to 2002 to 2003. These rates remained high or increased in other ethnic groups, particularly for Pacific peoples in whom stroke attack rates increased by 66% (95% CI; 11% to 225%) over the periods. Some favorable downward trends in vascular risk factors, such as cigarette smoking, were counterbalanced by increasing age, body mass index, and diabetes in certain ethnic groups. Divergent trends in ethnic-specific stroke incidence and attack rates, and of associated risk factors, have occurred in Auckland over recent decades. The findings provide mixed views as to the future burden of stroke in populations undergoing similar lifestyle and structural changes.
Recurrent jellyfish blooms are a consequence of global oscillations
Condon, Robert H.; Duarte, Carlos M.; Pitt, Kylie A.; Robinson, Kelly L.; Lucas, Cathy H.; Sutherland, Kelly R.; Mianzan, Hermes W.; Bogeberg, Molly; Purcell, Jennifer E.; Decker, Mary Beth; Uye, Shin-ichi; Madin, Laurence P.; Brodeur, Richard D.; Haddock, Steven H. D.; Malej, Alenka; Parry, Gregory D.; Eriksen, Elena; Quiñones, Javier; Acha, Marcelo; Harvey, Michel; Arthur, James M.; Graham, William M.
2013-01-01
A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face. PMID:23277544
Changes in erosion and flooding risk due to long-term and cyclic oceanographic trends
Wahl, Thomas; Plant, Nathaniel G.
2015-01-01
We assess temporal variations in waves and sea level, which are driving factors for beach 23 erosion and coastal flooding in the northern Gulf of Mexico. We find that long-term trends in 24 the relevant variables have caused an increase of ~30% in the erosion/flooding risk since the 25 1980s. Changes in the wave climate-which have often been ignored in earlier assessments-26 were at least as important as sea-level rise (SLR). In the next decades, SLR will likely become 27 the dominating driver and may in combination with ongoing changes in the wave climate (and 28 depending on the emission scenario) escalate the erosion/flooding risk by up to 300% over the 29 next 30 years. We also find significant changes in the seasonal cycles of sea level and 30 significant wave height, which have in combination caused a considerable increase of the 31 erosion/flooding risk in summer and decrease in winter (superimposed onto the long-term 32 trends)
Spatial and temporal patterns in preterm birth in the United States.
Byrnes, John; Mahoney, Richard; Quaintance, Cele; Gould, Jeffrey B; Carmichael, Suzan; Shaw, Gary M; Showen, Amy; Phibbs, Ciaran; Stevenson, David K; Wise, Paul H
2015-06-01
Despite years of research, the etiologies of preterm birth remain unclear. In order to help generate new research hypotheses, this study explored spatial and temporal patterns of preterm birth in a large, total-population dataset. Data on 145 million US births in 3,000 counties from the Natality Files of the National Center for Health Statistics for 1971-2011 were examined. State trends in early (<34 wk) and late (34-36 wk) preterm birth rates were compared. K-means cluster analyses were conducted to identify gestational age distribution patterns for all US counties over time. A weak association was observed between state trends in <34 wk birth rates and the initial absolute <34 wk birth rate. Significant associations were observed between trends in <34 wk and 34-36 wk birth rates and between white and African American <34 wk births. Periodicity was observed in county-level trends in <34 wk birth rates. Cluster analyses identified periods of significant heterogeneity and homogeneity in gestational age distributional trends for US counties. The observed geographic and temporal patterns suggest periodicity and complex, shared influences among preterm birth rates in the United States. These patterns could provide insight into promising hypotheses for further research.
NASA Astrophysics Data System (ADS)
Gao, Ruizhong; Li, Fengling; Wang, Xixi; Liu, Tingxi; Du, Dandan; Bai, Yong
2017-09-01
Precipitation, as affected by climate change, controls the growth of steppe grasses and grassland degradation/desertification in semiarid/arid regions, including the Chinese Mongolian plateau. This study examined the spatial variability and temporal trends in precipitation across the plateau in terms of four indexes: total precipitation (P), number of rainy days (Wd), number of precipitation events (N), and average precipitation intensity (Imean). Although seldom published in the literature, this information is vital for efforts to develop adaptive measures to sustain this vulnerable pasture economy. Seven hundred time series were formulated by preprocessing the data on daily precipitation over the period 1960 to 2012 at 25 weather stations scattered across the plateau. The results indicated that although the plateau was becoming drier overall, the intensity of storm events increased markedly, as indicated by decreasing trends for P, Wd and N but an increasing trend for Imean. On average, P decreased by 0.65 mm yr- 1 over the study period, while Imean increased by 0.2 mm d- 1 yr- 1. Across the plateau, the western part was becoming wetter, while the central-eastern part was becoming drier. This spatial discrepancy in the precipitation trends was particularly obvious in the winter dry season, with Imean tending to increase more rapidly in the central-eastern than western part, especially in the spring dry season. It is expected that these trends will continue, thus further challenging the already vulnerable eco-environment of the plateau.
Cuéllar, Ana Carolina; Kjær, Lene Jung; Kirkeby, Carsten; Skovgard, Henrik; Nielsen, Søren Achim; Stockmarr, Anders; Andersson, Gunnar; Lindstrom, Anders; Chirico, Jan; Lühken, Renke; Steinke, Sonja; Kiel, Ellen; Gethmann, Jörn; Conraths, Franz J; Larska, Magdalena; Hamnes, Inger; Sviland, Ståle; Hopp, Petter; Brugger, Katharina; Rubel, Franz; Balenghien, Thomas; Garros, Claire; Rakotoarivony, Ignace; Allène, Xavier; Lhoir, Jonathan; Chavernac, David; Delécolle, Jean-Claude; Mathieu, Bruno; Delécolle, Delphine; Setier-Rio, Marie-Laure; Venail, Roger; Scheid, Bethsabée; Chueca, Miguel Ángel Miranda; Barceló, Carlos; Lucientes, Javier; Estrada, Rosa; Mathis, Alexander; Tack, Wesley; Bødker, Rene
2018-02-27
Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are vectors of bluetongue virus (BTV), African horse sickness virus and Schmallenberg virus (SBV). Outbreaks of both BTV and SBV have affected large parts of Europe. The spread of these diseases depends largely on vector distribution and abundance. The aim of this analysis was to identify and quantify major spatial patterns and temporal trends in the distribution and seasonal variation of observed Culicoides abundance in nine countries in Europe. We gathered existing Culicoides data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. In total, 31,429 Culicoides trap collections were available from 904 ruminant farms across these countries between 2007 and 2013. The Obsoletus ensemble was distributed widely in Europe and accounted for 83% of all 8,842,998 Culicoides specimens in the dataset, with the highest mean monthly abundance recorded in France, Germany and southern Norway. The Pulicaris ensemble accounted for only 12% of the specimens and had a relatively southerly and easterly spatial distribution compared to the Obsoletus ensemble. Culicoides imicola Kieffer was only found in Spain and the southernmost part of France. There was a clear spatial trend in the accumulated annual abundance from southern to northern Europe, with the Obsoletus ensemble steadily increasing from 4000 per year in southern Europe to 500,000 in Scandinavia. The Pulicaris ensemble showed a very different pattern, with an increase in the accumulated annual abundance from 1600 in Spain, peaking at 41,000 in northern Germany and then decreasing again toward northern latitudes. For the two species ensembles and C. imicola, the season began between January and April, with later start dates and increasingly shorter vector seasons at more northerly latitudes. We present the first maps of seasonal Culicoides abundance in large parts of Europe covering a gradient from southern Spain to northern Scandinavia. The identified temporal trends and spatial patterns are useful for planning the allocation of resources for international prevention and surveillance programmes in the European Union.
Spatiotemporal analysis of the agricultural drought risk in Heilongjiang Province, China
NASA Astrophysics Data System (ADS)
Pei, Wei; Fu, Qiang; Liu, Dong; Li, Tian-xiao; Cheng, Kun; Cui, Song
2017-06-01
Droughts are natural disasters that pose significant threats to agricultural production as well as living conditions, and a spatial-temporal difference analysis of agricultural drought risk can help determine the spatial distribution and temporal variation of the drought risk within a region. Moreover, this type of analysis can provide a theoretical basis for the identification, prevention, and mitigation of drought disasters. In this study, the overall dispersion and local aggregation of projection points were based on research by Friedman and Tukey (IEEE Trans on Computer 23:881-890, 1974). In this work, high-dimensional samples were clustered by cluster analysis. The clustering results were represented by the clustering matrix, which determined the local density in the projection index. This method avoids the problem of determining a cutoff radius. An improved projection pursuit model is proposed that combines cluster analysis and the projection pursuit model, which offer advantages for classification and assessment, respectively. The improved model was applied to analyze the agricultural drought risk of 13 cities in Heilongjiang Province over 6 years (2004, 2006, 2008, 2010, 2012, and 2014). The risk of an agricultural drought disaster was characterized by 14 indicators and the following four aspects: hazard, exposure, sensitivity, and resistance capacity. The spatial distribution and temporal variation characteristics of the agricultural drought risk in Heilongjiang Province were analyzed. The spatial distribution results indicated that Suihua, Qigihar, Daqing, Harbin, and Jiamusi are located in high-risk areas, Daxing'anling and Yichun are located in low-risk areas, and the differences among the regions were primarily caused by the aspects exposure and resistance capacity. The temporal variation results indicated that the risk of agricultural drought in most areas presented an initially increasing and then decreasing trend. A higher value for the exposure aspect increased the risk of drought, whereas a higher value for the resistance capacity aspect reduced the risk of drought. Over the long term, the exposure level of the region presented limited increases, whereas the resistance capacity presented considerable increases. Therefore, the risk of agricultural drought in Heilongjiang Province will continue to exhibit a decreasing trend.
TREND ANALYSIS OF WATER QUALITY MONITORING DATA FOR COBB COUNTY, GEORGIA
The Cobb County Water Protection Division Water Quality Laboratory has conducted quarterly chemical monitoring from 1995-2005. Here we analyze these data for temporal trends in 20 Piedmont streams in the Chattahoochee and Etowah river basins. We found trends through time at mos...
NASA Astrophysics Data System (ADS)
Gebremicael, Tesfay G.; Mohamed, Yasir A.; Zaag, Pieter v.; Hagos, Eyasu Y.
2017-04-01
The Upper Tekezē-Atbara river sub-basin, part of the Nile Basin, is characterized by high temporal and spatial variability of rainfall and streamflow. In spite of its importance for sustainable water use and food security, the changing patterns of streamflow and its association with climate change is not well understood. This study aims to improve the understanding of the linkages between rainfall and streamflow trends and identify possible drivers of streamflow variabilities in the basin. Trend analyses and change-point detections of rainfall and streamflow were analysed using Mann-Kendall and Pettitt tests, respectively, using data records for 21 rainfall and 9 streamflow stations. The nature of changes and linkages between rainfall and streamflow were carefully examined for monthly, seasonal and annual flows, as well as indicators of hydrologic alteration (IHA). The trend and change-point analyses found that 19 of the tested 21 rainfall stations did not show statistically significant changes. In contrast, trend analyses on the streamflow showed both significant increasing and decreasing patterns. A decreasing trend in the dry season (October to February), short season (March to May), main rainy season (June to September) and annual totals is dominant in six out of the nine stations. Only one out of nine gauging stations experienced significant increasing flow in the dry and short rainy seasons, attributed to the construction of Tekezē hydropower dam upstream this station in 2009. Overall, streamflow trends and change-point timings were found to be inconsistent among the stations. Changes in streamflow without significant change in rainfall suggests factors other than rainfall drive the change. Most likely the observed changes in streamflow regimes could be due to changes in catchment characteristics of the basin. Further studies are needed to verify and quantify the hydrological changes shown in statistical tests by identifying the physical mechanisms behind those changes. The findings from this study are useful as a prerequisite for studying the effects of catchment management dynamics on the hydrological variabilities in the basin.
Serum Testosterone Kinetics After Brachytherapy for Clinically Localized Prostate Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taira, Al V.; Merrick, Gregory S., E-mail: gmerrick@urologicresearchinstitute.org; Galbreath, Robert W.
Purpose: To evaluate temporal changes in testosterone after prostate brachytherapy and investigate the potential impact of these changes on response to treatment. Methods and Materials: Between January 2008 and March 2009, 221 consecutive patients underwent Pd-103 brachytherapy without androgen deprivation for clinically localized prostate cancer. Prebrachytherapy prostate-specific antigen (PSA) and serum testosterone were obtained for each patient. Repeat levels were obtained 3 months after brachytherapy and at least every 6 months thereafter. Multiple clinical, treatment, and dosimetric parameters were evaluated to determine an association with temporal testosterone changes. In addition, analysis was conducted to determine if there was an associationmore » between testosterone changes and treatment outcomes or the occurrence of a PSA spike. Results: There was no significant difference in serum testosterone over time after implant (p = 0.57). 29% of men experienced an increase {>=}25%, 23% of men experienced a decrease {>=}25%, and the remaining 48% of men had no notable change in testosterone over time. There was no difference in testosterone trends between men who received external beam radiotherapy and those who did not (p = 0.12). On multivariate analysis, preimplant testosterone was the only variable that consistently predicted for changes in testosterone over time. Men with higher than average testosterone tended to experience drop in testosterone (p < 0.001), whereas men with average or below average baseline testosterone had no significant change. There was no association between men who experienced PSA spike and testosterone temporal trends (p = 0.50) nor between initial PSA response and testosterone trends (p = 0.21). Conclusion: Prostate brachytherapy does not appear to impact serum testosterone over time. Changes in serum testosterone do not appear to be associated with PSA spike phenomena nor with initial PSA response to treatment; therefore, PSA response does not seem related to temporal testosterone changes.« less
Roifman, Idan; Wijeysundera, Harindra C; Austin, Peter C; Maclagan, Laura C; Rezai, Mohammad R; Wright, Graham A; Tu, Jack V
2017-02-01
The proliferation of cardiac diagnostic tests over the past few decades has received substantial attention from policymakers. However, contemporary population-based temporal trends of the utilization of noninvasive cardiac diagnostic tests for coronary artery disease are not known. Our objective was to examine the temporal trends in the utilization of coronary computed tomography angiography (CCTA), myocardial perfusion imaging (MPI), exercise stress testing (GXT), and stress echocardiography between 2008 and 2014. We performed a population-based repeated cross-sectional study of the adult population of Ontario between January 1, 2008 and December 31, 2014. Annual utilization rates of noninvasive cardiac diagnostic tests were computed. For each cardiac testing modality, a negative binomial regression model was used to assess temporal changes in test utilization. GXT and MPI collectively accounted for 88% of all cardiac noninvasive diagnostic tests throughout our study period. Age- and sex-standardized rates of GXT declined from 26.7/1000 adult population to 21.6/1000 adult population (mean annual reduction of 3.4%; P < 0.001). MPI rates declined from 21.1/1000 adult population to 19.5/1000 adult population (mean annual reduction of 1.3%; P < 0.001). Although utilization rates for both CCTA and stress echocardiography increased over time, the combined rate of all available tests decreased from 50.8/1000 adult population to 49.1/1000 adult population (mean annual reduction of 1.1%; P < 0.001). In conclusion, utilization rates for the most prevalent noninvasive cardiac diagnostic tests-GXT and MPI-declined over our study period. Furthermore, the overall test utilization rate also declined over time. We believe our findings are encouraging from a health policy perspective. Nonetheless, rising utilization rates for CCTA and stress echocardiography will need to be monitored in the future. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Andersen, Martin S; Fuglei, Eva; König, Max; Lipasti, Inka; Pedersen, Åshild Ø; Polder, Anuschka; Yoccoz, Nigel G; Routti, Heli
2015-04-01
Temporal trends of persistent organic pollutants (POPs) in arctic foxes (Vulpes lagopus) from Svalbard, Norway, were investigated in relation to feeding habits and seasonal food availability. Arctic foxes from Svalbard forage in both marine and terrestrial ecosystems and the availability of their food items are impacted by climatic variability. Concentrations of polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs) and brominated flame retardants (polybrominated diphenyl ethers [PBDEs] and hexabromocyclododecane [HBCDD]) were analyzed in the liver of 141 arctic foxes collected between 1997 and 2013. Stable carbon isotope values (δ13C) were used as a proxy for feeding on marine versus terrestrial prey. The annual number of recovered reindeer carcasses and sea ice cover were used as proxies for climate influenced food availability (reindeers, seals). Linear models revealed that concentrations of PCBs, chlordanes, p,p'-DDE, mirex and PBDEs decreased 4-11% per year, while no trends were observed for hexachlorobenzene (HCB) or β-hexachlorocyclohexane (β-HCH). Positive relationships between POP concentrations and δ13C indicate that concentrations of all compounds increase with increasing marine dietary input. Increasing reindeer mortality was related to lower HCB concentrations in the foxes based on the linear models. This suggests that concentrations of HCB in arctic foxes may be influenced by high mortality levels of Svalbard reindeer. Further, β-HCH concentrations showed a positive association with sea ice cover. These results in addition to the strong effect of δ13C on all POP concentrations suggest that climate-related changes in arctic fox diet are likely to influence contaminant concentrations in arctic foxes from Svalbard. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Li; Qian, Jun; Ou, Chun-Quan; Zhou, Ying-Xue; Guo, Cui; Guo, Yuming
2014-07-01
There is an increasing interest in spatial and temporal variation of air pollution and its association with weather conditions. We presented the spatial and temporal variation of Air Pollution Index (API) and examined the associations between API and meteorological factors during 2001-2011 in Guangzhou, China. A Seasonal-Trend Decomposition Procedure Based on Loess (STL) was used to decompose API. Wavelet analyses were performed to examine the relationships between API and several meteorological factors. Air quality has improved since 2005. APIs were highly correlated among five monitoring stations, and there were substantial temporal variations. Timescale-dependent relationships were found between API and a variety of meteorological factors. Temperature, relative humidity, precipitation and wind speed were negatively correlated with API, while diurnal temperature range and atmospheric pressure were positively correlated with API in the annual cycle. Our findings should be taken into account when determining air quality forecasts and pollution control measures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Okuda, Tomoaki; Katsuno, Masayuki; Naoi, Daisuke; Nakao, Shunsuke; Tanaka, Shigeru; He, Kebin; Ma, Yongliang; Lei, Yu; Jia, Yingtao
2008-06-01
Daily observations of hazardous trace metal concentrations in aerosols in Beijing, China were made in the period from 2001 to 2006. We considered coal combustion as a major source of some anthropogenic metals by achieving a correlation analysis and by investigating enrichment factors and relative composition of metals. A possible extra source of some specific metals, such as Cu and Sb, was brake abrasion particles, however, we did not think the transport-related particle was a major source for the hazardous anthropogenic metals even though they could originate from vehicle exhaust and brake/tire abrasion particles. A time-trend model was used to describe temporal variations of chemical constituent concentrations during the five-year period. Several crustal elements, such as Al, Ti, V, Cr, Mn, Fe, and Co, did not show clear increases, with annual rates of change of -15.2% to 3.6%. On the other hand, serious increasing trends were noted from several hazardous trace metals. Cu, Zn, As, Cd, and Pb, which are derived mainly from anthropogenic sources, such as coal combustion, showed higher annual rate of change (4.9-19.8%, p<0.001) according to the regression model. In particular, the Cd and Pb concentrations increased remarkably. We hypothesize that the trend towards increasing concentrations of metals in the air reflects a change that has occurred in the process of burning coal, whereby the use of higher temperatures for coal combustion has resulted in increased emissions of these metals. The increasing use of low-rank coal may also explain the observed trends. In addition, nonferrous metal smelters are considered as a potential, albeit minor, reason for the increasing atmospheric concentrations of anthropogenic hazardous metals in Beijing city.
Trends in preterm birth and perinatal mortality among singletons: United States, 1989 through 2000.
Ananth, Cande V; Joseph, K S; Oyelese, Yinka; Demissie, Kitaw; Vintzileos, Anthony M
2005-05-01
Despite the recent increase in preterm birth in the United States, trends in preterm birth subtypes have not been adequately examined. We examined trends in preterm birth among singletons following ruptured membranes, medical indications, and spontaneous preterm birth and evaluated the impact of these trends on perinatal mortality. A population-based, retrospective cohort study comprising 46,375,578 women (16% blacks) who delivered singleton births in the United States, 1989 through 2000, was performed. Rates of preterm birth (< 37 weeks), their subtypes, and associated perinatal mortality (stillbirths at >/= 22 weeks plus neonatal deaths within 28 days), before and after adjustment for potential confounders, were derived from ecological logistic regression models. Preterm birth rates increased by 14% (95% confidence interval 13-15%) among whites from 8.3% to 9.4% and decreased by 15% (95% confidence interval 14-16%) among blacks from 18.5% to 16.2% between 1989 and 2000. Among whites, preterm birth following ruptured membranes declined by 23%, medically indicated preterm birth increased by 55%, and spontaneous preterm birth increased by 3%. Among blacks, preterm birth following ruptured membranes declined by 37%, medically indicated preterm birth increased by 32%, and spontaneous preterm birth decreased by 27%. The largest decline in perinatal mortality among whites was associated with increases in medically indicated preterm birth, whereas the largest decline in perinatal mortality among blacks was associated with declines in preterm birth following ruptured membranes and spontaneous preterm birth. Temporal trends in preterm birth varied substantially based on underlying subtype and maternal race. The recent increase in medically indicated preterm birth was associated with a favorable reduction in perinatal mortality.
Trends in Timing of Dialysis Initiation within Versus Outside the Department of Veterans Affairs.
Yu, Margaret K; O'Hare, Ann M; Batten, Adam; Sulc, Christine A; Neely, Emily L; Liu, Chuan-Fen; Hebert, Paul L
2015-08-07
The secular trend toward dialysis initiation at progressively higher levels of eGFR is not well understood. This study compared temporal trends in eGFR at dialysis initiation within versus outside the Department of Veterans Affairs (VA)-the largest non-fee-for-service health system in the United States. The study used linked data from the US Renal Data System, VA, and Medicare to compare temporal trends in eGFR at dialysis initiation between 2000 and 2009 (n=971,543). Veterans who initiated dialysis within the VA were compared with three groups who initiated dialysis outside the VA: (1) veterans whose dialysis was paid for by the VA, (2) veterans whose dialysis was not paid for by the VA, and (3) nonveterans. Logistic regression was used to estimate average predicted probabilities of dialysis initiation at an eGFR≥10 ml/min per 1.73 m(2). The adjusted probability of starting dialysis at an eGFR≥10 ml/min per 1.73 m(2) increased over time for all groups but was lower for veterans who started dialysis within the VA (0.31; 95% confidence interval [95% CI], 0.30 to 0.32) than for those starting outside the VA, including veterans whose dialysis was (0.36; 95% CI, 0.35 to 0.38) and was not (0.40; 95% CI, 0.40 to 0.40) paid for by the VA and nonveterans (0.39; 95% CI, 0.39 to 0.39). Differences in eGFR at initiation within versus outside the VA were most pronounced among older patients (P for interaction <0.001) and those with a higher risk of 1-year mortality (P for interaction <0.001). Temporal trends in eGFR at dialysis initiation within the VA mirrored those in the wider United States dialysis population, but eGFR at initiation was consistently lowest among those who initiated within the VA. Differences in eGFR at initiation within versus outside the VA were especially pronounced in older patients and those with higher 1-year mortality risk. Copyright © 2015 by the American Society of Nephrology.
Trends in Timing of Dialysis Initiation within Versus Outside the Department of Veterans Affairs
O’Hare, Ann M.; Batten, Adam; Sulc, Christine A.; Neely, Emily L.; Liu, Chuan-Fen; Hebert, Paul L.
2015-01-01
Background and objectives The secular trend toward dialysis initiation at progressively higher levels of eGFR is not well understood. This study compared temporal trends in eGFR at dialysis initiation within versus outside the Department of Veterans Affairs (VA)—the largest non–fee-for-service health system in the United States. Design, setting, participants, & measurements The study used linked data from the US Renal Data System, VA, and Medicare to compare temporal trends in eGFR at dialysis initiation between 2000 and 2009 (n=971,543). Veterans who initiated dialysis within the VA were compared with three groups who initiated dialysis outside the VA: (1) veterans whose dialysis was paid for by the VA, (2) veterans whose dialysis was not paid for by the VA, and (3) nonveterans. Logistic regression was used to estimate average predicted probabilities of dialysis initiation at an eGFR≥10 ml/min per 1.73 m2. Results The adjusted probability of starting dialysis at an eGFR≥10 ml/min per 1.73 m2 increased over time for all groups but was lower for veterans who started dialysis within the VA (0.31; 95% confidence interval [95% CI], 0.30 to 0.32) than for those starting outside the VA, including veterans whose dialysis was (0.36; 95% CI, 0.35 to 0.38) and was not (0.40; 95% CI, 0.40 to 0.40) paid for by the VA and nonveterans (0.39; 95% CI, 0.39 to 0.39). Differences in eGFR at initiation within versus outside the VA were most pronounced among older patients (P for interaction <0.001) and those with a higher risk of 1-year mortality (P for interaction <0.001). Conclusions Temporal trends in eGFR at dialysis initiation within the VA mirrored those in the wider United States dialysis population, but eGFR at initiation was consistently lowest among those who initiated within the VA. Differences in eGFR at initiation within versus outside the VA were especially pronounced in older patients and those with higher 1-year mortality risk. PMID:26206891
Temporal trends and spatial distribution of unsafe abortion in Brazil, 1996-2012
Martins-Melo, Francisco Rogerlândio; Lima, Mauricélia da Silveira; Alencar, Carlos Henrique; Ramos, Alberto Novaes; Carvalho, Francisco Herlânio Costa; Machado, Márcia Maria Tavares; Heukelbach, Jorg
2014-01-01
OBJECTIVE To analyze temporal trends and distribution patterns of unsafe abortion in Brazil. METHODS Ecological study based on records of hospital admissions of women due to abortion in Brazil between 1996 and 2012, obtained from the Hospital Information System of the Ministry of Health. We estimated the number of unsafe abortions stratified by place of residence, using indirect estimate techniques. The following indicators were calculated: ratio of unsafe abortions/100 live births and rate of unsafe abortion/1,000 women of childbearing age. We analyzed temporal trends through polynomial regression and spatial distribution using municipalities as the unit of analysis. RESULTS In the study period, a total of 4,007,327 hospital admissions due to abortions were recorded in Brazil. We estimated a total of 16,905,911 unsafe abortions in the country, with an annual mean of 994,465 abortions (mean unsafe abortion rate: 17.0 abortions/1,000 women of childbearing age; ratio of unsafe abortions: 33.2/100 live births). Unsafe abortion presented a declining trend at national level (R2: 94.0%, p < 0.001), with unequal patterns between regions. There was a significant reduction of unsafe abortion in the Northeast (R2: 93.0%, p < 0.001), Southeast (R2: 92.0%, p < 0.001) and Central-West regions (R2: 64.0%, p < 0.001), whereas the North (R2: 39.0%, p = 0.030) presented an increase, and the South (R2: 22.0%, p = 0.340) remained stable. Spatial analysis identified the presence of clusters of municipalities with high values for unsafe abortion, located mainly in states of the North, Northeast and Southeast Regions. CONCLUSIONS Unsafe abortion remains a public health problem in Brazil, with marked regional differences, mainly concentrated in the socioeconomically disadvantaged regions of the country. Qualification of attention to women’s health, especially to reproductive aspects and attention to pre- and post-abortion processes, are necessary and urgent strategies to be implemented in the country. PMID:25119946
Cancer incidence rates and trends among children and adolescents in Piedmont, 1967-2011.
Isaevska, Elena; Manasievska, Milena; Alessi, Daniela; Mosso, Maria Luisa; Magnani, Corrado; Sacerdote, Carlotta; Pastore, Guido; Fagioli, Franca; Merletti, Franco; Maule, Milena
2017-01-01
In the past, increases in childhood cancer incidence were reported in Europe and North America. The aim of this study is to show updated patterns of temporal behavior using data of the Childhood Cancer Registry of Piedmont (CCRP), a region with approximately 4.5 million inhabitants in North-West Italy. CCRP has been recording incident cases in children (0-14 years) since 1967 and in adolescents (15-19) since 2000. Time trends were estimated as annual percent change (APC) over the 1976-2011 period for children, and over 2000-2011 for both children and adolescents. CCRP registered 5020 incident cases from 1967 to 2011. Incidence rates were 157 per million person-years for children (1967-2011) and 282 for adolescents (2000-2011). From 1976-2011, increasing trends were observed in children for all neoplasms (APC 1.1, 95%CI: 0.8; 1.5) and for both embryonal and non-embryonal tumors: 1.1%, (0.5; 1.6) and 1.2%, (0.7; 1.6), respectively. Increases were observed in several tumor types, including leukemia, lymphoma, central nervous system tumors and neuroblastoma. In 2000-2011, incidence rates showed mostly non statistically significant variations and large variability. The observation of trends over a long period shows that the incidence of most tumors has increased, and this is only partially explained by diagnostic changes. Large rate variability hampers interpretation of trend patterns in short periods. Given that no satisfying explanation for the increases observed in the past was ever found, efforts must be made to understand and interpret this peculiar and still ununderstood pattern of childhood cancer incidence.
Estimating linear temporal trends from aggregated environmental monitoring data
Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.
2017-01-01
Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.
Population trends of native Hawaiian forest birds, 1976–2008: the data and statistical analyses
Camp, Richard J.; Gorresen, P. Marcos; Pratt, Thane K.; Woodworth, Bethany L.
2009-01-01
The Hawaii Forest Bird Interagency Database Project has produced a centralized database of forest bird survey data collected in Hawai`i since the mid-1970s. The database contains over 1.1 million bird observation records of 90 species from almost 600 surveys on the main Hawaiian Islands—a dataset including nearly all surveys from that period. The primary objective has been to determine the status and trends of native Hawaiian forest birds derived from this comprehensive dataset. We generated species-specific density estimates from each survey and tested for changes in population densities over the longest possible temporal period. Although this cumulative data set seems enormous and represents the best available information on status of Hawaiian forest birds, detecting meaningful population distribution, density, and trends for forest birds in Hawai`i has been difficult. These population parameters are best derived from long-term, large-scale, standardized monitoring programs. The basis for long-term population monitoring in Hawai`i was established by the Hawaii Forest Bird Survey of 1976-1983 (Scott et al. 1986). Since then, however, only key areas have been resurveyed, primarily to monitor rare species. The majority of surveys since the early 1980s have been conducted by numerous, independent programs, resulting in some inconsistencies in methodology and sampling that in some cases has been intermittent and usually at limited scale (temporally or spatially). Thus, despite the consolidation of data into a centralized database, our understanding of population patterns is rather limited, especially at the regional and landscape scales. To rectify their deficiency, we present a framework to improve the understanding of forest bird trends in Hawai`i through an overarching monitoring design that allocates sampling at appropriate regional and temporal scales. Despite the limitations of the current monitoring effort, important generalities stand out vividly from the multiplicity of species-specific trends. Overall, in marginal habitats the Hawaiian passerine fauna continues to decline, with populations of most species shrinking in size and distribution. Since the early 1980s, 10 species that were rare at the time may now be extinct, although one, the `Alalā (Corvus hawaiiensis), survives in captivity. Dedicated search effort for the remaining nine species has been inadequate. Of the 22 species remaining, eight have declined, five appear to be stable, two are increasing, and the trend for seven species is unclear. On the bright side, native passerines, including endangered species, appear to be stable or increasing in areas with large tracts of native forest above 1,500 m elevation, even while decreasing in more fragmented or disturbed habitats, particularly at lower elevation. For example, all eight native species resident at Hakalau Forest National Wildlife Refuge have shown stable trends or significant increases in density over the long-term. Thus, native birds are ever more restricted to high-elevation forest and woodland refugia. It is these upland habitats that require sustained and all-out restoration to prevent further extinctions of Hawaiian forest birds.
NASA Astrophysics Data System (ADS)
Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez Hidalgo, Jose Carlos; Brunetti, Michele
2017-04-01
In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of winter and its corresponding months (December, January, February) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal trend analyses of Tmax shows that global trend 1951-2010 was positive and significant mostly in central-western areas; from 1970 to 2010 there is less than 20% of land with significant trend. In the case of Tmin no relevant significant period is detected. • Monthly Tmax analyses show that December significant trend changed from positive (>20%) in between 1955-2010 until 1962-2010, to negative from 1976-2010. Meanwhile January does not show relevant period with significant trend; finally Tmax in February shows different periods with positive significant trend (>20% of land) 1951-2010 to 1954-2010 and 1962-2010 to 1968-2010. No significant trend is detected after this data. • Monthly Tmin trend analyses show that except exceptional period, no months present any significant trend. As conclusions, we have detected that for winter and winter-months, Tmax trends are not significant from 1970 across Spanish mainland. In the case of Tmin we conclude that no significant trend have been occurred in any temporal windows analyzed. Results differ from what traditionally has been assumed that the increase of the average annual temperature was due to the increase of trends in the winter season. And these analyses also show that seasonal trend values could hide monthly behavior. So extreme caution should be taken into account when seasonal values are offered.
NASA Astrophysics Data System (ADS)
Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine
2015-04-01
Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a.s.l.). Higher order autoregressive processes are important in the isotope time series analysis. Our results show that the widely used trend analysis with only the first order autocorrelation adjustment may not adequately take account of the high order autocorrelated processes in the stable isotope series. The investigated time series analysis method including higher autocorrelation and external climate variable adjustments is shown to be a better alternative.
Spatial and Temporal Trends in Global Emissions of Nitrogen Oxides from 1960 to 2014.
Huang, Tianbo; Zhu, Xi; Zhong, Qirui; Yun, Xiao; Meng, Wenjun; Li, Bengang; Ma, Jianmin; Zeng, Eddy Y; Tao, Shu
2017-07-18
The quantification of nitrogen oxide (NO x ) emissions is critical for air quality modeling. Based on updated fuel consumption and emission factor databases, a global emission inventory was compiled with high spatial (0.1° × 0.1°), temporal (monthly), and source (87 sources) resolutions for the period 1960 to 2014. The monthly emission data have been uploaded online ( http://inventory.pku.edu.cn ), along with a number of other air pollutant and greenhouse gas data for free download. Differences in source profiles, not global total quantities, between our results and those reported previously were found. There were significant differences in total and per capita emissions and emission intensities among countries, especially between the developing and developed countries. Globally, the total annual NO x emissions finally stopped increasing in 2013 after continuously increasing over several decades, largely due to strict control measures taken in China in recent years. Nevertheless, the peak year of NO x emissions was later than for many other major air pollutants. Per capita emissions, either among countries or over years, follow typical inverted U-shaped environmental Kuznets curves, indicating that the emissions increased during the early stage of development and were restrained when socioeconomic development reached certain points. Although the trends are similar among countries, the turning points of developing countries appeared sooner than those of developed countries in terms of development status, confirming late-move advantages.
Wang, Zhi-wei; Wu, Xiao-dong; Yue, Guang-yang; Zhao, Lin; Wang, Qian; Nan, Zhuo-tong; Qin, Yu; Wu, Tong-hua; Shi, Jian-zong; Zou, De-fu
2016-02-01
Recently considerable researches have focused on monitoring vegetation changes because of its important role in regula- ting the terrestrial carbon cycle and the climate system. There were the largest areas with high-altitudes in the Qinghai-Tibet Plateau (QTP), which is often referred to as the third pole of the world. And vegetation in this region is significantly sensitive to the global warming. Meanwhile NDVI dataset was one of the most useful tools to monitor the vegetation activity with high spatial and temporal resolution, which is a normalized transform of the near-infrared radiation (NIR) to red reflectance ratio. Therefore, an extended GIMMS NDVI dataset from 1982-2006 to 1982-2014 was presented using a unary linear regression by MODIS dataset from 2000 to 2014 in QTP. Compared with previous researches, the accuracy of the extended NDVI dataset was improved again with consideration the residuals derived from scale transformation. So the model of extend NDVI dataset could be a new method to integrate different NDVI products. With the extended NDVI dataset, we found that in growing season there was a statistically significant increase (0.000 4 yr⁻¹, r² = 0.585 9, p < 0.001) in QTP from 1982 to 2014. During the study pe- riod, the trends of NDVI were significantly increased in spring (0.000 5 yr⁻¹, r² = 0.295 4, p = 0.001), summer (0.000 3 yr⁻¹, r² = 0.105 3, p = 0.065) and autumn respectively (0.000 6 yr⁻¹, r² = 0.436 7, p < 0.001). Due to the increased vegeta- tion activity in Qinghai-Tibet Plateau from 1982 to 2014, the magnitude of carbon sink was accumulated in this region also at this same period. Then the data of temperature and precipitation was used to explore the reason of vegetation changed. Although the trends of them are both increased, the correlation between NDVI and temperature is higher than precipitation in vegetation grow- ing season, spring, summer and autumn. Furthermore, there is significant spatial heterogeneity of the changing trends for ND- VI, temperature and precipitation at Qinghai-Tibet Plateau scale.
The intra-day dynamics of affect, self-esteem, tiredness, and suicidality in Major Depression.
Crowe, Eimear; Daly, Michael; Delaney, Liam; Carroll, Susan; Malone, Kevin M
2018-02-21
Despite growing interest in the temporal dynamics of Major Depressive Disorder (MDD), we know little about the intra-day fluctuations of key symptom constructs. In a study of momentary experience, the Experience Sampling Method captured the within-day dynamics of negative affect, positive affect, self-esteem, passive suicidality, and tiredness across clinical MDD (N= 31) and healthy control groups (N= 33). Ten symptom measures were taken per day over 6 days (N= 2231 observations). Daily dynamics were modeled via intra-day time-trends, variability, and instability in symptoms. MDD participants showed significantly increased variability and instability in negative affect, positive affect, self-esteem, and suicidality. Significantly different time-trends were found in positive affect (increased diurnal variation and an inverted U-shaped pattern in MDD, compared to a positive linear trend in controls) and tiredness (decreased diurnal variation in MDD). In the MDD group only, passive suicidality displayed a negative linear trend and self-esteem displayed a quadratic inverted U trend. MDD and control participants thus showed distinct dynamic profiles in all symptoms measured. As well as the overall severity of symptoms, intra-day dynamics appear to define the experience of MDD symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Y.; Gan, T. Y.; Tan, X.
2017-12-01
In the past few decades, there have been more extreme climate events around the world, and Canada has also suffered from numerous extreme precipitation events. In this paper, trend analysis, change point analysis, probability distribution function, principal component analysis and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation in Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data from 164 gauging stations. Several large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Pacific-North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective Available Potential Energy (CAPE), specific humidity, and surface temperature were employed to investigate the potential causes of the trends.The results show statistically significant positive trends for most indices, which indicate increasing extreme precipitation. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominate in the central Canadian Prairies (CP). In addition, strong connections are found between the extreme precipitation and climate indices and the effects of climate pattern differ for each region. The seasonal CAPE, specific humidity, and temperature are found to be closely related to Canadian extreme precipitation.
A use case study on late stent thrombosis for ontology-based temporal reasoning and analysis.
Clark, Kim; Sharma, Deepak; Qin, Rui; Chute, Christopher G; Tao, Cui
2014-01-01
In this paper, we show how we have applied the Clinical Narrative Temporal Relation Ontology (CNTRO) and its associated temporal reasoning system (the CNTRO Timeline Library) to trend temporal information within medical device adverse event report narratives. 238 narratives documenting occurrences of late stent thrombosis adverse events from the Food and Drug Administration's (FDA) Manufacturing and User Facility Device Experience (MAUDE) database were annotated and evaluated using the CNTRO Timeline Library to identify, order, and calculate the duration of temporal events. The CNTRO Timeline Library had a 95% accuracy in correctly ordering events within the 238 narratives. 41 narratives included an event in which the duration was documented, and the CNTRO Timeline Library had an 80% accuracy in correctly determining these durations. 77 narratives included documentation of a duration between events, and the CNTRO Timeline Library had a 76% accuracy in determining these durations. This paper also includes an example of how this temporal output from the CNTRO ontology can be used to verify recommendations for length of drug administration, and proposes that these same tools could be applied to other medical device adverse event narratives in order to identify currently unknown temporal trends.
Changes in daily and monthly rainfall in the Middle Yellow River, China
NASA Astrophysics Data System (ADS)
He, Yi; Tian, Peng; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Wang, Fei; Li, Pengfei
2017-07-01
Highly concentrated precipitation, where a large percentage of annual precipitation occurs over a few days, may include a high risk of flooding and severe soil erosion. Thus, areas with severe erosion such as the Loess Plateau in China are particularly vulnerable to highly concentrated precipitation events due to climate change. In this study, we investigated spatial and temporal patterns in the concentration of rainfall in the Middle Yellow River (MYR) from the last 56 years (1958-2013). We used daily and monthly precipitation data from 26 meteorological stations in the study area to calculate the precipitation concentration index (PCI) and the concentration index (CI). The southern and northern parts of the MYR were characterized by a lower CI with a decreasing trend, while the middle parts had a higher CI with an increasing trend. High PCI values occurred in the southern MYR, while lower PCIs with a more homogenous rainfall distribution were found mainly in the northern parts of the MYR. The annual PCI and CI exhibited positive trends at most stations, although only a minority of stations had significant trends ( P < 0.05). At seasonal scales, CI exhibited significantly increasing trends in winter at most stations, while a few stations had significant trends in the other three seasons. These findings provide important reference information to facilitate ecological restoration and farming operations in the study region.
Increasing Incidence of Herpes Zoster Over a 60-year Period From a Population-based Study
Kawai, Kosuke; Yawn, Barbara P.; Wollan, Peter; Harpaz, Rafael
2016-01-01
Background. Temporal increases in the incidence of herpes zoster (HZ) have been reported but studies have examined short study periods, and the cause of the increase remains unknown. We examined the long-term trend of HZ. Methods. A population-based cohort study was conducted in Olmsted County, Minnesota, using data from 1945–1960 and 1980–2007. Medical records review of possible cases was performed to confirm incident cases of HZ, the patient's immune status, and prescribing of antivirals for HZ. We examined the relative change in the temporal trend in the incidence rates before and after the introduction of the varicella vaccination program. Results. Of the 8017 patients with HZ, 58.7% were females and 6.6% were immunocompromised. The age- and sex-adjusted incidence rate of HZ increased from 0.76 per 1000 person-years (PY) (95% confidence interval [CI], .63–.89) in 1945–1949 to 3.15 per 1000 PY (95% CI, 3.04–3.26) in 2000–2007. The rate of increase across the time period was 2.5% per year after adjusting for age and sex (adjusted incidence rate ratio, 1.025 [95% CI, 1.023–1.026]; P < .001). The incidence of HZ significantly increased among all age groups and both sexes. We found no change in the rate of increase before vs after the introduction of the varicella vaccination program. Conclusions. The incidence of HZ has increased >4-fold over the last 6 decades. This increase is unlikely to be due to the introduction of varicella vaccination, antiviral therapy, or change in the prevalence of immunocompromised individuals. PMID:27161774
Huntington, Thomas G.; Billmire, M.
2014-01-01
Climate warming is projected to result in increases in total annual precipitation in northeastern North America. The response of runoff to increases in precipitation is likely to be more complex because increasing evapotranspiration (ET) could counteract increasing precipitation. This study was conducted to examine these competing trends in the historical record for 22 rivers having >70 yr of runoff data. Annual (water year) average precipitation increased in all basins, with increases ranging from 0.9 to 3.12 mm yr−1. Runoff increased in all basins with increases ranging from 0.67 to 2.58 mm yr−1. The ET was calculated by using a water balance approach in which changes in terrestrial water storage were considered negligible. ET increased in 16 basins and decreased in 6 basins. Temporal trends in temperature, precipitation, runoff, and ET were also calculated for each basin over their respective periods of record for runoff and for the consistent period (1927–2011) for the area-weighted average of the nine largest non-nested basins. From 1927 through 2011, precipitation and runoff increased at average rates of 1.6 and 1.7 mm yr−1, respectively, and ET increased slightly at a rate of 0.18 mm yr−1. For the more recent period (1970–2011), there was a positive trend in ET of 1.9 mm yr−1. The lack of a more consistent increase in ET, compared with the increases in precipitation and runoff, for the full periods of record, was unexpected, but may be explained by various factors including decreasing wind speed, increasing cloudiness, decreasing vapor pressure deficit, and patterns of forest growth.
NASA Astrophysics Data System (ADS)
Lopez, Benjamin; Baran, Nicole; Bourgine, Bernard
2015-03-01
The European Water Framework Directive (WFD) asks Member States to identify trends in contaminant concentrations in groundwater and to take measures to reach a good chemical status by 2015. In this study, carried out in a large hydrological basin (95,300 km2), an innovative procedure is described for the assessment of recent trends in groundwater nitrate concentrations both at sampling point and regional scales. Temporal variograms of piezometric and nitrate concentration time series are automatically calculated and fitted in order to classify groundwater according to their temporal pattern. These results are then coupled with aquifer lithology to map spatial units within which the modes of diffuse transport of contaminants towards groundwater are assumed to be the same at all points. These spatial units are suitable for evaluating regional trends. The stability over time of the time series is tested based on the cumulative sum principle, to determine the time period during which the trend should be sought. The Mann-Kendall and Regional-Kendall nonparametric tests for monotonic trends, coupled with the Sen-slope test, are applied to the periods following the point breaks thus determined at both the sampling point or regional scales. This novel procedure is robust and enables rapid processing of large databases of raw data. It would therefore be useful for managing groundwater quality in compliance with the aims of the WFD.
Effects of Overshooting Convection on the Tropical Tropopause Layer Temperature Structure and Trends
NASA Astrophysics Data System (ADS)
Ramsay, H.; Sherwood, S. C.; Singh, M.
2017-12-01
A series of idealised cloud-resolving simulations are performed to investigate the impact of spatial/and or temporal inhomogeneity of tropical deep convection (in particular, convective overshoots that penetrate well into the tropical tropopause layer) on upper tropospheric/lower stratospheric (UTLS) temperature structure and trends under surface warming. Two sets of simulations are studied: one in which the sea surface temperature (SST) is increased uniformly, and a second in which convective updrafts are intensified periodically by specifying a diurnally-varying skin temperature. All simulations are run to radiative-convective equilibrium so as to capture the mean-state response at time scales of weeks to months. We discuss the implications of our results for the interpretation of observed and modelled trends in the UTLS, as well as the diurnal cycle of tropical deep convection.
Flourishing ocean drives the end-Permian marine mass extinction
Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph
2015-01-01
The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian−Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth’s history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness. PMID:26240323
Flourishing ocean drives the end-Permian marine mass extinction.
Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph
2015-08-18
The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian-Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth's history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness.
Tong, Liyue; Ahn, Chul; Symanski, Elaine; Lai, Dejian; Du, Xianglin L
2014-06-01
To assess the distribution of proportion of deaths from causes other than colorectal cancer (CRC) over time and temporal trends of cause-specific cumulative incidence of death due to six leading causes in patients with CRC. Overall, 375,462 patients with CRC in nine Surveillance, Epidemiology, and End Results registries from 1975 to 2009 were included. Competing risks proportional hazards regression was used to examine the effect of diagnostic periods on the risk of cause-specific death. From 1975 to 2009 by 5-year interval, the proportion of deaths from causes other than CRC increased significantly with diagnostic periods according to the lengths of follow-up (P < .0001). The 5-year risk of death significantly decreased with diagnostic periods for all-cause, CRC, and circulation diseases among all age groups (<65, 65-74, and ≥75 years) but increased for chronic obstructive pulmonary disease, diabetes, and Alzheimer disease among patients aged 65 years or older. Deaths due to causes other than CRC increased significantly over time regardless of tumor stage and site but more sharply in those with early-stage and distal colon cancer. The increasing leading causes of death are chronic obstructive pulmonary disease, diabetes, and Alzheimer disease, which may be prevented or delayed substantially by modification or intervention in lifestyle or other factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Dynamic compositional modeling of pedestrian crash counts on urban roads in Connecticut.
Serhiyenko, Volodymyr; Ivan, John N; Ravishanker, Nalini; Islam, Md Saidul
2014-03-01
Uncovering the temporal trend in crash counts provides a good understanding of the context for pedestrian safety. With a rareness of pedestrian crashes it is impossible to investigate monthly temporal effects with an individual segment/intersection level data, thus the time dependence should be derived from the aggregated level data. Most previous studies have used annual data to investigate the differences in pedestrian crashes between different regions or countries in a given year, and/or to look at time trends of fatal pedestrian injuries annually. Use of annual data unfortunately does not provide sufficient information on patterns in time trends or seasonal effects. This paper describes statistical methods uncovering patterns in monthly pedestrian crashes aggregated on urban roads in Connecticut from January 1995 to December 2009. We investigate the temporal behavior of injury severity levels, including fatal (K), severe injury (A), evident minor injury (B), and non-evident possible injury and property damage only (C and O), as proportions of all pedestrian crashes in each month, taking into consideration effects of time trend, seasonal variations and VMT (vehicle miles traveled). This type of dependent multivariate data is characterized by positive components which sum to one, and occurs in several applications in science and engineering. We describe a dynamic framework with vector autoregressions (VAR) for modeling and predicting compositional time series. Combining these predictions with predictions from a univariate statistical model for total crash counts will then enable us to predict pedestrian crash counts with the different injury severity levels. We compare these predictions with those obtained from fitting separate univariate models to time series of crash counts at each injury severity level. We also show that the dynamic models perform better than the corresponding static models. We implement the Integrated Nested Laplace Approximation (INLA) approach to enable fast Bayesian posterior computation. Taking CO injury severity level as a baseline for the compositional analysis, we conclude that there was a noticeable shift in the proportion of pedestrian crashes from injury severity A to B, while the increase for injury severity K was extremely small over time. This shift to the less severe injury level (from A to B) suggests that the overall safety on urban roads in Connecticut is improving. In January and February, there was some increase in the proportions for levels A and B over the baseline, indicating a seasonal effect. We found evidence that an increase in VMT would result in a decrease of proportions over the baseline for all injury severity levels. Our dynamic model uncovered a decreasing trend in all pedestrian crash counts before April 2005, followed by a noticeable increase and a flattening out until the end of the fitting period. This appears to be largely due to the behavior of injury severity level A pedestrian crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Damadeo, R. P.; Zawodny, J. M.; Thomason, L. W.
2014-01-01
This paper details a new method of regression for sparsely sampled data sets for use with time-series analysis, in particular the Stratospheric Aerosol and Gas Experiment (SAGE) II ozone data set. Non-uniform spatial, temporal, and diurnal sampling present in the data set result in biased values for the long-term trend if not accounted for. This new method is performed close to the native resolution of measurements and is a simultaneous temporal and spatial analysis that accounts for potential diurnal ozone variation. Results show biases, introduced by the way data is prepared for use with traditional methods, can be as high as 10%. Derived long-term changes show declines in ozone similar to other studies but very different trends in the presumed recovery period, with differences up to 2% per decade. The regression model allows for a variable turnaround time and reveals a hemispheric asymmetry in derived trends in the middle to upper stratosphere. Similar methodology is also applied to SAGE II aerosol optical depth data to create a new volcanic proxy that covers the SAGE II mission period. Ultimately this technique may be extensible towards the inclusion of multiple data sets without the need for homogenization.
Exploring spatial-temporal dynamics of fire regime features in mainland Spain
NASA Astrophysics Data System (ADS)
Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan
2017-10-01
This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).
Hiyoshi, Ayako; Fukuda, Yoshiharu; Shipley, Martin J; Brunner, Eric J
2013-11-01
Japan, for the past two decades, has seen economic stagnation and substantial social change. We examined whether health inequalities increased over this period. Using eight triennial waves of a series of large nationally representative surveys between 1986 and 2007 (n=398 303), temporal trends in relative and slope indices of inequality (RII, SII, respectively) were tested based on self-rated health in relation to theory-based social class and household income. Age-standardised prevalence of self-rated fair or poor health showed V-shaped time trends in both sexes with the lowest prevalence in early/mid-1990s. In 1986, RII and SII in household social class and income were significant for both sexes. In men, RII and SII according to income showed significant narrowing of temporal trends in poor health (-1.4% and -0.1% annually, respectively), but these were stable in women. After multilevel multiple imputation for missing income data, the findings in men were not altered but narrowing trends became evident and significant in women (-1% and -0.1% annually, respectively). Inequality indices for social class remained constant over the study period in both sexes. Relative and absolute health inequalities for social class and income based on self-rated fair or poor health narrowed or remained stable between 1986 and 2007, despite the economic stagnation and adverse social changes. Overall population health across socioeconomic groups initially improved but then worsened. The positive finding regarding the health inequality trend seen in the Japanese context is informative for the wider international community during this period of economic uncertainty.
NASA Astrophysics Data System (ADS)
Wong, Fiona; Shoeib, Mahiba; Katsoyiannis, Athanasios; Eckhardt, Sabine; Stohl, Andreas; Bohlin-Nizzetto, Pernilla; Li, Henrik; Fellin, Phil; Su, Yushan; Hung, Hayley
2018-01-01
Long-term Arctic air monitoring of per- and polyfluoroalkyl substances (PFASs) is essential in assessing their long-range transport and for evaluating the effectiveness of chemical control initiatives. We report for the first time temporal trends of neutral and ionic PFASs in air from three arctic stations: Alert (Canada, 2006-2014); Zeppelin (Svalbard, Norway, 2006-2014) and Andøya (Norway, 2010-2014). The most abundant PFASs were the perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorobutanoic acid (PFBA), and fluorotelomer alcohols (FTOHs). All of these chemicals exhibited increasing trends at Alert with doubling times (t2) of 3.7 years (y) for PFOA, 2.9 y for PFOS, 2.5 y for PFBA, 5.0 y for 8:2 FTOH and 7.0 y for 10:2 FTOH. In contrast, declining or non-changing trends, were observed for PFOA and PFOS at Zeppelin (PFOA, half-life, t1/2 = 7.2 y; PFOS t1/2 = 67 y), and Andøya (PFOA t1/2 = 1.9 y; PFOS t1/2 = 11 y). The differences in air concentrations and in time trends between the three sites may reflect the differences in regional regulations and source regions. We investigate the source region for particle associated compounds using the Lagrangian particle dispersion model FLEXPART. Model results showed that PFOA and PFOS are impacted by air masses originating from the ocean or land. For instance, PFOA at Alert and PFOS at Zeppelin were dominated by oceanic air masses whereas, PFOS at Alert and PFOA at Zeppelin were influenced by air masses transported from land.
Loprinzi, Paul D; Davis, Robert E
2016-04-01
The objective of this study was to provide recent temporal trends in parent-reported physical activity in children (6-11 years) between 2009 and 2014. Data from the 2009 to 2014 National Health and Nutrition Examination Survey were used. The analytic sample included 3946 children. Parent proxy of child physical activity at each of the 3 2-year cycles was assessed. For the entire sample, there was a quadratic trend, with the number of days children engaged in at least 60 min/d of physical activity increasing in the period 2011 to 2012 (6.12 days) when compared with the period 2009 to 2010 (5.96 days) and then decreasing in the period 2013 to 2014 (5.83 days). A similar quadratic trend was evident for boys, those above the poverty level, non-Hispanic whites (particularly boys), and those with less than the 85th body mass index-for-age percentile based on sex. A negative linear trend was observed for those above the poverty level and non-Hispanic whites (particularly girls). In conclusion, these findings provide suggestive evidence that over the past 6 years (1999-2014), parents report that children's physical activity has slightly decreased in the latest years, with this observation being most pronounced in boys, those above the poverty level, non-Hispanic whites, and those with less than the 85th body mass index-for-age and sex percentile. Encouragingly, however, across all evaluated subpopulations, most children (55%-82%), as determined by their parents, engaged in 60 min/d of physical activity (consistent with government recommendations). Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Sean P. Healey; Gretchen G. Moisen; Paul L. Patterson
2012-01-01
The Forest Inventory and Analysis (FIA) Program's panel system, in which 10-20 percent of the sample is measured in any given year, is designed to increase the currency of FIA reporting and its sensitivity to factors operating at relatively fine temporal scales. Now that much of the country has completed at least one measurement cycle over all panels, there is an...
Schulz, Marcus; Neumann, Daniel; Fleet, David M; Matthies, Michael
2013-12-01
During the last decades, marine pollution with anthropogenic litter has become a worldwide major environmental concern. Standardized monitoring of litter since 2001 on 78 beaches selected within the framework of the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) has been used to identify temporal trends of marine litter. Based on statistical analyses of this dataset a two-part multi-criteria evaluation system for beach litter pollution of the North-East Atlantic and the North Sea is proposed. Canonical correlation analyses, linear regression analyses, and non-parametric analyses of variance were used to identify different temporal trends. A classification of beaches was derived from cluster analyses and served to define different states of beach quality according to abundances of 17 input variables. The evaluation system is easily applicable and relies on the above-mentioned classification and on significant temporal trends implied by significant rank correlations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mahroum, Naim; Bragazzi, Nicola Luigi; Brigo, Francesco; Waknin, Roy; Sharif, Kassem; Mahagna, Hussein; Amital, Howard; Watad, Abdulla
2018-04-01
Human immunodeficiency virus vaccination and pre-exposure prophylaxis represent two different emerging preventive tools. Google Trends was used to assess the public interest toward these tools in terms of digital activities. Worldwide web searches concerning the human immunodeficiency virus vaccine represented 0.34 percent, 0.03 percent, and 46.97 percent of human immunodeficiency virus, acquired immune deficiency syndrome, and human immunodeficiency virus/acquired immune deficiency syndrome treatment-related Google Trends queries, respectively. Concerning temporal trends, digital activities were shown to increase from 0 percent as of 1 January 2004 percent to 46 percent as of 8 October 2017 with two spikes observed in May and July 2012, coinciding with the US Food and Drug Administration approval. Bursts in search number and volume were recorded as human immunodeficiency virus vaccine trials emerged. This search topic has decreased in the past decade in parallel to the increase in Truvada-related topics. Concentrated searches were noticed among African countries with high human immunodeficiency virus/acquired immune deficiency syndrome prevalence. Stakeholders should take advantage of public interest especially in preventive medicine in high disease burden countries.
NASA Astrophysics Data System (ADS)
Carroll, M.; Loboda, T. V.
2017-12-01
Over the last several decades, warming in the Arctic has outpaced the already impressiveincreases in global mean temperatures. The impact of these increases in temperature has beenobserved in a multitude of ecological changes in North American tundra including changes invegetative cover, depth of active layer, and surface water extent. The low topographic relief andcontinuous permafrost create an ideal environment for the formation of small water bodies—adefinitive feature of tundra surface. In this study, water bodies in Nunavut territory in northernCanada were mapped using a long-term record of remotely sensed observations at 30 m spatialresolution from the Landsat suite of instruments. The temporal trajectories of water extent between1985 and 2015 were assessed. Over 675,000 water bodies have been identified over the 31-yearstudy period with over 168,000 showing a significant (p < 0.05) trend in surface area. Approximately55% of water bodies with a significant trend were increasing in size while the remaining 45% weredecreasing in size. The overall net trend for water bodies with a significant trend is 0.009 ha year 1per water body.
Temporal and spatial characteristics of annual and seasonal rainfall in Malawi
NASA Astrophysics Data System (ADS)
Ngongondo, Cosmo; Xu, Chong-Yu; Gottschalk, Lars; Tallaksen, Lena M.; Alemaw, Berhanu
2010-05-01
An understanding of the temporal and spatial characteristics of rainfall is central to water resources planning and management. However, such information is often limited in many developing countries like Malawi. In an effort to bridge the information gap, this study examined the temporal and spatial charecteristics of rainfall in Malawi. Rainfall readings from 42 stations across Malawi from 1960 to 2006 were analysed at monthly, annual and seasonal scales. The Malawian rainfall season lasts from November to April. The data were firstly subjected to quality checks through the cumulative deviations test and the Standard Normal Homogeinity Test (SNHT). Monthly distribution in a typical year, called heterogeneity, was investigated using the Precipitation Concentration Index (PCI). Further, normalized precipitation anomaly series of annual rainfall series (AR) and the PCI (APCI) were used to test for interannual rainfall variability. Spatial variability was characterised by fitting the Spatial Correlation function (SCF). The nonparametric Mann-Kendall statistic was used to investigate the temporal trends of the various rainfall variables. The results showed that 40 of the stations passed both data quality tests. For the two stations that failed, the data were adjusted using nearby stations. Annual and seasonal rainfall were found to be characterised by high spatial variation. The country mean annual rainfall was 1095 mm with mean interannual variability of 26%. The highland areas to the north and southeast of the country exhibited the highest rainfall and lowest interannual variability. Lowest rainfall coupled with high interannual variability was found in the Lower Shire basin, in the southern part of Malawi. This simillarity is the pattern of annual and seasonal rainfall should be expected because all stations had over 90% of their observed annual rainfall in the six month period between November and April. Monthly rainfall was found to be highly variable both temporally and spatially. None of the stations have stable monthly rainfall regimes (mean PCI of less than 10). Stations with the highest mean rainfall were found to have a lower interannual variability. The rainfall stations showed low spatial correlations for annual, monthly as well as seasonal timescales indicating that the data may not be suitable for spatial interpolation. However, some structure (i.e. lower correlation with distance) could be observed when aggregating the data at 50 mile intervals. The annual and seasonal rainfall series were dominated by negative trends. The spatial distribution of the trends can be described as heterogeneous, although most of the stations in the southern region have negative trends. At the monthly timescale, 37 of the stations show a negative trend with four of the stations, all in the south, showing significant negative trends. On the other hand, only 5 stations show positive trends with only one significant trend in the south. Keywords: Malawi, rainfall trends, spatial variation
NASA Astrophysics Data System (ADS)
Kuo, Yi-Ming; Lin, Hsing-Juh
2010-01-01
We examined environmental factors which are most responsible for the 8-year temporal dynamics of the intertidal seagrass Thalassia hemprichii in southern Taiwan. A dynamic factor analysis (DFA), a dimension-reduction technique, was applied to identify common trends in a multivariate time series and the relationships between this series and interacting environmental variables. The results of dynamic factor models (DFMs) showed that the leaf growth rate of the seagrass was mainly influenced by salinity (Sal), tidal range (TR), turbidity ( K), and a common trend representing an unexplained variability in the observed time series. Sal was the primary variable that explained the temporal dynamics of the leaf growth rate compared to TR and K. K and TR had larger influences on the leaf growth rate in low- than in high-elevation beds. In addition to K, TR, and Sal, UV-B radiation (UV-B), sediment depth (SD), and a common trend accounted for long-term temporal variations of the above-ground biomass. Thus, K, TR, Sal, UV-B, and SD are the predominant environmental variables that described temporal growth variations of the intertidal seagrass T. hemprichii in southern Taiwan. In addition to environmental variables, human activities may be contributing to negative impacts on the seagrass beds; this human interference may have been responsible for the unexplained common trend in the DFMs. Due to successfully applying the DFA to analyze complicated ecological and environmental data in this study, important environmental variables and impacts of human activities along the coast should be taken into account when managing a coastal environment for the conservation of intertidal seagrass beds.
Lam, James C W; Lau, Ridge K F; Murphy, Margaret B; Lam, Paul K S
2009-09-15
Concentrations of hexabromocyclododecanes (HBCDs), polybrominated diphenyl ethers (PBDEs), and three novel flame retardants, namely2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB), bis-(2-ethylhexyl)-tetrabromophthalate (TBPH), and hexachlorocyclopentadienyldibromocyclooctane (HCDBCO), were determined in blubber samples of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides). The levels of HBCDs and PBDEs in cetacean samples ranged from 4.1 to 519 and 103 to 51,100 ng/g lw, respectively. A significant increasing trend of SigmaHBCDs was observed in dolphin samples from 1997 to 2007 with an estimated annual rate of 5%, whereas no significant temporal trends of SigmaPBDEs appeared over the sampling period. This pattern may be attributed to the increasing usage of HBCDs following the restriction/voluntary withdrawal of the production and use of PBDE commercial mixtures in several countries. HCDBCO was not found in the blubber samples. This is the first report of the presence of TBB and TBPH, two new flame retardants that have previously been identified in house dust from the U.S., in marine mammals; concentrations of these compounds in dolphins and porpoises ranged from the instrumental detection limit (IDL) (<0.04) to 70 and IDL (<0.04) to 3859 ng/g lw, respectively. Levels of TBPH were comparable to SigmaHBCDs in porpoise samples. The presence of these novel flame retardants in top-trophic-level marine organisms raises concern about their release into the environment and indicates the need for further monitoring of these compounds in other environmental matrices.
Paulson, A.J.; Norton, D.
2008-01-01
Concentrations of mercury (Hg) were measured in six dated cores from four lakes in western Whatcom County, Washington, USA, that were at various bearings from a chlor-alkali plant, two municipal waste incinerators and a municipal sewage sludge incinerator. The importance of atmospheric emissions of Hg from these local municipal and industrial sources was evaluating by comparing the temporal trends in sedimentation of the lake cores with the emission history of each Hg species and by examining the geographical distribution of Hg sedimentation in relation to the region's primary wind pattern. Local municipal and industrial sources of atmospheric Hg were not responsible for the majority of the Hg in the upper layer of sediments of Whatcom County lakes because of (1) the significant enrichment of Hg in lake sediments prior to emissions of local industrial and municipal sources in 1964, (2) smaller increases in Hg concentrations occurred after 1964, (3) the similarity of maximum enrichments found in Whatcom County lakes to those in rural lakes around the world, (4) the inconsistency of the temporal trends in Hg sedimentation with the local emission history, and (5) the inconsistency of the geographic trends in Hg sedimentation with estimated deposition. Maximum enrichment ratios of Hg in lake sediments between 2 and 3 that are similar to rural areas in Alaska, Minnesota, and New England suggest that global sources of Hg were primarily responsible for increases of Hg in Whatcom County lakes beginning about 1900. ?? 2007 GovernmentEmployee: U.S. Government, Department of Interior, U.S. Geological Survey.
Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique
2013-01-01
Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring. PMID:23836788
Improving the community-temperature index as a climate change indicator.
Bowler, Diana; Böhning-Gaese, Katrin
2017-01-01
Climate change indicators are tools to assess, visualize and communicate the impacts of climate change on species and communities. Indicators that can be applied to different taxa are particularly useful because they allow comparative analysis to identify which kinds of species are being more affected. A general prediction, supported by empirical data, is that the abundance of warm-adapted species should increase over time, relative to the cool-adapted ones within communities, under increasing ambient temperatures. The community temperature index (CTI) is a community weighted mean of species' temperature preferences and has been used as an indicator to summarize this temporal shift. The CTI has the advantages of being a simple and generalizable indicator; however, a core problem is that temporal trends in the CTI may not only reflect changes in temperature. This is because species' temperature preferences often covary with other species attributes, and these other attributes may affect species response to other environmental drivers. Here, we propose a novel model-based approach that separates the effects of temperature preference from the effects of other species attributes on species' abundances and subsequently on the CTI. Using long-term population data of breeding birds in Denmark and demersal marine fish in the southeastern North Sea, we find differences in CTI trends with the original approach and our model-based approach, which may affect interpretation of climate change impacts. We suggest that our method can be used to test the robustness of CTI trends to the possible effects of other drivers of change, apart from climate change.
NASA Astrophysics Data System (ADS)
Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen
2015-06-01
Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.
NASA Astrophysics Data System (ADS)
Mandapaka, Pradeep; Kamarajugedda, Shankar A.; Lo, Edmond Y. M.
2017-04-01
Southeast Asia (SEA) is undergoing rapid urbanization, with urban population percentage increasing from 32% in 1990 to 48% in 2015. It is projected that by the year 2040, urban regions in SEA account for 60% of its total population. The region is home to 600 million people, with many densely populated cities, including megacities such as Jakarta, Bangkok, and Manila. The region has more than 20,000 islands, and many cities lie on coastal low-lands and floodplains. These geographical characteristics together with the increasing population, infrastructure growth, and changing climate makes the region highly vulnerable to natural hazards. This study assessed urban growth dynamics in major (defined as population exceeding 1 million) SEA cities using remotely sensed night-time lights (NTL) data. A recently proposed brightness gradient approach was applied on 21 years (1992-2012) of NTL annual composites to derive core-urban (CU) and peri-urban (PU) regions within each city. The study also assessed the sensitivity of above extracted urban categories to different NTL thresholds. The temporal trends in CU and PU regions were quantified, and compared with trends in socio-economic indicators. The spatial expansion of CU and PU regions were found to depend on geographical constraints and socio-economic factors. Quantification of urban growth spatial-temporal patterns, as conducted here contributes towards the understanding of exposure and vulnerability of people and infrastructures to natural hazards, as well as the evolving trends for assessment under projected urbanization conditions. This will underpin better risk assessment efforts for present and future planning.
Laidre, Kristin L; Stern, Harry; Kovacs, Kit M; Lowry, Lloyd; Moore, Sue E; Regehr, Eric V; Ferguson, Steven H; Wiig, Øystein; Boveng, Peter; Angliss, Robyn P; Born, Erik W; Litovka, Dennis; Quakenbush, Lori; Lydersen, Christian; Vongraven, Dag; Ugarte, Fernando
2015-06-01
Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979-2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5-10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Eleftheriou, Dimitrios; Kiachidis, Kyriakos; Kalmintzis, Georgios; Kalea, Argiro; Bantasis, Christos; Koumadoraki, Paraskevi; Spathara, Maria Eleni; Tsolaki, Angeliki; Tzampazidou, Maria Irini; Gemitzi, Alexandra
2018-03-01
Climate change is one of the most challenging research topics during the last few decades, as temperature rise has already posed a significant impact on the earth's functions thus affecting all life of the planet. Land Surface Temperature (LST) is identified as a key variable in environmental and climate studies. The present study investigates the distribution of daytime and nighttime LST trends over Greece, a country in the Mediterranean area which is identified as one of the main "hot-spots" of climate change projections. Remotely sensed LST data were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) sensor in the form of 8-day composites of day and night values at a resolution of 1km for a 17-year period, i.e. from 2000 to 2017. Spatial aggregates of 10km×10km were computed and the annual and seasonal temporal trends were determined for each one of those sub-areas. Results showed that annual trends of daily LST in the majority of areas demonstrated decrease ranging from -1∗10 -2 °C to -1.3∗10 -3 °C, with some sporadic parts showing a slight increase. A totally different outcome is observed in the fate of night LST, with all areas over Greece demonstrating increasing annual trends ranging from 4.6∗10 -5 °C to 3.1∗10 -3 °C, with highest values in the South-East parts of the country. Seasonal trends in day and night LST showed the same pattern, i.e., a general decrease in the day LST and a definite increase in night. An interesting finding is the increase in winter LST trends observed both for day and night LST, indicating that the absolute minimum annual LST observed during winter in Greece increases. Our results also indicate that the annual diurnal LST range is decreasing. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Y.; Lin, J.; Huang, B.; Song, C.
2015-12-01
Western China has experienced rapid urbanization and industrialization since the implementation of National Western Development Strategy by Chinese Government. Most resource-intensive industries and high-pollution factories had been moved from the east coast to Western China after 2000. In this research, the spatial and temporal variations of tropospheric NO2 concentration in 2005 - 2013 is analyzed based on the satellite observations by Ozone Measurement Instrument (OMI). The annual trends and seasonality of tropospheric NO2 over Western China are calculated. The results show that large increases are observed in urban areas and the polluted regions are expanding. Additionally, the seasonal patterns of some regions over Western China are changing significantly and more clean areas tend to changing from the characteristics of natural emissions to those of anthropogenic emissions. The spatial and temporal variations of NO2 concentrations are well responded to the rapid urbanization and industrialization over Western China.
Quantitative patterns of stylistic influence in the evolution of literature.
Hughes, James M; Foti, Nicholas J; Krakauer, David C; Rockmore, Daniel N
2012-05-15
Literature is a form of expression whose temporal structure, both in content and style, provides a historical record of the evolution of culture. In this work we take on a quantitative analysis of literary style and conduct the first large-scale temporal stylometric study of literature by using the vast holdings in the Project Gutenberg Digital Library corpus. We find temporal stylistic localization among authors through the analysis of the similarity structure in feature vectors derived from content-free word usage, nonhomogeneous decay rates of stylistic influence, and an accelerating rate of decay of influence among modern authors. Within a given time period we also find evidence for stylistic coherence with a given literary topic, such that writers in different fields adopt different literary styles. This study gives quantitative support to the notion of a literary "style of a time" with a strong trend toward increasingly contemporaneous stylistic influence.
Analysis of Simulated Temporal Illumination at the Lunar PSRs
NASA Astrophysics Data System (ADS)
Thompson, T. J.; Mahanti, P.
2018-04-01
Illumination on the Moon is modeled temporally for permanently shadowed regions to lighting trends. Crater topography is used to generate viewfactor maps, which show which areas contribute most to scattered light into the primary shadows.
Georges, Jean-Louis; Karam, Nicole; Tafflet, Muriel; Livarek, Bernard; Bataille, Sophie; Loyeau, Aurélie; Mapouata, Mireille; Benamer, Hakim; Caussin, Christophe; Garot, Philippe; Varenne, Olivier; Barbou, Franck; Teiger, Emmanuel; Funck, François; Karrillon, Gaëtan; Lambert, Yves; Spaulding, Christian; Jouven, Xavier
2017-08-01
The frequency of complex percutaneous coronary interventions (PCIs) has increased in the last few years, with a growing concern on the radiation dose received by the patients. Multicenter data from large unselected populations on patients' radiation doses during coronary angiography (CA) and PCI and temporal trends are lacking. This study sought to evaluate the temporal trends in patients' exposure to radiation from CA and PCI. Data were taken from the CARDIO-ARSIF registry that prospectively collects data on all CAs and PCIs performed in the 36 catheterization laboratories in the Greater Paris Area, the most populated regions in France with about 12 million inhabitants. Kerma area product and Fluoroscopy time from 152 684 consecutive CAs and 103 177 PCIs performed between 2009 and 2013 were analyzed. A continuous trend for a decrease in median [interquartile range] Kerma area product was observed, from 33 [19-55] Gy cm 2 in 2009 to 27 [16-44] Gy cm 2 in 2013 for CA ( P <0.0001), and from 73 [41-125] to 55 [31-91] Gy cm 2 for PCI ( P <0.0001). Time-course differences in Kerma area product remained highly significant after adjustment on Fluoroscopy time, PCI procedure complexity, change of x-ray equipment, and other patient- and procedure-related covariates. In a large patient population, a steady temporal decrease in patient radiation exposure during CA and PCI was noted between 2009 and 2013. Kerma area product reduction was consistent in all types of procedure and was independent of patient-related factors and PCI procedure complexity. © 2017 American Heart Association, Inc.
Estimates of spatial and temporal variation of energy crops biomass yields in the US
NASA Astrophysics Data System (ADS)
Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.
2013-12-01
Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus) have been identified for potential use as biomass feedstocks in the US. Current research on perennial grass biomass production has been evaluated on small-scale plots. However, the extent to which this potential can be realized at a landscape-scale will depend on the biophysical potential to grow these grasses with minimum possible amount of land that needs to be diverted from food to fuel production. To assess this potential three questions about the biomass yield for these grasses need to be answered: (1) how the yields for different grasses are varied spatially and temporally across the US; (2) whether the yields are temporally stable or not; and (3) how the spatial and temporal trends in yields of these perennial grasses are controlled by limiting factors, including soil type, water availability, climate, and crop varieties. To answer these questions, the growth processes of the perennial grasses are implemented into a coupled biophysical, physiological and biogeochemical model (ISAM). The model has been applied to quantitatively investigate the spatial and temporal trends in biomass yields for over the period 1980 -2010 in the US. The bioenergy grasses considered in this study include Miscanthus, Cave-in-Rock switchgrass and Alamo switchgrass. The effects of climate, soil and topography on the spatial and temporal trends of biomass yields are quantitatively analyzed using principal component analysis and GIS based geographically weighted regression. The spatial temporal trend results are evaluated further to classify each part of the US into four homogeneous potential yield zones: high and stable yield zone (HS), high but unstable yield zone (HU), low and stable yield zone (LS) and low but unstable yield zone (LU). Our preliminary results indicate that the yields for perennial grasses among different zones are strongly related to the different controlling factors. For example, the yield in HS zone is depended on soil and topography factors. However, the yields in HU zone are more controlled by climate factors, leading to a large uncertainty in yield potential of bioenergy grasses under future climate change.
Fragmented patterns of flood change across the United States
Hirsch, R. M.; Viglione, A.; Blöschl, G.
2016-01-01
Abstract Trends in the peak magnitude, frequency, duration, and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. The multidimensional behavior of flood change across the United States can be described by four distinct groups, with streamgages experiencing (1) minimal change, (2) increasing frequency, (3) decreasing frequency, or (4) increases in all flood properties. Yet group membership shows only weak geographic cohesion. Lack of geographic cohesion is further demonstrated by weak correlations between the temporal patterns of flood change and large‐scale climate indices. These findings reveal a complex, fragmented pattern of flood change that, therefore, clouds the ability to make meaningful generalizations about flood change across the United States. PMID:27917010
Fragmented patterns of flood change across the United States
Archfield, Stacey A.; Hirsch, Robert M.; Viglione, A.; Blöschl, G.
2016-01-01
Trends in the peak magnitude, frequency, duration, and volume of frequent floods (floods occurring at an average of two events per year relative to a base period) across the United States show large changes; however, few trends are found to be statistically significant. The multidimensional behavior of flood change across the United States can be described by four distinct groups, with streamgages experiencing (1) minimal change, (2) increasing frequency, (3) decreasing frequency, or (4) increases in all flood properties. Yet group membership shows only weak geographic cohesion. Lack of geographic cohesion is further demonstrated by weak correlations between the temporal patterns of flood change and large-scale climate indices. These findings reveal a complex, fragmented pattern of flood change that, therefore, clouds the ability to make meaningful generalizations about flood change across the United States.
Besada, V; Fumega, J; Vaamonde, A
2002-04-15
Temporal trends for heavy metals (Cd, Cu, Hg, Pb and Zn) in mussel (Mytilus galloprovincialis) from the Galician and Cantabrian areas in Spain, where samples were yearly collected from 1991 to 1999, are presented. This study was carried out by the Centro Oceanográfico de Vigo of the Instituto Español de Oceanografia (I.E.O.) as part of the Spanish contribution to the Joint Assessment and Monitoring Programme (JAMP) of the OSPAR Convention. The experimental work and subsequent statistical treatment, following OSPAR procedures and guidelines, are described. In order to carry out the statistical treatment of the data, median values of the different shell length classes were used for each contaminant, year and area. The Kendall T-b correlation coefficient was used with the purpose of demonstrating the existence of a downward significant temporal trend in the pollution levels, according to the advice of ICES Working Group on Statistical Aspects of Environmental Monitoring. A decrease of copper levels was detected in Vigo, Pontevedra and Arosa, of mercury in Pontevedra and A Coruña, of lead in Vigo, Pontevedra, A Coruña and Bilbao and of zinc in Pontevedra and A Coruña. However, a cadmium positive trend was registered at Ria de Vigo. No significant trends were detected in the other cases.
Buehler, Stephanie S; Basu, Ilora; Hites, Ronald A
2002-12-01
The Integrated Atmospheric Deposition Network (IADN) has been measuring gas-phase, polychlorinated biphenyl (PCB) concentrations at sites near Lakes Michigan and Superior for over a decade. Data through 2000 were used in this study to investigate PCB temporal trends in the Great Lakes atmosphere. Decreasing trends were found at both sites, and half-lives of approximately 20 yr were calculated using IADN data. However, when these data were supplemented by historical data for Lakes Michigan and Superior dating back to 1977, half-lives dropped to 10 and 6 yr, respectively. These latter half-lives agreed well with half-lives in other environmental compartments. Exponential curves fitted to the historical and IADN data indicated little decline in PCB concentrations in the basin since the mid-1990s. A similar historical analysis of alpha-and gamma-hexachlorocyclohexane (HCH) data indicated that IADN data were the best predictor of trends, resulting in half-lives of around 4 yr for both compounds. Gamma-HCH concentrations, however, have shown little decline in recent years, most likely because of its continuing use. PCB and alpha-HCH temporal trends indicated that bans on these substances have helped to remove them from the atmosphere. This work also showed that decades of data may be necessary to properly interpret long-term temporal trends in gas-phase organochlorine concentrations.
NASA Astrophysics Data System (ADS)
Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya; Tang, Qiuhong; Vernon, Chris; Leng, Guoyong; Liu, Yaling; Döll, Petra; Eisner, Stephanie; Gerten, Dieter; Hanasaki, Naota; Wada, Yoshihide
2018-04-01
Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.
Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests.
Hůnová, Iva; Maznová, Jana; Kurfürst, Pavel
2014-01-01
We present the temporal trends and spatial changes of deposition of sulphur and nitrogen in Czech forests based on records from long-term monitoring. A statistically significant trend for sulphur was detected at most of the sites measuring for wet, dry, and total deposition fluxes and at many of these the trend was also present for the period after 2000. The spatial pattern of the changes in sulphur deposition flux between 1995 and 2011 shows the decrease over the entire forested area in a wide range of 18.1-0.2 g m(-2) year(-1) with the most pronounced improvement in formerly most impacted regions. Nitrogen still represents a considerable stress in many areas. The value of nitrogen deposition flux of 1 g m(-2) year(-1) is exceeded over a significant portion of the country. On an equivalent basis, the ion ratios of NO3(-)/SO4(2-) and NH4(+)/SO4(2-) in precipitation show significantly increasing trends in time similarly to those of pH. Copyright © 2013 Elsevier Ltd. All rights reserved.
Current and Future Decadal Trends in the Oceanic Carbon Uptake Are Dominated by Internal Variability
NASA Astrophysics Data System (ADS)
Li, Hongmei; Ilyina, Tatiana
2018-01-01
We investigate the internal decadal variability of the ocean carbon uptake using 100 ensemble simulations based on the Max Planck Institute Earth system model (MPI-ESM). We find that on decadal time scales, internal variability (ensemble spread) is as large as the forced temporal variability (ensemble mean), and the largest internal variability is found in major carbon sink regions, that is, the 50-65°S band of the Southern Ocean, the North Pacific, and the North Atlantic. The MPI-ESM ensemble produces both positive and negative 10 year trends in the ocean carbon uptake in agreement with observational estimates. Negative decadal trends are projected to occur in the future under RCP4.5 scenario. Due to the large internal variability, the Southern Ocean and the North Pacific require the most ensemble members (more than 53 and 46, respectively) to reproduce the forced decadal trends. This number increases up to 79 in future decades as CO2 emission trajectory changes.
Atmospheric transport and wet deposition of ammonium in North Carolina
NASA Astrophysics Data System (ADS)
Walker, John T.; Aneja, Viney P.; Dickey, David A.
Wet deposition and transport analysis has been performed for ammonium (NH 4+) in North Carolina, USA. Multiple regression analysis is employed to model the temporal trend and seasonality in monthly volume-weighted mean NH 4+ concentrations in precipitation from 1983 to 1996 at six National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. A significant ( p<0.01) increasing trend beginning in 1990, which corresponds to an annual concentration increase of approximately 9.5%, is detected at the rural Sampson County site (NC35), which is located within a densely populated network of swine and poultry operations. This trend is positively correlated with increasing ammonia (NH 3) emissions related to the vigorous growth of North Carolina's swine population since 1990, particularly in the state's Coastal Plain region. A source-receptor regression model, which utilizes weekly NH 4+ concentrations in precipitation in conjunction with boundary layer air mass back trajectories, is developed to statistically test for the influence of a particular NH 3 source region on NH 4+ concentrations at surrounding NADP/NTN sites for the years 1995-1996. NH 3 emissions from this source region, primarily evolving from swine and poultry operations, are found to increase NH 4+ concentration in precipitation at sites up to ≈80 km away. At the Scotland County (NC36) and Wake County (NC41) sites, mean NH 4+ concentrations show increases of at least 44% for weeks during which 25% or more back trajectories are influenced by this source region.
Temporal trends of acute nephrolithiasis in Auckland, New Zealand.
Du, Jason; Johnston, Richard; Rice, Michael
2009-07-24
An increasing amount of evidence suggests that the occurrence of kidney stone disease has increased over the last 50 years. No data analysis on temporal trends in Auckland, New Zealand has ever been performed. The aim of this study was to investigate the changing pattern by age, ethnicity, and gender on stone incidence over a 10-year period. Demographic data was collected on all patients who presented with renal colic. Population numbers were provided by the New Zealand ministry of statistics using regular census data. The analysis was performed using Pearson's correlation coefficients and a Poisson regression model. From 1997 to 2007, 17,532 new stones were coded as nephrolithiasis with an age range of 1-97. Disease incidence amongst Auckland residents was greater in 2007 than 1997 (0.131% or 131 per 100,000 population vs 0.102% or 102 per 100,000 population. p=0.012). The male to female ratio changed over time with a greater proportion of females presenting in 2007 than 1997 (0.47 vs 0.41, p<0.05). Pacific, Asian, and Maori incidence increased faster compared to European whilst those from the Middle East were the only group to have a stable rate (0.26% or 260/100,000 per year) over the 10-year period. Incidence of kidney stone disease in the Auckland region has increased significantly from 1997 to 2007. Different ethnic groups had different rates of change, but all groups showed an increasing incidence over time, with the exception of those from the Middle East. A greater proportion of patients are female than 10 years ago.
Analysis options for estimating status and trends in long-term monitoring
Bart, Jonathan; Beyer, Hawthorne L.
2012-01-01
This chapter describes methods for estimating long-term trends in ecological parameters. Other chapters in this volume discuss more advanced methods for analyzing monitoring data, but these methods may be relatively inaccessible to some readers. Therefore, this chapter provides an introduction to trend analysis for managers and biologists while also discussing general issues relevant to trend assessment in any long-term monitoring program. For simplicity, we focus on temporal trends in population size across years. We refer to the survey results for each year as the “annual means” (e.g. mean per transect, per plot, per time period). The methods apply with little or no modification, however, to formal estimates of population size, other temporal units (e.g. a month), to spatial or other dimensions such as elevation or a north–south gradient, and to other quantities such as chemical or geological parameters. The chapter primarily discusses methods for estimating population-wide parameters rather than studying variation in trend within the population, which can be examined using methods presented in other chapters (e.g. Chapters 7, 12, 20). We begin by reviewing key concepts related to trend analysis. We then describe how to evaluate potential bias in trend estimates. An overview of the statistical models used to quantify trends is then presented. We conclude by showing ways to estimate trends using simple methods that can be implemented with spreadsheets.
Wind increases leaf water use efficiency.
Schymanski, Stanislaus J; Or, Dani
2016-07-01
A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Temporal trends in the acidity of precipitation and surface waters of New York
Peters, Norman E.; Schroeder, Roy A.; Troutman, David E.
1982-01-01
Statistical analyses of precipitation data from a nine-station monitoring network indicate little change in pH from 1965-78 within New York State as a whole but suggest that pH of bulk precipitation has decreased in the western part of the State by approximately 0.2 pH units since 1965 and increased in the eastern part by a similar amount. This trend is equivalent to an annual change in hydrogen-ion concentration of 0.2 microequivalents per liter. An average annual increase in precipitation quantity of 2 to 3 percent since 1965 has resulted in an increased acid load in the western and central parts of the State. During 1965-78, sulfate concentration in precipitation decreased an average of 1-4 percent annually. In general, no trend in nitrate was detected. Calculated trends in hydrogen-ion concentration do not correlate with measured trends of sulfate and nitrate, which suggests variable neutralization of hydrogen ion, possibly by particles from dry deposition. Neutralization has produced an increase of about 0.3 pH units in nonurban areas and 0.7 pH units in urban areas. Statistical analyses of chemical data from several streams throughout New York suggest that sulfate concentrations decreased an average of 1 to 4 percent per year. This decrease is comparable to the sulfate decrease in precipitation during the same period. In most areas of the State, chemical contributions from urbanization and farming, as well as the neutralizing effect of carbonate soils, conceal whatever effects acid precipitation may have on pH of streams.
Spatial analysis of the annual and seasonal aridity trends in Extremadura, southwestern Spain
NASA Astrophysics Data System (ADS)
Moral, Francisco J.; Paniagua, Luis L.; Rebollo, Francisco J.; García-Martín, Abelardo
2017-11-01
The knowledge of drought (or wetness) conditions is necessary not only for a rational use of water resources but also for explaining landscape and ecology characteristics. An increase in aridity in many areas of the world is expected because of climate change (global warming). With the aim of analysing annual and seasonal aridity trends in Extremadura, southwestern Spain, climate data from 81 locations within the 1951-2010 period were used. After computing the De Martonne aridity index at each location, a geographic information system (GIS) and multivariate geostatistics (regression kriging) were utilised to map this index throughout the region. Later, temporal trends were analysed using the Mann-Kendall test, and the Sen's estimator was utilised to estimate the magnitude of trends. Maps of aridity trends were generated by ordinary kriging algorithm, providing a visualisation of detected annual and seasonal tendencies. An increase in aridity, as the De Martonne aridity index decreased, was apparent during the study period, mainly in the more humid locations of the north of the region. An increase of the seasonal De Martonne aridity index was also found, but it was only statistically significant in some locations in spring and summer, with the highest decreasing rate in the north of Extremadura. Change year detection was achieved using cumulative sum graphs, obtaining that firstly the change point occurred in spring, in the mid-1970s, later in the annual period in the late 1970s and finally in summer at the end of the 1980s.
Daily MODIS Data Trends of Hurricane-Induced Forest Impact and Early Recovery
NASA Technical Reports Server (NTRS)
Ramsey, Elijah, III; Spruce, Joseph; Rangoonwala, Amina; Suzuoki, Yukihiro; Smoot, James; Gasser, Jerry; Bannister, Terri
2011-01-01
We studied the use of daily satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to assess wetland forest damage and recovery from Hurricane Katrina (29 August 2005 landfall). Processed MODIS daily vegetation index (VI) trends were consistent with previously determined impact and recovery patterns provided by the "snapshot" 25 m Landsat Thematic Mapper optical and RADARSAT-1 synthetic aperture radar satellite data. Phenological trends showed high 2004 and 2005 pre-hurricane temporal correspondence within bottomland hardwood forest communities, except during spring green-up, and temporal dissimilarity between these hardwoods and nearby cypress-tupelo swamp forests (Taxodium distichum [baldcypress] and Nyssa aquatica [water tupelo]). MODIS VI trend analyses established that one year after impact, cypress-tupelo and lightly impacted hardwood forests had recovered to near prehurricane conditions. In contrast, canopy recovery lagged in the moderately and severely damaged hardwood forests, possibly reflecting regeneration of pre-hurricane species and stand-level replacement by invasive trees.
Fall-related mortality in southern Sweden: a multiple cause of death analysis, 1998-2014.
Kiadaliri, Aliasghar A; Rosengren, Björn E; Englund, Martin
2017-10-22
To investigate temporal trend in fall mortality among adults (aged ≥20 years) in southern Sweden using multiple cause of death data. We examined all death certificates (DCs, n=2 01 488) in adults recorded in the Skåne region during 1998-2014. We identified all fall deaths using International Statistical Classification of Diseases (ICD)-10 codes (W00-W19) and calculated the mortality rates by age and sex. Temporal trends were evaluated using joinpoint regression and associated causes were identified by age-adjusted and sex-adjusted observed/expected ratios. Falls were mentioned on 1.0% and selected as underlying cause in 0.7% of all DCs, with the highest frequency among those aged ≥70 years. The majority (75.6%) of fall deaths were coded as unspecified fall (ICD-10 code: W19) followed by falling on or from stairs/steps (7.7%, ICD-10 code: W10) and other falls on the same level (6.3%, ICD-10 code: W18). The mean age at fall deaths increased from 77.5 years in 1998-2002 to 82.9 years in 2010-2014 while for other deaths it increased from 78.5 to 79.8 years over the same period. The overall mean age-standardised rate of fall mortality was 8.3 and 4.0 per 1 00 000 person-years in men and women, respectively, and increased by 1.7% per year in men and 0.8% per year in women during 1998-2014. Head injury and diseases of the circulatory system were recorded as contributing cause on 48.7% of fall deaths. There is an increasing trend of deaths due to falls in southern Sweden. Further investigations are required to explain this observation particularly among elderly men. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
McDonald, Scott A; Innes, Hamish A; Hayes, Peter C; Dillon, John F; Mills, Peter R; Goldberg, David J; Barclay, Stephen; Allen, Sam; Fox, Ray; Fraser, Andrew; Kennedy, Nicholas; Bhattacharyya, Diptendu; Hutchinson, Sharon J
2015-02-01
The global burden associated with hepatitis C virus (HCV) infection has prompted a scale-up of antiviral therapy. Hitherto, no data exist on the impact of scaling-up, on the characteristics of treated populations, or on sustained viral response (SVR) rates. We assessed the country-wide scale-up of antiviral therapy in Scotland, a country which nationally monitors uptake of and response to HCV treatment. Data for patients, initiated on combined pegylated interferon and ribavirin therapy at 13 specialist HCV clinics in 2001-2010, were extracted from the Scottish HCV Clinical Database (n=3895). Patient characteristics included age, genotype, PWID (people who inject drugs) status, prison referral, and diagnosed cirrhosis. Temporal trends in covariates and adjusted effects on a SVR were examined via mixed-effects regression. The number of patients starting treatment increased from 237 in 2001-2002 to 1560 in 2009-2010, with an increasing trend in SVR from 44% to 57% over this period. For a given clinic, between 2001/2 and 2010 there was a decrease in the odds of those treated being diagnosed with cirrhosis (odds ratio [OR]=0.84 per year), and increasing temporal trends for those treated being PWID (OR=1.08) and prison referrals (OR=1.06). Adjusting for covariates, the proportion of a given clinic's patients achieving SVR was positively associated with the percentage of PWID (OR=1.01 per percent increase; 95% confidence interval [CI]: 1.00-1.02) and genotype 2/3 (OR=1.03; 95% CI: 1.02-1.04). Despite changes in patient characteristics, a country-wide scale-up of antiviral therapy did not compromise SVR rates. Results are highly relevant to countries planning on scaling-up treatment, given the forthcoming availability of new interferon-free therapies. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Temporal trends in United States dew point temperatures
NASA Astrophysics Data System (ADS)
Robinson, Peter J.
2000-07-01
In this study, hourly data for the 1951-1990 period for 178 stations in the coterminous United States were used to establish temporal trends in dew point temperature. Although the data had been quality controlled previously (Robinson, 1998. Monthly variations of dew point temperatures in the coterminous United States. International Journal of Climatology 18: 1539-1556), comparisons of values between nearby stations suggested that instrumental changes, combined with locational changes, may have modified the results by as much as 1°C during the 40-year period. Nevertheless, seasonally averaged results indicated an increase over much of the area, of slightly over 1°C/100 years in spring and autumn, slightly less than this in summer. Winter displayed a drying of over 1°C/100 years. When only the 1961-1990 period was considered, the patterns were similar and trends increased by approximately 1-2°C/100 years, except in autumn, which displayed a slight drying. Analyses for specific stations indicated periods of both increasing and decreasing Td, the change between them varying with observation hour. No single change point was common over a wide area, although January commonly indicated maximum values early in the period in the east and west, and much later in the north-central portion. Rates of increase were generally higher in daytime than at night, especially in summer. Investigation of the inter-decadal differences in dew point, as a function of wind conditions, indicated that changes during calm conditions were commonly similar in magnitude to that of the overall average changes, suggesting an important role for the local hydrologic cycle in driving changes. Other inter-decadal changes could be attributed to the changes in the frequency and moisture content of invading air-streams. This was particularly clear for the changes in north-south flow in the interior.