ERIC Educational Resources Information Center
Nelson, Tenneisha; Squires, Vicki
2017-01-01
Organizations are faced with solving increasingly complex problems. Addressing these issues requires effective leadership that can facilitate a collaborative problem solving approach where multiple perspectives are leveraged. In this conceptual paper, we critique the effectiveness of earlier leadership models in tackling complex organizational…
Preparing for Complexity and Wicked Problems through Transformational Learning Approaches
ERIC Educational Resources Information Center
Yukawa, Joyce
2015-01-01
As the information environment becomes increasingly complex and challenging, Library and Information Studies (LIS) education is called upon to nurture innovative leaders capable of managing complex situations and "wicked problems." While disciplinary expertise remains essential, higher levels of mental complexity and adaptive…
Pre-Service Teachers' Free and Structured Mathematical Problem Posing
ERIC Educational Resources Information Center
Silber, Steven; Cai, Jinfa
2017-01-01
This exploratory study examined how pre-service teachers (PSTs) pose mathematical problems for free and structured mathematical problem-posing conditions. It was hypothesized that PSTs would pose more complex mathematical problems under structured posing conditions, with increasing levels of complexity, than PSTs would pose under free posing…
Problem based learning - A brief review
NASA Astrophysics Data System (ADS)
Nunes, Sandra; Oliveira, Teresa A.; Oliveira, Amílcar
2017-07-01
Teaching is a complex mission that requires not only the theoretical knowledge transmission, but furthermore requires to provide the students the necessary skills for solving real problems in their respective professional activities where complex issues and problems must be frequently faced. Over more than twenty years we have been experiencing an increase in scholar failure in the scientific area of mathematics, which means that Teaching Mathematics and related areas can be even a more complex and hard task. Scholar failure is a complex phenomenon that depends on various factors as social factors, scholar factors or biophysical factors. After numerous attempts made in order to reduce scholar failure our goal in this paper is to understand the role of "Problem Based Learning" and how this methodology can contribute to the solution of both: increasing mathematical courses success and increasing skills in the near future professionals in Portugal. Before designing a proposal for applying this technique in our institutions, we decided to conduct a survey to provide us with the necessary information about and the respective advantages and disadvantages of this methodology, so this is the brief review aim.
ERIC Educational Resources Information Center
Cakar, Bekir
2011-01-01
The situations and problems that police officers face are more complex in today's society, due in part to the increase of technology and growing complexity of globalization. Accordingly, to solve these problems and deal with the complexities, law enforcement organizations develop and apply new techniques and methods such as geographic information…
Preparing new nurses with complexity science and problem-based learning.
Hodges, Helen F
2011-01-01
Successful nurses function effectively with adaptability, improvability, and interconnectedness, and can see emerging and unpredictable complex problems. Preparing new nurses for complexity requires a significant change in prevalent but dated nursing education models for rising graduates. The science of complexity coupled with problem-based learning and peer review contributes a feasible framework for a constructivist learning environment to examine real-time systems data; explore uncertainty, inherent patterns, and ambiguity; and develop skills for unstructured problem solving. This article describes a pilot study of a problem-based learning strategy guided by principles of complexity science in a community clinical nursing course. Thirty-five senior nursing students participated during a 3-year period. Assessments included peer review, a final project paper, reflection, and a satisfaction survey. Results were higher than expected levels of student satisfaction, increased breadth and analysis of complex data, acknowledgment of community as complex adaptive systems, and overall higher level thinking skills than in previous years. 2011, SLACK Incorporated.
Managing Complex Problems in Rangeland Ecosystems
USDA-ARS?s Scientific Manuscript database
Management of rangelands, and natural resources in general, has become increasingly complex. There is an atmosphere of increasing expectations for conservation efforts associated with a variety of issues from water quality to endangered species. We argue that many current issues are complex by their...
ERIC Educational Resources Information Center
Wüstenberg, Sascha; Greiff, Samuel; Vainikainen, Mari-Pauliina; Murphy, Kevin
2016-01-01
Changes in the demands posed by increasingly complex workplaces in the 21st century have raised the importance of nonroutine skills such as complex problem solving (CPS). However, little is known about the antecedents and outcomes of CPS, especially with regard to malleable external factors such as classroom climate. To investigate the relations…
An evaluation of superminicomputers for thermal analysis
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Vidal, J. B.; Jones, G. K.
1982-01-01
The use of superminicomputers for solving a series of increasingly complex thermal analysis problems is investigated. The approach involved (1) installation and verification of the SPAR thermal analyzer software on superminicomputers at Langley Research Center and Goddard Space Flight Center, (2) solution of six increasingly complex thermal problems on this equipment, and (3) comparison of solution (accuracy, CPU time, turnaround time, and cost) with solutions on large mainframe computers.
Poot, Antonius J.; den Elzen, Wendy P. J.; Blom, Jeanet W.; Gussekloo, Jacobijn
2014-01-01
Background Satisfaction is widely used to evaluate and direct delivery of medical care; a complicated relationship exists between patient satisfaction, morbidity and age. This study investigates the relationships between complexity of health problems and level of patient satisfaction of older persons with their general practitioner (GP) and practice. Methods and Findings This study is embedded in the ISCOPE (Integrated Systematic Care for Older Persons) study. Enlisted patients aged ≥75 years from 59 practices received a written questionnaire to screen for complex health problems (somatic, functional, psychological and social). For 2664 randomly chosen respondents (median age 82 years; 68% female) information was collected on level of satisfaction (satisfied, neutral, dissatisfied) with their GP and general practice, and demographic and clinical characteristics including complexity of health problems. Of all participants, 4% was dissatisfied with their GP care, 59% neutral and 37% satisfied. Between these three categories no differences were observed in age, gender, country of birth or education level. The percentage of participants dissatisfied with their GP care increased from 0.4% in those with 0 problem domains to 8% in those with 4 domains, i.e. having complex health problems (p<0.001). Per additional health domain with problems, the risk of being dissatisfied increased 1.7 times (95% CI 1.4–2.14; p<0.001). This was independent of age, gender, and demographic and clinical parameters (adjusted OR 1.4, 95% CI 1.1–1.8; p = 0.021). Conclusion In older persons, dissatisfaction with general practice is strongly correlated with rising complexity of health problems, independent of age, demographic and clinical parameters. It remains unclear whether complexity of health problems is a patient characteristic influencing the perception of care, or whether the care is unable to handle the demands of these patients. Prospective studies are needed to investigate the causal associations between care organization, patient characteristics, indicators of quality, and patient perceptions. PMID:24710557
Poot, Antonius J; den Elzen, Wendy P J; Blom, Jeanet W; Gussekloo, Jacobijn
2014-01-01
Satisfaction is widely used to evaluate and direct delivery of medical care; a complicated relationship exists between patient satisfaction, morbidity and age. This study investigates the relationships between complexity of health problems and level of patient satisfaction of older persons with their general practitioner (GP) and practice. This study is embedded in the ISCOPE (Integrated Systematic Care for Older Persons) study. Enlisted patients aged ≥75 years from 59 practices received a written questionnaire to screen for complex health problems (somatic, functional, psychological and social). For 2664 randomly chosen respondents (median age 82 years; 68% female) information was collected on level of satisfaction (satisfied, neutral, dissatisfied) with their GP and general practice, and demographic and clinical characteristics including complexity of health problems. Of all participants, 4% was dissatisfied with their GP care, 59% neutral and 37% satisfied. Between these three categories no differences were observed in age, gender, country of birth or education level. The percentage of participants dissatisfied with their GP care increased from 0.4% in those with 0 problem domains to 8% in those with 4 domains, i.e. having complex health problems (p<0.001). Per additional health domain with problems, the risk of being dissatisfied increased 1.7 times (95% CI 1.4-2.14; p<0.001). This was independent of age, gender, and demographic and clinical parameters (adjusted OR 1.4, 95% CI 1.1-1.8; p = 0.021). In older persons, dissatisfaction with general practice is strongly correlated with rising complexity of health problems, independent of age, demographic and clinical parameters. It remains unclear whether complexity of health problems is a patient characteristic influencing the perception of care, or whether the care is unable to handle the demands of these patients. Prospective studies are needed to investigate the causal associations between care organization, patient characteristics, indicators of quality, and patient perceptions.
ERIC Educational Resources Information Center
Fleischmann, Katja; Daniel, Ryan
2013-01-01
Increasing complexity is one of the most pertinent issues when discussing the role and future of design, designers and their education. The evolving nature of digital media technology has resulted in a profession in a state of flux with increasingly complex communication and design problems. The ability to collaborate and interact with other…
Computer-Based Assessment of Complex Problem Solving: Concept, Implementation, and Application
ERIC Educational Resources Information Center
Greiff, Samuel; Wustenberg, Sascha; Holt, Daniel V.; Goldhammer, Frank; Funke, Joachim
2013-01-01
Complex Problem Solving (CPS) skills are essential to successfully deal with environments that change dynamically and involve a large number of interconnected and partially unknown causal influences. The increasing importance of such skills in the 21st century requires appropriate assessment and intervention methods, which in turn rely on adequate…
Positive deviance: an elegant solution to a complex problem.
Lindberg, Curt; Clancy, Thomas R
2010-04-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 13th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. This article provides one example of how concepts taken from complex systems theory can be applied to real-world problems facing nurses today.
ERIC Educational Resources Information Center
Sonnleitner, Philipp; Brunner, Martin; Keller, Ulrich; Martin, Romain
2014-01-01
Whereas the assessment of complex problem solving (CPS) has received increasing attention in the context of international large-scale assessments, its fairness in regard to students' cultural background has gone largely unexplored. On the basis of a student sample of 9th-graders (N = 299), including a representative number of immigrant students (N…
An Ethnomethodological Perspective on How Middle School Students Addressed a Water Quality Problem
ERIC Educational Resources Information Center
Belland, Brian R.; Gu, Jiangyue; Kim, Nam Ju; Turner, David J.
2016-01-01
Science educators increasingly call for students to address authentic scientific problems in science class. One form of authentic science problem--socioscientific issue--requires that students engage in complex reasoning by considering both scientific and social implications of problems. Computer-based scaffolding can support this process by…
Arithmetic Word-Problem-Solving in Huntington's Disease
ERIC Educational Resources Information Center
Allain, P.; Verny, C.; Aubin, G.; Pinon, K.; Bonneau, D.; Dubas, F.; Gall, D.L.
2005-01-01
The purpose of this study was to examine executive functioning in patients with Huntington's disease using an arithmetic word-problem-solving task including eight solvable problems of increasing complexity and four aberrant problems. Ten patients with Huntington's disease and 12 normal control subjects matched by age and education were tested.…
McMahon, Michelle A; Christopher, Kimberly A
2011-08-19
As the complexity of health care delivery continues to increase, educators are challenged to determine educational best practices to prepare BSN students for the ambiguous clinical practice setting. Integrative, active, and student-centered curricular methods are encouraged to foster student ability to use clinical judgment for problem solving and informed clinical decision making. The proposed pedagogical model of progressive complexity in nursing education suggests gradually introducing students to complex and multi-contextual clinical scenarios through the utilization of case studies and problem-based learning activities, with the intention to transition nursing students into autonomous learners and well-prepared practitioners at the culmination of a nursing program. Exemplar curricular activities are suggested to potentiate student development of a transferable problem solving skill set and a flexible knowledge base to better prepare students for practice in future novel clinical experiences, which is a mutual goal for both educators and students.
Amir, Ofra; Amir, Dor; Shahar, Yuval; Hart, Yuval; Gal, Kobi
2018-01-01
Demonstrability-the extent to which group members can recognize a correct solution to a problem-has a significant effect on group performance. However, the interplay between group size, demonstrability and performance is not well understood. This paper addresses these gaps by studying the joint effect of two factors-the difficulty of solving a problem and the difficulty of verifying the correctness of a solution-on the ability of groups of varying sizes to converge to correct solutions. Our empirical investigations use problem instances from different computational complexity classes, NP-Complete (NPC) and PSPACE-complete (PSC), that exhibit similar solution difficulty but differ in verification difficulty. Our study focuses on nominal groups to isolate the effect of problem complexity on performance. We show that NPC problems have higher demonstrability than PSC problems: participants were significantly more likely to recognize correct and incorrect solutions for NPC problems than for PSC problems. We further show that increasing the group size can actually decrease group performance for some problems of low demonstrability. We analytically derive the boundary that distinguishes these problems from others for which group performance monotonically improves with group size. These findings increase our understanding of the mechanisms that underlie group problem-solving processes, and can inform the design of systems and processes that would better facilitate collective decision-making.
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2003-07-01
The present study examines the role of limited human channel capacity from a science education perspective. A model of science problem solving has been previously validated by applying concepts and tools of complexity theory (the working memory, random walk method). The method correlated the subjects' rank-order achievement scores in organic-synthesis chemistry problems with the subjects' working memory capacity. In this work, we apply the same nonlinear approach to a different data set, taken from chemical-equilibrium problem solving. In contrast to the organic-synthesis problems, these problems are algorithmic, require numerical calculations, and have a complex logical structure. As a result, these problems cause deviations from the model, and affect the pattern observed with the nonlinear method. In addition to Baddeley's working memory capacity, the Pascual-Leone's mental (M-) capacity is examined by the same random-walk method. As the complexity of the problem increases, the fractal dimension of the working memory random walk demonstrates a sudden drop, while the fractal dimension of the M-capacity random walk decreases in a linear fashion. A review of the basic features of the two capacities and their relation is included. The method and findings have consequences for problem solving not only in chemistry and science education, but also in other disciplines.
Untangling the Complex Needs of People Experiencing Gambling Problems and Homelessness
ERIC Educational Resources Information Center
Holdsworth, Louise; Tiyce, Margaret
2013-01-01
People with gambling problems are now recognised among those at increased risk of homelessness, and the link between housing and gambling problems has been identified as an area requiring further research. This paper discusses the findings of a qualitative study that explored the relationship between gambling problems and homelessness. Interviews…
Internet Computer Coaches for Introductory Physics Problem Solving
ERIC Educational Resources Information Center
Xu Ryan, Qing
2013-01-01
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…
ERIC Educational Resources Information Center
Espinosa, Allen A.; Nueva España, Rebecca C.; Marasigan, Arlyne C.
2016-01-01
The present study investigated pre-service chemistry teachers' problem solving strategies and alternative conceptions in solving stoichiometric problems and later on formulate a teaching framework based from the result of the study. The pre-service chemistry teachers were given four stoichiometric problems with increasing complexity and they need…
Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng
2015-01-01
In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.
Computer-aided programming for message-passing system; Problems and a solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.Y.; Gajski, D.D.
1989-12-01
As the number of processors and the complexity of problems to be solved increase, programming multiprocessing systems becomes more difficult and error-prone. Program development tools are necessary since programmers are not able to develop complex parallel programs efficiently. Parallel models of computation, parallelization problems, and tools for computer-aided programming (CAP) are discussed. As an example, a CAP tool that performs scheduling and inserts communication primitives automatically is described. It also generates the performance estimates and other program quality measures to help programmers in improving their algorithms and programs.
The Role of Problem Solving in Complex Intraverbal Repertoires
ERIC Educational Resources Information Center
Sautter, Rachael A.; LeBlanc, Linda A.; Jay, Allison A.; Goldsmith, Tina R.; Carr, James E.
2011-01-01
We examined whether typically developing preschoolers could learn to use a problem-solving strategy that involved self-prompting with intraverbal chains to provide multiple responses to intraverbal categorization questions. Teaching the children to use the problem-solving strategy did not produce significant increases in target responses until…
Problem Solving and Comprehension. Third Edition.
ERIC Educational Resources Information Center
Whimbey, Arthur; Lochhead, Jack
This book is directed toward increasing students' ability to analyze problems and comprehend what they read and hear. It outlines and illustrates the methods that good problem solvers use in attacking complex ideas, and provides practice in applying these methods to a variety of questions involving comprehension and reasoning. Chapter I includes a…
Iancu, Ovidiu D; Darakjian, Priscila; Kawane, Sunita; Bottomly, Daniel; Hitzemann, Robert; McWeeney, Shannon
2012-01-01
Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.
Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.
2002-01-01
Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.
Problem Solving & Comprehension. Fourth Edition.
ERIC Educational Resources Information Center
Whimbey, Arthur; Lochhead, Jack
This book shows how to increase one's power to analyze and comprehend problems. First, it outlines and illustrates the methods that good problem solvers use in attacking complex ideas. Then it gives some practice in applying these methods to a variety of questions in comprehension and reasoning. Chapters include: (1) "Test Your Mind--See How…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
... it would not wait for systemic problems to undermine transmission planning before action is taken... that the development of transmission facilities can involve long lead times and complex problems... rather than allowing the problems in transmission planning and cost allocation to continue or to increase...
Integrated Science: Providing a More Complete Understanding of Complex Problems
,
2006-01-01
Integration among sciences is critical in order to address some of our most pressing problems. Because of the inherent complexity of natural systems, and the increasing complexity of human demands on them, narrowly-focused approaches are no longer sufficient. USGS Workshop on Enhancing Integrated Science, November 1998. The Mid-Continent Geographic Science Center is actively participating in several integrated science studies that include research partners from the other disciplines of the U.S. Geological Survey (USGS), other Federal and State agencies, universities, and private non-government organizations. The following three examples illustrate the diversity of these studies.
Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod
2015-01-01
Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7–9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. PMID:22682904
Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod
2012-02-15
Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7-9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. Copyright © 2011 Elsevier Ltd. All rights reserved.
Complex multidisciplinary system composition for aerospace vehicle conceptual design
NASA Astrophysics Data System (ADS)
Gonzalez, Lex
Although, there exists a vast amount of work concerning the analysis, design, integration of aerospace vehicle systems, there is no standard for how this data and knowledge should be combined in order to create a synthesis system. Each institution creating a synthesis system has in house vehicle and hardware components they are attempting to model and proprietary methods with which to model them. This leads to the fact that synthesis systems begin as one-off creations meant to answer a specific problem. As the scope of the synthesis system grows to encompass more and more problems, so does its size and complexity; in order for a single synthesis system to answer multiple questions the number of methods and method interface must increase. As a means to curtail the requirement that the increase of an aircraft synthesis systems capability leads to an increase in its size and complexity, this research effort focuses on the idea that each problem in aerospace requires its own analysis framework. By focusing on the creation of a methodology which centers on the matching of an analysis framework towards the problem being solved, the complexity of the analysis framework is decoupled from the complexity of the system that creates it. The derived methodology allows for the composition of complex multi-disciplinary systems (CMDS) through the automatic creation and implementation of system and disciplinary method interfaces. The CMDS Composition process follows a four step methodology meant to take a problem definition and progress towards the creation of an analysis framework meant to answer said problem. The unique implementation of the CMDS Composition process take user selected disciplinary analysis methods and automatically integrates them, together in order to create a syntactically composable analysis framework. As a means of assessing the validity of the CMDS Composition process a prototype system (AVDDBMS) has been developed. AVD DBMS has been used to model the Generic Hypersonic Vehicle (GHV), an open source family of hypersonic vehicles originating from the Air Force Research Laboratory. AVDDBMS has been applied in three different ways in order to assess its validity: Verification using GHV disciplinary data, Validation using selected disciplinary analysis methods, and Application of the CMDS Composition Process to assess the design solution space for the GHV hardware. The research demonstrates the holistic effect that selection of individual disciplinary analysis methods has on the structure and integration of the analysis framework.
High frequency vibration analysis by the complex envelope vectorization.
Giannini, O; Carcaterra, A; Sestieri, A
2007-06-01
The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.
Fowler, Cathrine; Schmied, Virginia; Dickinson, Marie; Dahlen, Hannah Grace
2017-02-01
To investigate staff perception of the changing complexity of mothers and infants admitted to two residential parenting services in New South Wales in the decade from 2005-2015. For many mothers with a young child, parenting is difficult and stressful. If parenting occurs within the context of anxiety, mental illness or abuse it often becomes a high-risk situation for the primary caregiver. Residential parenting services provide early nursing intervention before parenting problems escalate and require physical or mental health focused care. A qualitative descriptive design using semi-structured interview questions was used as phase three of a larger study. Data were gathered from 35 child and family health nurses and ten physicians during eight focus groups. Three main themes emerged: (1) dealing with complexity; (2) changing practice; and (3) appropriate knowledge and skills to handle greater complexity. There was a mix of participant opinions about the increasing complexity of the mothers presenting at residential parenting services during the past decade. Some of the nurses and physicians confirmed an increase in complexity of the mothers while several participants proposed that it was linked to their increased psychosocial assessment knowledge and skill. All participants recognised their work had grown in complexity regardless of their perception about the increased complexity of the mothers. Australian residential parenting services have a significant role in supporting mothers and their families who are experiencing parenting difficulties. It frequently provides early intervention that helps minimise later emotional and physical problems. Nurses are well placed to work with and support mothers with complex histories. Acknowledgement is required that this work is stressful and nurses need to be adequately supported and educated to manage the complex presentations of many families. © 2016 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
McJunkin, Kyle Stewart
2005-01-01
In recent years, community colleges have increasingly taken on the task of providing remedial education to its students. For policymakers and educators, understanding why remediation is on the increase is a frustrating problem made so by the complexity of the causes behind it. Are students graduating from high school less prepared or are academic…
ERIC Educational Resources Information Center
Gould, Kathleen; Sadera, William
2015-01-01
The intent of problem-based learning (PBL) is to increase student motivation to learn, to promote critical thinking and to teach students to learn with complexity. PBL encourages students to understand that there are no straightforward answers and that problem solutions depend on context. This paper discusses the experience of undergraduate health…
Demography: a tool for understanding the wildland-urban interface fire problems
James B. Davis
1989-01-01
Fire managers across the nation are confronting the rapidly developing problem created by movement of people into wildland areas, increasing what has been termed the wildland-urban interface. The problem is very complex from the standpoint of fire planning and management. To plan and manage more effectively, fire managers should identify three types of interface areas...
Targeting biofilms with cold plasma: new approaches to a persistent problem
USDA-ARS?s Scientific Manuscript database
For the food industry, almost nothing presents as many problems for antimicrobial sanitation as the increased difficulties presented by biofilms. Biofilms are tightly-grouped masses of microorganisms, clustered together in complex communities to provide water-impermeable cellular protection. What ma...
Interdisciplinary Analysis and Global Policy Studies.
ERIC Educational Resources Information Center
Meeks, Philip
This paper examines ways in which interdisciplinary and multidisciplinary analysis of global policy studies can increase understanding of complex global problems. Until recently, social science has been the discipline most often turned to for techniques and methodology to analyze social problems and behaviors. However, because social science…
Space and Atmospheric Environments
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Day, John H. (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on space environments and the protection of materials and structures from their harsh conditions. Space environments are complex, and the complexity of spacecraft systems is increasing. Design accommodation must be realistic. Environmental problems can be limited at low cost relative to spacecraft cost.
Lidskog, Rolf; Uggla, Ylva; Soneryd, Linda
2011-03-01
Environmental problems that cross national borders are attracting increasing public and political attention; regulating them involves coordinating the goals and activities of various governments, which often presupposes simplifying and standardizing complex knowledge, and finding ways to manage uncertainty. This article explores how transboundary environmental problems are dealt with to render complex issues governable. By discussing oil pollution in the Baltic Sea and the gas pipeline between Russia and Germany, we elucidate how boundaries are negotiated to make issues governable. Three processes are found to be particularly relevant to how involved actors render complex issues governable: complexity reduction, construction of a spatial identity for an issue, and ascription of capabilities to new or old actor constellations. We conclude that such regulation is always provisional, implying that existing regulation is always open for negotiation and criticism.
NASA Astrophysics Data System (ADS)
Goma, Sergio R.
2015-03-01
In current times, mobile technologies are ubiquitous and the complexity of problems is continuously increasing. In the context of advancement of engineering, we explore in this paper possible reasons that could cause a saturation in technology evolution - namely the ability of problem solving based on previous results and the ability of expressing solutions in a more efficient way, concluding that `thinking outside of brain' - as in solving engineering problems that are expressed in a virtual media due to their complexity - would benefit from mobile technology augmentation. This could be the necessary evolutionary step that would provide the efficiency required to solve new complex problems (addressing the `running out of time' issue) and remove the communication of results barrier (addressing the human `perception/expression imbalance' issue). Some consequences are discussed, as in this context the artificial intelligence becomes an automation tool aid instead of a necessary next evolutionary step. The paper concludes that research in modeling as problem solving aid and data visualization as perception aid augmented with mobile technologies could be the path to an evolutionary step in advancing engineering.
Centre-based restricted nearest feature plane with angle classifier for face recognition
NASA Astrophysics Data System (ADS)
Tang, Linlin; Lu, Huifen; Zhao, Liang; Li, Zuohua
2017-10-01
An improved classifier based on the nearest feature plane (NFP), called the centre-based restricted nearest feature plane with the angle (RNFPA) classifier, is proposed for the face recognition problems here. The famous NFP uses the geometrical information of samples to increase the number of training samples, but it increases the computation complexity and it also has an inaccuracy problem coursed by the extended feature plane. To solve the above problems, RNFPA exploits a centre-based feature plane and utilizes a threshold of angle to restrict extended feature space. By choosing the appropriate angle threshold, RNFPA can improve the performance and decrease computation complexity. Experiments in the AT&T face database, AR face database and FERET face database are used to evaluate the proposed classifier. Compared with the original NFP classifier, the nearest feature line (NFL) classifier, the nearest neighbour (NN) classifier and some other improved NFP classifiers, the proposed one achieves competitive performance.
NASA Technical Reports Server (NTRS)
Parnell, Gregory S.; Rowell, William F.; Valusek, John R.
1987-01-01
In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.
Dependency visualization for complex system understanding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, J. Allison Cory
1994-09-01
With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impairedmore » as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.« less
Evaluation of Complex Human Performance: The Promise of Computer-Based Simulation
ERIC Educational Resources Information Center
Newsom, Robert S.; And Others
1978-01-01
For the training and placement of professional workers, multiple-choice instruments are the norm for wide-scale measurement and evaluation efforts. These instruments contain fundamental problems. Computer-based management simulations may provide solutions to these problems, appear scoreable and reliable, offer increased validity, and are better…
Family Stressors and Adolescent Cannabis Use: A Pathway to Problem Use.
ERIC Educational Resources Information Center
Butters, Jennifer E.
2002-01-01
Estimates the direct impact of family stressors on the progression to problem cannabis use among adolescents in Ontario. Results suggest that family stressors have direct and indirect effects increasing the probability of cannabis use outcomes. The implications of these more complex associations between factors believed to influence adolescent…
ERIC Educational Resources Information Center
Shen-Miller, David S.; Forrest, Linda; Burt, Michelle
2012-01-01
Trainees with problems of professional competence (TPPC) present trainers with unique challenges. When TPPC situations include diversity issues, the complexity of such challenges increases. Although attention to such intersections is important, little is known about what influences faculty thinking about diversity issues when trainee competence…
An Architectural Experience for Interface Design
ERIC Educational Resources Information Center
Gong, Susan P.
2016-01-01
The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…
Tackling 'wicked' health promotion problems: a New Zealand case study.
Signal, Louise N; Walton, Mat D; Ni Mhurchu, Cliona; Maddison, Ralph; Bowers, Sharron G; Carter, Kristie N; Gorton, Delvina; Heta, Craig; Lanumata, Tolotea S; McKerchar, Christina W; O'Dea, Des; Pearce, Jamie
2013-03-01
This paper reports on a complex environmental approach to addressing 'wicked' health promotion problems devised to inform policy for enhancing food security and physical activity among Māori, Pacific and low-income people in New Zealand. This multi-phase research utilized literature reviews, focus groups, stakeholder workshops and key informant interviews. Participants included members of affected communities, policy-makers and academics. Results suggest that food security and physical activity 'emerge' from complex systems. Key areas for intervention include availability of money within households; the cost of food; improvements in urban design and culturally specific physical activity programmes. Seventeen prioritized intervention areas were explored in-depth and recommendations for action identified. These include healthy food subsidies, increasing the statutory minimum wage rate and enhancing open space and connectivity in communities. This approach has moved away from seeking individual solutions to complex social problems. In doing so, it has enabled the mapping of the relevant systems and the identification of a range of interventions while taking account of the views of affected communities and the concerns of policy-makers. The complex environmental approach used in this research provides a method to identify how to intervene in complex systems that may be relevant to other 'wicked' health promotion problems.
Physical Complexity and Cognitive Evolution
NASA Astrophysics Data System (ADS)
Jedlicka, Peter
Our intuition tells us that there is a general trend in the evolution of nature, a trend towards greater complexity. However, there are several definitions of complexity and hence it is difficult to argue for or against the validity of this intuition. Christoph Adami has recently introduced a novel measure called physical complexity that assigns low complexity to both ordered and random systems and high complexity to those in between. Physical complexity measures the amount of information that an organism stores in its genome about the environment in which it evolves. The theory of physical complexity predicts that evolution increases the amount of `knowledge' an organism accumulates about its niche. It might be fruitful to generalize Adami's concept of complexity to the entire evolution (including the evolution of man). Physical complexity fits nicely into the philosophical framework of cognitive biology which considers biological evolution as a progressing process of accumulation of knowledge (as a gradual increase of epistemic complexity). According to this paradigm, evolution is a cognitive `ratchet' that pushes the organisms unidirectionally towards higher complexity. Dynamic environment continually creates problems to be solved. To survive in the environment means to solve the problem, and the solution is an embodied knowledge. Cognitive biology (as well as the theory of physical complexity) uses the concepts of information and entropy and views the evolution from both the information-theoretical and thermodynamical perspective. Concerning humans as conscious beings, it seems necessary to postulate an emergence of a new kind of knowledge - a self-aware and self-referential knowledge. Appearence of selfreflection in evolution indicates that the human brain reached a new qualitative level in the epistemic complexity.
ENVIRONMENTAL EFFECTS OF A GOLF COMPLEX ON COASTAL WETLANDS IN THE GULF OF MEXICO
The increasing density of golf courses represents a potential source of contamination to nearby coastal wetlands and other near-shore areas. The chemical and biological magnitude of the problem is almost unknown. To provide perspective on this issue, the effects of golf complex r...
Child Obesity and Mental Health: A Complex Interaction.
Small, Leigh; Aplasca, Alexis
2016-04-01
Prevalence rates of childhood obesity have risen steeply over the last 3 decades. Given the increased national focus, the frequency of this clinical problem, and the multiple mental health factors that coexist with it, make obesity a public health concern. The complex relationships between mental health and obesity serve to potentiate the severity and interdependency of each. The purpose of this review is to create a contextual connection for the 2 conditions as outlined by the research literature and consider treatment options that affect both health problems. Copyright © 2016 Elsevier Inc. All rights reserved.
On accuracy, privacy, and complexity in the identification problem
NASA Astrophysics Data System (ADS)
Beekhof, F.; Voloshynovskiy, S.; Koval, O.; Holotyak, T.
2010-02-01
This paper presents recent advances in the identification problem taking into account the accuracy, complexity and privacy leak of different decoding algorithms. Using a model of different actors from literature, we show that it is possible to use more accurate decoding algorithms using reliability information without increasing the privacy leak relative to algorithms that only use binary information. Existing algorithms from literature have been modified to take advantage of reliability information, and we show that a proposed branch-and-bound algorithm can outperform existing work, including the enhanced variants.
Putting problem formulation at the forefront of GMO risk analysis.
Tepfer, Mark; Racovita, Monica; Craig, Wendy
2013-01-01
When applying risk assessment and the broader process of risk analysis to decisions regarding the dissemination of genetically modified organisms (GMOs), the process has a tendency to become remarkably complex. Further, as greater numbers of countries consider authorising the large-scale dissemination of GMOs, and as GMOs with more complex traits reach late stages of development, there has been increasing concern about the burden posed by the complexity of risk analysis. We present here an improved approach for GMO risk analysis that gives a central role to problem formulation. Further, the risk analysis strategy has been clarified and simplified in order to make rigorously scientific risk assessment and risk analysis more broadly accessible to diverse stakeholder groups.
Parameterized Complexity of k-Anonymity: Hardness and Tractability
NASA Astrophysics Data System (ADS)
Bonizzoni, Paola; Della Vedova, Gianluca; Dondi, Riccardo; Pirola, Yuri
The problem of publishing personal data without giving up privacy is becoming increasingly important. A precise formalization that has been recently proposed is the k-anonymity, where the rows of a table are partitioned in clusters of size at least k and all rows in a cluster become the same tuple after the suppression of some entries. The natural optimization problem, where the goal is to minimize the number of suppressed entries, is hard even when the stored values are over a binary alphabet or the table consists of a bounded number of columns. In this paper we study how the complexity of the problem is influenced by different parameters. First we show that the problem is W[1]-hard when parameterized by the value of the solution (and k). Then we exhibit a fixed-parameter algorithm when the problem is parameterized by the number of columns and the number of different values in any column.
Complex Problem Solving in Teams: The Impact of Collective Orientation on Team Process Demands.
Hagemann, Vera; Kluge, Annette
2017-01-01
Complex problem solving is challenging and a high-level cognitive process for individuals. When analyzing complex problem solving in teams, an additional, new dimension has to be considered, as teamwork processes increase the requirements already put on individual team members. After introducing an idealized teamwork process model, that complex problem solving teams pass through, and integrating the relevant teamwork skills for interdependently working teams into the model and combining it with the four kinds of team processes (transition, action, interpersonal, and learning processes), the paper demonstrates the importance of fulfilling team process demands for successful complex problem solving within teams. Therefore, results from a controlled team study within complex situations are presented. The study focused on factors that influence action processes, like coordination, such as emergent states like collective orientation, cohesion, and trust and that dynamically enable effective teamwork in complex situations. Before conducting the experiments, participants were divided by median split into two-person teams with either high ( n = 58) or low ( n = 58) collective orientation values. The study was conducted with the microworld C3Fire, simulating dynamic decision making, and acting in complex situations within a teamwork context. The microworld includes interdependent tasks such as extinguishing forest fires or protecting houses. Two firefighting scenarios had been developed, which takes a maximum of 15 min each. All teams worked on these two scenarios. Coordination within the team and the resulting team performance were calculated based on a log-file analysis. The results show that no relationships between trust and action processes and team performance exist. Likewise, no relationships were found for cohesion. Only collective orientation of team members positively influences team performance in complex environments mediated by action processes such as coordination within the team. The results are discussed in relation to previous empirical findings and to learning processes within the team with a focus on feedback strategies.
Complex Problem Solving in Teams: The Impact of Collective Orientation on Team Process Demands
Hagemann, Vera; Kluge, Annette
2017-01-01
Complex problem solving is challenging and a high-level cognitive process for individuals. When analyzing complex problem solving in teams, an additional, new dimension has to be considered, as teamwork processes increase the requirements already put on individual team members. After introducing an idealized teamwork process model, that complex problem solving teams pass through, and integrating the relevant teamwork skills for interdependently working teams into the model and combining it with the four kinds of team processes (transition, action, interpersonal, and learning processes), the paper demonstrates the importance of fulfilling team process demands for successful complex problem solving within teams. Therefore, results from a controlled team study within complex situations are presented. The study focused on factors that influence action processes, like coordination, such as emergent states like collective orientation, cohesion, and trust and that dynamically enable effective teamwork in complex situations. Before conducting the experiments, participants were divided by median split into two-person teams with either high (n = 58) or low (n = 58) collective orientation values. The study was conducted with the microworld C3Fire, simulating dynamic decision making, and acting in complex situations within a teamwork context. The microworld includes interdependent tasks such as extinguishing forest fires or protecting houses. Two firefighting scenarios had been developed, which takes a maximum of 15 min each. All teams worked on these two scenarios. Coordination within the team and the resulting team performance were calculated based on a log-file analysis. The results show that no relationships between trust and action processes and team performance exist. Likewise, no relationships were found for cohesion. Only collective orientation of team members positively influences team performance in complex environments mediated by action processes such as coordination within the team. The results are discussed in relation to previous empirical findings and to learning processes within the team with a focus on feedback strategies. PMID:29033886
ERIC Educational Resources Information Center
Collins, Rachel H.
2014-01-01
In a society that is becoming more dynamic, complex, and diverse, the ability to solve ill-structured problems has become an increasingly critical skill. Emerging adults are at a critical life stage that is an ideal time to develop the skills needed to solve ill-structured problems (ISPs) as they are transitioning to adult roles and starting to…
Further Iterations on Using the Problem-Analysis Framework
ERIC Educational Resources Information Center
Annan, Michael; Chua, Jocelyn; Cole, Rachel; Kennedy, Emma; James, Robert; Markusdottir, Ingibjorg; Monsen, Jeremy; Robertson, Lucy; Shah, Sonia
2013-01-01
A core component of applied educational and child psychology practice is the skilfulness with which practitioners are able to rigorously structure and conceptualise complex real world human problems. This is done in such a way that when they (with others) jointly work on them, there is an increased likelihood of positive outcomes being achieved…
Developing Graduate Attributes in an Open Online Course
ERIC Educational Resources Information Center
Rowe, Michael
2016-01-01
In an increasingly connected world where solving complex problems is not possible by solitary experts, educators and learners need opportunities to develop ways of thinking that allow them to engage with the dynamic and complex situations that arise in the world. The development of graduate attributes has been suggested as one way in which…
Setting and measuring team goals and objectives for improved management of forestry research
Scott J. Josiah
1999-01-01
As our world becomes more complex and diverse, many forestry research organizations are responding by adopting more interdisciplinary and collaborative research programs. Our rapidly increasing knowledge of the ecological, social, and economic factors affecting forestry and natural resource management makes it simply untenable to expect that complex problems can be...
Exploring Creativity by Linking Complexity Learning to Futures-Based Research Proposals
ERIC Educational Resources Information Center
Bolton, Michael J.
2009-01-01
Traditional teaching models based on linear approaches to instruction arguably are of limited value in preparing students to handle complex, dynamic real-world problems. As such, they are undergoing increased scrutiny by scholars in various disciplines. The author argues that nonlinear approaches to higher education such as those founded on…
Modelling the contribution of changes in family life to time trends in adolescent conduct problems.
Collishaw, Stephan; Goodman, Robert; Pickles, Andrew; Maughan, Barbara
2007-12-01
The past half-century has seen significant changes in family life, including an increase in parental divorce, increases in the numbers of lone parent and stepfamilies, changes in socioeconomic well being, and a decrease in family size. Evidence also shows substantial time trends in adolescent mental health, including a marked increase in conduct problems over the last 25 years of the 20th Century in the UK. The aim of this study was to examine how these two sets of trends may be related. To illustrate the complexity of the issues involved, we focused on three well-established family risks for conduct problems: family type, income and family size. Three community samples of adolescents from England, Scotland and Wales were compared: 10,348 16-year olds assessed in 1974 as part of the National Child Development Study, 7234 16-year olds assessed in 1986 as part of the British Cohort Study, and 860 15-year olds assessed in the 1999 British Child and Adolescent Mental Health Survey. Parents completed comparable ratings of conduct problems in each survey and provided information on family type, income and size. Findings highlight important variations in both the prevalence of these family variables and their associations with conduct problems over time, underscoring the complex conceptual issues involved in testing causes of trends in mental health.
Antheraea pernyi silk fibroin for targeted gene delivery of VEGF165-Ang-1 with PEI.
Ma, Caili; Lv, Linlin; Liu, Yu; Yu, Yanni; You, Renchuan; Yang, Jicheng; Li, Mingzhong
2014-06-01
Vascularization is a crucial challenge in tissue engineering. One solution for this problem is to implant scaffolds that contain functional genes that promote vascularization by providing angiogenic growth factors via a gene delivery carrier. Poly(ethylenimine) (PEI) is a gene delivery carrier with high transfection efficiency but with cytotoxicity. To solve this problem, we utilized Antheraea pernyi silk fibroin (ASF), which has favorable cytocompatibility and biodegradability, RGD sequences and a negative charge, in conjunction with PEI, as the delivery vector for vascular endothelial growth factor (VEGF) 165-angiopoietin-1 (Ang-1) dual gene simultaneous expression plasmid, creating an ASF/PEI/pDNA complex. The results suggested that the zeta potential of the ASF/PEI/pDNA complex was significantly lower than that of the PEI/pDNA complex. Decreased nitrogen and increased oxygen on the surface of the complex demonstrated that the ASF had successfully combined with the surface of the PEI/pDNA. Furthermore, the complexes resisted digestion by nucleic acid enzymes and degradation by serum. L929 cells were cultured and transfected in vitro and improved cytotoxicity was found when the cells were transfected with ASF/PEI/pDNA compared with PEI/pDNA. In addition, the transfection efficiency and VEGF secretion increased. In general, this study provides a novel method for decreasing the cytotoxicity of PEI gene delivery vectors and increasing transfection efficiency of angiogenesis-related genes.
Spinks, Jean; Mortimer, Duncan
2016-02-03
The provision of additional information is often assumed to improve consumption decisions, allowing consumers to more accurately weigh the costs and benefits of alternatives. However, increasing the complexity of decision problems may prompt changes in information processing. This is particularly relevant for experimental methods such as discrete choice experiments (DCEs) where the researcher can manipulate the complexity of the decision problem. The primary aims of this study are (i) to test whether consumers actually process additional information in an already complex decision problem, and (ii) consider the implications of any such 'complexity-driven' changes in information processing for design and analysis of DCEs. A discrete choice experiment (DCE) is used to simulate a complex decision problem; here, the choice between complementary and conventional medicine for different health conditions. Eye-tracking technology is used to capture the number of times and the duration that a participant looks at any part of a computer screen during completion of DCE choice sets. From this we can analyse what has become known in the DCE literature as 'attribute non-attendance' (ANA). Using data from 32 participants, we model the likelihood of ANA as a function of choice set complexity and respondent characteristics using fixed and random effects models to account for repeated choice set completion. We also model whether participants are consistent with regard to which characteristics (attributes) they consider across choice sets. We find that complexity is the strongest predictor of ANA when other possible influences, such as time pressure, ordering effects, survey specific effects and socio-demographic variables (including proxies for prior experience with the decision problem) are considered. We also find that most participants do not apply a consistent information processing strategy across choice sets. Eye-tracking technology shows promise as a way of obtaining additional information from consumer research, improving DCE design, and informing the design of policy measures. With regards to DCE design, results from the present study suggest that eye-tracking data can identify the point at which adding complexity (and realism) to DCE choice scenarios becomes self-defeating due to unacceptable increases in ANA. Eye-tracking data therefore has clear application in the construction of guidelines for DCE design and during piloting of DCE choice scenarios. With regards to design of policy measures such as labelling requirements for CAM and conventional medicines, the provision of additional information has the potential to make difficult decisions even harder and may not have the desired effect on decision-making.
Environmental management problems in India
NASA Astrophysics Data System (ADS)
Bowonder, B.
1986-09-01
Environmental problems are becoming serious in India because of the interacting effects of increasing population density, industrialization and urbanization, and poor environmental management practices. Unless stringent regulatory measures are taken, environmental systems will be irreversibly degraded. Lack of political commitment, lack of a comprehensive environmental policy, poor environmental awareness, functional fragmentation of the public administration system, poor mass media concern, and prevalence of poverty are some of the major factors responsible for increasing the severity of the problems. Environmental problems in India are highly complex, and management procedures have to be developed to achieve coordination between various functional departments, and for this, political leaders have to be convinced of the need to initiate environmental protection measures.
Tschentscher, Nadja; Mitchell, Daniel; Duncan, John
2017-05-03
Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.
NASA Astrophysics Data System (ADS)
Steinberg, Marc
2011-06-01
This paper presents a selective survey of theoretical and experimental progress in the development of biologicallyinspired approaches for complex surveillance and reconnaissance problems with multiple, heterogeneous autonomous systems. The focus is on approaches that may address ISR problems that can quickly become mathematically intractable or otherwise impractical to implement using traditional optimization techniques as the size and complexity of the problem is increased. These problems require dealing with complex spatiotemporal objectives and constraints at a variety of levels from motion planning to task allocation. There is also a need to ensure solutions are reliable and robust to uncertainty and communications limitations. First, the paper will provide a short introduction to the current state of relevant biological research as relates to collective animal behavior. Second, the paper will describe research on largely decentralized, reactive, or swarm approaches that have been inspired by biological phenomena such as schools of fish, flocks of birds, ant colonies, and insect swarms. Next, the paper will discuss approaches towards more complex organizational and cooperative mechanisms in team and coalition behaviors in order to provide mission coverage of large, complex areas. Relevant team behavior may be derived from recent advances in understanding of the social and cooperative behaviors used for collaboration by tens of animals with higher-level cognitive abilities such as mammals and birds. Finally, the paper will briefly discuss challenges involved in user interaction with these types of systems.
NASA Astrophysics Data System (ADS)
Riis, Jens Ove; Achenbach, Marlies; Israelsen, Poul; Kyvsgaard Hansen, Poul; Johansen, John; Deuse, Jochen
2017-07-01
Challenged by increased globalisation and fast technological development, we carried out an experiment in the third semester of a global business engineering programme aimed at identifying conditions for training student in dealing with complex and ill-structured problems of forming a new business. As this includes a fuzzy front end, learning cannot be measured in traditional, quantitative terms; therefore, we have explored the use of reflection to convert tacit knowledge to explicit knowledge. The experiment adopted a Plan-Do-Check-Act approach and concluded with developing a plan for new learning initiatives in the subsequent year's semester. The findings conclude that (1) problem-based learning develops more competencies than ordinarily measured at the examination, especially, the social/communication and personal competencies are developed; (2) students are capable of dealing with a complex and ambiguous problem, if properly guided. Four conditions were identified; (3) most students are not conscious of their learning, but are able to reflect if properly encouraged; and (4) improving engineering education should be considered as an organisational learning process.
1978-09-12
the population. Only a socialist, planned economy can cope with such problems. However, the in- creasing complexity of the tasks faced’ by...the development of systems allowing man-machine dialogue does not decrease, but rather increase the complexity of the systems involved, simply...shifting the complexity to another sphere, where it is invisible to the human utilizing the system. Figures 5; refer- ences 3: 2 Russian, 1 Western
The current state of drug discovery and a potential role for NMR metabolomics.
Powers, Robert
2014-07-24
The pharmaceutical industry has significantly contributed to improving human health. Drugs have been attributed to both increasing life expectancy and decreasing health care costs. Unfortunately, there has been a recent decline in the creativity and productivity of the pharmaceutical industry. This is a complex issue with many contributing factors resulting from the numerous mergers, increase in out-sourcing, and the heavy dependency on high-throughput screening (HTS). While a simple solution to such a complex problem is unrealistic and highly unlikely, the inclusion of metabolomics as a routine component of the drug discovery process may provide some solutions to these problems. Specifically, as the binding affinity of a chemical lead is evolved during the iterative structure-based drug design process, metabolomics can provide feedback on the selectivity and the in vivo mechanism of action. Similarly, metabolomics can be used to evaluate and validate HTS leads. In effect, metabolomics can be used to eliminate compounds with potential efficacy and side effect problems while prioritizing well-behaved leads with druglike characteristics.
ERIC Educational Resources Information Center
Rhodes, Ashley E.; Rozell, Timothy G.
2017-01-01
Cognitive flexibility is defined as the ability to assimilate previously learned information and concepts to generate novel solutions to new problems. This skill is crucial for success within ill-structured domains such as biology, physiology, and medicine, where many concepts are simultaneously required for understanding a complex problem, yet…
The Persistence of Violence in South Africa's Schools: In Search of Solutions
ERIC Educational Resources Information Center
Le Roux, C. S.; Mokhele, P. R.
2011-01-01
Crime, abuse and violence against school children are grave problems in South African schools and are undisputedly on the increase. This article highlights aspects of hostile and violent behaviour in South Africa that contribute to the persistence of school violence. The problem is complex and there are no simple solutions. The article puts…
Developing Ill-Structured Problem-Solving Skills through Wilderness Education
ERIC Educational Resources Information Center
Collins, Rachel H.; Sibthorp, Jim; Gookin, John
2016-01-01
In a society that is becoming more dynamic, complex, and diverse, the ability to solve ill-structured problems (ISPs) has become an increasingly critical skill. Students who enter adult roles with the cognitive skills to address ISPs will be better able to assume roles in the emerging economies. Opportunities to develop and practice these skills…
ERIC Educational Resources Information Center
Mockler, Nicole
2014-01-01
Education is increasingly conceptualised by governments and policymakers in western democracies in terms of productivity and human capital, emphasising elements of individualism and competition over concerns around democracy and equity. More and more, solutions to intransigent educational problems related to equity are seen in terms of quality and…
ERIC Educational Resources Information Center
Mills, Robert J.; Dupin-Bryant, Pamela A.; Johnson, John D.; Beaulieu, Tanya Y.
2015-01-01
The demand for Information Systems (IS) graduates with expertise in Structured Query Language (SQL) and database management is vast and projected to increase as "big data" becomes ubiquitous. To prepare students to solve complex problems in a data-driven world, educators must explore instructional strategies to help link prior knowledge…
Critical Thinking and Clinical Judgment in Novice Registered Nurses
ERIC Educational Resources Information Center
Tyne, Sheila L.
2018-01-01
The health care field has become increasingly more complex, requiring new nurses to be prepared upon graduation to respond to a variety of complex situations. Unfortunately, many graduates from associate degree nursing (ADN) programs are not able to think critically upon entering the work force. This presents a major problem for the nurse and for…
Rules for Adaptive Learning and Assistance on the Shop Floor
ERIC Educational Resources Information Center
Ullrich, Carsten
2016-01-01
Today's shop floor, the area of a factory where operatives assemble products, is a complex and demanding work environment. The employed and produced technology becomes ever more complex, and employees are responsible for an increasing amount of tasks. As a consequence, the employee is under constant pressure to solve problems occurring on the shop…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, Tina Kuo Fung
1992-05-01
The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25°C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB -, with all complexes containing only one NPB - per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation withmore » B(OH) 4 - (aq.), i.e. the complexation constants increase with increasing number of -OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB -) at higher concentrations. The -OH group on the NPB - which is left uncomplexed after one solute molecule had bound to the other two -OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA + can extract lactic acid to an extent comparable to the uptake of lactic acid by NPB -. The complexation is probably through formation of an acid-base ion pair. Losses of NPBA into the aqueous phase could lead to problems, poor economics in industrial separation processes. One way of overcoming this problem would be to incorporate the NPBA onto a solid support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, Tina Kuo Fung.
1992-05-01
The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25{degree}C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB{sup {minus}}, with all complexes containing only one NPB{sup {minus}} per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation withmore » B(OH){sub 4}{sup {minus}} (aq.), i.e. the complexation constants increase with increasing number of {minus}OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB{sup {minus}}) at higher concentrations. The {minus}OH group on the NPB{sup {minus}} which is left uncomplexed after one solute molecule had bound to the other two {minus}OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA{sup +} can extract lactic acid to an extent comparable to the uptake of lactic acid by NPB{sup {minus}}. The complexation is probably through formation of an acid-base ion pair. Losses of NPBA into the aqueous phase could lead to problems, poor economics in industrial separation processes. One way of overcoming this problem would be to incorporate the NPBA onto a solid support.« less
NASA Astrophysics Data System (ADS)
Metzger, E. P.; Curren, R. R.
2016-12-01
Effective engagement with the problems of sustainability begins with an understanding of the nature of the challenges. The entanglement of interacting human and Earth systems produces solution-resistant dilemmas that are often portrayed as wicked problems. As introduced by urban planners Rittel and Webber (1973), wicked problems are "dynamically complex, ill-structured, public problems" arising from complexity in both biophysical and socio-economic systems. The wicked problem construct is still in wide use across diverse contexts, disciplines, and sectors. Discourse about wicked problems as related to sustainability is often connected to discussion of complexity or complex systems. In preparation for life and work in an uncertain, dynamic and hyperconnected world, students need opportunities to investigate real problems that cross social, political and disciplinary divides. They need to grapple with diverse perspectives and values, and collaborate with others to devise potential solutions. Such problems are typically multi-casual and so intertangled with other problems that they cannot be resolved using the expertise and analytical tools of any single discipline, individual, or organization. We have developed a trio of illustrative case studies that focus on energy, water and food, because these resources are foundational, interacting, and causally connected in a variety of ways with climate destabilization. The three interrelated case studies progress in scale from the local and regional, to the national and international and include: 1) the 2010 Gulf of Mexico oil spill with examination of the multiple immediate and root causes of the disaster, its ecological, social, and economic impacts, and the increasing risk and declining energy return on investment associated with the relentless quest for fossil fuels; 2) development of Australia's innovative National Water Management System; and 3) changing patterns of food production and the intertwined challenge of managing transnational water resources in the rapidly growing Mekong Region of Southeast Asia. .
Study on planning and design of ecological tourist rural complex for the elderly
NASA Astrophysics Data System (ADS)
Han, Zhoulin; Jiang, Nan; He, Yunxiao; Long, Yanping
2018-03-01
In order to deal with the increasingly serious aging problem in China, a new model about serving the aged better needs to be explored. This paper puts forward the concept of ecological tourist rural complex for the elderly, a novel pattern that combining the rural retirement place with pastoral complex which is proposed recently. A concrete example of Deteng complex in Mianyang is given to explore the construction condition and planning approach. Three important aspects including pastoral, ecology, serving the aged are the core elements to develop ecological tourist rural complex for the elderly.
DOT National Transportation Integrated Search
2017-03-01
An increase in the intensity of visitation and an associated increase in congestion entering the Klauea Point National Wildlife Refuge prompted the U.S. Fish and Wildlife Service (USFWS) to find solutions to ease ongoing traffic-related problems. W...
The Relationship among Principal Mentoring and Job Satisfaction and Retention
ERIC Educational Resources Information Center
Washington-Bass, Kendra
2013-01-01
Principal turnover, especially in the most challenging schools, continues be a major problem within the reform movement to improve student performance in public education (Béteille, Kalogrides, & Loeb, 2012; Conley & Cooper, 2011; Hull, 2012). Dwindling financial resources, increased accountability measures, and the increased complexity of…
Complex Problem Solving: What It Is and What It Is Not
Dörner, Dietrich; Funke, Joachim
2017-01-01
Computer-simulated scenarios have been part of psychological research on problem solving for more than 40 years. The shift in emphasis from simple toy problems to complex, more real-life oriented problems has been accompanied by discussions about the best ways to assess the process of solving complex problems. Psychometric issues such as reliable assessments and addressing correlations with other instruments have been in the foreground of these discussions and have left the content validity of complex problem solving in the background. In this paper, we return the focus to content issues and address the important features that define complex problems. PMID:28744242
Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem
Williams, Patricia AH; Woodward, Andrew J
2015-01-01
The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat. PMID:26229513
Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem.
Williams, Patricia Ah; Woodward, Andrew J
2015-01-01
The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat.
Challenges of Developing New Classes of NASA Self-Managing Mission
NASA Technical Reports Server (NTRS)
Hinchey, M. G.; Rash, J. I.; Truszkowski, W. F.; Rouff, C. A.; Sterritt, R.
2005-01-01
NASA is proposing increasingly complex missions that will require a high degree of autonomy and autonomicity. These missions pose hereto unforeseen problems and raise issues that have not been well-addressed by the community. Assuring success of such missions will require new software development techniques and tools. This paper discusses some of the challenges that NASA and the rest of the software development community are facing in developing these ever-increasingly complex systems. We give an overview of a proposed NASA mission as well as techniques and tools that are being developed to address autonomic management and the complexity issues inherent in these missions.
Multifractality and heteroscedastic dynamics: An application to time series analysis
NASA Astrophysics Data System (ADS)
Nascimento, C. M.; Júnior, H. B. N.; Jennings, H. D.; Serva, M.; Gleria, Iram; Viswanathan, G. M.
2008-01-01
An increasingly important problem in physics concerns scale invariance symmetry in diverse complex systems, often characterized by heteroscedastic dynamics. We investigate the nature of the relationship between the heteroscedastic and fractal aspects of the dynamics of complex systems, by analyzing the sensitivity to heteroscedasticity of the scaling properties of weakly nonstationary time series. By using multifractal detrended fluctuation analysis, we study the singularity spectra of currency exchange rate fluctuations, after partially or completely eliminating n-point correlations via data shuffling techniques. We conclude that heteroscedasticity can significantly increase multifractality and interpret these findings in the context of self-organizing and adaptive complex systems.
NASA Astrophysics Data System (ADS)
Entekhabi, Mozhgan Nora; Isakov, Victor
2018-05-01
In this paper, we will study the increasing stability in the inverse source problem for the Helmholtz equation in the plane when the source term is assumed to be compactly supported in a bounded domain Ω with a sufficiently smooth boundary. Using the Fourier transform in the frequency domain, bounds for the Hankel functions and for scattering solutions in the complex plane, improving bounds for the analytic continuation, and the exact observability for the wave equation led us to our goals which are a sharp uniqueness and increasing stability estimate when the wave number interval is growing.
ERIC Educational Resources Information Center
Gonzalez, Monica; Casas, Ferran; Coenders, Germa
2007-01-01
Psychological well-being in adolescence is an increasing field of study. Deepening in its knowledge during this period of life can be of a lot of help to the designing of more adjusted prevention programs aimed to avoid or reduce the problems adolescents might be experiencing. Complexity theories can be a productive alternative to the important…
NASA Astrophysics Data System (ADS)
Chen, Zhongzhou; Demirci, Neset; Choi, Youn-Jeng; Pritchard, David E.
2017-06-01
Previous research on problem diagrams suggested that including a supportive diagram, one that does not provide necessary problem solving information, may bring little, or even negative, benefit to students' problem solving success. We tested the usefulness of problem diagrams on 12 different physics problems (6A/B experiments) in our massive open online course. By analyzing over 8000 student responses in total, we found that including a problem diagram that contains no significant additional information only slightly improves the first attempt correct rate for the few most spatially complex problems, and has little impact on either the final correct percentage or the time spent on solving the problem. On the other hand, in half of the cases, removing the diagram significantly increased the fraction of students' drawing their own diagrams during problem solving. The increase in drawing behavior is largely independent of students' physics abilities. In summary, our results suggest that for many physics problems, the benefit of a diagram is exceedingly small and may not justify the effort of creating one.
Hydrological model parameter dimensionality is a weak measure of prediction uncertainty
NASA Astrophysics Data System (ADS)
Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.
2015-04-01
This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.
Accuracy and Calibration of High Explosive Thermodynamic Equations of State
NASA Astrophysics Data System (ADS)
Baker, Ernest L.; Capellos, Christos; Stiel, Leonard I.; Pincay, Jack
2010-10-01
The Jones-Wilkins-Lee-Baker (JWLB) equation of state (EOS) was developed to more accurately describe overdriven detonation while maintaining an accurate description of high explosive products expansion work output. The increased mathematical complexity of the JWLB high explosive equations of state provides increased accuracy for practical problems of interest. Increased numbers of parameters are often justified based on improved physics descriptions but can also mean increased calibration complexity. A generalized extent of aluminum reaction Jones-Wilkins-Lee (JWL)-based EOS was developed in order to more accurately describe the observed behavior of aluminized explosives detonation products expansion. A calibration method was developed to describe the unreacted, partially reacted, and completely reacted explosive using nonlinear optimization. A reasonable calibration of a generalized extent of aluminum reaction JWLB EOS as a function of aluminum reaction fraction has not yet been achieved due to the increased mathematical complexity of the JWLB form.
GUIDELINES TO ASSESSING REGIONAL VULNERABILITIES
Decision-makers today face increasingly complex environmental problems that require integrative and innovative approaches for analyzing, modeling, and interpreting various types of information. ReVA acknowledges this need and is designed to evaluate methods and models for synthe...
ERIC Educational Resources Information Center
Walters, Lynne Masel; Green, Martha R.; Goldsby, Dianne; Walters, Timothy N.; Wang, Liangyan
2016-01-01
This mixed methods study examines whether engaging in a problem-solving project to create Math-eos (digital videos) increases pre-service teachers' understanding of the relationship between visual, auditory, and verbal representation and critical thinking in mathematics. Additionally, the study looks at what aspects of a digital problem solving…
Polynomial complexity despite the fermionic sign
NASA Astrophysics Data System (ADS)
Rossi, R.; Prokof'ev, N.; Svistunov, B.; Van Houcke, K.; Werner, F.
2017-04-01
It is commonly believed that in unbiased quantum Monte Carlo approaches to fermionic many-body problems, the infamous sign problem generically implies prohibitively large computational times for obtaining thermodynamic-limit quantities. We point out that for convergent Feynman diagrammatic series evaluated with a recently introduced Monte Carlo algorithm (see Rossi R., arXiv:1612.05184), the computational time increases only polynomially with the inverse error on thermodynamic-limit quantities.
Substance Abuse Screening and Treatment.
Tenegra, Johnny C; Leebold, Bobby
2016-06-01
One of the more prevalent and often undiagnosed problems seen by primary care clinicians is substance misuse. Resulting in increased morbidity and mortality, loss of productivity, and increased health care costs, substance misuse in our society remains a significant public health issue. Primary care physicians are on the front lines of medical care, and as such, are in a distinctive position to recognize potential problems in this area and assist. This article outlines office-based screening approaches and strategies for managing and treating this complex issue confronting primary care. Copyright © 2016 Elsevier Inc. All rights reserved.
Problem Reframing: Intelligence Professionals’ Role in Design
2010-04-01
The idea of differences exists in intelligence analyst’s Don McDowell’s book Strategic Intelligence, when he explains that covering all events...Complexity, (New York, Basic Books , 2000), 7. 57 Gharajedaghi, 107. 20 intelligence community with an end result of increasing the potential for greater...Avoiding Error in Complex Situations, (New York: Basic Books , 1996), 164. 79 Ibid. 26 understanding the operational environment to planning the
The U.S. Army Functional Concept for Intelligence 2020-2040
2017-02-01
Soldiers to mitigate many complex problems of the future OE. Improved or new analytic processes will use very large data sets to address emerging...increasing. Army collection against publically available data sources may offer insights to social interconnectedness, political dynamics and complex... data used to support situational understanding. (5) Uncertainty and rapid change elevate the analytic risk associated with decision making and
Diagrams benefit symbolic problem-solving.
Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R
2017-06-01
The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.
The Current State of Drug Discovery and a Potential Role for NMR Metabolomics
2015-01-01
The pharmaceutical industry has significantly contributed to improving human health. Drugs have been attributed to both increasing life expectancy and decreasing health care costs. Unfortunately, there has been a recent decline in the creativity and productivity of the pharmaceutical industry. This is a complex issue with many contributing factors resulting from the numerous mergers, increase in out-sourcing, and the heavy dependency on high-throughput screening (HTS). While a simple solution to such a complex problem is unrealistic and highly unlikely, the inclusion of metabolomics as a routine component of the drug discovery process may provide some solutions to these problems. Specifically, as the binding affinity of a chemical lead is evolved during the iterative structure-based drug design process, metabolomics can provide feedback on the selectivity and the in vivo mechanism of action. Similarly, metabolomics can be used to evaluate and validate HTS leads. In effect, metabolomics can be used to eliminate compounds with potential efficacy and side effect problems while prioritizing well-behaved leads with druglike characteristics. PMID:24588729
NGL Viewer: Web-based molecular graphics for large complexes.
Rose, Alexander S; Bradley, Anthony R; Valasatava, Yana; Duarte, Jose M; Prlic, Andreas; Rose, Peter W
2018-05-29
The interactive visualization of very large macromolecular complexes on the web is becoming a challenging problem as experimental techniques advance at an unprecedented rate and deliver structures of increasing size. We have tackled this problem by developing highly memory-efficient and scalable extensions for the NGL WebGL-based molecular viewer and by using MMTF, a binary and compressed Macromolecular Transmission Format. These enable NGL to download and render molecular complexes with millions of atoms interactively on desktop computers and smartphones alike, making it a tool of choice for web-based molecular visualization in research and education. The source code is freely available under the MIT license at github.com/arose/ngl and distributed on NPM (npmjs.com/package/ngl). MMTF-JavaScript encoders and decoders are available at github.com/rcsb/mmtf-javascript. asr.moin@gmail.com.
NASA Astrophysics Data System (ADS)
Mottaeva, Asiiat
2017-10-01
The article is dedicated to the problems of the participation of the energy enterprises in the social-and-economic development of the regions and municipalities. The complex of mechanisms of the implementation of the Energy strategy in the form of strategic initiatives of the development of the energy industry representing the complex inter-industry state-private long-term projects is presented in the article. The author considers the development of the energy industry to be the key driver of the social-and-economic development of regions. The author proves, that the increase in competitiveness of Russian energy, geographical and grocery diversification of export and improvement of quality of export products might allow to solve some problems of the development of national economy.
Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models
NASA Astrophysics Data System (ADS)
Allen, J. I.; Somerfield, P. J.; Gilbert, F. J.
2007-01-01
Marine ecosystem models are becoming increasingly complex and sophisticated, and are being used to estimate the effects of future changes in the earth system with a view to informing important policy decisions. Despite their potential importance, far too little attention has been, and is generally, paid to model errors and the extent to which model outputs actually relate to real-world processes. With the increasing complexity of the models themselves comes an increasing complexity among model results. If we are to develop useful modelling tools for the marine environment we need to be able to understand and quantify the uncertainties inherent in the simulations. Analysing errors within highly multivariate model outputs, and relating them to even more complex and multivariate observational data, are not trivial tasks. Here we describe the application of a series of techniques, including a 2-stage self-organising map (SOM), non-parametric multivariate analysis, and error statistics, to a complex spatio-temporal model run for the period 1988-1989 in the Southern North Sea, coinciding with the North Sea Project which collected a wealth of observational data. We use model output, large spatio-temporally resolved data sets and a combination of methodologies (SOM, MDS, uncertainty metrics) to simplify the problem and to provide tractable information on model performance. The use of a SOM as a clustering tool allows us to simplify the dimensions of the problem while the use of MDS on independent data grouped according to the SOM classification allows us to validate the SOM. The combination of classification and uncertainty metrics allows us to pinpoint the variables and associated processes which require attention in each region. We recommend the use of this combination of techniques for simplifying complex comparisons of model outputs with real data, and analysis of error distributions.
Factors influencing efficient structure of fuel and energy complex
NASA Astrophysics Data System (ADS)
Sidorova, N. G.; Novikova, S. A.
2017-10-01
The development of the Russian fuel-energy complex is a priority for the national economic policy, and the Far East is a link between Russia and the Asia-Pacific region. Large-scale engineering of numerous resources of the Far East will force industrial development, increase living standard and strengthen Russia’s position in the global energy market. So, revealing the factors which influence rational structure of the fuel-energy complex is very urgent nowadays. With the use of depth analysis of development tendencies of the complex and its problems the authors show ways of its efficiency improvement.
Advantages of a detailed pre-sale layout and logging plan.
Robert Aufderheide
1948-01-01
During recent years the sale of timber from national forests in the Douglas-fir region has developed into big business. As the demand for stumpage steadily increases, and the allowable annual cut is approached or reached on a number of working circles, sale administration problems also increase and become more complex.
Puppet Play as Interactive Approach in Drug Abuse Prevention
ERIC Educational Resources Information Center
Nenadic-Bilan, Diana; Vigato, Teodora
2010-01-01
The national strategies of drug abuse prevention across Europe have come to recognise that the drug abuse problem presents a complex set of issues of which there is no simple solution. There is a considerable increase in investment in prevention, treatment and harm-reduction activities and increased focus on supply reduction. School settings are…
Designing Management Curriculum for Workplace Readiness: Developing Students' Soft Skills
ERIC Educational Resources Information Center
Ritter, Barbara A.; Small, Erika E.; Mortimer, John W.; Doll, Jessica L.
2018-01-01
The increased complexity of today's work environment has made the need for soft skills, such as teamwork, communication, leadership, and problem solving, more salient than ever. Employers hire for these skills because it is increasingly the human resources that give organizations a competitive advantage. Therefore, academia must respond to these…
Heads Up, Shoulders Straight, Stick and Twirl Together
ERIC Educational Resources Information Center
Warrick, James
1977-01-01
With so many roles to juggle and so many complex music problems to resolve, some marching band directors overlook simple rules of thumb to increase their bands' visual and musical impact. Here are some guidelines. (Author/RK)
Neural Classifiers for Learning Higher-Order Correlations
NASA Astrophysics Data System (ADS)
Güler, Marifi
1999-01-01
Studies by various authors suggest that higher-order networks can be more powerful and are biologically more plausible with respect to the more traditional multilayer networks. These architectures make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant pattern recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size.
[Investigative police work in relation to youth homicides in Belo Horizonte].
Zilli, Luís Felipe; Vargas, Joana Domingues
2013-03-01
Over the course of the past 30 years, Brazil has experienced an exponential increase in its homicide rates, which is a problem that has been aggravated by the slaughter of young nonwhite, poor, males living in the shantytowns and communities. Given the complexity and the resurgence of the homicide phenomenon in Brazil, this article seeks to discuss some of the main effects that these trends have had on investigative police work. For this purpose, a long process of ethnographic research in six Specialized Homicide Police Units of Belo Horizonte (BH) was conducted between the years 2009 and 2010. During this period, researchers accompanied the daily routine of these units and conducted several in-depth interviews with investigators and civil police chiefs. Among the results, the mismatch between the increasing complexity of the homicide phenomenon and the legal procedures established for investigating the problem in BH should be stressed.
Multiple Choice Knapsack Problem: example of planning choice in transportation.
Zhong, Tao; Young, Rhonda
2010-05-01
Transportation programming, a process of selecting projects for funding given budget and other constraints, is becoming more complex as a result of new federal laws, local planning regulations, and increased public involvement. This article describes the use of an integer programming tool, Multiple Choice Knapsack Problem (MCKP), to provide optimal solutions to transportation programming problems in cases where alternative versions of projects are under consideration. In this paper, optimization methods for use in the transportation programming process are compared and then the process of building and solving the optimization problems is discussed. The concepts about the use of MCKP are presented and a real-world transportation programming example at various budget levels is provided. This article illustrates how the use of MCKP addresses the modern complexities and provides timely solutions in transportation programming practice. While the article uses transportation programming as a case study, MCKP can be useful in other fields where a similar decision among a subset of the alternatives is required. Copyright 2009 Elsevier Ltd. All rights reserved.
Aono, Masashi; Naruse, Makoto; Kim, Song-Ju; Wakabayashi, Masamitsu; Hori, Hirokazu; Ohtsu, Motoichi; Hara, Masahiko
2013-06-18
Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.
Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement
ERIC Educational Resources Information Center
Zheng, Robert; Cook, Anne
2012-01-01
The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…
EMILiO: a fast algorithm for genome-scale strain design.
Yang, Laurence; Cluett, William R; Mahadevan, Radhakrishnan
2011-05-01
Systems-level design of cell metabolism is becoming increasingly important for renewable production of fuels, chemicals, and drugs. Computational models are improving in the accuracy and scope of predictions, but are also growing in complexity. Consequently, efficient and scalable algorithms are increasingly important for strain design. Previous algorithms helped to consolidate the utility of computational modeling in this field. To meet intensifying demands for high-performance strains, both the number and variety of genetic manipulations involved in strain construction are increasing. Existing algorithms have experienced combinatorial increases in computational complexity when applied toward the design of such complex strains. Here, we present EMILiO, a new algorithm that increases the scope of strain design to include reactions with individually optimized fluxes. Unlike existing approaches that would experience an explosion in complexity to solve this problem, we efficiently generated numerous alternate strain designs producing succinate, l-glutamate and l-serine. This was enabled by successive linear programming, a technique new to the area of computational strain design. Copyright © 2011 Elsevier Inc. All rights reserved.
POWERING AIRPOWER: IS THE AIR FORCES ENERGY SECURE
2016-02-01
needs. More on-site renewable energy generation increases AF readiness in crisis times by minimizing the AF’s dependency on fossil fuels. Financing...reducing the need for traditional fossil fuels, and the high investment cost of onsite renewable energy sources is still a serious roadblock in this...help installations better plan holistically. This research will take the form of problem/solution framework. With any complex problem, rarely does a
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
Complex optimization for big computational and experimental neutron datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Feng; Oak Ridge National Lab.; Archibald, Richard
Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less
Complex optimization for big computational and experimental neutron datasets
Bao, Feng; Oak Ridge National Lab.; Archibald, Richard; ...
2016-11-07
Here, we present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. Finally, we use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, andmore » refine first principles calculations to better describe the experimental data.« less
Bridge Condition Assessment Using D Numbers
Hu, Yong
2014-01-01
Bridge condition assessment is a complex problem influenced by many factors. The uncertain environment increases more its complexity. Due to the uncertainty in the process of assessment, one of the key problems is the representation of assessment results. Though there exists many methods that can deal with uncertain information, however, they have more or less deficiencies. In this paper, a new representation of uncertain information, called D numbers, is presented. It extends the Dempster-Shafer theory. By using D numbers, a new method is developed for the bridge condition assessment. Compared to these existing methods, the proposed method is simpler and more effective. An illustrative case is given to show the effectiveness of the new method. PMID:24696639
From problem solving to problem definition: scrutinizing the complex nature of clinical practice.
Cristancho, Sayra; Lingard, Lorelei; Regehr, Glenn
2017-02-01
In medical education, we have tended to present problems as being singular, stable, and solvable. Problem solving has, therefore, drawn much of medical education researchers' attention. This focus has been important but it is limited in terms of preparing clinicians to deal with the complexity of the 21st century healthcare system in which they will provide team-based care for patients with complex medical illness. In this paper, we use the Soft Systems Engineering principles to introduce the idea that in complex, team-based situations, problems usually involve divergent views and evolve with multiple solution iterations. As such we need to shift the conversation from (1) problem solving to problem definition, and (2) from a problem definition derived exclusively at the level of the individual to a definition derived at the level of the situation in which the problem is manifested. Embracing such a focus on problem definition will enable us to advocate for novel educational practices that will equip trainees to effectively manage the problems they will encounter in complex, team-based healthcare.
Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue
2017-01-01
Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques. PMID:28383496
Zhou, Renjie; Yang, Chen; Wan, Jian; Zhang, Wei; Guan, Bo; Xiong, Naixue
2017-04-06
Measurement of time series complexity and predictability is sometimes the cornerstone for proposing solutions to topology and congestion control problems in sensor networks. As a method of measuring time series complexity and predictability, multiscale entropy (MSE) has been widely applied in many fields. However, sample entropy, which is the fundamental component of MSE, measures the similarity of two subsequences of a time series with either zero or one, but without in-between values, which causes sudden changes of entropy values even if the time series embraces small changes. This problem becomes especially severe when the length of time series is getting short. For solving such the problem, we propose flexible multiscale entropy (FMSE), which introduces a novel similarity function measuring the similarity of two subsequences with full-range values from zero to one, and thus increases the reliability and stability of measuring time series complexity. The proposed method is evaluated on both synthetic and real time series, including white noise, 1/f noise and real vibration signals. The evaluation results demonstrate that FMSE has a significant improvement in reliability and stability of measuring complexity of time series, especially when the length of time series is short, compared to MSE and composite multiscale entropy (CMSE). The proposed method FMSE is capable of improving the performance of time series analysis based topology and traffic congestion control techniques.
Beyer, Thomas; Postert, Christian; Müller, Jörg M; Furniss, Tilman
2012-08-01
In a four-year longitudinal study, changes in and continuity of behavioral and emotional problems were examined in 814 subjects from kindergarten to primary school. Mental health problems were assessed by means of the Child Behavior Checklist (CBCL). The distribution of the CBCL broadband groups revealed a high level of continuity of internalizing symptoms over the four-year period and a shift from externalizing symptoms at baseline towards a combination of internalizing and externalizing symptoms at follow-up. The presence of mental health problems at follow-up was correlated with gender (higher amongst boys), pre-existing mental health problems at baseline, and separation or divorce of the parents, but not with single-family status or the age and educational level of the mother. The increasing number of children with a combination of internalizing and externalizing symptoms demonstrates the increasing complexity of child mental health problems in the developmental span from preschool age to school age.
Reliable low precision simulations in land surface models
NASA Astrophysics Data System (ADS)
Dawson, Andrew; Düben, Peter D.; MacLeod, David A.; Palmer, Tim N.
2017-12-01
Weather and climate models must continue to increase in both resolution and complexity in order that forecasts become more accurate and reliable. Moving to lower numerical precision may be an essential tool for coping with the demand for ever increasing model complexity in addition to increasing computing resources. However, there have been some concerns in the weather and climate modelling community over the suitability of lower precision for climate models, particularly for representing processes that change very slowly over long time-scales. These processes are difficult to represent using low precision due to time increments being systematically rounded to zero. Idealised simulations are used to demonstrate that a model of deep soil heat diffusion that fails when run in single precision can be modified to work correctly using low precision, by splitting up the model into a small higher precision part and a low precision part. This strategy retains the computational benefits of reduced precision whilst preserving accuracy. This same technique is also applied to a full complexity land surface model, resulting in rounding errors that are significantly smaller than initial condition and parameter uncertainties. Although lower precision will present some problems for the weather and climate modelling community, many of the problems can likely be overcome using a straightforward and physically motivated application of reduced precision.
Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin
2018-07-01
Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.
NASA Technical Reports Server (NTRS)
Smith, J. A. (Principal Investigator)
1985-01-01
The overall goal of this work has been to develop a set of computational tools and media abstractions for the terrain bidirectional reflectance problem. The modeling of soil and vegetation surfaces has been emphasized with a gradual increase in the complexity of the media geometries treated. Pragmatic problems involved in the combined modeling of soil, vegetation, and atmospheric effects have been of interest and one of the objectives has been to describe the canopy reflectance problem in a classical radiative transfer sense permitting easier inclusion of our work by other workers in the radiative transfer field.
The role of place-based projects as ecosystem service laboratories
Successfully addressing the increasingly complex ecological problems throughout the United States requires an integrative and innovative approach. In this regard, the concept of ecosystem services has emerged as a promising approach for improving environmental decision making. ...
The Applied Mathematics for Power Systems (AMPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael
2012-07-24
Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less
Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.
Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios
2012-03-01
This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.
How do precision medicine and system biology response to human body's complex adaptability?
Yuan, Bing
2016-12-01
In the field of life sciences, although system biology and "precision medicine" introduce some complex scientifific methods and techniques, it is still based on the "analysis-reconstruction" of reductionist theory as a whole. Adaptability of complex system increase system behaviour uncertainty as well as the difficulties of precise identifification and control. It also put systems biology research into trouble. To grasp the behaviour and characteristics of organism fundamentally, systems biology has to abandon the "analysis-reconstruction" concept. In accordance with the guidelines of complexity science, systems biology should build organism model from holistic level, just like the Chinese medicine did in dealing with human body and disease. When we study the living body from the holistic level, we will fifind the adaptability of complex system is not the obstacle that increases the diffificulty of problem solving. It is the "exceptional", "right-hand man" that helping us to deal with the complexity of life more effectively.
Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.
Li, Shuai; Li, Yangming
2013-10-28
The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.
Finding order in complexity: themes from the career of Dr. Robert F. Wagner
NASA Astrophysics Data System (ADS)
Myers, Kyle J.
2009-02-01
Over the course of his long and productive career, Dr. Robert F. Wagner built a framework for the evaluation of imaging systems based on a task-based, decision theoretic approach. His most recent contributions involved the consideration of the random effects associated with multiple readers of medical images and the logical extension of this work to the problem of the evaluation of multiple competing classifiers in statistical pattern recognition. This contemporary work expanded on familiar themes from Bob's many SPIE presentations in earlier years. It was driven by the need for practical solutions to current problems facing FDA'S Center for Devices and Radiological Health and the medical imaging community regarding the assessment of new computer-aided diagnosis tools and Bob's unique ability to unify concepts across a range of disciplines as he gave order to increasingly complex problems in our field.
How did you guess? Or, what do multiple-choice questions measure?
Cox, K R
1976-06-05
Multiple-choice questions classified as requiring problem-solving skills have been interpreted as measuring problem-solving skills within students, with the implicit hypothesis that questions needing an increasingly complex intellectual process should present increasing difficulty to the student. This hypothesis was tested in a 150-question paper taken by 721 students in seven Australian medical schools. No correlation was observed between difficulty and assigned process. Consequently, the question-answering process was explored with a group of final-year students. Anecdotal recall by students gave heavy weight to knowledge rather than problem solving in answering these questions. Assignment of the 150 questions to the classification by three teachers and six students showed their congruence to be a little above random probability.
Problem-based learning in the NICU.
Pilcher, Jobeth
2014-01-01
Problem-based learning (PBL) is an educational strategy that provides learners with the opportunity to investigate and solve realistic problem situations. It is also referred to as project-based learning or work-based learning. PBL combines several learning strategies including the use of case studies coupled with collaborative, facilitated, and self-directed learning. Research has demonstrated that use of PBL can result in learners having improved problem-solving skills, increased breadth and analysis of complex data, higher-level thinking skills, and improved collaboration. This article will include background information and a description of PBL, followed by examples of how this strategy can be used for learning in neonatal settings.
Model and algorithm for container ship stowage planning based on bin-packing problem
NASA Astrophysics Data System (ADS)
Zhang, Wei-Ying; Lin, Yan; Ji, Zhuo-Shang
2005-09-01
In a general case, container ship serves many different ports on each voyage. A stowage planning for container ship made at one port must take account of the influence on subsequent ports. So the complexity of stowage planning problem increases due to its multi-ports nature. This problem is NP-hard problem. In order to reduce the computational complexity, the problem is decomposed into two sub-problems in this paper. First, container ship stowage problem (CSSP) is regarded as “packing problem”, ship-bays on the board of vessel are regarded as bins, the number of slots at each bay are taken as capacities of bins, and containers with different characteristics (homogeneous containers group) are treated as items packed. At this stage, there are two objective functions, one is to minimize the number of bays packed by containers and the other is to minimize the number of overstows. Secondly, containers assigned to each bays at first stage are allocate to special slot, the objective functions are to minimize the metacentric height, heel and overstows. The taboo search heuristics algorithm are used to solve the subproblem. The main focus of this paper is on the first subproblem. A case certifies the feasibility of the model and algorithm.
Zhao, Lei; Gossmann, Toni I; Waxman, David
2016-03-21
The Wright-Fisher model is an important model in evolutionary biology and population genetics. It has been applied in numerous analyses of finite populations with discrete generations. It is recognised that real populations can behave, in some key aspects, as though their size that is not the census size, N, but rather a smaller size, namely the effective population size, Ne. However, in the Wright-Fisher model, there is no distinction between the effective and census population sizes. Equivalently, we can say that in this model, Ne coincides with N. The Wright-Fisher model therefore lacks an important aspect of biological realism. Here, we present a method that allows Ne to be directly incorporated into the Wright-Fisher model. The modified model involves matrices whose size is determined by Ne. Thus apart from increased biological realism, the modified model also has reduced computational complexity, particularly so when Ne⪡N. For complex problems, it may be hard or impossible to numerically analyse the most commonly-used approximation of the Wright-Fisher model that incorporates Ne, namely the diffusion approximation. An alternative approach is simulation. However, the simulations need to be sufficiently detailed that they yield an effective size that is different to the census size. Simulations may also be time consuming and have attendant statistical errors. The method presented in this work may then be the only alternative to simulations, when Ne differs from N. We illustrate the straightforward application of the method to some problems involving allele fixation and the determination of the equilibrium site frequency spectrum. We then apply the method to the problem of fixation when three alleles are segregating in a population. This latter problem is significantly more complex than a two allele problem and since the diffusion equation cannot be numerically solved, the only other way Ne can be incorporated into the analysis is by simulation. We have achieved good accuracy in all cases considered. In summary, the present work extends the realism and tractability of an important model of evolutionary biology and population genetics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Toward Modeling the Intrinsic Complexity of Test Problems
ERIC Educational Resources Information Center
Shoufan, Abdulhadi
2017-01-01
The concept of intrinsic complexity explains why different problems of the same type, tackled by the same problem solver, can require different times to solve and yield solutions of different quality. This paper proposes a general four-step approach that can be used to establish a model for the intrinsic complexity of a problem class in terms of…
ERIC Educational Resources Information Center
Tang, Hui; Kirk, John; Pienta, Norbert J.
2014-01-01
This paper includes two experiments, one investigating complexity factors in stoichiometry word problems, and the other identifying students' problem-solving protocols by using eye-tracking technology. The word problems used in this study had five different complexity factors, which were randomly assigned by a Web-based tool that we developed. The…
Page Oriented Holographic Memories And Optical Pattern Recognition
NASA Astrophysics Data System (ADS)
Caulfield, H. J.
1987-08-01
In the twenty-two years since VanderLugt's introduction of holographic matched filtering, the intensive research carried out throughout the world has led to no applications in complex environment. This leads one to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering operation. We introduce here an approach to the real time filter assembly: use of page oriented holographic memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a 10 4 to 10 6 stored pattern base.
Artificial intelligence approaches to astronomical observation scheduling
NASA Technical Reports Server (NTRS)
Johnston, Mark D.; Miller, Glenn
1988-01-01
Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
Advancing efforts to address youth violence involvement.
Weist, M D; Cooley-Quille, M
2001-06-01
Discusses the increased public attention on violence-related problems among youth and the concomitant increased diversity in research. Youth violence involvement is a complex construct that includes violence experienced in multiple settings (home, school, neighborhood) and in multiple forms (as victims, witnesses, perpetrators, and through family members, friends, and the media). Potential impacts of such violence involvement are considerable, including increased internalizing and externalizing behaviors among youth and future problems in school adjustment and life-course development. This introductory article reviews key dimensions of youth-related violence, describes an American Psychological Association Task Force (Division 12) developed to advance relevant research, and presents examples of national resources and efforts that attempt to address this critical public health issue.
Soil-Transmitted Helminthiasis and Vitamin A Deficiency: Two Problems, One Policy.
Strunz, Eric C; Suchdev, Parminder S; Addiss, David G
2016-01-01
Vitamin A deficiency (VAD) and soil-transmitted helminthiasis (STH) represent two widely prevalent and often overlapping global health problems. Approximately 75% of countries with moderate or severe VAD are coendemic for STH. We reviewed the literature on the complex relationship between STH and VAD. Treatment for STH significantly increases provitamin A (e.g., β-carotene) levels but is associated with minimal increases in preformed vitamin A (retinol). Interpretation of the data is complicated by variations in STH infection intensity and limitations of vitamin A biomarkers. Despite these challenges, increased coordination of STH and VAD interventions represents an important public health opportunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
2015-07-14
AFRL-OSR-VA-TR-2015-0202 Robust Decision Making: The Cognitive and Computational Modeling of Team Problem Solving for Decision Making under Complex...Computational Modeling of Team Problem Solving for Decision Making Under Complex and Dynamic Conditions 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...functioning as they solve complex problems, and propose the means to improve the performance of teams, under changing or adversarial conditions. By
Interacting complex systems: Theory and application to real-world situations
NASA Astrophysics Data System (ADS)
Piccinini, Nicola
The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.
Atkinson, Jo-An; Page, Andrew; Wells, Robert; Milat, Andrew; Wilson, Andrew
2015-03-03
In the design of public health policy, a broader understanding of risk factors for disease across the life course, and an increasing awareness of the social determinants of health, has led to the development of more comprehensive, cross-sectoral strategies to tackle complex problems. However, comprehensive strategies may not represent the most efficient or effective approach to reducing disease burden at the population level. Rather, they may act to spread finite resources less intensively over a greater number of programs and initiatives, diluting the potential impact of the investment. While analytic tools are available that use research evidence to help identify and prioritise disease risk factors for public health action, they are inadequate to support more targeted and effective policy responses for complex public health problems. This paper discusses the limitations of analytic tools that are commonly used to support evidence-informed policy decisions for complex problems. It proposes an alternative policy analysis tool which can integrate diverse evidence sources and provide a platform for virtual testing of policy alternatives in order to design solutions that are efficient, effective, and equitable. The case of suicide prevention in Australia is presented to demonstrate the limitations of current tools to adequately inform prevention policy and discusses the utility of the new policy analysis tool. In contrast to popular belief, a systems approach takes a step beyond comprehensive thinking and seeks to identify where best to target public health action and resources for optimal impact. It is concerned primarily with what can be reasonably left out of strategies for prevention and can be used to explore where disinvestment may occur without adversely affecting population health (or equity). Simulation modelling used for policy analysis offers promise in being able to better operationalise research evidence to support decision making for complex problems, improve targeting of public health policy, and offers a foundation for strengthening relationships between policy makers, stakeholders, and researchers.
Ocak, Buğra
2012-06-15
In the world, approximately 600,000 metric tonnes of chromium-containing solid wastes are generated by the leather industry each year. Environmental concerns and escalating landfill costs are becoming increasingly serious problems to the leather industry and seeking solutions to these problems is a prime concern in much research today. In this study, solid collagen-based protein hydrolysate was isolated from chromium-tanned leather wastes and its chemical properties were determined. Microcapsules of collagen hydrolysate (CH) - chitosan (C) crosslinked with glutaraldehyde (GA) containing Lavender oil (LO) were prepared by complex coacervation method. The effects of various processing parameters, including the CH to C ratio, LO content, and GA, on the oil load (%), oil content (%), encapsulation efficiency (%) and release rate of LO from microcapsules were investigated. As the ratio of C present in the CH/C mixture and crosslinking density increased, the release rate of LO from microcapsules slowed down. Optical and scanning electron microscopy images illustrated that the LO microcapsules were spherical in shape. Fourier transform infrared spectroscopy (FTIR) studies confirmed that there was no significant interaction between CH/C complex and LO. Copyright © 2012 Elsevier Ltd. All rights reserved.
Greiff, Samuel; Wüstenberg, Sascha; Goetz, Thomas; Vainikainen, Mari-Pauliina; Hautamäki, Jarkko; Bornstein, Marc H
2015-01-01
Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving skills. However, few studies have employed higher-order thinking skills such as complex problem solving (CPS) as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex). We assessed working memory (WM) and fluid reasoning (FR) at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students' CPS performance 3 years later as a developmental outcome (N = 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male). Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that FR was a strong predictor of both CPS dimensions, whereas WM exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves FR and, to a lesser extent, WM in childhood and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence.
Greiff, Samuel; Wüstenberg, Sascha; Goetz, Thomas; Vainikainen, Mari-Pauliina; Hautamäki, Jarkko; Bornstein, Marc H.
2015-01-01
Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving skills. However, few studies have employed higher-order thinking skills such as complex problem solving (CPS) as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex). We assessed working memory (WM) and fluid reasoning (FR) at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students’ CPS performance 3 years later as a developmental outcome (N = 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male). Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that FR was a strong predictor of both CPS dimensions, whereas WM exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves FR and, to a lesser extent, WM in childhood and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence. PMID:26283992
Bilodeau, Angèle; Beauchemin, Jean; Bourque, Denis; Galarneau, Marilène
2013-02-11
Based on a theory of intervention as a complex action system, analyze collaboration among partners in Montréal's sexually transmitted and blood-borne infections (STBBI) prevention program to identify main operations problems and possible scenarios for change to achieve better outcomes. A descriptive study was conducted using three data sources - public policies and programs, system management documents, and interviews with three types of partners. The results were validated with stakeholders. Five main operations problems affecting the capacity of the system to provide expected services were identified, as well as strategies the partners use to address these. Two scenarios for system change to increase its effectiveness in achieving program goals are discussed.
Complexity transitions in global algorithms for sparse linear systems over finite fields
NASA Astrophysics Data System (ADS)
Braunstein, A.; Leone, M.; Ricci-Tersenghi, F.; Zecchina, R.
2002-09-01
We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to the changes in the performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary for the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.
NASA Astrophysics Data System (ADS)
Watkins, N. W.
2013-01-01
I review the hierarchy of approaches to complex systems, focusing particularly on stochastic equations. I discuss how the main models advocated by the late Benoit Mandelbrot fit into this classification, and how they continue to contribute to cross-disciplinary approaches to the increasingly important problems of correlated extreme events and unresolved scales. The ideas have broad importance, with applications ranging across science areas as diverse as the heavy tailed distributions of intense rainfall in hydrology, after which Mandelbrot named the "Noah effect"; the problem of correlated runs of dry summers in climate, after which the "Joseph effect" was named; and the intermittent, bursty, volatility seen in finance and fluid turbulence.
Using MAPP to Connect Communities: One County's Story
ERIC Educational Resources Information Center
Boyd, Rita Arras; Peters, Mark
2009-01-01
Public health leaders of the 21st century are challenged by increasingly complex problems and escalating expectations amid scarce or shrinking resources. Community and interdisciplinary collaboration holds promise for synergism and capacity building. Mobilizing for Action through Planning and Partnerships (MAPP), the latest…
PROCEEDINGS OF THE CROSS DISCIPLINE ECOSYTEM MODELING AND ANALYSIS WORKSHOP
The complexity of environmental problems we face now and in the future is ever increasing. Process linkages among air, land, surface and subsurface water require interdisciplinary modeling approaches. The dynamics of land use change spurred by population and economic growth, ...
The Community Collaboration Stakeholder Project
ERIC Educational Resources Information Center
Heath, Renee Guarriello
2010-01-01
Today's increasingly complex and diverse world demands 21st century communication skills to solve community and social justice problems. Interorganizational collaboration is at the heart of much community activism, such as that focused on solving environmental disputes, eradicating racially discriminating real estate practices, and bringing early…
Platonic Relationships among Resistors
ERIC Educational Resources Information Center
Allen, Bradley; Liu, Tongtian
2015-01-01
Calculating the effective resistance of an electrical network is a common problem in introductory physics courses. Such calculations are typically restricted to two-dimensional networks, though even such networks can become increasingly complex, leading to several studies on their properties. Furthermore, several authors have used advanced…
NASA Astrophysics Data System (ADS)
Ibrahim, Ireen Munira; Liong, Choong-Yeun; Bakar, Sakhinah Abu; Ahmad, Norazura; Najmuddin, Ahmad Farid
2015-12-01
The Emergency Department (ED) is a very complex system with limited resources to support increase in demand. ED services are considered as good quality if they can meet the patient's expectation. Long waiting times and length of stay is always the main problem faced by the management. The management of ED should give greater emphasis on their capacity of resources in order to increase the quality of services, which conforms to patient satisfaction. This paper is a review of work in progress of a study being conducted in a government hospital in Selangor, Malaysia. This paper proposed a simulation optimization model framework which is used to study ED operations and problems as well as to find an optimal solution to the problems. The integration of simulation and optimization is hoped can assist management in decision making process regarding their resource capacity planning in order to improve current and future ED operations.
RELATIONSHIPS BETWEEN BREAST-FEEDING, CO-SLEEPING, AND SOMATIC COMPLAINTS IN EARLY CHILDHOOD.
Peters, Elisabeth Maria; Lusher, Joanne Marie; Banbury, Samantha; Chandler, Chris
2016-09-01
The central aim of this study was to expand a limited body of knowledge on the complex relationship between breast-feeding, co-sleeping, and somatic complaints in early childhood. An opportunity sample of 98 parents from the general population with children aged 18 to 60 months consented to participate in the study. Each parent completed a series of questionnaires measuring somatic complaints, sleep problems, co-sleeping, breast-feeding, and demographic factors. Findings indicated that co-sleeping was associated with increased somatic complaints and that breast-feeding associated with decreased somatic complaints. Co-sleeping also was found to be associated with an increase in sleep problems. Boys demonstrated significantly higher levels of sleep problems than did girls. These findings highlight the relationship between co-sleeping during early childhood, which could have implications for prevention, treatment, and intervention regarding somatic complaints and sleep problems in early childhood. © 2016 Michigan Association for Infant Mental Health.
Simplifications for hydronic system models in modelica
Jorissen, F.; Wetter, M.; Helsen, L.
2018-01-12
Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less
Students' conceptual performance on synthesis physics problems with varying mathematical complexity
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-06-01
A body of research on physics problem solving has focused on single-concept problems. In this study we use "synthesis problems" that involve multiple concepts typically taught in different chapters. We use two types of synthesis problems, sequential and simultaneous synthesis tasks. Sequential problems require a consecutive application of fundamental principles, and simultaneous problems require a concurrent application of pertinent concepts. We explore students' conceptual performance when they solve quantitative synthesis problems with varying mathematical complexity. Conceptual performance refers to the identification, follow-up, and correct application of the pertinent concepts. Mathematical complexity is determined by the type and the number of equations to be manipulated concurrently due to the number of unknowns in each equation. Data were collected from written tasks and individual interviews administered to physics major students (N =179 ) enrolled in a second year mechanics course. The results indicate that mathematical complexity does not impact students' conceptual performance on the sequential tasks. In contrast, for the simultaneous problems, mathematical complexity negatively influences the students' conceptual performance. This difference may be explained by the students' familiarity with and confidence in particular concepts coupled with cognitive load associated with manipulating complex quantitative equations. Another explanation pertains to the type of synthesis problems, either sequential or simultaneous task. The students split the situation presented in the sequential synthesis tasks into segments but treated the situation in the simultaneous synthesis tasks as a single event.
ERIC Educational Resources Information Center
Redding, Sam; Nafziger, Dean
2013-01-01
The purpose of the state education agency (SEA) is to focus the entire education system on helping students become capable in college and career in an increasingly complex world. One of the most vexing problems facing SEAs today is how to meet increasing demands for performance while adjusting to significant resource reductions. Meeting that…
Effectiveness of thinning and prescribed fire in reducing wildfire severity
Philip N. Omi; Erik J. Martinson
2004-01-01
The severity of recent fire seasons in the United States has provided dramatic evidence of the increasing complexity of wildfire problems. A wide variety of indicators suggest worsening dilemmas: extent of area burned, ecosystems at risk, funds expended, homes destroyed or evacuated, and human fatalities and injuries; all seem to be on the increase or have peaked in...
Direct Multiple Shooting Optimization with Variable Problem Parameters
NASA Technical Reports Server (NTRS)
Whitley, Ryan J.; Ocampo, Cesar A.
2009-01-01
Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.
Formative feedback and scaffolding for developing complex problem solving and modelling outcomes
NASA Astrophysics Data System (ADS)
Frank, Brian; Simper, Natalie; Kaupp, James
2018-07-01
This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.
Schmidt, Henk G.; Rikers, Remy M. J. P.; Custers, Eugene J. F. M.; Splinter, Ted A. W.; van Saase, Jan L. C. M.
2010-01-01
Contrary to what common sense makes us believe, deliberation without attention has recently been suggested to produce better decisions in complex situations than deliberation with attention. Based on differences between cognitive processes of experts and novices, we hypothesized that experts make in fact better decisions after consciously thinking about complex problems whereas novices may benefit from deliberation-without-attention. These hypotheses were confirmed in a study among doctors and medical students. They diagnosed complex and routine problems under three conditions, an immediate-decision condition and two delayed conditions: conscious thought and deliberation-without-attention. Doctors did better with conscious deliberation when problems were complex, whereas reasoning mode did not matter in simple problems. In contrast, deliberation-without-attention improved novices’ decisions, but only in simple problems. Experts benefit from consciously thinking about complex problems; for novices thinking does not help in those cases. PMID:20354726
Mamede, Sílvia; Schmidt, Henk G; Rikers, Remy M J P; Custers, Eugene J F M; Splinter, Ted A W; van Saase, Jan L C M
2010-11-01
Contrary to what common sense makes us believe, deliberation without attention has recently been suggested to produce better decisions in complex situations than deliberation with attention. Based on differences between cognitive processes of experts and novices, we hypothesized that experts make in fact better decisions after consciously thinking about complex problems whereas novices may benefit from deliberation-without-attention. These hypotheses were confirmed in a study among doctors and medical students. They diagnosed complex and routine problems under three conditions, an immediate-decision condition and two delayed conditions: conscious thought and deliberation-without-attention. Doctors did better with conscious deliberation when problems were complex, whereas reasoning mode did not matter in simple problems. In contrast, deliberation-without-attention improved novices' decisions, but only in simple problems. Experts benefit from consciously thinking about complex problems; for novices thinking does not help in those cases.
Donnelly, Lane F; Cherian, Shirley S; Chua, Kimberly B; Thankachan, Sam; Millecker, Laura A; Koroll, Alex G; Bisset, George S
2017-01-01
Because of the increasing complexities of providing imaging for pediatric health care services, a more reliable process to manage the daily delivery of care is necessary. Objective We describe our Daily Readiness Huddle and the effects of the process on problem identification and improvement. Our Daily Readiness Huddle has four elements: metrics review, clinical volume review, daily readiness assessment, and problem accountability. It is attended by radiologists, directors, managers, front-line staff with concerns, representatives from support services (information technology [IT] and biomedical engineering [biomed]), and representatives who join the meeting in a virtual format from off-site locations. Data are visually displayed on erasable whiteboards. The daily readiness assessment uses queues to determine whether anyone has concerns or outlier data in regard to S-MESA (Safety, Methods, Equipment, Supplies or Associates). Through this assessment, problems are identified and categorized as quick hits (will be resolved in 24-48 h, not requiring project management) and complex issues. Complex issues are assigned an owner, quality coach and report-back date. Additionally, projects are defined as improvements that are often strategic, are anticipated to take more than 60 days, and do not necessarily arise out of identified issues during the Daily Readiness Huddle. We tracked and calculated the mean, median and range of days to resolution and completion for complex issues and for projects during the first full year of implementing this process. During the first 12 months, 91 complex issues were identified and resolved, 11 projects were in progress and 33 completed, with 23 other projects active or in planning. Time to resolution of complex issues (in days) was mean 37.5, median 34.0, and range 1-105. For projects, time to completion (in days) was mean 86.0, median 84.0, and range 5-280. The Daily Readiness Huddle process has given us a framework to rapidly identify issues, bring accountability to problem-solving, and foster improvement. It has also had a positive effect on team-building and coordination.
Atomic switch networks as complex adaptive systems
NASA Astrophysics Data System (ADS)
Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.
2018-03-01
Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.
NASA Astrophysics Data System (ADS)
Dirnbeck, Matthew R.
Biological systems pose a challenge both for learners and teachers because they are complex systems mediated by feedback loops; networks of cause-effect relationships; and non-linear, hierarchical, and emergent properties. Teachers and scientists routinely use models to communicate ideas about complex systems. Model-based pedagogies engage students in model construction as a means of practicing higher-order reasoning skills. One such modeling paradigm describes systems in terms of their structures, behaviors, and functions (SBF). The SBF framework is a simple modeling language that has been used to teach about complex biological systems. Here, we used student-generated SBF models to assess students' causal reasoning in the context of a novel biological problem on an exam. We compared students' performance on the modeling problem, their performance on a set of knowledge/comprehension questions, and their performance on a set of scientific reasoning questions. We found that students who performed well on knowledge and understanding questions also constructed more networked, higher quality models. Previous studies have shown that learners' mental maps increase in complexity with increased expertise. We wanted to investigate if biology students with varying levels of training in biology showed a similar pattern when constructing system models. In a pilot study, we administered the same modeling problem to two additional groups of students: 1) an animal physiology course for students pursuing a major in biology (n=37) and 2) an exercise physiology course for non-majors (n=27). We found that there was no significant difference in model organization across the three student populations, but there was a significant difference in the ability to represent function between the three populations. Between the three groups the non-majors had the lowest function scores, the introductory majors had the middle function scores, and the upper division majors had the highest function scores.
Baxter, John S. H.; Inoue, Jiro; Drangova, Maria; Peters, Terry M.
2016-01-01
Abstract. Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of “shape complexes,” which combine geodesic star convexity with extendable continuous max-flow solvers, is presented. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required computationally expensive coordinate system warping, which are ill-defined and ambiguous in the general case. These shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent an extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems. PMID:28018937
Explicitly solvable complex Chebyshev approximation problems related to sine polynomials
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.
Vidor, Emmanuel; Soubeyrand, Benoit
2016-12-01
The manufacture of DTP-backboned combination vaccines is complex, and vaccine quality is evaluated by both batch composition and conformance of manufacturing history. Since their first availability, both the manufacturing regulations for DTP combination vaccines and their demand have evolved significantly. This has resulted in a constant need to modify manufacturing and quality control processes. Areas covered: Regulations that govern the manufacture of complex vaccines can be inconsistent between countries and need to be aligned with the regulatory requirements that apply in all countries of distribution. Changes in product mix and quantities can lead to uncertainty in vaccine supply maintenance. These problems are discussed in the context of the importance of these products as essential public health tools. Expert commentary: Increasing demand for complex vaccines globally has led to problems in supply due to intrinsically complex manufacturing and regulatory procedures. Vaccine manufacturers are fully engaged in the resolution of these challenges, but currently changes in demand need ideally to be anticipated approximately 3 years in advance due to long production cycle times.
Tapping Resources in Municipal Solid Waste
ERIC Educational Resources Information Center
Blum, S. L.
1976-01-01
Municipal solid waste disposal is becoming complex as costs, wastes, and environmental restrictions increase. Recovery and recycling of materials presents problems of financing, ownership, and operation, technology, and marketing. Energy and materials recovery offers long-term economic and environmental incentives in terms of growing shortages and…
Ethical School Leadership: Problems of an Elusive Role.
ERIC Educational Resources Information Center
Campbell, Elizabeth
1997-01-01
Educational literature increasingly stresses the importance of ethics in school leadership, the need to recognize professional responsibilities as basic ethical imperatives, and the need for administrator preparation programs to reflect these neglected areas. Within this context, this paper addresses the complexities involved in translating…
A multiagent evolutionary algorithm for constraint satisfaction problems.
Liu, Jing; Zhong, Weicai; Jiao, Licheng
2006-02-01
With the intrinsic properties of constraint satisfaction problems (CSPs) in mind, we divide CSPs into two types, namely, permutation CSPs and nonpermutation CSPs. According to their characteristics, several behaviors are designed for agents by making use of the ability of agents to sense and act on the environment. These behaviors are controlled by means of evolution, so that the multiagent evolutionary algorithm for constraint satisfaction problems (MAEA-CSPs) results. To overcome the disadvantages of the general encoding methods, the minimum conflict encoding is also proposed. Theoretical analyzes show that MAEA-CSPs has a linear space complexity and converges to the global optimum. The first part of the experiments uses 250 benchmark binary CSPs and 79 graph coloring problems from the DIMACS challenge to test the performance of MAEA-CSPs for nonpermutation CSPs. MAEA-CSPs is compared with six well-defined algorithms and the effect of the parameters is analyzed systematically. The second part of the experiments uses a classical CSP, n-queen problems, and a more practical case, job-shop scheduling problems (JSPs), to test the performance of MAEA-CSPs for permutation CSPs. The scalability of MAEA-CSPs along n for n-queen problems is studied with great care. The results show that MAEA-CSPs achieves good performance when n increases from 10(4) to 10(7), and has a linear time complexity. Even for 10(7)-queen problems, MAEA-CSPs finds the solutions by only 150 seconds. For JSPs, 59 benchmark problems are used, and good performance is also obtained.
Adaptivity and smart algorithms for fluid-structure interaction
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley
1990-01-01
This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.
Current state and problems of integrated development of mineral resources base in Russia
NASA Astrophysics Data System (ADS)
Filimonova, I. V.; Eder, L. V.; Mishenin, M. V.; Mamakhatov, T. M.
2017-09-01
The article deals with the issues of integrated development of subsoil resources taking into account the actual problems facing the Russian oil and gas complex. The key factors determining the need for integrated development of subsoil resources have been systematized and investigated. These factors are the change of the hydrocarbon resource base quality, the improvement of the depletion degree of basic (unique and major) oil fields, the increase in the number of small and smallest oil fields discovered and introduced into development, the increased capital intensity and the riskiness of geological exploration, and the territorial location of new subsoil use facilities.
Simard, Isabelle; Luck, David; Mottron, Laurent; Zeffiro, Thomas A; Soulières, Isabelle
2015-01-01
Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM) test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid "reasoning" network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI), we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual perception has a central role in autistic cognition.
Simard, Isabelle; Luck, David; Mottron, Laurent; Zeffiro, Thomas A.; Soulières, Isabelle
2015-01-01
Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM) test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid “reasoning” network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI), we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual perception has a central role in autistic cognition. PMID:26594629
Applications of Metal Additive Manufacturing in Veterinary Orthopedic Surgery
NASA Astrophysics Data System (ADS)
Harrysson, Ola L. A.; Marcellin-Little, Denis J.; Horn, Timothy J.
2015-03-01
Veterinary medicine has undergone a rapid increase in specialization over the last three decades. Veterinarians now routinely perform joint replacement, neurosurgery, limb-sparing surgery, interventional radiology, radiation therapy, and other complex medical procedures. Many procedures involve advanced imaging and surgical planning. Evidence-based medicine has also become part of the modus operandi of veterinary clinicians. Modeling and additive manufacturing can provide individualized or customized therapeutic solutions to support the management of companion animals with complex medical problems. The use of metal additive manufacturing is increasing in veterinary orthopedic surgery. This review describes and discusses current and potential applications of metal additive manufacturing in veterinary orthopedic surgery.
The Bright Side of Being Blue: Depression as an Adaptation for Analyzing Complex Problems
ERIC Educational Resources Information Center
Andrews, Paul W.; Thomson, J. Anderson, Jr.
2009-01-01
Depression is the primary emotional condition for which help is sought. Depressed people often report persistent rumination, which involves analysis, and complex social problems in their lives. Analysis is often a useful approach for solving complex problems, but it requires slow, sustained processing, so disruption would interfere with problem…
NASA Astrophysics Data System (ADS)
Hek, Tan Kim; Fadzli Ramli, Mohammad; Iryanto; Rohana Goh, Siti; Zaki, Mohd Faiz M.
2018-03-01
The water requirement greatly increased due to population growth, increased agricultural areas and industrial development, thus causing high water demand. The complex problems facing by country is water pricing is not designed optimally as a staple of human needs and on the other hand also cannot guarantee the maintenance and distribution of water effectively. The cheap water pricing caused increase of water use and unmanageable water resource. Therefore, the more optimal water pricing as an effective control of water policy is needed for the sake of ensuring water resources conservation and sustainability. This paper presents the review on problems, issues and mathematical modelling of water pricing based on agriculture and domestic groundwater for water sustainability and conservation.
[Patient-related complexity in nursing care - Collective case studies in the acute care hospital].
Gurtner, Caroline; Spirig, Rebecca; Staudacher, Diana; Huber, Evelyn
2018-06-04
Patient-related complexity in nursing care - Collective case studies in the acute care hospital Abstract. Patient-related complexity of nursing is defined by the three characteristics "instability", "uncertainty", and "variability". Complexity increased in the past years, due to reduced hospital length of stay and a growing number of patients with chronic and multiple diseases. We investigated the phenomenon of patient-related complexity from the point of view of nurses and clinical nurse specialists in an acute care hospital. In the context of a collective case study design, nurses and clinical nurse specialists assessed the complexity of nursing situations with a questionnaire. Subsequently, we interviewed nurses and clinical nurse specialists about their evaluation of patient-related complexity. In a within-case-analysis we summarized data inductively to create case narratives. By means of a cross-case-analysis we compared the cases with regard to deductively derived characteristics. The four cases exemplarily showed that the degree of complexity depends on the controllability and predictability of clinical problems. Additionally, complexity increases or decreases, according to patients' individual resources. Complex patient situations demand professional expertise, experience, communicative competencies and the ability for reflection. Beginner nurses would benefit from support and advice by experienced nurses to develop these skills.
Understanding Wicked Problems: A Key to Advancing Environmental Health Promotion
ERIC Educational Resources Information Center
Kreuter, Marshall W.; De Rosa, Christopher; Howze, Elizabeth H.; Baldwin, Grant T.
2004-01-01
Complex environmental health problems--like air and water pollution, hazardous waste sites, and lead poisoning--are in reality a constellation of linked problems embedded in the fabric of the communities in which they occur. These kinds of complex problems have been characterized by some as "wicked problems" wherein stakeholders may have…
Occupational Stressors and Job Satisfaction of Pennsylvania School District Superintendents
ERIC Educational Resources Information Center
Kane, Kevin T.
2017-01-01
Today's superintendents face increasingly non-routine and complex problems that are educational, managerial, and political in nature. This study investigated occupational stressors and job satisfaction of school superintendents in Pennsylvania. This was accomplished through self-report of superintendents and through the perspective of school board…
Enabling interdisciplinary analysis
L. M. Reid
1996-01-01
'New requirements for evaluating environmental conditions in the Pacific Northwest have led to increased demands for interdisciplinary analysis of complex environmental problems. Procedures for watershed analysis have been developed for use on public and private lands in Washington State (Washington Forest Practices Board 1993) and for federal lands in the Pacific...
Collaborative Service Learning: A Winning Proposition for Industry and Education
ERIC Educational Resources Information Center
Crutsinger, Christy A.; Pookulangara, Sanjukta; Tran, Gina; Duncan, Kim
2004-01-01
Collaboration between industry and academia creates a win-win situation for individuals and communities. Through innovative partnering, students apply knowledge to real-world situations, institutions increase program visibility, and businesses receive innovative solutions to complex problems. This article provides a roadmap for implementing a…
Proceedings of the Symposium on Long-Life Hardware for Space
NASA Technical Reports Server (NTRS)
1970-01-01
Two-volume edition of the papers of the symposium is described. It is divided into six sections - parts, materials, management, system testing, component design, and system test. Material presented focuses attention on problems created by the increased complexity of technology and long-term mission requirements.
Anthropogenic pollution is recognized as a global problem contributing to degradation of ecosystem quality, to loss of numerous plant and animal species, and to adverse impacts on human health. There is an increasing realization that a holistic hazard assessment of complex enviro...
Global planning of several plants
NASA Technical Reports Server (NTRS)
Bescos, Sylvie
1992-01-01
This paper discusses an attempt to solve the problem of planning several pharmaceutical plants at a global level. The interest in planning at this level is to increase the global control over the production process, to improve its overall efficiency, and to reduce the need for interaction between production plants. In order to reduce the complexity of this problem and to make it tractable, some abstractions were made. Based on these abstractions, a prototype is being developed within the framework of the EUREKA project PROTOS, using Constraint Logic Programming techniques.
Teaching NMR spectra analysis with nmr.cheminfo.org.
Patiny, Luc; Bolaños, Alejandro; Castillo, Andrés M; Bernal, Andrés; Wist, Julien
2018-06-01
Teaching spectra analysis and structure elucidation requires students to get trained on real problems. This involves solving exercises of increasing complexity and when necessary using computational tools. Although desktop software packages exist for this purpose, nmr.cheminfo.org platform offers students an online alternative. It provides a set of exercises and tools to help solving them. Only a small number of exercises are currently available, but contributors are invited to submit new ones and suggest new types of problems. Copyright © 2018 John Wiley & Sons, Ltd.
Aras, N; Altinel, I K; Oommen, J
2003-01-01
In addition to the classical heuristic algorithms of operations research, there have also been several approaches based on artificial neural networks for solving the traveling salesman problem. Their efficiency, however, decreases as the problem size (number of cities) increases. A technique to reduce the complexity of a large-scale traveling salesman problem (TSP) instance is to decompose or partition it into smaller subproblems. We introduce an all-neural decomposition heuristic that is based on a recent self-organizing map called KNIES, which has been successfully implemented for solving both the Euclidean traveling salesman problem and the Euclidean Hamiltonian path problem. Our solution for the Euclidean TSP proceeds by solving the Euclidean HPP for the subproblems, and then patching these solutions together. No such all-neural solution has ever been reported.
Requirements Analysis and Modeling with Problem Frames and SysML: A Case Study
NASA Astrophysics Data System (ADS)
Colombo, Pietro; Khendek, Ferhat; Lavazza, Luigi
Requirements analysis based on Problem Frames is getting an increasing attention in the academic community and has the potential to become of relevant interest also for industry. However the approach lacks an adequate notational support and methodological guidelines, and case studies that demonstrate its applicability to problems of realistic complexity are still rare. These weaknesses may hinder its adoption. This paper aims at contributing towards the elimination of these weaknesses. We report on an experience in analyzing and specifying the requirements of a controller for traffic lights of an intersection using Problem Frames in combination with SysML. The analysis was performed by decomposing the problem, addressing the identified sub-problems, and recomposing them while solving the identified interferences. The experience allowed us to identify certain guidelines for decomposition and re-composition patterns.
Life Outside the Golden Window: Statistical Angles on the Signal-to-Noise Problem
NASA Astrophysics Data System (ADS)
Wagman, Michael
2018-03-01
Lattice QCD simulations of multi-baryon correlation functions can predict the structure and reactions of nuclei without encountering the baryon chemical potential sign problem. However, they suffer from a signal-to-noise problem where Monte Carlo estimates of observables have quantum fluctuations that are exponentially larger than their average values. Recent lattice QCD results demonstrate that the complex phase of baryon correlations functions relates the baryon signal-to-noise problem to a sign problem and exhibits unexpected statistical behavior resembling a heavy-tailed random walk on the unit circle. Estimators based on differences of correlation function phases evaluated at different Euclidean times are discussed that avoid the usual signal-to-noise problem, instead facing a signal-to-noise problem as the time interval associated with the phase difference is increased, and allow hadronic observables to be determined from arbitrarily large-time correlation functions.
Co-evolution for Problem Simplification
NASA Technical Reports Server (NTRS)
Haith, Gary L.; Lohn, Jason D.; Cplombano, Silvano P.; Stassinopoulos, Dimitris
1999-01-01
This paper explores a co-evolutionary approach applicable to difficult problems with limited failure/success performance feedback. Like familiar "predator-prey" frameworks this algorithm evolves two populations of individuals - the solutions (predators) and the problems (prey). The approach extends previous work by rewarding only the problems that match their difficulty to the level of solut,ion competence. In complex problem domains with limited feedback, this "tractability constraint" helps provide an adaptive fitness gradient that, effectively differentiates the candidate solutions. The algorithm generates selective pressure toward the evolution of increasingly competent solutions by rewarding solution generality and uniqueness and problem tractability and difficulty. Relative (inverse-fitness) and absolute (static objective function) approaches to evaluating problem difficulty are explored and discussed. On a simple control task, this co-evolutionary algorithm was found to have significant advantages over a genetic algorithm with either a static fitness function or a fitness function that changes on a hand-tuned schedule.
McBride, Orla; Cheng, Hui G; Slade, Tim; Lynskey, Michael T
2016-11-01
This study examines the type of alcohol-related problems that commonly occur before the onset of depressive experiences to shed light on the mechanisms underlying the alcohol-depression comorbidity relationship. Data were from the 1992 USA National Longitudinal Alcohol Epidemiologic Survey. Analytical sample comprised of drinkers with a prior to past year (PPY) history of alcohol-related problems with or without any experiences of depressed mood in the past year (PY). The prevalence of PPY alcohol-related problems was examined, as well as the ability of specific alcohol problems to predict PY experiences of depressed mood. The type of depressed mood experienced by drinkers with PPY history of alcohol-related problems was compared to those without. All but one alcohol-related problem PPY was more frequently endorsed among drinkers with PY experiences of depressed mood. Controlling for confounders, five alcohol-related problems experienced PPY were significantly predictive of depressed mood PY: tolerance, drinking longer than intended, inability to perform important social and occupational roles/obligations, as well as drinking in physically hazardous situations. Drinkers with alcohol-related problems PPY more frequently experienced difficulties with concentration, energy, and thoughts of death, than those without. Alcohol-related problems are likely associated with depressive experiences through a complex network, whereby experiences of physical dependence and negative consequences increase the likelihood of negative affect. Novel study designs are necessary to fully understand the complex mechanisms underlying this comorbidity. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Schmelz, Martin; Krüger, Oliver; Call, Josep; Krause, E Tobias
2015-11-01
Cognition has been extensively studied in primates while other, more distantly related taxa have been neglected for a long time. More recently, there has been an increased interest in avian cognition, with the focus mostly on big-brained species like parrots and corvids. However, the majority of bird species has never systematically been studied in diverse cognitive tasks other than memory and learning tasks, so not much can yet be concluded about the relevant factors for the evolution of cognition. Here we examined 3 species of the estrildid finch family in problem-solving tasks. These granivorous, non-tool-using birds are distributed across 3 continents and are not known for high levels of innovation or spontaneous problem solving in the wild. In this study, our aim was to find such abilities in these species, assess what role domestication might play with a comparison of 4 genetically separated zebra finch strains, and to look for between-species differences between zebra finches, Bengalese finches, and diamond firetails. Furthermore, we established a 3-step spontaneous problem-solving procedure with increasing levels of complexity. Results showed that some estrildid finches were generally capable of spontaneously solving problems of variable complexity to obtain food. We found striking differences in these abilities between species, but not between strains within species, and offer a discussion of potential reasons. Our established methodology can now be applied to a larger number of bird species for phylogenetic comparisons on the behavioral level to get a deeper understanding of the evolution of cognitive abilities. (c) 2015 APA, all rights reserved).
Current trends in geomathematics
Griffiths, J.C.
1970-01-01
Geoscience has extended its role and improved its applications by the development of geophysics since the nineteen-thirties, geochemistry since the nineteen-fifties and now, in the late nineteen-sixties, a new synergism leads to geomathematics; again the greatest pressure for change arises from areas of application of geoscience and, as the problems to which geoscience is applied increase in complexity, the analytical tools become more sophisticated, a development which is accelerated by growth in the use of computers in geological problem-solving. In the next decade the problems with greatest public impact appear to be the ones which will receive greatest emphasis and support. This will require that the geosciences comprehend exceedingly complex probabilistic systems and these, in turn, demand the use of operations research, cybernetics and systems analysis. Such a development may well lead to a change in the paradigms underlying geoscience; they will certainly include more realistic models of "real-world" systems and the tool of simulation with cybernetic models may well become the basis for rejuvenation of experimentation in the geosciences. ?? 1970.
[New approaches in pharmacology: numerical modelling and simulation].
Boissel, Jean-Pierre; Cucherat, Michel; Nony, Patrice; Dronne, Marie-Aimée; Kassaï, Behrouz; Chabaud, Sylvie
2005-01-01
The complexity of pathophysiological mechanisms is beyond the capabilities of traditional approaches. Many of the decision-making problems in public health, such as initiating mass screening, are complex. Progress in genomics and proteomics, and the resulting extraordinary increase in knowledge with regard to interactions between gene expression, the environment and behaviour, the customisation of risk factors and the need to combine therapies that individually have minimal though well documented efficacy, has led doctors to raise new questions: how to optimise choice and the application of therapeutic strategies at the individual rather than the group level, while taking into account all the available evidence? This is essentially a problem of complexity with dimensions similar to the previous ones: multiple parameters with nonlinear relationships between them, varying time scales that cannot be ignored etc. Numerical modelling and simulation (in silico investigations) have the potential to meet these challenges. Such approaches are considered in drug innovation and development. They require a multidisciplinary approach, and this will involve modification of the way research in pharmacology is conducted.
NASA Astrophysics Data System (ADS)
Bililign, Solomon
2014-03-01
Physics plays a very important role in most interdisciplinary efforts and can provide a solid foundation for students. Retention of students in STEM areas can be facilitated by enhanced interdisciplinary education and research since students are strongly attracted to research with societal relevance and show increasing enthusiasm about problems that have practical consequences. One such area of research is a collaborative Earth System Science. The Earth System is dynamic and complex. It is comprised of diverse components that interact. By providing students the opportunities to work in interdisciplinary groups on a problem that reflects a complex, real-world situation they can see the linkages between components of the Earth system that encompass climate and all its components (weather precipitation, temperature, etc.) and technology development and deployment of sensors and sensor networks and social impacts.
Complexity in Nature and Society: Complexity Management in the Age of Globalization
NASA Astrophysics Data System (ADS)
Mainzer, Klaus
The theory of nonlinear complex systems has become a proven problem-solving approach in the natural sciences from cosmic and quantum systems to cellular organisms and the brain. Even in modern engineering science self-organizing systems are developed to manage complex networks and processes. It is now recognized that many of our ecological, social, economic, and political problems are also of a global, complex, and nonlinear nature. What are the laws of sociodynamics? Is there a socio-engineering of nonlinear problem solving? What can we learn from nonlinear dynamics for complexity management in social, economic, financial and political systems? Is self-organization an acceptable strategy to handle the challenges of complexity in firms, institutions and other organizations? It is a main thesis of the talk that nature and society are basically governed by nonlinear and complex information dynamics. How computational is sociodynamics? What can we hope for social, economic and political problem solving in the age of globalization?.
Exploring the quantum speed limit with computer games
NASA Astrophysics Data System (ADS)
Sørensen, Jens Jakob W. H.; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F.
2016-04-01
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. ‘Gamification’—the application of game elements in a non-game context—is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.
Exploring the quantum speed limit with computer games.
Sørensen, Jens Jakob W H; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F
2016-04-14
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.
Language functions in preterm-born children: a systematic review and meta-analysis.
van Noort-van der Spek, Inge L; Franken, Marie-Christine J P; Weisglas-Kuperus, Nynke
2012-04-01
Preterm-born children (<37 weeks' gestation) have higher rates of language function problems compared with term-born children. It is unknown whether these problems decrease, deteriorate, or remain stable over time. The goal of this research was to determine the developmental course of language functions in preterm-born children from 3 to 12 years of age. Computerized databases Embase, PubMed, Web of Knowledge, and PsycInfo were searched for studies published between January 1995 and March 2011 reporting language functions in preterm-born children. Outcome measures were simple language function assessed by using the Peabody Picture Vocabulary Test and complex language function assessed by using the Clinical Evaluation of Language Fundamentals. Pooled effect sizes (in terms of Cohen's d) and 95% confidence intervals (CI) for simple and complex language functions were calculated by using random-effects models. Meta-regression was conducted with mean difference of effect size as the outcome variable and assessment age as the explanatory variable. Preterm-born children scored significantly lower compared with term-born children on simple (d = -0.45 [95% CI: -0.59 to -0.30]; P < .001) and on complex (d = -0.62 [95% CI: -0.82 to -0.43]; P < .001) language function tests, even in the absence of major disabilities and independent of social economic status. For complex language function (but not for simple language function), group differences between preterm- and term-born children increased significantly from 3 to 12 years of age (slope = -0.05; P = .03). While growing up, preterm-born children have increasing difficulties with complex language function.
Word problems: a review of linguistic and numerical factors contributing to their difficulty
Daroczy, Gabriella; Wolska, Magdalena; Meurers, Walt Detmar; Nuerk, Hans-Christoph
2015-01-01
Word problems (WPs) belong to the most difficult and complex problem types that pupils encounter during their elementary-level mathematical development. In the classroom setting, they are often viewed as merely arithmetic tasks; however, recent research shows that a number of linguistic verbal components not directly related to arithmetic contribute greatly to their difficulty. In this review, we will distinguish three components of WP difficulty: (i) the linguistic complexity of the problem text itself, (ii) the numerical complexity of the arithmetic problem, and (iii) the relation between the linguistic and numerical complexity of a problem. We will discuss the impact of each of these factors on WP difficulty and motivate the need for a high degree of control in stimuli design for experiments that manipulate WP difficulty for a given age group. PMID:25883575
Data based identification and prediction of nonlinear and complex dynamical systems
NASA Astrophysics Data System (ADS)
Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2016-07-01
The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.
ERIC Educational Resources Information Center
Blackburn, J. Joey; Robinson, J. Shane; Lamm, Alexa J.
2014-01-01
The purpose of this experimental study was to determine the effects of cognitive style and problem complexity on Oklahoma State University preservice agriculture teachers' (N = 56) ability to solve problems in small gasoline engines. Time to solution was operationalized as problem solving ability. Kirton's Adaption-Innovation Inventory was…
On the Complexity of Delaying an Adversary’s Project
2005-01-01
interdiction models for such problems and show that the resulting problem com- plexities run the gamut : polynomially solvable, weakly NP-complete, strongly...problems and show that the resulting problem complexities run the gamut : polynomially solvable, weakly NP-complete, strongly NP-complete or NP-hard. We
Solving the Inverse-Square Problem with Complex Variables
ERIC Educational Resources Information Center
Gauthier, N.
2005-01-01
The equation of motion for a mass that moves under the influence of a central, inverse-square force is formulated and solved as a problem in complex variables. To find the solution, the constancy of angular momentum is first established using complex variables. Next, the complex position coordinate and complex velocity of the particle are assumed…
Bulimia: A Model for Group Therapy.
ERIC Educational Resources Information Center
Bauer, Barbara G.
Bulimia, an eating disorder characterized by binge eating followed by purging and intense feelings of guilt and failure, is increasing among young women. The eating behavior is only a symptom of more complex underlying problems such as feelings of inadequacy, social isolation, depression, rigid thinking, self-defeating thoughts, and perfectionism.…
Infants' Meaning-Making and the Development of Mental Health Problems
ERIC Educational Resources Information Center
Tronick, Ed; Beeghly, Marjorie
2011-01-01
We argue that infant meaning-making processes are a central mechanism governing both typical and pathological outcomes. Infants, as open dynamic systems, must constantly garner information to increase their complexity and coherence. They fulfill this demand by making nonverbal "meaning"--affects, movements, representations--about themselves in…
ERIC Educational Resources Information Center
Barnaud, Cecile; Promburom, Tanya; Trebuil, Guy; Bousquet, Francois
2007-01-01
The decentralization of natural resource management provides an opportunity for communities to increase their participation in related decision making. Research should propose adapted methodologies enabling the numerous stakeholders of these complex socioecological settings to define their problems and identify agreed-on solutions. This article…
Scale the Solution to the Problem
ERIC Educational Resources Information Center
Bennett, Cedric
2004-01-01
The Internet is a remarkable tool and change agent that has been successfully leveraged by colleges and universities to support, enhance, and extend the teaching/learning process; the creation of new knowledge through research; and the increasingly complex business of managing and administrating institutions. Although it supports and even creates…
Governance and Funding of Higher Education in Germany.
ERIC Educational Resources Information Center
Hufner, Klaus
2003-01-01
Describes the complex functioning of decision making in relation to legal, administrative, planning, and financial matters in Germany, examining the current increase of privatization of higher education and the ensuring legal and financial problem, and discussing the introduction of new funding schemes based on performance indicators which augur…
Public health and crisis leadership in the 21st century.
Lawton, Luke
2013-05-01
Public health crises are becoming increasingly complex, and as such leaders need to revisit their roles and consider new problems arising for public health today. Dr Luke Lawton, of Redcliffe Hospital in Queensland, Australia examines the nature of leadership and provides some pointers on crisis planning.
ERIC Educational Resources Information Center
Casoli-Reardon, Michele; Rappaport, Nancy; Kulick, Deborah; Reinfeld, Sarah
2012-01-01
School truancy--defined by a student's refusal to attend part or all of the school day, along with a defined number of unexcused absences--is an increasingly frustrating and complex problem for teachers and school administrators. Although statistics on the prevalence of truancy in the United States do not exist due to lack of uniformity among…
Using Role-Playing Games to Broaden Engineering Education
ERIC Educational Resources Information Center
McConville, Jennifer R.; Rauch, Sebastien; Helgegren, Ida; Kain, Jaan-Henrik
2017-01-01
Purpose: In today's complex society, there is an increasing demand to include a wider set of skills in engineering curricula, especially skills related to policy, society and sustainable development. Role-playing and gaming are active learning tools, which are useful for learning relationships between technology and society, problem solving in…
ERIC Educational Resources Information Center
Baggen, Yvette; Mainert, Jakob; Lans, Thomas; Biemans, Harm J. A.; Greiff, Samuel; Mulder, Martin
2015-01-01
Today's working life is increasingly characterized by entrepreneurial challenges. Entrepreneurial challenges start at an individual level with the identification of entrepreneurial opportunities, which is acknowledged as one of the key competencies for lifelong learning. Since the identification of entrepreneurial opportunities relies heavily on…
Advanced Interactive Web Technologies in Industry Training.
ERIC Educational Resources Information Center
Vassileva, Tania; Astinov, Ilario; Bojkov, Dimitar; Tchoumatchenko, Vassiliy; Scholten, Ulrich; Furnadziev, Ivan
Today, faced with the problems of global competition, increasing costs, and complex production engineering, a company can only be successfully managed if the employees are motivated and highly qualified. To cope with this demand the new educational scheme for cost-effective retraining, lifelong learning and distance education at the workplace…
Health and Adult Literacy. Practice Application Brief No. 7.
ERIC Educational Resources Information Center
Kerka, Sandra
The increasing emphasis on managed health care, which requires health consumers to make complex decisions, is reinforcing the importance of literacy skills. "Health literacy," which refers to the ability to engage in such activities as health-related critical thinking, problem solving, self-directed learning, and self-advocacy, is…
Preventing Behavior Problems and Health-Risking Behaviors in Girls in Foster Care
ERIC Educational Resources Information Center
Chamberlain, Patricia; Leve, Leslie D.; Smith, Dana K.
2006-01-01
Transition into middle school presents complex challenges, including exposure to a larger peer group, increased expectations for time management and self-monitoring, renegotiation of rules with parents, and pubertal changes. For children in foster care, this transition is complicated by their maltreatment histories, living situation changes, and…
Reprint 1987: Research Administration in a Time of Change
ERIC Educational Resources Information Center
Brandt, Edward N.
2017-01-01
The field of biomedical research has undergone several changes in recent years. These include increased funding, the rapid development in scientific knowledge which speeds up the obsolescence of equipment, facilities and knowledge and the growing complexity of scientific problems. Research administrators can take steps to address these changes…
Atkinson, Jo-An; O'Donnell, Eloise; Wiggers, John; McDonnell, Geoff; Mitchell, Jo; Freebairn, Louise; Indig, Devon; Rychetnik, Lucie
2017-02-15
Development of effective policy responses to address complex public health problems can be challenged by a lack of clarity about the interaction of risk factors driving the problem, differing views of stakeholders on the most appropriate and effective intervention approaches, a lack of evidence to support commonly implemented and acceptable intervention approaches, and a lack of acceptance of effective interventions. Consequently, political considerations, community advocacy and industry lobbying can contribute to a hotly contested debate about the most appropriate course of action; this can hinder consensus and give rise to policy resistance. The problem of alcohol misuse and its associated harms in New South Wales (NSW), Australia, provides a relevant example of such challenges. Dynamic simulation modelling is increasingly being valued by the health sector as a robust tool to support decision making to address complex problems. It allows policy makers to ask 'what-if' questions and test the potential impacts of different policy scenarios over time, before solutions are implemented in the real world. Participatory approaches to modelling enable researchers, policy makers, program planners, practitioners and consumer representatives to collaborate with expert modellers to ensure that models are transparent, incorporate diverse evidence and perspectives, are better aligned to the decision-support needs of policy makers, and can facilitate consensus building for action. This paper outlines a procedure for embedding stakeholder engagement and consensus building in the development of dynamic simulation models that can guide the development of effective, coordinated and acceptable policy responses to complex public health problems, such as alcohol-related harms in NSW.
NASA Astrophysics Data System (ADS)
Rybakin, B.; Bogatencov, P.; Secrieru, G.; Iliuha, N.
2013-10-01
The paper deals with a parallel algorithm for calculations on multiprocessor computers and GPU accelerators. The calculations of shock waves interaction with low-density bubble results and the problem of the gas flow with the forces of gravity are presented. This algorithm combines a possibility to capture a high resolution of shock waves, the second-order accuracy for TVD schemes, and a possibility to observe a low-level diffusion of the advection scheme. Many complex problems of continuum mechanics are numerically solved on structured or unstructured grids. To improve the accuracy of the calculations is necessary to choose a sufficiently small grid (with a small cell size). This leads to the drawback of a substantial increase of computation time. Therefore, for the calculations of complex problems it is reasonable to use the method of Adaptive Mesh Refinement. That is, the grid refinement is performed only in the areas of interest of the structure, where, e.g., the shock waves are generated, or a complex geometry or other such features exist. Thus, the computing time is greatly reduced. In addition, the execution of the application on the resulting sequence of nested, decreasing nets can be parallelized. Proposed algorithm is based on the AMR method. Utilization of AMR method can significantly improve the resolution of the difference grid in areas of high interest, and from other side to accelerate the processes of the multi-dimensional problems calculating. Parallel algorithms of the analyzed difference models realized for the purpose of calculations on graphic processors using the CUDA technology [1].
Extracting attosecond delays from spectrally overlapping interferograms
NASA Astrophysics Data System (ADS)
Jordan, Inga; Wörner, Hans Jakob
2018-02-01
Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.
Online Information Search Performance and Search Strategies in a Health Problem-Solving Scenario.
Sharit, Joseph; Taha, Jessica; Berkowsky, Ronald W; Profita, Halley; Czaja, Sara J
2015-01-01
Although access to Internet health information can be beneficial, solving complex health-related problems online is challenging for many individuals. In this study, we investigated the performance of a sample of 60 adults ages 18 to 85 years in using the Internet to resolve a relatively complex health information problem. The impact of age, Internet experience, and cognitive abilities on measures of search time, amount of search, and search accuracy was examined, and a model of Internet information seeking was developed to guide the characterization of participants' search strategies. Internet experience was found to have no impact on performance measures. Older participants exhibited longer search times and lower amounts of search but similar search accuracy performance as their younger counterparts. Overall, greater search accuracy was related to an increased amount of search but not to increased search duration and was primarily attributable to higher cognitive abilities, such as processing speed, reasoning ability, and executive function. There was a tendency for those who were younger, had greater Internet experience, and had higher cognitive abilities to use a bottom-up (i.e., analytic) search strategy, although use of a top-down (i.e., browsing) strategy was not necessarily unsuccessful. Implications of the findings for future studies and design interventions are discussed.
Online Information Search Performance and Search Strategies in a Health Problem-Solving Scenario
Sharit, Joseph; Taha, Jessica; Berkowsky, Ronald W.; Profita, Halley; Czaja, Sara J.
2017-01-01
Although access to Internet health information can be beneficial, solving complex health-related problems online is challenging for many individuals. In this study, we investigated the performance of a sample of 60 adults ages 18 to 85 years in using the Internet to resolve a relatively complex health information problem. The impact of age, Internet experience, and cognitive abilities on measures of search time, amount of search, and search accuracy was examined, and a model of Internet information seeking was developed to guide the characterization of participants’ search strategies. Internet experience was found to have no impact on performance measures. Older participants exhibited longer search times and lower amounts of search but similar search accuracy performance as their younger counterparts. Overall, greater search accuracy was related to an increased amount of search but not to increased search duration and was primarily attributable to higher cognitive abilities, such as processing speed, reasoning ability, and executive function. There was a tendency for those who were younger, had greater Internet experience, and had higher cognitive abilities to use a bottom-up (i.e., analytic) search strategy, although use of a top-down (i.e., browsing) strategy was not necessarily unsuccessful. Implications of the findings for future studies and design interventions are discussed. PMID:29056885
Mind-to-paper is an effective method for scientific writing.
Rosenberg, Jacob; Burcharth, Jakob; Pommergaard, Hans Christian; Danielsen, Anne Kjærgaard
2013-03-01
The problem of initiating the writing process is a well-known phenomenon, especially for young and inexperienced scientists. The purpose of this paper is to present an effective method to overcome this problem and increase writing efficiency among inexperienced scientists. Twelve young scientists within the medical/surgical fields were introduced to the mind-to-paper concept. The first and last article drafts produced by each of the scientists were scored for language complexity (LIX number, Flesch Reading Ease Scale and Gunning Fog), flow, structure, length and use of references; and the results were compared. All participants produced one full article draft during each of the three dictation days. When comparing the first and last article draft regarding time used, no significant difference was detected. In general, the manuscripts were of high quality on all evaluated parameters, but language complexity had increased in the final manuscript. Mind-to-paper dictation for scientific writing is an effective method for production of scientific papers of good initial quality, even when used for the first time by inexperienced scientists. We conclude that practicing this concept produces papers of an adequate language complexity, and that dictation as a writing tool allows for fast transfer of ideas and thoughts to written text. not relevant. not relevant.
ERIC Educational Resources Information Center
Eseryel, Deniz; Ge, Xun; Ifenthaler, Dirk; Law, Victor
2011-01-01
Following a design-based research framework, this article reports two empirical studies with an educational MMOG, called "McLarin's Adventures," on facilitating 9th-grade students' complex problem-solving skill acquisition in interdisciplinary STEM education. The article discusses the nature of complex and ill-structured problem solving…
ERIC Educational Resources Information Center
Goode, Natassia; Beckmann, Jens F.
2010-01-01
This study investigates the relationships between structural knowledge, control performance and fluid intelligence in a complex problem solving (CPS) task. 75 participants received either complete, partial or no information regarding the underlying structure of a complex problem solving task, and controlled the task to reach specific goals.…
Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN
NASA Astrophysics Data System (ADS)
Talbot, Paul W.
As experiment complexity in fields such as nuclear engineering continually increases, so does the demand for robust computational methods to simulate them. In many simulations, input design parameters and intrinsic experiment properties are sources of uncertainty. Often small perturbations in uncertain parameters have significant impact on the experiment outcome. For instance, in nuclear fuel performance, small changes in fuel thermal conductivity can greatly affect maximum stress on the surrounding cladding. The difficulty quantifying input uncertainty impact in such systems has grown with the complexity of numerical models. Traditionally, uncertainty quantification has been approached using random sampling methods like Monte Carlo. For some models, the input parametric space and corresponding response output space is sufficiently explored with few low-cost calculations. For other models, it is computationally costly to obtain good understanding of the output space. To combat the expense of random sampling, this research explores the possibilities of using advanced methods in Stochastic Collocation for generalized Polynomial Chaos (SCgPC) as an alternative to traditional uncertainty quantification techniques such as Monte Carlo (MC) and Latin Hypercube Sampling (LHS) methods for applications in nuclear engineering. We consider traditional SCgPC construction strategies as well as truncated polynomial spaces using Total Degree and Hyperbolic Cross constructions. We also consider applying anisotropy (unequal treatment of different dimensions) to the polynomial space, and offer methods whereby optimal levels of anisotropy can be approximated. We contribute development to existing adaptive polynomial construction strategies. Finally, we consider High-Dimensional Model Reduction (HDMR) expansions, using SCgPC representations for the subspace terms, and contribute new adaptive methods to construct them. We apply these methods on a series of models of increasing complexity. We use analytic models of various levels of complexity, then demonstrate performance on two engineering-scale problems: a single-physics nuclear reactor neutronics problem, and a multiphysics fuel cell problem coupling fuels performance and neutronics. Lastly, we demonstrate sensitivity analysis for a time-dependent fuels performance problem. We demonstrate the application of all the algorithms in RAVEN, a production-level uncertainty quantification framework.
A simple encoding method for Sigma-Delta ADC based biopotential acquisition systems.
Guerrero, Federico N; Spinelli, Enrique M
2017-10-01
Sigma Delta analogue-to-digital converters allow acquiring the full dynamic range of biomedical signals at the electrodes, resulting in less complex hardware and increased measurement robustness. However, the increased data size per sample (typically 24 bits) demands the transmission of extremely large volumes of data across the isolation barrier, thus increasing power consumption on the patient side. This problem is accentuated when a large number of channels is used as in current 128-256 electrodes biopotential acquisition systems, that usually opt for an optic fibre link to the computer. An analogous problem occurs for simpler low-power acquisition platforms that transmit data through a wireless link to a computing platform. In this paper, a low-complexity encoding method is presented to decrease sample data size without losses, while preserving the full DC-coupled signal. The method achieved a 2.3 average compression ratio evaluated over an ECG and EMG signal bank acquired with equipment based on Sigma-Delta converters. It demands a very low processing load: a C language implementation is presented that resulted in an 110 clock cycles average execution on an 8-bit microcontroller.
A restricted Steiner tree problem is solved by Geometric Method II
NASA Astrophysics Data System (ADS)
Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu
2013-03-01
The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.
Rights of Privacy and Research Needs: A Problem Whose Time Has Arrived.
ERIC Educational Resources Information Center
Hayman, John L. Jr.
There is no more fundamental right in our system than the right of privacy--the right to be let alone. Current trends lead to a major assault on this right, and one of the great tests of the viability of our system is its ability to preserve this right in the face of increasing complexity and increasing needs for control. As part of the scientific…
Contractors on the Battlefield: Resolving the Remaining Policy Issues
2010-05-01
solutions to increasingly complex problems associated with the delivery of public services—a responsibility increasingly shared by both sectors. Operating...Commission on Wartime Contracting issued its first interim report and shared its findings in a hearing before the House Subcommittee on National Security...engendered some unhealthy trends of which one is the in- bred and isolated nature of the defense market it has created: During the forty years of the
Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems
NASA Technical Reports Server (NTRS)
Dahl, Milo D. (Editor)
2004-01-01
This publication contains the proceedings of the Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems. In this workshop, as in previous workshops, the problems were devised to gauge the technological advancement of computational techniques to calculate all aspects of sound generation and propagation in air directly from the fundamental governing equations. A variety of benchmark problems have been previously solved ranging from simple geometries with idealized acoustic conditions to test the accuracy and effectiveness of computational algorithms and numerical boundary conditions; to sound radiation from a duct; to gust interaction with a cascade of airfoils; to the sound generated by a separating, turbulent viscous flow. By solving these and similar problems, workshop participants have shown the technical progress from the basic challenges to accurate CAA calculations to the solution of CAA problems of increasing complexity and difficulty. The fourth CAA workshop emphasized the application of CAA methods to the solution of realistic problems. The workshop was held at the Ohio Aerospace Institute in Cleveland, Ohio, on October 20 to 22, 2003. At that time, workshop participants presented their solutions to problems in one or more of five categories. Their solutions are presented in this proceedings along with the comparisons of their solutions to the benchmark solutions or experimental data. The five categories for the benchmark problems were as follows: Category 1:Basic Methods. The numerical computation of sound is affected by, among other issues, the choice of grid used and by the boundary conditions. Category 2:Complex Geometry. The ability to compute the sound in the presence of complex geometric surfaces is important in practical applications of CAA. Category 3:Sound Generation by Interacting With a Gust. The practical application of CAA for computing noise generated by turbomachinery involves the modeling of the noise source mechanism as a vortical gust interacting with an airfoil. Category 4:Sound Transmission and Radiation. Category 5:Sound Generation in Viscous Problems. Sound is generated under certain conditions by a viscous flow as the flow passes an object or a cavity.
ERIC Educational Resources Information Center
Scherer, Ronny; Tiemann, Rudiger
2012-01-01
The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…
ERIC Educational Resources Information Center
Blackburn, J. Joey; Robinson, J. Shane
2016-01-01
The purpose of this experimental study was to assess the effects of cognitive style, problem complexity, and hypothesis generation on the problem solving ability of school-based agricultural education students. Problem solving ability was defined as time to solution. Kirton's Adaption-Innovation Inventory was employed to assess students' cognitive…
Multichromosomal median and halving problems under different genomic distances
Tannier, Eric; Zheng, Chunfang; Sankoff, David
2009-01-01
Background Genome median and genome halving are combinatorial optimization problems that aim at reconstructing ancestral genomes as well as the evolutionary events leading from the ancestor to extant species. Exploring complexity issues is a first step towards devising efficient algorithms. The complexity of the median problem for unichromosomal genomes (permutations) has been settled for both the breakpoint distance and the reversal distance. Although the multichromosomal case has often been assumed to be a simple generalization of the unichromosomal case, it is also a relaxation so that complexity in this context does not follow from existing results, and is open for all distances. Results We settle here the complexity of several genome median and halving problems, including a surprising polynomial result for the breakpoint median and guided halving problems in genomes with circular and linear chromosomes, showing that the multichromosomal problem is actually easier than the unichromosomal problem. Still other variants of these problems are NP-complete, including the DCJ double distance problem, previously mentioned as an open question. We list the remaining open problems. Conclusion This theoretical study clears up a wide swathe of the algorithmical study of genome rearrangements with multiple multichromosomal genomes. PMID:19386099
The 2-D magnetotelluric inverse problem solved with optimization
NASA Astrophysics Data System (ADS)
van Beusekom, Ashley E.; Parker, Robert L.; Bank, Randolph E.; Gill, Philip E.; Constable, Steven
2011-02-01
The practical 2-D magnetotelluric inverse problem seeks to determine the shallow-Earth conductivity structure using finite and uncertain data collected on the ground surface. We present an approach based on using PLTMG (Piecewise Linear Triangular MultiGrid), a special-purpose code for optimization with second-order partial differential equation (PDE) constraints. At each frequency, the electromagnetic field and conductivity are treated as unknowns in an optimization problem in which the data misfit is minimized subject to constraints that include Maxwell's equations and the boundary conditions. Within this framework it is straightforward to accommodate upper and lower bounds or other conditions on the conductivity. In addition, as the underlying inverse problem is ill-posed, constraints may be used to apply various kinds of regularization. We discuss some of the advantages and difficulties associated with using PDE-constrained optimization as the basis for solving large-scale nonlinear geophysical inverse problems. Combined transverse electric and transverse magnetic complex admittances from the COPROD2 data are inverted. First, we invert penalizing size and roughness giving solutions that are similar to those found previously. In a second example, conventional regularization is replaced by a technique that imposes upper and lower bounds on the model. In both examples the data misfit is better than that obtained previously, without any increase in model complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Canhai; Xu, Zhijie; Pan, Wenxiao
2016-01-01
To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesianmore » calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.« less
Environmental influences on neural systems of relational complexity
Kalbfleisch, M. Layne; deBettencourt, Megan T.; Kopperman, Rebecca; Banasiak, Meredith; Roberts, Joshua M.; Halavi, Maryam
2013-01-01
Constructivist learning theory contends that we construct knowledge by experience and that environmental context influences learning. To explore this principle, we examined the cognitive process relational complexity (RC), defined as the number of visual dimensions considered during problem solving on a matrix reasoning task and a well-documented measure of mature reasoning capacity. We sought to determine how the visual environment influences RC by examining the influence of color and visual contrast on RC in a neuroimaging task. To specify the contributions of sensory demand and relational integration to reasoning, our participants performed a non-verbal matrix task comprised of color, no-color line, or black-white visual contrast conditions parametrically varied by complexity (relations 0, 1, 2). The use of matrix reasoning is ecologically valid for its psychometric relevance and for its potential to link the processing of psychophysically specific visual properties with various levels of RC during reasoning. The role of these elements is important because matrix tests assess intellectual aptitude based on these seemingly context-less exercises. This experiment is a first step toward examining the psychophysical underpinnings of performance on these types of problems. The importance of this is increased in light of recent evidence that intelligence can be linked to visual discrimination. We submit three main findings. First, color and black-white visual contrast (BWVC) add demand at a basic sensory level, but contributions from color and from BWVC are dissociable in cortex such that color engages a “reasoning heuristic” and BWVC engages a “sensory heuristic.” Second, color supports contextual sense-making by boosting salience resulting in faster problem solving. Lastly, when visual complexity reaches 2-relations, color and visual contrast relinquish salience to other dimensions of problem solving. PMID:24133465
2017-01-01
This work focuses on the design of transmitting coils in weakly coupled magnetic induction communication systems. We propose several optimization methods that reduce the active, reactive and apparent power consumption of the coil. These problems are formulated as minimization problems, in which the power consumed by the transmitting coil is minimized, under the constraint of providing a required magnetic field at the receiver location. We develop efficient numeric and analytic methods to solve the resulting problems, which are of high dimension, and in certain cases non-convex. For the objective of minimal reactive power an analytic solution for the optimal current distribution in flat disc transmitting coils is provided. This problem is extended to general three-dimensional coils, for which we develop an expression for the optimal current distribution. Considering the objective of minimal apparent power, a method is developed to reduce the computational complexity of the problem by transforming it to an equivalent problem of lower dimension, allowing a quick and accurate numeric solution. These results are verified experimentally by testing a number of coil geometries. The results obtained allow reduced power consumption and increased performances in magnetic induction communication systems. Specifically, for wideband systems, an optimal design of the transmitter coil reduces the peak instantaneous power provided by the transmitter circuitry, and thus reduces its size, complexity and cost. PMID:28192463
NASA Technical Reports Server (NTRS)
Kumar, A.; Rudy, D. H.; Drummond, J. P.; Harris, J. E.
1982-01-01
Several two- and three-dimensional external and internal flow problems solved on the STAR-100 and CYBER-203 vector processing computers are described. The flow field was described by the full Navier-Stokes equations which were then solved by explicit finite-difference algorithms. Problem results and computer system requirements are presented. Program organization and data base structure for three-dimensional computer codes which will eliminate or improve on page faulting, are discussed. Storage requirements for three-dimensional codes are reduced by calculating transformation metric data in each step. As a result, in-core grid points were increased in number by 50% to 150,000, with a 10% execution time increase. An assessment of current and future machine requirements shows that even on the CYBER-205 computer only a few problems can be solved realistically. Estimates reveal that the present situation is more storage limited than compute rate limited, but advancements in both storage and speed are essential to realistically calculate three-dimensional flow.
Slater, Louise
2015-01-01
The increase in substance use which occurred in the 1980s was disproportionately large among women of reproductive age, so both the numbers of women who use drugs and the duration of drug use have increased (Hepburn 2004). While drug use occurs throughout society, the type and pattern of drug use that is associated with medical and social problems is closely associated with socio-economic deprivation. Socio-economic deprivation is in turn associated with unhealthy lifestyles and behaviours such as smoking and poor diet. Deprivation, associated lifestyles and substance use adversely affect the health of mother and baby, so the effects are cumulative. Consequently women with problem drug and/or alcohol use have potentially complex pregnancies (Hepburn 2004).
McCauley, Jenna L; Killeen, Therese; Gros, Daniel F.; Brady, Kathleen T.; Back, Sudie E.
2013-01-01
Posttraumatic stress disorder (PTSD) and substance use disorders (SUDs) are prevalent and frequently co-occur. Comorbid PTSD/SUD is associated with a more complex and costly clinical course when compared with either disorder alone, including increased chronic physical health problems, poorer social functioning, higher rates of suicide attempts, more legal problems, increased risk of violence, worse treatment adherence, and less improvement during treatment. In response, psychosocial treatment options have increased substantially over the past decade and integrated approaches – treatments that address symptoms of both PTSD and SUD concurrently –are fast becoming the preferred model for treatment. This paper reviews the prevalence, etiology and assessment practices as well as advances in the behavioral and pharmacologic treatment of comorbid PTSD and SUDs. PMID:24179316
Actuator Placement Via Genetic Algorithm for Aircraft Morphing
NASA Technical Reports Server (NTRS)
Crossley, William A.; Cook, Andrea M.
2001-01-01
This research continued work that began under the support of NASA Grant NAG1-2119. The focus of this effort was to continue investigations of Genetic Algorithm (GA) approaches that could be used to solve an actuator placement problem by treating this as a discrete optimization problem. In these efforts, the actuators are assumed to be "smart" devices that change the aerodynamic shape of an aircraft wing to alter the flow past the wing, and, as a result, provide aerodynamic moments that could provide flight control. The earlier work investigated issued for the problem statement, developed the appropriate actuator modeling, recognized the importance of symmetry for this problem, modified the aerodynamic analysis routine for more efficient use with the genetic algorithm, and began a problem size study to measure the impact of increasing problem complexity. The research discussed in this final summary further investigated the problem statement to provide a "combined moment" problem statement to simultaneously address roll, pitch and yaw. Investigations of problem size using this new problem statement provided insight into performance of the GA as the number of possible actuator locations increased. Where previous investigations utilized a simple wing model to develop the GA approach for actuator placement, this research culminated with application of the GA approach to a high-altitude unmanned aerial vehicle concept to demonstrate that the approach is valid for an aircraft configuration.
A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network
NASA Astrophysics Data System (ADS)
Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.
A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the simplified model, and then optimized the embattling of ground-based radar surveillance network with the artificial intelligent algorithm, which can greatly simplifies the computational complexities. Comparing with the traditional method, the proposed method greatly improved the computational efficiency.
Tien, Kai-Wen; Kulvatunyou, Boonserm; Jung, Kiwook; Prabhu, Vittaldas
2017-01-01
As cloud computing is increasingly adopted, the trend is to offer software functions as modular services and compose them into larger, more meaningful ones. The trend is attractive to analytical problems in the manufacturing system design and performance improvement domain because 1) finding a global optimization for the system is a complex problem; and 2) sub-problems are typically compartmentalized by the organizational structure. However, solving sub-problems by independent services can result in a sub-optimal solution at the system level. This paper investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization of loosely-coupled sub-problems, each may be modularly formulated by differing departments and be solved by modular analytical services. The result demonstrates that ATC is a promising method in that it offers system-level optimal solutions that can scale up by exploiting distributed and modular executions while allowing easier management of the problem formulation.
NASA Astrophysics Data System (ADS)
Izquierdo, Joaquín; Montalvo, Idel; Campbell, Enrique; Pérez-García, Rafael
2016-08-01
Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.
NASA Technical Reports Server (NTRS)
Garcia, F., Jr.
1975-01-01
This paper presents a solution to a complex lifting reentry three-degree-of-freedom problem by using the calculus of variations to minimize the integral of the sum of the aerodynamics loads and heat rate input to the vehicle. The entry problem considered does not have state and/or control constraints along the trajectory. The calculus of variations method applied to this problem gives rise to a set of necessary conditions which are used to formulate a two point boundary value (TPBV) problem. This TPBV problem is then numerically solved by an improved method of perturbation functions (IMPF) using several starting co-state vectors. These vectors were chosen so that each one had a larger norm with respect to show how the envelope of convergence is significantly increased using this method and cases are presented to point this out.
Advanced Techniques for Ultrasonic Imaging in the Presence of Material and Geometrical Complexity
NASA Astrophysics Data System (ADS)
Brath, Alexander Joseph
The complexity of modern engineering systems is increasing in several ways: advances in materials science are leading to the design of materials which are optimized for material strength, conductivity, temperature resistance etc., leading to complex material microstructure; the combination of additive manufacturing and shape optimization algorithms are leading to components with incredibly intricate geometrical complexity; and engineering systems are being designed to operate at larger scales in ever harsher environments. As a result, at the same time that there is an increasing need for reliable and accurate defect detection and monitoring capabilities, many of the currently available non-destructive evaluation techniques are rendered ineffective by this increasing material and geometrical complexity. This thesis addresses the challenges posed by inspection and monitoring problems in complex engineering systems with a three-part approach. In order to address material complexities, a model of wavefront propagation in anisotropic materials is developed, along with efficient numerical techniques to solve for the wavefront propagation in inhomogeneous, anisotropic material. Since material and geometrical complexities significantly affect the ability of ultrasonic energy to penetrate into the specimen, measurement configurations are tailored to specific applications which utilize arrays of either piezoelectric (PZT) or electromagnetic acoustic transducers (EMAT). These measurement configurations include novel array architectures as well as the exploration of ice as an acoustic coupling medium. Imaging algorithms which were previously developed for isotropic materials with simple geometry are adapted to utilize the more powerful wavefront propagation model and novel measurement configurations.
Stewart, Simon; Riegel, Barbara; Thompson, David R
2016-02-01
There is clear evidence across the globe that the clinical complexity of patients presenting to hospital with the syndrome of heart failure is increasing - not only in terms of the presence of concurrent disease states, but with additional socio-demographic risk factors that complicate treatment. Management strategies that treat heart failure as the main determinant of health outcomes ignores the multiple and complex issues that will inevitably erode the efficacy and efficiency of current heart failure management programmes. This complex problem (or conundrum) requires a different way of thinking around the complex interactions that underpin poor outcomes in heart failure. In this context, we present the COordinated NUrse-led inteNsified Disease management for continuity of caRe for mUltiMorbidity in Heart Failure (CONUNDRUM-HF) matrix that may well inform future research and models of care to achieve better health outcomes in this rapidly increasing patient population. © The European Society of Cardiology 2015.
Cape, John; Morris, Elena; Burd, Mary; Buszewicz, Marta
2008-01-01
Background How GPs understand mental health problems determines their treatment choices; however, measures describing GPs' thinking about such problems are not currently available. Aim To develop a measure of the complexity of GP explanations of common mental health problems and to pilot its reliability and validity. Design of study A qualitative development of the measure, followed by inter-rater reliability and validation pilot studies. Setting General practices in North London. Method Vignettes of simulated consultations with patients with mental health problems were videotaped, and an anchored measure of complexity of psychosocial explanation in response to these vignettes was developed. Six GPs, four psychologists, and two lay people viewed the vignettes. Their responses were rated for complexity, both using the anchored measure and independently by two experts in primary care mental health. In a second reliability and revalidation study, responses of 50 GPs to two vignettes were rated for complexity. The GPs also completed a questionnaire to determine their interest and training in mental health, and they completed the Depression Attitudes Questionnaire. Results Inter-rater reliability of the measure of complexity of explanation in both pilot studies was satisfactory (intraclass correlation coefficient = 0.78 and 0.72). The measure correlated with expert opinion as to what constitutes a complex explanation, and the responses of psychologists, GPs, and lay people differed in measured complexity. GPs with higher complexity scores had greater interest, more training in mental health, and more positive attitudes to depression. Conclusion Results suggest that the complexity of GPs' psychosocial explanations about common mental health problems can be reliably and validly assessed by this new standardised measure. PMID:18505616
Van Guyse, Joachim F R; de la Rosa, Victor R; Hoogenboom, Richard
2018-02-21
Buckminster fullerene (C 60 )'s main hurdle to enter the field of biomedicine is its low bioavailability, which results from its extremely low water solubility. A well-known approach to increase the water solubility of C 60 is by complexation with γ-cyclodextrins. However, the formed complexes are not stable in time as they rapidly aggregate and eventually precipitate due to attractive intermolecular forces, a common problem in inclusion complexes of cyclodextrins. In this study we attempt to overcome the attractive intermolecular forces between the complexes by designing custom γ-cyclodextrin (γCD)-based supramolecular hosts for C 60 that inhibit the aggregation found in native γCD-C 60 complexes. The approach entails the introduction of either repulsive electrostatic forces or increased steric hindrance to prevent aggregation, thus enhancing the biomedical application potential of C 60 . These modifications have led to new sub-100 nm nanostructures that show long-term stability in solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Develaki, Maria
2008-09-01
In view of the complex problems of this age, the question of the socio-ethical dimension of science acquires particular importance. We approach this matter from a philosophical and sociological standpoint, looking at such focal concerns as the motivation, purposes and methods of scientific activity, the ambivalence of scientific research and the concomitant risks, and the conflict between research freedom and external socio-political intervention. We then point out the impediments to the effectiveness of cross-disciplinary or broader meetings for addressing these complex problems and managing the associated risks, given the difficulty in communication between experts in different fields and non-experts, difficulties that education is challenged to help resolve. We find that the social necessity of informed decision-making on the basis of cross-disciplinary collaboration is reflected in the newer curricula, such as that of Greece, in aims like the acquisition of cross-subject knowledge and skills, and the ability to make decisions on controversial issues involving value conflicts. The interest and the reflections of the science education community in these matters increase its—traditionally limited—contribution to the theoretical debate on education and, by extension, the value of science education in the education system.
Clinical Problem Analysis (CPA): A Systematic Approach To Teaching Complex Medical Problem Solving.
ERIC Educational Resources Information Center
Custers, Eugene J. F. M.; Robbe, Peter F. De Vries; Stuyt, Paul M. J.
2000-01-01
Discusses clinical problem analysis (CPA) in medical education, an approach to solving complex clinical problems. Outlines the five step CPA model and examines the value of CPA's content-independent (methodical) approach. Argues that teaching students to use CPA will enable them to avoid common diagnostic reasoning errors and pitfalls. Compares…
Predicting Development of Mathematical Word Problem Solving Across the Intermediate Grades
Tolar, Tammy D.; Fuchs, Lynn; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.
2012-01-01
This study addressed predictors of the development of word problem solving (WPS) across the intermediate grades. At beginning of 3rd grade, 4 cohorts of students (N = 261) were measured on computation, language, nonverbal reasoning skills, and attentive behavior and were assessed 4 times from beginning of 3rd through end of 5th grade on 2 measures of WPS at low and high levels of complexity. Language skills were related to initial performance at both levels of complexity and did not predict growth at either level. Computational skills had an effect on initial performance in low- but not high-complexity problems and did not predict growth at either level of complexity. Attentive behavior did not predict initial performance but did predict growth in low-complexity, whereas it predicted initial performance but not growth for high-complexity problems. Nonverbal reasoning predicted initial performance and growth for low-complexity WPS, but only growth for high-complexity WPS. This evidence suggests that although mathematical structure is fixed, different cognitive resources may act as limiting factors in WPS development when the WPS context is varied. PMID:23325985
Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks
NASA Astrophysics Data System (ADS)
Din, Der-Rong; Huang, Jen-Shen
2014-03-01
As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.
Privacy preserving processing of genomic data: A survey.
Akgün, Mete; Bayrak, A Osman; Ozer, Bugra; Sağıroğlu, M Şamil
2015-08-01
Recently, the rapid advance in genome sequencing technology has led to production of huge amount of sensitive genomic data. However, a serious privacy challenge is confronted with increasing number of genetic tests as genomic data is the ultimate source of identity for humans. Lately, privacy threats and possible solutions regarding the undesired access to genomic data are discussed, however it is challenging to apply proposed solutions to real life problems due to the complex nature of security definitions. In this review, we have categorized pre-existing problems and corresponding solutions in more understandable and convenient way. Additionally, we have also included open privacy problems coming with each genomic data processing procedure. We believe our classification of genome associated privacy problems will pave the way for linking of real-life problems with previously proposed methods. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Steen-Eibensteiner, Janice Lee
2006-07-01
A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.
Complex Problem Solving in a Workplace Setting.
ERIC Educational Resources Information Center
Middleton, Howard
2002-01-01
Studied complex problem solving in the hospitality industry through interviews with six office staff members and managers. Findings show it is possible to construct a taxonomy of problem types and that the most common approach can be termed "trial and error." (SLD)
Insight and analysis problem solving in microbes to machines.
Clark, Kevin B
2015-11-01
A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
George, Kerry; Wu, Honglu; Willingham, Veronica; Cucinotta, Francis A.
2002-01-01
High-LET radiation is more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. To investigate if complex chromosome exchanges are induced by the high-LET component of space radiation exposure, damage was assessed in astronauts' blood lymphocytes before and after long duration missions of 3-4 months. The frequency of simple translocations increased significantly for most of the crewmembers studied. However, there were few complex exchanges detected and only one crewmember had a significant increase after flight. It has been suggested that the yield of complex chromosome damage could be underestimated when analyzing metaphase cells collected at one time point after irradiation, and analysis of chemically-induced PCC may be more accurate since problems with complicated cell-cycle delays are avoided. However, in this case the yields of chromosome damage were similar for metaphase and PCC analysis of astronauts' lymphocytes. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.
Continuing Education as a National Capital Investment.
ERIC Educational Resources Information Center
Striner, Herbert E.
The constant readjustment that is necessary in a socially and economically complex society is discussed. The point is made that in recent years the United States has been confronted by an increasingly urgent series of economic problems. Intractably high levels of unemployment have accompanied abnormally high levels of inflation. It is also pointed…
An Assessment of Six School-Based Clinics: Services, Impact and Potential.
ERIC Educational Resources Information Center
Kirby, Douglas; And Others
For two decades, school-based clinics have been providing basic health care to medically underserved teenagers and addressing the increasingly complex health and social problems facing young people, particularly unintended pregnancy. Today there are 150 school-based clinics operating in most major cities and many rural areas. In 1984, the Center…
Creativity and Innovation: Theory, Research, and Practice
ERIC Educational Resources Information Center
Plucker, Jonathan A., Ed.
2016-01-01
Creativity and innovation are frequently mentioned as key 21st-century skills for career and life success. Indeed, recent research provides evidence that the jobs of the future will increasingly require the ability to bring creative solutions to complex problems. And creativity is often the spice of life, that little extra something that makes the…
Information and knowledge management in support of sustainable forestry: a review
H. Michael Rauscher; Daniel L. Schmoldt; Harald Vacik
2007-01-01
For individuals, organizations and nations, success and even survival depend upon making good decisions. Doing so can be extremely difficult when problems are not well structured and situations are complex, as they are for natural resource management. Recent advances in computer technology coupled with the increase in accessibility brought about by the...
A Semantic Navigation Model for Video Games
NASA Astrophysics Data System (ADS)
van Driel, Leonard; Bidarra, Rafael
Navigational performance of artificial intelligence (AI) characters in computer games is gaining an increasingly important role in the perception of their behavior. While recent games successfully solve some complex navigation problems, there is little known or documented on the underlying approaches, often resembling a primitive conglomerate of ad-hoc algorithms for specific situations.
ERIC Educational Resources Information Center
Sinclair, Brian R.
2009-01-01
Modern design and planning are routinely confounded by endemic conditions of deep fragmentation, rampant bureaucratization, and ineffective regulation. Such barriers hamper our ability to succeed in the execution of responsive, responsible, and superb ventures. Added to the mix are cost escalation, outdated technologies, cumbersome techniques,…
ERIC Educational Resources Information Center
Simpson, Amber; Bannister, Nicole; Matthews, Gretchen
2017-01-01
There is a positive relationship between student participation in computer-supported collaborative learning (CSCL) environments and improved complex problem-solving strategies, increased learning gains, higher engagement in the thinking of their peers, and an enthusiastic disposition toward groupwork. However, student participation varies from…
Mixed Methods Research: What Are the Key Issues to Consider?
ERIC Educational Resources Information Center
Ghosh, Rajashi
2016-01-01
Mixed methods research (MMR) is increasingly becoming a popular methodological approach in several fields due to the promise it holds for comprehensive understanding of complex problems being researched. However, researchers interested in MMR often lack reference to a guide that can explain the key issues pertaining to the paradigm wars…
Hot Water and Warm Homes from Sunlight. Teacher's Guide.
ERIC Educational Resources Information Center
Gould, Alan
A basic understanding of the potential of solar energy is increasingly relevant given the pollution caused by the burning of fossil fuel, health problems associated with that pollution, the possibility of global warming, and the complex issues raised by the dependence of industrialized nations on oil and natural gas. This teacher's guide presents…
Intruder or Resource? The Family's Influence in College Counseling Centers
ERIC Educational Resources Information Center
Haber, Russell; Merck, Rhea A.
2010-01-01
College can provide a transition from interdependence to differentiation in the family. With recent trends and legal cases that document increasing complexity and severity of mental health problems in college, it is important to consider the family as a partner in the therapeutic process. This article delineates a rationale, guidelines, and…
The First Step in Educational Problem Solving---A Systematic Assessment of Student Benefits.
ERIC Educational Resources Information Center
Sweigert, Ray L., Jr.
The limitations on educational resources and the increasing complexity in all phases of social organization demand that the educational process become more efficient and effective. A strong opinion among educators suggests that students can learn faster if the educational forces are applied systematically. To achieve this goal, learning objectives…
Integrating ecological and social knowledge: learning from CHANS research
Bruce Shindler; Thomas A. Spies; John P. Bolte; Jeffrey D. Kline
2017-01-01
Scientists are increasingly called upon to integrate across ecological and social disciplines to tackle complex coupled human and natural system (CHANS) problems. Integration of these disciplines is challenging and many scientists do not have experience with large integrated research projects. However, much can be learned about the complicated process of integration...
Chronic Hepatitis C Infection in a Rural Medicaid HMO
ERIC Educational Resources Information Center
Calvert Jr., James F.; Goldenberg, Paula C.; Schock, Cathy
2005-01-01
Chronic hepatitis C infection (CHCI) is an increasingly common problem, affecting about 2% of the US population. The cost and complexity of treatment and difficulties in communicating with the infected population are of concern to insurers and health planners. Purpose: To describe the clinical features of patients with CHCI in a rural…
Guide to Population Issues for Students and Teachers [and] Curriculum Guide.
ERIC Educational Resources Information Center
Facing the Future, Lopez Island, WA.
As the world grapples with increasing environmental, social, and security problems, population is rarely considered a cause or contributing factor. The relationship of population to the human condition, and to the condition of the Earth, is often subtle and complex. But population growth affects almost every aspect of life from education to…
An Ethical Exercise for the Social Studies Classroom: The Trolley Dilemma
ERIC Educational Resources Information Center
Lennon, Sean M.; Byford, Jeffrey M.; Cox, J. T.
2015-01-01
The Trolley Problem as defined in this paper is a series, or continuation, of increasingly difficult ethical riddles successfully implemented in a classroom environment to spur complex, critical thinking and dialogue. The activity is designed upon the scenario of a runaway train with different and challenging choices, segueing neatly into group…
Infusing Ethics into the Development of Engineers: Exemplary Education Activities and Programs
ERIC Educational Resources Information Center
National Academies Press, 2016
2016-01-01
Ethical practice in engineering is critical for ensuring public trust in the field and in its practitioners, especially as engineers increasingly tackle international and socially complex problems that combine technical and ethical challenges. This report aims to raise awareness of the variety of exceptional programs and strategies for improving…
Asking for Help: A Relational Perspective on Help Seeking in the Workplace
ERIC Educational Resources Information Center
van der Rijt, Janine; Van den Bossche, Piet; van de Wiel, Margje W. J.; De Maeyer, Sven; Gijselaers, Wim H.; Segers, Mien S. R.
2013-01-01
In the context of the complexity of today's organizations, help seeking behavior is considered as an important step to problem solving and learning in organizations. Yet, help seeking has received less attention in organizational literature. To increase the potential impact of help seeking on learning, it is essential to understand which…
ERIC Educational Resources Information Center
Valencic-Miller, Olivia V.
2017-01-01
Within the educational arena today, leaders face many problems ranging from shifts in governmental mandates and regulations, to increased expectations for teachers and administrators in order to improve academic outcomes. Combining facets of leadership behaviors with organizational changes, the educational arena has become more complex compared to…
"Too Many, Too Much, Too Young": Red Flags on Medications and Troubled Children
ERIC Educational Resources Information Center
Reclaiming Children and Youth, 2012
2012-01-01
This year the Administration on Children, Youth, and Families stated "Children and youth in the child welfare system are increasingly being dosed with psychotropic drugs to manage emotional problems and disruptive behavior that might better be addressed by psychosocial treatments to meet their complex needs." Children with histories of…
Motivating Weak Students: A Critical Discussion and Reflection
ERIC Educational Resources Information Center
Ganah, A.
2012-01-01
The motivation of students is regarded as one of the problems in the higher education. One of the reasons for the increasing number of students with low-level of motivation is that there are many students enrolling in universities without adequate level of preparation. Consequently, because of complex material delivered to students and their low…
Program for Enlightened and Productive Creativity Illustrated with a Moire Patterns Lesson
ERIC Educational Resources Information Center
Yuk, Keun Cheol; Cramond, Bonnie
2006-01-01
Combining both the Western perspective of creativity as productivity and the Eastern perspective of creativity as enlightenment, a Program for Enlightened and Productive Creativity (PEPC) for teaching inquiry was devised. The PEPC describes stages through which a student is guided to solve a problem using increasingly complex observation, inquiry,…
ERIC Educational Resources Information Center
Seth, Anupam
2009-01-01
Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…
Involving Hispanic Parents in Their Children's Education: Strategies that Work
ERIC Educational Resources Information Center
Murray, John Christopher
2012-01-01
The number of Hispanic children entering public schools continues to increase at a staggering pace. With such a change in diversity, educators are struggling with the absence of Hispanic parent involvement in schools. Many teachers consider this lack of parent involvement as uncaring about their children. The problem is much more complex in…
Background/Questions/Methods As interest in continental-scale ecology increases to address large-scale ecological problems, ecologists need indicators of complex processes that can be collected quickly at many sites across large areas. We are exploring the utility of stable isot...
Transformative Sustainability: Learning from Ecological Systems and Indigenous Wisdom
ERIC Educational Resources Information Center
Burns, Heather L.
2015-01-01
Sustainability is becoming increasingly relevant in higher education, as the need to address complex cultural and ecological problems intensifies. How sustainability is taught has a profound influence on the kind of learning that takes place and the impact it has in the world. Sustainability pedagogy is offered as a tool for creating…
Digital Assessment: A Picture Is Worth 1,000 Surveys
ERIC Educational Resources Information Center
Jackson, Michael W.; Rodgers, Jacci L.
2012-01-01
The role of accountability is becoming increasingly complex. Regional, state, programmatic, and national accreditors, as well as the constituents, demand to know why a problem exists, what the underlying causes are, and how schools are going to fix it. From a proactive standpoint, institutions want to delineate, and in some cases are required to…
Citizenship for a Changing Global Climate: Learning from New Zealand and Norway
ERIC Educational Resources Information Center
Hayward, Bronwyn; Selboe, Elin; Plew, Elizabeth
2015-01-01
Young citizens under the age of 25?years make up just under half of the world's population. Globally, they face new, interrelated problems of dangerous environmental change, including increasing incidence of severe storms associated with a changing climate, and related new threats to human security. Addressing the complex challenge of climate…
ERIC Educational Resources Information Center
Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju; Lefler, Mason
2017-01-01
Computer-based scaffolding assists students as they generate solutions to complex problems, goals, or tasks, helping increase and integrate their higher order skills in the process. However, despite decades of research on scaffolding in STEM (science, technology, engineering, and mathematics) education, no existing comprehensive meta-analysis has…
Translating concepts of complexity to the field of ergonomics.
Walker, Guy H; Stanton, Neville A; Salmon, Paul M; Jenkins, Daniel P; Rafferty, Laura
2010-10-01
Since 1958 more than 80 journal papers from the mainstream ergonomics literature have used either the words 'complex' or 'complexity' in their titles. Of those, more than 90% have been published in only the past 20 years. This observation communicates something interesting about the way in which contemporary ergonomics problems are being understood. The study of complexity itself derives from non-linear mathematics but many of its core concepts have found analogies in numerous non-mathematical domains. Set against this cross-disciplinary background, the current paper aims to provide a similar initial mapping to the field of ergonomics. In it, the ergonomics problem space, complexity metrics and powerful concepts such as emergence raise complexity to the status of an important contingency factor in achieving a match between ergonomics problems and ergonomics methods. The concept of relative predictive efficiency is used to illustrate how this match could be achieved in practice. What is clear overall is that a major source of, and solution to, complexity are the humans in systems. Understanding complexity on its own terms offers the potential to leverage disproportionate effects from ergonomics interventions and to tighten up the often loose usage of the term in the titles of ergonomics papers. STATEMENT OF RELEVANCE: This paper reviews and discusses concepts from the study of complexity and maps them to ergonomics problems and methods. It concludes that humans are a major source of and solution to complexity in systems and that complexity is a powerful contingency factor, which should be considered to ensure that ergonomics approaches match the true nature of ergonomics problems.
An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods
NASA Astrophysics Data System (ADS)
Posa, Antonio; Vanella, Marcos; Balaras, Elias
2017-12-01
Lagrangian, direct-forcing, immersed boundary (IB) methods have been receiving increased attention due to their robustness in complex fluid-structure interaction problems. They are very sensitive, however, on the selection of the Lagrangian grid, which is typically used to define a solid or flexible body immersed in a fluid flow. In the present work we propose a cost-efficient solution to this problem without compromising accuracy. Central to our approach is the use of isoparametric mapping to bridge the relative resolution requirements of Lagrangian IB, and Eulerian grids. With this approach, the density of surface Lagrangian markers, which is essential to properly enforce boundary conditions, is adapted dynamically based on the characteristics of the underlying Eulerian grid. The markers are not stored and the Lagrangian data-structure is not modified. The proposed scheme is implemented in the framework of a moving least squares reconstruction formulation, but it can be adapted to any Lagrangian, direct-forcing formulation. The accuracy and robustness of the approach is demonstrated in a variety of test cases of increasing complexity.
de Vries, Jan; Timmins, Fiona
2016-03-01
Care erosion - gradual decline in care level - is an important problem in health care today. Unfortunately, the mechanism whereby it occurs is complex and poorly understood. This paper seeks to address this by emphasising problems in reflective nursing practice. Critical reflection on quality of care which should drive good care instead spawns justifications, denial, and trivialisation of deficient care. This perpetuates increasingly poor care levels. We argue that cognitive dissonance theory provides a highly effective understanding of this process and suggest for this approach to be incorporated in all efforts to address care erosion. The paper includes a detailed discussion of examples and implications for practice, in particular the need to restore critical reflection in nursing, the importance of embracing strong values and standards, and the need for increased awareness of signs of care erosion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Classification of time series patterns from complex dynamic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.C.; Rao, N.
1998-07-01
An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately,more » the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.« less
Dynamic emulation modelling for the optimal operation of water systems: an overview
NASA Astrophysics Data System (ADS)
Castelletti, A.; Galelli, S.; Giuliani, M.
2014-12-01
Despite sustained increase in computing power over recent decades, computational limitations remain a major barrier to the effective and systematic use of large-scale, process-based simulation models in rational environmental decision-making. Whereas complex models may provide clear advantages when the goal of the modelling exercise is to enhance our understanding of the natural processes, they introduce problems of model identifiability caused by over-parameterization and suffer from high computational burden when used in management and planning problems. As a result, increasing attention is now being devoted to emulation modelling (or model reduction) as a way of overcoming these limitations. An emulation model, or emulator, is a low-order approximation of the process-based model that can be substituted for it in order to solve high resource-demanding problems. In this talk, an overview of emulation modelling within the context of the optimal operation of water systems will be provided. Particular emphasis will be given to Dynamic Emulation Modelling (DEMo), a special type of model complexity reduction in which the dynamic nature of the original process-based model is preserved, with consequent advantages in a wide range of problems, particularly feedback control problems. This will be contrasted with traditional non-dynamic emulators (e.g. response surface and surrogate models) that have been studied extensively in recent years and are mainly used for planning purposes. A number of real world numerical experiences will be used to support the discussion ranging from multi-outlet water quality control in water reservoir through erosion/sedimentation rebalancing in the operation of run-off-river power plants to salinity control in lake and reservoirs.
Application of satellite data in variational analysis for global cyclonic systems
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.
1987-01-01
The research goal was a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. This presents a formidable mathematical problem. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity are defined. Each model is summarized.
Moe, Aubrey M; Breitborde, Nicholas J K; Bourassa, Kyle J; Gallagher, Colin J; Shakeel, Mohammed K; Docherty, Nancy M
2018-06-01
Schizophrenia researchers have focused on phenomenological aspects of the disorder to better understand its underlying nature. In particular, development of personal narratives-that is, the complexity with which people form, organize, and articulate their "life stories"-has recently been investigated in individuals with schizophrenia. However, less is known about how aspects of narrative relate to indicators of neurocognitive and social functioning. The objective of the present study was to investigate the association of linguistic complexity of life-story narratives to measures of cognitive and social problem-solving abilities among people with schizophrenia. Thirty-two individuals with a diagnosis of schizophrenia completed a research battery consisting of clinical interviews, a life-story narrative, neurocognitive testing, and a measure assessing multiple aspects of social problem solving. Narrative interviews were assessed for linguistic complexity using computerized technology. The results indicate differential relationships of linguistic complexity and neurocognition to domains of social problem-solving skills. More specifically, although neurocognition predicted how well one could both describe and enact a solution to a social problem, linguistic complexity alone was associated with accurately recognizing that a social problem had occurred. In addition, linguistic complexity appears to be a cognitive factor that is discernible from other broader measures of neurocognition. Linguistic complexity may be more relevant in understanding earlier steps of the social problem-solving process than more traditional, broad measures of cognition, and thus is relevant in conceptualizing treatment targets. These findings also support the relevance of developing narrative-focused psychotherapies. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Applying New Methods to Diagnose Coral Diseases
Kellogg, Christina A.; Zawada, David G.
2009-01-01
Coral disease, one of the major causes of reef degradation and coral death, has been increasing worldwide since the 1970s, particularly in the Caribbean. Despite increased scientific study, simple questions about the extent of disease outbreaks and the causative agents remain unanswered. A component of the U.S. Geological Survey Coral Reef Ecosystem STudies (USGS CREST) project is focused on developing and using new methods to approach the complex problem of coral disease.
Exploring the complexity of inquiry learning in an open-ended problem space
NASA Astrophysics Data System (ADS)
Clarke, Jody
Data-gathering and problem identification are key components of scientific inquiry. However, few researchers have studied how students learn these skills because historically this required a time-consuming, complicated method of capturing the details of learners' data-gathering processes. Nor are classroom settings authentic contexts in which students could exhibit problem identification skills parallel to those involved in deconstructing complex real world situations. In this study of middle school students, because of my access to an innovative technology, I simulated a disease outbreak in a virtual community as a complicated, authentic problem. As students worked through the curriculum in the virtual world, their time-stamped actions were stored by the computer in event-logs. Using these records, I tracked in detail how the student scientists made sense of the complexity they faced and how they identified and investigated the problem using science-inquiry skills. To describe the degree to which students' data collection narrowed and focused on a specific disease over time, I developed a rubric and automated the coding of records in the event-logs. I measured the ongoing development of the students' "systematicity" in investigating the disease outbreak. I demonstrated that coding event-logs is an effective yet non-intrusive way of collecting and parsing detailed information about students' behaviors in real time in an authentic setting. My principal research question was "Do students who are more thoughtful about their inquiry prior to entry into the curriculum demonstrate increased systematicity in their inquiry behavior during the experience, by narrowing the focus of their data-gathering more rapidly than students who enter with lower levels of thoughtfulness about inquiry?" My sample consisted of 403 middle-school students from public schools in the US who volunteered to participate in the River City Project in spring 2008. Contrary to my hypothesis, I found that prior thoughtfulness of inquiry was not a predictor of the subsequent development of systematicity. However, all students did indeed become more systematic in their scientific behavior over time. On average, boys were generally more systematic than girls, but the rates at which systematicity increased with time was identical across the genders.
Complex technology of vacuum-arc processing of structural material surface
NASA Astrophysics Data System (ADS)
Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.
2015-08-01
The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.
Metaphors to Drive By: Exploring New Ways to Guide Human-Robot Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
David J. Bruemmer; David I. Gertman; Curtis W. Nielsen
2007-08-01
Autonomous behaviors created by the research and development community are not being extensively utilized within energy, defense, security, or industrial contexts. This paper provides evidence that the interaction methods used alongside these behaviors may not provide a mental model that can be easily adopted or used by operators. Although autonomy has the potential to reduce overall workload, the use of robot behaviors often increased the complexity of the underlying interaction metaphor. This paper reports our development of new metaphors that support increased robot complexity without passing the complexity of the interaction onto the operator. Furthermore, we illustrate how recognition ofmore » problems in human-robot interactions can drive the creation of new metaphors for design and how human factors lessons in usability, human performance, and our social contract with technology have the potential for enormous payoff in terms of establishing effective, user-friendly robot systems when appropriate metaphors are used.« less
Problem decomposition by mutual information and force-based clustering
NASA Astrophysics Data System (ADS)
Otero, Richard Edward
The scale of engineering problems has sharply increased over the last twenty years. Larger coupled systems, increasing complexity, and limited resources create a need for methods that automatically decompose problems into manageable sub-problems by discovering and leveraging problem structure. The ability to learn the coupling (inter-dependence) structure and reorganize the original problem could lead to large reductions in the time to analyze complex problems. Such decomposition methods could also provide engineering insight on the fundamental physics driving problem solution. This work forwards the current state of the art in engineering decomposition through the application of techniques originally developed within computer science and information theory. The work describes the current state of automatic problem decomposition in engineering and utilizes several promising ideas to advance the state of the practice. Mutual information is a novel metric for data dependence and works on both continuous and discrete data. Mutual information can measure both the linear and non-linear dependence between variables without the limitations of linear dependence measured through covariance. Mutual information is also able to handle data that does not have derivative information, unlike other metrics that require it. The value of mutual information to engineering design work is demonstrated on a planetary entry problem. This study utilizes a novel tool developed in this work for planetary entry system synthesis. A graphical method, force-based clustering, is used to discover related sub-graph structure as a function of problem structure and links ranked by their mutual information. This method does not require the stochastic use of neural networks and could be used with any link ranking method currently utilized in the field. Application of this method is demonstrated on a large, coupled low-thrust trajectory problem. Mutual information also serves as the basis for an alternative global optimizer, called MIMIC, which is unrelated to Genetic Algorithms. Advancement to the current practice demonstrates the use of MIMIC as a global method that explicitly models problem structure with mutual information, providing an alternate method for globally searching multi-modal domains. By leveraging discovered problem inter- dependencies, MIMIC may be appropriate for highly coupled problems or those with large function evaluation cost. This work introduces a useful addition to the MIMIC algorithm that enables its use on continuous input variables. By leveraging automatic decision tree generation methods from Machine Learning and a set of randomly generated test problems, decision trees for which method to apply are also created, quantifying decomposition performance over a large region of the design space.
Investigation of model-based physical design restrictions (Invited Paper)
NASA Astrophysics Data System (ADS)
Lucas, Kevin; Baron, Stanislas; Belledent, Jerome; Boone, Robert; Borjon, Amandine; Couderc, Christophe; Patterson, Kyle; Riviere-Cazaux, Lionel; Rody, Yves; Sundermann, Frank; Toublan, Olivier; Trouiller, Yorick; Urbani, Jean-Christophe; Wimmer, Karl
2005-05-01
As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.
Integrated Information Increases with Fitness in the Evolution of Animats
Edlund, Jeffrey A.; Chaumont, Nicolas; Hintze, Arend; Koch, Christof; Tononi, Giulio; Adami, Christoph
2011-01-01
One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent (“animat”) evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its “fit” to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data. PMID:22028639
NASA Astrophysics Data System (ADS)
Germer, S.; Bens, O.; Hüttl, R. F.
2008-12-01
The scepticism of non-scientific local stakeholders about results from complex physical based models is a major problem concerning the development and implementation of local climate change adaptation measures. This scepticism originates from the high complexity of such models. Local stakeholders perceive complex models as black-box models, as it is impossible to gasp all underlying assumptions and mathematically formulated processes at a glance. The use of physical based models is, however, indispensible to study complex underlying processes and to predict future environmental changes. The increase of climate change adaptation efforts following the release of the latest IPCC report indicates that the communication of facts about what has already changed is an appropriate tool to trigger climate change adaptation. Therefore we suggest increasing the practice of empirical data analysis in addition to modelling efforts. The analysis of time series can generate results that are easier to comprehend for non-scientific stakeholders. Temporal trends and seasonal patterns of selected hydrological parameters (precipitation, evapotranspiration, groundwater levels and river discharge) can be identified and the dependence of trends and seasonal patters to land use, topography and soil type can be highlighted. A discussion about lag times between the hydrological parameters can increase the awareness of local stakeholders for delayed environment responses.
Immunodeficiency and laser magnetic therapy in urology
NASA Astrophysics Data System (ADS)
Maati, Moufagued; Rozanov, Vladimir V.; Avdoshin, V. P.
1996-11-01
The importance of immunodeficiency problem has increased last time not only due to AIDS appearance, but also to a great extent as a result of the development and active practical use of the methods of immunology parameters investigations. Al great pharmaceutical firms are organizing the process of creating the drugs, influencing on the different phases of immunity, but unfortunately, the problem of their adverse effect and connected complications is till today a milestone. A great number of investigations, proving a good effect of laser-magnetic therapy concerning immune system have been done today. There is, in particular, changing of blood counts and immunologic tests after intravenous laser irradiation of blood. Intravenous laser irradiation of blood results in increasing of lymphocytes, T-immuno stimulation, stabilization of t-lymphocyte subpopulation, increasing of t-lymphocyte helper activity and decreasing of suppressor one.Under this laser action number of circulating immune complexes is decreased, and blood serum bactericide activity and lisozyme number are increased.
Boonen, Anton J. H.; de Koning, Björn B.; Jolles, Jelle; van der Schoot, Menno
2016-01-01
Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME. PMID:26925012
Boonen, Anton J H; de Koning, Björn B; Jolles, Jelle; van der Schoot, Menno
2016-01-01
Successfully solving mathematical word problems requires both mental representation skills and reading comprehension skills. In Realistic Math Education (RME), however, students primarily learn to apply the first of these skills (i.e., representational skills) in the context of word problem solving. Given this, it seems legitimate to assume that students from a RME curriculum experience difficulties when asked to solve semantically complex word problems. We investigated this assumption under 80 sixth grade students who were classified as successful and less successful word problem solvers based on a standardized mathematics test. To this end, students completed word problems that ask for both mental representation skills and reading comprehension skills. The results showed that even successful word problem solvers had a low performance on semantically complex word problems, despite adequate performance on semantically less complex word problems. Based on this study, we concluded that reading comprehension skills should be given a (more) prominent role during word problem solving instruction in RME.
MacDoctor: The Macintosh diagnoser
NASA Technical Reports Server (NTRS)
Lavery, David B.; Brooks, William D.
1990-01-01
When the Macintosh computer was first released, the primary user was a computer hobbyist who typically had a significant technical background and was highly motivated to understand the internal structure and operational intricacies of the computer. In recent years the Macintosh computer has become a widely-accepted general purpose computer which is being used by an ever-increasing non-technical audience. This has lead to a large base of users which has neither the interest nor the background to understand what is happening 'behind the scenes' when the Macintosh is put to use - or what should be happening when something goes wrong. Additionally, the Macintosh itself has evolved from a simple closed design to a complete family of processor platforms and peripherals with a tremendous number of possible configurations. With the increasing popularity of the Macintosh series, software and hardware developers are producing a product for every user's need. As the complexity of configuration possibilities grows, the need for experienced or even expert knowledge is required to diagnose problems. This presents a problem to uneducated or casual users. This problem indicates a new Macintosh consumer need; that is, a diagnostic tool able to determine the problem for the user. As the volume of Macintosh products has increased, this need has also increased.
[Assessment of the value of health-care services--the first step].
Porzsolt, Franz
2008-05-15
The average increase of health-care expenditures in OECD countries is higher than the corresponding increase in gross national products (GNPs). Therefore, it is necessary in these countries to react to this increase. Although there is agreement that rationing cannot be avoided, the optimal method has not yet been found. In order to contribute to the solution of this problem, the Institute for Quality and Economics in Health Care (IQWiG) has been established in 2004 in Germany. One of the central tasks of this institute is the development of a method to assess the value of health-care services. In this paper, general problems of the assessment of health-care value and specific problems which emerge from the presently proposed concepts for assessment of the health-care value are summarized. Based on the analysis of these problems it is tried to derive a new approach. The approach presumes that the decisions which have to be made for assessment of health-care value are rather complex and subjective. Scientific methods can increase transparency but cannot replace democratic decisions. The new approach requires the introduction of strategies like shared or democratic decision-making. The discussion of this essential strategy is the first step in the development of a consensus for assessment of the value of health care.
Norberg, Melissa M; Ham, Lindsay S; Olivier, Jake; Zamboanga, Byron L; Melkonian, Alexander; Fugitt, Jessica L
2016-07-02
Pregaming is a high-risk drinking behavior associated with increased alcohol consumption and alcohol-related problems. Quantity of alcohol consumed does not fully explain the level of problems associated with pregaming; yet, limited research has examined factors that may interact with pregaming behavior to contribute to the experience of alcohol-related problems. The current study examined whether use of two emotion regulation strategies influence pregaming's contribution to alcohol-related problems. Undergraduates (N = 1857) aged 18-25 years attending 19 different colleges completed an online survey in 2008-2009. Linear mixed models were used to test whether emotion regulation strategies moderate the association between pregaming status (pregamers vs. non/infrequent pregamers) and alcohol-related problems, when controlling for alcohol consumption, demographic covariates, and site as a random effect. Greater use of cognitive reappraisal was associated with decreased alcohol problems. Expressive suppression interacted with pregaming status. There was no relationship between pregaming status and alcohol problems for students who rarely used expression suppression; however, the relationship between pregaming status and alcohol problems was statistically significant for students who occasionally to frequently used expression suppression. Findings suggest that the relationship between pregaming and alcohol-related problems is complex. Accordingly, future studies should utilize event-level methodology to understand how emotion regulation strategies influence alcohol-related problems. Further, clinicians should tailor alcohol treatments to help students increase their use of cognitive reappraisal and decrease their use of suppression.
Some aspects of algorithm performance and modeling in transient analysis of structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1981-01-01
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit algorithms with variable time steps, known as the GEAR package, is described. Four test problems, used for evaluating and comparing various algorithms, were selected and finite-element models of the configurations are described. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system, and a model of the wing of the space shuttle orbiter. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures).
NASA Astrophysics Data System (ADS)
Steefel, C. I.
2015-12-01
Over the last 20 years, we have seen the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface environmental applications it is being used to address. Reactive transport modeling is being asked to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. Closed form solutions are necessary and useful, but limited to situations that are far simpler than typical applications that combine many physical and chemical processes, in many cases in coupled form. In the absence of closed form and yet realistic solutions for complex applications, numerical benchmark problems with an accepted set of results will be indispensable to qualifying codes for various environmental applications. The intent of this benchmarking exercise, now underway for more than five years, is to develop and publish a set of well-described benchmark problems that can be used to demonstrate simulator conformance with norms established by the subsurface science and engineering community. The objective is not to verify this or that specific code--the reactive transport codes play a supporting role in this regard—but rather to use the codes to verify that a common solution of the problem can be achieved. Thus, the objective of each of the manuscripts is to present an environmentally-relevant benchmark problem that tests the conceptual model capabilities, numerical implementation, process coupling, and accuracy. The benchmark problems developed to date include 1) microbially-mediated reactions, 2) isotopes, 3) multi-component diffusion, 4) uranium fate and transport, 5) metal mobility in mining affected systems, and 6) waste repositories and related aspects.
Reliability Analysis and Modeling of ZigBee Networks
NASA Astrophysics Data System (ADS)
Lin, Cheng-Min
The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to network complexity, more resource usage and complex object relationship.
Iatrogenics in Orthodontics and its challenges.
Barreto, Gustavo Mattos; Feitosa, Henrique Oliveira
2016-01-01
Orthodontics has gone through remarkable advances for those who practice it with dignity and clinical quality, such as the unprecedented number of patients treated of some type of iatrogenic problems (post-treatment root resorptions; occlusal plane changes; midline discrepancies, asymmetries, etc). Several questions may raise useful reflections about the constant increase of iatrogenics. What is causing it? Does it occur when dentists are properly trained? In legal terms, how can dentists accept these patients? How should they be orthodontically treated? What are the most common problems? This study analyzed and discussed relevant aspects to understand patients with iatrogenic problems and describe a simple and efficient approach to treat complex cases associated with orthodontic iatrogenics.
Iatrogenics in Orthodontics and its challenges
Barreto, Gustavo Mattos; Feitosa, Henrique Oliveira
2016-01-01
ABSTRACT Introduction: Orthodontics has gone through remarkable advances for those who practice it with dignity and clinical quality, such as the unprecedented number of patients treated of some type of iatrogenic problems (post-treatment root resorptions; occlusal plane changes; midline discrepancies, asymmetries, etc). Several questions may raise useful reflections about the constant increase of iatrogenics. What is causing it? Does it occur when dentists are properly trained? In legal terms, how can dentists accept these patients? How should they be orthodontically treated? What are the most common problems? Objective: This study analyzed and discussed relevant aspects to understand patients with iatrogenic problems and describe a simple and efficient approach to treat complex cases associated with orthodontic iatrogenics. PMID:27901237
Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.
Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee
2014-10-01
Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.
Elucidating Reaction Mechanisms on Quantum Computers
NASA Astrophysics Data System (ADS)
Wiebe, Nathan; Reiher, Markus; Svore, Krysta; Wecker, Dave; Troyer, Matthias
We show how a quantum computer can be employed to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical-computer simulations for such problems, to significantly increase their accuracy and enable hitherto intractable simulations. Detailed resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. This demonstrates that quantum computers will realistically be able to tackle important problems in chemistry that are both scientifically and economically significant.
A centre-free approach for resource allocation with lower bounds
NASA Astrophysics Data System (ADS)
Obando, Germán; Quijano, Nicanor; Rakoto-Ravalontsalama, Naly
2017-09-01
Since complexity and scale of systems are continuously increasing, there is a growing interest in developing distributed algorithms that are capable to address information constraints, specially for solving optimisation and decision-making problems. In this paper, we propose a novel method to solve distributed resource allocation problems that include lower bound constraints. The optimisation process is carried out by a set of agents that use a communication network to coordinate their decisions. Convergence and optimality of the method are guaranteed under some mild assumptions related to the convexity of the problem and the connectivity of the underlying graph. Finally, we compare our approach with other techniques reported in the literature, and we present some engineering applications.
Understanding the determinants of problem-solving behavior in a complex environment
NASA Technical Reports Server (NTRS)
Casner, Stephen A.
1994-01-01
It is often argued that problem-solving behavior in a complex environment is determined as much by the features of the environment as by the goals of the problem solver. This article explores a technique to determine the extent to which measured features of a complex environment influence problem-solving behavior observed within that environment. In this study, the technique is used to determine how complex flight deck and air traffic control environment influences the strategies used by airline pilots when controlling the flight path of a modern jetliner. Data collected aboard 16 commercial flights are used to measure selected features of the task environment. A record of the pilots' problem-solving behavior is analyzed to determine to what extent behavior is adapted to the environmental features that were measured. The results suggest that the measured features of the environment account for as much as half of the variability in the pilots' problem-solving behavior and provide estimates on the probable effects of each environmental feature.
On Complex Water Conflicts: Role of Enabling Conditions for Pragmatic Resolution
NASA Astrophysics Data System (ADS)
Islam, S.; Choudhury, E.
2016-12-01
Many of our current and emerging water problems are interconnected and cross boundaries, domains, scales, and sectors. These boundary crossing water problems are neither static nor linear; but often are interconnected nonlinearly with other problems and feedback. The solution space for these complex problems - involving interdependent variables, processes, actors, and institutions - can't be pre-stated. We need to recognize the disconnect among values, interests, and tools as well as problems, policies, and politics. Scientific and technological solutions are desired for efficiency and reliability, but need to be politically feasible and actionable. Governing and managing complex water problems require difficult tradeoffs in exploring and sharing benefits and burdens through carefully crafted negotiation processes. The crafting of such negotiation process, we argue, constitutes a pragmatic approach to negotiation - one that is based on the identification of enabling conditions - as opposed to mechanistic casual explanations, and rooted in contextual conditions to specify and ensure the principles of equity and sustainability. We will use two case studies to demonstrate the efficacy of the proposed principled pragmatic approcah to address complex water problems.
Modeling ultrasound propagation through material of increasing geometrical complexity.
Odabaee, Maryam; Odabaee, Mostafa; Pelekanos, Matthew; Leinenga, Gerhard; Götz, Jürgen
2018-06-01
Ultrasound is increasingly being recognized as a neuromodulatory and therapeutic tool, inducing a broad range of bio-effects in the tissue of experimental animals and humans. To achieve these effects in a predictable manner in the human brain, the thick cancellous skull presents a problem, causing attenuation. In order to overcome this challenge, as a first step, the acoustic properties of a set of simple bone-modeling resin samples that displayed an increasing geometrical complexity (increasing step sizes) were analyzed. Using two Non-Destructive Testing (NDT) transducers, we found that Wiener deconvolution predicted the Ultrasound Acoustic Response (UAR) and attenuation caused by the samples. However, whereas the UAR of samples with step sizes larger than the wavelength could be accurately estimated, the prediction was not accurate when the sample had a smaller step size. Furthermore, a Finite Element Analysis (FEA) performed in ANSYS determined that the scattering and refraction of sound waves was significantly higher in complex samples with smaller step sizes compared to simple samples with a larger step size. Together, this reveals an interaction of frequency and geometrical complexity in predicting the UAR and attenuation. These findings could in future be applied to poro-visco-elastic materials that better model the human skull. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
STEPS: Modeling and Simulating Complex Reaction-Diffusion Systems with Python
Wils, Stefan; Schutter, Erik De
2008-01-01
We describe how the use of the Python language improved the user interface of the program STEPS. STEPS is a simulation platform for modeling and stochastic simulation of coupled reaction-diffusion systems with complex 3-dimensional boundary conditions. Setting up such models is a complicated process that consists of many phases. Initial versions of STEPS relied on a static input format that did not cleanly separate these phases, limiting modelers in how they could control the simulation and becoming increasingly complex as new features and new simulation algorithms were added. We solved all of these problems by tightly integrating STEPS with Python, using SWIG to expose our existing simulation code. PMID:19623245
Turco, Renato; Torpilliesi, Tiziana; Morghen, Sara; Bellelli, Giuseppe; Trabucchi, Marco
2009-05-01
The clinical approach toward elderly patients is often very complex and associated with an increased risk of medical errors. This case report is an example of how various objective (related to patient) and subjective (related to physicians) factors may influence the optimal diagnostic approach in elderly frail patients. We also discuss geriatric practice, which must be characterized by the intellectual honesty to refuse any sort of prejudices (such as ageism) and by the skill to navigate between the Scylla (ie, viewing clinical problems as unrelated to each other) and the Charibdy (ie, applying the Occam's razor principle) of the patient's complexity.
Diffraction scattering computed tomography: a window into the structures of complex nanomaterials
Birkbak, M. E.; Leemreize, H.; Frølich, S.; Stock, S. R.
2015-01-01
Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials. PMID:26505175
Discharge summary for medically complex infants transitioning to primary care.
Peacock, Jennifer J
2014-01-01
Improvements in the care of the premature infant and advancements in technology are increasing life expectancy of infants with medical conditions once considered lethal; these infants are at risk of becoming a medically complex infant. Complex infants have a significant existing problem list, are on several medications, and receive medical care by several specialists. Deficits in communication and information transfer at the time of discharge remain problematic for this population. A questionnaire was developed for primary care providers (PCPs) to explore the effectiveness of the current discharge summary because it is related to effective communication when assuming the care of a new patient with medical complexity. PCPs assuming the care of these infants agree that an evidence-based tool, in the form of a specialized summary for this population, would be of value.
Dávid-Barrett, T.; Dunbar, R. I. M.
2013-01-01
Sociality is primarily a coordination problem. However, the social (or communication) complexity hypothesis suggests that the kinds of information that can be acquired and processed may limit the size and/or complexity of social groups that a species can maintain. We use an agent-based model to test the hypothesis that the complexity of information processed influences the computational demands involved. We show that successive increases in the kinds of information processed allow organisms to break through the glass ceilings that otherwise limit the size of social groups: larger groups can only be achieved at the cost of more sophisticated kinds of information processing that are disadvantageous when optimal group size is small. These results simultaneously support both the social brain and the social complexity hypotheses. PMID:23804623
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark
2016-01-01
In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference.
A Comparison of Solver Performance for Complex Gastric Electrophysiology Models
Sathar, Shameer; Cheng, Leo K.; Trew, Mark L.
2016-01-01
Computational techniques for solving systems of equations arising in gastric electrophysiology have not been studied for efficient solution process. We present a computationally challenging problem of simulating gastric electrophysiology in anatomically realistic stomach geometries with multiple intracellular and extracellular domains. The multiscale nature of the problem and mesh resolution required to capture geometric and functional features necessitates efficient solution methods if the problem is to be tractable. In this study, we investigated and compared several parallel preconditioners for the linear systems arising from tetrahedral discretisation of electrically isotropic and anisotropic problems, with and without stimuli. The results showed that the isotropic problem was computationally less challenging than the anisotropic problem and that the application of extracellular stimuli increased workload considerably. Preconditioning based on block Jacobi and algebraic multigrid solvers were found to have the best overall solution times and least iteration counts, respectively. The algebraic multigrid preconditioner would be expected to perform better on large problems. PMID:26736543
NASA Astrophysics Data System (ADS)
Ollé, Mercè; Pacha, Joan R.
1999-11-01
In the present work we use certain isolated symmetric periodic orbits found in some limiting Restricted Three-Body Problems to obtain, by numerical continuation, families of symmetric periodic orbits of the more general Spatial Elliptic Restricted Three Body Problem. In particular, the Planar Isosceles Restricted Three Body Problem, the Sitnikov Problem and the MacMillan problem are considered. A stability study for the periodic orbits of the families obtained - specially focused to detect transitions to complex instability - is also made.
Krishnan, Saloni; Leech, Robert; Mercure, Evelyne; Lloyd-Fox, Sarah; Dick, Frederic
2015-01-01
In adults, patterns of neural activation associated with perhaps the most basic language skill—overt object naming—are extensively modulated by the psycholinguistic and visual complexity of the stimuli. Do children's brains react similarly when confronted with increasing processing demands, or they solve this problem in a different way? Here we scanned 37 children aged 7–13 and 19 young adults who performed a well-normed picture-naming task with 3 levels of difficulty. While neural organization for naming was largely similar in childhood and adulthood, adults had greater activation in all naming conditions over inferior temporal gyri and superior temporal gyri/supramarginal gyri. Manipulating naming complexity affected adults and children quite differently: neural activation, especially over the dorsolateral prefrontal cortex, showed complexity-dependent increases in adults, but complexity-dependent decreases in children. These represent fundamentally different responses to the linguistic and conceptual challenges of a simple naming task that makes no demands on literacy or metalinguistics. We discuss how these neural differences might result from different cognitive strategies used by adults and children during lexical retrieval/production as well as developmental changes in brain structure and functional connectivity. PMID:24907249
Complex fuzzy soft expert sets
NASA Astrophysics Data System (ADS)
Selvachandran, Ganeshsree; Hafeed, Nisren A.; Salleh, Abdul Razak
2017-04-01
Complex fuzzy sets and its accompanying theory although at its infancy, has proven to be superior to classical type-1 fuzzy sets, due its ability in representing time-periodic problem parameters and capturing the seasonality of the fuzziness that exists in the elements of a set. These are important characteristics that are pervasive in most real world problems. However, there are two major problems that are inherent in complex fuzzy sets: it lacks a sufficient parameterization tool and it does not have a mechanism to validate the values assigned to the membership functions of the elements in a set. To overcome these problems, we propose the notion of complex fuzzy soft expert sets which is a hybrid model of complex fuzzy sets and soft expert sets. This model incorporates the advantages of complex fuzzy sets and soft sets, besides having the added advantage of allowing the users to know the opinion of all the experts in a single model without the need for any additional cumbersome operations. As such, this model effectively improves the accuracy of representation of problem parameters that are periodic in nature, besides having a higher level of computational efficiency compared to similar models in literature.
ERIC Educational Resources Information Center
Bogard, Treavor; Liu, Min; Chiang, Yueh-hui Vanessa
2013-01-01
This multiple-case study examined how advanced learners solved a complex problem, focusing on how their frequency and application of cognitive processes contributed to differences in performance outcomes, and developing a mental model of a problem. Fifteen graduate students with backgrounds related to the problem context participated in the study.…
Qu, Zhenhong; Ghorbani, Rhonda P; Li, Hongyan; Hunter, Robert L; Hannah, Christina D
2007-03-01
Gross examination, encompassing description, dissection, and sampling, is a complex task and an essential component of surgical pathology. Because of the complexity of the task, standardized protocols to guide the gross examination often become a bulky manual that is difficult to use. This problem is further compounded by the high specimen volume and biohazardous nature of the task. As a result, such a manual is often underused, leading to errors that are potentially harmful and time consuming to correct-a common chronic problem affecting many pathology laboratories. To combat this problem, we have developed a simple method that incorporates complex text and graphic information of a typical procedure manual and yet allows easy access to any intended instructive information in the manual. The method uses the Object-Linking-and-Embedding function of Microsoft Word (Microsoft, Redmond, WA) to establish hyperlinks among different contents, and then it uses the touch screen technology to facilitate navigation through the manual on a computer screen installed at the cutting bench with no need for a physical keyboard or a mouse. It takes less than 4 seconds to reach any intended information in the manual by 3 to 4 touches on the screen. A 3-year follow-up study shows that this method has increased use of the manual and has improved the quality of gross examination. The method is simple and can be easily tailored to different formats of instructive information, allowing flexible organization, easy access, and quick navigation. Increased compliance to instructive information reduces errors at the grossing bench and improves work efficiency.
The Complex Route to Success: Complex Problem-Solving Skills in the Prediction of University Success
ERIC Educational Resources Information Center
Stadler, Matthias J.; Becker, Nicolas; Greiff, Samuel; Spinath, Frank M.
2016-01-01
Successful completion of a university degree is a complex matter. Based on considerations regarding the demands of acquiring a university degree, the aim of this paper was to investigate the utility of complex problem-solving (CPS) skills in the prediction of objective and subjective university success (SUS). The key finding of this study was that…
Discrete-event system simulation on small and medium enterprises productivity improvement
NASA Astrophysics Data System (ADS)
Sulistio, J.; Hidayah, N. A.
2017-12-01
Small and medium industries in Indonesia is currently developing. The problem faced by SMEs is the difficulty of meeting growing demand coming into the company. Therefore, SME need an analysis and evaluation on its production process in order to meet all orders. The purpose of this research is to increase the productivity of SMEs production floor by applying discrete-event system simulation. This method preferred because it can solve complex problems die to the dynamic and stochastic nature of the system. To increase the credibility of the simulation, model validated by cooperating the average of two trials, two trials of variance and chi square test. Afterwards, Benferroni method applied to development several alternatives. The article concludes that, the productivity of SMEs production floor increased up to 50% by adding the capacity of dyeing and drying machines.
Electricity Usage Scheduling in Smart Building Environments Using Smart Devices
Lee, Eunji; Bahn, Hyokyung
2013-01-01
With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%. PMID:24453860
NASA Astrophysics Data System (ADS)
Zhang, Wenyu; Yang, Yushu; Zhang, Shuai; Yu, Dejian; Chen, Yong
2018-05-01
With the growing complexity of customer requirements and the increasing scale of manufacturing services, how to select and combine the single services to meet the complex demand of the customer has become a growing concern. This paper presents a new manufacturing service composition method to solve the multi-objective optimization problem based on quality of service (QoS). The proposed model not only presents different methods for calculating the transportation time and transportation cost under various structures but also solves the three-dimensional composition optimization problem, including service aggregation, service selection, and service scheduling simultaneously. Further, an improved Flower Pollination Algorithm (IFPA) is proposed to solve the three-dimensional composition optimization problem using a matrix-based representation scheme. The mutation operator and crossover operator of the Differential Evolution (DE) algorithm are also used to extend the basic Flower Pollination Algorithm (FPA) to improve its performance. Compared to Genetic Algorithm, DE, and basic FPA, the experimental results confirm that the proposed method demonstrates superior performance than other meta heuristic algorithms and can obtain better manufacturing service composition solutions.
Electricity usage scheduling in smart building environments using smart devices.
Lee, Eunji; Bahn, Hyokyung
2013-01-01
With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.
Lessons Learned from Crowdsourcing Complex Engineering Tasks.
Staffelbach, Matthew; Sempolinski, Peter; Kijewski-Correa, Tracy; Thain, Douglas; Wei, Daniel; Kareem, Ahsan; Madey, Gregory
2015-01-01
Crowdsourcing is the practice of obtaining needed ideas, services, or content by requesting contributions from a large group of people. Amazon Mechanical Turk is a web marketplace for crowdsourcing microtasks, such as answering surveys and image tagging. We explored the limits of crowdsourcing by using Mechanical Turk for a more complicated task: analysis and creation of wind simulations. Our investigation examined the feasibility of using crowdsourcing for complex, highly technical tasks. This was done to determine if the benefits of crowdsourcing could be harnessed to accurately and effectively contribute to solving complex real world engineering problems. Of course, untrained crowds cannot be used as a mere substitute for trained expertise. Rather, we sought to understand how crowd workers can be used as a large pool of labor for a preliminary analysis of complex data. We compared the skill of the anonymous crowd workers from Amazon Mechanical Turk with that of civil engineering graduate students, making a first pass at analyzing wind simulation data. For the first phase, we posted analysis questions to Amazon crowd workers and to two groups of civil engineering graduate students. A second phase of our experiment instructed crowd workers and students to create simulations on our Virtual Wind Tunnel website to solve a more complex task. With a sufficiently comprehensive tutorial and compensation similar to typical crowd-sourcing wages, we were able to enlist crowd workers to effectively complete longer, more complex tasks with competence comparable to that of graduate students with more comprehensive, expert-level knowledge. Furthermore, more complex tasks require increased communication with the workers. As tasks become more complex, the employment relationship begins to become more akin to outsourcing than crowdsourcing. Through this investigation, we were able to stretch and explore the limits of crowdsourcing as a tool for solving complex problems.
Combining complex networks and data mining: Why and how
NASA Astrophysics Data System (ADS)
Zanin, M.; Papo, D.; Sousa, P. A.; Menasalvas, E.; Nicchi, A.; Kubik, E.; Boccaletti, S.
2016-05-01
The increasing power of computer technology does not dispense with the need to extract meaningful information out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.
NASA Astrophysics Data System (ADS)
Krechowicz, Maria
2017-10-01
Nowadays, one of the characteristic features of construction industry is an increased complexity of a growing number of projects. Almost each construction project is unique, has its project-specific purpose, its own project structural complexity, owner’s expectations, ground conditions unique to a certain location, and its own dynamics. Failure costs and costs resulting from unforeseen problems in complex construction projects are very high. Project complexity drivers pose many vulnerabilities to a successful completion of a number of projects. This paper discusses the process of effective risk management in complex construction projects in which renewable energy sources were used, on the example of the realization phase of the ENERGIS teaching-laboratory building, from the point of view of DORBUD S.A., its general contractor. This paper suggests a new approach to risk management for complex construction projects in which renewable energy sources were applied. The risk management process was divided into six stages: gathering information, identification of the top, critical project risks resulting from the project complexity, construction of the fault tree for each top, critical risks, logical analysis of the fault tree, quantitative risk assessment applying fuzzy logic and development of risk response strategy. A new methodology for the qualitative and quantitative risk assessment for top, critical risks in complex construction projects was developed. Risk assessment was carried out applying Fuzzy Fault Tree analysis on the example of one top critical risk. Application of the Fuzzy sets theory to the proposed model allowed to decrease uncertainty and eliminate problems with gaining the crisp values of the basic events probability, common during expert risk assessment with the objective to give the exact risk score of each unwanted event probability.
Numerical propulsion system simulation
NASA Technical Reports Server (NTRS)
Lytle, John K.; Remaklus, David A.; Nichols, Lester D.
1990-01-01
The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributors to the high cost is the need to perform many large scale system tests. Extensive testing is used to capture the complex interactions among the multiple disciplines and the multiple components inherent in complex systems. The objective of the Numerical Propulsion System Simulation (NPSS) is to provide insight into these complex interactions through computational simulations. This will allow for comprehensive evaluation of new concepts early in the design phase before a commitment to hardware is made. It will also allow for rapid assessment of field-related problems, particularly in cases where operational problems were encountered during conditions that would be difficult to simulate experimentally. The tremendous progress taking place in computational engineering and the rapid increase in computing power expected through parallel processing make this concept feasible within the near future. However it is critical that the framework for such simulations be put in place now to serve as a focal point for the continued developments in computational engineering and computing hardware and software. The NPSS concept which is described will provide that framework.
Data-driven non-linear elasticity: constitutive manifold construction and problem discretization
NASA Astrophysics Data System (ADS)
Ibañez, Ruben; Borzacchiello, Domenico; Aguado, Jose Vicente; Abisset-Chavanne, Emmanuelle; Cueto, Elias; Ladeveze, Pierre; Chinesta, Francisco
2017-11-01
The use of constitutive equations calibrated from data has been implemented into standard numerical solvers for successfully addressing a variety problems encountered in simulation-based engineering sciences (SBES). However, the complexity remains constantly increasing due to the need of increasingly detailed models as well as the use of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in computational mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,\\ldots ), whereas the second one consists of models that scientists have extracted from collected, either natural or synthetic, data. Data-driven (or data-intensive) simulation consists of directly linking experimental data to computers in order to perform numerical simulations. These simulations will employ laws, universally recognized as epistemic, while minimizing the need of explicit, often phenomenological, models. The main drawback of such an approach is the large amount of required data, some of them inaccessible from the nowadays testing facilities. Such difficulty can be circumvented in many cases, and in any case alleviated, by considering complex tests, collecting as many data as possible and then using a data-driven inverse approach in order to generate the whole constitutive manifold from few complex experimental tests, as discussed in the present work.
NASA Astrophysics Data System (ADS)
Sliva, Yekaterina
The purpose of this study was to introduce an instructional technique for teaching complex tasks in physics, test its effectiveness and efficiency, and understand cognitive processes taking place in learners' minds while they are exposed to this technique. The study was based primarily on cognitive load theory (CLT). CLT determines the amount of total cognitive load imposed on a learner by a learning task as combined intrinsic (invested in comprehending task complexity) and extraneous (wasteful) cognitive load. Working memory resources associated with intrinsic cognitive load are defined as germane resources caused by element interactivity that lead to learning, in contrast to extraneous working memory resources that are devoted to dealing with extraneous cognitive load. However, the amount of learner's working memory resources actually devoted to a task depends on how well the learner is engaged in the learning environment. Since total cognitive load has to stay within limits of working memory capacity, both extraneous and intrinsic cognitive load need to be reduced. In order for effective learning to occur, the use of germane cognitive resources should be maximized. In this study, the use of germane resources was maximized for two experimental groups by providing a learning environment that combined problem-solving procedure with prompts to self-explain with and without completion problems. The study tested three hypotheses and answered two research questions. The first hypothesis predicting that experimental treatments would reduce total cognitive load was not supported. The second hypothesis predicting that experimental treatments would increase performance was supported for the self-explanation group only. The third hypothesis that tested efficiency measure as adopted from Paas and van Merrienboer (1993) was not supported. As for the research question of whether the quality of self-explanations would change with time for the two experimental conditions, it was determined that time had a positive effect on such quality. The research question that investigated learners' attitudes towards the instructions revealed that experimental groups understood the main idea behind the suggested technique and positively reacted to it. The results of the study support the conclusions that (a) prompting learners to self-explain while independently solving problems can increase performance, especially on far transfer questions; (b) better performance is achieved in combination with increased mental effort; (c) self-explanations do not increase time on task; and (d) quality of self-explanations can be improved with time. Results based on the analyses of learners' attitudes further support that learners in the experimental groups understood the main idea behind the suggested techniques and positively reacted to them. The study also raised concern about application of efficiency formula for instructional conditions that increase both performance and mental effort in CLT. As a result, an alternative model was suggested to explain the relationship between performance and mental effort based on Yerkes-Dodson law (1908). Keywords: instructional design, cognitive load, complex tasks, problem-solving, self-explanation.
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-12-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students' mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students' simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students' formulation and combination of equations. Several reasons may explain this difference, including the students' different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.
NASA Astrophysics Data System (ADS)
Jing, Changfeng; Liang, Song; Ruan, Yong; Huang, Jie
2008-10-01
During the urbanization process, when facing complex requirements of city development, ever-growing urban data, rapid development of planning business and increasing planning complexity, a scalable, extensible urban planning management information system is needed urgently. PM2006 is such a system that can deal with these problems. In response to the status and problems in urban planning, the scalability and extensibility of PM2006 are introduced which can be seen as business-oriented workflow extensibility, scalability of DLL-based architecture, flexibility on platforms of GIS and database, scalability of data updating and maintenance and so on. It is verified that PM2006 system has good extensibility and scalability which can meet the requirements of all levels of administrative divisions and can adapt to ever-growing changes in urban planning business. At the end of this paper, the application of PM2006 in Urban Planning Bureau of Suzhou city is described.
Wang, Liansheng; Qin, Jing; Wong, Tien Tsin; Heng, Pheng Ann
2011-10-07
The epicardial potential (EP)-targeted inverse problem of electrocardiography (ECG) has been widely investigated as it is demonstrated that EPs reflect underlying myocardial activity. It is a well-known ill-posed problem as small noises in input data may yield a highly unstable solution. Traditionally, L2-norm regularization methods have been proposed to solve this ill-posed problem. But the L2-norm penalty function inherently leads to considerable smoothing of the solution, which reduces the accuracy of distinguishing abnormalities and locating diseased regions. Directly using the L1-norm penalty function, however, may greatly increase computational complexity due to its non-differentiability. We propose an L1-norm regularization method in order to reduce the computational complexity and make rapid convergence possible. Variable splitting is employed to make the L1-norm penalty function differentiable based on the observation that both positive and negative potentials exist on the epicardial surface. Then, the inverse problem of ECG is further formulated as a bound-constrained quadratic problem, which can be efficiently solved by gradient projection in an iterative manner. Extensive experiments conducted on both synthetic data and real data demonstrate that the proposed method can handle both measurement noise and geometry noise and obtain more accurate results than previous L2- and L1-norm regularization methods, especially when the noises are large.
Eating attitude in the obese patients: the evaluation in terms of relational factors.
Keskin, G; Engin, E; Dulgerler, S
2010-12-01
• Obesity has become an important health problem because of the gradually increasing incidence seen within all age groups. People with obesity problems are affected lifespan and health negatively. • Obesity can be described as disease that affects lifespan and health negatively, because of body fat deposition. • The eating attitudes, body perception, strategies for coping with stress in patient being treated for obesity and investigated the relationship between their eating attitudes and socio-demographic characteristics, body perceptions and strategies of coping with stress. • Misperception of the body and the ability to solve the problem increased as eating attitude defects increased. A positive correlation was between the eating attitude defects and habitude of pursing social support and ability of coping. Obesity, a complex disease, involves many psychological problems besides eating disorders. In this study, we aimed to examine the relationship between the eating attitude and body perception, which is thought to affect the eating attitude in the patients diagnosed as obese, the ability to solve the problem, the strategy of coping with stress and some socio-demographic features. A total of 99 adults aged between 20 and 68 years, who were examined in the Polyclinic of Endocrinology and Metabolism Diseases, Ege University, Türkiye, constituted the sample of the study. Eating Attitude Test, The Body Perception Scale and The Scale of Coping with Strategies were used in order to collect the data. Misperception of the body and the ability to solve the problem increased as eating attitude defects increased. A positive correlation was determined between the eating attitude defects and the habitude of pursuing social support and the ability of coping. © 2010 Blackwell Publishing.
ERIC Educational Resources Information Center
Hay, M. Cameron
2017-01-01
Undergraduate student learning focuses on the development of disciplinary strength in majors and minors so that students gain depth in particular fields, foster individual expertise, and learn problem solving from disciplinary perspectives. However, the complexities of real-world problems do not respect disciplinary boundaries. Complex problems…
The Process of Solving Complex Problems
ERIC Educational Resources Information Center
Fischer, Andreas; Greiff, Samuel; Funke, Joachim
2012-01-01
This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…
Communities of Practice: A New Approach to Solving Complex Educational Problems
ERIC Educational Resources Information Center
Cashman, J.; Linehan, P.; Rosser, M.
2007-01-01
Communities of Practice offer state agency personnel a promising approach for engaging stakeholder groups in collaboratively solving complex and, often, persistent problems in special education. Communities of Practice can help state agency personnel drive strategy, solve problems, promote the spread of best practices, develop members'…
6 Essential Questions for Problem Solving
ERIC Educational Resources Information Center
Kress, Nancy Emerson
2017-01-01
One of the primary expectations that the author has for her students is for them to develop greater independence when solving complex and unique mathematical problems. The story of how the author supports her students as they gain confidence and independence with complex and unique problem-solving tasks, while honoring their expectations with…
Students' and Teachers' Conceptual Metaphors for Mathematical Problem Solving
ERIC Educational Resources Information Center
Yee, Sean P.
2017-01-01
Metaphors are regularly used by mathematics teachers to relate difficult or complex concepts in classrooms. A complex topic of concern in mathematics education, and most STEM-based education classes, is problem solving. This study identified how students and teachers contextualize mathematical problem solving through their choice of metaphors.…
ERIC Educational Resources Information Center
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-01-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking,…
ERIC Educational Resources Information Center
Williams, Christine L.; Molinari, Victor; Bond, Jennifer; Smith, Michael; Hyer, Kathryn; Malphurs, Julie
2006-01-01
There is increasing recognition of the severe consequences of depression in long-term care residents with dementia. Most health care providers are unprepared to recognize and to manage the complexity of depression in dementia. Targeted educational initiatives in nursing homes are needed to address this growing problem. This paper describes the…
Shooting method for solution of boundary-layer flows with massive blowing
NASA Technical Reports Server (NTRS)
Liu, T.-M.; Nachtsheim, P. R.
1973-01-01
A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.
ERIC Educational Resources Information Center
Chiocchio, F.; Lafreniere, A.
2009-01-01
Teamwork and technology, even as people are seeing their increased use in organizations, are becoming important components of problem-based learning in academic settings. Yet, fostering computer-assisted teamwork is complex and time consuming. Knowing how and when to intervene would prove useful. This study draws from the field of project…
ERIC Educational Resources Information Center
Stummann, C. B.; Gamborg, C.
2014-01-01
Over 25 years ago, the "wicked problems" concept was introduced into forestry to describe the increasingly complex work situations faced by many natural resource management (NRM) professionals and at the same time the demand and frequency of public involvement in NRM issues also grew. Research on the impact of these changes for NRM…
A Visual-Based Approach to the Mapping of Generic Skills: Its Application to a Marketing Degree
ERIC Educational Resources Information Center
Ang, Lawrence; D'Alessandro, Steven; Winzar, Hume
2014-01-01
With increasing complexity in the world, universities continue to face pressure to demonstrate that their graduates have acquired skills beyond discipline-based knowledge. These are generic skills like critical thinking, intellectual curiosity, problem-solving and so forth. In order to demonstrate this, universities have to show how their teaching…
ERIC Educational Resources Information Center
Morin, Olivier; Simonneaux, Laurence; Simmoneaux, Jean; Tytler, Russell; Barraza, Laura
2014-01-01
Within the increasing body of research that examines students' reasoning on socioscientific issues, we consider in particular student reasoning concerning acute, open-ended questions that bring out the complexities and uncertainties embedded in ill-structured problems. In this paper, we propose a socioscientific sustainability reasoning…
A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins
ERIC Educational Resources Information Center
Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.
2016-01-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…
Using REU Projects and Crowdsourcing to Facilitate Learning on Demand
ERIC Educational Resources Information Center
Liu, Hong P.; Klein, Jerry E.
2013-01-01
With the increasing complexity of technology and large quantities of data in our digital age, learning and training has become a major cost of employers. Employee competence depends more and more on how quickly one can acquire new knowledge and solve problems to meet pressing deadlines. This paper presents a practical method to use REU (Research…
Web-Based Machine Translation as a Tool for Promoting Electronic Literacy and Language Awareness
ERIC Educational Resources Information Center
Williams, Lawrence
2006-01-01
This article addresses a pervasive problem of concern to teachers of many foreign languages: the use of Web-Based Machine Translation (WBMT) by students who do not understand the complexities of this relatively new tool. Although networked technologies have greatly increased access to many language and communication tools, WBMT is still…
ERIC Educational Resources Information Center
Brathwaite, Frank
Despite the current need for strong leadership skills to facilitate task achievement, individual development, and social action in an increasingly complex society, women are failing to make significant headway in educational administration. Lack of leadership opportunities for women limits both individual and organizational potential. The problem…
Social science findings in the United States
Sarah McCaffrey; Eric Toman; Melanie Stidham; Bruce Shindler
2015-01-01
The rising number of acres burned annually and growing number of people living in or adjacent to fire-prone areas in the United States make wildfire management an increasingly complex and challenging problem. Given the prominence of social issues in shaping the current challenges and determining paths forward, it will be important to have an accurate understanding of...
The effects of monitoring environment on problem-solving performance.
Laird, Brian K; Bailey, Charles D; Hester, Kim
2018-01-01
While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.
Overwintering of herbaceous plants in a changing climate. Still more questions than answers.
Rapacz, Marcin; Ergon, Ashild; Höglind, Mats; Jørgensen, Marit; Jurczyk, Barbara; Ostrem, Liv; Rognli, Odd Arne; Tronsmo, Anne Marte
2014-08-01
The increase in surface temperature of the Earth indicates a lower risk of exposure for temperate grassland and crop to extremely low temperatures. However, the risk of low winter survival rate, especially in higher latitudes may not be smaller, due to complex interactions among different environmental factors. For example, the frequency, degree and length of extreme winter warming events, leading to snowmelt during winter increased, affecting the risks of anoxia, ice encasement and freezing of plants not covered with snow. Future climate projections suggest that cold acclimation will occur later in autumn, under shorter photoperiod and lower light intensity, which may affect the energy partitioning between the elongation growth, accumulation of organic reserves and cold acclimation. Rising CO2 levels may also disturb the cold acclimation process. Predicting problems with winter pathogens is also very complex, because climate change may greatly influence the pathogen population and because the plant resistance to these pathogens is increased by cold acclimation. All these factors, often with contradictory effects on winter survival, make plant overwintering viability under future climates an open question. Close cooperation between climatologists, ecologists, plant physiologists, geneticists and plant breeders is strongly required to predict and prevent possible problems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
de Leeuw, L.
Sixty-four fifth and sixth-grade pupils were taught number series extrapolation by either an algorithm, fully prescribed problem-solving method or a heuristic, less prescribed method. The trained problems were within categories of two degrees of complexity. There were 16 subjects in each cell of the 2 by 2 design used. Aptitude Treatment…
Organization, appointment planning, and surgery design in the treatment of the older patient.
Hoad-Reddick, G
1995-10-01
As the proportion of the elderly in society increases and as more people retain teeth into old age, the type of dental treatment needed for this group will increase in both complexity and quantity. This article describes problems faced by the elderly such as mobility, fear, and medical conditions that may affect dental treatment either by increasing anxiety levels or by affecting duration or timing of appointments. The effects of visual impairment, hearing loss, and common medical conditions on elderly people are considered.
A review of the economics of adult congenital heart disease.
Seckeler, Michael D; Thomas, Ian D; Andrews, Jennifer; Joiner, Keith; Klewer, Scott E
2016-01-01
Adults living with congenital heart disease (CHD) now outnumber children with the disease. Thanks to medical advances over the past 75 years, many of these fatal childhood heart problems have changed to chronic medical conditions. As the population of adults with CHD increases, they will require increasingly complex medical, surgical and catheter-based therapies. In addition, social burdens including education, employment and insurability, which increase the societal costs of adult CHD, are now being recognized for adults living with CHD. This review summarizes the available literature on the economics of adult CHD.
Verduzco-Flores, Sergio O; O'Reilly, Randall C
2015-01-01
We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.
Verduzco-Flores, Sergio O.; O'Reilly, Randall C.
2015-01-01
We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations. PMID:25852535
NASA Astrophysics Data System (ADS)
Mueller, J. A.; Runci, P. J.
2009-12-01
The recent passage of the American Climate and Energy Security Act by the U.S. House of Representatives in June of this year was a landmark in U.S. efforts to move climate change legislation through Congress. Although an historic achievement, the bill (and surrounding debate) highlights many concerns about the processes by which lawmakers and the public inform themselves about scientifically relevant problems and, subsequently, by which policy responses are crafted in a context of complexity, uncertainty, and competition for resources and attention. In light of the ever-increasing specialization of expertise in the sciences and other technical fields, and the inherent complexity of scientifically relevant problems such as climate change, society faces significant hurdles in its efforts to integrate knowledge and develop sufficient understanding of these problems to which it must respond with legislation or other effective collective or individual action. The emergence of a new class of experts who act as science-policy brokers may not be sufficient to cross these hurdles. Herein, we explore how society and the scientific community in particular can work toward closing the ever-growing gap between technical knowledge and society’s ability to comprehend and use it. Both authors are currently legislative fellows working on energy and climate change issues in the U.S. Senate.
Cloud Computing for Complex Performance Codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin
This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.
Xu, Wei
2007-12-01
This study adopts J. Rasmussen's (1985) abstraction hierarchy (AH) framework as an analytical tool to identify problems and pinpoint opportunities to enhance complex systems. The process of identifying problems and generating recommendations for complex systems using conventional methods is usually conducted based on incompletely defined work requirements. As the complexity of systems rises, the sheer mass of data generated from these methods becomes unwieldy to manage in a coherent, systematic form for analysis. There is little known work on adopting a broader perspective to fill these gaps. AH was used to analyze an aircraft-automation system in order to further identify breakdowns in pilot-automation interactions. Four steps follow: developing an AH model for the system, mapping the data generated by various methods onto the AH, identifying problems based on the mapped data, and presenting recommendations. The breakdowns lay primarily with automation operations that were more goal directed. Identified root causes include incomplete knowledge content and ineffective knowledge structure in pilots' mental models, lack of effective higher-order functional domain information displayed in the interface, and lack of sufficient automation procedures for pilots to effectively cope with unfamiliar situations. The AH is a valuable analytical tool to systematically identify problems and suggest opportunities for enhancing complex systems. It helps further examine the automation awareness problems and identify improvement areas from a work domain perspective. Applications include the identification of problems and generation of recommendations for complex systems as well as specific recommendations regarding pilot training, flight deck interfaces, and automation procedures.
Transformations of software design and code may lead to reduced errors
NASA Technical Reports Server (NTRS)
Connelly, E. M.
1983-01-01
The capability of programmers and non-programmers to specify problem solutions by developing example-solutions and also for the programmers by writing computer programs was investigated; each method of specification was accomplished at various levels of problem complexity. The level of difficulty of each problem was reflected by the number of steps needed by the user to develop a solution. Machine processing of the user inputs permitted inferences to be developed about the algorithms required to solve a particular problem. The interactive feedback of processing results led users to a more precise definition of the desired solution. Two participant groups (programmers and bookkeepers/accountants) working with three levels of problem complexity and three levels of processor complexity were used. The experimental task employed required specification of a logic for solution of a Navy task force problem.
Hoskinson, A-M; Caballero, M D; Knight, J K
2013-06-01
If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.
Analogy as a strategy for supporting complex problem solving under uncertainty.
Chan, Joel; Paletz, Susannah B F; Schunn, Christian D
2012-11-01
Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.
Complexities of sibling analysis when exposures and outcomes change with time and birth order.
Sudan, Madhuri; Kheifets, Leeka I; Arah, Onyebuchi A; Divan, Hozefa A; Olsen, Jørn
2014-01-01
In this study, we demonstrate the complexities of performing a sibling analysis with a re-examination of associations between cell phone exposures and behavioral problems observed previously in the Danish National Birth Cohort. Children (52,680; including 5441 siblings) followed up to age 7 were included. We examined differences in exposures and behavioral problems between siblings and non-siblings and by birth order and birth year. We estimated associations between cell phone exposures and behavioral problems while accounting for the random family effect among siblings. The association of behavioral problems with both prenatal and postnatal exposure differed between siblings (odds ratio (OR): 1.07; 95% confidence interval (CI): 0.69-1.66) and non-siblings (OR: 1.54; 95% CI: 1.36-1.74) and within siblings by birth order; the association was strongest for first-born siblings (OR: 1.72; 95% CI: 0.86-3.42) and negative for later-born siblings (OR: 0.63; 95% CI: 0.31-1.25), which may be because of increases in cell phone use with later birth year. Sibling analysis can be a powerful tool for (partially) accounting for confounding by invariant unmeasured within-family factors, but it cannot account for uncontrolled confounding by varying family-level factors, such as those that vary with time and birth order.
Registered nurses' clinical reasoning skills and reasoning process: A think-aloud study.
Lee, JuHee; Lee, Young Joo; Bae, JuYeon; Seo, Minjeong
2016-11-01
As complex chronic diseases are increasing, nurses' prompt and accurate clinical reasoning skills are essential. However, little is known about the reasoning skills of registered nurses. This study aimed to determine how registered nurses use their clinical reasoning skills and to identify how the reasoning process proceeds in the complex clinical situation of hospital setting. A qualitative exploratory design was used with a think-aloud method. A total of 13 registered nurses (mean years of experience=11.4) participated in the study, solving an ill-structured clinical problem based on complex chronic patients cases in a hospital setting. Data were analyzed using deductive content analysis. Findings showed that the registered nurses used a variety of clinical reasoning skills. The most commonly used skill was 'checking accuracy and reliability.' The reasoning process of registered nurses covered assessment, analysis, diagnosis, planning/implementation, and evaluation phase. It is critical that registered nurses apply appropriate clinical reasoning skills in complex clinical practice. The main focus of registered nurses' reasoning in this study was assessing a patient's health problem, and their reasoning process was cyclic, rather than linear. There is a need for educational strategy development to enhance registered nurses' competency in determining appropriate interventions in a timely and accurate fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem.
Nallaperuma, Samadhi; Neumann, Frank; Sudholt, Dirk
2017-01-01
Randomized search heuristics are frequently applied to NP-hard combinatorial optimization problems. The runtime analysis of randomized search heuristics has contributed tremendously to our theoretical understanding. Recently, randomized search heuristics have been examined regarding their achievable progress within a fixed-time budget. We follow this approach and present a fixed-budget analysis for an NP-hard combinatorial optimization problem. We consider the well-known Traveling Salesperson Problem (TSP) and analyze the fitness increase that randomized search heuristics are able to achieve within a given fixed-time budget. In particular, we analyze Manhattan and Euclidean TSP instances and Randomized Local Search (RLS), (1+1) EA and (1+[Formula: see text]) EA algorithms for the TSP in a smoothed complexity setting, and derive the lower bounds of the expected fitness gain for a specified number of generations.
Solving complex band structure problems with the FEAST eigenvalue algorithm
NASA Astrophysics Data System (ADS)
Laux, S. E.
2012-08-01
With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.
NASA Astrophysics Data System (ADS)
Long, Kim Chenming
Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this application of the proposed algorithm, TSEA, with several state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to the Pareto-optimal front) after the algorithms are executed for the same number of generations. This research also demonstrates that TSEA competes with and, in some situations, outperforms state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to classic bicriteria test problems in the technical literature and other complex, sizable real-world applications. The successful implementation of TSEA contributes to the safety of aeronautical structures by providing a systematic way to guide aircraft structural retrofitting efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization problems in engineering and other fields.
Integrated research in natural resources: the key role of problem framing.
Roger N. Clark; George H. Stankey
2006-01-01
Integrated research is about achieving holistic understanding of complex biophysical and social issues and problems. It is driven by the need to improve understanding about such systems and to improve resource management by using the results of integrated research processes.Traditional research tends to fragment complex problems, focusing more on the pieces...
An Exploratory Framework for Handling the Complexity of Mathematical Problem Posing in Small Groups
ERIC Educational Resources Information Center
Kontorovich, Igor; Koichu, Boris; Leikin, Roza; Berman, Avi
2012-01-01
The paper introduces an exploratory framework for handling the complexity of students' mathematical problem posing in small groups. The framework integrates four facets known from past research: task organization, students' knowledge base, problem-posing heuristics and schemes, and group dynamics and interactions. In addition, it contains a new…
The solution of the optimization problem of small energy complexes using linear programming methods
NASA Astrophysics Data System (ADS)
Ivanin, O. A.; Director, L. B.
2016-11-01
Linear programming methods were used for solving the optimization problem of schemes and operation modes of distributed generation energy complexes. Applicability conditions of simplex method, applied to energy complexes, including installations of renewable energy (solar, wind), diesel-generators and energy storage, considered. The analysis of decomposition algorithms for various schemes of energy complexes was made. The results of optimization calculations for energy complexes, operated autonomously and as a part of distribution grid, are presented.
Kempermann, Gerd
2017-01-01
The Cynefin scheme is a concept of knowledge management, originally devised to support decision making in management, but more generally applicable to situations, in which complexity challenges the quality of insight, prediction, and decision. Despite the fact that life itself, and especially the brain and its diseases, are complex to the extent that complexity could be considered their cardinal feature, complex problems in biomedicine are often treated as if they were actually not more than the complicated sum of solvable sub-problems. Because of the emergent properties of complex contexts this is not correct. With a set of clear criteria Cynefin helps to set apart complex problems from "simple/obvious," "complicated," "chaotic," and "disordered" contexts in order to avoid misinterpreting the relevant causality structures. The distinction comes with the insight, which specific kind of knowledge is possible in each of these categories and what are the consequences for resulting decisions and actions. From student's theses over the publication and grant writing process to research politics, misinterpretation of complexity can have problematic or even dangerous consequences, especially in clinical contexts. Conceptualization of problems within a straightforward reference language like Cynefin improves clarity and stringency within projects and facilitates communication and decision-making about them.
[Application of password manager software in health care].
Ködmön, József
2016-12-01
When using multiple IT systems, handling of passwords in a secure manner means a potential source of problem. The most frequent issues are choosing the appropriate length and complexity, and then remembering the strong passwords. Password manager software provides a good solution for this problem, while greatly increasing the security of sensitive medical data. This article introduces a password manager software and provides basic information of the application. It also discusses how to select a really secure password manager software and suggests a practical application to efficient, safe and comfortable use for health care. Orv. Hetil., 2016, 157(52), 2066-2073.
[Cooperation between professional association and scientific society].
Schroeder, A; Hakenberg, O W
2013-08-01
Developments in health economics, urological sciences and social as well as demographic conditions pose numerous problems for the field of urology. In order to solve these problems a close cooperation between the professional association and the scientific society are needed which at first sight seem to have very different interests. The increasing complexity and interdependency in all areas of the healthcare system make a simple separation of interests between the scientific society and the professional association impossible. The Professional Association of German Urologists and the German Society of Urology have acknowledged this situation for many years and have intensified their close collaboration.
Code Verification Results of an LLNL ASC Code on Some Tri-Lab Verification Test Suite Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S R; Bihari, B L; Salari, K
As scientific codes become more complex and involve larger numbers of developers and algorithms, chances for algorithmic implementation mistakes increase. In this environment, code verification becomes essential to building confidence in the code implementation. This paper will present first results of a new code verification effort within LLNL's B Division. In particular, we will show results of code verification of the LLNL ASC ARES code on the test problems: Su Olson non-equilibrium radiation diffusion, Sod shock tube, Sedov point blast modeled with shock hydrodynamics, and Noh implosion.
Distributed Trajectory Flexibility Preservation for Traffic Complexity Mitigation
NASA Technical Reports Server (NTRS)
Idris, Husni; Wing, David; Delahaye, Daniel
2009-01-01
The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors propose the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics based on Lyapunov exponents and traffic proximity.
Bech, Christine Flagstad; Frederiksen, Tine; Villesen, Christine Tilsted; Højsted, Jette; Nielsen, Per Rotbøll; Kjeldsen, Lene Juel; Nørgaard, Lotte Stig; Christrup, Lona Louring
2018-02-01
Background Disagreement among healthcare professionals on the clinical relevance of drug-related problems can lead to suboptimal treatment and increased healthcare costs. Elderly patients with chronic non-cancer pain and comorbidity are at increased risk of drug related problems compared to other patient groups due to complex medication regimes and transition of care. Objective To investigate the agreement among healthcare professionals on their classification of clinical relevance of drug-related problems in elderly patients with chronic non-cancer pain and comorbidity. Setting Multidisciplinary Pain Centre, Rigshospitalet, Copenhagen, Denmark. Method A pharmacist performed medication review on elderly patients with chronic non-cancer pain and comorbidity, identified their drug-related problems and classified these problems in accordance with an existing categorization system. A five-member clinical panel rated the drug-related problems' clinical relevance in accordance with a five-level rating scale, and their agreement was compared using Fleiss' κ. Main outcome measure Healthcare professionals' agreement on clinical relevance of drug related problems, using Fleiss' κ. Results Thirty patients were included in the study. A total of 162 drug related problems were identified, out of which 54% were of lower clinical relevance (level 0-2) and 46% of higher clinical relevance (level 3-4). Only slight agreement (κ = 0.12) was found between the panellists' classifications of clinical relevance using a five-level rating scale. Conclusion The clinical pharmacist identified drug related problems of lower and higher clinical relevance. Poor overall agreement on the severity of the drug related problems was found among the panelists.
NMESys: An expert system for network fault detection
NASA Technical Reports Server (NTRS)
Nelson, Peter C.; Warpinski, Janet
1991-01-01
The problem of network management is becoming an increasingly difficult and challenging task. It is very common today to find heterogeneous networks consisting of many different types of computers, operating systems, and protocols. The complexity of implementing a network with this many components is difficult enough, while the maintenance of such a network is an even larger problem. A prototype network management expert system, NMESys, implemented in the C Language Integrated Production System (CLIPS). NMESys concentrates on solving some of the critical problems encountered in managing a large network. The major goal of NMESys is to provide a network operator with an expert system tool to quickly and accurately detect hard failures, potential failures, and to minimize or eliminate user down time in a large network.
Challenges in the Verification of Reinforcement Learning Algorithms
NASA Technical Reports Server (NTRS)
Van Wesel, Perry; Goodloe, Alwyn E.
2017-01-01
Machine learning (ML) is increasingly being applied to a wide array of domains from search engines to autonomous vehicles. These algorithms, however, are notoriously complex and hard to verify. This work looks at the assumptions underlying machine learning algorithms as well as some of the challenges in trying to verify ML algorithms. Furthermore, we focus on the specific challenges of verifying reinforcement learning algorithms. These are highlighted using a specific example. Ultimately, we do not offer a solution to the complex problem of ML verification, but point out possible approaches for verification and interesting research opportunities.
Complex space monofilar approximation of diffraction currents on a conducting half plane
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1987-01-01
Simple approximation of diffraction surface currents on a conducting half plane, due to an incoming plane wave, is obtained with a line current (monofile) in complex space. When compared to an approximating current at the edge, the diffraction pattern is seen to improve by an order of magnitude for a minimal increase of computation effort. Thus, the inconvient Fresnel integral functions can be avoided for quick calculations of diffracted fields and the accuracy is good in other directions than along the half plane. The method can be applied to general problems involving planar metal edges.
Reaching out to take on TB in Somalia.
Moore, David A J; Granat, Simo M
2014-01-01
Among the many challenges facing populations disrupted by complex emergencies, personal security and food security rank much higher than access to healthcare. However, over time health needs assume increasing importance. Many complex crises occur in settings where the background incidence of TB is already high; social and economic conditions in crises are then highly conducive to amplification of the existing TB problem. Innovative approaches to delivery of diagnostic and treatment services, transition planning and integration with other healthcare providers and services are vital. In the extremely challenging environment of Somalia, multiple partners are making headway though collaboration and innovation.
Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho
2017-08-08
Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.
Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency.
Scheffler, Immo E
2015-05-01
Mitochondrial diseases due to a reduced capacity for oxidative phosphorylation were first identified more than 20 years ago, and their incidence is now recognized to be quite significant. In a large proportion of cases the problem can be traced to a complex I (NADH-CoQ oxidoreductase) deficiency (Phenotype MIM #252010). Because the complex consists of 44 subunits, there are many potential targets for pathogenic mutations, both on the nuclear and mitochondrial genomes. Surprisingly, however, almost half of the complex I deficiencies are due to defects in as yet unidentified genes that encode proteins other than the structural proteins of the complex. This review attempts to summarize what we know about the molecular basis of complex I deficiencies: mutations in the known structural genes, and mutations in an increasing number of genes encoding "assembly factors", that is, proteins required for the biogenesis of a functional complex I that are not found in the final complex I. More such genes must be identified before definitive genetic counselling can be applied in all cases of affected families.
[Laser therapy and famotidine in complex restorative treatment of primary chronic gastroduodenitis].
Filimonov, R M; Musaeva, O M
2003-01-01
Primary chronic gastroduodenitis (PCG) is one of the most frequent diseases of the gastrointestinal tract. Timely and efficient treatment of patients with PCG promotes ulcer prevention. In this connection, an urgent problem of restorative medicine is to develop medical programs with active introduction of pharmacophysiotherapeutic complexes, in particular, laser therapy and anti-secretory preparation (famotidine) that increase therapeutic efficacy of treatment of this disease. To this end, we give results of treatment of 50 patients with primary chronic gastroduodenitis (26 having undergone laser therapy only, and 24 having had a combination of laser therapy and famotidine), which demonstrated that the complex action method has a more adequate effect on pathogenetic components in this disease than monotherapy.
Necessity of creating digital tools to ensure efficiency of technical means
NASA Astrophysics Data System (ADS)
Rakov, V. I.; Zakharova, O. V.
2018-05-01
The authors estimated the problems of functioning of technical objects. The article notes that the increasing complexity of automation systems may lead to an increase of the redundant resource in proportion to the number of components and relationships in the system, and to the need of the redundant resource constant change that can make implementation of traditional structures with redundancy unnecessarily costly (Standby System, Fault Tolerance, High Availability). It proposes the idea of creating digital tools to ensure efficiency of technical facilities.
Smit, Dirk J A; Anokhin, Andrey P
2017-05-01
The brain continuously develops and reorganizes to support an expanding repertoire of behaviors and increasingly complex cognition. These processes may, however, also result in the appearance or disappearance of specific neurodevelopmental disorders such as attention problems. To investigate whether brain activity changed during adolescence, how genetics shape this change, and how these changes were related to attention problems, we measured EEG activity in 759 twins and siblings, assessed longitudinally in four waves (12, 14, 16, and 18years of age). Attention problems were assessed with the SWAN at waves 12, 14, and 16. To characterize functional brain development, we used a measure of temporal stability (TS) of brain oscillations over the recording time of 5min reflecting the tendency of a brain to maintain the same oscillatory state for longer or shorter periods. Increased TS may reflect the brain's tendency to maintain stability, achieve focused attention, and thus reduce "mind wandering" and attention problems. The results indicate that brain TS is increased across the scalp from 12 to 18. TS showed large individual differences that were heritable. Change in TS (alpha oscillations) was heritable between 12 and 14 and between 14 and 16 for the frontal brain areas. Absolute levels of brain TS at each wave were positively correlated with attention problems but not significantly. High and low attention problems subjects showed different developmental trajectories in TS, which was significant in a cluster of frontal leads. These results indicate that trajectories in brain TS development are a biomarker for the developing brain. TS in brain oscillations is highly heritable, and age-related change in TS is also heritable in selected brain areas. These results suggest that high and low attention problems subjects are at different stages of brain development. Copyright © 2016. Published by Elsevier B.V.
Is There Creativity in Design? From a Perspective of School Design and Technology in Hong Kong
ERIC Educational Resources Information Center
Wong, Yi Lin; Siu, Kin Wai Michael
2012-01-01
As creativity is likely to become a crucial aspect of living in the future, it is important for educators to teach students to think creatively when solving constantly evolving and increasingly complex problems. Supported by the idea that creativity can be taught and learnt, elements of creativity are now embedded in secondary school education.…
ERIC Educational Resources Information Center
Harvey, Susan P.; Markenson, Deborah; Gibson, Cheryl A.
2018-01-01
Background: Obesity is a complex health problem affecting more than one-third of school-aged youth. The increasing obesity rates in Kansas and Missouri has been particularly concerning, with efforts being made to improve student health through the implementation of school wellness policies (SWPs). The primary purpose of this study was to conduct a…
Taking a systems approach to ecological systems
Grace, James B.
2015-01-01
Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.
ERIC Educational Resources Information Center
Sinatra, Gale M.; Kienhues, Dorothe; Hofer, Barbara K.
2014-01-01
Science is of critical importance to daily life in a knowledge society and has a significant influence on many everyday decisions. As scientific problems increase in their number and complexity, so do the challenges facing the public in understanding these issues. Our objective is to focus on 3 of those challenges: the challenge of reasoning about…
Suicide prevention: increasing education and awareness.
Grandin, L D; Yan, L J; Gray, S M; Jamison, K R; Sachs, G S
2001-01-01
Suicide is a serious and complex public health problem. Health care providers, including both psychiatrists and primary care physicians, are just beginning to understand the intricacies involved in suicide and its prevention. Suicide rates continue to rise, making the education of the public and physicians regarding awareness and prevention, recognition of a wide range of risk factors, and research into suicide prevention strategies very important.
Kids Know Their Schools Best: Reaching out to Them Can Improve Designs and Build Community Good Will
ERIC Educational Resources Information Center
Carlson, Michael
2010-01-01
More now than ever, our schools need to reach out and engage students. Dropout rates are high, achievement lags and increasingly students view schools as out of touch with their lives and their futures. Solutions to these problems are complex but I believe that making learning environments reflect student attitudes and perspectives plays an…
Achieving resource sustainability and enhancing economic development through biomass utilization
Jerrold E. Winandy
2005-01-01
As the problems associated with sustaining and enhancing the world's forest and agricultural resources compete with the needs of a rapidly increasing and affluent population, the management of our land becomes a much more complex and important issue. One of the most important environmental features of wood and other woody-like fibers is that they are renewable and...
Getting Alice through the door: social science research and natural resource management
Alan W. Ewert
1995-01-01
A number of trends are altering the role of science in natural resource management. These trends include the growing political power of science, the recognition that most natural resource problems are extremely complex and not prone to uni-dimensional solutions, and the increasing need to integrate an understanding of the human component into the planning and decision-...
Reducing assembly complexity of microbial genomes with single-molecule sequencing.
Koren, Sergey; Harhay, Gregory P; Smith, Timothy P L; Bono, James L; Harhay, Dayna M; Mcvey, Scott D; Radune, Diana; Bergman, Nicholas H; Phillippy, Adam M
2013-01-01
The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem. To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads. Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.
Learning to soar in turbulent environments
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J.; Vergassola, Massimo
2016-01-01
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments. PMID:27482099
Learning to soar in turbulent environments.
Reddy, Gautam; Celani, Antonio; Sejnowski, Terrence J; Vergassola, Massimo
2016-08-16
Birds and gliders exploit warm, rising atmospheric currents (thermals) to reach heights comparable to low-lying clouds with a reduced expenditure of energy. This strategy of flight (thermal soaring) is frequently used by migratory birds. Soaring provides a remarkable instance of complex decision making in biology and requires a long-term strategy to effectively use the ascending thermals. Furthermore, the problem is technologically relevant to extend the flying range of autonomous gliders. Thermal soaring is commonly observed in the atmospheric convective boundary layer on warm, sunny days. The formation of thermals unavoidably generates strong turbulent fluctuations, which constitute an essential element of soaring. Here, we approach soaring flight as a problem of learning to navigate complex, highly fluctuating turbulent environments. We simulate the atmospheric boundary layer by numerical models of turbulent convective flow and combine them with model-free, experience-based, reinforcement learning algorithms to train the gliders. For the learned policies in the regimes of moderate and strong turbulence levels, the glider adopts an increasingly conservative policy as turbulence levels increase, quantifying the degree of risk affordable in turbulent environments. Reinforcement learning uncovers those sensorimotor cues that permit effective control over soaring in turbulent environments.
The Challenge of Wireless Reliability and Coexistence.
Berger, H Stephen
2016-09-01
Wireless communication plays an increasingly important role in healthcare delivery. This further heightens the importance of wireless reliability, but quantifying wireless reliability is a complex and difficult challenge. Understanding the risks that accompany the many benefits of wireless communication should be a component of overall risk management. The emerging trend of using sensors and other device-to-device communications, as part of the emerging Internet of Things concept, is evident in healthcare delivery. The trend increases both the importance and complexity of this challenge. As with most system problems, finding a solution requires breaking down the problem into manageable steps. Understanding the operational reliability of a new wireless device and its supporting system requires developing solid, quantified answers to three questions: 1) How well can this new device and its system operate in a spectral environment where many other wireless devices are also operating? 2) What is the spectral environment in which this device and its system are expected to operate? Are the risks and reliability in its operating environment acceptable? 3) How might the new device and its system affect other devices and systems already in use? When operated under an insightful risk management process, wireless technology can be safely implemented, resulting in improved delivery of care.
Kumar, Malhar N
2009-11-01
The increasing complexity of scientific research has been followed by increasing varieties of research misconduct. Dealing with misconduct involves the processes of detection, reporting, and investigation of misconduct. Each of these steps is associated with numerous problems which need to be addressed. Misconduct investigation should not stop with inquiries and disciplinary actions in specific episodes of misconduct. It is necessary to decrease the personal price paid by those who expose misconduct and to protect the personal and professional interests of honest researchers accused of misconduct unfairly or mistakenly. There is no dearth of suggestions to improve the objectivity and fairness of investigations. What is needed is the willingness to test the various options and implement the most suitable ones.
ERIC Educational Resources Information Center
McGarrity, DeShawn N.
2013-01-01
Society is faced with more complex problems than in the past because of rapid advancements in technology. These complex problems require multi-dimensional problem-solving abilities that are consistent with higher-order thinking skills. Bok (2006) posits that over 90% of U.S. faculty members consider critical thinking skills as essential for…
A Real-Life Case Study of Audit Interactions--Resolving Messy, Complex Problems
ERIC Educational Resources Information Center
Beattie, Vivien; Fearnley, Stella; Hines, Tony
2012-01-01
Real-life accounting and auditing problems are often complex and messy, requiring the synthesis of technical knowledge in addition to the application of generic skills. To help students acquire the necessary skills to deal with these problems effectively, educators have called for the use of case-based methods. Cases based on real situations (such…
ERIC Educational Resources Information Center
Holder, Lauren N.; Scherer, Hannah H.; Herbert, Bruce E.
2017-01-01
Engaging students in problem-solving concerning environmental issues in near-surface complex Earth systems involves developing student conceptualization of the Earth as a system and applying that scientific knowledge to the problems using practices that model those used by professionals. In this article, we review geoscience education research…
Dilber, Daniel; Malcic, Ivan
2010-08-01
The Aristotle basic complexity score and the risk adjustment in congenital cardiac surgery-1 method were developed and used to compare outcomes of congenital cardiac surgery. Both methods were used to compare results of procedures performed on our patients in Croatian cardiosurgical centres and results of procedures were taken abroad. The study population consisted of all patients with congenital cardiac disease born to Croatian residents between 1 October, 2002 and 1 October, 2007 undergoing a cardiovascular operation during this period. Of the 556 operations, the Aristotle basic complexity score could be assigned to 553 operations and the risk adjustment in congenital cardiac surgery-1 method to 536 operations. Procedures were performed in two institutions in Croatia and seven institutions abroad. The average complexity for cardiac procedures performed in Croatia was significantly lower. With both systems, along with the increase in complexity, there is also an increase in mortality before discharge and postoperative length of stay. Only after the adjustment for complexity there are marked differences in mortality and occurrence of postoperative complications. Both, the Aristotle basic complexity score and the risk adjustment in congenital cardiac surgery-1 method were predictive of in-hospital mortality as well as prolonged postoperative length to stay, and can be used as a tool in our country to evaluate a cardiosurgical model and recognise potential problems.
2010-06-01
of Not at all Somewhat Mostly Completely membership such as clothes , signs, art, architecture, logos , landmarks, and flags that people can...on a ?whole of nation? approach to solving complex problems. Psychological sense of community (PSOC) theory provides the link that explains how an...States during complex contingency operations depends on a “whole of nation” approach to solving complex problems. Psychological sense of community
Solution of a Complex Least Squares Problem with Constrained Phase.
Bydder, Mark
2010-12-30
The least squares solution of a complex linear equation is in general a complex vector with independent real and imaginary parts. In certain applications in magnetic resonance imaging, a solution is desired such that each element has the same phase. A direct method for obtaining the least squares solution to the phase constrained problem is described.
ERIC Educational Resources Information Center
Cerruti, Carlo; Schlaug, Gottfried
2009-01-01
The remote associates test (RAT) is a complex verbal task with associations to both creative thought and general intelligence. RAT problems require not only lateral associations and the internal production of many words but a convergent focus on a single answer. Complex problem-solving of this sort may thus require both substantial verbal…
Developing science gateways for drug discovery in a grid environment.
Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra
2016-01-01
Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.
Task Oriented Evaluation of Module Extraction Techniques
NASA Astrophysics Data System (ADS)
Palmisano, Ignazio; Tamma, Valentina; Payne, Terry; Doran, Paul
Ontology Modularization techniques identify coherent and often reusable regions within an ontology. The ability to identify such modules, thus potentially reducing the size or complexity of an ontology for a given task or set of concepts is increasingly important in the Semantic Web as domain ontologies increase in terms of size, complexity and expressivity. To date, many techniques have been developed, but evaluation of the results of these techniques is sketchy and somewhat ad hoc. Theoretical properties of modularization algorithms have only been studied in a small number of cases. This paper presents an empirical analysis of a number of modularization techniques, and the modules they identify over a number of diverse ontologies, by utilizing objective, task-oriented measures to evaluate the fitness of the modules for a number of statistical classification problems.
Improved multi-objective ant colony optimization algorithm and its application in complex reasoning
NASA Astrophysics Data System (ADS)
Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing
2013-09-01
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.
2013-01-01
Background A growing proportion of people are living with long term conditions. The majority have more than one. Dealing with multi-morbidity is a complex problem for health systems: for those designing and implementing healthcare as well as for those providing the evidence informing practice. Yet the concept of multi-morbidity (the presence of >2 diseases) is a product of the design of health care systems which define health care need on the basis of disease status. So does the solution lie in an alternative model of healthcare? Discussion Strengthening generalist practice has been proposed as part of the solution to tackling multi-morbidity. Generalism is a professional philosophy of practice, deeply known to many practitioners, and described as expertise in whole person medicine. But generalism lacks the evidence base needed by policy makers and planners to support service redesign. The challenge is to fill this practice-research gap in order to critically explore if and when generalist care offers a robust alternative to management of this complex problem. We need practice-based evidence to fill this gap. By recognising generalist practice as a ‘complex intervention’ (intervening in a complex system), we outline an approach to evaluate impact using action-research principles. We highlight the implications for those who both commission and undertake research in order to tackle this problem. Summary Answers to the complex problem of multi-morbidity won’t come from doing more of the same. We need to change systems of care, and so the systems for generating evidence to support that care. This paper contributes to that work through outlining a process for generating practice-based evidence of generalist solutions to the complex problem of person-centred care for people with multi-morbidity. PMID:23919296
Reeve, Joanne; Blakeman, Tom; Freeman, George K; Green, Larry A; James, Paul A; Lucassen, Peter; Martin, Carmel M; Sturmberg, Joachim P; van Weel, Chris
2013-08-07
A growing proportion of people are living with long term conditions. The majority have more than one. Dealing with multi-morbidity is a complex problem for health systems: for those designing and implementing healthcare as well as for those providing the evidence informing practice. Yet the concept of multi-morbidity (the presence of >2 diseases) is a product of the design of health care systems which define health care need on the basis of disease status. So does the solution lie in an alternative model of healthcare? Strengthening generalist practice has been proposed as part of the solution to tackling multi-morbidity. Generalism is a professional philosophy of practice, deeply known to many practitioners, and described as expertise in whole person medicine. But generalism lacks the evidence base needed by policy makers and planners to support service redesign. The challenge is to fill this practice-research gap in order to critically explore if and when generalist care offers a robust alternative to management of this complex problem. We need practice-based evidence to fill this gap. By recognising generalist practice as a 'complex intervention' (intervening in a complex system), we outline an approach to evaluate impact using action-research principles. We highlight the implications for those who both commission and undertake research in order to tackle this problem. Answers to the complex problem of multi-morbidity won't come from doing more of the same. We need to change systems of care, and so the systems for generating evidence to support that care. This paper contributes to that work through outlining a process for generating practice-based evidence of generalist solutions to the complex problem of person-centred care for people with multi-morbidity.
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Brown, P. W.; Yenni, K. R.
1986-01-01
A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.
USMC Ground Surveillance Robot (GSR): Lessons Learned
NASA Astrophysics Data System (ADS)
Harmon, S. Y.
1987-02-01
This paper describes the design of an autonomous vehicle and the lessons learned during the implementation of that complex robot. The major problems encountered to which solutions were found include sensor processing bandwidth limitations, coordination of the interactions between major subsystems, sensor data fusion and system knowledge representation. Those problems remaining unresolved include system complexity management, the lack of powerful system monitoring and debugging tools, exploratory implementation of a complex system and safety and testing issues. Many of these problems arose from working with underdeveloped and continuously evolving technology and will probably be resolved as the technological resources mature and stabilize. Unfortunately, other problems will continue to plague developers throughout the evolution of autonomous system technology.
Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand
NASA Astrophysics Data System (ADS)
Juangjandee, Warangkana
2017-10-01
Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.
Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.
2013-01-01
If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623
Complex networks for data-driven medicine: the case of Class III dentoskeletal disharmony
NASA Astrophysics Data System (ADS)
Scala, A.; Auconi, P.; Scazzocchio, M.; Caldarelli, G.; McNamara, JA; Franchi, L.
2014-11-01
In the last decade, the availability of innovative algorithms derived from complexity theory has inspired the development of highly detailed models in various fields, including physics, biology, ecology, economy, and medicine. Due to the availability of novel and ever more sophisticated diagnostic procedures, all biomedical disciplines face the problem of using the increasing amount of information concerning each patient to improve diagnosis and prevention. In particular, in the discipline of orthodontics the current diagnostic approach based on clinical and radiographic data is problematic due to the complexity of craniofacial features and to the numerous interacting co-dependent skeletal and dentoalveolar components. In this study, we demonstrate the capability of computational methods such as network analysis and module detection to extract organizing principles in 70 patients with excessive mandibular skeletal protrusion with underbite, a condition known in orthodontics as Class III malocclusion. Our results could possibly constitute a template framework for organising the increasing amount of medical data available for patients’ diagnosis.
Fraello, David; Maller-Kesselman, Jill; Vohr, Betty; Katz, Karol H; Kesler, Shelli; Schneider, Karen; Reiss, Allan; Ment, Laura; Spann, Marisa N
2011-06-01
This study tested the hypothesis that preterm early adolescents' short-term memory is compromised when presented with increasingly complex verbal information and that associated neuroanatomical volumes would differ between preterm and term groups. Forty-nine preterm and 20 term subjects were evaluated at age 12 years with neuropsychological measures and magnetic resonance imaging (MRI). There were no differences between groups in simple short-term and working memory. Preterm subjects performed lower on learning and short-term memory tests that included increased verbal complexity. They had reduced right parietal, left temporal, and right temporal white matter volumes and greater bilateral frontal gray and right frontal white matter volumes. There was a positive association between complex working memory and the left hippocampus and frontal white matter in term subjects. While not correlated, memory scores and volumes of cortical regions known to subserve language and memory were reduced in preterm subjects. This study provides evidence of possible mechanisms for learning problems in former preterm infants.
Increasingly automated procedure acquisition in dynamic systems
NASA Technical Reports Server (NTRS)
Mathe, Nathalie; Kedar, Smadar
1992-01-01
Procedures are widely used by operators for controlling complex dynamic systems. Currently, most development of such procedures is done manually, consuming a large amount of paper, time, and manpower in the process. While automated knowledge acquisition is an active field of research, not much attention has been paid to the problem of computer-assisted acquisition and refinement of complex procedures for dynamic systems. The Procedure Acquisition for Reactive Control Assistant (PARC), which is designed to assist users in more systematically and automatically encoding and refining complex procedures. PARC is able to elicit knowledge interactively from the user during operation of the dynamic system. We categorize procedure refinement into two stages: diagnosis - diagnose the failure and choose a repair - and repair - plan and perform the repair. The basic approach taken in PARC is to assist the user in all steps of this process by providing increased levels of assistance with layered tools. We illustrate the operation of PARC in refining procedures for the control of a robot arm.
Removal of natural organic matter from drinking water by advanced oxidation processes.
Matilainen, Anu; Sillanpää, Mika
2010-06-01
Over the past 10-20years the amount of the natural organic matter (NOM) has been increased in raw water supplies on several areas. The presence of NOM causes many problems in drinking water treatment processes, including: (i) negative effect on water quality by colour, taste and odor problems, (ii) increased coagulant and disinfectant dose requirements (which in turn results increased sludge and potential harmful disinfection by-product formation), (iii) promoted biological growth in distribution system, and (iv) increased levels of complexed heavy metals and adsorbed organic pollutants. Thus, more efficient methods for the removal of NOM have emerged. Among these are advanced oxidation processes (AOPs). These include O(3)/H(2)O(2), O(3)/UV, UV/H(2)O(2), TiO(2)/UV, H(2)O(2)/catalyst, Fenton and photo-Fenton prosesses as well as ultrasound. In the present work, an overview of the recent research studies dealing with AOP methods for the removal of NOM and related compounds from drinking water is presented.
Capturing the complexity of first opinion small animal consultations using direct observation
Robinson, N. J.; Brennan, M. L.; Cobb, M.; Dean, R. S.
2015-01-01
Various different methods are currently being used to capture data from small animal consultations. The aim of this study was to develop a tool to record detailed data from consultations by direct observation. A second aim was to investigate the complexity of the consultation by examining the number of problems discussed per patient. A data collection tool was developed and used during direct observation of small animal consultations in eight practices. Data were recorded on consultation type, patient signalment and number of problems discussed. During 16 weeks of data collection, 1901 patients were presented. Up to eight problems were discussed for some patients; more problems were discussed during preventive medicine consultations than during first consultations (P<0.001) or revisits (P<0.001). Fewer problems were discussed for rabbits than cats (P<0.001) or dogs (P<0.001). Age was positively correlated with discussion of specific health problems and negatively correlated with discussion of preventive medicine. Consultations are complex with multiple problems frequently discussed, suggesting comorbidity may be common. Future research utilising practice data should consider how much of this complexity needs to be captured, and use appropriate methods accordingly. The findings here have implications for directing research and education as well as application in veterinary practice. PMID:25262057
Medicines counterfeiting is a complex problem: a review of key challenges across the supply chain.
Tremblay, Michael
2013-02-01
The paper begins by asking why there is a market for counterfeit medicines, which in effect creates the problem of counterfeiting itself. Contributing factors include supply chain complexity and the lack of whole-systems thinking. These two underpin the author's view that counterfeiting is a complex (i.e. wicked) problem, and that corporate, public policy and regulatory actions need to be mindful of how their actions may be causal. The paper offers a problem-based review of key components of this complexity, viz., the knowledge end-users/consumers have of medicines; whether restrictive information policies may hamper information provision to patients; the internet's direct access to consumers; internet-enabled distribution of unsafe and counterfeit medicines; whether the internet is a parallel and competitive supply chain to legitimate routes; organised crime as an emerging medicines manufacturer and supplier and whether substandard medicines is really the bigger problem. Solutions respect the perceived complexity of the supply chain challenges. The paper identifies the need to avoid technologically-driven solutions, calling for 'technological agnosticism'. Both regulation and public policy need to reflect the dynamic nature of the problem and avoid creating perverse incentives; it may be, for instance, that medicines pricing and reimbursement policies, which affect consumer/patient access may act as market signals to counterfeiters, since this creates a cash market in cheaper drugs.
A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potok, Thomas E; Schuman, Catherine D; Young, Steven R
Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determinemore » network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.« less
Juip, Micki; Fitzner, Karen
2012-06-01
People with diabetes require skills and knowledge to adhere to medication regimens and self-manage this complex disease. Effective self-management is contingent upon effective problem solving and decision making. Gaps existed regarding useful approaches to problem solving by individuals with very low and very high body mass index (BMI) who self-administer insulin injections. This article addresses those gaps by presenting findings from a patient survey, a symposium on the topic of problem solving, and recent interviews with diabetes educators to facilitate problem-solving approaches for people with diabetes with high and low BMI who inject insulin and/or other medications. In practice, problem solving involves problem identification, definition, and specification; goal and barrier identification are a prelude to generating a set of potential strategies for problem resolution and applying these strategies to implement a solution. Teaching techniques, such as site rotation and ensuring that people with diabetes use the appropriate equipment, increase confidence with medication adherence. Medication taking is more effective when people with diabetes are equipped with the knowledge, skills, and problem-solving behaviors to effectively self-manage their injections.
Israel, Barbara A.; Parker, Edith A.; Rowe, Zachary; Salvatore, Alicia; Minkler, Meredith; López, Jesús; Butz, Arlene; Mosley, Adrian; Coates, Lucretia; Lambert, George; Potito, Paul A.; Brenner, Barbara; Rivera, Maribel; Romero, Harry; Thompson, Beti; Coronado, Gloria; Halstead, Sandy
2005-01-01
Over the past several decades there has been growing evidence of the increase in incidence rates, morbidity, and mortality for a number of health problems experienced by children. The causation and aggravation of these problems are complex and multifactorial. The burden of these health problems and environmental exposures is borne disproportionately by children from low-income communities and communities of color. Researchers and funding institutions have called for increased attention to the complex issues that affect the health of children living in marginalized communities—and communities more broadly—and have suggested greater community involvement in processes that shape research and intervention approaches, for example, through community-based participatory research (CBPR) partnerships among academic, health services, public health, and community-based organizations. Centers for Children’s Environmental Health and Disease Prevention Research (Children’s Centers) funded by the National Institute of Environmental Health Sciences and U.S. Environmental Protection Agency were required to include a CBPR project. The purpose of this article is to provide a definition and set of CBPR principles, to describe the rationale for and major benefits of using this approach, to draw on the experiences of six of the Children’s Centers in using CBPR, and to provide lessons learned and recommendations for how to successfully establish and maintain CBPR partnerships aimed at enhancing our understanding and addressing the multiple determinants of children’s health. PMID:16203263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haghighat, A.; Sjoden, G.E.; Wagner, J.C.
In the past 10 yr, the Penn State Transport Theory Group (PSTTG) has concentrated its efforts on developing accurate and efficient particle transport codes to address increasing needs for efficient and accurate simulation of nuclear systems. The PSTTG's efforts have primarily focused on shielding applications that are generally treated using multigroup, multidimensional, discrete ordinates (S{sub n}) deterministic and/or statistical Monte Carlo methods. The difficulty with the existing public codes is that they require significant (impractical) computation time for simulation of complex three-dimensional (3-D) problems. For the S{sub n} codes, the large memory requirements are handled through the use of scratchmore » files (i.e., read-from and write-to-disk) that significantly increases the necessary execution time. Further, the lack of flexible features and/or utilities for preparing input and processing output makes these codes difficult to use. The Monte Carlo method becomes impractical because variance reduction (VR) methods have to be used, and normally determination of the necessary parameters for the VR methods is very difficult and time consuming for a complex 3-D problem. For the deterministic method, the authors have developed the 3-D parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) code system that, in addition to a parallel 3-D S{sub n} solver, includes pre- and postprocessing utilities. PENTRAN provides for full phase-space decomposition, memory partitioning, and parallel input/output to provide the capability of solving large problems in a relatively short time. Besides having a modular parallel structure, PENTRAN has several unique new formulations and features that are necessary for achieving high parallel performance. For the Monte Carlo method, the major difficulty currently facing most users is the selection of an effective VR method and its associated parameters. For complex problems, generally, this process is very time consuming and may be complicated due to the possibility of biasing the results. In an attempt to eliminate this problem, the authors have developed the A{sup 3}MCNP (automated adjoint accelerated MCNP) code that automatically prepares parameters for source and transport biasing within a weight-window VR approach based on the S{sub n} adjoint function. A{sup 3}MCNP prepares the necessary input files for performing multigroup, 3-D adjoint S{sub n} calculations using TORT.« less
[Management of malnutrition in preschool children: the role of primary health care services].
Hoerée, Tom; Kolsteren, Patrick; Roberfroid, Dominique
2002-01-01
Although the prevalence of malnutrition in developing countries is decreasing, it is still a major problem for many children under five. As socio-economic conditions are the main determinants, a final solution for this problem can only be envisaged in the long run. Still, short-term strategies need to be defined in order to relieve the sufferings of individual children and their families. Understanding the problem and consequently formulating intervention programs at the local level remains a complex and difficult issue. The first reason being that the process of malnutrition expresses itself in different forms and with variable consequences. A second reason making malnutrition a complex problem is that the primary causes -- the interaction between insufficient food supply and the frequent recurrence of infectious diseases -- are determined by a multitude of factors of different natures. This complexity -- of its expressions, effects, and causality -- makes it difficult to get a global vision and understanding of the problem, which clearly impedes the definition of rational and integrated intervention strategies. Nevertheless, a better understanding of the pathophysiology of malnutrition and of the factors that influence the growth process in preschool age, will help to better direct actions. To this effect, a conceptual model will be built, based on recent insight in the process of malnutrition within this age group. From this model, two lines of action for increasing the chances of preschool children to express their initial growth potential, become apparent. A first series of activities could tackle the process that, via wasting and recurrence of infections, leads to an increased mortality risk. As timely intervention reduces the risk of depletion of energy reserves, these activities would also have an indirect impact on physical development. Elaborating strategies for secondary prevention and for treating severe cases belongs to the specific competence of the health sector. In the second line of action, the aim is to intervene before reserves are depleted. Here, primary prevention and health promotion are choice activities. This frame of reference will be used for analysing existing health programs for preschool children and how they propose to improve the management of malnutrition. This analysis will show that primary health care services can play a much more important role than usually attributed to them. Identifying these gaps and elaborating alternatives is the purpose of this article.
ERIC Educational Resources Information Center
Winkel, Brian
2008-01-01
A complex technology-based problem in visualization and computation for students in calculus is presented. Strategies are shown for its solution and the opportunities for students to put together sequences of concepts and skills to build for success are highlighted. The problem itself involves placing an object under water in order to actually see…
Cognitive and Motivational Impacts of Learning Game Design on Middle School Children
ERIC Educational Resources Information Center
Akcaoglu, Mete
2013-01-01
In today`s complex and fast-evolving world, problem solving is an important skill to possess. For young children to be successful at their future careers, they need to have the "skill" and the "will" to solve complex problems that are beyond the well-defined problems that they learn to solve at schools. One promising approach…
ERIC Educational Resources Information Center
Angeli, Charoula; Valanides, Nicos
2013-01-01
The present study investigated the problem-solving performance of 101 university students and their interactions with a computer modeling tool in order to solve a complex problem. Based on their performance on the hidden figures test, students were assigned to three groups of field-dependent (FD), field-mixed (FM), and field-independent (FI)…
Optimization of controlled processes in combined-cycle plant (new developments and researches)
NASA Astrophysics Data System (ADS)
Tverskoy, Yu S.; Muravev, I. K.
2017-11-01
All modern complex technical systems, including power units of TPP and nuclear power plants, work in the system-forming structure of multifunctional APCS. The development of the modern APCS mathematical support allows bringing the automation degree to the solution of complex optimization problems of equipment heat-mass-exchange processes in real time. The difficulty of efficient management of a binary power unit is related to the need to solve jointly at least three problems. The first problem is related to the physical issues of combined-cycle technologies. The second problem is determined by the criticality of the CCGT operation to changes in the regime and climatic factors. The third problem is related to a precise description of a vector of controlled coordinates of a complex technological object. To obtain a joint solution of this complex of interconnected problems, the methodology of generalized thermodynamic analysis, methods of the theory of automatic control and mathematical modeling are used. In the present report, results of new developments and studies are shown. These results allow improving the principles of process control and the automatic control systems structural synthesis of power units with combined-cycle plants that provide attainable technical and economic efficiency and operational reliability of equipment.
The Impact of Adaptive Complex Assessment on the HOT Skill Development of Students
ERIC Educational Resources Information Center
Raiyn, Jamal; Tilchin, Oleg
2016-01-01
In this paper we propose a method for the adaptive complex assessment (ACA) of the higher-order thinking (HOT) skills needed by students for problem solving, and we examine the impact of the method on the development of HOT skills in a problem-based learning (PBL) environment. Complexity in the assessment is provided by initial, formative, and…
Development of a change management system
NASA Technical Reports Server (NTRS)
Parks, Cathy Bonifas
1993-01-01
The complexity and interdependence of software on a computer system can create a situation where a solution to one problem causes failures in dependent software. In the computer industry, software problems arise and are often solved with 'quick and dirty' solutions. But in implementing these solutions, documentation about the solution or user notification of changes is often overlooked, and new problems are frequently introduced because of insufficient review or testing. These problems increase when numerous heterogeneous systems are involved. Because of this situation, a change management system plays an integral part in the maintenance of any multisystem computing environment. At the NASA Ames Advanced Computational Facility (ACF), the Online Change Management System (OCMS) was designed and developed to manage the changes being applied to its multivendor computing environment. This paper documents the research, design, and modifications that went into the development of this change management system (CMS).
Global Optimization Ensemble Model for Classification Methods
Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab
2014-01-01
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382
Walls, Helen L; Ooms, Gorik
2017-05-20
Addressing the increasingly globalised determinants of many important problems affecting human health is a complex task requiring collective action. We suggest that part of the solution to addressing intractable global health issues indeed lies with the role of new legal instruments in the form of globally binding treaties, as described in the recent article of Nikogosian and Kickbusch. However, in addition to the use of international law to develop new treaties, another part of the solution may lie in innovative use of existing legal instruments. A 2015 court ruling in The Hague, which ordered the Dutch government to cut greenhouse gas emissions by at least 25% within five years, complements this perspective, suggesting a way forward for addressing global health problems that critically involves civil society and innovative use of existing domestic legal instruments. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Potegal, Michael; Drewel, Elena H; MacDonald, John T
2018-01-01
We explored associations between EEG pathophysiology and emotional/behavioral (E/B) problems of children with two types of epilepsy using standard parent questionnaires and two new indicators: tantrums recorded by parents at home and brief, emotion-eliciting situations in the laboratory. Children with Benign Rolandic epilepsy (BRE, N = 6) reportedly had shorter, more angry tantrums from which they recovered quickly. Children with Complex Partial Seizures (CPS, N = 13) had longer, sadder tantrums often followed by bad moods. More generally, BRE correlated with anger and aggression; CPS with sadness and withdrawal. Scores of a composite group of siblings ( N = 11) were generally intermediate between the BRE and CPS groups. Across all children, high voltage theta and/or interictal epileptiform discharges (IEDs) correlated with negative emotional reactions. Such EEG abnormalities in left hemisphere correlated with greater social fear, right hemisphere EEG abnormalities with greater anger. Right hemisphere localization in CPS was also associated with parent-reported problems at home. If epilepsy alters neural circuitry thereby increasing negative emotions, additional assessment of anti-epileptic drug treatment of epilepsy-related E/B problems would be warranted.
NASA Astrophysics Data System (ADS)
Pontecorvo, Guilio
In 1969, the Straton Commission report provided a plan for the systematic development of a national policy on marine affairs. In subsequent years no such systematic approach to a coherent marine policy was undertaken. The de facto policy approach of the 1970s was a plethora of individual legislative acts which provided specific de jure rules, but which left administrators the complex problems of working out the administration of areas of overlapping authority, with conflicting or inconsistent goals and jurisdiction. The major acts of the 1970s, the Fishery Conservation a n d Management Act of 1976; Mammals and Non-Migratory Birds—The Marine Mammal Protection Act of 1972; Coastal Zone Management Act of 1972; Endangered Species Act of 1973; Marine Protection, Research, and Sanctuaries Act of 1972; and others, are clear indications of a national commitment to regulation of the markets for the output from the ocean sector. But while the need for intervention in markets was clear to legislators, the failure to employ a systematic approach and provide guidelines adequate to permit the rationalization of complex problems doomed the piecemeal approach to ocean policy to ever increasing administrative problems and ultimately to ineffective government programs.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
Heart transplantation in adults with congenital heart disease.
Houyel, Lucile; To-Dumortier, Ngoc-Tram; Lepers, Yannick; Petit, Jérôme; Roussin, Régine; Ly, Mohamed; Lebret, Emmanuel; Fadel, Elie; Hörer, Jürgen; Hascoët, Sébastien
2017-05-01
With the advances in congenital cardiac surgery and postoperative care, an increasing number of children with complex congenital heart disease now reach adulthood. There are already more adults than children living with a congenital heart defect, including patients with complex congenital heart defects. Among these adults with congenital heart disease, a significant number will develop ventricular dysfunction over time. Heart failure accounts for 26-42% of deaths in adults with congenital heart defects. Heart transplantation, or heart-lung transplantation in Eisenmenger syndrome, then becomes the ultimate therapeutic possibility for these patients. This population is deemed to be at high risk of mortality after heart transplantation, although their long-term survival is similar to that of patients transplanted for other reasons. Indeed, heart transplantation in adults with congenital heart disease is often challenging, because of several potential problems: complex cardiac and vascular anatomy, multiple previous palliative and corrective surgeries, and effects on other organs (kidney, liver, lungs) of long-standing cardiac dysfunction or cyanosis, with frequent elevation of pulmonary vascular resistance. In this review, we focus on the specific problems relating to heart and heart-lung transplantation in this population, revisit the indications/contraindications, and update the long-term outcomes. Copyright © 2017. Published by Elsevier Masson SAS.
[Results of revision after failed surgical treatment for traumatic anterior shoulder instability].
Lópiz-Morales, Y; Alcobe-Bonilla, J; García-Fernández, C; Francés-Borrego, A; Otero-Fernández, R; Marco-Martínez, F
2013-01-01
Persistent or recurrent glenohumeral instability after a previous operative stabilization can be a complex problem. Our aim is to establish the incidence of recurrence and its revision surgery, and to analyse the functional results of the revision instability surgery, as well as to determine surgical protocols to perform it. A retrospective analysis was conducted on 16 patients with recurrent instability out of 164 patients operated on between 1999 and 2011. The mean follow-up was 57 months and the mean age was 29 years. To evaluate functional outcome we employed Constant, Rowe, UCLA scores and the visual analogue scale. Of the 12 patients who failed the initial arthroscopic surgery, 6 patients underwent an arthroscopic antero-inferior labrum repair technique, 4 using open labrum repair techniques, and 2 coracoid transfer. The two cases of open surgery with recurrences underwent surgery for coracoid transfer. Results of the Constant score were excellent or good in 64% of patients. Surgical revision of instability is a complex surgery essentially for two reasons: the difficulty in recognising the problem, and the technical demand (greater variety and the increasingly complex techniques). Copyright © 2012 SECOT. Published by Elsevier Espana. All rights reserved.
Proper care for the dying: a critical public issue.
Crispell, K R; Gomez, C F
1987-01-01
The ability of the medical profession to sustain life, or more appropriately, to prolong dying, in patients with terminal illness, creates a most complex and controversial situation for all involved: the patient, if mentally alert; the patient's family; and the medical care team including physicians, nurses and attendants. This situation is especially complex in large acute care hospitals where medical and nursing students, residents and house officers receive advanced medical training. A major problem, prolonging the dying of the terminally ill, with its medical, legal, ethical and economic complexities now confronts American society. The problem is particularly acute in teaching hospitals, in which one finds a disproportionate number of terminally ill patients. The ability to work at these questions as a community rather than as adversaries will determine much about the ability of the health care system to respect the dignity and autonomy of those who seek aid and comfort when faced with serious illness and impending death. Better communication between the physicians, health care providers, the lawyers and ethicists must be developed in order to solve these problems. Over the next ten years society and our elected representatives will be making very demanding decisions about the use of the health dollar. One possible way to prevent increasing costs is to reach significant agreement on the proper care of the dying. Proper care for the dying is being considered, discussed, and evaluated by very thoughtful people. It is not governments which should decide who is to live or who is to die. There is the serious problem of the 'slippery slope' to euthanasia by omission if cost containment becomes the major force in formulating policy on the proper care of the dying. PMID:3612698
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.
2013-12-01
With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.
NASA Astrophysics Data System (ADS)
Jacquey, Antoine; Cacace, Mauro
2017-04-01
Utilization of the underground for energy-related purposes have received increasing attention in the last decades as a source for carbon-free energy and for safe storage solutions. Understanding the key processes controlling fluid and heat flow around geological discontinuities such as faults and fractures as well as their mechanical behaviours is therefore of interest in order to design safe and sustainable reservoir operations. These processes occur in a naturally complex geological setting, comprising natural or engineered discrete heterogeneities as faults and fractures, span a relatively large spectrum of temporal and spatial scales and they interact in a highly non-linear fashion. In this regard, numerical simulators have become necessary in geological studies to model coupled processes and complex geological geometries. In this study, we present a new simulator GOLEM, using multiphysics coupling to characterize geological reservoirs. In particular, special attention is given to discrete geological features such as faults and fractures. GOLEM is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for the considered non-linear context. Governing equations in 3D for fluid flow, heat transfer (conductive and advective), saline transport as well as deformation (elastic and plastic) have been implemented into the GOLEM application. Coupling between rock deformation and fluid and heat flow is considered using theories of poroelasticity and thermoelasticity. Furthermore, considering material properties such as density and viscosity and transport properties such as porosity as dependent on the state variables (based on the International Association for the Properties of Water and Steam models) increase the coupling complexity of the problem. The GOLEM application aims therefore at integrating more physical processes observed in the field or in the laboratory to simulate more realistic scenarios. The use of high-level nonlinear solver technology allow us to tackle these complex multiphysics problems in three dimensions. Basic concepts behing the GOLEM simulator will be presented in this study as well as a few application examples to illustrate its main features.
NASA Astrophysics Data System (ADS)
Kinantan, Bag; Rahim Matondang, A.; Hidayati, Juliza
2018-02-01
The problem of urban waste has reached a point of concern. Population and economic growth are thought to be the cause of increasing the waste generation. The major problem related to this condition is the increasing of waste production which is not balance with the increase of its management capacity. Based on the Law Number 18 of 2008 that waste management starts from the source by applying the 3R approach (Reduction, Reuse, Recycle). This regulation provides a way which expect the waste management can be better, so that, the level of waste service can be improved and load on landfills (TPA) can be reduced.The cost of garbage collection and transport are 85% of the total waste management cost, so if this is optimized, it will optimize the system as a whole. Subsequent research focuses on how to optimize the garbage collection and transport sub-systems by finding the shortest route of transportation to the landfill by developing a Vehicle Routing Problem (VRP) model. The development of an urban area leads to the preparation of the best route is no longer an optimal solution. The complexity of the waste problem is not only related to the technical matters, but also the social and economic problems of the community. So, it is necessary to develop a model of waste management which does not only pay attention to the technical aspects, but also the social and economic. Waste is expected to be no longer a burden, but can also be utilized economically to increase community income.
Overview of Infrastructure Science and Analysis for Homeland Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backhaus, Scott N.
This presentation offers an analysis of infrastructure science with goals to provide third-party independent science based input into complex problems of national concern and to use scientific analysis to "turn down the noise" around complex problems.
SYSTEMATIC PROCEDURE FOR DESIGNING PROCESSES WITH MULTIPLE ENVIRONMENTAL OBJECTIVES
Evaluation of multiple objectives is very important in designing environmentally benign processes. It requires a systematic procedure for solving multiobjective decision-making problems, due to the complex nature of the problems, the need for complex assessments, and complicated ...
Semantic Annotation of Complex Text Structures in Problem Reports
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Throop, David R.; Fleming, Land D.
2011-01-01
Text analysis is important for effective information retrieval from databases where the critical information is embedded in text fields. Aerospace safety depends on effective retrieval of relevant and related problem reports for the purpose of trend analysis. The complex text syntax in problem descriptions has limited statistical text mining of problem reports. The presentation describes an intelligent tagging approach that applies syntactic and then semantic analysis to overcome this problem. The tags identify types of problems and equipment that are embedded in the text descriptions. The power of these tags is illustrated in a faceted searching and browsing interface for problem report trending that combines automatically generated tags with database code fields and temporal information.
Increase in competitiveness of housing-and-communal services
NASA Astrophysics Data System (ADS)
Skripnik, Oksana
2017-10-01
The problems, interfering effective activity of housing-and-communal complex are considered in the article. Some factors of the increase in competitiveness and the importance of transactional expenses are revealed. The assessment of competitiveness of the organizations of the sphere of housing-and-communal services is considered as the set of the following basic elements organizational and administrative, marketing, financial, production, indicators of quality, indicators of development, labor indicators interconnected with processes of the organization. The author proves that the increase in competitiveness is possible by carrying out organizational and administrative, innovative, technological, economic transformations, increasing quality of services, reducing costs for production and realization of services, providing new services.
The bright side of being blue: Depression as an adaptation for analyzing complex problems
Andrews, Paul W.; Thomson, J. Anderson
2009-01-01
Depression ranks as the primary emotional problem for which help is sought. Depressed people often have severe, complex problems, and rumination is a common feature. Depressed people often believe that their ruminations give them insight into their problems, but clinicians often view depressive rumination as pathological because it is difficult to disrupt and interferes with the ability to concentrate on other things. Abundant evidence indicates that depressive rumination involves the analysis of episode-related problems. Because analysis is time consuming and requires sustained processing, disruption would interfere with problem-solving. The analytical rumination (AR) hypothesis proposes that depression is an adaptation that evolved as a response to complex problems and whose function is to minimize disruption of rumination and sustain analysis of complex problems. It accomplishes this by giving episode-related problems priority access to limited processing resources, by reducing the desire to engage in distracting activities (anhedonia), and by producing psychomotor changes that reduce exposure to distracting stimuli. Because processing resources are limited, the inability to concentrate on other things is a tradeoff that must be made to sustain analysis of the triggering problem. The AR hypothesis is supported by evidence from many levels, including genes, neurotransmitters and their receptors, neurophysiology, neuroanatomy, neuroenergetics, pharmacology, cognition and behavior, and the efficacy of treatments. In addition, we address and provide explanations for puzzling findings in the cognitive and behavioral genetics literatures on depression. In the process, we challenge the belief that serotonin transmission is low in depression. Finally, we discuss implications of the hypothesis for understanding and treating depression. PMID:19618990
Lattice Boltzmann computation of creeping fluid flow in roll-coating applications
NASA Astrophysics Data System (ADS)
Rajan, Isac; Kesana, Balashanker; Perumal, D. Arumuga
2018-04-01
Lattice Boltzmann Method (LBM) has advanced as a class of Computational Fluid Dynamics (CFD) methods used to solve complex fluid systems and heat transfer problems. It has ever-increasingly attracted the interest of researchers in computational physics to solve challenging problems of industrial and academic importance. In this current study, LBM is applied to simulate the creeping fluid flow phenomena commonly encountered in manufacturing technologies. In particular, we apply this novel method to simulate the fluid flow phenomena associated with the "meniscus roll coating" application. This prevalent industrial problem encountered in polymer processing and thin film coating applications is modelled as standard lid-driven cavity problem to which creeping flow analysis is applied. This incompressible viscous flow problem is studied in various speed ratios, the ratio of upper to lower lid speed in two different configurations of lid movement - parallel and anti-parallel wall motion. The flow exhibits interesting patterns which will help in design of roll coaters.
Wicked Problems in Large Organizations: Why Pilot Retention Continues to Challenge the Air Force
2017-05-25
ABSTRACT This monograph in military studies investigates the makeup of and approach to complex problems, with a case study on the Air Force’s...priorities, as well as a short, recent history of the pilot retention problem. Following that is a case study on the work done by the Air Staff in...Lonsberry, USAF, 38 pages. This monograph in military studies investigates the makeup of and approach to complex problems, with a case study on the
O'Nions, Elizabeth; Happé, Francesca; Evers, Kris; Boonen, Hannah; Noens, Ilse
2018-04-01
Although there is increasing research interest in the parenting of children with ASD, at present, little is known about everyday strategies used to manage problem behaviour. We conducted a meta-synthesis to explore what strategies parents use to manage irritability, non-compliance, challenging behaviour and anxiety in their children with ASD. Approaches included: (1) accommodating the child; (2) modifying the environment; (3) providing structure, routine and occupation; (4) supervision and monitoring; (5) managing non-compliance with everyday tasks; (6) responding to problem behaviour; (7) managing distress; (8) maintaining safety and (9) analysing and planning. Results suggest complex parenting demands in children with ASD and problem behaviour. Findings will inform the development of a new measure to quantify parenting strategies relevant to ASD.
Mesoscale modeling: solving complex flows in biology and biotechnology.
Mills, Zachary Grant; Mao, Wenbin; Alexeev, Alexander
2013-07-01
Fluids are involved in practically all physiological activities of living organisms. However, biological and biorelated flows are hard to analyze due to the inherent combination of interdependent effects and processes that occur on a multitude of spatial and temporal scales. Recent advances in mesoscale simulations enable researchers to tackle problems that are central for the understanding of such flows. Furthermore, computational modeling effectively facilitates the development of novel therapeutic approaches. Among other methods, dissipative particle dynamics and the lattice Boltzmann method have become increasingly popular during recent years due to their ability to solve a large variety of problems. In this review, we discuss recent applications of these mesoscale methods to several fluid-related problems in medicine, bioengineering, and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Practical modeling approaches for geological storage of carbon dioxide.
Celia, Michael A; Nordbotten, Jan M
2009-01-01
The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.
Printed circuit boards: a review on the perspective of sustainability.
Canal Marques, André; Cabrera, José-María; Malfatti, Célia de Fraga
2013-12-15
Modern life increasingly requires newer equipments and more technology. In addition, the fact that society is highly consumerist makes the amount of discarded equipment as well as the amount of waste from the manufacture of new products increase at an alarming rate. Printed circuit boards, which form the basis of the electronics industry, are technological waste of difficult disposal whose recycling is complex and expensive due to the diversity of materials and components and their difficult separation. Currently, printed circuit boards have a fixing problem, which is migrating from traditional Pb-Sn alloys to lead-free alloys without definite choice. This replacement is an attempt to minimize the problem of Pb toxicity, but it does not change the problem of separation of the components for later reuse and/or recycling and leads to other problems, such as temperature rise, delamination, flaws, risks of mechanical shocks and the formation of "whiskers". This article presents a literature review on printed circuit boards, showing their structure and materials, the environmental problem related to the board, some the different alternatives for recycling, and some solutions that are being studied to reduce and/or replace the solder, in order to minimize the impact of solder on the printed circuit boards. Copyright © 2013 Elsevier Ltd. All rights reserved.
Steven J. Hollenhorst; Michael A. Schuett; David Olson
1995-01-01
One of the key reasons for the tremendous increase in mountain biking on the National Forests is the myriad of opportunities available for off-road cycling enthusiasts. The issues of land access, trail maintenance and conflict are reinforced as complex problems that will need to be resolved through the cooperation of land managers, user groups and clubs/organizations....
A Guide to the Literature on Learning Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Friedland, Peter (Technical Monitor)
1994-01-01
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and more generally, learning probabilistic graphical models. Because many problems in artificial intelligence, statistics and neural networks can be represented as a probabilistic graphical model, this area provides a unifying perspective on learning. This paper organizes the research in this area along methodological lines of increasing complexity.
How Do We Take Care of Our Own? Principal Support and Development in Rocky Top Public Schools
ERIC Educational Resources Information Center
Griffin, Jennifer Shaw
2017-01-01
Principals are isolated in their work and suffer from low morale. The role of the principal has become increasingly complex and demanding especially within the current accountability model with the public nature of school report cards. This is a problem in Rocky Top Public Schools and in school districts across the country. The purpose of this…
Stress in hospital medicine: a problem for key hospital staff.
Allen, I
2001-08-01
Many factors which contribute to stress in the workplace apply to both consultants and ward sisters. Both groups find that their roles have become more complex while they have increasingly lost control of their own clinical and professional territory in a managerial culture. The erosion of the key relationship between consultants and ward sisters is of concern and the need for teamworking is insufficiently recognized.
The U.S. Army Operating Concept: Win in a Complex World, 2020-2040
2014-10-07
with India; and increased maritime pressure on the Philippines, Malaysia , Taiwan, and TRADOC Pamphlet 525-3-1 11 Vietnam are examples of...accept prudent risk, assess the situation continuously, develop innovative solutions to problems, and remain mentally and physically agile to...intuition and social empathy, improve health and stamina, facilitate talent management, enhance leader training, and strengthen unit cohesion. Human
Collaborative modelling: the future of computational neuroscience?
Davison, Andrew P
2012-01-01
Given the complexity of biological neural circuits and of their component cells and synapses, building and simulating robust, well-validated, detailed models increasingly surpasses the resources of an individual researcher or small research group. In this article, I will briefly review possible solutions to this problem, argue for open, collaborative modelling as the optimal solution for advancing neuroscience knowledge, and identify potential bottlenecks and possible solutions.
On the Usability and Likeability of Virtual Reality Games for Education: The Case of VR-ENGAGE
ERIC Educational Resources Information Center
Virvou, Maria; Katsionis, George
2008-01-01
Educational software games aim at increasing the students' motivation and engagement while they learn. However, if software games are targeted to school classrooms they have to be usable and likeable by all students. Usability of virtual reality games may be a problem because these games tend to have complex user interfaces so that they are more…
NASA Astrophysics Data System (ADS)
Abashev, V. M.; Korabelnikov, A. V.; Kuranov, A. L.; Tretyakov, P. K.
2017-10-01
At the analysis of the work process in a ramjet, a complex consideration of the ensemble of problems the solution of which determines the engine efficiency appears reasonable. The main problems are ensuring a high completeness of fuel combustion and minimal hydraulic losses, the reliability of cooling of high-heat areas with the use of the fuel cooling resource, and ensuring the strength of the engine duct elements under non-uniform heat loads due to fuel combustion in complex gas-dynamic flow structures. The fundamental techniques and approaches to the solution of above-noted problems are considered in the present report, their novelty and advantages in comparison with conventional techniques are substantiated. In particular, a technique of the arrangement of an intense (pre-detonation) combustion regime for ensuring a high completeness of fuel combustion and minimal hydraulic losses at a smooth deceleration of a supersonic flow down to the sound velocity using the pulsed-periodic gas-dynamic flow control has been proposed. A technique has been proposed for cooling the high-heat areas, which employs the cooling resource of the hydrocarbon fuel, including the process of the kerosene chemical transformation (conversion) using the nano-catalysts. An analysis has shown that the highly heated structure will operate in the elastic-plastic domain of the behavior of constructional materials, which is directly connected to the engine operation resource. There arise the problems of reducing the ramjet shells depending on deformations. The deformations also lead to a significant influence on the work process in the combustor and, naturally, on the heat transfer process and the performance of catalysts (the action of plastic and elastic deformations of restrained shells). The work presents some results illustrating the presence of identified problems. A conclusion is drawn about the necessity of formulating a complex investigation both with the realization in model experiments and execution of computational and theoretical investigations.
Ordinal optimization and its application to complex deterministic problems
NASA Astrophysics Data System (ADS)
Yang, Mike Shang-Yu
1998-10-01
We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.
The complexity of patient safety reporting systems in UK dentistry.
Renton, T; Master, S
2016-10-21
Since the 'Francis Report', UK regulation focusing on patient safety has significantly changed. Healthcare workers are increasingly involved in NHS England patient safety initiatives aimed at improving reporting and learning from patient safety incidents (PSIs). Unfortunately, dentistry remains 'isolated' from these main events and continues to have a poor record for reporting and learning from PSIs and other events, thus limiting improvement of patient safety in dentistry. The reasons for this situation are complex.This paper provides a review of the complexities of the existing systems and procedures in relation to patient safety in dentistry. It highlights the conflicting advice which is available and which further complicates an overly burdensome process. Recommendations are made to address these problems with systems and procedures supporting patient safety development in dentistry.
Methoxyethanol, Ethoxyethanol, and Spectral Complexity
NASA Astrophysics Data System (ADS)
Westerfield, J. H.; Riffe, Erika; Phillips, Maria; Johnson, Erika; Shipman, Steven
2017-06-01
Over the last few years, we have been working to improve the AUTOFIT programpand extend it to work on more complex spectra, especially spectra collected near room temperature. In this talk, we will discuss the problem of spectral complexity and the challenges it poses for moving to increasingly complicated systems. This will be highlighted by the cases of methoxyethanol, in which AUTOFIT was able to easily extract contributions from the ground state and four vibrationally excited states, and ethoxyethanol, in which AUTOFIT had difficulty identifying more than the ground vibrational state without the assistance of additional double resonance measurements. Seifert, N.A., Finneran, I.A., Perez, C., Zaleski, D.P., Neill, J.L., Steber, A.L., Suenram, R.D., Lesarri, A., Shipman, S.T., Pate, B.H., J. Mol. Spec. 312, 13-21 (2015)
Worm, Bjarne Skjødt
2013-01-01
Background and Aims E-learning is developing fast because of the rapid increased use of smartphones, tablets and portable computers. We might not think of it as e-learning, but today many new e-books are in fact very complex electronic teaching platforms. It is generally accepted that e-learning is as effective as classroom teaching methods, but little is known about its value in relaying contents of different levels of complexity to students. We set out to investigate e-learning effects on simple recall and complex problem-solving compared to classroom teaching. Methods 63 nurses specializing in anesthesiology were evenly randomized into three groups. They were given internet-based knowledge tests before and after attending a teaching module about respiratory physiology and pulmonology. The three groups was either an e-learning group with eBook teaching material, an e-learning group with case-based teaching or a group with face-to-face case-based classroom teaching. After the module the students were required to answer a post-test. Time spent and the number of logged into the system was also measured. Results For simple recall, all methods were equally effective. For problem-solving, the eCase group achieved a comparable knowledge level to classroom teaching, while textbook learning was inferior to both (p<0.01). The textbook group also spent the least amount of time on acquiring knowledge (33 minutes, p<0.001), while the eCase group spent significantly more time on the subject (53 minutes, p<0.001) and logged into the system significantly more (2.8 vs 1.6, p<0.001). Conclusions E-learning based cases are an effective tool for teaching complex knowledge and problem-solving ability, but future studies using higher-level e-learning are encouraged.Simple recall skills, however, do not require any particular learning method. PMID:24039917
Worm, Bjarne Skjødt
2013-01-01
E-learning is developing fast because of the rapid increased use of smartphones, tablets and portable computers. We might not think of it as e-learning, but today many new e-books are in fact very complex electronic teaching platforms. It is generally accepted that e-learning is as effective as classroom teaching methods, but little is known about its value in relaying contents of different levels of complexity to students. We set out to investigate e-learning effects on simple recall and complex problem-solving compared to classroom teaching. 63 nurses specializing in anesthesiology were evenly randomized into three groups. They were given internet-based knowledge tests before and after attending a teaching module about respiratory physiology and pulmonology. The three groups was either an e-learning group with eBook teaching material, an e-learning group with case-based teaching or a group with face-to-face case-based classroom teaching. After the module the students were required to answer a post-test. Time spent and the number of logged into the system was also measured. For simple recall, all methods were equally effective. For problem-solving, the eCase group achieved a comparable knowledge level to classroom teaching, while textbook learning was inferior to both (p<0.01). The textbook group also spent the least amount of time on acquiring knowledge (33 minutes, p<0.001), while the eCase group spent significantly more time on the subject (53 minutes, p<0.001) and logged into the system significantly more (2.8 vs 1.6, p<0.001). E-learning based cases are an effective tool for teaching complex knowledge and problem-solving ability, but future studies using higher-level e-learning are encouraged.Simple recall skills, however, do not require any particular learning method.
Reliability Standards of Complex Engineering Systems
NASA Astrophysics Data System (ADS)
Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.
2017-11-01
Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.
ERIC Educational Resources Information Center
Milbourne, Jeffrey David
2016-01-01
The purpose of this dissertation study was to explore the experiences of high school physics students who were solving complex, ill-structured problems, in an effort to better understand how self-regulatory behavior mediated the project experience. Consistent with Voss, Green, Post, and Penner's (1983) conception of an ill-structured problem in…
Fighting On All Fronts: A Critical Review Of The US Strategy Against ISIL
2016-05-26
developing a base sense of the sheer complexity. The Shia led Iraqi government has exacerbated tensions with the Sunnis through its heavy-handedness...only a part. In effect, only the symptom of a problem is being addressed instead of the getting at the core of the problem . Looking at ISIL through ...13 Solving the Right Problem : Framing ISIL Through Complexity Science
Group Planning and Task Efficiency with Complex Problems. Final Report.
ERIC Educational Resources Information Center
Lawson, E. D.
One hundred eighty 4-man groups (90 of men and 90 of women) using 3 types of net (All-Channel, Wheel and Circle) under 3 conditions (Planning Period (PP), Rest Period (RP) and Control) were run in a single session with 5 complex problems to determine whether a single 2-minute planning period after solution of the first problem would result in…
Embodied Interactions in Human-Machine Decision Making for Situation Awareness Enhancement Systems
2016-06-09
characterize differences in spatial navigation strategies in a complex task, the Traveling Salesman Problem (TSP). For the second year, we developed...visual processing, leading to better solutions for spatial optimization problems . I will develop a framework to determine which body expressions best...methods include systematic characterization of gestures during complex problem solving. 15. SUBJECT TERMS Embodied interaction, gestures, one-shot
Money, Sex, and Drugs: A Case Study to Teach the Genetics of Antibiotic Resistance
Kuehner, Jason N.; Tong, Lillian; Miller, Sarah; Handelsman, Jo
2008-01-01
The goal of the work reported here was to help students expand their understanding of antibiotic resistance, the Central Dogma, and evolution. We developed a unit entitled “Ciprofloxacin Resistance in Neisseria gonorrhoeae,” which was constructed according to the principles of scientific teaching by a team of graduate students, science faculty, and instructors. A variety of activities and assessments were used, including a case study, short lectures, and group problem-solving. Implementation of “Ciprofloxacin Resistance in Neisseria gonorrhoeae” in a college freshman seminar suggests these materials are useful in increasing understanding of complex biological topics and improving problem-solving abilities. PMID:18765752
Money, sex, and drugs: a case study to teach the genetics of antibiotic resistance.
Cloud-Hansen, Karen A; Kuehner, Jason N; Tong, Lillian; Miller, Sarah; Handelsman, Jo
2008-01-01
The goal of the work reported here was to help students expand their understanding of antibiotic resistance, the Central Dogma, and evolution. We developed a unit entitled "Ciprofloxacin Resistance in Neisseria gonorrhoeae," which was constructed according to the principles of scientific teaching by a team of graduate students, science faculty, and instructors. A variety of activities and assessments were used, including a case study, short lectures, and group problem-solving. Implementation of "Ciprofloxacin Resistance in Neisseria gonorrhoeae" in a college freshman seminar suggests these materials are useful in increasing understanding of complex biological topics and improving problem-solving abilities.
Combustion and fires in low gravity
NASA Technical Reports Server (NTRS)
Friedman, Robert
1994-01-01
Fire safety always receives priority attention in NASA mission designs and operations, with emphasis on fire prevention and material acceptance standards. Recently, interest in spacecraft fire-safety research and development has increased because improved understanding of the significant differences between low-gravity and normal-gravity combustion suggests that present fire-safety techniques may be inadequate or, at best, non-optimal; and the complex and permanent orbital operations in Space Station Freedom demand a higher level of safety standards and practices. This presentation outlines current practices and problems in fire prevention and detection for spacecraft, specifically the Space Station Freedom's fire protection. Also addressed are current practices and problems in fire extinguishment for spacecraft.
ERIC Educational Resources Information Center
Waalkens, Maaike; Aleven, Vincent; Taatgen, Niels
2013-01-01
Intelligent tutoring systems (ITS) support students in learning a complex problem-solving skill. One feature that makes an ITS architecturally complex, and hard to build, is support for strategy freedom, that is, the ability to let students pursue multiple solution strategies within a given problem. But does greater freedom mean that students…