Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.
Worldwide Emerging Environmental Issues Affecting the U.S. Military. December 2009 Report
2009-12-01
serious loss of ice sheets and associated sea-level rise • Amazon rainforest ––increased weather-altering deforestation after passing a critical...scientists agree on some tipping elements that are extremely sensitive to climate shifts and therefore might have an important impact on the planetary...trigger radical changes Scientists point out that an additional important unknown element is the interaction of these and other known elements
Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician
Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana
2017-01-01
Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized. PMID:28452962
Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician.
Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana
2017-04-28
Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized.
The Study Abroad Experience: A Crucial Element in Globalizing Business School Programs
ERIC Educational Resources Information Center
Mangiero, George A.; Kraten, Michael
2011-01-01
Globalization is a fundamental reality of modern business practice. Participation in a study abroad program is a crucial element in helping students become well rounded global business leaders; it is an increasingly important element of a well rounded business curriculum. A semester or summer abroad, properly conceived and designed, can provide…
Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni
NASA Technical Reports Server (NTRS)
Singletary, S. J.; Domanik, K.; Drake, M. J.
2005-01-01
The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.
Marine light attack helicopter close air support trainer for situation awareness
2017-06-01
environmental elements outside the aircraft. The initial environment elements included in the trainer are those relating directly to the CAS execution...ambient environmental elements. These elements were limited the few items required to create a virtual environment . The terrain is simulated to...words) In today’s dynamic combat environment , the importance of Close Air Support (CAS) has increased significantly due to a greater need to avoid
NASA Astrophysics Data System (ADS)
Serpa, R. F. B.; de Jesus, E. F. O.; Anjos, M. J.; do Carmo, M. G. T.; Moreira, S.; Rocha, M. S.; Martinez, A. M. B.; Lopes, R. T.
2006-11-01
The knowledge of the spatial distribution and the local concentration of trace elements in tissues are of great importance since trace elements are involved in a number of metabolic and physiological processes in the human body, and their deficiency and excess may lead to different metabolic disorders. In this way, the main goal of this work is to compare the elemental concentration in different brain structures, namely temporal cortex, entorhinal cortex, visual cortex and hippocampus, from Wistar female rats ( n = 15) with different ages: 2, 8 and 48 weeks. The measurements were performed at the Synchrotron Light Brazilian Laboratory, Campinas, São Paulo, Brazil. In the entorhinal cortex, the following elements decreased with age: Zn, S, Cl, K, Ca and Br. In the temporal cortex, Ca, Fe and Br levels increased with aging and on the other hand, P, S, Cl, K and Rb levels decreased with aging. In the visual cortex almost all the elements decreased with aging: Cl, Ca, Fe, Ni and Zn. In the hippocampus, in turn, most of the elements identified, increased with aging: Al, P, S, K, Fe, Cu, Zn and Rb. The increase of Fe with aging in the hippocampus is an important fact that will be studied, since it is involved in oxidative stress. It is believed that oxidative stress is the one of the main causes responsible for neuronal death in Parkinson's disease.
Rare earth element recycling from waste nickel-metal hydride batteries.
Yang, Xiuli; Zhang, Junwei; Fang, Xihui
2014-08-30
With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Coal fly ash as a resource for rare earth elements.
Franus, Wojciech; Wiatros-Motyka, Małgorzata M; Wdowin, Magdalena
2015-06-01
Rare earth elements (REE) have been recognised as critical raw materials, crucial for many clean technologies. As the gap between their global demand and supply increases, the search for their alternative resources becomes more and more important, especially for the countries which depend highly on their import. Coal fly ash (CFA), which when not utilised is considered waste, has been regarded as the possible source of many elements, including REE. Due to the increase in the energy demand, CFA production is expected to grow, making research into the use of this material a necessity. As Poland is the second biggest coal consumer in the European Union, the authors have studied different coal fly ashes from ten Polish power plants for their rare earth element content. All the fly ashes have a broadly similar distribution of rear earth elements, with light REE being dominant. Most of the samples have REE content relatively high and according to Seredin and Dai (Int J Coal Geol 94: 67-93, 2012) classification can be considered promising REE raw materials.
The long (LINEs) and the short (SINEs) of it: altered methylation as a precursor to toxicity.
Carnell, Ammie N; Goodman, Jay I
2003-10-01
Although once thought of as "junk" DNA, the importance of interspersed elements in the genome has become increasingly appreciated in recent years. In a broad sense these are collectively referred to as transposable elements, which encompass both transposons and retrotransposons. The latter include long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs). Expression of these elements leads to genetic instability. Therefore, it is important that they remain transcriptionally silenced, and DNA methylation plays a key role in this regard. A framework for understanding the possible interplay between altered DNA methylation, an epigenetic change, and mutational events is presented. A case is made as to how retrotransposable elements, specifically LINEs and SINEs, are likely to emerge as key players in furthering our understanding of mechanisms underlying a variety of toxicities, including carcinogenesis but not limited to this endpoint.
Chemistry of superheavy elements.
Schädel, Matthias
2006-01-09
The number of chemical elements has increased considerably in the last few decades. Most excitingly, these heaviest, man-made elements at the far-end of the Periodic Table are located in the area of the long-awaited superheavy elements. While physical techniques currently play a leading role in these discoveries, the chemistry of superheavy elements is now beginning to be developed. Advanced and very sensitive techniques allow the chemical properties of these elusive elements to be probed. Often, less than ten short-lived atoms, chemically separated one-atom-at-a-time, provide crucial information on basic chemical properties. These results place the architecture of the far-end of the Periodic Table on the test bench and probe the increasingly strong relativistic effects that influence the chemical properties there. This review is focused mainly on the experimental work on superheavy element chemistry. It contains a short contribution on relativistic theory, and some important historical and nuclear aspects.
Gemas: issues from the comparison of aqua regia and X-ray fluorescence results
NASA Astrophysics Data System (ADS)
Dinelli, Enrico; Birke, Manfred; Reimann, Clemens; Demetriades, Alecos; DeVivo, Benedetto; Flight, Dee; Ladenberger, Anna; Albanese, Stefano; Cicchella, Domenico; Lima, Annamaria
2014-05-01
The comparison of analytical results from aqua regia (AR) and X-ray fluorescence spectroscopy (XRF) can provide information on soil processes controlling the element distribution. The GEMAS (GEochemical Mapping of Agricultural and grazing land Soils) agricultural soil database is used for this comparison. Analyses for the same suite of elements and parameters were carried out in the same laboratory under strict quality control procedures. Sample preparation has been conducted at the laboratory of the The comparison of analytical results from aqua regia (AR) and X-ray fluorescence spectroscopy (XRF) can provide information on soil processes controlling the element distribution in soil. The GEMAS (GEochemical Mapping of Agricultural and grazing land Soils) agricultural soil database, consisting of 2 x ca. 2100 samples spread evenly over 33 European countries, is used for this comparison. Analyses for the same suite of elements and parameters were carried out in the same laboratory under strict quality control procedures. Sample preparation has been conducted at the laboratory of the Geological Survey of the Slovak Republic, AR analyses were carried out at ACME Labs, and XRF analyses at the Federal Institute for Geosciences and Natural Resources, Germany Element recovery by AR is very different, ranging from <1% (e.g. Na, Zr) to > 80% (e.g. Mn, P, Co). Recovery is controlled by mineralogy of the parent material, but geographic and climatic factors and the weathering history of the soils are also important. Nonetheless, even the very low recovery elements show wide ranges of variation and spatial patterns that are affected by other factors than soil parent material. For many elements soil pH have a clear influence on AR extractability: under acidic soil conditions almost all elements tend to be leached and their extractability is generally low. It progressively increases with increasing pH and is highest in the pH range 7-8. Critical is the clay content of the soil that almost for all elements correspond to higher extractability with increasing clay abundance. Also other factors such as organic matter content of soil, Fe and Mn occurrence are important for certain elements or in selected areas. This work illustrates that there are significant differences in the extractability of elements from soils and addresses important influencing factors related to soil properties, geology, climate.
Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients.
Prudencio, Mercedes; Gonzales, Patrick K; Cook, Casey N; Gendron, Tania F; Daughrity, Lillian M; Song, Yuping; Ebbert, Mark T W; van Blitterswijk, Marka; Zhang, Yong-Jie; Jansen-West, Karen; Baker, Matthew C; DeTure, Michael; Rademakers, Rosa; Boylan, Kevin B; Dickson, Dennis W; Petrucelli, Leonard; Link, Christopher D
2017-09-01
Significant transcriptome alterations are detected in the brain of patients with amyotrophic lateral sclerosis (ALS), including carriers of the C9orf72 repeat expansion and C9orf72-negative sporadic cases. Recently, the expression of repetitive element transcripts has been associated with toxicity and, while increased repetitive element expression has been observed in several neurodegenerative diseases, little is known about their contribution to ALS. To assess whether aberrant expression of repetitive element sequences are observed in ALS, we analysed RNA sequencing data from C9orf72-positive and sporadic ALS cases, as well as healthy controls. Transcripts from multiple classes and subclasses of repetitive elements (LINEs, endogenous retroviruses, DNA transposons, simple repeats, etc.) were significantly increased in the frontal cortex of C9orf72 ALS patients. A large collection of patient samples, representing both C9orf72 positive and negative ALS, ALS/FTLD, and FTLD cases, was used to validate the levels of several repetitive element transcripts. These analyses confirmed that repetitive element expression was significantly increased in C9orf72-positive compared to C9orf72-negative or control cases. While previous studies suggest an important link between TDP-43 and repetitive element biology, our data indicate that TDP-43 pathology alone is insufficient to account for the observed changes in repetitive elements in ALS/FTLD. Instead, we found that repetitive element expression positively correlated with RNA polymerase II activity in postmortem brain, and pharmacologic modulation of RNA polymerase II activity altered repetitive element expression in vitro. We conclude that increased RNA polymerase II activity in ALS/FTLD may lead to increased repetitive element transcript expression, a novel pathological feature of ALS/FTLD. © The Author 2017. Published by Oxford University Press.
The Improvement of Teaching with Theatrical Devices.
ERIC Educational Resources Information Center
Koontz, Franklin R.; Sinclair, Phillip A.
Educational television has become an increasingly important successful element in television programing. This element can be introduced in the classroom through the frequent use of videotaped theatrical skits which illustrate points made by the instructor and which have been prepared in a television studio. The skits may be classified as either…
Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo
2015-11-01
In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.
Increasing the Functional Culture Content of the Foreign Language Class.
ERIC Educational Resources Information Center
Spinelli, Emily
An important category of culture to include in second language curriculum is functional culture, defined as the elements of surface and deep culture as well as civilization that must be learned to function while traveling, living, studying, or working in a foreign culture. Elements of functional culture include acting appropriately in everyday…
Culvert roughness elements for native Utah fish passage : phase II.
DOT National Transportation Integrated Search
2012-04-01
Native fishes have become an increasingly important concern when designing fish passable culverts. Many operational culverts constrict waterways which increase velocities and prevent upstream passage of small fish species. The current method to ensur...
Van Hook, R I
1979-01-01
This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619
NASA Technical Reports Server (NTRS)
Midkiff, Alan H.; Hansman, R. John, Jr.
1992-01-01
Air/ground digital datalink communications are an integral component of the FAA's Air Traffic Control (ATC) modernization strategy. With the introduction of datalink into the ATC system, there is concern over the potential loss of situational awareness by flight crews due to the reduction in the "party line" information available to the pilot. "Party line" information is gleaned by flight crews overhearing communications between ATC and other aircraft. In the datalink environment, party line information may not be available due to the use of discrete addressing. Information concerning the importance, availability, and accuracy of party line elements was explored through an opinion survey of active air carrier flight crews. The survey identified numerous important party line elements. These elements were scripted into a full-mission flight simulation. The flight simulation experiment examined the utilization of party line information by studying subject responses to the specific information elements. Some party line elements perceived as important were effectively utilized by flight crews in the simulated operational environment. However, other party line elements stimulated little or no increase in situational awareness. The ability to assimilate and use party line information appeared to be dependent on workload, time availability, and the tactical/strategic nature of the situations. In addition, the results of both the survey and the simulation indicated that the importance of party line information appeared to be greatest for operations near or on the airport. This indicates that caution must be exercised when implementing datalink communications in these high workload, tactical sectors. This document is based on the thesis of Alan H. Midkiff submitted in partial fulfillment of the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology.
Zeng, Linghan; McGowan, Suzanne; Cao, Yanmin; Chen, Xu
2018-04-15
Large river-floodplain systems which provide a variety of societal, economic and biological benefits are undergoing extensive and intensive human disturbance. However, floodplain lakes responses to multiple stressors are poorly understood. The Yangtze River and its floodplain which provide water and food resources for more than 300 million people are an important region in China. Hydrological regulation as well as socio-economic development have brought profound negative influence on this ecologically important area. To improve understanding of decadal-scale responses of floodplain lakes to multiple stressors, lake sediment proxies including particle size, geochemical elements, diatoms and chironomids were analysed in a lead-210 dated core from Futou Lake. The analyses show that dams constructed in 1935 and the early 1970s stabilized hydrological conditions in Futou Lake and impeded the interaction with the Yangtze River, resulting in a decrease in major elements (e.g., Mg, Al, Fe) transported into the lake and an increase of macrophyte-related chironomids (C. sylvestris-type, P. penicillatus-type and Paratanytarsus sp.). After the late 1990s, further decreases in major elements and increases in median grain size are attributed to the erosion of the Yangtze riverbed and declining supply of major elements-enriched sediments from the upper Yangtze caused by the impoundment of the Three Gorges Dam. Chironomid and diatom assemblages indicate that hydrological stabilization caused by dam constructions stimulated the growth of macrophytes, which may be important in buffering against an ecosystem state change towards a phytoplankton-dominated and turbid state with ongoing eutrophication. However, a recent increase in Zn, TP and the emergence of eutrophic diatom and chironomid species indicate initial signs of water quality deterioration which may be related to the combined effects of hydrological stabilization and aquaculture. Over all, the sediment record from Futou Lake emphasizes the importance of interactions between hydrological change and pollutant loads in determining floodplain lake ecosystem state. Copyright © 2017 Elsevier B.V. All rights reserved.
Chemical qualities of water that contribute to human health in a positive way
Hopps, Howard C.
1986-01-01
The emphasis on harmful substances that may occur in potable waters has almost obscured the fact that important beneficial constituents are commonly present.The chemical substances in water that make positive contributions to human health act mainly in two ways: (i) nutritionally, by supplying essential macro and micro elements that the diet (excluding water) may not provide in adequate amounts (for example, Mg, I and Zn); and (ii) by providing macro and micro elements that inhibit the absorption and/or effects of toxic elements such as Hg, Pb and Cd. Specific examples of these beneficial effects will be given, also examples of harmful effects on health that may result from excessive intake of these ordinarily beneficial elements.Because concentrations of the essential macro and micro elements that occur in natural, potable waters vary greatly, depending upon their source, geographic considerations are very important in any studies attempting to relate water quality to health. In this context, the inverse relationship between hard water and cardiovascular disease will be discussed. Specific data relating hardness and Mg and Ca content of potable waters to specific geographic regions of the U.S.A. will be presented. These data show a strong positive correlation between low Mg content and decreased longevity, and between high Ca and Mg content and increased longevity. In the regions considered, increased longevity correlates strongly with decreased cardiovascular mortality, and the decreased longevity with increased cardiovascular mortality.
Majumdar, Sanghamitra; Peralta-Videa, Jose R; Castillo-Michel, Hiram; Hong, Jie; Rico, Cyren M; Gardea-Torresdey, Jorge L
2012-11-28
Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption spectroscopy (μ-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of μ-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using μ-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Yamaoka, Shuhei; Yoshimura, Kazusa; Kondou, Youichi; Onogi, Akio; Matsui, Minami; Iwata, Hiroyoshi; Ban, Tomohiro
2017-01-01
Profiling elemental contents in wheat grains and clarifying the underlying genetic systems are important for the breeding of biofortified crops. Our objective was to evaluate the genetic potential of 269 Afghan wheat landraces for increasing elemental contents in wheat cultivars. The contents of three major (Mg, K, and P) and three minor (Mn, Fe, and Zn) elements in wheat grains were measured by energy dispersive X-ray fluorescence spectrometry. Large variations in elemental contents were observed among landraces. Marker-based heritability estimates were low to moderate, suggesting that the elemental contents are complex quantitative traits. Genetic correlations between two locations (Japan and Afghanistan) and among the six elements were estimated using a multi-response Bayesian linear mixed model. Low-to-moderate genetic correlations were observed among major elements and among minor elements respectively, but not between major and minor elements. A single-response genome-wide association study detected only one significant marker, which was associated with Zn, suggesting it will be difficult to increase the elemental contents of wheat by conventional marker-assisted selection. Genomic predictions for major elemental contents were moderately or highly accurate, whereas those for minor elements were mostly low or moderate. Our results indicate genomic selection may be useful for the genetic improvement of elemental contents in wheat. PMID:28072876
How Do You Build Community and Foster Engagement in Online Courses?
ERIC Educational Resources Information Center
Dolan, Joanne; Kain, Kevin; Reilly, Janet; Bansal, Gaurav
2017-01-01
This chapter reviews research linking the importance of community in increasing engagement in online courses from an interdisciplinary perspective. Additionally, we identify applicable teaching strategies that focus on the important elements of community building, namely teaching, social, and cognitive presence.
NASA Astrophysics Data System (ADS)
Ban, F.; Baker, A.; Marjo, C.; Duan, W.; Li, X.; Coleborn, K.; Akter, R.; Nagra, G.
2017-12-01
Stalagmites play an increasingly important role in the paleoclimatic reconstruction from seasonal to orbital timescales. One of the important reasons is that 230Th-dating can provide an absolute age enabling more accurate knowledge of the stalagmite growth. Additionally, annual trace element and optical layers can provide complementary method for determining a precise age and seasonal resolution. The trace elements of a stalagmite (XMG) in Beijing Shihua Cave, which is located in the East Asian monsoon region, were analyzed by laser ablation ICP-MS and compared with stalagmite laminae. The results show that: (1) the polished section of the topmost 4 mm of stalagmite XMG has obvious bi-optical layers (fluorescence and visible light) under a conventional transmission microscope. In the rest of the sample laminae are not observed using this method. (2) The variations of P/Ca, Sr/Ca, Ba/Ca, U/Ca and Mg/Ca show seasonal cycles throughout the sample. Sr/Ca is inversely correlated to P/Ca, and its peaks correspond with the (non-fluorescing) white layers, which deposit in late winter and spring when the climate is dry. The peaks of P/Ca match closely with the (fluorescing) opaque layers, because P is a soil-derived element which increases in the high rainfall monsoon period. (3) The PCA of the five trace elements showed that the cycles of PC1 could represent the annual cycle. This stalagmite was deposited over 148 ± 4 years through peak counting and the cycles of PC1 correspond well with the annual layers. Trace element cyclicity as shown by PC1 can increase the accuracy of stalagmite dating, especially in the absence of obvious laminae. The trace elements can be used as the marker of seasonal changes in a strongly contrasting wet-dry monsoon climate regime. Keywords: high-precision dating; LA-ICP-MS; stalagmite; trace elements; seasonal cycles; Shihua Cave
The Wind Energy in Power Production and Its Importance in Geography Teaching
ERIC Educational Resources Information Center
Munkacsy, Bela
2005-01-01
Wind energy is an increasingly important factor of the power system in Europe. But it is still just a small part of the significant changes of the new millennium, namely the spreading of micro power and decentralisation of the whole energy system which are very important elements of sustainability. This paper shows the importance of wind power…
Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Sliding friction experiments, conducted with various iron base alloys (alloying elements are Ti, Cr, Mn, Ni, Rh and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum are discussed. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is as an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.
Nuss, Philip; Blengini, Gian Andrea
2018-02-01
The characterization of elemental cycles has a rich history in biogeochemistry. Well known examples include the global carbon cycle, or the cycles of the 'grand nutrients' nitrogen, phosphorus, and sulfur. More recently, efforts have increased to better understand the natural cycling of technology critical elements (TCEs), i.e. elements with a high supply risk and economic importance in the EU. On the other hand, tools such as material-flow analysis (MFA) can help to understand how substances and goods are transported and accumulated in man-made technological systems ('anthroposphere'). However, to date both biogeochemical cycles and MFA studies suffer from narrow system boundaries, failing to fully illustrate relative anthropogenic and natural flow magnitude and the degree to which human activity has perturbed the natural cycling of elements. We discuss important interconnections between natural and anthropogenic cycles and relevant EU raw material dossiers. Increased integration of both cycles could help to better capture the transport and fate of elements in nature including their environmental/human health impacts, highlight potential future material stocks in the anthroposphere (in-use stocks) and in nature (e.g., in soils, tailings, or mining wastes), and estimate anticipated emissions of TCEs to nature in the future (based on dynamic stock modeling). A preliminary assessment of natural versus anthropogenic element fluxes indicates that anthropogenic fluxes induced by the EU-28 of palladium, platinum, and antimony (as a result of materials uses) might be greater than the respective global natural fluxes. Increased combination of MFA and natural cycle data at EU level could help to derive more complete material cycles and initiate a discussion between the research communities of biogeochemists and material flow analysts to more holistically address the issues of sustainable resource management. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases or decreases from unity.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Mina; Mohammadzadeh, Roghayeh
2017-11-01
The stacking fault energy (SFE) is an important parameter in the deformation mechanism of face centered cubic (fcc) iron-based alloy. In this study, the effect of interstitial (C and N) and substitution (Nb and Ti) alloying elements on the intrinsic SFE (ISFE) of nanocrystalline iron were investigated via molecular dynamics (MD) simulation. The modified embedded atom method (MEAM) inter-atomic potential was used in the MD simulations. The results demonstrate a strong dependence of ISFE with addition of interstitial alloying elements but only a mild increase in ISFE with addition of substitution alloying elements in the composition range of 0 < {CNb, CTi} < 3 (at%). Moreover, it is shown that alloying of fcc iron with N decreases ISFE, whereas it increases significantly by addition of carbon element [0 < {CC, CN} < 3.5 (at%)]. The simulation method employed in this work shows reasonable agreement with some published experimental/calculated data.
Changing Higher Education Practice in Malaysia: The Conundrum of Incentives
ERIC Educational Resources Information Center
Wan, Chang Da; Chapman, David; Hutcheson, Sigrid; Lee, Molly; Austin, Ann; Md. Zain, Ahmad Nurulazam
2017-01-01
International university rankings are a widely used measure of higher education excellence. Since publication rates are an important element in most ranking systems, pushing faculty to increase their publication in top-tier international journals is viewed by many government and university officials as an important strategy for improving ratings…
Comparing geological and statistical approaches for element selection in sediment tracing research
NASA Astrophysics Data System (ADS)
Laceby, J. Patrick; McMahon, Joe; Evrard, Olivier; Olley, Jon
2015-04-01
Elevated suspended sediment loads reduce reservoir capacity and significantly increase the cost of operating water treatment infrastructure, making the management of sediment supply to reservoirs of increasingly importance. Sediment fingerprinting techniques can be used to determine the relative contributions of different sources of sediment accumulating in reservoirs. The objective of this research is to compare geological and statistical approaches to element selection for sediment fingerprinting modelling. Time-integrated samplers (n=45) were used to obtain source samples from four major subcatchments flowing into the Baroon Pocket Dam in South East Queensland, Australia. The geochemistry of potential sources were compared to the geochemistry of sediment cores (n=12) sampled in the reservoir. The geochemical approach selected elements for modelling that provided expected, observed and statistical discrimination between sediment sources. Two statistical approaches selected elements for modelling with the Kruskal-Wallis H-test and Discriminatory Function Analysis (DFA). In particular, two different significance levels (0.05 & 0.35) for the DFA were included to investigate the importance of element selection on modelling results. A distribution model determined the relative contributions of different sources to sediment sampled in the Baroon Pocket Dam. Elemental discrimination was expected between one subcatchment (Obi Obi Creek) and the remaining subcatchments (Lexys, Falls and Bridge Creek). Six major elements were expected to provide discrimination. Of these six, only Fe2O3 and SiO2 provided expected, observed and statistical discrimination. Modelling results with this geological approach indicated 36% (+/- 9%) of sediment sampled in the reservoir cores were from mafic-derived sources and 64% (+/- 9%) were from felsic-derived sources. The geological and the first statistical approach (DFA0.05) differed by only 1% (σ 5%) for 5 out of 6 model groupings with only the Lexys Creek modelling results differing significantly (35%). The statistical model with expanded elemental selection (DFA0.35) differed from the geological model by an average of 30% for all 6 models. Elemental selection for sediment fingerprinting therefore has the potential to impact modeling results. Accordingly is important to incorporate both robust geological and statistical approaches when selecting elements for sediment fingerprinting. For the Baroon Pocket Dam, management should focus on reducing the supply of sediments derived from felsic sources in each of the subcatchments.
Holographic Optical Elements Formed in Light of Reduced Coherence.
1986-02-27
providing low noise optical elements by interferometric means, including gratings, lenses, beam combiners, corrector plates, and other *. special...collimators have become increasingly widespread. The study of aberrations and noise of HOEs are two important topics of research. In this paper we discuss...techniques for analysis and construction of low noise , zone plate HOEs. Low noise HOEs have been created by reducing the spatial coherence of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C., E-mail: lichun@nwpu.edu.cn; Shang, J.; Yue, Z.
2015-07-15
In this paper, the basic electronic structures and elastic properties of Ni{sub 3}Al doping with alloying elements (Re, Cr, and Mo) under different pressures have been investigated using first-principles calculations based on density functional theory. It is shown that both alloying elements and external applied pressure contribute positively to the elastic properties of Ni{sub 3}Al, and the configurations of the compounds remain almost unchanged. The calculated elastic constants and moduli increase linearly with the pressure increasing from 0 and 40 GPa. Among the alloying elements studied in the present work, Re exhibits the most significant effect compared with the othermore » elements, showing its practical importance. Especially, if both alloying elements doping and pressure effects are considered simultaneously, which has not been considered previously, the studied compounds exhibit an even better elastic property than the simple superposition of the two influences. Such synergistic effect demonstrates promising applications of Ni-based single crystal superalloys in possible extreme mechanical environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D.; School of Physical Science and Information Engineering, Liaocheng University, Liaocheng, 252059; Yue, J. J.
Patterned magnetic films with nano-scaled dots exhibit some special magnetic properties. In this paper, we investigate the in-plane shape anisotropy and the magnetization dynamic damping in permalloy (Ni{sub 80}Fe{sub 20}) arrays of submicron rectangular elements using ferromagnetic resonance (FMR). The FMR linewidth exhibits a dependence on the element size, and mainly comes from the contribution of the intrinsic damping. Also the contribution of two-magnon scattering plays an important role and is reduced with increasing aspect ratio. The damping coefficient decreases from 0.0129 to 0.0118 with the element length increasing from 300 nm to 1200 nm, and the theoretical calculation suggestsmore » that the change of damping results from the longitudinal and transverse interlayer spin current due to the spatially inhomogeneous magnetization dynamics.« less
Element Pool Changes within a Scrub-Oak Ecosystem after 11 Years of Exposure to Elevated CO2
Duval, Benjamin D.; Dijkstra, Paul; Drake, Bert G.; Johnson, Dale W.; Ketterer, Michael E.; Megonigal, J. Patrick; Hungate, Bruce A.
2013-01-01
The effects of elevated CO2 on ecosystem element stocks are equivocal, in part because cumulative effects of CO2 on element pools are difficult to detect. We conducted a complete above and belowground inventory of non-nitrogen macro- and micronutrient stocks in a subtropical woodland exposed to twice-ambient CO2 concentrations for 11 years. We analyzed a suite of nutrient elements and metals important for nutrient cycling in soils to a depth of ∼2 m, in leaves and stems of the dominant oaks, in fine and coarse roots, and in litter. In conjunction with large biomass stimulation, elevated CO2 increased oak stem stocks of Na, Mg, P, K, V, Zn and Mo, and the aboveground pool of K and S. Elevated CO2 increased root pools of most elements, except Zn. CO2-stimulation of plant Ca was larger than the decline in the extractable Ca pool in soils, whereas for other elements, increased plant uptake matched the decline in the extractable pool in soil. We conclude that elevated CO2 caused a net transfer of a subset of nutrients from soil to plants, suggesting that ecosystems with a positive plant growth response under high CO2 will likely cause mobilization of elements from soil pools to plant biomass. PMID:23717607
Dong, Zhiwen; Kang, Shichang; Qin, Dahe; Qin, Xiang; Yan, Fangping; Du, Wentao; Wei, Ting
2017-03-01
An evaluation of glacial meltwater chemistry is needed under recent dramatic glacier melting when water resources might be significantly impacted. This study investigated trace elements variation in the meltwater stream, and its related aquatic environmental information, at the Laohugou (LHG) glacier basin (4260 m a.s.l.) at a remote location in northeast Tibetan Plateau. We focused on the spatial, temporal and diurnal change of trace elements during the glacier ablation period. Results showed evident elements spatial difference on the glacier surface meltwater, as most of the elements showed increased concentration at the terminus compared to higher elevations sites. Dominant elements in the meltwater were Ba, Sr and Cr, whereas elements with high enrichment factors (EFs) were Sb, Ni, Mo and Zn. Temporal change of some trace elements concentration (e.g. Sc, Cu, and Rb) indicated increasing trend with accelerated snow-ice melting, whereas others (e.g. Ni, Zn, and Pb) showed decreasing trend. We find that, trace elements showed evident diurnal change and a peak value of concentration was observed each day at about 15:00-17:00, and the diurnal change was influenced by runoff level and pH. Moreover, EFs calculations revealed that heavy metals were partially originated from regional anthropogenic sources. Overall, the accelerated diurnal and temporal snow-ice melting (with high runoff level) were correlated to increased elemental concentration, pH, EC and elemental change mode, and thus this work is of great importance for evaluating the impacts of accelerated glacier melting to meltwater chemistry and downstream ecosystem in the northeast Tibetan Plateau. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jablan, Jasna; Inić, Suzana; Stosnach, Hagen; Hadžiabdić, Maja Ortner; Vujić, Lovorka; Domijan, Ana-Marija
2017-05-01
The aim of the present study was to explore impact of endurance exercise on urinary level of minerals and trace elements as well as on some oxidative stress and biochemical parameters. Urine samples were collected from participants (n=21) of mountain ultra-marathon race (53km; Medvednica, Zagreb, Croatia), before (baseline value), immediately after, 12h and 24h after the race. In urine samples level of minerals (Ca, P, K and Na) and trace elements (Se, Zn, Mn, Cu, Fe and Co) were assessed using the bench top Total reflection X-ray Fluorescence (TXRF) spectrometer. Oxidative stress was determined as level of malondialdehyde (MDA). Immediately after the race level of minerals, trace elements, MDA, creatinine, ketones, erythrocytes and specific gravity increased compared to their baseline value. In 24h follow-up trace elements involved in antioxidant defence, MDA and biochemical parameters returned to their baseline values, Cu and Co remained increased as after the race, Fe and K tended to return to baseline values while Ca, P and Na continued to increase. Mountain ultra-marathon resulted in alteration of physiologically important minerals and trace elements that for some minerals and trace elements persist, indicating their involvement in recovery processes. However, due to their loss in urine, level of minerals and trace elements in athletes participating in endurance exercise should be monitored. Copyright © 2017 Elsevier GmbH. All rights reserved.
Xia, Binxin; Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2017-04-01
Rare earth element (REE) pollution and acid rain are major global environmental concerns, and their spatial distributions overlap. Thus, both forms of pollution combine to act on plants. Nitrogen is important for plant growth, and nitrate reductase (NR) is a key plant enzyme that catalyzes nitrogen assimilation. Studying the combined effects of REEs and acid rain on plant nitrogen-based nutrients has important environmental significance. Here, soybean (Glycine max) plants, commonly used for toxicological studies, were exposed to lanthanum (La), a REE, and acid rain to study the NR activities and NR transcriptional levels in the roots. To explain how the pollution affected the NR transcriptional level, we simultaneously observed the contents of intracellular La and nutrient elements, protoplast morphology, membrane lipid peroxidation and intracellular pH. A combined treatment of 0.08mmol/L La and pH 4.5 acid rain increased the NR activity, decreased the NR transcriptional level, increased the intracellular nutrient elements' contents and caused deformations in membrane structures. Other combined treatments significantly decreased the aforementioned parameters and caused serious damage to the membrane structures. The variation in the amplitudes of combined treatments was greater than those of individual treatments. Compared with the control and individual treatments, combined treatments increased membrane permeability, the malondialdehyde content, and intracellular H + and La contents, and with an increasing La concentration or acid strength, the change in amplitude increased. Thus, the combined effects on NR gene transcription in soybean seedling roots were related to the intracellular nutrient elements' contents, protoplast morphology, membranous lipid peroxidation, intracellular pH and La content. Copyright © 2016 Elsevier Inc. All rights reserved.
Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion.
Vaschetto, Luis María
2018-04-01
In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.
The importance of intuition in the occupational medicine clinical consultation.
Philipp, R; Philipp, E; Thorne, P
1999-01-01
Clinical consultation involves unspoken elements which flow between doctor and patient. They are vital ingredients of successful patient management but are not easily measured, objective or evidence-based. These elements include empathy and intuition for what the patient is experiencing and trying to express, or indeed suppressing. Time is needed to explore the instinctive feeling for what is important, particularly in present day society which increasingly recognizes the worth of psychosocial factors. This time should be available in the occupational health consultation. In this paper the importance of intuition and its essential value in the clinical interview are traced through history. Differences between intuition and empathy are explored and the use of intuition as a clinical tool is examined.
Assessing the Computational Literacy of Elementary Students on a National Level in Korea
ERIC Educational Resources Information Center
Jun, SooJin; Han, SunGwan; Kim, HyeonCheol; Lee, WonGyu
2014-01-01
Information and communication technology (ICT) literacy education has become an important issue, and the necessity of computational literacy (CL) has been increasing in our growing information society. CL is becoming an important element for future talents, and many countries, including the USA, are developing programs for CL education.…
Ellerström, M; Stålberg, K; Ezcurra, I; Rask, L
1996-12-01
The promoter region (-309 to +44) of the Brassica napus storage protein gene napA was studied in transgenic tobacco by successive 5' as well as internal deletions fused to the reporter gene GUS (beta-glucuronidase). The expression in the two main tissues of the seed, the endosperm and the embryo, was shown to be differentially regulated. This tissue-specific regulation within the seed was found to affect the developmental expression during seed development. The region between -309 to -152, which has a large effect on quantitative expression, was shown to harbour four elements regulating embryo and one regulating endosperm expression. This region also displayed enhancer activity. Deletion of eight bp from position -152 to position -144 totally abolished the activity of the napA promoter. This deletion disrupted a cis element with similarity to an ABA-responsive element (ABRE) overlapping with an E-box, demonstrating its crucial importance for quantitative expression. An internal deletion of the region -133 to -120, resulted in increased activity in both leaves and endosperm and a decreased activity in the embryo. Within this region, a cis element similar to the (CA)n element, found in other storage protein promoters, was identified. This suggest that the (CA)n element is important for conferring seed specificity by serving both as an activator and a repressor element.
The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts
NASA Astrophysics Data System (ADS)
Ćwikła, G.; Grabowik, C.; Kalinowski, K.; Paprocka, I.; Ociepka, P.
2017-08-01
Rapid Prototyping technologies, especially 3D printing are becoming increasingly popular due to their usability and the constant decrease in price of printing equipment and materials. The article focuses on the study of selected mechanical strength properties of 3D-printed elements, which are not very important if the element is only a model for further manufacturing techniques, but which are important when 3D-printed elements will be a part of a functioning device, e.g. a part of unique scientific equipment. The research was carried out on a set of standardised samples, printed with low-cost standard materials (ABS), using a cheap 3D printer. The influence of parameters (such as the type of infill pattern, infill density, shell thickness, printing temperature, the type of material) on selected mechanical properties of the samples, were tested. The obtained results allows making conscious decisions on the printing of elements to be durable enough, either on a non-professional printer, or when to ordered by a professional manufacturer.
Cis-acting RNA elements in the Hepatitis C virus RNA genome
Sagan, Selena M.; Chahal, Jasmin; Sarnow, Peter
2017-01-01
Hepatitis C virus (HCV) infection is a rapidly increasing global health problem with an estimated 170 million people infected worldwide. HCV is a hepatotropic, positive-sense RNA virus of the family Flaviviridae. As a positive-sense RNA virus, the HCV genome itself must serve as a template for translation, replication and packaging. The viral RNA must therefore be a dynamic structure that is able to readily accommodate structural changes to expose different regions of the genome to viral and cellular proteins to carry out the HCV life cycle. The ∼9600 nucleotide viral genome contains a single long open reading frame flanked by 5′ and 3′ non-coding regions that contain cis-acting RNA elements important for viral translation, replication and stability. Additional cis-acting RNA elements have also been identified in the coding sequences as well as in the 3′ end of the negative-strand replicative intermediate. Herein, we provide an overview of the importance of these cis-acting RNA elements in the HCV life cycle. PMID:25576644
Environmental justice & transportation : a citizen's handbook
DOT National Transportation Integrated Search
2003-01-01
Environmental justice is an increasingly important element of policy making in transportation. It is not specific to any mode of transportation, particular community, or single policy issue. It is fundamentally about fairness toward the disadvantaged...
[The relationship between selenium and gastrointestinal inflammatory diseases].
Nagy, Dániel Tamás; Fülesdi, Béla; Hallay, Judit
2013-10-13
The cell-membrane toxicity of reactive oxygen and nitrogen species (RONS) plays an increasing role in the pathomechanism of gastrointestinal tract diseases. Trace elements are important parts of antioxidant protecting system, especially the selenium (Se), which, in the form of glutathione peroxidase contributes to the immunity of the gut (GALT). Due to the absorptional disorders and consequent malnutrition observed in the course of inflammatory bowel diseases (IBD) an important role is associated with nutritional therapy, including energy-, protein- and trace element-support. Human studies show, that IBD is mostly accompanied by lower serum Se concentrations, reduced antoxidant and increased proinflammatory activity. Adequate Se-replacement may reduce the severity of organ failure and infections, but not mortality. However, it is encouraging that in animal studies obvious preventive effect of Se has been found on IBD and chronic inflammation induced colon cancer .
Kreuwel, I A M; van Peperstraten, A M; Hulscher, M E J L; Kremer, J A M; Grol, R P T M; Nelen, W L D M; Hermens, R P M G
2013-02-01
What is the relationship between the rate of elective single-embryo transfer (eSET) and couples' exposure to different elements of a multifaceted implementation strategy? Additional elements in a multifaceted implementation strategy do not result in an increased eSET rate. A multifaceted eSET implementation strategy with four different elements is effective in increasing the eSET rate by 11%. It is unclear whether every strategy element contributes equally to the strategy's effectiveness. An observational study was performed among 222 subfertile couples included in a previously performed randomized controlled trial. Of the 222 subfertile couples included, 109 couples received the implementation strategy and 113 couples received standard IVF care. A multivariate regression analysis assessed the effectiveness of four different strategy elements on the decision about the number embryos to be transferred. Questionnaires evaluated the experiences of couples with the different elements. Of the couples who received the implementation strategy, almost 50% (52/109) were exposed to all the four elements of the strategy. The remaining 57 couples who received two or three elements of the strategy could be divided into two further classes of exposure. Our analysis demonstrated that additional elements do not result in an increased eSET rate. In addition to the physician's advice, couples rated a decision aid and a counselling session as more important for their decision to transfer one or two embryos, compared with a phone call and a reimbursement offer (P < 0.001). The differences in eSET rate between exposure groups failed to reach significance, probably because of the small numbers of couples in each exposure group. Adding more elements to an implementation strategy does not always result in an increased effectiveness, which is in concordance with recent literature. This in-depth evaluation of a multifaceted intervention strategy could therefore help to modify strategies, by making them more effective and less expensive.
Lu, Yong-Ze; Fu, Liang; Li, Na; Ding, Jing; Bai, Ya-Nan; Samaras, Petros; Zeng, Raymond Jianxiong
2018-05-01
Coupling of anaerobic ammonium oxidation (Anammox) with denitrifying anaerobic methane oxidation (DAMO) is a sustainable pathway for nitrogen removal and reducing methane emissions from wastewater treatment processes. However, studies on the competitive relation between Anammox bacteria and DAMO bacteria are limited. Here, we investigated the effects of variations in the contents of trace element iron on Anammox and DAMO microorganisms. The short-term results indicated that optimal concentrations of iron, which obviously stimulated the activity of Amammox bacteria, DAMO bacteria and DAMO archaea, were 80, 20, and 80 μM, respectively. The activity of Amammox bacteria increased more significant than DAMO bacteria with increasing contents of trace element iron. After long-term incubation with high content of trace element iron of 160 μM in the medium, Candidatus Brocadia (Amammox bacteria) outcompeted Candidatus Methylomirabilis oxyfera (DAMO bacteria), and ANME-2d (DAMO archaea) remarkably increased in number and dominated the co-culture systems (64.5%). Meanwhile, with further addition of iron, the removal rate of ammonium and nitrate increased by 13.6 and 9.2 times, respectively, when compared with that noted in the control. As far as we know, this study is the first to explore the important role of trace element iron contents in the competition between Anammox bacteria and DAMO bacteria and further enrichment of DAMO archaea by regulating the contents of trace element iron. Copyright © 2018 Elsevier Ltd. All rights reserved.
Trace element doping in calcium phosphate ceramics to Understand osteogenesis and angiogenesis
Bose, Susmita; Fielding, Gary; Tarafder, Solaiman; Bandyopadhyay, Amit
2013-01-01
The general trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, recently have become the target of scrutiny over the safety. The importance of trace elements in natural bone health is well documented. Ions, e.g. lithium, zinc, magnesium, manganese, silicon, strontium etc. have shown to increase osteogenesis and neovascularization. Incorporation of dopants into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis. PMID:24012308
Filipiak, Michał; Sobczyk, Łukasz; Weiner, January
2016-01-01
The elements present in dead pine stumps inhabited by larvae of wood-boring beetles (Stictoleptura rubra, Arhopalus rusticus and Chalcophora mariana) were analyzed over the initial (first 5 years; a chronosequence) stages of wood decay. The quantities of N, P, K, Ca, Mg, Fe, Zn, Mn, Cu and Na (but not S) increased with increases in the content of ergosterol (used as a proxy for the amount of fungal tissue). In fact, the amounts of P, N, K, Fe and Cu presented marked increases. These findings show that fungi stoichiometrically rearrange dead wood by importing externally occurring nutrients to decaying stumps. During the first years of wood decay, the ratios of C to other elements decrease substantially, but differently, for various elements, whereas the N:Fe, N:Cu, N:P and N:K ratios remain relatively stable. Therefore, the stoichiometric mismatch between xylophages and their food is greatly reduced. By changing the nutritional stoichiometry of dead wood, fungi create a nutritional niche for wood-eaters, and these changes enable the development of xylophages.
The cost of copy number in a selfish genetic element: the 2-μm plasmid of Saccharomyces cerevisiae.
Harrison, Ellie; Koufopanou, V; Burt, A; MacLean, R C
2012-11-01
Many autonomously replicating genetic elements exist as multiple copies within the cell. The copy number of these elements is often assumed to have important fitness consequences for both element and host, yet the forces shaping its evolution are not well understood. The 2 μm is a multicopy plasmid of Saccharomyces yeasts, encoding just four genes that are solely involved in plasmid replication. One simple model for the fitness relationship between yeasts and 2 μm is that plasmid copy number evolves as a trade-off between selection for increased vertical transmission, favouring high copy number, and selection for decreased virulence, favouring low copy number. To test this model, we experimentally manipulated the copy number of the plasmid and directly measured the fitness cost, in terms of growth rate reduction, associated with high plasmid copy number. We find that the fitness burden imposed by the 2 μm increases with plasmid copy number, such that each copy imposes a fitness burden of 0.17% (± 0.008%), greatly exceeding the cost expected for it to be stably maintained in yeast populations. Our results demonstrate the crucial importance of copy number in the evolution of yeast per 2 μm associations and pave the way for future studies examining how selection can shape the cost of multicopy elements. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
White-Monsant, A C; Clark, G J; Ng Kam Chuen, M A G; Tang, C
2017-10-01
Plant communities in alpine ecosystems worldwide are being altered by climate warming. In the alpine open heathland of the Bogong High Plains, Australia, warming and fire have affected the growth and phenology of plants, and have recently been found to alter soil nutrient availability. We examined the effects of nine years of passive warming by open-top chambers and nine years post-fire on (i) the soluble and extractable nutrients and toxic elements available for plant uptake in the soil and (ii) on the element composition of leaves of seven dominant sub-alpine open heathland plants. Warming increased soil C, soil C:N, and decreased soil δ 13 C, indicating an accumulation of soil organic matter and C sequestration. Warming increased soil δ 15 N, indicating increased N mineralization, which concurred with the increased availability of NH 4 + (measured by ion-exchange membranes). Leaf element composition varied among the plant species in response to changes in soil element availabilities, suggesting the importance of species-specific knowledge. Warming decreased leaf N concentration and increased leaf C:N, generally in the plant community, and specifically in Asterolasia trymalioides, Carex breviculmis, Poa hiemata, and Rytidosperma nudiflorum. Warming increased soil P availability, but did not significantly affect leaf P in any species. Antecedent fire increased soil C:N, and decreased concentrations of Ca and Mg in Celmisia pugioniformis more than in the other species. The results suggest that warming and fire changed the nutrient composition of plants and increased soil C:N, which might lead to progressive N limitation in the alpine ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of data source on travel time reliability assessment.
DOT National Transportation Integrated Search
2014-08-01
Travel time reliability measures are becoming an increasingly important input to the mobility and : congestion management studies. In the case of Maryland State Highway Administration, reliability : measures are key elements in the agencys Annual ...
DISSECTING HABITAT CONNECTIVITY
abstract
Connectivity is increasingly recognized as an important element of a successful reserve design. Connectivity matters in reserve design to the extent that it promotes or hinders the viability of target populations. While conceptually straightforward, connectivity i...
Multi-objective optimization of chromatographic rare earth element separation.
Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt
2015-10-16
The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. Copyright © 2015 Elsevier B.V. All rights reserved.
Selenium deficiency risk predicted to increase under future climate change
Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.
2017-01-01
Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487
Selenium deficiency risk predicted to increase under future climate change.
Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E
2017-03-14
Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.
Ugwuja, Emmanuel I; Nnabu, Richard C; Ezeonu, Paul O; Uro-Chukwu, Henry
2015-09-01
Adverse pregnancy outcome is an important public health problem that has been partly associated with increasing maternal parity. To determine the effect of parity on maternal body mass index (BMI), mineral element status and newborn anthropometrics. Data for 349 pregnant women previously studied for the impacts of maternal plasma mineral element status on pregnancy and its outcomes was analysed. Obstetric and demographic data and 5mls of blood samples were obtained from each subject. Blood lead, plasma copper, iron and zinc were determined using atomic absorption spectrophotometer. Maternal BMI increases with parity. Women with parity two had significantly higher plasma zinc but lower plasma copper with comparable levels of the elements in nulliparous and higher parity groups. Although plasma iron was comparable among the groups, blood lead was significantly higher in parity > three. Newborn birth length increases with parity with a positive correlation between parity and maternal BMI (r = 0.221; p = 0.001) and newborn birth length (r = 0.170; p = 0.002) while plasma copper was negatively correlated with newborn's head circumference (r = -0.115; p = 0.040). It is plausible that parity affects maternal BMI and newborn anthropometrics through alterations in maternal plasma mineral element levels. While further studies are desired to confirm the present findings, there is need for pregnant and would-be pregnant women to diversify their diet to optimize their mineral element status.
Ablative and transport fractionation of trace elements during laser sampling of glass and copper
NASA Astrophysics Data System (ADS)
Outridge, P. M.; Doherty, W.; Gregoire, D. C.
1997-12-01
The fractionation of trace elements due to ablation and transport processes was quantified during Q-switched infrared laser sampling of glass and copper reference materials. Filter-trapping of the ablated product at different points in the sample introduction system showed ablation and transport sometimes caused opposing fractionation effects, leading to a confounded measure of overall (ablative + transport) fractionation. An unexpected result was the greater ablative fractionation of some elements (Au, Ag, Bi, Te in glass and Au, Be, Bi, Ni, Te in copper) at a higher laser fluence of 1.35 × 10 4W cm -2 than at 0.62 × 10 4W cm -2, which contradicted predictions from modelling studies of ablation processes. With glass, there was an inverse logarithmic relationship between the extent of ablative and overall fractionation and element oxide melting point (OMPs), with elements with OMPs < 1000° C exhibiting overall concentration increases of 20-1340%. Fractionation during transport was quantitatively important for most certified elements in copper, and for the most volatile elements (Au, Ag, Bi, Te) in glass. Elements common to both matrices showed 50-100% higher ablative fractionation in copper, possibly because of greater heat conductance away from the ablation site causing increased element volatilisation or zone refinement. These differences between matrices indicate that non-matrix-matched standardisation is likely to provide inaccurate calibration of laser ablation inductively coupled plasma-mass spectrometry analyses of at least some elements.
Zeng, Chang-yu; Ding, Ru-xin; Li, Hong-zhong; Zhou, Yong-zhang; Niu, Jia; Zhang, Jie-tang
2015-11-01
Pangxidong composite granitoid pluton located in the southwestern margin of Yunkai massif. The metamorphic grade of this pluton increases from outside to inside, that is, banded-augen granitic gneisses, gneissoid granites and granites distribute in order from edge to core. X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry are conducted to study the geochemical characteristics of the three types of rocks. The result shows that all the three types of rocks are peraluminous rocks and their contents of main elements and rare earth elements change gradually. From granitic gneisses to granites, the contents of Al₂O₃, CaO, MgO, TiO₂, total rare earth elements and light rare earth elements increase, but the contents of SiO₂ and heavy rare earth elements decrease. It is suggested that the phylogenetic relationship exists between granitic gneisses, gneissoid granites and granites during the multi-stage tectonic evolution process. Furthermore, the remelting of metamorphosed supracrustal rocks in Yunkai massif is probably an important cause of granitoid rocks forming. The evolutionary mechanism is probably that SiO₂ and heavy rare earth elements were melt out from the protolith and gradually enriched upward, but Al₂O₃, CaO, MgO, TiO₂ and light rare earth elements enriched downward.
NASA Technical Reports Server (NTRS)
Capobianco, Christopher J.; Jones, John H.; Drake, Michael J.
1993-01-01
Low-temperature metal-silicate partition coefficients are extrapolated to magma ocean temperatures. If the low-temperature chemistry data is found to be applicable at high temperatures, an important assumption, then the results indicate that high temperature alone cannot account for the excess siderophile element problem of the upper mantle. For most elements, a rise in temperature will result in a modest increase in siderophile behavior if an iron-wuestite redox buffer is paralleled. However, long-range extrapolation of experimental data is hazardous when the data contains even modest experimental errors. For a given element, extrapolated high-temperature partition coefficients can differ by orders of magnitude, even when data from independent studies is consistent within quoted errors. In order to accurately assess siderophile element behavior in a magma ocean, it will be necessary to obtain direct experimental measurements for at least some of the siderophile elements.
Sustainability of rare earth elements chain: from production to food - a review.
Turra, Christian
2018-02-01
Rare earth elements (REE) are a group of chemical elements that include lanthanoids (lanthanum to lutetium), scandium and yttrium. In the last decades, the REE demand in the industry and other areas has increased significantly. In general, REE have shown low concentrations in soils, plants, water and atmosphere, but they may accumulate in such environments due to anthropogenic inputs. In areas where there is REE contamination, the slow accumulation of these elements in the environment could become problematic. Many studies have shown environmental areas contaminated with REE and their toxic effects. Thus, it is important to review, in order to improve the current understanding of these elements in the environment, showing the effects of REE exposure in mining, soil, water, plants and food. Besides, there are few suppliers and a limited quantity of these elements in the world. This paper suggests options to improve the sustainability management of REE chain.
Responding to Terrorism through the U. S. Department of Education's Lens
ERIC Educational Resources Information Center
Tramonte, Michael Robert
2007-01-01
Since school psychologists enact an important role on a crisis team, they need to increase their awareness and knowledge of both terrorism and crisis management. This paper and accompanying workshop address three objectives: (1) School psychologists will increase their awareness and knowledge of the threat, nature, elements, types, targets, and…
The Effect of Volumetric Porosity on Roughness Element Drag
NASA Astrophysics Data System (ADS)
Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken
2016-04-01
Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for the cubes and 0.525 for the mesh forms. Results from the study indicate that as volumetric porosity increases, the force of drag on an element increases although the 2-dimensional porosity remains unchanged for the case of the cube forms. The mesh forms show a similar result that with increasing number of internal forms present, drag increases, but the drag curves are different, suggesting the kind of porosity has an effect on drag. An important scaling parameter that controls drag on the cubes is the permeability (K) of the element, which is a function of the diameter of the tubes and the porosity. K seems to be of lesser importance for controlling drag on the mesh forms. We hypothesize that the drag force data do not universally collapse as a function of permeability due to Reynolds number dependency on flow conditions within the elements that can be laminar, transitional, or turbulent even though flow exterior to the forms is fully turbulent. For the mesh forms, the greatest effect on drag occurs with the addition of the first internal form with subsequent additions showing very little additional effect.
Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling
NASA Astrophysics Data System (ADS)
Melvin, Thomas
2018-02-01
Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.
Densely ionizing radiation affects DNA methylation of selective LINE-1 elements1
Prior, Sara; Miousse, Isabelle R.; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R.; Allen, Antiño R.; Raber, Jacob; Tackett, Alan J.; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor
2016-01-01
Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. PMID:27419368
Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun
2017-07-01
Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design, Fabrication and Test of Composite Curved Frames for Helicopter Fuselage Structure
NASA Technical Reports Server (NTRS)
Lowry, D. W.; Krebs, N. E.; Dobyns, A. L.
1984-01-01
Aspects of curved beam effects and their importance in designing composite frame structures are discussed. The curved beam effect induces radial flange loadings which in turn causes flange curling. This curling increases the axial flange stresses and induces transverse bending. These effects are more important in composite structures due to their general inability to redistribute stresses by general yielding, such as in metal structures. A detailed finite element analysis was conducted and used in the design of composite curved frame specimens. Five specimens were statically tested and compared with predicted and test strains. The curved frame effects must be accurately accounted for to avoid premature fracture; finite element methods can accurately predict most of the stresses and no elastic relief from curved beam effects occurred in the composite frames tested. Finite element studies are presented for comparative curved beam effects on composite and metal frames.
Detecting changes in the nutritional value and elemental composition of transgenic sorghum grain
NASA Astrophysics Data System (ADS)
Ndimba, R.; Grootboom, A. W.; Mehlo, L.; Mkhonza, N. L.; Kossmann, J.; Barnabas, A. D.; Mtshali, C.; Pineda-Vargas, C.
2015-11-01
We have previously demonstrated that poor digestibility in sorghum can be addressed by using RNA interference (RNAi) to suppress kafirin synthesis. The approach resulted in a twofold improvement in overall protein digestibility levels. In the present study, the effect of this targeted kafirin suppression on other grain quality parameters was investigated. Several significant changes in the proximate composition, amino acid profile and the bulk mineral content were detected. Importantly, the most limiting amino acid, lysine, was significantly increased in the transgenic grains by up to 39%; whilst mineral elements in the bulk, such as sulphur (S) and zinc (Zn) were reduced by up to 15.8% and 21% respectively. Elemental mapping of the grain tissue, using micro-PIXE, demonstrated a significant decrease in Zn (>75%), which was localised to the outer endosperm region, whilst TEM revealed important changes to the protein body morphology of the transgenic grains.
Finite Element Modeling and Analysis of Thorax/Restraint System Interlock
DOT National Transportation Integrated Search
1994-05-23
Various modeling techniques are playing an increasingly important role as a cost effective means of supplementing crashworthiness data for gaining a better understanding of the injury mechanisms associated with automotive crashes. The interaction of ...
Nanoparticles of barium induce apoptosis in human phagocytes
Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina
2015-01-01
Purpose Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Methods Colostrum was collected from 24 clinically healthy women (aged 18–35 years). Cell viability, superoxide release, intracellular Ca2+ release, and phagocyte apoptosis were analyzed in the samples. Results Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. Conclusion These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element. PMID:26451108
Nanoparticles of barium induce apoptosis in human phagocytes.
Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina
2015-01-01
Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Colostrum was collected from 24 clinically healthy women (aged 18-35 years). Cell viability, superoxide release, intracellular Ca(2+) release, and phagocyte apoptosis were analyzed in the samples. Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element.
Effect of ultraviolet radiation, smoking and nutrition on hair.
Trüeb, Ralph M
2015-01-01
Similar to the rest of the skin, the hair is exposed to noxious environmental factors. While ultraviolet radiation (UVR) and smoking are well appreciated as major factors contributing to the extrinsic aging of the skin, their effects on the condition of hair have only lately attracted the attention of the medical community. Terrestrial solar UVR ranges from approximately 290 to 400 nm; UV-B (290-315 nm) reaches only the upper dermis, while the penetration of UV-A (315-400 nm) into the dermis increases with wavelength. The two most important chronic effects of UVR on the skin and bald scalp are photocarcinogenesis and solar elastosis; however, the effects of UVR on hair have largely been ignored. As a consequence of increased leisure time and a growing popularity of outdoor activities and holidays in the sun, the awareness of sun protection of the skin has become important and should also apply to the hair. Besides being the single-most preventable cause of significant cardiovascular and pulmonary morbidity and an important cause of death, the association of tobacco smoking with various adverse effects on the skin and hair has also been recognized. Increasing public awareness of the association between smoking and hair loss seems to offer a good opportunity for the prevention or cessation of smoking, since the appearance of hair plays an important role in the overall physical appearance and self-perception of people. Finally, the quantity and quality of hair are closely related to the nutritional state of an individual. Normal supply, uptake, and transport of proteins, calories, trace elements, and vitamins are of fundamental importance in tissues with high biosynthetic activity, such as the hair follicle. In instances of protein and calorie malnutrition as well as essential amino acid, trace element, and vitamin deficiencies, hair growth and pigmentation may be impaired. Ultimately, important commercial interest lies in the question of whether increasing the content of an already adequate diet with specific amino acids, vitamins and/or trace elements may further promote hair growth. Unless the hair is impaired due to nutritional deficiency, there is only so much that nutrients can do to increase the size of individual hairs because hair thickness is largely genetic. Nevertheless, there are external factors that influence hair health to such a degree that micronutrients could boost hair that is suffering from these problems. © 2015 S. Karger AG, Basel.
On the heat capacity of elements in WMD regime
NASA Astrophysics Data System (ADS)
Hamel, Sebatien
2014-03-01
Once thought to get simpler with increasing pressure, elemental systems have been discovered to exhibit complex structures and multiple phases at high pressure. For carbon, QMD/PIMC simulations have been performed and the results are guiding alternative modelling methodologies for constructing a carbon equation-of-state covering the warm dense matter regime. One of the main results of our new QMD/PIMC carbon equation of state is that the decay of the ion-thermal specific heat with temperature is much faster than previously expected. An important question is whether this is only found in carbon and not other element. In this presentation, based on QMD calculations for several elements, we explore trends in the transition from condensed matter to warm dense matter regime.
3-d finite element model development for biomechanics: a software demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollerbach, K.; Hollister, A.M.; Ashby, E.
1997-03-01
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models,more » using human hand and knee examples, and will demonstrate their software tools.« less
Geologic research in support of sustainable agriculture
Gough, L.P.; Herring, J.R.
1993-01-01
The importance and role of the geosciences in studies of sustainable agriculture include such traditional research areas as, agromineral resource assessments, the mapping and classification of soils and soil amendments, and the evaluation of landscapes for their vulnerability to physical and chemical degradation. Less traditional areas of study, that are increasing in societal importance because of environmental concerns and research into sustainable systems in general, include regional geochemical studies of plant and animal trace element deficiencies and toxicities, broad-scale water quality investigations, agricultural chemicals and the hydrogeologic interface, and minimally processed and ion-exchange agrominerals. We discuss the importance and future of phosphate in the US and world based on human population growth, projected agromineral demands in general, and the unavailability of new, high-quality agricultural lands. We also present examples of studies that relate geochemistry and the hydrogeologic characteristics of a region to the bioavailability and cycling of trace elements important to sustainable agricultural systems. ?? 1993.
Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2.
Duval, Benjamin D; Dijkstra, Paul; Natali, Susan M; Megonigal, J Patrick; Ketterer, Michael E; Drake, Bert G; Lerdau, Manuel T; Gordon, Gwyneth; Anbar, Ariel D; Hungate, Bruce A
2011-04-01
The distribution of contaminant elements within ecosystems is an environmental concern because of these elements' potential toxicity to animals and plants and their ability to hinder microbial ecosystem services. As with nutrients, contaminants are cycled within and through ecosystems. Elevated atmospheric CO2 generally increases plant productivity and alters nutrient element cycling, but whether CO2 causes similar effects on the cycling of contaminant elements is unknown. Here we show that 11 years of experimental CO2 enrichment in a sandy soil with low organic matter content causes plants to accumulate contaminants in plant biomass, with declines in the extractable contaminant element pools in surface soils. These results indicate that CO2 alters the distribution of contaminant elements in ecosystems, with plant element accumulation and declining soil availability both likely explained by the CO2 stimulation of plant biomass. Our results highlight the interdependence of element cycles and the importance of taking a broad view of the periodic table when the effects of global environmental change on ecosystem biogeochemistry are considered.
[Significance of physical training on prevention in elderly patients].
Baum, K
2002-07-01
The loss of strength, coordination, endurance, and flexibility with increasing age is only partly due to the aging process itself. A major factor is physical activity, i.e. the influence of implicit or explicit training stimuli. All elements of physical performance can be improved through training even in the very old, if the intensity and frequency of training are adequate. For the elderly, strength and coordination are particularly important elements of training since they constitute a prerequisite for an independent way of living. To minimize the cardiovascular risks during strength training, we developed and tested a new method which leads to significantly smaller increases in blood pressure than conventional approaches.
Brand Discrimination: An Implicit Measure of the Strength of Mental Brand Representations
Friedman, Mike; Leclercq, Thomas
2015-01-01
While mental associations between a brand and its marketing elements are an important part of brand equity, previous research has yet to provide a sound methodology to measure the strength of these links. The following studies present the development and validation of an implicit measure to assess the strength of mental representations of brand elements in the mind of the consumer. The measure described in this paper, which we call the Brand Discrimination task, requires participants to identify whether images of brand elements (e.g. color, logo, packaging) belong to a target brand or not. Signal detection theory (SDT) is used to calculate a Brand Discrimination index which gives a measure of overall recognition accuracy for a brand’s elements in the context of its competitors. A series of five studies shows that the Brand Discrimination task can discriminate between strong and weak brands, increases when mental representations of brands are experimentally strengthened, is relatively stable across time, and can predict brand choice, independently and while controlling for other explicit and implicit brand evaluation measures. Together, these studies provide unique evidence for the importance of mental brand representations in marketing and consumer behavior, along with a research methodology to measure this important consumer-based brand attribute. PMID:25803845
Brand discrimination: an implicit measure of the strength of mental brand representations.
Friedman, Mike; Leclercq, Thomas
2015-01-01
While mental associations between a brand and its marketing elements are an important part of brand equity, previous research has yet to provide a sound methodology to measure the strength of these links. The following studies present the development and validation of an implicit measure to assess the strength of mental representations of brand elements in the mind of the consumer. The measure described in this paper, which we call the Brand Discrimination task, requires participants to identify whether images of brand elements (e.g. color, logo, packaging) belong to a target brand or not. Signal detection theory (SDT) is used to calculate a Brand Discrimination index which gives a measure of overall recognition accuracy for a brand's elements in the context of its competitors. A series of five studies shows that the Brand Discrimination task can discriminate between strong and weak brands, increases when mental representations of brands are experimentally strengthened, is relatively stable across time, and can predict brand choice, independently and while controlling for other explicit and implicit brand evaluation measures. Together, these studies provide unique evidence for the importance of mental brand representations in marketing and consumer behavior, along with a research methodology to measure this important consumer-based brand attribute.
Preliminary finite element analysis of locomotive crashworthy components
DOT National Transportation Integrated Search
2011-09-21
The Office of Research and Development of the Federal Railroad Administration (FRA) and the Volpe Center are continuing to evaluate new technologies for increasing the safety of passengers and operators in rail equipment. In recognition of the import...
An amplitude and phase hybrid modulation Fresnel diffractive optical element
NASA Astrophysics Data System (ADS)
Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi
2018-04-01
An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.
[The elemental composition of teeth hard tissues depending on the state of the environment].
Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K
2014-01-01
At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.
Wang, Feng; Xu, Shaochun; Zhou, Yi; Wang, Pengmei; Zhang, Xiaomei
2017-06-30
Trace element poisoning remains a great threat to various waterfowl and waterbirds throughout the world. In this study, we determined the trace element exposure of herbivorous whooper swans (Cygnus cygnus) wintering in Swan Lake (Rongcheng), an important swan protection area in northern China. A total of 70 samples including abiotic factors (seawater, sediments), food sources (seagrass, macroalgae), feathers and feces of whooper swans were collected from the marine lagoon during the winters of 2014/2015 and 2015/2016. Concentrations of Cu, Zn, Pb, Cr, Cd, Hg and As were determined to investigate the trace element exposure of whooper swans wintering in the area. Results showed that there was an increasing trend in sediment trace element concentrations, compared with historical data. The trace element concentrations in swan feces most closely resembled those of Zostera marina leaves, especially for Cd and Cr. The Zn and Hg concentrations in the swan feces (49.57 and 0.01mg/kg, respectively) were lower than the minimum values reported in the literature for other waterfowls, waterbirds and terrestrial birds. However, the concentrations of the other five trace elements fell within the lower and mediate range of values reported for birds across the world. These results suggest that the whooper swans wintering in Swan Lake, Rongcheng are not suffering severe trace element exposure; however, with the increasing input of trace elements to the lagoon, severe adverse impacts may occur in the future, and we therefore suggest that the input of trace elements to this area should be curbed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improving the Performance of a 1-D Ultrasound Transducer Array by Subdicing.
Janjic, Jovana; Shabanimotlagh, Maysam; van Soest, Gijs; van der Steen, Antonius F W; de Jong, Nico; Verweij, Martin D
2016-08-01
In medical ultrasound transducer design, the geometry of the individual elements is crucial since it affects the vibration mode of each element and its radiation impedance. For a fixed frequency, optimal vibration (i.e., uniform surface motion) can be achieved by designing elements with very small width-to-thickness ratios. However, for optimal radiation impedance (i.e., highest radiated power), the width should be as large as possible. This leads to a contradiction that can be solved by subdicing wide elements. To systematically examine the effect of subdicing on the performance of a 1-D ultrasound transducer array, we applied finite-element simulations. We investigated the influence of subdicing on the radiation impedance, on the time and frequency response, and on the directivity of linear arrays with variable element widths. We also studied the effect of varying the depth of the subdicing cut. The results show that, for elements having a width greater than 0.6 times the wavelength, subdicing improves the performance compared with that of nonsubdiced elements: the emitted pressure may be increased up to a factor of three, the ringing time may be reduced by up to 50%, the bandwidth increased by up to 77%, and the sidelobes reduced by up to 13 dB. Moreover, this simulation study shows that all these improvements can already be achieved by subdicing the elements to a depth of 70% of the total element thickness. Thus, subdicing can improve important transducer parameters and, therefore, help in achieving images with improved signal-to-noise ratio and improved resolution.
Badea, Mihaela; Luzardo, Octavio P; González-Antuña, Ana; Zumbado, Manuel; Rogozea, Liliana; Floroian, Laura; Alexandrescu, Dana; Moga, Marius; Gaman, Laura; Radoi, Mariana; Boada, Luis D; Henríquez-Hernández, Luis Alberto
2018-06-13
Smoking is considered an important source for inorganic elements, most of them toxic for human health. During the last years, there has been a significant increase in the use of e-cigarettes, although the role of them as source of inorganic elements has not been well established. A cross-sectional study including a total of 150 subjects from Brasov (Romania), divided into three groups (non-smokers, cigarette smokers and electronic cigarettes smokers) were recruited to disclose the role of smoking on the human exposure to inorganic elements. Concentration of 42 elements, including trace elements, elements in the ATSDR's priority pollutant list and rare earth elements (REE) were measured by ICP-MS in the blood serum of participants. Cigarette smokers showed the highest levels of copper, molybdenum, zinc, antimony, and strontium. Electronic cigarette (e-cigarette) users presented the highest concentrations of selenium, silver, and vanadium. Beryllium, europium and lanthanides were detected more frequently among e-cigarette users (20.6%, 23.5%, and 14.7%) than in cigarette smokers (1.7%, 19.0%, and 12.1%, respectively); and the number of detected REE was also higher among e-cigarette users (11.8% of them showed more than 10 different elements). Serum levels of cerium and erbium increased as the duration of the use of e-cigarettes was longer. We have found that smoking is mainly a source of heavy metals while the use of e-cigarettes is a potential source of REE. However, these elements were detected at low concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.
Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.
2009-01-01
The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.
Applying eco-health science in environmental governance
Human well-being is inextricably connected to the sustainable use of natural and built resources. The ecosystem goods and services (EGS) concept has become increasingly valuable for identifying and evaluating important trade-offs and by extension has become a central element of ...
A Spike Cocktail Approach to Improve Microbial Performance Monitoring for Water Reuse
Water reuse, via either centralized treatment of traditional wastewater or decentralized treatment and on-site reuse, is becoming an increasingly important element of sustainable water management. Despite advances in waterborne pathogen detection methods, low and highly variable ...
Finite element analysis and full-scale testing of locomotive crashworthy components
DOT National Transportation Integrated Search
2013-04-15
The Office of Research and Development of the Federal Railroad Administration (FRA) and the Volpe Center are continuing to evaluate new technologies for increasing the safety of passengers and operators in rail equipment. In recognition of the import...
Foley, Kimberley A; Feldman-Stewart, Deb; Groome, Patti A; Brundage, Michael D; McArdle, Siobhan; Wallace, David; Peng, Yingwei; Mackillop, William J
2016-02-01
The overall quality of patient care is a function of the quality of both its technical and its nontechnical components. The purpose of this study was to identify the elements of nontechnical (personal) care that are most important to patients undergoing radiation therapy for prostate cancer. We reviewed the literature and interviewed patients and health professionals to identify elements of personal care pertinent to patients undergoing radiation therapy for prostate cancer. We identified 143 individual elements relating to 10 aspects of personal care. Patients undergoing radical radiation therapy for prostate cancer completed a self-administered questionnaire in which they rated the importance of each element. The overall importance of each element was measured by the percentage of respondents who rated it as "very important." The importance of each aspect of personal care was measured by the mean importance of its elements. One hundred eight patients completed the questionnaire. The percentage of patients who rated each element "very important" ranged from 7% to 95% (mean 61%). The mean importance rating of the elements of each aspect of care varied significantly: "perceived competence of caregivers," 80%; "empathy and respectfulness of caregivers," 67%; "adequacy of information sharing," 67%; "patient centeredness," 59%; "accessibility of caregivers," 57%; "continuity of care," 51%; "privacy," 51%; "convenience," 45%; "comprehensiveness of services," 44%; and "treatment environment," 30% (P<.0001). Neither age nor education was associated with importance ratings, but the patient's health status was associated with the rating of some elements of care. Many different elements of personal care are important to patients undergoing radiation therapy for prostate cancer, but the 3 aspects of care that most believe are most important are these: the perceived competence of their caregivers, the empathy and respectfulness of their caregivers, and the adequacy of information sharing. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun
2017-11-01
A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.
Rare Earth Element Mines, Deposits, and Occurrences
Orris, Greta J.; Grauch, Richard I.
2002-01-01
Data on rare earth (including yttrium) mines, deposits, and occurrences were compiled as part of an effort by the USGS and the University of Arizona Center for Mineral Resources to summarize current knowledge on the supply and demand outlook and related topics for this group of elements. Economic competition and environmental concerns are increasingly constraining the mining and processing of rare earths from the Mountain Pass mine in California. For many years, the deposit at Mountain Pass was the world's dominant source of rare earth elements and the United States was essentially self-sufficient. Starting approximately 10 years ago, the U.S. has become increasingly dependent (> 90 percent of separated rare earths) upon imports from China, now the dominant source of rare earths. A knowledge of the known economic and noneconomic sources of rare earths is basic to evaluating the outlook for rare earth supply and associated issues.
Advani, Aneel; Jones, Neil; Shahar, Yuval; Goldstein, Mary K; Musen, Mark A
2004-01-01
We develop a method and algorithm for deciding the optimal approach to creating quality-auditing protocols for guideline-based clinical performance measures. An important element of the audit protocol design problem is deciding which guide-line elements to audit. Specifically, the problem is how and when to aggregate individual patient case-specific guideline elements into population-based quality measures. The key statistical issue involved is the trade-off between increased reliability with more general population-based quality measures versus increased validity from individually case-adjusted but more restricted measures done at a greater audit cost. Our intelligent algorithm for auditing protocol design is based on hierarchically modeling incrementally case-adjusted quality constraints. We select quality constraints to measure using an optimization criterion based on statistical generalizability coefficients. We present results of the approach from a deployed decision support system for a hypertension guideline.
Opposing flow in square porous annulus: Influence of Dufour effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athani, Abdulgaphur, E-mail: abbu.bec@gmail.com; Al-Rashed, Abdullah A. A. A., E-mail: aa.alrashed@paaet.edu.kw; Khaleed, H. M. T., E-mail: khalid-tan@yahoo.com
Heat and mass transfer in porous medium is very important area of research which is also termed as double diffusive convection or thermo-solutal convection. The buoyancy ratio which is the ratio of thermal to concentration buoyancy can have negative values thus leading to opposing flow. This article is aimed to study the influence of Dufour effect on the opposing flow in a square porous annulus. The partial differential equations that govern the heat and mass transfer behavior inside porous medium are solved using finite element method. A three node triangular element is used to divide the porous domain into smallermore » elements. Results are presented with respect to geometric and physical parameters such as duct diameter ratio, Rayleigh number, radiation parameter etc. It is found that the heat transfer increase with increase in Rayleigh number and radiation parameter. It is observed that Dufour coefficient has more influence on velocity profile.« less
Research on burnout fault of moulded case circuit breaker based on finite element simulation
NASA Astrophysics Data System (ADS)
Xue, Yang; Chang, Shuai; Zhang, Penghe; Xu, Yinghui; Peng, Chuning; Shi, Erwei
2017-09-01
In the failure event of molded case circuit breaker, overheating of the molded case near the wiring terminal has a very important proportion. The burnout fault has become an important factor restricting the development of molded case circuit breaker. This paper uses the finite element simulation software to establish the model of molded case circuit breaker by coupling multi-physics field. This model can simulate the operation and study the law of the temperature distribution. The simulation results show that the temperature near the wiring terminal, especially the incoming side of the live wire, of the molded case circuit breaker is much higher than that of the other areas. The steady-state and transient simulation results show that the temperature at the wiring terminals is abnormally increased by increasing the contact resistance of the wiring terminals. This is consistent with the frequent occurrence of burnout of the molded case in this area. Therefore, this paper holds that the burnout failure of the molded case circuit breaker is mainly caused by the abnormal increase of the contact resistance of the wiring terminal.
Trace element partitioning during the retorting of Julia Creek oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J.H.; Dale, L.S.; Chapman, J.f.
1987-05-01
A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less
Takai, Hideki; Nakayama, Youhei; Kim, Dong-Soon; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Nakajima, Yu; Kato, Naoko; Masunaga, Hiroshi; Ogata, Yorimasa
2007-09-01
Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. Androgens are steroid hormones that are essential for skeletal development. The androgen receptor (AR) is a transcription factor and a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. To determine the molecular mechanism involved in the stimulation of bone formation, we have analyzed the effects of androgens and AR effects on BSP gene transcription. AR protein levels were increased after AR overexpression in ROS17/2.8 cells. BSP mRNA levels were increased by AR overexpression. However, the endogenous and overexpressed BSP mRNA levels were not changed by DHT (10(-8) M, 24 h). Whereas luciferase (LUC) activities in all constructs, including a short construct (nts -116 to +60), were increased by AR overexpression, the basal and LUC activities enhanced by AR overexpression were not induced by DHT (10(-8)M, 24 h). The effect of AR overexpression was abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that AR overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were supershifted by phospho-CREB antibody, and CREB, c-Fos, c-Jun, and AR antibodies disrupted the complexes formation. The AP1/GRE-protein complexes were supershifted by c-Fos antibody and c-Jun, and AR antibodies disrupted the complexes formation. These studies demonstrate that AR stimulates BSP gene transcription by targeting the CRE and AP1/GRE elements in the promoter of the rat BSP gene.
Discovery of functional non-coding conserved regions in the α-synuclein gene locus
Sterling, Lori; Walter, Michael; Ting, Dennis; Schüle, Birgitt
2014-01-01
Several single nucleotide polymorphisms (SNPs) and the Rep-1 microsatellite marker of the α-synuclein ( SNCA) gene have consistently been shown to be associated with Parkinson’s disease, but the functional relevance is unclear. Based on these findings we hypothesized that conserved cis-regulatory elements in the SNCA genomic region regulate expression of SNCA, and that SNPs in these regions could be functionally modulating the expression of SNCA, thus contributing to neuronal demise and predisposing to Parkinson’s disease. In a pair-wise comparison of a 206kb genomic region encompassing the SNCA gene, we revealed 34 evolutionary conserved DNA sequences between human and mouse. All elements were cloned into reporter vectors and assessed for expression modulation in dual luciferase reporter assays. We found that 12 out of 34 elements exhibited either an enhancement or reduction of the expression of the reporter gene. Three elements upstream of the SNCA gene displayed an approximately 1.5 fold (p<0.009) increase in expression. Of the intronic regions, three showed a 1.5 fold increase and two others indicated a 2 and 2.5 fold increase in expression (p<0.002). Three elements downstream of the SNCA gene showed 1.5 fold and 2.5 fold increase (p<0.0009). One element downstream of SNCA had a reduced expression of the reporter gene of 0.35 fold (p<0.0009) of normal activity. Our results demonstrate that the SNCA gene contains cis-regulatory regions that might regulate the transcription and expression of SNCA. Further studies in disease-relevant tissue types will be important to understand the functional impact of regulatory regions and specific Parkinson’s disease-associated SNPs and its function in the disease process. PMID:25566351
Espitia-Pérez, Lyda; Arteaga-Pertuz, Marcia; Soto, José Salvador; Espitia-Pérez, Pedro; Salcedo-Arteaga, Shirley; Pastor-Sierra, Karina; Galeano-Páez, Claudia; Brango, Hugo; da Silva, Juliana; Henriques, João A P
2018-09-01
During coal surface mining, several activities such as drilling, blasting, loading, and transport produce large quantities of particulate matter (PM) that is directly emitted into the atmosphere. Occupational exposure to this PM has been associated with an increase of DNA damage, but there is a scarcity of data examining the impact of these industrial operations in cytogenetic endpoints frequency and cancer risk of potentially exposed surrounding populations. In this study, we used a Geographic Information Systems (GIS) approach and Inverse Distance Weighting (IDW) methods to perform a spatial and statistical analysis to explore whether exposure to PM 2.5 and PM 10 pollution, and additional factors, including the enrichment of the PM with inorganic elements, contribute to cytogenetic damage in residents living in proximity to an open-pit coal mining area. Results showed a spatial relationship between exposure to elevated concentrations of PM 2.5, PM 10 and micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells. Active pits, disposal, and storage areas could be identified as the possible emission sources of combustion elements. Mining activities were also correlated with increased concentrations of highly enriched elements like S, Cu and Cr in the atmosphere, corroborating its role in the inorganic elements pollution around coal mines. Elements enriched in the PM 2.5 fraction contributed to increasing of MNBN but seems to be more related to increased MNMONO frequencies and DNA damage accumulated in vivo. The combined use of GIS and IDW methods could represent an important tool for monitoring potential cancer risk associated to dynamically distributed variables like the PM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements
NASA Technical Reports Server (NTRS)
Lyatsky, W.; Khazanov, G. V.
2007-01-01
Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.
Import Bans as an Element of Nigerian Trade Policy, a Failed Approach
2012-11-01
then receive greater revenues from the 16 increased taxes paid by these citizens. 28 Figure 5 depicts Nigerian CPI and compares it to a phase...come from the increased taxes collected from citizens leaving poverty due to the reduced cost of living. With these increased revenues, GON can...crime rates are lowered and the stress on a family is reduced. More taxes are collected and GON revenues increase . These revenues can be reinvested
Di Palma, Anna; Capozzi, Fiore; Spagnuolo, Valeria; Giordano, Simonetta; Adamo, Paola
2017-06-01
Particulate matter has to be constantly monitored because it is an important atmospheric transport form of potentially harmful contaminants. The cost-effective method of the moss-bags can be employed to evaluate both loads and chemical composition of PM. PM entrapped by the moss Pseudoscleropodium purum exposed in bags in 9 European sites was characterized for number, size and chemical composition by SEM/EDX. Moreover, moss elemental uptake of 53 elements including rare earth elements was estimated by ICP-MS analysis. All above was aimed to find possible relations between PM profile and moss uptake and to find out eventual element markers of the different land use (i.e. agricultural, urban, industrial) of the selected sites. After exposure, about 12,000 particles, mostly within the inhalable fraction, were counted on P. purum leaves; their number generally increased from the agricultural sites to the urban and industrial ones. ICP analysis indicated that twenty-three elements were significantly accumulated by mosses with different element profile according to the various land uses. The PM from agricultural sites were mainly made of natural/crustal elements or derived from rural activities. Industrial-related PM covered a wider range of sources, from those linked to specific industrial activities, to those related to manufacturing processes or use of heavy-duty vehicles. This study indicates a close association between PM amount and moss element-uptake, which increases in parallel with PM amount. Precious metals and REEs may constitute novel markers of air pollution in urban and agricultural sites, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Critical Appraisal of Mixed Methods Studies
ERIC Educational Resources Information Center
Heyvaert, Mieke; Hannes, Karin; Maes, Bea; Onghena, Patrick
2013-01-01
In several subdomains of the social, behavioral, health, and human sciences, research questions are increasingly answered through mixed methods studies, combining qualitative and quantitative evidence and research elements. Accordingly, the importance of including those primary mixed methods research articles in systematic reviews grows. It is…
The First Weighing of Plutonium
DOE R&D Accomplishments Database
Seaborg, Glenn T.
1967-09-10
Recollections and reminiscences at the 25th Anniversary of the First Weighing of Plutonium, Chicago, IL, September 10, 1967, tell an important part of the story of this fascinating new element that is destined to play an increasingly significant role in the future of man.
Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo
2017-04-01
Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.
Jia, Ya-xiong; Sun, Lei; He, Feng; Wan, Li-qiang; Yuan, Qing-hua; Li, Xiang-lin
2008-12-01
Salinization contributes significantly to soil degradation and the growth and survival of plants. A high level of salts imposes both ionic and osmotic stresses on plants, resulting in an excessive accumulation of sodium (Na) in plant tissues. Na toxicity disrupts the uptake of soil nutrients. Plant uptake and absorption of macro-elements under salt stress have been studied in plants, but there is little literature addressing the effect of salt stress on plant accumulation and absorption of micro-elements. Species in Elymus genus are among the most important forage plants on high-salinity soils in China An experiment was conducted to study the effect of salt stress on accumulation and absorption of both macro- and micro-elements by wild plants of Elymus genus. Plant samples taken from two populations with different salt tolerance were tested and the level of 4 macro-elements, namely Na, K, Ca and Mg, and 4 micro-elements, namely Cu, Fe, Mn, Zn was determined using atomic absorption spectrophotometer. The relationship between the selection of elements in the process of absorption and accumulation and salt tolerance was also analyzed. The results showed that the level of Na in root and leaf tissues increased with increasing salt stress. The level of Na in leaf tissue of plants with high salt tolerance (HS) was significantly higher than that in plants with low salt tolerance (P<0.05). The level of K and Ca decreased in response to increasing salt stress, while that in HS was higher than in LS. The level of Fe and Zn in the tissues of both roots and leaves increased. No significant difference was detected between HS and LS samples in the level of Cu in root tissues, while that of Cu in leaf tissue of both samples increased. The level of Mn decreased with increasing salt stress, but was higher in HS than in LS. Fe and Zn in roots and leaves of HS were lower than in those of LS.
Transcriptional activation of short interspersed elements by DNA-damaging agents.
Rudin, C M; Thompson, C B
2001-01-01
Short interspersed elements (SINEs), typified by the human Alu repeat, are RNA polymerase III (pol III)-transcribed sequences that replicate within the genome through an RNA intermediate. Replication of SINEs has been extensive in mammalian evolution: an estimated 5% of the human genome consists of Alu repeats. The mechanisms regulating transcription, reverse transcription, and reinsertion of SINE elements in genomic DNA are poorly understood. Here we report that expression of murine SINE transcripts of both the B1 and B2 classes is strongly upregulated after prolonged exposure to cisplatin, etoposide, or gamma radiation. A similar induction of Alu transcripts in human cells occurs under these conditions. This induction is not due to a general upregulation of pol III activity in either species. Genotoxic treatment of murine cells containing an exogenous human Alu element induced Alu transcription. Concomitant with the increased expression of SINEs, an increase in cellular reverse transcriptase was observed after exposure to these same DNA-damaging agents. These findings suggest that genomic damage may be an important activator of SINEs, and that SINE mobility may contribute to secondary malignancy after exposure to DNA-damaging chemotherapy.
Weighting Composite Endpoints in Clinical Trials: Essential Evidence for the Heart Team
Tong, Betty C.; Huber, Joel C.; Ascheim, Deborah D.; Puskas, John D.; Ferguson, T. Bruce; Blackstone, Eugene H.; Smith, Peter K.
2013-01-01
Background Coronary revascularization trials often use a composite endpoint of major adverse cardiac and cerebrovascular events (MACCE). The usual practice in analyzing data with a composite endpoint is to assign equal weights to each of the individual MACCE elements. Non-inferiority margins are used to offset effects of presumably less important components, but their magnitudes are subject to bias. This study describes the relative importance of MACCE elements from a patient perspective. Methods A discrete choice experiment was conducted. Survey respondents were presented with a scenario that would make them eligible for the SYNTAX 3-Vessel Disease cohort. Respondents chose among pairs of procedures that differed on the 3-year probability of MACCE, potential for increased longevity, and procedure/recovery time. Conjoint analysis derived relative weights for these attributes. Results In all, 224 respondents completed the survey. The attributes did not have equal weight. Risk of death was most important (relative weight 0.23), followed by stroke (.18), potential increased longevity and recovery time (each 0.17), MI (0.14) and risk of repeat revascularization (0.11). Applying these weights to the SYNTAX 3-year endpoints resulted in a persistent, but decreased margin of difference in MACCE favoring CABG compared to PCI. When labeled only as “Procedure A” and “B,” 87% of respondents chose CABG over PCI. When procedures were labeled as “Coronary Stent” and “Coronary Bypass Surgery,” only 73% chose CABG. Procedural preference varied with demographics, gender and familiarity with the procedures. Conclusions MACCE elements do not carry equal weight in a composite endpoint, from a patient perspective. Using a weighted composite endpoint increases the validity of statistical analyses and trial conclusions. Patients are subject to bias by labels when considering coronary revascularization. PMID:22795064
Densely ionizing radiation affects DNA methylation of selective LINE-1 elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prior, Sara; Miousse, Isabelle R.
Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promotermore » type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.« less
Prospecting for hyperaccumulators of trace elements: a review.
Krzciuk, Karina; Gałuszka, Agnieszka
2015-01-01
Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as "hyperaccumulators". The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators - geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives.
Li, S; Zhang, P; Zhang, M; Fu, C; Yu, L
2013-01-01
Although the regulation of taxol biosynthesis at the transcriptional level remains unclear, 10-deacetylbaccatin III-10 β-O-acetyl transferase (DBAT) is a critical enzyme in the biosynthesis of taxol. The 1740 bp fragment 5'-flanking sequence of the dbat gene was cloned from Taxus chinensis cells. Important regulatory elements needed for activity of the dbat promoter were located by deletion analyses in T. chinensis cells. A novel WRKY transcription factor, TcWRKY1, was isolated with the yeast one-hybrid system from a T. chinensis cell cDNA library using the important regulatory elements as bait. The gene expression of TcWRKY1 in T. chinensis suspension cells was specifically induced by methyl jasmonate (MeJA). Biochemical analysis indicated that TcWRKY1 protein specifically interacts with the two W-box (TGAC) cis-elements among the important regulatory elements. Overexpression of TcWRKY1 enhanced dbat expression in T. chinensis suspension cells, and RNA interference (RNAi) reduced the level of transcripts of dbat. These results suggest that TcWRKY1 participates in regulation of taxol biosynthesis in T. chinensis cells, and that dbat is a target gene of this transcription factor. This research also provides a potential candidate gene for engineering increased taxol accumulation in Taxus cell cultures. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Kukla, Marina; Strasburger, Amy M; Salyers, Michelle P; Rattray, Nicholas A; Lysaker, Paul H
2017-01-01
New research suggests that group-based cognitive behavioral therapy (CBT) may help improve employment outcomes in persons with mental illness, yet the effects and potential key elements facilitating change in such interventions are unclear. Using a mixed methods approach, this study examined the perspectives of persons with mental illness after participating in a pilot study of the "CBT for Work Success" intervention. Findings demonstrate that participants valued the intervention and perceived that it assisted them in achieving work goals. Therapeutic effects included improved self-efficacy, work motivation, enhanced sense of self as workers, and increased beliefs that work success is attainable. CBT for Work Success elements perceived to be important in facilitating work goals included cognitive restructuring, behavioral coping strategies, problem solving work barriers, meaningful reflection on oneself as a worker, and important factors associated with the group process. The authors discuss the implications of these findings and future research directions.
Developing a Motivational Strategy.
ERIC Educational Resources Information Center
Janson, Robert
1979-01-01
Describes the use of job enrichment techniques as tools for increased productivity and organizational change. The author's motivational work design model changes not only the job design but also structural elements such as physical layout, workflow, and organizational relationships. Behavior change is more important than job enrichment. (MF)
DOT National Transportation Integrated Search
2014-04-03
Pretensioned concrete ties are increasingly employed in railroad high speed : and heavy haul applications. The bond between prestressing wires or strands and : concrete plays an important role in determining the transfer length of pretensioned : conc...
Takeda, David Y; Spisák, Sándor; Seo, Ji-Heui; Bell, Connor; O'Connor, Edward; Korthauer, Keegan; Ribli, Dezső; Csabai, István; Solymosi, Norbert; Szállási, Zoltán; Stillman, David R; Cejas, Paloma; Qiu, Xintao; Long, Henry W; Tisza, Viktória; Nuzzo, Pier Vitale; Rohanizadegan, Mersedeh; Pomerantz, Mark M; Hahn, William C; Freedman, Matthew L
2018-06-09
Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide. Epigenetic data generated in localized prostate tumors and benign specimens support the notion that this region is a developmental enhancer. Collectively, these observations underscore the importance of epigenomic profiling in primary specimens and the value of deploying genome editing to functionally characterize noncoding elements. More broadly, this work identifies a therapeutic vulnerability for targeting the AR and emphasizes the importance of regulatory elements as highly recurrent oncogenic drivers. Copyright © 2018 Elsevier Inc. All rights reserved.
Micro-PIXE investigation of bean seeds to assist micronutrient biofortification
NASA Astrophysics Data System (ADS)
Cvitanich, Cristina; Przybyłowicz, Wojciech J.; Mesjasz-Przybyłowicz, Jolanta; Blair, Matthew W.; Astudillo, Carolina; Orłowska, Elżbieta; Jurkiewicz, Anna M.; Jensen, Erik Ø.; Stougaard, Jens
2011-10-01
This study compares the distribution and concentrations of micro- and macronutrients in different bean cultivars with the aim of optimizing the biofortification, a sustainable approach towards improving dietary quality. Micro-PIXE was used to reveal the distribution of Fe, Zn, Mn, Ca, P, S in seeds of common beans (Phaseolus vulgaris) and runner beans (Phaseolus coccineus). Average concentrations of elements in different tissues were obtained using ICP-AES. The highest concentrations of Zn in the studied beans were found in the embryonic axis, but an increased concentration of this element was also detected in the provascular bundles of the cotyledons. The first layer of cells surrounding provascular bundles accumulated high concentrations of Fe, while the next cell layer had an increased concentration of Mn. The analysis showed that the provascular bundles and the first cell layers surrounding them could have a significant role in the storage of important seed micronutrients - Zn, Fe, and Mn. This information has important implications for molecular biology studies aimed at seed biofortification.
Shackley, M. Steven; Morgan, Leah; Pyle, Douglas
2017-01-01
Solving issues of intersource discrimination in archaeological obsidian is a recurring problem in geoarchaeological investigation, particularly since the number of known sources of archaeological obsidian worldwide has grown nearly exponentially in the last few decades, and the complexity of archaeological questions asked has grown equally so. These two parallel aspects of archaeological investigation have required more exacting understanding of the geological relationship between sources and the more accurate analysis of these sources of archaeological obsidian. This is particularly the case in the North American Southwest where the frequency of archaeological investigation is some of the highest in the world, and the theory and method used to interpret that record has become increasingly nuanced. Here, we attempt to unravel the elemental similarity of archaeological obsidian in the Mogollon-Datil volcanic province of southwestern New Mexico where some of the most important and extensively distributed sources are located and the elemental similarity between the sources is great even though the distance between the sources is large. Uniting elemental, isotopic, and geochronological analyses as an intensive pilot study, we unpack this complexity to provide greater understanding of these important sources of archaeological obsidian.
Current strategies for mobilome research.
Jørgensen, Tue S; Kiil, Anne S; Hansen, Martin A; Sørensen, Søren J; Hansen, Lars H
2014-01-01
Mobile genetic elements (MGEs) are pivotal for bacterial evolution and adaptation, allowing shuffling of genes even between distantly related bacterial species. The study of these elements is biologically interesting as the mode of genetic propagation is kaleidoscopic and important, as MGEs are the main vehicles of the increasing bacterial antibiotic resistance that causes thousands of human deaths each year. The study of MGEs has previously focused on plasmids from individual isolates, but the revolution in sequencing technology has allowed the study of mobile genomic elements of entire communities using metagenomic approaches. The problem in using metagenomic sequencing for the study of MGEs is that plasmids and other mobile elements only comprise a small fraction of the total genetic content that are difficult to separate from chromosomal DNA based on sequence alone. The distinction between plasmid and chromosome is important as the mobility and regulation of genes largely depend on their genetic context. Several different approaches have been proposed that specifically enrich plasmid DNA from community samples. Here, we review recent approaches used to study entire plasmid pools from complex environments, and point out possible future developments for and pitfalls of these approaches. Further, we discuss the use of the PacBio long-read sequencing technology for MGE discovery.
NASA Astrophysics Data System (ADS)
Talhelm, A. F.; Pregitzer, K. S.; Burton, A. J.; Xia, M.; Zak, D. R.
2017-12-01
The elemental and biochemical composition of plant tissues is an important influence on primary productivity, decomposition, and other aspects of biogeochemistry. Human activity has greatly altered biogeochemical cycles in ecosystems downwind of industrialized regions through atmospheric nitrogen deposition, but most research on these effects focuses on individual elements or steps in biogeochemical cycles. Here, we quantified pools and fluxes of biomass, the four major organic elements (carbon, oxygen, hydrogen, nitrogen), four biochemical fractions (lignin, structural carbohydrates, cell walls, and soluble material), and energy in a mature northern hardwoods forest in Michigan. We sampled the organic and mineral soil, fine and coarse roots, leaf litter, green leaves, and wood for chemical analyses. We then combined these data with previously published and archival information on pools and fluxes within this forest, which included replicated plots receiving either ambient deposition or simulated nitrogen deposition (3 g N m-2 yr-1 for 18 years). Live wood was the largest pool of energy and all elements and biochemical fractions. However, the production of wood, leaf litter, and fine roots represented similar fluxes of carbon, hydrogen, oxygen, cell wall material, and energy, while nitrogen fluxes were dominated by leaf litter and fine roots. Notably, the flux of lignin via fine roots was 70% higher than any other flux. Experimental nitrogen deposition had relatively few significant effects, increasing foliar nitrogen, increasing the concentration of lignin in the soil organic horizon and decreasing pools of all elements and biochemical fractions in the soil organic horizon except nitrogen, lignin, and structural carbohydrates. Overall, we found that differences in tissue chemistry concentrations were important determinants of ecosystem-level pools and fluxes, but that nitrogen deposition had little effect on concentrations, pools, or fluxes in this mature forest. Disclaimer: The views expressed in this poster are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.
The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements.
Daulny, Anne; Mejía-Ramírez, Eva; Reina, Oscar; Rosado-Lugo, Jesus; Aguilar-Arnal, Lorena; Auer, Herbert; Zaratiegui, Mikel; Azorin, Fernando
2016-10-01
It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites. Copyright © 2016 Elsevier B.V. All rights reserved.
Type I Interferon Controls Propagation of Long Interspersed Element-1*
Yu, Qiujing; Carbone, Christopher J.; Katlinskaya, Yuliya V.; Zheng, Hui; Zheng, Ke; Luo, Mengcheng; Wang, P. Jeremy; Greenberg, Roger A.; Fuchs, Serge Y.
2015-01-01
Type I interferons (IFN) including IFNα and IFNβ are critical for the cellular defense against viruses. Here we report that increased levels of IFNβ were found in testes from mice deficient in MOV10L1, a germ cell-specific RNA helicase that plays a key role in limiting the propagation of retrotransposons including Long Interspersed Element-1 (LINE-1). Additional experiments revealed that activation of LINE-1 retrotransposons increases the expression of IFNβ and of IFN-stimulated genes. Conversely, pretreatment of cells with IFN suppressed the replication of LINE-1. Furthermore, the efficacy of LINE-1 replication was increased in isogenic cell lines harboring inactivating mutations in diverse elements of the IFN signaling pathway. Knockdown of the IFN receptor chain IFNAR1 also stimulated LINE-1 propagation in vitro. Finally, a greater accumulation of LINE-1 was found in mice that lack IFNAR1 compared with wild type mice. We propose that LINE-1-induced IFN plays an important role in restricting LINE-1 propagation and discuss the putative role of IFN in preserving the genome stability. PMID:25716322
Toxicity of trace element and salinity mixtures to striped bass (Morone saxatilis) and Daphnia magna
Dwyer, F.J.; Burch, S.A.; Ingersoll, C.G.; Hunn, J.B.
1992-01-01
Acute toxicity tests with reconstituted water were conducted to investigate the relationship between water hardness, salinity, and a mixture of trace elements found in irrigation drain waters entering Stillwater Wildlife Management Area (SWMA), near Fallon, Nevada. The SWMA has been the site of many fish kills in recent years, and previous toxicity studies indicated that one drain water, Pintail Bay, was acutely toxic to organisms acclimated or cultured in fresh water or salt water. This toxicity could reflect both the ionic composition of this saline water and the presence of trace elements. The lowest water salinity tested with Daphnia magna was near the upper salinity tolerance of these organisms; therefore, we were unable to differentiate between the toxic effects of ion composition and those of trace elements. In toxicity tests conducted with striped bass (Morone saxatilis), we found that the extent to which salinity was lethal to striped bass depended on the ion composition of that salinity. Survival of striped bass increased as hardness increased. In addition, a trace element mixture was toxic to striped bass, even though the concentrations of individual elements were below expected acutely lethal concentrations. Although salinity is an important water quality characteristic, the ionic composition of the water must be considered when one assesses the hazard of irrigation drain waters to aquatic organisms.
NASA Astrophysics Data System (ADS)
Li, Danfeng; Wang, Xunming; Lou, Junpeng; Liu, Wenbin; Li, Hui; Ma, Wenyong; Jiao, Linlin
2018-02-01
The heterogeneity of the composition of surface soils that are affected by aeolian processes plays important roles in ecological evolution and the occurrence of aeolian desertification in fragile ecological zones, but the associated mechanisms are poorly understood. Using field investigation, wind tunnel experiments, and particle size and element analyses, we discuss the variation in the nutrient elements of surface soils that forms in the presence of aeolian processes of four vegetation species (Caragana microphylla Lam, Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel. and Stipa grandis P. Smirn) growing in the Otindag Desert, China. These four vegetation communities correspond to increasing degrees of degradation. A total of 40 macro elements, trace elements, and oxides were measured in the surface soil and in wind-transported samples. The results showed that under the different degradation stages, the compositions and concentrations of nutrients in surface soils differed for the four vegetation species. Aeolian processes may cause higher heterogeneity and higher loss of soil nutrient elements for the communities of Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel, and Stipa grandis P. Smirn than for the Caragana microphylla Lam community. There was remarkable variation in the loss of nutrients under different aeolian transportation processes. Over the past several decades, the highest loss of soil elements occurred in the 1970s, whereas the loss from 2011 to the present was generally 4.0% of that in the 1970s. These results indicate that the evident decrease in nutrient loss has played an important role in the rehabilitation that has occurred in the region recently.
NASA Astrophysics Data System (ADS)
Zill, Juliane; Wiche, Oliver
2015-04-01
The effect of phosphate nutrition is important due to the future usage of fertilizer treatment in phytomining experiments e.g. in accumulation of the economically important rare earth elements (REE). It is expected that the trivalent charge of REE will result in complexation with phosphate and REEs could be immobilized and not further bioavailable for plants which would cause losses of REE concentration in biomass. To investigate this influence on lanthanum, neodymium, gadolinium and erbium two plant species Brassica alba (white mustard) and Panicum miliaceum (common millet) were cultured in a greenhouse study. The plants were cultivated onto two different substrates and were poured with modified REE and phosphate solutions within an eight-week period. The concentrations of REE in soil, soil solution and plant samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results show an increase of concentration of REE with increasing levels of element solution applied for both species. REE accumulations are elevated in roots and decrease in the order of roots> leaves> stem> fruit/blossom. Brassica accumulated more REE in root whereas Panicum showed higher REE concentrations in leaves. Exposure to increased phosphate addition did not significantly change the concentrations of REE in both plant species yet the REE concentrations in leaves slightly decreased with increasing phosphate addition. For root and stem no precise trend could be determined. It is most likely that REEs precipitate with phosphate on root surfaces and in the roots. The bioavailability of REE to plants is affected by complexation processes of REEs with phosphate in the rhizosphere. The results indicate that phosphate application plays an important role on REE uptake by roots and accumulation in different parts of a plant and it might have an influence on translocation of REE within the plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Kimberley A.; Department of Public Health Sciences, Queen's University, Kingston, Ontario; Feldman-Stewart, Deb
Purpose/Objective: The overall quality of patient care is a function of the quality of both its technical and its nontechnical components. The purpose of this study was to identify the elements of nontechnical (personal) care that are most important to patients undergoing radiation therapy for prostate cancer. Methods and Materials: We reviewed the literature and interviewed patients and health professionals to identify elements of personal care pertinent to patients undergoing radiation therapy for prostate cancer. We identified 143 individual elements relating to 10 aspects of personal care. Patients undergoing radical radiation therapy for prostate cancer completed a self-administered questionnaire inmore » which they rated the importance of each element. The overall importance of each element was measured by the percentage of respondents who rated it as “very important.” The importance of each aspect of personal care was measured by the mean importance of its elements. Results: One hundred eight patients completed the questionnaire. The percentage of patients who rated each element “very important” ranged from 7% to 95% (mean 61%). The mean importance rating of the elements of each aspect of care varied significantly: “perceived competence of caregivers,” 80%; “empathy and respectfulness of caregivers,” 67%; “adequacy of information sharing,” 67%; “patient centeredness,” 59%; “accessibility of caregivers,” 57%; “continuity of care,” 51%; “privacy,” 51%; “convenience,” 45%; “comprehensiveness of services,” 44%; and “treatment environment,” 30% (P<.0001). Neither age nor education was associated with importance ratings, but the patient's health status was associated with the rating of some elements of care. Conclusions: Many different elements of personal care are important to patients undergoing radiation therapy for prostate cancer, but the 3 aspects of care that most believe are most important are these: the perceived competence of their caregivers, the empathy and respectfulness of their caregivers, and the adequacy of information sharing.« less
A Review of Metacognition in Psychological Models of Obsessive-Compulsive Disorder
ERIC Educational Resources Information Center
Rees, Clare S.; Anderson, Rebecca A.
2013-01-01
Cognitive-behavioural models and interventions for obsessive-compulsive disorder (OCD) have always included some metacognitive elements but until recently these have been predominantly construed of as cognitive as opposed to metacognitive processes. Increasingly, psychological models of OCD are now recognising the importance of metacognitive…
Representation of sub-element scale variability in snow accumulation and ablation is increasingly recognized as important in distributed hydrologic modelling. Representing sub-grid scale variability may be accomplished through numerical integration of a nested grid or through a l...
Conducting Indigenous Research in Western Knowledge Spaces: Aligning Theory and Methodology
ERIC Educational Resources Information Center
Singh, Myra; Major, Jae
2017-01-01
Walking simultaneously in two worlds as an Indigenous researcher, navigating Indigenous and Western epistemologies/methodologies can have its challenges. Indigenous methodologies have become an important element of qualitative research and have been increasingly taken up by both Indigenous and non-Indigenous researchers. Indigenous methodologies…
Key Considerations in Organizing and Structuring University Research
ERIC Educational Resources Information Center
Nguyen, T. L. Huong; Meek, Vincent Lynn
2015-01-01
University research capacity building has now become an increasingly important task in both developed and less developed countries. In this capacity building endeavour, research late-developer universities in particular need to develop a sound research organizational structure. However, what elements are needed in organizing and structuring…
NASA Astrophysics Data System (ADS)
Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing
2017-03-01
Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.
Oyama, Yoshimasa; Iwasaka, Hideo; Shiihara, Keisuke; Hagiwara, Satoshi; Kubo, Nobuhiro; Fujitomi, Yutaka; Noguchi, Takayuki
2011-10-01
In order to enhance postoperative recovery, preoperative consumption of carbohydrate (CHO) drinks has been used to suppress metabolic fluctuations. Trace elements such as zinc and copper are known to play an important role in postoperative recovery. Here, we examined the effects of preoperatively consuming a CHO drink containing zinc and copper. Subjects were 122 elective surgery patients divided into two groups (overnight fasting and CHO groups); each group was further divided into morning or afternoon surgery groups. Subjects in the CHO group consumed 300 mL of a CHO drink the night before surgery, followed by 200 ml before morning surgery or 700 ml before afternoon surgery (> or =2 hours before anesthesia induction). Blood levels of glucose, nonesterified fatty acids (NEFA), retinol-binding protein, zinc, and copper were determined. One subject in the CHO group was excluded after refusing the drink. There were no adverse effects from the CHO drink. NEFA levels increased in the fasting groups. Although zinc levels increased in the CHO group immediately after anesthesia induction, no group differences were observed the day after surgery. Preoperative consumption of a CHO drink containing trace elements suppressed preoperative metabolic fluctuations without complications and prevented trace element deficiency. Further beneficial effects during the perioperative period can be expected by adding trace elements to CHO supplements.
Zhang, Hao; Yu, Chao; Hou, Danping; Liu, Hailang; Zhang, Huiting; Tao, Rongrong; Cai, Han; Gu, Junfei; Liu, Lijun; Zhang, Zujian; Wang, Zhiqin; Yang, Jianchang
2018-01-01
The improvement of rice cultivars plays an important role in yield increase. However, little is known about the changes in starch quality and mineral elements during the improvement of rice cultivars. This study was conducted to investigate the changes in starch quality and mineral elements in japonica rice cultivars. Twelve typical rice cultivars, applied in the production in Jiangsu province during the last 60 years, were grown in the paddy fields. These cultivars were classified into six types according to their application times, plant types and genotypes. The nitrogen (N), phosphorus (P) and, and potassium (K) were mainly distributed in endosperm, bran and bran, respectively. Secondary and micromineral nutrients were distributed throughout grains. With the improvement of cultivars, total N contents gradually decreased, while total P, K and magnesium contents increased in grains. Total copper and zinc contents in type 80'S in grains were highest. The improvement of cultivars enhanced palatability (better gelatinisation enthalpy and amylose content), taste (better protein content) and protein quality (better protein components and essential amino acids). Correlation analysis indicated the close relationship between mineral elements and starch quality. The mineral elements and starch quality of grains during the improvement of japonica rice cultivars are improved. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña
2017-04-01
Excessive rates of nitrogen (N) fertilizers may result in elevated concentrations of nitrate (NO 3 - ) in plants. Considering that many programs of biofortification with trace elements are being performed, it has become important to study how the application of these elements affects plant physiology and, particularly, N utilization in leaf crops. The main objective of the present study was to determine whether the NO 3 - accumulation and the nitrogen use efficiency was affected by the application of different doses of Zn in Lactuca sativa plants. Zn doses in the range 80-100 µmol L -1 produced an increase in Zn concentration provoking a decrease of NO 3 - concentration and increase of the nitrate reductase, glutamine synthetase and aspartate aminotransferase activities, as well as the photorespiration processes. As result, we observed an increase in reduced N, total N concentration and N utilization efficiency. Consequently, at a dose of 80 µmol L -1 of Zn, the amino acid concentration increased significantly. Adequate Zn fertilization is an important critical player in lettuce, especially at a dose of 80 µmol L -1 of Zn, because it could result in an increase in the Zn concentration, a reduction of NO 3 - levels and an increase the concentration of essential amino acids, with all of them having beneficial properties for the human diet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Kim, Cheol-Woo; Cho, Jae-Ik; Choi, Se-Weon; Kim, Young-Chan; Kang, Chang-Seog
Recently, demand of aluminum alloys for use in high thermal conductivity application is increases but the most aluminum die casting alloys exhibit very lower thermal properties because of their high concentrations of alloying elements. However, those alloying elements are essential to obtain sufficient fluidity and mechanical strength. Therefore, the purpose of this study is to analyze the effect of alloying elements in die casting alloys, Si, Cu, Mg, Fe and Mn, in thermal conductivity, die casting characteristics and mechanical properties and find out the appropriate amount of each alloying element for development of heat sink component. The results showed that Mn had the most deleterious effect in thermal conductivity and Si and Fe contents were important to improve strength and limit casting defects, such as hot tearing and die soldering. The alloy with 0.2 1.0wt%Cu, 0.3 0.6wt%Fe and 1.0 2.0wt%Si showed very good combination of high thermal conductivity and good casting characteristics.
NASA Astrophysics Data System (ADS)
Ordou, N.; Agranovski, I. E.
2017-12-01
Air contamination resulting from bushfires is becoming increasingly important research question, as such disasters frequently occur in many countries. The objectives of this project were focused on physical and chemical characterisations of particulate emission resulting from burning of common representatives of Australian vegetation under controlled laboratory conditions. It was found that leaves are burned mostly with flaming phase and producing black smoke resulting in larger particles compared to white smoke in case of branches and grass, dominated by smouldering phase, producing finer particles. Following elemental analysis determined nine main elements in three different size fractions of particulate matter for each category of burning material, ranging from 14.1 μm to particle sizes below 2.54 μm. Potassium was found to be one of the main biomass markers, and sulphur was the ubiquitous element among the smoke particles followed by less prevalent trace elements like Na, Al, Mg, Zn, Si, Ca, and Fe.
NASA Astrophysics Data System (ADS)
Eggins, S. M.; Kinsley, L. P. J.; Shelley, J. M. G.
1998-05-01
We have used an ArF excimer laser coupled to a quadrupole inductively coupled plasma mass spectrometry (ICP-MS) for the measurement of a range of elements during excavation of a deepening ablation pit in a synthetic glass (NIST 612). Analyte behaviour shows progressive volatile element enrichment at shallow hole depths, with a change to refractory element enrichment as the ablation pit deepens further. Examination of ablation pit morphology and the surface condensate deposited around the ablation site reveals the importance of sequential condensation of refractory, then volatile phases from the cooling plasma plume after the end of the laser pulse. We interpret the observed element fractionation behaviour to reflect a change in ablation processes from photothermal dominated to plasma dominated mechanisms. The development of the surface deposit is greatly reduced by ablating in an ambient atmosphere of He instead of Ar and is accompanied by a two- to four-fold increase in ICP-MS sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Chanyoung; Kim, Nam H.
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less
Elemental analysis of scorpion venoms.
Al-Asmari, AbdulRahman K; Kunnathodi, Faisal; Al Saadon, Khalid; Idris, Mohammed M
2016-01-01
Scorpion venom is a rich source of biomolecules, which can perturb physiological activity of the host on envenomation and may also have a therapeutic potential. Scorpion venoms produced by the columnar cells of venom gland are complex mixture of mucopolysaccharides, neurotoxic peptides and other components. This study was aimed at cataloguing the elemental composition of venoms obtained from medically important scorpions found in the Arabian peninsula. The global elemental composition of the crude venom obtained from Androctonus bicolor, Androctonus crassicauda and Leiurus quinquestriatus scorpions were estimated using ICP-MS analyzer. The study catalogued several chemical elements present in the scorpion venom using ICP-MS total quant analysis and quantitation of nine elements exclusively using appropriate standards. Fifteen chemical elements including sodium, potassium and calcium were found abundantly in the scorpion venom at PPM concentrations. Thirty six chemical elements of different mass ranges were detected in the venom at PPB level. Quantitative analysis of the venoms revealed copper to be the most abundant element in Androctonus sp. venom but at lower level in Leiurus quinquestriatus venom; whereas zinc and manganese was found at higher levels in Leiurus sp. venom but at lower level in Androctonus sp. venom. These data and the concentrations of other different elements present in the various venoms are likely to increase our understanding of the mechanisms of venom activity and their pharmacological potentials.
NASA Astrophysics Data System (ADS)
Tkaczyk, A. H.; Bartl, A.; Amato, A.; Lapkovskis, V.; Petranikova, M.
2018-05-01
The criticality of raw materials has become an important issue in recent years. As the supply of certain raw materials is essential for technologically-advanced economies, the European Commission and other international counterparts have started several initiatives to secure reliable and unhindered access to raw materials. Such efforts include the EU Raw Materials Initiative, European Innovation Partnership on Raw Materials, US Critical Materials Institute, and others. In this paper, the authors present a multi-faceted and multi-national review of the essentials for the critical raw materials (CRMs) Co, Nb, W, and rare earth elements (REEs). The selected CRMs are of specific interest as they are considered relevant for emerging technologies and will thus continue to be of increasing major economic importance. This paper presents a ‘sustainability evaluation’ for each element, including essential data about markets, applications and recycling, and possibilities for substitution have been summarized and analysed. All the presented elements are vital for the advanced materials and processes upon which modern societies rely. These elements exhibit superior importance in ‘green’ applications and products subject to severe conditions. The annual production quantities are quite low compared to common industrial metals. Of the considered CRMs, only Co and REE gross production exceed 100 000 t. At the same time, the prices are quite high, with W and Nb being in the range of 60 USD kg‑1 and some rare earth compounds costing almost 4000 USD kg‑1. Despite valiant effort, in practice some of the considered elements are de facto irreplaceable for many specialized applications, at today’s technological level. Often, substitution causes a significant loss of quality and performance. Furthermore, possible candidates for substitution may be critical themselves or available in considerably low quantities. It can be concluded that one preferred approach for the investigated elements could be the use of secondary resources derived from recycling. W exhibits the highest recycling rate (37%), whereas Co (16%), Nb (11%) and rare earths (~0%) lag behind. In order to promote recycling of these essential elements, financial incentives as well as an improvement of recycling technologies would be required.
Factors Affecting Students' Self-Efficacy in Higher Education
ERIC Educational Resources Information Center
van Dinther, Mart; Dochy, Filip; Segers, Mien
2011-01-01
Researchers working in educational settings are increasingly paying attention to the role students' thoughts and beliefs play in the learning process. Self-efficacy, a key element of social cognitive theory, appears to be an important variable because it affects students' motivation and learning. This article investigates empirical literature…
Integrating Reservations and Queuing in Remote Laboratory Scheduling
ERIC Educational Resources Information Center
Lowe, D.
2013-01-01
Remote laboratories (RLs) have become increasingly seen as a useful tool in supporting flexible shared access to scarce laboratory resources. An important element in supporting shared access is coordinating the scheduling of the laboratory usage. Optimized scheduling can significantly decrease access waiting times and improve the utilization level…
ERIC Educational Resources Information Center
Willis, Ian; Strivens, Janet
2015-01-01
Academic developers are increasingly involved in international collaborations in learning and teaching. Many factors contribute to successful collaborations; we argue that the personal abilities and aptitudes of academic developers are one key element. Building trust and relationships are central to creating the networks at individual, group, and…
Microcontroller-Based Experimental Setup and Experiments for SCADA Education
ERIC Educational Resources Information Center
Sahin, S.; Olmez, M.; Isler, Y.
2010-01-01
In the field of automation technology, research and development for industrial applications has increased rapidly in recent years. Therefore, industrial automation and control education is a very important element of the industrialization process in developing countries, such as Turkey, which needs to keep abreast for the latest developments in…
Out of the Boot Camp and into the Chrysalis: A Reflective Practice Case Study
ERIC Educational Resources Information Center
Macdonald, Katrina
2009-01-01
From the information literacy educator's perspective, librarians have the potential to play important roles in strengthening information literacy elements within curricula learning scaffolds. While there needs to be an increased awareness amongst academics about the forms of assistance teaching librarians can provide teachers as integrated…
Word Reading Fluency as a Serial Naming Task
ERIC Educational Resources Information Center
Protopapas, Athanassios; Katopodi, Katerina; Altani, Angeliki; Georgiou, George K.
2018-01-01
Word list reading fluency is theoretically expected to depend on single word reading speed. Yet the correlation between the two diminishes with increasing fluency, while fluency remains strongly correlated to serial digit naming. We hypothesized that multi-element sequence processing is an important component of fluency. We used confirmatory…
Student Affairs and Offshore Branch Campuses: A Case Study of Practitioner Experiences
ERIC Educational Resources Information Center
Cicchetti, Kaitlin Oyler; Park, Minkyung
2018-01-01
Internationalizing higher education is increasingly recognized as an important element of higher education today. Institutions want to produce graduates who are global citizens, and therefore attempt to strengthen their position in the global marketplace by internationalizing the campus community through the research, teaching, and service…
Engaging young people with our science
NASA Astrophysics Data System (ADS)
Bardeen, Marjorie G.
2015-05-01
Communication, education and outreach are increasingly important elements of the particle physics research agenda as acknowledged in recent European Strategy and U.S. Community Summer Study reports. These efforts help develop the next generation of researchers and a scientifically literate citizenry. We describe some examples that engage young people with our science.
ORGANIC SULFUR AND HAP REMOVAL FROM COAL USING HYDROTHERMAL TREATMENT. (R827649C001)
Coal is still the major source of power for electrical generation worldwide and will continue to be in
the foreseeable future. However, the inorganic elements in coal that qualify as hazardous emissions
upon combustion of the coal become an increasingly important concern. P...
Psychological Literacy: A Multifaceted Perspective
ERIC Educational Resources Information Center
Hulme, Julie A.; Skinner, Rebecca; Worsnop, Francesca; Collins, Elizabeth; Banyard, Philip; Kitching, Helen J.; Watt, Roger; Goodson, Simon
2015-01-01
The concept of psychological literacy has grown in importance within psychology education at all levels, in the UK and globally, in recent years. Increasingly, psychology educators and policy makers are seeking to emphasise the relevance and usefulness of psychology within everyday life, within the workplace, and as an element of global…
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.
1987-01-01
Temperature, thermal stresses, and residual creep stresses were studied by comparing laboratory values measured on a built-up titanium structure with values calculated from finite-element models. Several such models were used to examine the relationship between computational thermal stresses and thermal stresses measured on a built-up structure. Element suitability, element density, and computational temperature discrepancies were studied to determine their impact on measured and calculated thermal stress. The optimum number of elements is established from a balance between element density and suitable safety margins, such that the answer is acceptably safe yet is economical from a computational viewpoint. It is noted that situations exist where relatively small excursions of calculated temperatures from measured values result in far more than proportional increases in thermal stress values. Measured residual stresses due to creep significantly exceeded the values computed by the piecewise linear elastic strain analogy approach. The most important element in the computation is the correct definition of the creep law. Computational methodology advances in predicting residual stresses due to creep require significantly more viscoelastic material characterization.
The impact of transposable elements in environmental adaptation.
Casacuberta, Elena; González, Josefa
2013-03-01
Transposable elements (TEs) play an important role in the responsive capacity of their hosts in the face of environmental challenges. The variety of mechanisms by which TEs influence the capacity of adaptation of the host is as large as the variety of TEs and host genomes. For example, TEs might directly affect the function of individual genes, provide a mechanism for rapidly acquiring new genetic material and disseminate regulatory elements that can lead to the creation of stress-inducible regulatory networks. In this review, we summarize recent examples that are part of an increasing body of evidence suggesting a significant role of TEs in the host response to an ever-changing environment, both in prokaryote and in eukaryote organisms. We argue that in the near future, the increasing availability of genome sequences and the development of new tools to discover and analyse TE insertions will further show the relevant role of TEs in environmental adaptation. © 2013 Blackwell Publishing Ltd.
Analysis of the Duration of Lower Band Rising Tone Chorus Elements Using Van Allen Probes Data
NASA Astrophysics Data System (ADS)
Teng, S.; Tao, X.
2017-12-01
The duration of lower band rising tone chorus elements is an important parameter to understand chorus excitation mechanism, and is analyzed statistically in this work using Van Allen Probes data. The distribution of chorus element duration (τ) as a function of magnetic local time, L shell, and geomagnetic activity level characterized by the AE index are presented. We show that the typical value of τ for the nightside (0.15s) is smaller than that for the dayside (0.25s), and τ increases with increasing L-shell and decreasing geomagnetic level. We also investigate the correlation between τ and the frequency sweep rate (Γ). The observed relation between the duration (τ) scales and the frequency sweep rate (Γ) is found to be as τ ∝ Γ(-0.9). Future work is needed to explain this relation theoretically. Our results should be helpful to the further development of the theoretical model of chorus excitation.
Effects of chemical elements in the trophic levels of natural salt marshes.
Kamiński, Piotr; Barczak, Tadeusz; Bennewicz, Janina; Jerzak, Leszek; Bogdzińska, Maria; Aleksandrowicz, Oleg; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J; Woźniak, Alina
2016-06-01
The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water-soil-plants-invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.
Monteiro, Sílvia S; Pereira, Andreia T; Costa, Élia; Torres, Jordi; Oliveira, Isabel; Bastos-Santos, Jorge; Araújo, Helder; Ferreira, Marisa; Vingada, José; Eira, Catarina
2016-12-15
The common dolphin (Delphinus delphis) is one of the most abundant species in Atlantic Iberia, representing a potentially important tool to assess the bioaccumulation of trace elements in the Iberian marine ecosystem. Nine elements (As, Cd, Cu, Hg, Mn, Ni, Pb, Se and Zn) were evaluated in 36 dolphins stranded in continental Portugal. Dolphins had increasing Hg concentrations (16.72μg·g -1 ww, liver) compared with previous studies in Atlantic Iberia, whereas Cd concentrations (2.26μg·g -1 ww, kidney) fell within reported ranges. The concentrations of some trace elements (including Cd and Hg) presented positive relationships with dolphin length, presence of parasites and gross pathologies. Common dolphins may help biomonitoring more offshore Atlantic Iberian areas in future studies, which would otherwise be difficult to assess. Copyright © 2016 Elsevier Ltd. All rights reserved.
Standard cost elements for technology programs
NASA Technical Reports Server (NTRS)
Christensen, Carisa B.; Wagenfuehrer, Carl
1992-01-01
The suitable structure for an effective and accurate cost estimate for general purposes is discussed in the context of a NASA technology program. Cost elements are defined for research, management, and facility-construction portions of technology programs. Attention is given to the mechanisms for insuring the viability of spending programs, and the need for program managers is established for effecting timely fund disbursement. Formal, structures, and intuitive techniques are discussed for cost-estimate development, and cost-estimate defensibility can be improved with increased documentation. NASA policies for cash management are examined to demonstrate the importance of the ability to obligate funds and the ability to cost contracted funds. The NASA approach to consistent cost justification is set forth with a list of standard cost-element definitions. The cost elements reflect the three primary concerns of cost estimates: the identification of major assumptions, the specification of secondary analytic assumptions, and the status of program factors.
NASA Astrophysics Data System (ADS)
Fang, Dong-Liang; Faessler, Amand; Simkovic, Fedor
2015-10-01
In this work, we calculate the matrix elements for the 0 ν β β decay of 150Nd using the deformed quasiparticle random-phase approximation (p n -QRPA) method. We adopted the approach introduced by Rodin and Faessler [Phys. Rev. C 84, 014322 (2011), 10.1103/PhysRevC.84.014322] and Simkovic et al. [Phys. Rev. C 87, 045501 (2013), 10.1103/PhysRevC.87.045501] to restore the isospin symmetry by enforcing MF2 ν=0 . We found that with this restoration, the Fermi matrix elements are reduced in the strongly deformed 150Nd by about 15 to 20%, while the more important Gamow-Teller matrix elements remain the same. The results of an enlarged model space are also presented. This enlargement increases the total (Fermi plus Gamow-Teller) matrix elements by less than 10%.
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.
2012-12-01
Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.
Brown, Angus M; Ransom, Bruce R
2015-02-01
Energy metabolism in the brain is a complex process that is incompletely understood. Although glucose is agreed as the main energy support of the brain, the role of glucose is not clear, which has led to controversies that can be summarized as follows: the fate of glucose, once it enters the brain is unclear. It is not known the form in which glucose enters the cells (neurons and glia) within the brain, nor the degree of metabolic shuttling of glucose derived metabolites between cells, with a key limitation in our knowledge being the extent of oxidative metabolism, and how increased tissue activity alters this. Glycogen is present within the brain and is derived from glucose. Glycogen is stored in astrocytes and acts to provide short-term delivery of substrates to neural elements, although it may also contribute an important component to astrocyte metabolism. The roles played by glycogen awaits further study, but to date its most important role is in supporting neural elements during increased firing activity, where signaling molecules, proposed to be elevated interstitial K(+), indicative of elevated neural firing rates, activate glycogen phosphorylase leading to increased production of glycogen derived substrate.
Co-digestion of manure and industrial waste--The effects of trace element addition.
Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan
2016-01-01
Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Merschel, Gila; Bau, Michael; Dantas, Elton Luiz
2017-01-01
Estuarine processes may affect the flux of dissolved organic carbon (DOC), iron and other particle-reactive elements such as the rare earth elements and yttrium (REY), into the ocean via salt-induced coagulation and subsequent removal of river-borne (nano-)particles and colloids. We experimentally assessed the impact of the admixture of seawater on DOC, Fe and REY associated with inorganic and organic nanoparticles and colloids (NPCs) present in tropical rivers, using Rio Solimões and Rio Negro, which are particularly rich in inorganic and organic NPCs, respectively, as river water endmembers. Similar to the conservative elements Sr, Rb and U, DOC behaves conservatively in all mixing experiments, whereas strong removal of Fe and REY (and preferential removal of light over heavy REY and of Ce relative to La and Pr) is confined to experiments with inorganic NPC-rich Rio Solimões water. This removal already occurs at very low salinity and is due to the aggregation of the inorganic NPCs. However, REY removal efficiency increases gradually with increasing salinity, which is in marked contrast to DOC-poor Arctic river waters from which REY removal at lowest salinity is significantly stronger. This suggests that the DOC concentrations in the water have a profound impact on the estuarine mixing behavior of particle-reactive elements. In marked contrast to the Rio Solimões mixing experiment, Fe and the REY in experiments with Rio Negro water behave similarly to DOC and mix conservatively with seawater, indicating that the organic NPCs, most of which are humic and fulvic acids, and their associated trace elements are much less susceptible to coagulation and estuarine removal than inorganic ones. Even at higher salinities, estuarine REY removal from inorganic NPC-rich Rio Solimões water significantly exceeds REY removal from organic NPC-rich Rio Negro water. Hence, the combination of higher element concentrations in and of less estuarine removal from organic NPC-rich rivers compared to inorganic NPC-rich rivers indicates that the former are a more important source of particle-reactive elements to the oceans than previously thought. This suggests that chemical complexation with organic ligands, such as humic and fulvic acids, may have a strong impact on the riverine flux and on the marine inventory of particle-reactive elements, and hence may play an important role for the isotopic composition of such elements in seawater.
Atomic diffusion in laser surface modified AISI H13 steel
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2013-07-01
This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.
Ohno, Hajime; Matsubae, Kazuyo; Nakajima, Kenichi; Kondo, Yasushi; Nakamura, Shinichiro; Fukushima, Yasuhiro; Nagasaka, Tetsuya
2017-11-21
Importance of end-of-life vehicles (ELVs) as an urban mine is expected to grow, as more people in developing countries are experiencing increased standards of living, while the automobiles are increasingly made using high-quality materials to meet stricter environmental and safety requirements. While most materials in ELVs, particularly steel, have been recycled at high rates, quality issues have not been adequately addressed due to the complex use of automobile materials, leading to considerable losses of valuable alloying elements. This study highlights the maximal potential of quality-oriented recycling of ELV steel, by exploring the utilization methods of scrap, sorted by parts, to produce electric-arc-furnace-based crude alloy steel with minimal losses of alloying elements. Using linear programming on the case of Japanese economy in 2005, we found that adoption of parts-based scrap sorting could result in the recovery of around 94-98% of the alloying elements occurring in parts scrap (manganese, chromium, nickel, and molybdenum), which may replace 10% of the virgin sources in electric arc furnace-based crude alloy steel production.
Zhang, Yu; Tang, Yibo; Shen, Hongxing
2017-12-01
In order to reduce the incidence of adjacent segment disease (ASD), the current study was designed to establish Chinese finite element models of normal 3rd~7th cervical vertebrae (C3-C7) and anterior cervical corpectomy and fusion (ACCF) with internal fixation , and analyze the influence of screw sagittal angle (SSA) on stress on endplate of adjacent cervical segments. Mimics 8.1 and Abaqus/CAE 6.10 softwares were adopted to establish finite element models. For C4 superior endplate and C6 inferior endplate, their anterior areas had the maximum stress in anteflexion position, and their posterior areas had the maximum stress in posterior extension position. As SSA increased, the stress reduced. With an increase of 10° in SSA, the stress on anterior areas of C4 superior endplate and C6 inferior endplate reduced by 12.67% and 7.99% in anteflexion position, respectively. With an increase of 10° in SSA, the stress on posterior areas of C4 superior endplate and C6 inferior endplate reduced by 9.68% and 10.22% in posterior extension position, respectively. The current study established Chinese finite element models of normal C3-C7 and ACCF with internal fixation , and demonstrated that as SSA increased, the stress on endplate of adjacent cervical segments decreased. In clinical surgery, increased SSA is able to play important role in protecting the adjacent cervical segments and reducing the incidence of ASD.
Safety envelope for load tolerance of structural element design based on multi-stage testing
Park, Chanyoung; Kim, Nam H.
2016-09-06
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less
Guo, Junming; Kang, Shichang; Huang, Jie; Sillanpää, Mika; Niu, Hewen; Sun, Xuejun; He, Yuanqing; Wang, Shijing; Tripathee, Lekhendra
2017-02-01
In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future. Copyright © 2016. Published by Elsevier B.V.
Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu
2006-01-01
An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.
Fachinger, Uwe
2008-10-01
Trying to analyse the effects of the paradigm shift in the old age social security system in Germany (GRV) from a life cycle gender perspective yields light and shade - it is a conglomeration of individual- and family-specific transfers, financed by a mix of contributions and taxes, and with measures of explicit and implicit, intended and not intended ex-post and ex-ante redistribution and discrimination.The paradigm shift has increased the complexity of the system and created additional elements of gender specific discrimination as well as reduced established elements of the so called "social compensation". Furthermore, the relevance of complementary private and occupational pensions will increase absolute and relative due to the reduction of the pension level. This will raise the importance of earnings in old age especially those that are without any elements of social security compensation or without elements of recognition of activities beside employment. Overall the paradigm shift has intensified the discrimination of women in two ways and the pension privatisation has caused redistribution from the bottom to the top. In other words, there is an increase in inter- and intra-gender discrimination. Due to the changes and the emphasis of aspects of an independent old age security savings for women the norm of the "male breadwinner model" has increased. The importance of "providing one's own pension" additionally creates distribution conflicts within a partnership. Because of the necessity of constant payments over time within a private insurance and the changes of an individual income and gender-specific life cycle, conflicts may occur time and again. The dependence of life-long partnerships on each other is not reduced or abolished with the strengthening of the individualistic model of protection, but is qualitatively and quantitatively improved. Against this background, the measures of the statutory pension system which are aimed towards the situation of a woman's life are important factors to combat the disadvantages of private funded pension systems of which mainly women are affected in building up rights to future benefits. The analysis shows that the paradigm shift primarily brings disadvantages to women. They disproportionally depend on statutory pension system benefits, and therefore also on compensating benefits of the negative consequences of private and occupational pension systems. For the future an increase in poverty of older people - and especially women - can be seen to emerge because of pension privatisation and the reduction of the pension level in the German social security system.
Cho, Ah-Reum; Cho, Sang-Bong; Lee, Jae-Ho; Kim, Kyung-Hoon
2015-11-01
Vertebroplasty is an effective treatment for osteoporotic vertebral fractures, which are one of the most common fractures associated with osteoporosis. However, clinical observation has shown that the risk of adjacent vertebral body fractures may increase after vertebroplasty. The mechanism underlying adjacent vertebral body fracture after vertebroplasty is not clear; excessive stiffness resulting from polymethyl methacrylate has been suspected as an important mechanism. The aim of our study was to compare the effects of bone cement stiffness on adjacent vertebrae after osteoporotic vertebroplasty under load-controlled versus displacement-controlled conditions. An experimental computer study using a finite element analysis. Medical research institute, university hospital, Korean. A three-dimensional digital anatomic model of L1/2 bone structure was reconstructed from human computed tomographic images. The reconstructed three-dimensional geometry was processed for finite element analysis such as meshing elements and applying material properties. Two boundary conditions, load-controlled and displacement-controlled methods, were applied to each of 5 deformation modes: compression, flexion, extension, lateral bending, and torsion. The adjacent L1 vertebra, irrespective of augmentation, revealed nearly similar maximum von Mises stresses under the load-controlled condition. However, for the displacement-controlled condition, the maximum von Mises stresses in the cortical bone and inferior endplate of the adjacent L1 vertebra increased significantly after cement augmentation. This increase was more significant than that with stiffer bone cement under all modes, except the torsion mode. The finite element model was simplified, excluding muscular forces and incorporating a large volume of bone cement, to more clearly demonstrate effects of bone cement stiffness on adjacent vertebrae after vertebroplasty. Excessive stiffness of augmented bone cement increases the risk of adjacent vertebral fractures after vertebroplasty in an osteoporotic finite element model. This result was most prominently observed using the displacement-controlled method.
Total reflection X-ray fluorescence as a tool for food screening
NASA Astrophysics Data System (ADS)
Borgese, Laura; Bilo, Fabjola; Dalipi, Rogerta; Bontempi, Elza; Depero, Laura E.
2015-11-01
This review provides a comprehensive overview of the applications of total reflection X-ray fluorescence (TXRF) in the field of food analysis. Elemental composition of food is of great importance, since food is the main source of essential, major and trace elements for animals and humans. Some potentially toxic elements, dangerous for human health may contaminate food, entering the food chain from the environment, processing, and storage. For this reason the elemental analysis of food is fundamental for safety assessment. Fast and sensitive analytical techniques, able to detect major and trace elements, are required as a result of the increasing demand on multi-elemental information and product screening. TXRF is suitable for elemental analysis of food, since it provides simultaneous multi-elemental identification in a wide dynamic range of concentrations. Several different matrices may be analyzed obtaining results with a good precision and accuracy. In this review, the most recent literature about the use of TXRF for the analysis of food is reported. The focus is placed on the applications within food quality monitoring of drinks, beverages, vegetables, fruits, cereals, animal derivatives and dietary supplements. Furthermore, this paper provides a critical outlook on the developments required to transfer these methods from research to the industrial and analytical laboratories contexts.
Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang
2016-05-01
Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.
Accurate evaluation of exchange fields in finite element micromagnetic solvers
NASA Astrophysics Data System (ADS)
Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.
2012-04-01
Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.
NASA Astrophysics Data System (ADS)
Mantuano, A.; Mota, C. L.; Pickler, A.; Sena, G.; Braz, D.; Salata, C.; de Almeida, C. E.; Costa, F. N.; Barroso, R. C.
2018-05-01
Breast cancer (BC) is the most frequent cancer and the leading cause of cancer-related mortality in women. The treatment techniques for the BC include chemotherapy (CT) and/or radiotherapy (RT) and can modify elementary the cell matrix by calcificating tissues due to biological and morphological changes. Also, treatments for BC induce cardiotoxicity and it is important to understand the mechanisms involved in order to prevent this late effect in treated breast cancer patients. The high incidence of cardiovascular mortality in breast cancer patients is partially credited to increased intimal and medial calcifications of the aorta. The aim of this work is to investigate the distibution of low atomic number elements such as Magnesium (Mg), due to its importance for the cardiac metabolism; iron (Fe), since BC treatment may be associated with oxidative stress; and Sodium (Na), that is extremely related to the damage of endothelial cells. An optimal technique to observe these changes in aorta tissue is soft X-ray FLuorescence that can provide elemental maps of these important elements. The results performed by Low Energy X-ray Fluorescence LEXRF analyses showed that when the tissue is submitted to treatments with CT and/or RT, some normal structures become disorganized, and consequently the intensity of elemental compounds can be changed. All the experiments were carried out at the TwinMic beamline at Elettra Synchrotron facility using as animal model Wistar rats in order to evaluate the distribution of Na, Mg and Fe in aorta walls of Wistar rats, after BC treatment. Simultaneous acquisition of LEXRF and attenuation coefficient maps suggest that the combined chemotherapy and radiotherapy caused more damage to the aortic tissue as compared to radiation therapy alone. These findings add an in-depth understanding of elemental lack or excess in the tissue and contribute to locate these changes.
Magnifications of Single and Dual Element Accommodative Intraocular Lenses: Paraxial Optics Analysis
Ale, Jit B; Manns, Fabrice; Ho, Arthur
2010-01-01
Purpose Using an analytical approach of paraxial optics, we evaluated the magnification of a model eye implanted with single-element (1E) and dual-element (2E) translating-optics accommodative intraocular lenses (AIOL) with an objective of understanding key control parameters relevant to their design. Potential clinical implications of the results arising from pseudophakic accommodation were also considered. Methods Lateral and angular magnifications in a pseudophakic model eye were analyzed using the matrix method of paraxial optics. The effects of key control parameters such as direction (forward or backward) and distance (0 to 2 mm) of translation, power combinations of the 2E-AIOL elements (front element power range +20.0 D to +40.0 D), and amplitudes of accommodation (0 to 4 D) were tested. Relative magnification, defined as the ratio of the retinal image size of the accommodated eye to that of unaccommodated phakic (rLM1) or pseudophakic (rLM2) model eyes, was computed to determine how retinal image size changes with pseudophakic accommodation. Results Both lateral and angular magnifications increased with increased power of the front element in 2E-AIOL and amplitude of accommodation. For a 2E-AIOL with front element power of +35 D, rLM1 and rLM2 increased by 17.0% and 16.3%, respectively, per millimetre of forward translation of the element, compared to the magnification at distance focus (unaccommodated). These changes correspond to a change of 9.4% and 6.5% per dioptre of accommodation, respectively. Angular magnification also increased with pseudophakic accommodation. 1E-AIOLs produced consistently less magnification than 2E-AIOLs. Relative retinal image size decreased at a rate of 0.25% with each dioptre of accommodation in the phakic model eye. The position of the image space nodal point shifted away from the retina (towards the cornea) with both phakic and pseudophakic accommodation. Conclusion Power of the mobile element, and amount and direction of the translation (or the achieved accommodative amplitude) are important parameters in determining the magnifications of the AIOLs. The results highlight the need for caution in the prescribing of AIOL. Aniso-accommodation or inter-ocular differences in AIOL designs (or relative to the natural lens of the contralateral eye) may introduce dynamic aniseikonia and consequent impaired binocular vision. Nevertheless, some designs, offering greater increases in magnification on accommodation, may provide enhanced near vision depending on patient needs. PMID:21054469
Finite element modeling of mass transport in high-Péclet cardiovascular flows
NASA Astrophysics Data System (ADS)
Hansen, Kirk; Arzani, Amirhossein; Shadden, Shawn
2016-11-01
Mass transport plays an important role in many important cardiovascular processes, including thrombus formation and atherosclerosis. These mass transport problems are characterized by Péclet numbers of up to 108, leading to several numerical difficulties. The presence of thin near-wall concentration boundary layers requires very fine mesh resolution in these regions, while large concentration gradients within the flow cause numerical stabilization issues. In this work, we will discuss some guidelines for solving mass transport problems in cardiovascular flows using a stabilized Galerkin finite element method. First, we perform mesh convergence studies in a series of idealized and patient-specific geometries to determine the required near-wall mesh resolution for these types of problems, using both first- and second-order tetrahedral finite elements. Second, we investigate the use of several boundary condition types at outflow boundaries where backflow during some parts of the cardiac cycle can lead to convergence issues. Finally, we evaluate the effect of reducing Péclet number by increasing mass diffusivity as has been proposed by some researchers. This work was supported by the NSF GRFP and NSF Career Award #1354541.
Biological role in the transformation of platinum-group mineral grains
NASA Astrophysics Data System (ADS)
Reith, Frank; Zammit, Carla M.; Shar, Sahar S.; Etschmann, Barbara; Bottrill, Ralph; Southam, Gordon; Ta, Christine; Kilburn, Matthew; Oberthür, Thomas; Ball, Andrew S.; Brugger, Joël
2016-04-01
Platinum-group elements are strategically important metals. Finding new deposits is becoming increasingly difficult owing to our limited understanding of the processes that affect their mobility in surface environments. Microorganisms have been shown to promote the mobility of metals around ore deposits. Here we show that microorganisms influence the mobility of platinum-group elements in mineral grains collected from Brazil, Australia and Colombia. Scanning electron microscopy showed biofilms covering the platinum-group mineral grains. The biofilms contained abundant platinum-group element nanoparticles and microcrystalline aggregates, and were dominated by Proteobacteria, many of which were closely related to known metal-resistant species. Some platinum-group mineral grains contained carbon, nitrogen, sulfur, selenium and iodine, suggesting the grains may be biogenic in origin. Molecular analyses show that Brazilian platinum-palladium grains hosted specific bacterial communities, which were different in composition from communities associated with gold grains, or communities in surrounding soils and sediments. Nano-phase metallic platinum accumulated when a metallophillic bacterium was incubated with a percolating platinum-containing medium, suggesting that biofilms can cause the precipitation of mobile platinum complexes. We conclude that biofilms are capable of forming or transforming platinum-group mineral grains, and may play an important role for platinum-group element dispersion and re-concentration in surface environments.
Current strategies for mobilome research
Jørgensen, Tue S.; Kiil, Anne S.; Hansen, Martin A.; Sørensen, Søren J.; Hansen, Lars H.
2015-01-01
Mobile genetic elements (MGEs) are pivotal for bacterial evolution and adaptation, allowing shuffling of genes even between distantly related bacterial species. The study of these elements is biologically interesting as the mode of genetic propagation is kaleidoscopic and important, as MGEs are the main vehicles of the increasing bacterial antibiotic resistance that causes thousands of human deaths each year. The study of MGEs has previously focused on plasmids from individual isolates, but the revolution in sequencing technology has allowed the study of mobile genomic elements of entire communities using metagenomic approaches. The problem in using metagenomic sequencing for the study of MGEs is that plasmids and other mobile elements only comprise a small fraction of the total genetic content that are difficult to separate from chromosomal DNA based on sequence alone. The distinction between plasmid and chromosome is important as the mobility and regulation of genes largely depend on their genetic context. Several different approaches have been proposed that specifically enrich plasmid DNA from community samples. Here, we review recent approaches used to study entire plasmid pools from complex environments, and point out possible future developments for and pitfalls of these approaches. Further, we discuss the use of the PacBio long-read sequencing technology for MGE discovery. PMID:25657641
[From virtue bioethics to bioethics personalistic: is integration possible?].
Pastor, Luis Miguel
2013-01-01
In this article we analyze how the idea of virtue as an important element of human ethical action is slowly being lost. There are proposals both in ethics and in bioethics to rehabilitate virtue and to consider it as a very important element of human morality. In particular, in the health sector the rehabilitation of virtue, would imply greater focus on the ethical character of professionals and personal improvement rather than on training for the resolution of ethical cases. Such guidance would also improve the health professional-patient relationship with an increase not only in the technical quality but also in human dimension of health sciences. However, this orientation or tendency in bioethics suffers from a deficit in reasoning due to lack of a complete theory of human action that covers the good and also norms. The second part of the article looks at the relation between of virtue and personalistic bioethics. Virtue is considered as an important element of human action and is integrated with the good and norms. After analyzing and distinguishing between what is today considered personalistic bioethics and the contributions of personalism to bioethics, the paper concludes that the integration of virtue in personalistic bioethics is not only possible but desirable to overcome the ethical minimalism that has resulted from modern day principlism driven bioethics.
Construction and validation of a three-dimensional finite element model of degenerative scoliosis.
Zheng, Jie; Yang, Yonghong; Lou, Shuliang; Zhang, Dongsheng; Liao, Shenghui
2015-12-24
With the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study. A 55-year-old female DS patient (Suer Pan, ID number was P141986) was selected for this study. This study was performed in accordance with the ethical standards of Declaration of Helsinki and its amendments and was approved by the local ethics committee (117 hospital of PLA ethics committee). Spiral computed tomography (CT) scanning was conducted on the patient's lumbar spine from the T12 to S1. CT images were then imported into a finite element modeling system. A three-dimensional solid model was then formed from segmentation of the CT scan. The three-dimensional model of each vertebra was then meshed, and material properties were assigned to each element according to the pathological characteristics of DS. Loads and boundary conditions were then applied in such a manner as to simulate in vitro biomechanical experiments conducted on lumbar segments. The results of the model were then compared with experimental results in order to validate the model. An integral three-dimensional finite element model of DS was built successfully, consisting of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 target elements, 4968 contact elements, totaling 157,635 elements, and 197,374 nodes. The model accurately described the physical features of DS and was geometrically similar to the object of study. The results of analysis with the finite element model agreed closely with in vitro experiments, validating the accuracy of the model. The three-dimensional finite element model of DS built in this study is clear, reliable, and effective for further biomechanical simulation study of DS.
NASA Astrophysics Data System (ADS)
Dhakal, Rajesh P.; Pourali, Atefeh; Tasligedik, Ali Sahin; Yeow, Trevor; Baird, Andrew; MacRae, Gregory; Pampanin, Stefano; Palermo, Alessandro
2016-03-01
This paper summarizes the research on non-structural elements and building contents being conducted at University of Canterbury in New Zealand. Since the 2010-2011 series of Canterbury earthquakes, in which damage to non-structural components and contents contributed heavily to downtime and overall financial loss, attention to seismic performance and design of non-structural components and contents in buildings has increased exponentially in NZ. This has resulted in an increased allocation of resources to research leading to development of more resilient non-structural systems in buildings that would incur substantially less damage and cause little downtime during earthquakes. In the last few years, NZ researchers have made important developments in understanding and improving the seismic performance of secondary building elements such as partitions, facades, ceilings and contents.
Measurement of company effectiveness using analytic network process method
NASA Astrophysics Data System (ADS)
Goran, Janjić; Zorana, Tanasić; Borut, Kosec
2017-07-01
The sustainable development of an organisation is monitored through the organisation's performance, which beforehand incorporates all stakeholders' requirements in its strategy. The strategic management concept enables organisations to monitor and evaluate their effectiveness along with efficiency by monitoring of the implementation of set strategic goals. In the process of monitoring and measuring effectiveness, an organisation can use multiple-criteria decision-making methods as help. This study uses the method of analytic network process (ANP) to define the weight factors of the mutual influences of all the important elements of an organisation's strategy. The calculation of an organisation's effectiveness is based on the weight factors and the degree of fulfilment of the goal values of the strategic map measures. New business conditions influence the changes in the importance of certain elements of an organisation's business in relation to competitive advantage on the market, and on the market, increasing emphasis is given to non-material resources in the process of selection of the organisation's most important measures.
What Makes for Good Workplace Learning? At a Glance.
ERIC Educational Resources Information Center
National Centre for Vocational Education Research, Leabrook (Australia).
Workplace learning, both formal and informal, is taking on an increasingly important role in the education and training of the workforce. Based on an analysis of recent research on workplace learning in Australia, in an 'ideal' workplace learning situation enterprises would have in place the elements outlined in the following key findings: (1)…
"English?--Oh, It's Just Work!": A Study of BELF Users' Perceptions
ERIC Educational Resources Information Center
Kankaanranta, Anne; Louhiala-Salminen, Leena
2010-01-01
With the increasing number of business professionals operating globally, knowledge of successful English lingua franca in business contexts (BELF) has become an important element in overall business know-how. Here, we report on a research project focusing on everyday BELF communication at work. It consists of an extensive survey, and related…
ERIC Educational Resources Information Center
McNaughton, Susan Maree
2016-01-01
Empathy is an important affective attribute for graduates entering future practice with diverse populations. Self- and bodily awareness and the ability to take others' perspectives are essential for developing, maintaining and encouraging the cognitive, affective and motivational elements of empathy. This paper presents a thematic analysis of…
The Importance of the Personal Element in Collaborative Research
ERIC Educational Resources Information Center
Mitchell-Williams, Zinnia; Wilkins, Paul; Mclean, Meabh; Nevin, Wendy; Wastell, Karyn; Wheat, Rebecca
2004-01-01
This account draws on the experience of five final-year students of human communication and one tutor from the Manchester Metropolitan University who conducted collaborative research into life stages. The research was personally developmental for all those involved and resulted in an increased sense of personal power. The authors discuss the use…
ERIC Educational Resources Information Center
Superfine, Alison Castro; Kelso, Catherine Randall; Beal, Susan
2010-01-01
The implementation of "research-based" mathematics curricula is increasingly becoming a central element of mathematics education reform policies. Given the recent focus on grounding mathematics curriculum policies in research, it is important to understand precisely what it means for a curriculum to be research-based. Using the Curriculum Research…
AM-OER: An Agile Method for the Development of Open Educational Resources
ERIC Educational Resources Information Center
Arimoto, Maurício M.; Barroca, Leonor; Barbosa, Ellen F.
2016-01-01
Open Educational Resources have emerged as important elements of education in the contemporary society, promoting life-long and personalized learning that transcends social, economic and geographical barriers. To achieve the potential of OERs and bring impact on education, it is necessary to increase their development and supply. However, one of…
Exploring the Affective Dimension of Teachers' Work in Alternative School Settings
ERIC Educational Resources Information Center
te Riele, Kitty; Mills, Martin; McGregor, Glenda; Baroutsis, Aspa
2017-01-01
The affective dimension of teachers' work is a vital element in shaping inclusive, child-centred classrooms. It is particularly important for students who lack certain aspects of care and support within their personal lives. Recently, neoliberal educational paradigms of data gathering, external testing and competition have increased pressure upon…
Online Learning and the Education Encounter in a Neo-Liberal University: A Case Study
ERIC Educational Resources Information Center
Natalier, Kristin; Clarke, Robert
2015-01-01
Online education is an increasingly important element of contemporary higher education, but many argue its potential has not been fully realised. Attempts to analyse the limits on educators' uptake or effective implementation of online education emphasise individual and institutional adaptation to technology, at the expense of understanding the…
The Schism in Liberal Thought: A Transition from Social Liberalism to Socialism?
ERIC Educational Resources Information Center
Childs, John Brown
1981-01-01
Studies the significance of the conservative victory in the 1980 election. Also evaluates the increasing support of conservative policies such as the dismantling of civil rights, women's rights, and environmental gains. Concludes that an important element in this drift to the right is the resurgence of laissez-faire liberalism. (DB)
GED Success: Case Study of an English Language Learner in Correctional Education
ERIC Educational Resources Information Center
Gardner, Susanne
2017-01-01
Understanding the elements of educational success for adult English language learners (ELLs) is an important priority for correctional educators, especially today with an increased population of non-English speaking students in correctional schools throughout the country. There is a dearth of information, however, about incarcerated adult ELLs and…
National Education Standards: The Complex Challenge for Educational Leaders.
ERIC Educational Resources Information Center
Faidley, Ray; Musser, Steven
1991-01-01
National standards for education are important elements in the excellence process, but standards imposed by a central authority simply do not work in the Information Era. It would be wise to increase teachers' decision-making role in establishing and implementing local level excellence standards and train teachers to employ the Japanese "kaizen"…
Constructivism and Career Decision Self-Efficacy for Asian Americans and African Americans
ERIC Educational Resources Information Center
Grier-Reed, Tabitha; Ganuza, Zoila M.
2011-01-01
Career development that adequately addresses the needs of multicultural students is important. The authors explored whether a constructivist career course might be a viable mechanism for improving career decision self-efficacy for 81 Asian American and African American college students. Results indicated significant increases in all 5 elements of…
An analysis of pilot error-related aircraft accidents
NASA Technical Reports Server (NTRS)
Kowalsky, N. B.; Masters, R. L.; Stone, R. B.; Babcock, G. L.; Rypka, E. W.
1974-01-01
A multidisciplinary team approach to pilot error-related U.S. air carrier jet aircraft accident investigation records successfully reclaimed hidden human error information not shown in statistical studies. New analytic techniques were developed and applied to the data to discover and identify multiple elements of commonality and shared characteristics within this group of accidents. Three techniques of analysis were used: Critical element analysis, which demonstrated the importance of a subjective qualitative approach to raw accident data and surfaced information heretofore unavailable. Cluster analysis, which was an exploratory research tool that will lead to increased understanding and improved organization of facts, the discovery of new meaning in large data sets, and the generation of explanatory hypotheses. Pattern recognition, by which accidents can be categorized by pattern conformity after critical element identification by cluster analysis.
Environmental enrichment for aquatic animals.
Corcoran, Mike
2015-05-01
Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased. Copyright © 2015 Elsevier Inc. All rights reserved.
Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T
2017-09-19
A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
"Party Line" Information Use Studies and Implications for ATC Datalink Communications
NASA Technical Reports Server (NTRS)
Hansman, R. John; Pritchett, Amy; Midkiff, Alan
1995-01-01
The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The importance, availability, and accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the results of both the survey and the simulation indicated that the importance of party line information appeared to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.
'Party Line' Information Use Studies and Implications for ATV Datalink Communications
NASA Technical Reports Server (NTRS)
Pritchett, Amy; Hansman, R. John; Midkiff, Alan
1995-01-01
The perceived importance and utilization of 'party line' information by air carrier flight crews was investigated through pilot surveys and a flight simulation study. The Importance, Availability, and Accuracy of party line information elements were explored through surveys of pilots of several operational types. The survey identified numerous traffic and weather party line information elements which were considered important. These elements were scripted into a full-mission flight simulation which examined the utilization of party line information by studying subject responses to specific information element stimuli. The awareness of the different Party Line elements varied, and awareness was also affected by pilot workload. In addition, pilots were aware of some traffic information elements, but were reluctant to act on Party Line Information alone. Finally, the importance of party line information appears to be greatest for operations near or on the airport. This indicates that caution should be exercised when implementing datalink communications in tower and close-in terminal control sectors.
Pedersen, Ingeborg; Ihlebæk, Camilla; Kirkevold, Marit
2012-01-01
The main aim of this study was to obtain participants' own experience of a farm animal-assisted intervention, and what they perceived as important elements in relation to their mental health. A qualitative study, inspired by a phenomenological-hermeneutical perspective was conducted. Eight persons with clinical depression who had completed a 12-week farm animal-assisted intervention at a dairy farm participated in thematic interviews between May and June 2009. The intervention was regarded as a positive experience for the participants. The analyses revealed that central elements in the intervention were the possibility to experience an ordinary work life, but also the importance of a distraction to their illness. Furthermore, the flexibility of the intervention made it possible to adjust the intervention to the participants' shifting reality and was thereby a key element in farm animal-assisted intervention. The flexibility and adapted work tasks were important elements that the participants associated with their experience of coping. A model showing the interaction between the different elements reported as important by the participants was constructed. This study shows that a farm animal-assisted intervention could be a supplement in mental health rehabilitation. All the elements in our model could possibly influence positively on mental health.
ExportAid: database of RNA elements regulating nuclear RNA export in mammals.
Giulietti, Matteo; Milantoni, Sara Armida; Armeni, Tatiana; Principato, Giovanni; Piva, Francesco
2015-01-15
Regulation of nuclear mRNA export or retention is carried out by RNA elements but the mechanism is not yet well understood. To understand the mRNA export process, it is important to collect all the involved RNA elements and their trans-acting factors. By hand-curated literature screening we collected, in ExportAid database, experimentally assessed data about RNA elements regulating nuclear export or retention of endogenous, heterologous or artificial RNAs in mammalian cells. This database could help to understand the RNA export language and to study the possible export efficiency alterations owing to mutations or polymorphisms. Currently, ExportAid stores 235 and 96 RNA elements, respectively, increasing and decreasing export efficiency, and 98 neutral assessed sequences. Freely accessible without registration at http://www.introni.it/ExportAid/ExportAid.html. Database and web interface are implemented in Perl, MySQL, Apache and JavaScript with all major browsers supported. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Militzer, Burkhard
2018-01-13
New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introducesmore » an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.« less
Trace elements in agroecosystems and impacts on the environment.
He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J
2005-01-01
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.
NASA Astrophysics Data System (ADS)
Zenkov, S. A.; Lobanov, D. V.
2018-03-01
3D rigid-body model of a bucket of power shovel EK-18 was built using modern CAD-software. Tetrahedral grid with 10-node second-order elements was chosen, and the given model was imported to APM WinMachine - model preparation preprocessor for finite element analysis. The finite element model was based on the geometrical model, imported from KOMPAS-3D to APM Studio. Calculation of stressed-strained state of the bucket was carried out under the forces emerging while digging with “back hoe” equipment. Shift, deformation and tension charts were planned and the most and the least strained areas were pointed out. Wet coherent soil excavation deals with soil adhesion to working bodies of power shovels and leads to reduced performance. The performance decrease is caused by a reduction of useful bucket capacity and partial unloading, increased front resistance to cutting (digging) caused by wet soil adhesion to a working body, increased bucket entry resistance, increased idle time caused by necessity to clean working bodies. Also energy losses increase and quality of work drops because friction forces go up. Friction force occurs while digging and levelling account for 30…70 percent of total digging resistance while performance decreases 1.2…2 times and more. Vibrothermal exposure creates new technological effect which involves a wider humidity range of efficient application and a reduction of friction forces. Disintegrating adhesion bonds with heating requires less driving force from the vibrator. Vibration boosts up heating of the contact layer, which reduces thermal energy losses. However, the question of piezoelectric ceramic actuators location on the excavator bucket needs to be dealt with. The most suitable spots for mounting piezoelectric ceramic devices for reducing soil adhesion to the excavator bucket were defined. Their efficiency is derived from combined (vibrothermal) methods of exposure. Such devices eliminates soil adhesion to the bucket and increases efficiency of using power shovels with wet coherent soils.
Drake, Karla K.; Bowen, Lizabeth; Lewison, Rebecca L.; Esque, Todd C.; Nussear, Kenneth E.; Braun, Josephine; Waters, Shannon C.; Miles, A. Keith
2017-01-01
The analysis of blood constituents is a widely used tool to aid in monitoring of animal health and disease. However, classic blood diagnostics (i.e. hematologic and plasma biochemical values) often do not provide sufficient information to determine the state of an animal’s health. Field studies on wild tortoises and other reptiles have had limited success in drawing significant inferences between blood diagnostics and physiological and immunological condition. However, recent research using gene transcription profiling in the threatened Mojave desert tortoise (Gopherus agassizii) has proved useful in identifying immune or physiologic responses and overall health. To improve our understanding of health and immune function in tortoises, we evaluated both standard blood diagnostic (body condition, hematologic, plasma biochemistry values, trace elements, plasma proteins, vitamin A levels) and gene transcription profiles in 21 adult tortoises (11 clinically abnormal; 10 clinically normal) from Clark County, NV, USA. Necropsy and histology evaluations from clinically abnormal tortoises revealed multiple physiological complications, with moderate to severe rhinitis or pneumonia being the primary cause of morbidity in all but one of the examined animals. Clinically abnormal tortoises had increased transcription for four genes (SOD, MyD88, CL and Lep), increased lymphocyte production, biochemical enzymes and organics, trace elements of copper, and decreased numbers of leukocytes. We found significant positive correlations between increased transcription for SOD and increased trace elements for copper, as well as genes MyD88 and Lep with increased inflammation and microbial insults. Improved methods for health assessments are an important element of monitoring tortoise population recovery and can support the development of more robust diagnostic measures for ill animals, or individuals directly impacted by disturbance.
Bowen, Lizabeth; Lewison, Rebecca L.; Esque, Todd C.; Nussear, Kenneth E.; Braun, Josephine; Waters, Shannon C.; Miles, A. Keith
2017-01-01
Abstract The analysis of blood constituents is a widely used tool to aid in monitoring of animal health and disease. However, classic blood diagnostics (i.e. hematologic and plasma biochemical values) often do not provide sufficient information to determine the state of an animal’s health. Field studies on wild tortoises and other reptiles have had limited success in drawing significant inferences between blood diagnostics and physiological and immunological condition. However, recent research using gene transcription profiling in the threatened Mojave desert tortoise (Gopherus agassizii) has proved useful in identifying immune or physiologic responses and overall health. To improve our understanding of health and immune function in tortoises, we evaluated both standard blood diagnostic (body condition, hematologic, plasma biochemistry values, trace elements, plasma proteins, vitamin A levels) and gene transcription profiles in 21 adult tortoises (11 clinically abnormal; 10 clinically normal) from Clark County, NV, USA. Necropsy and histology evaluations from clinically abnormal tortoises revealed multiple physiological complications, with moderate to severe rhinitis or pneumonia being the primary cause of morbidity in all but one of the examined animals. Clinically abnormal tortoises had increased transcription for four genes (SOD, MyD88, CL and Lep), increased lymphocyte production, biochemical enzymes and organics, trace elements of copper, and decreased numbers of leukocytes. We found significant positive correlations between increased transcription for SOD and increased trace elements for copper, as well as genes MyD88 and Lep with increased inflammation and microbial insults. Improved methods for health assessments are an important element of monitoring tortoise population recovery and can support the development of more robust diagnostic measures for ill animals, or individuals directly impacted by disturbance. PMID:28835840
Drake, K Kristina; Bowen, Lizabeth; Lewison, Rebecca L; Esque, Todd C; Nussear, Kenneth E; Braun, Josephine; Waters, Shannon C; Miles, A Keith
2017-01-01
The analysis of blood constituents is a widely used tool to aid in monitoring of animal health and disease. However, classic blood diagnostics (i.e. hematologic and plasma biochemical values) often do not provide sufficient information to determine the state of an animal's health. Field studies on wild tortoises and other reptiles have had limited success in drawing significant inferences between blood diagnostics and physiological and immunological condition. However, recent research using gene transcription profiling in the threatened Mojave desert tortoise ( Gopherus agassizii ) has proved useful in identifying immune or physiologic responses and overall health. To improve our understanding of health and immune function in tortoises, we evaluated both standard blood diagnostic (body condition, hematologic, plasma biochemistry values, trace elements, plasma proteins, vitamin A levels) and gene transcription profiles in 21 adult tortoises (11 clinically abnormal; 10 clinically normal) from Clark County, NV, USA. Necropsy and histology evaluations from clinically abnormal tortoises revealed multiple physiological complications, with moderate to severe rhinitis or pneumonia being the primary cause of morbidity in all but one of the examined animals. Clinically abnormal tortoises had increased transcription for four genes (SOD, MyD88, CL and Lep), increased lymphocyte production, biochemical enzymes and organics, trace elements of copper, and decreased numbers of leukocytes. We found significant positive correlations between increased transcription for SOD and increased trace elements for copper, as well as genes MyD88 and Lep with increased inflammation and microbial insults. Improved methods for health assessments are an important element of monitoring tortoise population recovery and can support the development of more robust diagnostic measures for ill animals, or individuals directly impacted by disturbance.
Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar
2012-01-01
Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952
The industrial melanism mutation in British peppered moths is a transposable element.
Van't Hof, Arjen E; Campagne, Pascal; Rigden, Daniel J; Yung, Carl J; Lingley, Jessica; Quail, Michael A; Hall, Neil; Darby, Alistair C; Saccheri, Ilik J
2016-06-02
Discovering the mutational events that fuel adaptation to environmental change remains an important challenge for evolutionary biology. The classroom example of a visible evolutionary response is industrial melanism in the peppered moth (Biston betularia): the replacement, during the Industrial Revolution, of the common pale typica form by a previously unknown black (carbonaria) form, driven by the interaction between bird predation and coal pollution. The carbonaria locus has been coarsely localized to a 200-kilobase region, but the specific identity and nature of the sequence difference controlling the carbonaria-typica polymorphism, and the gene it influences, are unknown. Here we show that the mutation event giving rise to industrial melanism in Britain was the insertion of a large, tandemly repeated, transposable element into the first intron of the gene cortex. Statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred around 1819, consistent with the historical record. We have begun to dissect the mode of action of the carbonaria transposable element by showing that it increases the abundance of a cortex transcript, the protein product of which plays an important role in cell-cycle regulation, during early wing disc development. Our findings fill a substantial knowledge gap in the iconic example of microevolutionary change, adding a further layer of insight into the mechanism of adaptation in response to natural selection. The discovery that the mutation itself is a transposable element will stimulate further debate about the importance of 'jumping genes' as a source of major phenotypic novelty.
Wagstaff, Bradley J; Kroutter, Emily N; Derbes, Rebecca S; Belancio, Victoria P; Roy-Engel, Astrid M
2013-01-01
Non-long terminal repeat retroelements continue to impact the human genome through cis-activity of long interspersed element-1 (LINE-1 or L1) and trans-mobilization of Alu. Current activity is dominated by modern subfamilies of these elements, leaving behind an evolutionary graveyard of extinct Alu and L1 subfamilies. Because Alu is a nonautonomous element that relies on L1 to retrotranspose, there is the possibility that competition between these elements has driven selection and antagonistic coevolution between Alu and L1. Through analysis of synonymous versus nonsynonymous codon evolution across L1 subfamilies, we find that the C-terminal ORF2 cys domain experienced a dramatic increase in amino acid substitution rate in the transition from L1PA5 to L1PA4 subfamilies. This observation coincides with the previously reported rapid evolution of ORF1 during the same transition period. Ancestral Alu sequences have been previously reconstructed, as their short size and ubiquity have made it relatively easy to retrieve consensus sequences from the human genome. In contrast, creating constructs of extinct L1 copies is a more laborious task. Here, we report our efforts to recreate and evaluate the retrotransposition capabilities of two ancestral L1 elements, L1PA4 and L1PA8 that were active ~18 and ~40 Ma, respectively. Relative to the modern L1PA1 subfamily, we find that both elements are similarly active in a cell culture retrotransposition assay in HeLa, and both are able to efficiently trans-mobilize Alu elements from several subfamilies. Although we observe some variation in Alu subfamily retrotransposition efficiency, any coevolution that may have occurred between LINEs and SINEs is not evident from these data. Population dynamics and stochastic variation in the number of active source elements likely play an important role in individual LINE or SINE subfamily amplification. If coevolution also contributes to changing retrotransposition rates and the progression of subfamilies, cell factors are likely to play an important mediating role in changing LINE-SINE interactions over evolutionary time.
Wagstaff, Bradley J.; Kroutter, Emily N.; Derbes, Rebecca S.; Belancio, Victoria P.; Roy-Engel, Astrid M.
2013-01-01
Non-long terminal repeat retroelements continue to impact the human genome through cis-activity of long interspersed element-1 (LINE-1 or L1) and trans-mobilization of Alu. Current activity is dominated by modern subfamilies of these elements, leaving behind an evolutionary graveyard of extinct Alu and L1 subfamilies. Because Alu is a nonautonomous element that relies on L1 to retrotranspose, there is the possibility that competition between these elements has driven selection and antagonistic coevolution between Alu and L1. Through analysis of synonymous versus nonsynonymous codon evolution across L1 subfamilies, we find that the C-terminal ORF2 cys domain experienced a dramatic increase in amino acid substitution rate in the transition from L1PA5 to L1PA4 subfamilies. This observation coincides with the previously reported rapid evolution of ORF1 during the same transition period. Ancestral Alu sequences have been previously reconstructed, as their short size and ubiquity have made it relatively easy to retrieve consensus sequences from the human genome. In contrast, creating constructs of extinct L1 copies is a more laborious task. Here, we report our efforts to recreate and evaluate the retrotransposition capabilities of two ancestral L1 elements, L1PA4 and L1PA8 that were active ∼18 and ∼40 Ma, respectively. Relative to the modern L1PA1 subfamily, we find that both elements are similarly active in a cell culture retrotransposition assay in HeLa, and both are able to efficiently trans-mobilize Alu elements from several subfamilies. Although we observe some variation in Alu subfamily retrotransposition efficiency, any coevolution that may have occurred between LINEs and SINEs is not evident from these data. Population dynamics and stochastic variation in the number of active source elements likely play an important role in individual LINE or SINE subfamily amplification. If coevolution also contributes to changing retrotransposition rates and the progression of subfamilies, cell factors are likely to play an important mediating role in changing LINE-SINE interactions over evolutionary time. PMID:22918960
Rzymski, Piotr; Mleczek, Mirosław; Niedzielski, Przemysław; Siwulski, Marek; Gąsecka, Monika
2016-03-01
Ganoderma lucidum is an important medicinal mushroom species and there is continuous interest in its bioactive properties. This study evaluated whether it may additionally serve as a nutritional supplement for the trace elements: selenium (Se), copper (Cu), and zinc (Zn). Mushrooms were cultivated on substrates enriched with 0.1 to 0.8 mM of inorganic Se alone or in combination with Zn and/or Cu. Supplementation increased accumulation of the elements in fruiting bodies regardless of the applied cultivation model. G. lucidum demonstrated the ability to accumulate significant amounts of organic Se, maximally amounting to (i) over 44 mg/kg when the substrate was supplemented only with Se, (ii) over 20 mg/kg in the Se+Cu model, (iii) over 25 mg/kg in the Se+Zn model, and (iv) 15 mg/kg in the Se+Cu+Zn model. The accumulation of Cu and Zn steadily increased with their initial substrate concentrations. Maximum concentrations found after supplementation with 0.8 mM amounted to over 55 mg/kg (Se+Zn) and 52 mg/kg (Se+Cu+Zn) of Zn, and 29 mg/kg (Se+Cu) and over 31 mg/kg (Se+Cu+Zn) of Cu. The greater the supplemented concentration and number of supplemented elements, the lower the biomass of G. lucidum fruiting bodies. Nevertheless, it still remained high when the substrate was supplemented up to 0.4 mM with each element. These results highlight that G. lucidum can easily incorporate elements from the substrate and that, when biofortified, its dried fruiting bodies may serve as a nutritional source of these essential elements. © 2016 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Jun, Chang-Pyo; Lee, Seong-Joo
2014-05-01
Bat guano samples were collected from three carbonate caves located along the eastern coast of Korean Peninsula: Gossi Cave (40 cm high and 200 cm wide dome), Baegryong Cave (50 cm high and 100 cm wide dome), and Seongryu Cave (20 cm high platform). The guano deposits are rich in organic materials including undigested insect fragments, together with authigenic minerals and imported clastic sediments. The guano profiles were calculated to have been deposited 1) from 3097 to 4200 BP yrs in Gossi guano, 2) from 3650 to 7150 BP yrs in Baegryong guano, and 3) from 150 to 6000 BP yrs in Seongryu guano. Among the immobile elements identified, three immobile elements including Al2O3, SiO2, and TiO2 were detected from all the bat guano profiles. Distributional pattern of these elements throughout each guano profile also shows a close similarity. Such immobile elements are those of clastic sediments blown into the caves as dust. The amount of such immobile elements is closely related with deposition rate of the bat guano; low concentration of those elements implies rapid deposition rate while high concentration represents slow deposition rate of bat guano profiles. Basically, deposition rate of bat guano is controlled by the population density of bat lived in the cave. The amount of immobile elements of the Gossi Cave, for example, tends to increase toward top layer with a sudden decrease at the middle-upper layer (4,000 BP yr). It is, thus be concluded that bat population experienced fluctuation showing an decrease from 6150 to 4150 BP yr and sudden increase at 4000 BP yr, followed by constant decrease to 3150 BP yr. Fossil parasite eggs were also found from the guano deposits, and the number of parasite eggs show similar trend to that of immobile elements.
NASA Astrophysics Data System (ADS)
Lidman, Fredrik; Boily, Åsa; Laudon, Hjalmar; Köhler, Stephan J.
2017-06-01
Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr) and other parameters such as sulfate and total organic carbon (TOC). The results showed that the concentrations of most investigated elements increased substantially (up to 60 times) as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the solubility of many organophilic elements increases as a result of the higher concentrations of TOC in the riparian zone. Elements with low or modest affinity for organic matter (e.g. Na, Cl, K, Mg and Ca) occurred in similar or lower concentrations in the riparian zone. Despite the elevated concentrations of many elements in riparian soil water and groundwater, no increase in the concentrations in biota could be observed (bilberry leaves and spruce shoots).
Improving the energy efficiency of telecommunication networks
NASA Astrophysics Data System (ADS)
Lange, Christoph; Gladisch, Andreas
2011-05-01
The energy consumption of telecommunication networks has gained increasing interest throughout the recent past: Besides its environmental implications it has been identified to be a major contributor to operational expenditures of network operators. Targeting at sustainable telecommunication networks, thus, it is important to find appropriate strategies for improving their energy efficiency before the background of rapidly increasing traffic volumes. Besides the obvious benefits of increasing energy efficiency of network elements by leveraging technology progress, load-adaptive network operation is a very promising option, i.e. using network resources only to an extent and for the time they are actually needed. In contrast, current network operation takes almost no advantage of the strongly time-variant behaviour of the network traffic load. Mechanisms for energy-aware load-adaptive network operation can be subdivided in techniques based on local autonomous or per-link decisions and in techniques relying on coordinated decisions incorporating information from several links. For the transformation from current network structures and operation paradigms towards energy-efficient and sustainable networks it will be essential to use energy-optimized network elements as well as including the overall energy consumption in network design and planning phases together with the energy-aware load-adaptive operation. In load-adaptive operation it will be important to establish the optimum balance between local and overarching power management concepts in telecommunication networks.
Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S
2018-05-31
Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.
Toward Citizenship Science Education: What Students Do to Make the World a Better Place?
ERIC Educational Resources Information Center
Vesterinen, Veli-Matti; Tolppanen, Sakari; Aksela, Maija
2016-01-01
With increased focus on sustainability and socioscientific issues, dealing with issues related to citizenship is now seen as an important element of science education. However, in order to make the world a better place, mere understanding about socioscientific issues is not enough. Action must also be taken. In this study, 35 international gifted…
Problematic Internet Use, Loneliness and Dating Anxiety among Young Adult University Students
ERIC Educational Resources Information Center
Odaci, Hatice; Kalkan, Melek
2010-01-01
The Internet, an important modern means of obtaining information and establishing communication with others, has become an increasingly essential element of human life. Although Internet use makes life easier, it can become problematic in the event of non-functional use. Debate and research into whether Internet addiction is a cause or an effect…
Eric Rowell; E. Louise Loudermilk; Carl Seielstad; Joseph O' Brien
2016-01-01
Understanding fine-scale variability in understory fuels is increasingly important as physics-based fire behavior modelsdrive needs for higher-resolution data. Describing fuelbeds 3Dly is critical in determining vertical and horizontal distributions offuel elements and the mass, especially in frequently burned pine ecosystems where fine-scale...
A Cross-Sectional Study of Fluency and Reading Comprehension in Spanish Primary School Children
ERIC Educational Resources Information Center
Calet, Nuria; Gutiérrez-Palma, Nicolás; Defior, Sylvia
2015-01-01
The importance of prosodic elements is recognised in most definitions of fluency. Although speed and accuracy have been typically considered the constituents of reading fluency, prosody is emerging as an additional component. The relevance of prosody in comprehension is increasingly recognised in the latest studies. The purpose of this research is…
Council of Presidents: A Multifaceted Idea for 4-H
ERIC Educational Resources Information Center
Torretta, Alayne
2015-01-01
Communication between 4-H professionals and the youth they work with is an important part of a successful 4-H program. By creating a Council of Presidents comprised of officers of all the clubs in your county, you can increase communication while assuring your program addresses all four essential elements. The Council is also as a vehicle for…
The Search for next Practice: A UK Approach to Innovation in Schools
ERIC Educational Resources Information Center
Hannon, Valerie
2009-01-01
In 2002, the Labor Government in the UK established an Innovation Unit, within government, to support practitioner-led innovation in schools. Two considerations led to this action. First, there was an increasing sense that amidst the plethora of national strategies and change programs, an important element was in danger of being lost: the…
USDA-ARS?s Scientific Manuscript database
During the last part of the 20th century, public concern increased over non-point source pollution originating primarily from agricultural practices. Two chemical elements, nitrogen and phosphorus, which are important to the growth and development of crops and livestock, have been associated with no...
ERIC Educational Resources Information Center
Cheatham, Gregory A.; Jimenez-Silva, Margarita
2012-01-01
Parent-educator partnerships are an important element of effective early childhood, K-12, and special education programs (Dunst, Trivette, & Snyder, 2000; Tabors, 2008). While early childhood and other classrooms in the United States are increasingly diverse, the teachers in those classrooms are unlikely to be of the same linguistic or cultural…
We have previously demonstrated that the PCB mixture, Aroclor 1254 (A1254), increases the phosphorylated form of CREB (pCREB), the cAMP-responsive element binding protein. This transcription factor is important in nervous system development and plasticity. Phosphorylation
of C...
James F. Rosson
2001-01-01
Abstract - Highlights of the seventh forest survey of Arkansas are presented. Key elements important in assessing the sustainability of the forest resource are discussed. These include forest area, volume, growth, removals, and status of softwood plantations. Forest area and volumes appear stable or increasing or both. However, the amount of...
Minimum data elements for research reports on CFS.
Jason, Leonard A; Unger, Elizabeth R; Dimitrakoff, Jordan D; Fagin, Adam P; Houghton, Michael; Cook, Dane B; Marshall, Gailen D; Klimas, Nancy; Snell, Christopher
2012-03-01
Chronic fatigue syndrome (CFS) is a debilitating condition that has received increasing attention from researchers in the past decade. However, it has become difficult to compare data collected in different laboratories due to the variability in basic information regarding descriptions of sampling methods, patient characteristics, and clinical assessments. The issue of variability in CFS research was recently highlighted at the NIH's 2011 State of the Knowledge of CFS meeting prompting researchers to consider the critical information that should be included in CFS research reports. To address this problem, we present our consensus on the minimum data elements that should be included in all CFS research reports, along with additional elements that are currently being evaluated in specific research studies that show promise as important patient descriptors for subgrouping of CFS. These recommendations are intended to improve the consistency of reported methods and the interpretability of reported results. Adherence to minimum standards and increased reporting consistency will allow for better comparisons among published CFS articles, provide guidance for future research and foster the generation of knowledge that can directly benefit the patient. Copyright © 2012 Elsevier Inc. All rights reserved.
Rock geochemistry induces stress and starvation responses in the bacterial proteome.
Bryce, Casey C; Le Bihan, Thierry; Martin, Sarah F; Harrison, Jesse P; Bush, Timothy; Spears, Bryan; Moore, Alanna; Leys, Natalie; Byloos, Bo; Cockell, Charles S
2016-04-01
Interactions between microorganisms and rocks play an important role in Earth system processes. However, little is known about the molecular capabilities microorganisms require to live in rocky environments. Using a quantitative label-free proteomics approach, we show that a model bacterium (Cupriavidus metallidurans CH34) can use volcanic rock to satisfy some elemental requirements, resulting in increased rates of cell division in both magnesium- and iron-limited media. However, the rocks also introduced multiple new stresses via chemical changes associated with pH, elemental leaching and surface adsorption of nutrients that were reflected in the proteome. For example, the loss of bioavailable phosphorus was observed and resulted in the upregulation of diverse phosphate limitation proteins, which facilitate increase phosphate uptake and scavenging within the cell. Our results revealed that despite the provision of essential elements, rock chemistry drives complex metabolic reorganization within rock-dwelling organisms, requiring tight regulation of cellular processes at the protein level. This study advances our ability to identify key microbial responses that enable life to persist in rock environments. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Drago, Gaspare; Perrino, Cinzia; Canepari, Silvia; Ruggieri, Silvia; L'Abbate, Luca; Longo, Valeria; Colombo, Paolo; Frasca, Daniele; Balzan, Martin; Cuttitta, Giuseppina; Scaccianoce, Gianluca; Piva, Giuseppe; Bucchieri, Salvatore; Melis, Mario; Viegi, Giovanni; Cibella, Fabio; Balzan, Martin; Bilocca, David; Borg, Charles; Montefort, Stephen; Zammit, Christopher; Bucchieri, Salvatore; Cibella, Fabio; Colombo, Paolo; Cuttitta, Giuseppina; Drago, Gaspare; Ferrante, Giuliana; L'Abbate, Luca; Grutta, Stefania La; Longo, Valeria; Melis, Mario R; Ruggieri, Silvia; Viegi, Giovanni; Minardi, Remo; Piva, Giuseppe; Ristagno, Rosaria; Rizzo, Gianfranco; Scaccianoce, Gianluca
2018-04-16
Cigarette smoke is the main source of indoor chemical and toxic elements. Cadmium (Cd), Thallium (Tl), Lead (Pb) and Antimony (Sb) are important contributors to smoke-related health risks. Data on the association between Rare Earth Elements (REE) Cerium (Ce) and Lanthanum (La) and domestic smoking are scanty. To evaluate the relationship between cigarette smoke, indoor levels of PM 2.5 and heavy metals, 73 children were investigated by parental questionnaire and skin prick tests. The houses of residence of 41 "cases" and 32 "controls" (children with and without respiratory symptoms, respectively) were evaluated by 48-h PM 2.5 indoor/outdoor monitoring. PM 2.5 mass concentration was determined by gravimetry; the extracted and mineralized fractions of elements (As, Cd, Ce, La, Mn, Pb, Sb, Sr, Tl) were evaluated by ICP-MS. PM 2.5 and Ce, La, Cd, and Tl indoor concentrations were higher in smoker dwellings. When corrected for confounding factors, PM 2.5 , Ce, La, Cd, and Tl were associated with more likely presence of respiratory symptoms in adolescents. We found that: i) indoor smoking is associated with increased levels of PM 2.5 , Ce, La, Cd, and Tl and ii) the latter with increased presence of respiratory symptoms in children. Copyright © 2018 Elsevier Inc. All rights reserved.
A first report of rare earth elements in northwestern Mediterranean seaweeds.
Squadrone, Stefania; Brizio, Paola; Battuello, Marco; Nurra, Nicola; Sartor, Rocco Mussat; Benedetto, Alessandro; Pessani, Daniela; Abete, Maria Cesarina
2017-09-15
The concentrations of rare earth elements (REE) were determined by ICP-MS in dominant seaweed species, collected from three locations of the northwestern Mediterranean Sea. This is the first study to define levels and patterns of REE in macro algae from these coastal areas. Rare elements are becoming emerging inorganic contaminants in marine ecosystems, due to their worldwide increasing applications in industry, technology, medicine and agriculture. Significant inter-site and interspecies differences were registered, with higher levels of REE in brown and green macro algae than in red seaweeds. Levels of light REE were also observed to be greater compared to heavy REE in all samples. One of the investigated locations (Bergeggi, SV) had higher REE and ΣREE concentrations, probably due to its proximity to an important commercial and touristic harbor, while the other two sites were less affected by anthropogenic contaminations, and showed comparable REE patterns and lower concentrations. Rare earth elements in seaweeds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preliminary Identification of Urban Park Infrastructure Resilience in Semarang Central Java
NASA Astrophysics Data System (ADS)
Muzdalifah, Aji Uhfatun; Maryono
2018-02-01
Park is one of the spot green infrastructure. There are two major characteristic of park, first Active parks and second passive park. Those of two open spaces have been significant on the fulfillment of urban environment. To maintenance the urban park, it is very importance to identify the characteristic of active and passive park. The identification also needs to fostering stakeholder effort to increase quality of urban park infrastructure. This study aims to explore and assess the characteristic of urban park infrastructure in Semarang City, Central Java. Data collection methods conduct by review formal document, field observation and interview with key government officer. The study founded that urban active parks infrastructure resilience could be defined by; Park Location, Garden Shape, Vegetation, Support Element, Park Function, and Expected Benefit from Park Existence. Moreover, the vegetation aspect and the supporting elements are the most importance urban park infrastructure in Semarang.
Evolution of an Implementation-Ready Interprofessional Pain Assessment Reference Model
Collins, Sarah A; Bavuso, Karen; Swenson, Mary; Suchecki, Christine; Mar, Perry; Rocha, Roberto A.
2017-01-01
Standards to increase consistency of comprehensive pain assessments are important for safety, quality, and analytics activities, including meeting Joint Commission requirements and learning the best management strategies and interventions for the current prescription Opioid epidemic. In this study we describe the development and validation of a Pain Assessment Reference Model ready for implementation on EHR forms and flowsheets. Our process resulted in 5 successive revisions of the reference model, which more than doubled the number of data elements to 47. The organization of the model evolved during validation sessions with panels totaling 48 subject matter experts (SMEs) to include 9 sets of data elements, with one set recommended as a minimal data set. The reference model also evolved when implemented into EHR forms and flowsheets, indicating specifications such as cascading logic that are important to inform secondary use of data. PMID:29854125
Political decision-making in health care: the Dutch case.
Elsinga, E
1989-01-01
In many western countries health care is a subject of increasing importance on the political agenda. Issues such as aging, development of medical technologies, equity and efficiency of care, increasing costs, market elements, etc. are leading to a review of existing health care systems. In The Netherlands the government has proposed fundamental changes in the structure and financing of care, based on a report by the so-called Dekker Committee. The final result of a step-wise process of change should be the introduction of a new insurance scheme and the strengthening of market elements. After a short description of the government proposals, this article gives an analysis of the process of decision-making for a restructuring of health care in the Netherlands. The analysis is based on a bureaupolitical model, as originally described by Allison.
Environmental mineralogy - Understanding element behavior in ecosystems
NASA Astrophysics Data System (ADS)
Brown, Gordon E., Jr.; Calas, Georges
2011-02-01
Environmental Mineralogy has developed over the past decade in response to the recognition that minerals are linked in many important ways with the global ecosystem. Minerals are the main repositories of the chemical elements in Earth's crust and thus are the main sources of elements needed for the development of civilization, contaminant and pollutant elements that impact global and local ecosystems, and elements that are essential plant nutrients. These elements are released from minerals through natural processes, such as chemical weathering, and anthropogenic activities, such as mining and energy production, agriculture and industrial activities, and careless waste disposal. Minerals also play key roles in the biogeochemical cycling of the elements, sequestering elements and releasing them as the primary minerals in crustal rocks undergo various structural and compositional transformations in response to physical, chemical, and biological processes that produce secondary minerals and soils. These processes have resulted in the release of toxic elements such as arsenic in groundwater aquifers, which is having a major impact on the health of millions of people in South and Southeast Asia. The interfaces between mineral surfaces and aqueous solutions are the locations of most chemical reactions that control the composition of the natural environment, including the composition of natural waters. The nuclear fuel cycle, from uranium mining to the disposition of high-level nuclear waste, is also intimately related to minerals. A fundamental understanding of these processes requires molecular-scale information about minerals, their bulk structures and properties such as solubility, their surfaces, and their interactions with aqueous solutions, atmospheric and soil gases, natural organic matter, and biological organisms. Gaining this understanding is further complicated by the presence of natural, incidental, and manufactured nanoparticles in the environment, which are becoming increasingly important due to the rapidly developing field of nanotechnology. As a result of this complexity, Environmental Mineralogy requires the use of the most modern molecular-scale analytical and theoretical methods and overlaps substantially with closely related fields such as Environmental Sciences, low-temperature Geochemistry, and Geomicrobiology. This paper provides brief overviews of the above topics and discusses the complexity of minerals, natural vs. anthropogenic inputs of elements and pollutants into the biosphere, the role of minerals in the biogeochemical cycling of elements, natural nanoparticles, and the Environmental Mineralogy of three major potential pollutant elements (Hg, As and U).
Modelling the effect of round window stiffness on residual hearing after cochlear implantation.
Elliott, Stephen J; Ni, Guangjian; Verschuur, Carl A
2016-11-01
Preservation of residual hearing after cochlear implantation is now considered an important goal of surgery. However, studies indicate an average post-operative hearing loss of around 20 dB at low frequencies. One factor which may contribute to post-operative hearing loss, but which has received little attention in the literature to date, is the increased stiffness of the round window, due to the physical presence of the cochlear implant, and to its subsequent thickening or to bone growth around it. A finite element model was used to estimate that there is approximately a 100-fold increase in the round window stiffness due to a cochlear implant passing through it. A lumped element model was then developed to study the effects of this change in stiffness on the acoustic response of the cochlea. As the round window stiffness increases, the effects of the cochlear and vestibular aqueducts become more important. An increase of round window stiffness by a factor of 10 is predicted to have little effect on residual hearing, but increasing this stiffness by a factor of 100 reduces the acoustic sensitivity of the cochlea by about 20 dB, below 1 kHz, in reasonable agreement with the observed loss in residual hearing after implantation. It is also shown that the effect of this stiffening could be reduced by incorporating a small gas bubble within the cochlear implant. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Free vibration analysis of composite railway wheels
NASA Astrophysics Data System (ADS)
Ganesan, N.; Ramesh, T. C.
1992-02-01
Composite materials have been finding increasing applications in the field of transportation. A U.S.A. patent suggesting the use of composite materials for railway wheels is the basis for this paper. In thispaper, the natural vibrations of railway wheels made of composite materials have been theoretically estimated by the finite element method and compared with those in wheels made of steel. A thick conical shell element with displacements in the axial, radial and circumferential directions has been used in the analysis. This element brings out the coupling between the different modes of vibration, and this aspect is important in the dynamic analysis of composite wheels. Three geometries of wheels and two materials (Kevlar-epoxy and graphite-epoxy) have been used in the study. For each of these materials, two fiber orientations (radial and circumferential) have been taken up and their natural frequencies determined.
Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome
Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Boycott, Kym; MacKenzie, Alex; Brudno, Michael; Bulman, Dennis; Dyment, David; Majewski, Jacek; Jerome-Majewska, Loydie A.; Parboosingh, Jillian S.; Bernier, Francois P.
2014-01-01
Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development. PMID:25047197
Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.
Lynch, Danielle C; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J; Innes, A Micheil; Lamont, Ryan E; Lemire, Edmond G; Chodirker, Bernard N; Taylor, Juliet P; Zackai, Elaine H; McLeod, D Ross; Kirk, Edwin P; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Majewski, Jacek; Jerome-Majewska, Loydie A; Parboosingh, Jillian S; Bernier, Francois P
2014-07-22
Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.
Multi-channel probes to understand fission dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosby, Shea Morgan
2016-04-15
Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fissionmore » output channels.« less
Orcutt, Karen M; Jones, W Scott; McDonald, Andrea; Schrock, David; Wallace, Karl J
2010-01-01
The measurement of trace analytes in aqueous systems has become increasingly important for understanding ocean primary productivity. In oceanography, iron (Fe) is a key element in regulating ocean productivity, microplankton assemblages and has been identified as a causative element in the development of some harmful algal blooms. The chemosenor developed in this study is based on an indicator displacement approach that utilizes time-resolved fluorescence and fluorescence resonance energy transfer as the sensing mechanism to achieve detection of Fe3+ ions as low as 5 nM. This novel approach holds promise for the development of photoactive chemosensors for ocean deployment.
Wang, W.-X.; Fisher, N.S.; Luoma, S.N.
1995-01-01
Pulse-chase feeding and multi-labeled radiotracer techniques were employed to measure the assimilation of 6 trace elements (110mAg, 241Am, 109Cd, 57Co, 75Se and 65Zn) from ingested diatoms in the mussel Mytilus edulis feeding at different rates (0.1, 0.49 and 1.5 mg dry wt h-1). Uniformly radiolabeled diatoms Thalassiosira pseudonana were fed to mussels for 0.5 h, and the behavior of the radiotracers in individual mussels was followed for 96 h in a depuration seawater system. Assimilation efficiency (AE) of each element declined with increasing ingestion rate and increased with gut passage time. The importance of extracellular digestion relative to intracellular digestion increased with ingestion activity, which, when coupled with a decline in AE, suggested that extracellular digestion is less efficient in metal absorption. Zn assimilation was most affected by ingestion rate, suggesting that AE may play a role in the physiological regulation of this metal in M. edulis. In an experiment to simulate the effects of an acidic gut, lowered pH (5.5) enhanced the release of elements from intact diatom cells, especially at low particle concentration. These results indicate that both feeding components of the mussel (i.e. gut passage time, digestive partitioning) and metal chemistry (i.e. metal release at lowered pH within the bivalve gut) are responsible for the difference in the assimilation of trace metals at different food quantities observed in mussels.
Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.
2015-01-01
Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245
Rare earth, major and trace element composition of Leg 127 sediments
Murray, R.W.; Buchholtz ten Brink, Marilyn R.; Brumsack, Hans-Juergen; Gerlach, David C.; Russ III, G. Price
1992-01-01
The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the final preserved chemistry of Japan Sea sediments are evaluated by investigating the rare earth element (REE), major element, and trace element concentrations in 59 squeeze-cake whole-round and 27 physical-property sample residues from Sites 794, 795, and 797, cored during ODP Leg 127. The most important variation in sedimentary chemical composition is the increase in SiO2 concentration through the Pliocene diatomaceous sequences, which dilutes most other major and trace element components by various degrees. This biogenic input is largest at Site 794 (Yamato Basin), moderately developed at Site 797 (Yamato Basin), and of only minor importance at Site 795 (Japan Basin), potentially reflecting basinal contrasts in productivity with the Yamato Basin recording greater biogenic input than the Japan Basin and with the easternmost sequence of Site 794 lying beneath the most productive waters. There are few systematic changes in solid-phase chemistry resulting from the opal-A/opal-CT or opal-CT/quartz silica phase transformations. Most major and trace element concentrations are controlled by the aluminosilicate fraction of the sediment, although the effects of diagenetic silica phases and manganese carbonates are of localized importance. REE total abundances (IREE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the upper Miocene-Pliocene diatomaceous sequence. Eu/Eu* values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu* with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. XREE at Site 795 also is affiliated strongly with aluminosilicate phases and yet is diluted only slightly by siliceous input. At Site 797, ΣRE E is not as clearly associated with the aluminosilicate fraction, is correlated moderately to siliceous input, and may be sporadically influenced by detrital heavy minerals originating from the nearby rifted continental fragment composing the Yamato Rise. Ce/Ce* profiles at all three sites increase essentially monotonically with depth and record progressive diagenetic LREE fractionation. The observed Ce/Ce* increases are not responding to changes in the paleoceanographic oxygenation state of the overlying water, as there is no independent evidence to suggest the proper Oceanographic conditions. Ce/Ce* correlates slightly better with depth than with age at the two Yamato Basin sites. The downhole increase in Ce/Ce* at Sites 794 and 797 is a passive response to the diagenetic transfer of LREE (except Ce) from sediment to interstitial water. At Site 795, the overall lack of correlation between Ce/Ce* and La/Y^ suggests that other processes mask the diagenetic behavior of all LREEs. First-order calculations of the Ce budget in Japan Sea waters and sediment indicate that ~20% of the excess Ce adsorbed by settling particles is recycled within the water column and that an additional -38% is recycled at or near the seafloor. Thus, because the remaining excess Ce is only -10% of the total Ce, there is not a large source of Ce to the deeply buried sediment, further suggesting that the downhole increase in Ce/Ce* is a passive response to diagenetic behavior of the other LREEs. The REE chemistry of Japan Sea sediment therefore predicts successive downhole addition of LREEs to deeply buried interstitial waters.
Pathogen Phytosensing: Plants to Report Plant Pathogens.
Mazarei, Mitra; Teplova, Irina; Hajimorad, M Reza; Stewart, C Neal
2008-04-14
Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or 'phytosensors', by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable reporter gene could provide biological evidence to define the functional differences between pathogens, and provide new technology and applications for transgenic plants as phytosensors.
Review of atmospheric metallic elements in Asia during 2000-2004
NASA Astrophysics Data System (ADS)
Fang, Guor-Cheng; Wu, Yuh-Shen; Huang, Shih-Han; Rau, Jui-Yeh
Metallic element transfer through the atmosphere is a significant part of the biogeochemical cycle of these elements. Natural and anthropogenic were two processes which can increase heavy metal concentrations in the atmosphere. Atmospheric particulates, especially secondary anthropogenic fine particles (PM 2.5), have been influence human health. Generally speaking, the total daily mortality increases by approximately 1% for every 10 μg m -3 increase in PM 10 concentration (Lippmann, 1998). This is why the PM 10 and PM 2.5 measurements are included in the US ambient air quality standards (US-EPA, 1987 for PM 10; 1996 for PM 2.5) (Querol et al., 2001). In recent years, since the great efforts made by Taiwan government towards the reduction of O 3 and PM 10 concentrations by controlling the emission rates of local pollutants sources, the frequency of exceeded PSI has gradually decrease the value of 4.9% in 1999 (Taiwan EPA, 2000). Urban populations are exposed to metals in suspended particles and these are often well above natural background levels owing to anthropogenic processes (Espinosa et al., 2002). This results in elevated metal concentrations that can pose an important risk to human health. Understanding emissions from traffic includes identification of the sources, which is also crucial for designing control measures. Road traffic involves numerous potential sources of metals, combustion products from fuel and oil, wear products from tires, brake linings, bearings, coach and road construction materials, and re-suspension of soil and road dust. The different sample collection devices, pretreatment and analysis methods were discussed in this study. The purpose of this study arranges the atmospheric metallic elements investigations in Asia regions. The data obtained here can also help to understand the sources, concentration, phase distribution and health impact of atmospheric metallic elements in Asian countries.
Seven Elements Important to Successful Implementation of Early Literacy Intervention
ERIC Educational Resources Information Center
Foorman, Barbara; Dombek, Jennifer; Smith, Kevin
2016-01-01
The objective of this article is to describe seven elements important to successful implementation of early literacy intervention. The seven elements are drawn from research as well as from the authors' recent randomized controlled trial of effective early literacy interventions in kindergarten through second grade in 55 schools across Florida.…
Trace Elements and Healthcare: A Bioinformatics Perspective.
Zhang, Yan
2017-01-01
Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.
NASA Astrophysics Data System (ADS)
Wiche, Oliver; Székely, Balázs; Kummer, Nicolai-Alexeji; Heinemann, Ute; Tesch, Silke; Heilmeier, Hermann
2014-05-01
Availability of elements in soil to plant is generally dependent on the solubility and mobility of elements in soil solution which is controlled by soil, elemental properties and plant-soil interactions. Low molecular organic acids or other root exudates may increase mobility and availability of certain elements for plants as an effect of lowering pH in the rhizosphere and complexation. However, these processes take place in a larger volume in soil, therefore to understand their nature, it is also important to know in which layers of the soil what factors modify these processes. In this work the influence of citric acid and root exudates of white lupin (Lupinus albus L.) on bioavailable concentrations of germanium, lanthan, neodymium, gadolinium and erbium in soil solution and uptake in root and shoot of rape (Brassica napus L.), comfrey (Symphytum officinale L.), common millet (Panicum milliaceum L.) and oat (Avena sativa L.) was investigated. Two different pot experiments were conducted: (1) the mentioned plant species were treated with nutrient solutions containing various amount of citric acid; (2) white lupin was cultivated in mixed culture (0 % lupin, 33 % lupin) with oat (Avena sativa L.) and soil solution was obtained by plastic suction cups placed at various depths. As a result, addition of citric acid significantly increased germanium concentrations in plant tissue of comfrey and rape and increased translocation of germanium, lanthan, neodymium, gadolinium and erbium from root to shoot. The cultivation of white lupin in mixed culture with oat led to significantly higher concentrations of germanium and increasing concentrations of lanthan, neodymium, gadolinium and erbium in soil solution and aboveground plant tissue. In these pots concentrations of citric acid in soil solution were significantly higher than in the control. The results show, that low molecular organic acids exuded by plant roots are of great importance for the mobilization of germanium, lanthan, neodymium, gadolinium and erbium in the rhizosphere and therefore the enhancement of bioavailability of the mentioned elements to plants. Based on the suction cup experiment we conclude that in vertical soil profile the bioavailable germanium is heavily affected by the activity of exudates, as the complexation processes of germanium take place at the root zone and below affected by the interplay of the infiltration of citric acid solutions and the actually produced exudates. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.
Responses of trace elements to aerobic maximal exercise in elite sportsmen.
Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas
2014-02-21
Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically.
2010-01-01
Background Deficiencies in vitamins and mineral elements are important causes of morbidity in developing countries, possibly because they lead to defective immune responses to infection. The aim of the study was to assess the effects of mineral element deficiencies on early innate cytokine responses to Plasmodium falciparum malaria. Methods Peripheral blood mononuclear cells from 304 Tanzanian children aged 6-72 months were stimulated with P. falciparum-parasitized erythrocytes obtained from in vitro cultures. Results The results showed a significant increase by 74% in geometric mean of TNF production in malaria-infected individuals with zinc deficiency (11% to 240%; 95% CI). Iron deficiency anaemia was associated with increased TNF production in infected individuals and overall with increased IL-10 production, while magnesium deficiency induced increased production of IL-10 by 46% (13% to 144%) in uninfected donors. All donors showed a response towards IL-1β production, drawing special attention for its possible protective role in early innate immune responses to malaria. Conclusions In view of these results, the findings show plasticity in cytokine profiles of mononuclear cells reacting to malaria infection under conditions of different micronutrient deficiencies. These findings lay the foundations for future inclusion of a combination of precisely selected set of micronutrients rather than single nutrients as part of malaria vaccine intervention programmes in endemic countries. PMID:20470442
Douglas, G; Adeney, J; Johnston, K; Wendling, L; Coleman, S
2012-01-01
This study investigates the use of a mineral processing by-product, neutralized used acid (NUA), primarily composed of gypsum and Fe-oxyhydroxide, as a soil amendment. A 1489-d turf farm field trial assessed nutrient, trace element, and radionuclide mobility of a soil amended with ∼5% by mass to a depth of 15 cm of NUA. Average PO-P fluxes collected as subsoil leachates were 0.7 and 26.6 kg ha yr for NUA-amended and control sites, respectively, equating to a 97% reduction in PO-P loss after 434 kg P ha was applied. Total nitrogen fluxes in NUA-amended soil leachates were similarly reduced by 82%. Incorporation of NUA conferred major changes in leachate geochemistry with a diverse suite of trace elements depleted within NUA-amended leachates. Gypsum dissolution from NUA resulted in an increase from under- to oversaturation of the soil leachates for a range of Fe- and Ca-minerals including calcite and ferrihydrite, many of which have a well-documented ability to assimilate PO-P and trace elements. Isotopic analysis indicated little Pb addition from NUA. Both Sr and Nd isotope results revealed that NUA and added fertilizer became an important source of Ca to leachate and turf biomass. The NUA-amended soils retained a range of U-Th series radionuclides, with little evidence of transfer to soil leachate or turf biomass. Calculated radioactivity dose rates indicate only a small increment due to NUA amendment. With increased nutrient, trace element, and solute retention, and increased productivity, a range of potential agronomic benefits may be conferred by NUA amendment of soils, in addition to the potential to limit offsite nutrient loss and eutrophication. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Hume, Keith M; Giladi, Aviram M; Chung, Kevin C
2015-02-01
Federal research funding is decreasing, forcing specialty organizations to have an increasingly important position in developing and fostering research. As the research and innovation arm of the American Society of Plastic Surgeons, The Plastic Surgery Foundation has a key role in supporting promising plastic surgery research. Understanding the grant review process and factors that contribute to funding well-written grant funding applications is essential for aspiring academic surgeons. All research grant applications submitted to The Plastic Surgery Foundation in 2012 and 2013 were evaluated. Each reviewer comment was assessed independently by two study team members and classified into key weakness categories. The chi-square test was used to compare results between funded and unfunded grants. Linear regression identified which critique elements corresponded to changes in scores, and logistic regression identified elements that predicted funding. The authors analyzed 1764 comments from 240 applications. Of these, 55 received funding. Funded grants had significantly fewer reviewer comments in four of five weakness categories. As expected, funded grants received better (lower) scores. Concerns in the categories of plan for execution and other elements/grantsmanship significantly affected score and odds of funding. Ensuring that a grant addresses all required elements is important for receiving a low reviewer score. Our study demonstrates that plan for execution and grantsmanship influence reviewer scoring more than others. Investigators must clearly address items associated with conducting their experiments and performing the analysis. Investigators must also give equal attention to elements of overall quality and completeness to optimize chances of funding.
Study on development system of increasing gearbox for high-performance wind-power generator
NASA Astrophysics Data System (ADS)
Xu, Hongbin; Yan, Kejun; Zhao, Junyu
2005-12-01
Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.
Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F. X.; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A.; Roffler, Stefan
2016-01-01
DNA (class 2) transposons are mobile genetic elements which move within their ‘host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761
Chen, Hanbei; Wu, Lifang; Li, Yakui; Meng, Jian; Lin, Ning; Yang, Dianqiang; Zhu, Yemin; Li, Xiaoyong; Li, Minle; Xu, Ye; Wu, Yuchen; Tong, Xuemei; Su, Qing
2014-09-01
Diabetic patients have increased levels of advanced glycation end products (AGEs) and the role of AGEs in regulating cancer cell proliferation is unclear. Here, we found that treating colorectal and liver cancer cells with AGEs promoted cell proliferation. AGEs stimulated both the expression and activation of a key transcription factor called carbohydrate responsive element binding protein (ChREBP) which had been shown to promote glycolytic and anabolic activity as well as proliferation of colorectal and liver cancer cells. Using siRNAs or the antagonistic antibody for the receptor for advanced glycation end-products (RAGE) blocked AGEs-induced ChREBP expression or cell proliferation in cancer cells. Suppressing ChREBP expression severely impaired AGEs-induced cancer cell proliferation. Taken together, these results demonstrate that AGEs-RAGE signaling enhances cancer cell proliferation in which AGEs-mediated ChREBP induction plays an important role. These findings may provide new explanation for increased cancer progression in diabetic patients. Copyright © 2014. Published by Elsevier Ireland Ltd.
Local Burn-Up Effects in the NBSR Fuel Element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown N. R.; Hanson A.; Diamond, D.
2013-01-31
This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peakingmore » relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.« less
Hsi, H.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.
2001-01-01
Laboratory studies were conducted to determine the role of sulfur functional groups and micropore surface area of carbon-based adsorbents on the adsorption of Hg0 from simulated coal combustion flue gases. In this study, raw activated carbon fibers that are microporous (ACF-20) were impregnated with elemental sulfur between 250 and 650 ??C. The resulting samples were saturated with respect to sulfur content. Total sulfur content of the sulfur impregnated ACF samples decreased with increasing impregnation temperatures from 250 and 500 ??C and then remained constant to 650 ??C. Results from sulfur K-edge X-ray absorption near-edge structure (S-XANES) spectroscopy showed that sulfur impregnated on the ACF samples was in both elemental and organic forms. As sulfur impregnation temperature increased, however, the relative amounts of elemental sulfur decreased with a concomitant increase in the amount of organic sulfur. Thermal analyses and mass spectrometry revealed that sulfur functional groups formed at higher impregnation temperatures were more thermally stable. In general, sulfur impregnation decreased surface area and increased equilibrium Hg0 adsorption capacity when compared to the raw ACF sample. The ACF sample treated with sulfur at 400 ??C had a surface area of only 94 m2/g compared to the raw ACF sample's surface area of 1971 m2/g, but at least 86% of this sample's surface area existed as micropores and it had the largest equilibrium Hg0adsorption capacities (2211-11343 ??g/g). Such a result indicates that 400 ??C is potentially an optimal sulfur impregnation temperature for this ACF. Sulfur impregnated on the ACF that was treated at 400 ??C was in both elemental and organic forms. Thermal analyses and CS2extraction tests suggested that elemental sulfur was the main form of sulfur affecting the Hg0 adsorption capacity. These findings indicate that both the presence of elemental sulfur on the adsorbent and a microporous structure are important properties for improving the performance of carbon-based adsorbents for the removal of Hg0 from coal combustion flue gases.
Perkins, Gavin D; Jacobs, Ian G; Nadkarni, Vinay M; Berg, Robert A; Bhanji, Farhan; Biarent, Dominique; Bossaert, Leo L; Brett, Stephen J; Chamberlain, Douglas; de Caen, Allan R; Deakin, Charles D; Finn, Judith C; Gräsner, Jan-Thorsten; Hazinski, Mary Fran; Iwami, Taku; Koster, Rudolph W; Lim, Swee Han; Ma, Matthew Huei-Ming; McNally, Bryan F; Morley, Peter T; Morrison, Laurie J; Monsieurs, Koenraad G; Montgomery, William; Nichol, Graham; Okada, Kazuo; Ong, Marcus Eng Hock; Travers, Andrew H; Nolan, Jerry P
2015-11-01
Utstein-style guidelines contribute to improved public health internationally by providing a structured framework with which to compare emergency medical services systems. Advances in resuscitation science, new insights into important predictors of outcome from out-of-hospital cardiac arrest, and lessons learned from methodological research prompted this review and update of the 2004 Utstein guidelines. Representatives of the International Liaison Committee on Resuscitation developed an updated Utstein reporting framework iteratively by meeting face to face, by teleconference, and by Web survey during 2012 through 2014. Herein are recommendations for reporting out-of-hospital cardiac arrest. Data elements were grouped by system factors, dispatch/recognition, patient variables, resuscitation/postresuscitation processes, and outcomes. Elements were classified as core or supplemental using a modified Delphi process primarily based on respondents' assessment of the evidence-based importance of capturing those elements, tempered by the challenges to collect them. New or modified elements reflected consensus on the need to account for emergency medical services system factors, increasing availability of automated external defibrillators, data collection processes, epidemiology trends, increasing use of dispatcher-assisted cardiopulmonary resuscitation, emerging field treatments, postresuscitation care, prognostication tools, and trends in organ recovery. A standard reporting template is recommended to promote standardized reporting. This template facilitates reporting of the bystander-witnessed, shockable rhythm as a measure of emergency medical services system efficacy and all emergency medical services system-treated arrests as a measure of system effectiveness. Several additional important subgroups are identified that enable an estimate of the specific contribution of rhythm and bystander actions that are key determinants of outcome. Copyright © 2014 European Resuscitation Council and American Heart Association, Inc. Published by Elsevier Ireland Ltd.. All rights reserved.
Perkins, Gavin D; Jacobs, Ian G; Nadkarni, Vinay M; Berg, Robert A; Bhanji, Farhan; Biarent, Dominique; Bossaert, Leo L; Brett, Stephen J; Chamberlain, Douglas; de Caen, Allan R; Deakin, Charles D; Finn, Judith C; Gräsner, Jan-Thorsten; Hazinski, Mary Fran; Iwami, Taku; Koster, Rudolph W; Lim, Swee Han; Huei-Ming Ma, Matthew; McNally, Bryan F; Morley, Peter T; Morrison, Laurie J; Monsieurs, Koenraad G; Montgomery, William; Nichol, Graham; Okada, Kazuo; Eng Hock Ong, Marcus; Travers, Andrew H; Nolan, Jerry P
2015-09-29
Utstein-style guidelines contribute to improved public health internationally by providing a structured framework with which to compare emergency medical services systems. Advances in resuscitation science, new insights into important predictors of outcome from out-of-hospital cardiac arrest, and lessons learned from methodological research prompted this review and update of the 2004 Utstein guidelines. Representatives of the International Liaison Committee on Resuscitation developed an updated Utstein reporting framework iteratively by meeting face to face, by teleconference, and by Web survey during 2012 through 2014. Herein are recommendations for reporting out-of-hospital cardiac arrest. Data elements were grouped by system factors, dispatch/recognition, patient variables, resuscitation/postresuscitation processes, and outcomes. Elements were classified as core or supplemental using a modified Delphi process primarily based on respondents' assessment of the evidence-based importance of capturing those elements, tempered by the challenges to collect them. New or modified elements reflected consensus on the need to account for emergency medical services system factors, increasing availability of automated external defibrillators, data collection processes, epidemiology trends, increasing use of dispatcher-assisted cardiopulmonary resuscitation, emerging field treatments, postresuscitation care, prognostication tools, and trends in organ recovery. A standard reporting template is recommended to promote standardized reporting. This template facilitates reporting of the bystander-witnessed, shockable rhythm as a measure of emergency medical services system efficacy and all emergency medical services system-treated arrests as a measure of system effectiveness. Several additional important subgroups are identified that enable an estimate of the specific contribution of rhythm and bystander actions that are key determinants of outcome. © 2014 by the American Heart Association, Inc., and European Resuscitation Council.
Mutagenesis of NosM Leader Peptide Reveals Important Elements in Nosiheptide Biosynthesis
Jin, Liang; Wu, Xuri; Xue, Yanjiu; Jin, Yue; Wang, Shuzhen
2016-01-01
ABSTRACT Nosiheptide, a typical member of the ribosomally synthesized and posttranslationally modified peptides (RiPPs), exhibits potent activity against multidrug-resistant Gram-positive bacterial pathogens. The precursor peptide of nosiheptide (NosM) is comprised of a leader peptide with 37 amino acids and a core peptide containing 13 amino acids. To pinpoint elements in the leader peptide that are essential for nosiheptide biosynthesis, a collection of mutants with unique sequence features, including N- and C-terminal motifs, peptide length, and specific sites in the leader peptide, was generated by mutagenesis in vivo. The effects of various mutants on nosiheptide biosynthesis were evaluated. In addition to the necessity of a conserved motif LEIS box, native length and the N-terminal 12 amino acid residues were indispensable, and single-site substitutions of these 12 amino acid residues resulted in changes ranging from a greater-than-5-fold decrease to a 2-fold increase of nosiheptide production, depending on the sites and substituted residues. Moreover, although the C-terminal motif is not conservative, significant effects of this portion on nosiheptide production were also evident. Taken together, the present results further highlight the importance of the leader peptide in nosiheptide biosynthesis, and provide new insights into the diversity and specificity of leader peptides in the biosynthesis of various RiPPs. IMPORTANCE As a representative thiopeptide, nosiheptide exhibits excellent antibacterial activity. Although the biosynthetic gene cluster and several modification steps have been revealed, the presence and roles of the leader peptide within the precursor peptide of the nosiheptide gene cluster remain elusive. Thus, identification of specific elements in the leader peptide can significantly facilitate the genetic manipulation of the gene cluster for increasing nosiheptide production or generating diverse analogues. Given the complexity of the biosynthetic process, the instability of the leader peptide, and the unavailability of intermediates, cocrystallization of intermediates, leader peptide, and modification enzymes is currently not feasible. Therefore, a mutagenesis approach was used to construct a series of leader peptide mutants to uncover a number of crucial and characteristic elements affecting nosiheptide biosynthesis, which moves a considerable distance toward a thorough understanding of the biosynthetic machinery for thiopeptides. PMID:27913416
Is There Creativity in Design? From a Perspective of School Design and Technology in Hong Kong
ERIC Educational Resources Information Center
Wong, Yi Lin; Siu, Kin Wai Michael
2012-01-01
As creativity is likely to become a crucial aspect of living in the future, it is important for educators to teach students to think creatively when solving constantly evolving and increasingly complex problems. Supported by the idea that creativity can be taught and learnt, elements of creativity are now embedded in secondary school education.…
ERIC Educational Resources Information Center
Zanjani, Nastaran; Edwards, Sylvia L.; Nykvist, Shaun; Geva, Shlomo
2017-01-01
In recent years, universities have been under increased pressure to adopt e-learning practices for teaching and learning. In particular, the emphasis has been on learning management systems (LMSs) and associated collaboration tools to provide opportunities for sharing knowledge, building a community of learners, and supporting higher order…
Emerging Choices for the Soviets in Third World Arms Transfer Policy
1986-01-01
subcontract production, (4) overseas investment, (5) technology transfer, and (6) countertrade . Countertrade has been an especially significant element...defense industry as well as for civilian sector use. Countertrade has become increasingly important in the overall trade of the Soviet Union and...the countertrade approach has served to mitigate some consumer dissatisfaction with Soviet arms supply contracts with Third World countries
The future of the U.S. forest carbon sink
Richard Birdsey; Yude Pan; Fangmin Zhang
2015-01-01
For more than a decade, the U.S. forest carbon sink including carbon in harvested wood products has been persistently removing more than 200 million tons of carbon from the atmosphere, enough to offset 16% of CO2 emissions from fossil fuel use. Maintaining or increasing this valuable benefit of forests is an important element of the U.S. strategy...
ERIC Educational Resources Information Center
College Entrance Examination Board, New York, NY.
This collection stresses the need for informed and more sophisticated marketing techniques for college admissions officers to help them cope with the decreasing number of prospective college students. The importance of the college admissions office is increasing as admissions becomes a more crucial element to the colleges' financial well-being.…
ERIC Educational Resources Information Center
Thomas, Lisa Carol
2010-01-01
Our society is increasingly bombarded with visual imagery; therefore, it is important for educators to be knowledgeable about the elements of art and to use our knowledge to help students deepen their reading understanding. Arizpe & Styles (2003) noted that students must be prepared to work with imagery in the future at high levels of…
Environmental implications of excessive selenium: a review.
Lemly, A D
1997-12-01
Selenium is a naturally occurring trace element that is nutritionally required in small amounts but it can become toxic at concentrations only twice those required. The narrow margin between beneficial and harmful levels has important implications for human activities that increase the amount of selenium in the environment. Two of these activities, disposal of fossil fuel wastes and agricultural irrigation of arid, seleniferous soils, have poisoned fish and wildlife, and threatened public health at several locations in the United States. Research studies of these episodes have generated a data base that clearly illustrates the environmental hazard of excessive selenium. It is strongly bioaccumulated by aquatic organisms and even slight increases in waterborne concentrations can quickly result in toxic effects such as deformed embryos and reproductive failure in wildlife. The selenium data base has been very beneficial in developing hazard assessment procedures and establishing environmentally sound water quality criteria. The two faces of selenium, required nutrient and potent toxin, make it a particularly important trace element in the health of both animals and man. Because of this paradox, environmental selenium in relation to agriculture, fisheries, and wildlife will continue to raise important land and water management issues for decades to come. If these issues are dealt with using prudence and the available environmental selenium data base, adverse impacts to natural resources and public health can be avoided.
Dragun, Zrinka; Krasnići, Nesrete; Kolar, Nicol; Filipović Marijić, Vlatka; Ivanković, Dušica; Erk, Marijana
2018-05-15
Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements among compounds of different molecular masses were studied in the liver of brown trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic elements, was their distribution within only two narrow peaks. The increase of cytosolic Cd concentrations was reflected in marked increase of Cd elution within low molecular mass peak (maximum at ∼15 kDa), presumably containing metallothioneins (MTs), which indicated successful Cd detoxification in brown trout liver under studied exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected in marked increase of Tl elution within high molecular mass peak (maximum at 140 kDa), which probably indicated incomplete Tl detoxification. Common feature of the majority of studied essential elements was their distribution within more peaks, often broad and not well resolved, which is consistent with their numerous physiological functions. Among observed associations of essential metals/nonmetal to proteins, the following could be singled out: Cu and Zn association to MTs, Fe association to storage protein ferritin, and Se association to compounds of very low molecular masses (<5 kDa). The obtained results present the first step towards identification of metal-binding compounds in hepatic cytosol of brown trout, and thus a significant contribution to better understanding of metal fate in the liver of that important bioindicator species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bloem, E; Albihn, A; Elving, J; Hermann, L; Lehmann, L; Sarvi, M; Schaaf, T; Schick, J; Turtola, E; Ylivainio, K
2017-12-31
Organic nutrient sources such as farmyard manure, sewage sludge, their biogas digestates or other animal by-products can be valuable fertilizers delivering organic matter to the soil. Currently, especially phosphorus (P) is in the focus of research since it is an essential plant nutrient with finite resources, estimated to last only for some more decades. Efficient utilization of organic P sources in agriculture will help to preserve P resources and thereby has the potential to close nutrient cycles and prevent unwanted P-losses to the environment, one of the major causes for eutrophication of water bodies. Unfortunately, organic P sources usually contain also various detrimental substances, such as potentially toxic elements or organic contaminants like pharmaceuticals as well as pathogenic microorganisms. Additionally, the utilization of some of these substrates such as sewage sludge or animal by-products is legally limited in agriculture because of the potential risk to contaminate sites with potentially toxic elements and organic contaminants. Thus, to close nutrient cycles it is important to develop solutions for the responsible use of organic nutrient sources. The aim of this review is to give an overview of the contamination of the most important organic nutrient sources with potentially toxic elements, antibiotics (as one important organic contaminant) and pathogenic microorganisms. Changes in manure and sewage sludge management as well as the increasing trend to use such substrates in biogas plants will be discussed with respect to potential risks posed to soils and water bodies. Some examples for abatement options by which contamination can be reduced to produce P fertilizers with high amounts of plant available P forms are presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Morphological analysis of vessel elements for systematic study of three Zingiberaceae tribes.
Gevú, Kathlyn Vasconcelos; Lima, Helena Regina Pinto; Kress, John; Da Cunha, Maura
2017-05-01
Zingiberaceae containing over 1,000 species that are divided into four subfamilies and six tribes. In recent decades, there has been an increase in the number of studies about vessel elements in families of monocotyledon. However, there are still few studies of Zingiberaceae tribes. This study aims to establish systematic significance of studying vessel elements in two subfamilies and three tribes of Zingiberaceae. The vegetative organs of 33 species processed were analysed by light and scanning electron microscopy and Principal Component Analysis was used to elucidate genera boundaries. Characteristics of vessel elements, such as the type of perforation plate, the number of bars and type of parietal thickening, are proved to be important for establishing the relationship among taxa. Scalariform perforation plate and the scalariform parietal thickening are frequent in Zingiberaceae and may be a plesiomorphic condition for this taxon. In the Principal Component Analysis, the most significant characters of the vessel elements were: simple perforation plates and partially pitted parietal thickening, found only in Alpinieae tribe, and 40 or more bars composing the plate in Elettariopsis curtisii, Renealmia chrysotricha, Zingiber spectabile, Z. officinale, Curcuma and Globba species. Vessel elements characters of 18 species of Alpinieae, Zingibereae and Globbeae were first described in this work.
Visootsat, Akasit; Payungporn, Sunchai; T-Thienprasert, Nattanan P
2015-12-01
Hepatitis B virus (HBV) infection is a primary cause of hepatocellular carcinoma and liver cirrhosis worldwide. To develop novel antiviral drugs, a better understanding of HBV gene expression regulation is vital. One important aspect is to understand how HBV hijacks the cellular machinery to export unspliced RNA from the nucleus. The HBV post-transcriptional regulatory element (HBV PRE) has been proposed to be the HBV RNA nuclear export element. However, the function remains controversial, and the core element is unclear. This study, therefore, aimed to identify functional regulatory elements within the HBV PRE and investigate their functions. Using bioinformatics programs based on sequence conservation and conserved RNA secondary structures, three regulatory elements were predicted, namely PRE 1151-1410, PRE 1520-1620 and PRE 1650-1684. PRE 1151-1410 significantly increased intronless and unspliced luciferase activity in both HepG2 and COS-7 cells. Likewise, PRE 1151-1410 significantly elevated intronless and unspliced HBV surface transcripts in liver cancer cells. Moreover, motif analysis predicted that PRE 1151-1410 contains several regulatory motifs. This study reported the roles of PRE 1151-1410 in intronless transcript nuclear export and the splicing mechanism. Additionally, these results provide knowledge in the field of HBV RNA regulation. Moreover, PRE 1151-1410 may be used to enhance the expression of other mRNAs in intronless reporter plasmids.
Cobalt: A vital element in the aircraft engine industry
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1981-01-01
Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.
Goldenring, James R.
2014-01-01
Epithelial cell carcinogenesis involves the loss of polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation and increased cell motility and invasion. Elements of membrane vesicle trafficking underlie all of these processes. Specific membrane trafficking regulators, including Rab small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine cell surface presentation of proteins and overall function of both differentiated and neoplastic cells. While mutations in vesicle trafficking proteins may not be direct drivers of transformation, elements of the machinery of vesicle movement play critical roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are critical mediators of the full spectrum of cell physiologies driving cancer cell biology, including initial loss of polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may provide important points for manipulation of cancer cell behaviour. PMID:24108097
NASA Astrophysics Data System (ADS)
Talarmin, Agathe; Lomas, Michael W.; Bozec, Yann; Savoye, Nicolas; Frigstad, Helene; Karl, David M.; Martiny, Adam C.
2016-11-01
What is the temporal variability of the elemental stoichiometry of marine microbial communities across ocean regions? To answer this question, we present an analysis of environmental conditions, particulate organic carbon, nitrogen, and phosphorus concentrations and their ratios across 20 time series (3-25 years duration) representing estuarine, coastal, and open ocean environments. The majority of stations showed significant seasonal oscillations in particulate organic elemental concentrations and ratios. However, shorter-term changes contributed most to overall variance in particulate organic matter concentrations and ratios. We found a correlation between the seasonal oscillations of environmental conditions and elemental ratios at many coastal but not open ocean and estuarine stations. C:N peaked near the seasonal temperature minimum and nutrient maximum, but some stations showed other seasonal links. C:N ratios declined with time over the respective observation periods at all open ocean and estuarine stations as well as at five coastal station but increased at the nine other coastal stations. C:P (but not N:P) declined slightly at Bermuda Atlantic Time-series Study but showed large significant increases at Hawaii Ocean Time-series and Arendal stations. The relationships between long-term changes in environmental conditions and particulate organic matter concentrations or ratios were ambiguous, but interactions between changes in temperature and nutrient availability were important. Overall, our analysis demonstrates significant changes in elemental ratios at long-term and seasonal time scales across regions, but the underlying mechanisms are currently unclear. Thus, we need to better understand the detailed mechanisms driving the elemental composition of marine microbial ecosystems in order to predict how oceans will respond to environmental changes.
Nafissi, Maryam; Chau, Jeannette; Xu, Jimin
2012-01-01
Synthesis of the Fis nucleoid protein rapidly increases in response to nutrient upshifts, and Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions. Previous work has shown that control of Fis synthesis occurs at transcription initiation of the dusB-fis operon. We show here that while translation of the dihydrouridine synthase gene dusB is low, unusual mechanisms operate to enable robust translation of fis. At least two RNA sequence elements located within the dusB coding region are responsible for high fis translation. The most important is an AU element centered 35 nucleotides (nt) upstream of the fis AUG, which may function as a binding site for ribosomal protein S1. In addition, a 44-nt segment located upstream of the AU element and predicted to form a stem-loop secondary structure plays a prominent role in enhancing fis translation. On the other hand, mutations close to the AUG, including over a potential Shine-Dalgarno sequence, have little effect on Fis protein levels. The AU element and stem-loop regions are phylogenetically conserved within dusB-fis operons of representative enteric bacteria. PMID:22389479
NASA Astrophysics Data System (ADS)
Sudarmaji; Rudianto, Indra; Eka Nurcahya, Budi
2018-04-01
A strong tectonic earthquake with a magnitude of 5.9 Richter scale has been occurred in Yogyakarta and Central Java on May 26, 2006. The earthquake has caused severe damage in Yogyakarta and the southern part of Central Java, Indonesia. The understanding of seismic response of earthquake among ground shaking and the level of building damage is important. We present numerical modeling of 3D seismic wave propagation around Yogyakarta and the southern part of Central Java using spectral-element method on MPI-GPU (Graphics Processing Unit) computer cluster to observe its seismic response due to the earthquake. The homogeneous 3D realistic model is generated with detailed topography surface. The influences of free surface topography and layer discontinuity of the 3D model among the seismic response are observed. The seismic wave field is discretized using spectral-element method. The spectral-element method is solved on a mesh of hexahedral elements that is adapted to the free surface topography and the internal discontinuity of the model. To increase the data processing capabilities, the simulation is performed on a GPU cluster with implementation of MPI (Message Passing Interface).
Schwalfenberg, Gerry K.; Genuis, Stephen J.
2015-01-01
In clinical medicine, increasing attention is being directed towards the important areas of nutritional biochemistry and toxicant bioaccumulation as they relate to human health and chronic disease. Optimal nutritional status, including healthy levels of vitamin D and essential minerals, is requisite for proper physiological function; conversely, accrual of toxic elements has the potential to impair normal physiology. It is evident that vitamin D intake can facilitate the absorption and assimilation of essential inorganic elements (such as calcium, magnesium, copper, zinc, iron, and selenium) but also the uptake of toxic elements (such as lead, arsenic, aluminum, cobalt, and strontium). Furthermore, sufficiency of essential minerals appears to resist the uptake of toxic metals. This paper explores the literature to determine a suitable clinical approach with regard to vitamin D and essential mineral intake to achieve optimal biological function and to avoid harm in order to prevent and overcome illness. It appears preferable to secure essential mineral status in conjunction with adequate vitamin D, as intake of vitamin D in the absence of mineral sufficiency may result in facilitation of toxic element absorption with potential adverse clinical outcomes. PMID:26347061
Increase in competitiveness of housing-and-communal services
NASA Astrophysics Data System (ADS)
Skripnik, Oksana
2017-10-01
The problems, interfering effective activity of housing-and-communal complex are considered in the article. Some factors of the increase in competitiveness and the importance of transactional expenses are revealed. The assessment of competitiveness of the organizations of the sphere of housing-and-communal services is considered as the set of the following basic elements organizational and administrative, marketing, financial, production, indicators of quality, indicators of development, labor indicators interconnected with processes of the organization. The author proves that the increase in competitiveness is possible by carrying out organizational and administrative, innovative, technological, economic transformations, increasing quality of services, reducing costs for production and realization of services, providing new services.
Genetic conflict and sex chromosome evolution
Meiklejohn, Colin D; Tao, Yun
2009-01-01
Chromosomal sex determination systems create the opportunity for the evolution of selfish genetic elements that increase the transmission of one sex chromosome at the expense of its homolog. Because such selfish elements on sex chromosomes can reduce fertility and distort the sex ratio of progeny, unlinked suppressors are expected to evolve, bringing different regions of the genome into conflict over the meiotic transmission of the sex chromosomes. Here we argue that recurrent genetic conflict over sex chromosome transmission is an important evolutionary force that has shaped a wide range of seemingly disparate phenomena including the epigenetic regulation of genes expressed in the germline, the distribution of genes in the genome, and the evolution of hybrid sterility between species. PMID:19931208
Wang, W.-X.; Fisher, N.S.; Luoma, S. N.
1995-01-01
Pulse-chase feeding and multi-labeled radiotracer techniques were employed to measure the assimilation of 6 trace elements (110mAg, 241Am, 109Cd, 57Co, 75Se and 65Zn) from ingested diatoms in the mussel Mytilus edulis feeding at different rates (0.1, 0.49 and 1.5 mg dry wt h-1). Uniformly radiolabeled diatoms Thalassiosira pseudonana were fed to mussels for 0.5 h, and the behavior of the radiotracers in individual mussels was followed for 96 h in a depuration seawater system. Assimilation efficiency (AE) of each element declined with increasing ingestion rate and increased with gut passage time. The importance of extracellular digestion relative to intracellular digestion increased with ingestion activity, which, when coupled with a decline in AE, suggested that extracellular digestion is less efficient in metal absorption. Zn assimilation was most affected by ingestion rate, suggesting that AE may play a role in the physiological regulation of this metal in M. edulis. In an experiment to simulate the effects of an acidic gut, lowered pH (5.5) enhanced the release of elements from intact diatom cells, especially at low particle concentration. These results indicate that both feeding components of the mussel (i.e. gut passage time, digestive partitioning) and metal chemistry (i.e. metal release at lowered pH within the bivalve gut) are responsible for the difference in the assimilation of trace metals at different food quantities observed in mussels.
DNA methylation dynamics during early plant life.
Bouyer, Daniel; Kramdi, Amira; Kassam, Mohamed; Heese, Maren; Schnittger, Arp; Roudier, François; Colot, Vincent
2017-09-25
Cytosine methylation is crucial for gene regulation and silencing of transposable elements in mammals and plants. While this epigenetic mark is extensively reprogrammed in the germline and early embryos of mammals, the extent to which DNA methylation is reset between generations in plants remains largely unknown. Using Arabidopsis as a model, we uncovered distinct DNA methylation dynamics over transposable element sequences during the early stages of plant development. Specifically, transposable elements and their relics show invariably high methylation at CG sites but increasing methylation at CHG and CHH sites. This non-CG methylation culminates in mature embryos, where it reaches saturation for a large fraction of methylated CHH sites, compared to the typical 10-20% methylation level observed in seedlings or adult plants. Moreover, the increase in CHH methylation during embryogenesis matches the hypomethylated state in the early endosperm. Finally, we show that interfering with the embryo-to-seedling transition results in the persistence of high CHH methylation levels after germination, specifically over sequences that are targeted by the RNA-directed DNA methylation (RdDM) machinery. Our findings indicate the absence of extensive resetting of DNA methylation patterns during early plant life and point instead to an important role of RdDM in reinforcing DNA methylation of transposable element sequences in every cell of the mature embryo. Furthermore, we provide evidence that this elevated RdDM activity is a specific property of embryogenesis.
The Importance of Calibration in Clinical Psychology.
Lindhiem, Oliver; Petersen, Isaac T; Mentch, Lucas K; Youngstrom, Eric A
2018-02-01
Accuracy has several elements, not all of which have received equal attention in the field of clinical psychology. Calibration, the degree to which a probabilistic estimate of an event reflects the true underlying probability of the event, has largely been neglected in the field of clinical psychology in favor of other components of accuracy such as discrimination (e.g., sensitivity, specificity, area under the receiver operating characteristic curve). Although it is frequently overlooked, calibration is a critical component of accuracy with particular relevance for prognostic models and risk-assessment tools. With advances in personalized medicine and the increasing use of probabilistic (0% to 100%) estimates and predictions in mental health research, the need for careful attention to calibration has become increasingly important.
Structural and Physiological Changes in Sugar Beet Leaves during Sink to Source Conversion 1
Fellows, Robert J.; Geiger, Donald R.
1974-01-01
The onset of export during leaf development was correlated with changes in metabolism and ultrastructure and with patterns of solute distribution in the developing seventh leaf of sugar beet (Beta vulgaris L.) in order to study the cause of initiation of translocation. Infrared gas analysis of carbon dioxide uptake showed a broad peak for net photosynthesis dm−2 at 35 to 40% final laminar length. Pulse labeling with 14CO2 demonstrated that maximum import of translocate occurred at 25% final laminar length; export was first observed at 35% final laminar length. Between 40 and 50% final laminar length a rapid increase in amount of export occurred, primarily as a result of the increase in the area of leaf which was exporting. Whole leaf autoradiography revealed that onset of phloem loading spread basipetally from the leaf tip; loading was initiated at about 22% final laminar length and was essentially complete by 50% final laminar length. Those areas which clearly exhibited loading no longer imported from other parts of the plant while the area in transition still appeared to import label from source regions. There was little difference between source and sink leaf tissue in the kinetic parameters Kj and Jmax (30) for uptake of exogenous sucrose supplied via free space. The concentration of solutes in sieve elements and companion cells of the sink leaf was highest in the mature tip area and gradually decreased in the direction of the immature base. There appeared to be no dramatic structural transformation within the phloem of the minor veins that was closely correlated with the time when phloem loading or export began. Rather, there appeared to be a gradual differentiation of phloem which resulted in a sizable proportion of the population of minor vein sieve elements and companion cells attaining maturity in the older sink regions prior to initiation of phloem loading. The area of the leaf undergoing development appeared to exhibit the beginnings of phloem loading 30 to 45 hours prior to onset of export. Import continued into the area in transition until the full level of vein loading was attained. Structural maturation of the phloem and onset of phloem loading are felt to be more preparatory in nature rather than immediately causal events which triggered export. The initiation of export out of a developing leaf, we believe, is the result of the increasing solute content within the sieve element and companion cells of the minor veins, in particular. The higher osmotic pressure in the sieve tubes causes a reversal of the previously inward directed gradient and produces a mass flow, through unobstructed sieve elements, out of the new source region of the leaf. Images PMID:16658993
Analysis of Trace Siderophile Elements at High Spatial Resolution Using Laser Ablation ICP-MS
NASA Astrophysics Data System (ADS)
Campbell, A. J.; Humayun, M.
2006-05-01
Laser ablation inductively coupled plasma mass spectometry is an increasingly important method of performing spatially resolved trace element analyses. Over the last several years we have applied this technique to measure siderophile element distributions at the ppm level in a variety of natural and synthetic samples, especially metallic phases in meteorites and experimental run products intended for trace element partitioning studies. These samples frequently require trace element analyses to be made at a finer spatial resolution (25 microns or better) than is frequently attained using LA-ICP-MS. In this presentation we review analytical protocols that were developed to optimize the LA-ICP-MS measurements for high spatial resolution. Particular attention is paid to the trade-offs involving sensitivity, ablation pit depth and diameter, background levels, and number of elements measured. To maximize signal/background ratios and avoid difficulties associated with ablating to depths greater than the ablation pit diameter, measurement involved integration of rapidly varying, transient but well-behaved signals. The abundances of platinum group elements and other siderophile elements in ferrous metals were calibrated against well-characterized standards, including iron meteorites and NIST certified steels. The calibrations can be set against the known abundance of an independently determined element, but normalization to 100 percent can also be employed, and was more useful in many circumstances. Evaluation of uncertainties incorporated counting statistics as well as a measure of instrumental uncertainty, determined by replicate analyses of the standards. These methods have led to a number of insights into the formation and chemical processing of metal in the early solar system.
Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize.
Busk, P K; Jensen, A B; Pagès, M
1997-06-01
The rab17 gene from maize is transcribed in late embryonic development and is responsive to abscisic acid and water stress in embryo and vegetative tissues. In vivo footprinting and transient transformation of rab17 were performed in embryos and vegetative tissues to characterize the cis-elements involved in regulation of the gene. By in vivo footprinting, protein binding was observed to nine elements in the promoter, which correspond to five putative ABREs (abscisic acid responsive elements) and four other sequences. The footprints indicated that distinct proteins interact with these elements in the two developmental stages. In transient transformation, six of the elements were important for high level expression of the rab17 promoter in embryos, whereas only three elements were important in leaves. The cis-acting sequences can be divided in embryo-specific, ABA-specific and leaf-specific elements on the basis of protein binding and the ability to confer expression of rab17. We found one positive, new element, called GRA, with the sequence CACTGGCCGCCC. This element was important for transcription in leaves but not in embryos. Two other non-ABRE elements that stimulated transcription from the rab17 promoter resemble previously described abscisic acid and drought-inducible elements. There were differences in protein binding and function of the five ABREs in the rab17 promoter. The possible reasons for these differences are discussed. The in vivo data obtained suggest that an embryo-specific pathway regulates transcription of the rab genes during development, whereas another pathway is responsible for induction in response to ABA and drought in vegetative tissues.
Evaluation of lead and essential elements in whole blood during pregnancy: a cross-sectional study.
Liu, K; Mao, X; Shi, J; Lu, Y; Liu, C
2016-08-01
Physiological concentrations of some elements fluctuate during pregnancy due to the increased requirements of growing fetus and changes in the maternal physiology. The aim of the study is to evaluate the distribution at different stages of pregnancy in healthy Chinese women and to show the association between trace elements and gestational age-specific reference intervals. A cross-sectional study was performed in 1089 pregnant women and 677 nonpregnant control women. Five element concentrations, including Cu, Zn, Ca, Mg, Pb in the blood were determined by atomic absorption spectrometry. Spearman's rank correlation test was used to assess the relationship between weeks of gestation and blood element concentrations. The mean levels of Cu and Mg were 23.64 ± 4.69 μmol/L and 1.36 ± 0.12 mmol/L, respectively, in the control women. While 0.68 % of all pregnant women showed Cu levels below the normal ranges, the levels of Mg were comparable in different groups. Though the overall mean blood zinc and Ca concentrations (83.84 ± 17.50 μmol/L and 1.60 ± 0.15 mmol/L, respectively) increased gradually with the progress of gestation, the Zn and Ca deficiency levels (16.6 and 3.6 %, respectively) decreased with the advance of gestation. Compared with nonpregnant group, the concentrations of Cu, Zn, Ca, Mg, Pb during the different stages of pregnancy, as a whole, were significantly different. Positive correlations were observed between weeks of gestation and blood Cu, Ca, Pb concentrations (r = 0.301, 0.221, 0.223; P < 0.05). There was a negative correlation blood Mg concentrations and weeks of gestation (r = -0.321; P < 0.05). A weak positive correlation was noted between Zn concentrations and weeks of gestation (r = 0.125; P < 0.05). The importance of Cu and Mg deficiency and supplementation is well realized, but, Zn/Ca deficiency and Pb exposure is still exist; the overall deficiency of pregnant women was not so optimistic. During pregnancy, the established reference values will provide an important guidance for the reasonable supplementation of essential elements and surveillance of lead overexposure.
Scarcity of rare earth elements.
de Boer, M A; Lammertsma, K
2013-11-01
Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Melatonin Has the Potential to Alleviate Cinnamic Acid Stress in Cucumber Seedlings
Li, Juanqi; Li, Yang; Tian, Yongqiang; Qu, Mei; Zhang, Wenna; Gao, Lihong
2017-01-01
Cinnamic acid (CA), which is a well-known major autotoxin secreted by the roots in cucumber continuous cropping, has been proven to exhibit inhibitory regulation of plant morphogenesis and development. Melatonin (MT) has been recently demonstrated to play important roles in alleviating plant abiotic stresses. To investigate whether MT supplementation could improve cucumber seedling growth under CA stress, we treated cucumber seeds and seedlings with/without MT under CA- or non-stress conditions, and then tested their effects on cucumber seedling growth, morphology, nutrient element content, and plant hormone. Overall, 10 μM MT best rescued cucumber seedling growth under 0.4 mM CA stress. MT was found to alleviate CA-stressed seedling growth by increasing the growth rates of cotyledons and leaves and by stimulating lateral root growth. Additionally, MT increased the allocation of newly gained dry weight in roots and improved the tolerance of cucumber seedlings to CA stress by altering the nutrient elements and hormone contents of the whole plant. These results strongly suggest that the application of MT can effectively improve cucumber seedling tolerance to CA stress through the perception and integration of morphology, nutrient element content and plant hormone signaling crosstalk. PMID:28751899
Will seabass (Dicentrarchus labrax) quality change in a warmer ocean?
Barbosa, Vera; Maulvault, Ana Luísa; Alves, Ricardo N; Anacleto, Patrícia; Pousão-Ferreira, Pedro; Carvalho, Maria Luísa; Nunes, Maria Leonor; Rosa, Rui; Marques, António
2017-07-01
The impacts of climate change on seafood quality, safety and human health are still unknown. The present study investigated the effect of warming on fatty acids and elements content in two tissues (muscle and liver) of the relevant commercial seabass species (Dicentrarchus labrax). After exposing fish to increased seawater temperature for a period of 60days, higher saturated fatty acid (SFA) levels were observed in fish muscle (2.16% increase); whereas lower SFA levels were observed in fish liver (5.42% decrease). On the other hand, monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) contents decreased in both muscle (1.77% and 0.39%, respectively) and liver (10.54% and 8.11%, respectively) of fish subjected to warmer conditions. Additionally, warming promoted changes in fish elemental profiles, leading to significantly higher levels of Cl in the muscle and lower levels of Rb in the liver. Overall, data showed that fatty acids and elemental contents were affected by temperature, though representing small implications to human health. Moreover, this preliminary study highlights the importance of conducting further seafood risk-benefit assessments under climate change contexts. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kabasakal, Zekavet
2013-01-01
Problem Statement: Studies carried out in recent years both in Turkey and abroad indicate that child and teenage violence has increased and become widespread. Annually, 91.1% of deaths due to violence in the world occur in low and middle-income countries. Family life is an important element in understanding violent behavior as it relates to family…
Heterosexual anal sexuality and anal sex behaviors: a review.
McBride, Kimberly R; Fortenberry, J Dennis
2010-03-01
Little research addresses the role of anal sexuality and anal sexual behaviors as a widely practiced but relatively less frequent element of a heterosexual sexual repertoire. However, the importance of anal sex in sexual health is increasingly well-defined by epidemiological and clinical studies. This article reviews existing data on a range of heterosexual anal sex practices and provides conceptual and methodological recommendations for new research.
ERIC Educational Resources Information Center
Hernández-Torrano, Daniel; Saranli, Adile Gulsah
2015-01-01
Gifted education and talent development are considered today as key elements for developing human capital and increasing competitiveness within education and the economy. Within this framework, a growing number of countries have begun to invest large amounts of resources to discover and nurture their most able students. As boundaries and…
Palermo, C; Hughes, R; McCall, L
2010-06-01
Workforce development is a key element for building the capacity to effectively address priority population nutrition issues. On-the-job learning and mentoring have been proposed as strategies for practice improvement in public health nutrition; however, there is limited evidence for their effectiveness. An evaluation of a mentoring circle workforce development intervention was undertaken. Thirty-two novice public health nutritionists participated in one of three mentoring circles for 2 h, every 6 weeks, over a 7-month period. Pre- and post-intervention qualitative (questionnaire, interview, mentor diary) and quantitative (competence, time working in public health nutrition) data were collected. The novice public health nutritionists explained the intervention facilitated sharing of ideas and strategies and promoted reflective practice. They articulated the important attributes of the mentor in the intervention as having experience in and a passion for public health, facilitating a trusting relationship and providing effective feedback. Participants reported a gain in competency and had an overall mean increase in self-reported competence of 15% (range 3-48% change; P < 0.05) across a broad range of competency elements. Many participants described re-orienting their practice towards population prevention, with quantifiable increases in work time allocated to preventive work post-intervention. Mentoring supported service re-orientation and competency development in public health nutrition. The nature of the group learning environment and the role and qualities of the mentor were important elements contributing to the interventions effects. Mentoring circles offer a potentially effective strategy for workforce development in nutrition and dietetics.
Buman, Matthew P; Bertmann, Farryl; Hekler, Eric B; Winter, Sandra J; Sheats, Jylana L; King, Abby C; Wharton, Christopher M
2015-04-01
To understand factors which enhance or detract from farmers' market shopper experiences to inform targeted interventions to increase farmers' market utilization, community-building and social marketing strategies. A consumer-intercept study using the Stanford Healthy Neighborhood Discovery Tool to capture real-time perceptions via photographs and audio narratives. An urban farmers' market in a large metropolitan US city. Thirty-eight farmers' market shoppers, who recorded 748 unique coded elements through community-based participatory research methods. Shoppers were primarily women (65 %), 18-35 years of age (54 %), non-Hispanic (81 %) and white (73 %). Shoppers captured 291 photographs (7·9 (sd 6·3) per shopper), 171 audio narratives (5·3 (sd 4·7) per shopper), and ninety-one linked photograph + audio narrative pairs (3·8 (sd 2·8) per shopper). A systematic content analysis of the photographs and audio narratives was conducted by eight independent coders. In total, nine common elements emerged from the data that enhanced the farmers' market experience (61·8 %), detracted from the experience (5·7 %) or were neutral (32·4 %). The most frequently noted elements were freshness/abundance of produce (23·3 %), product presentation (12·8 %), social interactions (12·4 %) and farmers' market attractions (e.g. live entertainment, dining offerings; 10·3 %). While produce quality (i.e. freshness/abundance) was of primary importance, other contextual factors also appeared important to the shoppers' experiences. These results may inform social marketing strategies to increase farmers' market utilization and community-building efforts that target market venues.
Correlation and transport properties for mixtures at constant pressure and temperature
NASA Astrophysics Data System (ADS)
White, Alexander J.; Collins, Lee A.; Kress, Joel D.; Ticknor, Christopher; Clérouin, Jean; Arnault, Philippe; Desbiens, Nicolas
2017-06-01
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2 g/cm 3 , namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.
Mercury adsorption properties of sulfur-impregnated adsorbents
Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.
2002-01-01
Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.
Correlation and transport properties for mixtures at constant pressure and temperature
White, Alexander J.; Collins, Lee A.; Kress, Joel D.; ...
2017-06-02
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less
Correlation and transport properties for mixtures at constant pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Alexander J.; Collins, Lee A.; Kress, Joel D.
Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. In this paper, we present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm 3, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity formore » various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. Finally, the concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.« less
Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.
Pahr, Dieter H; Zysset, Philippe K
2016-12-01
Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.
The chromosomal organization of horizontal gene transfer in bacteria.
Oliveira, Pedro H; Touchon, Marie; Cury, Jean; Rocha, Eduardo P C
2017-10-10
Bacterial adaptation is accelerated by the acquisition of novel traits through horizontal gene transfer, but the integration of these genes affects genome organization. We found that transferred genes are concentrated in only ~1% of the chromosomal regions (hotspots) in 80 bacterial species. This concentration increases with genome size and with the rate of transfer. Hotspots diversify by rapid gene turnover; their chromosomal distribution depends on local contexts (neighboring core genes), and content in mobile genetic elements. Hotspots concentrate most changes in gene repertoires, reduce the trade-off between genome diversification and organization, and should be treasure troves of strain-specific adaptive genes. Most mobile genetic elements and antibiotic resistance genes are in hotspots, but many hotspots lack recognizable mobile genetic elements and exhibit frequent homologous recombination at flanking core genes. Overrepresentation of hotspots with fewer mobile genetic elements in naturally transformable bacteria suggests that homologous recombination and horizontal gene transfer are tightly linked in genome evolution.Horizontal gene transfer (HGT) is an important mechanism for genome evolution and adaptation in bacteria. Here, Oliveira and colleagues find HGT hotspots comprising ~ 1% of the chromosomal regions in 80 bacterial species.
Cartault, François; Munier, Patrick; Benko, Edgar; Desguerre, Isabelle; Hanein, Sylvain; Boddaert, Nathalie; Bandiera, Simonetta; Vellayoudom, Jeanine; Krejbich-Trotot, Pascale; Bintner, Marc; Hoarau, Jean-Jacques; Girard, Muriel; Génin, Emmanuelle; de Lonlay, Pascale; Fourmaintraux, Alain; Naville, Magali; Rodriguez, Diana; Feingold, Josué; Renouil, Michel; Munnich, Arnold; Westhof, Eric; Fähling, Michael; Lyonnet, Stanislas; Henrion-Caude, Alexandra
2012-01-01
The human genome is densely populated with transposons and transposon-like repetitive elements. Although the impact of these transposons and elements on human genome evolution is recognized, the significance of subtle variations in their sequence remains mostly unexplored. Here we report homozygosity mapping of an infantile neurodegenerative disease locus in a genetic isolate. Complete DNA sequencing of the 400-kb linkage locus revealed a point mutation in a primate-specific retrotransposon that was transcribed as part of a unique noncoding RNA, which was expressed in the brain. In vitro knockdown of this RNA increased neuronal apoptosis, consistent with the inappropriate dosage of this RNA in vivo and with the phenotype. Moreover, structural analysis of the sequence revealed a small RNA-like hairpin that was consistent with the putative gain of a functional site when mutated. We show here that a mutation in a unique transposable element-containing RNA is associated with lethal encephalopathy, and we suggest that RNAs that harbor evolutionarily recent repetitive elements may play important roles in human brain development. PMID:22411793
NASA Astrophysics Data System (ADS)
Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia
2017-05-01
Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.
NASA Astrophysics Data System (ADS)
Bairamov, A. N.
2017-11-01
The operation of a nuclear power plant with a hydrogen energy complex and a constantly operating low capacity additional steam turbine makes it possible to improve the reliability of the power supply to the needs of a nuclear power plant in the face of major systemic accidents. In this case, the additional steam turbine is always in operation. This determines the alternation of the operating conditions of the additional steam turbine, and, at the same time, the alternation of the loads attributable to the rotor, which affects its working life. The aim of the article is to investigate the effect of cyclic loads on the number of cycles before the destruction of the most important elements of the rotor of an additional steam turbine due to the alternation of operating conditions when entering the peak load and during unloading at night. The article demonstrates that the values of the stress range intensity index for the most important elements of the rotor of an additional steam turbine lie in the area of the threshold values of the fatigue failure diagram. For this region, an increase in the frequency of loading is associated with the phenomenon of closure of the fatigue crack and, as a consequence, a possible slowing of its growth. An approximate number of cycles before failure for the most loaded element of the rotor is obtained.
[Studies on six heavy metal elements dissolution characteristics of Andrographis herb by ICP-OES].
Tang, Rui; Li, Tian-Peng; Gu, Xue-Shi; Li, Yong-Jian; Yang, Yi
2010-02-01
A simple and accurate method for the simultaneous determination of As, Ba, Cd, Cr, Cu and Pb in andrographis herb by inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The samples were digested by HNO3-HClO4. The digestion-determination method was evaluated with the relative standard deviations for all these elements between 2.1% and 4.6%, and the recoveries were between 92.0% and 103.2%. The measuring method was proved to be simple, reliable and highly sensitive. The dissolution characteristics of the 6 heavy metal elements in different solvents and with different extraction methods such as refluxing, soaking, and ultrasonic assisted extraction were studied. The experimental results showed that Ba was in the highest concentration followed by Cu and Cr, and the concentration of As, Pb and Cd was relatively lower in the herb. With the increase in ethanol concentration, the dissolution amount of Ba decreased but that of Cu and Cr increased, and the highest concentration of Cd was dissolved in acidic solution. Overall, Cd and Pb were difficult to dissolve out with 85% ethanol refluxing, but As dissolved comparatively more under the same condition. Comparing the extraction methods, the higher concentration of these 6 metals was obtained by refluxing water or alkaline water than that by 85% ethanol maceration. These differences might be related to the existent forms of these six elements in the herb. The determination and study on dissolution characteristics of these elements by using ICP-OES was important for rational using medicinal resources and ensuring the safety of drugs.
Jean Dit Gautier, Estelle; Mayeur, Olivier; Lepage, Julien; Brieu, Mathias; Cosson, Michel; Rubod, Chrystele
2018-03-01
We studied the geometry of and changes in structures that play an important role in stabilizing the pelvic system during pregnancy using a numerical system at different gestational ages and postpartum. We developed a parturient numerical model to assess pelvic structures at different gestational stages (16, 32, and 38 weeks) and postpartum (2 months and 1 year) using magnetic resonance imaging (MRI). Organs, muscles, and ligaments were segmented to generate a 3D model of the pelvis. We studied changes in the length of uterosacral ligaments (USL) and thickness of the puborectal portion of the levator ani muscle (LAM) during and after pregnancy. We used this model to perform finite element (FE) simulation and analyze deformations of these structures under stress from the increase in uterine weight. Analysis reveals an increase in the length of US ligaments at 16, 32, and 38 weeks. Two months after delivery, it decreases without returning to the length at 16 weeks of pregnancy. Similar changes were observed for the puborectal portion of the LAM. Variations observed in these structures are not equivalent to other anatomical structures of pelvic suspension. FE simulation with increased uterus weight does not lead to those findings. This analysis brings new elements and a new focus for discussion relating to changes in pelvic balance of parturient women that are not simply linked to the increase in uterine volume.
NASA Astrophysics Data System (ADS)
Leng, Xuefei; Zhang, Jianhui; Jiang, Yan; Wang, Shouyin; Zhao, Chunsheng
2014-07-01
The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simple structure, low cost, and easy miniaturization. So, their important development trend is the mitigation of their weakness, and the multi-function integration. The flow in a spiral tube element is sensitive to the element attitude caused by the Coriolis force, and that a valveless piezoelectric pump is designed by applying this phenomenon. The pump has gyroscopic effect, and has both the actuator function of fluid transfer and the sensor function, which can obtain the angular velocity when its attitude changes. First, the present paper analyzes the flow characteristics in the tube, obtains the calculation formula for the pump flow, and identifies the relationship between pump attitude and flow, which clarifies the impact of flow and driving voltage, frequency, spiral line type and element attitude, and verifies the gyroscopic effect of the pump. Then, the finite element simulation is used to verify the theory. Finally, a pump is fabricated for experimental testing of the relationship between pump attitude and pressure differential. Experimental results show that when Archimedes spiral θ=4π is selected for the tube design, and the rotation speed of the plate is 70 r/min, the pressure differential is 88.2 Pa, which is 1.5 times that of 0 r/min rotation speed. The spiral-tube-type valveless piezoelectric pump proposed can turn the element attitude into a form of pressure output, which is important for the multi-function integration of the valveless piezoelectric pump and for the development of civil gyroscope in the future.
Bessel smoothing filter for spectral-element mesh
NASA Astrophysics Data System (ADS)
Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.
2017-06-01
Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the efficiency and flexibility of the approach proposed.
Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States
NASA Astrophysics Data System (ADS)
Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.
2017-12-01
Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.
BROACHING AND TUBE-INSTALLING APPARATUS
Frantz, C.E.; Cawley, W.E.
1961-05-16
An apparatus is given for sizing long holes in graphite bodies. The apparatus comprises a shaft having 3 spiral broach cutting elements and a straight broach cutting element rotatably mounted thereon. The broach cutting elements are keyed to each other in end to end relationship with the straight broach cutting element at one end of the shaft. The spiral broach cutting elements when considered toward the straight broach cutting element increase in diameter and the cutting teeth thereon increase in lead angle. The straight broach cutting element, when considered in the same direction, increases in diameter from the minimum to maximum diameters of the spiral broach cutting elements. No longitudinal movement of the broach cutting elements is permitted on the shsft snd means are provided for the removal of chips from the apparatus.
Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer
2012-01-01
The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations. PMID:22470474
Masiol, Mauro; Squizzato, Stefania; Ceccato, Daniele; Pavoni, Bruno
2015-01-01
The concentrations of selected elemental tracers were determined in the aerosol of a semi-rural coastal site near Venice (Italy). Size-segregated aerosol samples were collected using an 8-stage cascade impactor set at 15m above ground, during the cold season (late autumn and winter), when high levels of many pollutants are known to cause risks for human health. From the experimental data, information was extracted on potential pollutant sources by investigating the relationships between elements in the different size fractions. Moreover, an approach to highlight the importance of local atmospheric circulation and air mass origin in influencing the PM composition and fractional distribution is proposed. Anthropogenic elements are strongly inter-correlated in the submicrometric (<1 μm) (S, K, Mn, Cu, Fe and Zn) and intermediate mode (1-4 μm) (Mn, Cu, Zn, Ni) and their relationships highlight the presence of several sources (combustions, secondary aerosol, road traffic). In the intermediate mode, associations having geochemical significance exist between marine (Na, Cl and Mg) and crustal (Si, Mg, Ca, Al, Ti and K) elements. In the coarse mode (>4 μm) Fe and Zn are well correlated and are probably linked to tire and brake wear emissions. Regarding atmospheric circulation, results show increasing levels of elements related to pollution sources (S, K, Mn, Ni, Cu, Zn) when air masses come from Central and Eastern Europe direction and on the ground wind blows from NWN-N-NE (from mainland Venice). Low wind speed and high percentage of wind calm hours favor element accumulation in the submicrometric and intermediate modes. Furthermore, strong winds favor the formation of sea-spray and the increase of Si in the coarse mode due to the resuspension of sand fine particles. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maleki, Z.; Arian, M.; Solgi, A.
2015-08-01
The anticlines in Fars region, which are located in Zagros fold-thrust belt, are valuable because they possess several hydrocarbons and this area is easily recognized by the NW-SE trending parallel anticlines that verge to the SW. According to the geological classification, the study area is located in Interior Fars region. Due to increasing complication of structural geometry in Fars region and necessity to explore activities for deeper horizons especially the Paleozoic ones, the analysis of fold style elements, which is known as one of the main parts in structural studies, seems necessary. The Karbasi and Khaftar anticlines are case study anticlines in the interior Fars sub-basin (Fassa area). These anticlines have an asymmetric structure and some faults with large strike separation are observed in these structures. Due to increasing complication of structural geometry in Fars region and necessity to explore activities for deeper horizons especially the Paleozoic ones, the analysis of fold style elements, which is known as one of the main parts in structural studies, seems necessary. Description of fold geometry is important because it allows comparisons within and between folds and also allows us to recognize patterns in the occurrence and distribution of fold systems. The main aim of this paper is to determine fold style elements and folding pattern in the study area. This paper presents a part of the results of a regional study of Fars province in the Zagros Simply folded belt, based on satellite images, geological maps, and well data. In the Interior Fars area, it seems that folding pattern is controlled by structural elements such as the Nezamabad basement fault and Dashtak formation. In fact, as a middle detachment unit, Dashtak formation plays an important role regarding folding geometry and fold in style in the study area.
NASA Astrophysics Data System (ADS)
Liefer, J. D.; Benner, I.; Brown, C. M.; Garg, A.; Fiset, C.; Irwin, A. J.; Follows, M. J.; Finkel, Z.
2016-02-01
Trait based modeling efforts are an important tool for predicting the distribution of phytoplankton communities in the ocean and their interaction with elemental stoichiometry. The elemental stoichiometry of phytoplankton is based on their macromolecular composition. Many phytoplankton species accumulate C-rich storage products (carbohydrates and lipids) and reduce N and P-rich functional components (proteins and nucleic acids) upon N- or P-starvation. Reconciling global patterns in C:N:P stoichiometry and phytoplankton community structure and succession requires a better understanding of how phytoplankton macromolecular composition varies across taxa, size class, and growth conditions. We examined changes in cell size and composition from exponential growth to nitrogen starvation in four common phytoplankton species representing two size classes each of chlorophytes and diatoms. Variation in cell size, cell mass, and length of stationary growth phase appeared to be size dependent. The larger species of chlorophyte and diatom had a significant increase in cell mass and cell size with N-starvation and showed no significant change in cell density after starvation for 5-7 days. The smaller size species of both phyla showed no significant change in cell size or mass upon N-starvation and a consistent decline in cell density 1-2 days after peak densities were reached. All species had a similar significant increase in C quota, but changes in N quota and C:N were more variable and species-specific. We also present changes in macromolecular composition and C, N, and P-allocation due to N-starvation and their implications for elemental stoichiometry under natural conditions. These results are compared to field observations of C:N:P stoichiometry and phytoplankton community structure to examine the physiological plasticity that may underlie global oceanic C:N:P variability and demonstrate the importance of this plasticity in trait based models.
Stable isotopes of transition and post-transition metals as tracers in environmental studies
Bullen, Thomas D.; Baskaran, Mark
2011-01-01
The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.
Kaya, Hülya; Hasman, Henrik; Larsen, Jesper; Stegger, Marc; Johannesen, Thor Bech; Allesøe, Rosa Lundbye; Lemvigh, Camilla Koldbæk; Aarestrup, Frank Møller; Lund, Ole; Larsen, Anders Rhod
2018-01-01
Typing of methicillin-resistant Staphylococcus aureus (MRSA) is important in infection control and surveillance. The current nomenclature of MRSA includes the genetic background of the S. aureus strain determined by multilocus sequence typing (MLST) or equivalent methods like spa typing and typing of the mobile genetic element staphylococcal cassette chromosome mec (SCC mec ), which carries the mecA or mecC gene. Whereas MLST and spa typing are relatively simple, typing of SCC mec is less trivial because of its heterogeneity. Whole-genome sequencing (WGS) provides the essential data for typing of the genetic background and SCC mec , but so far, no bioinformatic tools for SCC mec typing have been available. Here, we report the development and evaluation of SCC mec Finder for characterization of the SCC mec element from S. aureus WGS data. SCC mec Finder is able to identify all SCC mec element types, designated I to XIII, with subtyping of SCC mec types IV (2B) and V (5C2). SCC mec elements are characterized by two different gene prediction approaches to achieve correct annotation, a Basic Local Alignment Search Tool (BLAST)-based approach and a k -mer-based approach. Evaluation of SCC mec Finder by using a diverse collection of clinical isolates ( n = 93) showed a high typeability level of 96.7%, which increased to 98.9% upon modification of the default settings. In conclusion, SCC mec Finder can be an alternative to more laborious SCC mec typing methods and is freely available at https://cge.cbs.dtu.dk/services/SCCmecFinder. IMPORTANCE SCC mec in MRSA is acknowledged to be of importance not only because it contains the mecA or mecC gene but also for staphylococcal adaptation to different environments, e.g., in hospitals, the community, and livestock. Typing of SCC mec by PCR techniques has, because of its heterogeneity, been challenging, and whole-genome sequencing has only partially solved this since no good bioinformatic tools have been available. In this article, we describe the development of a new bioinformatic tool, SCC mec Finder, that includes most of the needs for infection control professionals and researchers regarding the interpretation of SCC mec elements. The software detects all of the SCC mec elements accepted by the International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements, and users will be prompted if diverging and potential new elements are uploaded. Furthermore, SCC mec Finder will be curated and updated as new elements are found and it is easy to use and freely accessible.
Kassam, Alisha; Skiadaresis, Julia; Habib, Sharifa; Alexander, Sarah; Wolfe, Joanne
2013-03-01
The National Consensus Project (NCP) published a set of standards for quality palliative care delivery. A key step before applying these guidelines to pediatric oncology is to evaluate how much families and clinicians value these standards. We aimed to determine which elements of palliative care are considered important according to bereaved parents and pediatric oncology clinicians and to determine accessibility of these elements. We administered questionnaires to 75 bereaved parents (response rate, 54%) and 48 pediatric oncology clinicians (response rate, 91%) at a large teaching hospital. Outcome measures included importance ratings and accessibility of core elements of palliative care delivery. Fifteen of 20 core elements were highly valued by both parents and clinicians (defined as > 60% of parents and clinicians reporting the item as important). Compared with clinicians, parents gave higher ratings to receiving cancer-directed therapy during the last month of life (P < .01) and involvement of a spiritual mentor (P = .03). Of the valued elements, only three were accessible more than 60% of the time according to clinicians and parents. Valued elements least likely to be accessible included a direct admission policy to hospital, sibling support, and parent preparation for medical aspects surrounding death. Parents and clinicians highly value a majority of palliative care elements described in the NCP framework. Children with advanced cancer may not be receiving key elements of palliative care despite parents and clinicians recognizing them as important. Evaluation of barriers to provision of quality palliative care and strategies for overcoming them are critical.
Passive beam forming and spatial diversity in meteor scatter communication systems
NASA Astrophysics Data System (ADS)
Akram, Ammad; Cannon, Paul S.
1996-03-01
The method of passive beam formation using a four-element Butler matrix to improve the signal availability of meteor scatter communication systems is investigated. Signal availability, defined as the integrated time that the signal-to-noise ratio (snr) exceeds some snr threshold, serves as an important indicator of system performance. Butler matrix signal availability is compared with the performance of a single four-element Yagi reference system using ˜6.5 hours of data from a 720 km north-south temperate latitude link. The signal availability improvement factor of the Butler matrix is found to range between 1.6-1.8 over the snr threshold range of 20-30 dB in a 300-Hz bandwidth. Experimental values of the Butler matrix signal availability improvement factor are compared with analytical predictions. The experimental values show an expected snr threshold dependency with a dramatic increase at high snr. A theoretical analysis is developed to describe this increase. The signal availability can be further improved by ˜10-20% in a system employing two four-element Butler matrices with squinted beams so as to illuminate the sky with eight high-gain beams. Space diversity is found to increase the signal availability of a single antenna system by ˜10-15%, but the technique has very little advantage in a system already employing passive beam formation.
Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Jaqueline; Skrede, Inger; Wolfe, Benjamin E.
Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanitamore » fungi. We used methods developed to interrogate both assembled and unassembled sequences, and characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species’ natural histories may have in shaping genome architecture.« less
Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi
Hess, Jaqueline; Skrede, Inger; Wolfe, Benjamin E.; ...
2014-06-12
Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanitamore » fungi. We used methods developed to interrogate both assembled and unassembled sequences, and characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species’ natural histories may have in shaping genome architecture.« less
The effects of atmospheric processes on tehran smog forming.
Mohammadi, H; Cohen, D; Babazadeh, M; Rokni, L
2012-01-01
Air pollution is one of the most important problems in urban areas that always threaten citizen's health. Photochemical smog is one of the main factors of air pollution in large cities like Tehran. Usually smog is not only a part of nature, but is being analyzed as an independent matter, which highly affects on the nature. It has been used as relationship between atmospheric elements such as temperature, pressure, relative humidity, wind speed with inversion in the time of smog forming and weather map in 500 Hpa level during 9 years descriptive static by using correlation coefficient in this analyze. Results show that there is a meaningful correlation between atmospheric elements and smog forming. This relation is seen between monthly average of these elements and monthly average of smog forming. However, when temperature decreases, corresponding pressure will increase and result of this will be smog forming. Usually smog increases in cold months of year due to enter cold high pressure air masses in Iran during December and January that is simultaneous with decreasing temperature and air pressure increases and inversion height distance decreases from the earth surface which cause to integrate air pollution under its surface, will cause to form smog in Tehran. It shows a meaningful and strong relation, based on resultant relations by correlation coefficient from inversion height and smog forming, so that obtained figure is more than 60% .
Davraz, Aysen; Aksever, Fatma; Afsin, Mustafa
2017-12-01
The discharge of geothermal fluid into the natural water environment may lead to serious damages. In this study, the impact of geothermal waste water on surface water has been investigated in the up-Buyuk Menderes River, Turkey. Thermal return water from district heating and from thermal bath in the Sandıklı region were the most important source of major solutes and trace elements to the up-Buyuk Menderes River and tributaries. The thermal contribution causes a drastic increase in Na, SO 4 ions, EC, and temperature of surface waters. The concentrations of As, Al, B, Fe, Cr, Li, S, P, Pb, U, Mn, and Zn are increasing dramatically downstream of thermal water inputs in the Kufi Creek tributary. In addition to natural thermal water inputs, water quality was impacted by anthropogenic trace and major element inputs from surface waters. The increased of some trace elements (Al, As, B, Cu, Cd, Fe, Mn, P, U) in surface water are related to anthropogenic activities such as agricultural activities, sewage effluents, and stockyards in the study area. Additionally, surface water quality of the up-Buyuk Menderes River and tributaries was evaluated according to standards given by the Environmental Protection Agency of both Turkey and USA. Our study demonstrates the influence of thermal water inputs on water quality of surface waters.
NASA Astrophysics Data System (ADS)
Pękala, Agnieszka
2017-10-01
As part of an integrated system of environmental protection at every stage of the product life cycle such as: raw material extraction, its transportation and processing as well the subsequent use and development is required to carry out actions towards reducing or completely eliminating products that contain harmful substances to the environment. The purpose of the presented paper is an analysis of the toxic element concentrations in the extracted siliceous minerals at the initial stage of the raw material recognition. The research material is constituted by rocks collected from the Mesozoic bedrock from the Bełchatów lignite deposit. A group of the studied rocks is represented by diatomites, gaizes, opoka-rocks and light opoka-rocks, enriched with minerals from the group of SiO2. Most of the recognized petrographic sediments have a real possibility of potential applications in the building material industry, but it needs to carry out a detailed and thorough research. The studies of the chemical composition were determined by atomic absorption spectroscopy (AAS) using Philips PU 9100Xi Camera SX-100 spectrometer and an atomic emission spectroscopy with inductively coupled plasma (ICP AES) using PLASMA 40 spectrometer. There were carried out a chemical analyses and determined the content of some toxic elements: Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, Zr. in the studied sedimentary rocks. The analysis of the results draws attention to the high content of cadmium in the case of the studied sediments. The concentration of this element in the described rocks is an average of 0.22 mg/kg -the diatomites, 0.05 mg/kg -the gaizes, 0.4 mg/kg -the opoka-rocks, 2.23 mg/kg -the light opoka-rocks. It was moreover registered varied concentration of arsenic in diatomites, that is formed in the range of 0.05 - 9.6 mg/kg, an average of 6.3 mg/kg. The content of the other designated elements with toxic properties in the analysed groups of rocks does not exceed the limit values. An increased concentration of cadmium and arsenic should be considered as an important information in resource research of the studied rocks. The both elements belong to the easily soluble elements as a result of weathering processes. Cadmium is one of the most dangerous toxicological environmental elements. It is easily absorbed and relatively long stopped in humans and animal’s organism. It also seems that the increased concentration in the siliceous rocks results from the nature of the lignite from the Bełchatów lignite deposit, outstanding higher cadmium content in relation to the observed lignite of the world.
Best, Alicia L; Spencer, Mindi; Hall, Ingrid J; Friedman, Daniela B; Billings, Deborah
2015-01-01
Despite efforts to increase breast cancer screening (BCS) among African American women, disparities in breast cancer mortality persist. Culturally framed health communication may provide a useful strategy to address this issue. Spirituality not only represents an integral aspect of African American culture, but it has also been identified as a potential barrier to BCS among this population. Rather than continuing to focus on spirituality as a barrier, there is an opportunity to develop promotional messages that tap into the protective properties of spirituality among this population. The goals of this study were to engage a group of African American women to identify important spiritual elements to be included in health communication materials, and to subsequently develop a spiritually framed BCS message in response to their feedback. Three nominal group sessions were conducted with 15 African American women. Results revealed three important spiritual elements that can be incorporated into BCS health messages: (a) the body as a temple; (b) going to the doctor does not make you faithless; and (c) God did not give us the spirit of fear. These elements were used to draft a spiritually framed BCS message. Next, 20 face-to-face semistructured interviews were conducted to help finalize the spiritually framed BCS message for use in a future study on culturally framed health communication.
Cabello, Felipe C; Godfrey, Henry P; Tomova, Alexandra; Ivanova, Larisa; Dölz, Humberto; Millanao, Ana; Buschmann, Alejandro H
2013-07-01
The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Evolutionary History of the Global Emergence of the Escherichia coli Epidemic Clone ST131.
Stoesser, Nicole; Sheppard, Anna E; Pankhurst, Louise; De Maio, Nicola; Moore, Catrin E; Sebra, Robert; Turner, Paul; Anson, Luke W; Kasarskis, Andrew; Batty, Elizabeth M; Kos, Veronica; Wilson, Daniel J; Phetsouvanh, Rattanaphone; Wyllie, David; Sokurenko, Evgeni; Manges, Amee R; Johnson, Timothy J; Price, Lance B; Peto, Timothy E A; Johnson, James R; Didelot, Xavier; Walker, A Sarah; Crook, Derrick W
2016-03-22
Escherichia colisequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection (n= 215) of sequenced ST131E. coliisolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/H30R and C2/H30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/H30Rx clade driven by the acquisition of ablaCTX-M-15-containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration ofblaCTX-Mwithin subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, theblaCTX-M-14/14-likegroup. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages ofE. coli These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages. Escherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specificE. colilineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements. Copyright © 2016 Stoesser et al.
``Sleeping reactor`` irradiations: Shutdown reactor determination of short-lived activation products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerde, E.A.; Glasgow, D.C.
1998-09-01
At the High-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, the principal irradiation system has a thermal neutron flux ({phi}) of {approximately} 4 {times} 10{sup 14} n/cm{sup 2} {center_dot} s, permitting the detection of elements via irradiation of 60 s or less. Irradiations of 6 or 7 s are acceptable for detection of elements with half-lives of as little as 30 min. However, important elements such as Al, Mg, Ti, and V have half-lives of only a few minutes. At HFIR, these can be determined with irradiation times of {approximately} 6 s, but the requirement of immediate countingmore » leads to increased exposure to the high activity produced by irradiation in the high flux. In addition, pneumatic system timing uncertainties (about {+-} 0.5 s) make irradiations of < 6 s less reliable. Therefore, the determination of these ultra-short-lived species in mixed matrices has not generally been made at HFIR. The authors have found that very short lived activation products can be produced easily during the period after reactor shutdown (SCRAM), but prior to the removal of spent fuel elements. During this 24- to 36-h period (dubbed the ``sleeping reactor``), neutrons are produced in the beryllium reflector by the reaction {sup 9}Be({gamma},n){sup 8}Be, the gamma rays principally originating in the spent fuel. Upon reactor SCRAM, the flux drops to {approximately} 1 {times} 10{sup 10} n/cm{sup 2} {center_dot} s within 1 h. By the time the fuel elements are removed, the flux has dropped to {approximately} 6 {times} 10{sup 8}. Such fluxes are ideal for the determination of short-lived elements such as Al, Ti, Mg, and V. An important feature of the sleeping reactor is a flux that is not constant.« less
Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks
NASA Astrophysics Data System (ADS)
Xia, Qiong-Xia; Zhou, Li-Gang
2017-09-01
Garnet in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in subduction zone commonly shows considerable zonation in major and trace elements as well as mineral inclusions, which bears information on its growth mechanism via metamorphic or peritectic reactions in coexistence with relic minerals and metamorphic fluids or anatectic melts at subduction-zone conditions. It provides an important target to retrieve physicochemical changes in subduction-zone processes, including those not only in pressure and temperature but also in the durations of metamorphism and anatexis. Garnet from different compositions of HP to UHP metamorphic rocks may show different types of major and trace element zonation, as well as mineral inclusions. Discrimination between the different origins of garnet provides important constraints on pressure and temperature and the evolution history for the HP to UHP metamorphic rocks. Magmatic garnet may occur as relics in granitic gneisses despite metamorphic modification at subduction-zone conditions, with spessartine-increasing or flat major element profiles from inner to outer core and exceptionally higher contents of trace elements than metamorphic mantle and rim. Metamorphic garnet can grow at different metamorphic stages during prograde subduction and retrograde exhumation, with spessartine-decreasing from core to rim if the intracrystalline diffusion is not too fast. The compositional profiles of metamorphic garnet in the abundances of grossular, almandine and pyrope are variable depending on the composition of host rocks and co-existing minerals. Peritectic garnet grows through peritectic reactions during partial melting of HP to UHP rocks, with the composition of major elements to be controlled by anatectic P-T conditions and the compositions of parental rocks and anatectic melts. Trace element profiles in garnet with different origins are also variable depending on the coexisting mineral assemblages, the garnet-forming reactions and the property of metamorphic fluids or anatectic melts. Mineral inclusions not only present key clues to identify the different origins of garnet, but also serve as sound candidates for the temporal constraint on garnet growth.
Geochemical and Isotopic Estimates of Eolian Dust in Soils of the San Juan Mountains, USA.
NASA Astrophysics Data System (ADS)
Lawrence, C. R.; Neff, J. C.; Farmer, L.; Painter, T. H.; Landry, C.
2007-12-01
Eolian dust deposition in the San Juan Mountain Range in southern Colorado has increased 5-7 fold in the past two centuries. This dust deposition contributes an exogenous supply of biologically relevant elements such as Ca, K, Mg, and P to these alpine ecosystems in the form of fine textured mineral particulates. The deposition of eolian dust may be an underestimated factor of soil formation and soil chemistry in these alpine settings. The importance of eolian dust relative to the weathering of local bedrock likely varies across bedrock types. The San Juan Range is geologically diverse with distinct regions of Meso-proterozic crystalline granites in the Weminuche Wilderness, Mesozoic sedimentary layers near Molas Pass in the San Juan National Forest, and Tertiary volcanic geology found on Red Mountain Pass in the Uncompahgre National Forest. Principle component analysis of element chemistry shows that bedrock and soils from these sites cluster by geology. In addition, these groups are chemically distinct from eolian dust collected from snow in the San Juan Range. Several elements seem to drive the difference of dust from soils and bedrock including Ca, Sr, Cu and Cd. The purpose of this research was to estimate the relative contribution of eolian dust to alpine soil element pools in the San Juan Mountains across a range of local geologic parent material. A calculation of element mass- balance shows that Cu and Cd are enriched in the surface soils of both volcanic and sedimentary soils relative to concentrations in local bedrock. However, Ca is enriched only in volcanic soils. These observations support the notion that eolian dust contributes to soil formation and that the relative contribution of dust across the landscape varies with geology. In addition to element mass-balance estimates we utilize Sr and Nd isotope measurements of soil, bedrock, and dust to further constrain the importance of eolian dust to these alpine soils.
Pereira, Jorge F; Araújo, Elza F; Brommonschenkel, Sérgio H; Queiroz, Casley B; Costa, Gustavo G L; Carazzolle, Marcelo F; Pereira, Gonçalo A G; Queiroz, Marisa V
2015-05-01
Transposons are an important source of genetic variation. The phytopathogen Moniliophthora perniciosa shows high level of variability but little is known about the role of class I elements in shaping its genome. In this work, we aimed the characterization of a new gypsy/Ty3 retrotransposon species, named MpSaci, in the M. perniciosa genome. These elements are largely variable in size, ranging from 4 to 15 kb, and harbor direct long terminal repeats (LTRs) with varying degrees of similarity. Approximately, all of the copies are non-autonomous as shifts in the reading frame and stop codons were detected. Only two elements (MpSaci6 and MpSaci9) code for GAG and POL proteins that possess functional domains. Conserved domains that are typically not found in retrotransposons were detected and could potentially impact the expression of neighbor genes. Solo LTRs and several LARDs (large retrotransposon derivative) were detected. Unusual elements containing small sequences with or without interruptions that are similar to gag or different pol domains and presenting LTRs with different levels of similarities were identified. Methylation was observed in MpSaci reverse transcriptase sequences. Distribution analysis indicates that MpSaci elements are present in high copy number in the genomes of C-, S- and L-biotypes of M. perniciosa. In addition, C-biotype isolates originating from the state of Bahia have fragments in common with isolates from the Amazon region and two hybridization profiles related to two chromosomal groups. RT-PCR analysis reveals that the gag gene is constitutively expressed and that the expression is increased at least three-fold with nutrient depravation even though no new insertion were observed. These findings point out that MpSaci collaborated and, even though is primarily represented by non-autonomous elements, still might contribute to the generation of genetic variability in the most important cacao pathogen in Brazil.
Marengo, Michel; Durieux, Eric D H; Ternengo, Sonia; Lejeune, Pierre; Degrange, Elise; Pasqualini, Vanina; Gobert, Sylvie
2018-08-30
Among all available species, fish are a powerful model for risk-benefit assessments to study the effects of contaminants on human health. Gilthead seabream (Sparus aurata, Linnaeus 1758) and european seabass (Dicentrarchus labrax, Linnaeus 1758) are two species of great economic importance, representing very large production volumes in the Mediterranean. The objective of this study is (1) to analyze the concentrations of Trace Elements (TE) between wild and cultured seabream and seabass specimens, (2) to compare the determined concentrations with other studies, and (3) to increase the data about the potential risks to human health. Our results point to significant intra- and interspecies-specific differences between wild and cultured fish for several trace elements. Several strong and moderate inter-elemental correlations in fish muscle were observed through correlation analysis. In our study, the mean levels of trace elements were still below the standard safety values for fish intended for human consumption. The same results were reached for all the parameters analyzed (international legal limits, estimated weekly intake, provisional tolerable weekly intake, target hazard quotient, target cancer risk), with trace element levels in fish below those that could pose a risk to human health. Consequently, these fish can be considered safe for human consumption. A better understanding of the levels of trace elements in fish would also better inform consumers about the potential risks of exposure to contaminants. Copyright © 2018 Elsevier Inc. All rights reserved.
Testing of dual-junction SCARLET modules and cells plus lessons learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eskenazi, M.I.; Murphy, D.M.; Ralph, E.L.
1997-12-31
Key simulator test methods and results for Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) cells, modules, and module strings are presented from the NASA/JPL New Millennium DS1 program. Important observations and lessons learned are discussed. These findings include: (1) a significant efficiency increase for shunted low performing 1 sun cells at SCARLET`s {approximately}7 sun concentration, (2) a decrease in temperature coefficient under SCARLET concentration, and (3) the importance of active germanium (third junction) screening during GaInP{sub 2}/GaAs/Ge cell production especially when red reflecting covers are used.
Mondal, Hossain A.; Louis, Joe; Archer, Lani; Patel, Monika; Nalam, Vamsi J.; Sarowar, Sujon; Sivapalan, Vishala
2018-01-01
The actin cytoskeleton network has an important role in plant cell growth, division, and stress response. Actin-depolymerizing factors (ADFs) are a group of actin-binding proteins that contribute to reorganization of the actin network. Here, we show that the Arabidopsis (Arabidopsis thaliana) ADF3 is required in the phloem for controlling infestation by Myzus persicae Sülzer, commonly known as the green peach aphid (GPA), which is an important phloem sap-consuming pest of more than fifty plant families. In agreement with a role for the actin-depolymerizing function of ADF3 in defense against the GPA, we show that resistance in adf3 was restored by overexpression of the related ADF4 and the actin cytoskeleton destabilizers, cytochalasin D and latrunculin B. Electrical monitoring of the GPA feeding behavior indicates that the GPA stylets found sieve elements faster when feeding on the adf3 mutant compared to the wild-type plant. In addition, once they found the sieve elements, the GPA fed for a more prolonged period from sieve elements of adf3 compared to the wild-type plant. The longer feeding period correlated with an increase in fecundity and population size of the GPA and a parallel reduction in callose deposition in the adf3 mutant. The adf3-conferred susceptibility to GPA was overcome by expression of the ADF3 coding sequence from the phloem-specific SUC2 promoter, thus confirming the importance of ADF3 function in the phloem. We further demonstrate that the ADF3-dependent defense mechanism is linked to the transcriptional up-regulation of PHYTOALEXIN-DEFICIENT4, which is an important regulator of defenses against the GPA. PMID:29133373
Energy Efficient Materials Manufacturing from Secondary Resources
NASA Astrophysics Data System (ADS)
Apelian, Diran; Mishra, Brajendra
Rare earths metals, including yttrium and scandium, are being increasingly used in clean energy technologies, colored phosphors, lasers and high intensity magnets. There are important defense applications such as fighter jet engines, missile guidance systems and space based satellite and communication systems, based on these metals. The commitment to clean energy technologies by various governments, as well as the projected growth in power and transportation sectors across the globe will certainly escalate the demand for rare earth metals and compounds. This demand implies that to ensure unhindered technological innovation, it is essential to possess secure supply chains for rare earth elements. The United States continues to be one of the largest consumers and importer of rare earths and the trend is expected to continue as the demand increases. In order to ensure secure rare earth supply and attenuate supply-demand imbalances post 2014, it is not only necessary to encourage and support exploration of newer reserves, build a rare earth stockpile, but it is also of utmost importance to look at opportunities to recycle and reuse Rare Earth Elements (REE) from secondary sources, such as post-consumer and manufacturing process wastes. This research describes the technological developments made to convert these valuable resources into functional manufactured materials for lighting industry, automotive and petroleum refining catalysts, and high density permanent magnets. In addition, production of rhenium from advanced aerospace alloys is also discussed from the perspective that it can be recovered for introduction in turbine alloys.
Welk, Blayne; Kwong, Justin
2017-01-01
Studies using routinely collected data (RCD) are common in the urological literature; however, there are important considerations in the creation and review of RCD discoveries. A recent reporting guideline (REporting of studies Conducted using Observational Routinely-collected health Data, RECORD) was developed to improve the reporting of these studies. This narrative review examines important considerations for RCD studies. To assess the current level of reporting in the urological literature, we reviewed all the original research articles published in Journal of Urology and European Urology in 2014, and determined the proportion of the RECORD checklist items that were reported for RCD studies. There were 56 RCD studies identified among the 608 articles. When the RECORD items were considered applicable to the specific study, they were reported in 52.5% of cases. Studies most consistently (>80% of them) reported the names of the data sources, the study time frame, the extent to which the authors could access the database source, the patient selection, and discussed missing data. Few studies (<25%) discussed validation of key coding elements, details on data-linkage, data-cleaning, the impact of changing eligibility over time, or provided the complete list of coding elements used to define key study variables. Reporting factors specifically relevant in RCD studies may serve to increase the quality of these studies in the urological literature. With increased technological integration in healthcare and the proliferation of electronic medical records, RCD will continue to be an important source for urological research.
Determination of Trace Elements in Edible Nuts in the Beijing Market by ICP-M.
Yin, Liang Liang; Tian, Qing; Shao, Xian Zhang; Kong, Xiang Yin; Ji, Yan Qin
2015-06-01
Nuts have received increased attention from the public in recent years as important sources of some essential elements, and information on the levels of elements in edible nuts is useful to consumers. Determination of the elemental distributions in nuts is not only necessary in evaluating the total dietary intake of the essential elements, but also useful in detecting heavy metal contamination in food. The aim of this study was to determine the mineral contents in edible nuts, and to assess the food safety of nuts in the Beijing market. Levels of Li, Cr, Mn, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Cs, Ba, Pb, Th, and U in 11 types of edible nuts and seeds (macadamia nuts, lotus nuts, pistachios, sunflower seeds, pine nuts, almonds, walnuts, chestnuts, hazelnuts, cashews, and ginkgo nuts) as well as raisins were determined by inductively coupled plasma mass spectrometry (ICP-MS). The accuracy of the method was validated using standard reference materials GBW10014 (cabbage) and GBW10016 (tea). Our results provide useful information for evaluating the levels of trace elements in edible nuts in the Beijing market, will be helpful for improving food safety, and will aid in better protecting consumer interests. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Patel, Sonny S; Rogers, M Brooke; Amlôt, Richard; Rubin, G James
2017-02-01
Government, industry and charitable organisations have an increasing focus on programs intended to support community resilience to disasters. But has consensus been reached as to what defines 'community resilience' and what its core characteristics are? We undertook a systematic literature review of definitions of community resilience related to disasters. We conducted an inductive thematic analysis of the definitions and descriptions that we identified, in order to determine the proposed characteristics of community resilience prior to, during and after a disaster. We identified 80 relevant papers. There was no evidence of a common, agreed definition of community resilience. In spite of this, evidence was found of nine core elements of community resilience that were common among the definitions. The core elements were: local knowledge, community networks and relationships, communication, health, governance and leadership, resources, economic investment, preparedness, and mental outlook. Within these core elements, we identified 19 sub-elements linked to community resilience. Our findings show that community resilience remains an amorphous concept that is understood and applied differently by different research groups. Yet in spite of the differences in conception and application, there are well-understood elements that are widely proposed as important for a resilient community. A focus on these individual elements may be more productive than attempting to define and study community resilience as a distinct concept.
Patel, Sonny S.; Rogers, M. Brooke; Amlôt, Richard; Rubin, G. James
2017-01-01
Background: Government, industry and charitable organisations have an increasing focus on programs intended to support community resilience to disasters. But has consensus been reached as to what defines 'community resilience' and what its core characteristics are? Methods: We undertook a systematic literature review of definitions of community resilience related to disasters. We conducted an inductive thematic analysis of the definitions and descriptions that we identified, in order to determine the proposed characteristics of community resilience prior to, during and after a disaster. Results: We identified 80 relevant papers. There was no evidence of a common, agreed definition of community resilience. In spite of this, evidence was found of nine core elements of community resilience that were common among the definitions. The core elements were: local knowledge, community networks and relationships, communication, health, governance and leadership, resources, economic investment, preparedness, and mental outlook. Within these core elements, we identified 19 sub-elements linked to community resilience. Conclusion: Our findings show that community resilience remains an amorphous concept that is understood and applied differently by different research groups. Yet in spite of the differences in conception and application, there are well-understood elements that are widely proposed as important for a resilient community. A focus on these individual elements may be more productive than attempting to define and study community resilience as a distinct concept. PMID:29188132
Speciation in Metal Toxicity and Metal-Based Therapeutics
Templeton, Douglas M.
2015-01-01
Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure. PMID:29056656
Suárez, Gabriel A.; Renda, Brian A.; Dasgupta, Aurko
2017-01-01
ABSTRACT The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase (dinP) and a DNA damage response regulator (umuDAb [the umuD gene of A. baylyi]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications. IMPORTANCE Acinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves, inserting into other genes, and thereby inactivating them from the ADP1 genome. The resulting “clean-genome” ADP1-ISx strain exhibited larger reductions in the rates of inactivating mutations than expected from spontaneous mutation rates measured via whole-genome sequencing of lineages evolved under relaxed selection. Surprisingly, we also found that IS element activity reduces transformability and is a major cause of cell aggregation and death in wild-type ADP1 grown under normal laboratory conditions. More generally, our results demonstrate that domesticating a bacterial genome by removing mobile DNA elements that have accumulated during evolution in the wild can have unanticipated benefits. PMID:28667117
Suárez, Gabriel A; Renda, Brian A; Dasgupta, Aurko; Barrick, Jeffrey E
2017-09-01
The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS 1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS 1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS 1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase ( dinP ) and a DNA damage response regulator ( umuD Ab [the umuD gene of A. baylyi ]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications. IMPORTANCE Acinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves, inserting into other genes, and thereby inactivating them from the ADP1 genome. The resulting "clean-genome" ADP1-ISx strain exhibited larger reductions in the rates of inactivating mutations than expected from spontaneous mutation rates measured via whole-genome sequencing of lineages evolved under relaxed selection. Surprisingly, we also found that IS element activity reduces transformability and is a major cause of cell aggregation and death in wild-type ADP1 grown under normal laboratory conditions. More generally, our results demonstrate that domesticating a bacterial genome by removing mobile DNA elements that have accumulated during evolution in the wild can have unanticipated benefits. Copyright © 2017 American Society for Microbiology.
Moving Particles Through a Finite Element Mesh
Peskin, Adele P.; Hardin, Gary R.
1998-01-01
We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377
Upregulation of suppressor of cytokine signaling 3 in microglia by cinnamic acid.
Chakrabarti, Sudipta; Jana, Malabendu; Roy, Avik; Pahan, Kalipada
2018-05-06
Neuroinflammation plays an important role in the pathogenesis of various neurodegenerative diseases including Alzheimer's disease (AD). Suppressor of cytokine signaling 3 (SOCS3) is an anti-inflammatory molecule that suppresses cytokine signaling and inflammatory gene expression in different cells including microglia. However, pathways through which SOCS3 could be upregulated are poorly described. Cinnamic acid is a metabolite of cinnamon, a natural compound that is being widely used all over the world as a spice or flavoring agent. This study delineates the importance of cinnamic acid for the upregulation of SOCS3 in microglia. Cinnamic acid upregulated the expression of SOCS3 mRNA and protein in mouse BV-2 microglial cells in dose- and time-dependent manner. Accordingly, cinnamic acid also increased the level of SOCS3 and suppressed the expression of inducible nitric oxide synthase and proinflammatory cytokines (TNFα, IL-1β and IL-6) in LPS-stimulated BV-2 microglial cells. Similar to BV-2 microglial cells, cinnamic acid also increased the expression of SOCS3 in primary mouse microglia and astrocytes. Presence of cAMP response element in the promoter of socs3 gene, activation of cAMP response element binding (CREB) by cinnamic acid, abrogation of cinnamic acid-mediated upregulation of SOCS3 by siRNA knockdown of CREB, and the recruitment of CREB to the socs3 gene promoter by cinnamic acid suggest that cinnamic acid increases the expression of SOCS3 by CREB. These studies suggest that cinnamic acid upregulates SOCS3 via CREB pathway, which may be of importance in neuroinflammatory and neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways.
Sun, Yahui; Ma, Chenkai; Halgamuge, Saman
2017-12-28
Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.
Marsh, Erin; Hitzman, Murray W.; Leach, David L.
2016-01-01
Some sediment-hosted base metal deposits, specifically the clastic-dominated (CD) Zn-Pb deposits, carbonate-hosted Mississippi Valley-type (MVT) deposits, sedimentary-rock hosted stratiform copper deposits, and carbonate-hosted polymetallic (“Kipushi type”) deposits, are or have been important sources of critical elements including Co, Ga, Ge, and Re. The generally poor data concerning trace element concentrations in these types of sediment-hosted ores suggest that there may be economically important concentrations of critical elements yet to be recognized.
Pathogen Phytosensing: Plants to Report Plant Pathogens
Mazarei, Mitra; Teplova, Irina; Hajimorad, M. Reza; Stewart, C. Neal
2008-01-01
Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or ‘phytosensors’, by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable reporter gene could provide biological evidence to define the functional differences between pathogens, and provide new technology and applications for transgenic plants as phytosensors. PMID:27879840
American Exceptionalism: Essential Context for National Security Strategy Development
2006-03-10
character emerge: a belief in the ethical importance of American elements of national power as means and ends in themselves; a belief in the universal...applicability of liberal values and institutions to mankind; a belief in the ethic of reciprocity as a normative means to achieve positive interactions among...nations ; and a belief in the value of maintaining strategic flexibility in an increasingly complex strategic environment. These ethical and value
Operations Optimization of Hybrid Energy Systems under Variable Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jun; Garcia, Humberto E.
Hybrid energy systems (HES) have been proposed to be an important element to enable increasing penetration of clean energy. This paper investigates the operations flexibility of HES, and develops a methodology for operations optimization to maximize its economic value based on predicted renewable generation and market information. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value, and is illustrated by numerical results.
NASA Technical Reports Server (NTRS)
Liebowitz, Jay; Krishnamurthy, Vijaya; Rodens, Ira; Houston, Chapman; Liebowitz, Alisa; Baek, Seung; Radko, Joe; Zeide, Janet
1996-01-01
Scheduling has become an increasingly important element in today's society and workplace. Within the NASA environment, scheduling is one of the most frequently performed and challenging functions. Towards meeting NASA's scheduling needs, a research version of a generic expert scheduling system architecture and toolkit has been developed. This final report describes the development and testing of GUESS (Generically Used Expert Scheduling System).
An assessment of the usability of undergraduate healthcare management program websites.
Roggenkamp, Susan D
2005-01-01
Prospective students in higher education programs increasingly use the Internet as a source of information to assist in the selection of both university and major programs of study. Therefore, having an informative and well designed website is now an integral component of a higher education program's marketing mix. This article attempts to inform undergraduate health administration programs about the elements of good website design, namely content that is important and relevant to users, site layout appeal, and ease of navigation. Content analyses of undergraduate health administration program websites in 2002 and 2005 assessed both the extent of content from a standard list of twenty-five information elements and usability features of the sites. Implications for improvements to program websites are discussed.
Rapid Implementation of Inpatient Electronic Physician Documentation at an Academic Hospital
Hahn, J.S.; Bernstein, J.A.; McKenzie, R.B.; King, B.J.; Longhurst, C.A.
2012-01-01
Electronic physician documentation is an essential element of a complete electronic medical record (EMR). At Lucile Packard Children’s Hospital, a teaching hospital affiliated with Stanford University, we implemented an inpatient electronic documentation system for physicians over a 12-month period. Using an EMR-based free-text editor coupled with automated import of system data elements, we were able to achieve voluntary, widespread adoption of the electronic documentation process. When given the choice between electronic versus dictated report creation, the vast majority of users preferred the electronic method. In addition to increasing the legibility and accessibility of clinical notes, we also decreased the volume of dictated notes and scanning of handwritten notes, which provides the opportunity for cost savings to the institution. PMID:23620718
Zhang, Jing; Zhang, Rimei; Ren, Guanghui; Zhang, Xiaojie
2017-02-01
This article describes a method that incorporates the solid modeling CAD software Solidworks with a dental milling machine to fabricate individual abutments in house. This process involves creating an implant library with 3-dimensional (3D) models and manufacturing a base, scan element, abutment, and crown anatomy. The 3D models can be imported into any dental computer-aided design and computer-aided (CAD-CAM) manufacturing system. This platform increases abutment design flexibility, as the base and scan elements can be designed to fit several shapes as needed to meet clinical requirements. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Lac, Diana; Feng, Chun; Bhardwaj, Gaurav; Le, Huong; Tran, Jimmy; Xing, Li; Fung, Gabriel; Liu, Ruiwu; Cheng, Holland; Lam, Kit S
2016-01-20
Nonspecific ligation methods have been traditionally used to chemically modify immunoglobulins. Site-specific ligation of compounds (toxins or ligands) to antibodies has become increasingly important in the fields of therapeutic antibody-drug conjugates and bispecific antibodies. In this present study, we took advantage of the reported nucleotide-binding pocket (NBP) in the Fab arms of immunoglobulins by developing indole-based, 5-fluoro-2,4-dinitrobenzene-derivatized OBOC peptide libraries for the identification of affinity elements that can be used as site-specific derivatization agents against both mono- and polyclonal antibodies. Ligation can occur at any one of the few lysine residues located at the NBP. Immunoconjugates resulting from such affinity elements can be used as therapeutics against cancer or infectious agents.
Lobitz, W C; Lobitz, G K
1996-01-01
Although relationship factors are an important component in the evaluation and treatment of hypoactive sexual desire (HSD) disorders, a sexual intimacy paradox often occurs wherein many couples increase the intimacy in their relationship while their sexual desire continues to decline. To resolve the apparent paradox and to further our understanding of the relationship between intimacy and eroticism, we offer a developmental model of sexual intimacy as a guide to treating the interpersonal aspects of HSD and other sexual dysfunctions. This model expands Erikson's developmental phase of intimacy into five elements: conflagration, merger, fusion, differentiation, and integration. The model is described and case examples are presented as illustrations of the therapeutic issues and resolutions within each element.
Visual search and segregation as a function of display complexity.
Scharroo, J; Stalmeier, P F; Boselie, F
1994-01-01
Complexity is proposed as an important psychological factor in search and segregation tasks. Displays were presented with target and nontarget areas that were each built up of one type of randomly rotated micropatterns. We manipulated experimentally (a) the complexity of the target elements, as measured by Garner's (1970) invariance criterion; (b) the complexity of the target region; (c) the complexity of the nontargets; and (d) the number of elements within a target region. The main result is that detectability increases when the within-region complexity of the target and the nontarget regions decreases. Furthermore, interactions between the target and nontarget areas affect detectability too: We found that search asymmetry is produced by the asymmetrical effect of complexity when target and nontarget areas are interchanged.
[Prevention of skin cancer: considerations on strategic communication].
Anders, M P; Baumann, E; Breitbart, E W
2014-03-01
In recent decades the numbers of cases of skin cancer have been increasing worldwide in light skinned populations. In Germany skin cancer is the most common form of cancer. To reduce the burden of skin cancer protection from ultraviolet radiation (primary prevention) and early detection (secondary prevention) of the disease play a decisive role. In this context information to the population about preventive behavior and the support of informed decision-making in skin cancer screening are important aspects in communication. This paper gives an overview about communicational aspects in the promotion of skin cancer prevention. In the development of communicational interventions it is important to identify the relevant target groups. Relevant key opinion leaders have to be included in the information process. Additionally, interventions should be based on a theoretical framework and be designed for the respective target group. Furthermore, different forms of communication and communication tools are provided for the realization of an information intervention. To appraise the intervention elements of summative and formal evaluation are available. The current results provide important findings about different effects of communicational aspects on knowledge and behavior of the population; however, due to the complexity of information interventions a particular effect cannot be explained by a single communicational element.
Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy
NASA Astrophysics Data System (ADS)
Batanova, V. G.; Sobolev, A. V.; Magnin, V.
2018-01-01
Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample were found to be identical (within internal precision) to reference values, suggesting that achieved precision and accuracy are similar. The spatial resolution of EPMA in a silicate matrix, even at very extreme conditions (accelerating voltage 25 kV), does not exceed 7 - 8 μm and thus is still better than laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) or secondary ion mass spectrometry (SIMS) of similar precision. These make the electron microprobe an indispensable method with applications in experimental petrology, geochemistry and cosmochemistry.
Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong
2017-03-01
The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.
Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019
Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
An analysis of state legislation on community trails.
Eyler, Amy; Lankford, Tina; Chriqui, Jamie; Evenson, Kelly R; Kruger, Judy; Tompkins, Nancy; Voorhees, Carolyn; Zieff, Susan; Aytur, Semra; Brownson, Ross
2010-03-01
Trails provide opportunities for recreation, transportation and activity. The purpose of this article is to describe state legislation related to community trails, to analyze legislation content, and to evaluate legislation on inclusion of evidence-informed elements. State trail legislation from 2001 to 2008 was identified using online legislative databases. An analysis of evidence-informed elements included in the legislation was conducted. These elements included: funding, liability, accessibility, connectivity, and maintenance. Of the total 991 trail bills, 516 (52.0%) were appropriations bills, of which 167 (32.2%) were enacted. We analyzed 475 (48%) nonappropriation trail bills of which 139 (29.3%) were enacted. The percentage of enactment of appropriations bills decreased over time while enactment of nonappropriations trail bills increased. Over half of the nonappropriations trail bills included at least 1 evidence-informed element, most commonly funding. Few bills contained liability, connectivity, accessibility, or maintenance. There is opportunity for providing evidence-informed information to policy-makers to potentially influence bill content. The number of bills with a funding element demonstrates that fiscal support for trails is an important policy lever that state legislatures may use to support trails. Lastly, trails should be considered in over-all state-level physical activity legislation to provide opportunities for communities to be active.
Zeiner, Michaela; Juranović Cindrić, Iva; Požgaj, Martina; Pirkl, Raimund; Šilić, Tea; Stingeder, Gerhard
2015-03-15
The use of medical herbs for the treatment of many human diseases is increasing nowadays due to their mild features and low side effects. Not only for their healing properties, but also for their nutritive value supplementation of diet with various herbs is recommended. Thus also their analysis is of rising importance. While total elemental compositions are published for many common herbs, the origin of toxic as well as beneficial elements is not yet well investigated. Thus different indigenous medicinal plants, namely Croatian spruce (Picea abies), savory (Satureja montana L.), mountain yarrow (Achillea clavennae), showy calamint (Calamintha grandiflora), micromeria (Micromeria croatica), yellow gentian (Gentiana lutea) and fir (Abies alba) together with soil samples were collected in the National Park Northern Velebit. The macro- and trace elements content, after microwave digestion, was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). The study focuses on the one hand on essential elements and on the other hand on non-essential elements which are considered as toxic for humans, covering in total Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reis-Santos, Patrick; Gillanders, Bronwyn M.; Tanner, Susanne E.; Vasconcelos, Rita P.; Elsdon, Travis S.; Cabral, Henrique N.
2012-10-01
The chemical composition of fish otoliths can provide valuable information for determining the nursery value of estuaries to adult populations of coastal fishes. However, understanding temporal variation in elemental fingerprints at different scales is important as it can potentially confound spatial discrimination among estuaries. Otolith elemental ratios (Li:Ca, Mg:Ca, Mn:Ca, Cu:Ca, Sr:Ca, Ba:Ca and Pb:Ca) of Platichthys flesus and Dicentrarchus labrax, from several estuaries along the Portuguese coast in two years and three seasons (spring, summer and autumn) within a year, were determined via Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Elemental fingerprints varied significantly among years and seasons within a year but we achieved accurate classifications of juvenile fish to estuarine nursery of origin (77-96% overall cross-validated accuracy). Although elemental fingerprints were year-specific, variation among seasons did not hinder spatial discrimination. Estuarine fingerprints of pooled seasonal data were representative of the entire juvenile year class and attained high discrimination (77% and 80% overall cross-validated accuracy for flounder and sea bass, respectively). Incorporating seasonal variation resulted in up to an 11% increase in correct classification of individual estuaries, in comparison to seasons where accuracies were lowest. Overall, understanding the implications of temporal variations in otolith chemistry for spatial discrimination is key to establish baseline data for connectivity studies.
LA-iMageS: a software for elemental distribution bioimaging using LA-ICP-MS data.
López-Fernández, Hugo; de S Pessôa, Gustavo; Arruda, Marco A Z; Capelo-Martínez, José L; Fdez-Riverola, Florentino; Glez-Peña, Daniel; Reboiro-Jato, Miguel
2016-01-01
The spatial distribution of chemical elements in different types of samples is an important field in several research areas such as biology, paleontology or biomedicine, among others. Elemental distribution imaging by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an effective technique for qualitative and quantitative imaging due to its high spatial resolution and sensitivity. By applying this technique, vast amounts of raw data are generated to obtain high-quality images, essentially making the use of specific LA-ICP-MS imaging software that can process such data absolutely mandatory. Since existing solutions are usually commercial or hard-to-use for average users, this work introduces LA-iMageS, an open-source, free-to-use multiplatform application for fast and automatic generation of high-quality elemental distribution bioimages from LA-ICP-MS data in the PerkinElmer Elan XL format, whose results can be directly exported to external applications for further analysis. A key strength of LA-iMageS is its substantial added value for users, with particular regard to the customization of the elemental distribution bioimages, which allows, among other features, the ability to change color maps, increase image resolution or toggle between 2D and 3D visualizations.
Assessing the content, presentation, and readability of dental informed consents.
Glick, Aaron; Taylor, David; Valenza, John A; Walji, Muhammad F
2010-08-01
Informed consents are important aids in helping patients make optimal decisions. Little knowledge exists about the quality of dental informed consents. Fifty-two informed consents used throughout the University of Texas Health Science Center at Houston Dental Branch were evaluated based on the quality of their content, readability, and presentation. Content quality was judged on four basic elements: description of procedure, risk, benefits, and alternatives. Of the clinical consents, 26 percent of forms contained all four of the basic content elements, 48 percent contained three of four elements, 16 percent contained two of four elements, and 10 percent contained one of four elements. Presentation quality was judged on twelve criteria items. The average clinical consent included seven out of twelve presentation items, and the average nonclinical consent included eight out of twelve items. Readability was judged using three standard instruments for rating readability: Flesch Reading Ease, Flesch-Kincaid Grade-Level, and Simple Measure of Gobbledygook (SMOG) grading. Average Flesch-Kincaid Grade-Level was 12.7 (range, 7.4 to 19.1), significantly higher than the recommended ninth grade level (p<.001). The results suggest that many existing dental informed consents may be improved by 1) increasing the comprehensiveness of the content, 2) improving the design and layout, and 3) reducing the readability levels for patient comprehension.
On the incorporation of trace elements into human hair measured with micro-PIXE
NASA Astrophysics Data System (ADS)
Bos, A. J. J.; Van Der Stap, C. C. A. H.; Valković, V.; Vis, R. D.; Verheul, H.
1984-04-01
A study has been made on the incorporation of trace elements into human hair by measuring concentration distributions across hair diameters of selected samples using the Amsterdam proton microbeam. Because hair is considered as a recording filament, reflecting metabolic changes over a period of time, a hair of a young mother was plucked 4 months after delivery of her first child. No change in the Zn and Cu concentrations correlated with the period of gestation was observed. A strong increase of Ca in the distal end must be attributed to outside contamination. From a study of a hair root, including the root sheaths, it is found that the method of incorporation of sulfur (minor element) differs strikingly from the behaviour of the trace elements Zn, Cu, Fe and Ca. The Zn and Cu distributions provide evidence of a, not yet reported, transversal transcellular input route, in which the root sheaths play an important role. From the results it is deduced that Zn and Cu seem to be distributed homogeneously by nature, while Fe, present at a high level in the root sheaths, seems to be peaked by nature on the periphery. The results are discussed against the background of the range of values of concentrations of certain elements found in the literature.
Smith, Michael J; Wagner, Christian; Wallace, Ken J; Pourabdollah, Amir; Lewis, Loretta
2016-06-15
An important, and yet unresolved question in natural resource management is how best to manage natural elements and their associated values to ensure human wellbeing. Specifically, there is a lack of measurement tools to assess the contribution of nature to people. We present one approach to overcome this global issue and show that the preferred state of any system element, in terms of realising human values, is a function of element properties. Consequently, natural resource managers need to understand the nature of the relationships between element properties and values if they are to successfully manage for human wellbeing. In two case studies of applied planning, we demonstrate how to identify key element properties, quantify their relationships to priority human values, and combine this information to model the contribution of elements to human wellbeing. In one of the two case studies we also compared the modelling outputs with directly elicited stakeholder opinions regarding the importance of the elements for realising the given priority values. The two, largely congruent outputs provide additional support for the approach. The study shows that rating sets of elements on their relative overall value for human wellbeing, or utility, provides critical information for subsequent management decisions and a basis for productive new research. We consider that the described approach is broadly applicable within the domain of natural resource management. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm
2012-01-01
DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5'-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells.
Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O.; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm
2012-01-01
DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5′-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells. PMID:23110238
Thermal elastic properties of liquid Fe-C at high pressure
NASA Astrophysics Data System (ADS)
Shimoyama, Y.; Terasaki, H. G.; Urakawa, S.; Takubo, Y.; Watanuki, T.; Katayama, Y.; Kondo, T.
2015-12-01
Planetary outer core contains some light elements and these elements affect thermo-elastic parameters of pure iron. The effect of light elements on density and bulk modulus of liquid iron is necessary for estimating of these core compositions. Sound velocity of liquid iron alloys is also important for identifying light elements in the core by comparison with observed seismic data. We have measured sound velocity and density of liquid Fe-C simultaneously at high pressure. High pressure experiments were performed using a DIA-type cubic anvil press (SMAP-180) at BL22XU beamline, SPring-8 synchrotron in Japan. Sound velocity (VP) was measured using pulse-echo overlapping method (Higo et al., 2009). Density (ρ) was measured using X-ray absorption method (Katayama et al., 1993). We measured velocity and density of liquid Fe-C between 1.1-5.8 GPa and 1480-1700 K. Obtained density and velocity of Fe-C was found to increase with pressure. This study shows the VP of liquid Fe-C decreased with increasing temperature. Previous study of liquid Fe-S shows little change with increasing temperature at all pressure conditions (Nishida et al., 2013, Jing et al., 2014). We fit the relationship between VP and pressure using Murnaghan's equation of state. We obtained KS0 = 102.5(1.2) GPa, K'S = 5.2(0.4) at 1700 K. Comparison of the present data with previous study, KS is similar to liquid Fe but liquid Fe-S is small. We compared the relation between density and sound velocity of liquid Fe-C. We have found that the behavior of liquid Fe-C is similar to that of liquid Fe in the Birch's plot. The effect of carbon on liquid Fe is small on Birch's plot.
NASA Astrophysics Data System (ADS)
Vidović, Jelena; Nawrot, Rafał; Gallmetzer, Ivo; Haselmair, Alexandra; Tomašových, Adam; Stachowitsch, Michael; Ćosović, Vlasta; Zuschin, Martin
2016-11-01
Shallow and sheltered marine embayments in urbanized areas are prone to the accumulation of pollutants, but little is known about the historical baselines of such marine ecosystems. Here we study foraminiferal assemblages, geochemical proxies and sedimentological data from 1.6 m long sediment cores to uncover ˜ 500 years of anthropogenic pressure from mining, port and industrial activities in the Gulf of Trieste, Italy. From 1600 to 1900 AD, normalized element concentrations and foraminiferal assemblages point to negligible effects of agricultural activities. The only significant anthropogenic activity during this period was mercury mining in the hinterlands of the gulf, releasing high amounts of mercury into the bay and significantly exceeding the standards on the effects of trace elements on benthic organisms. Nonetheless, the fluctuations in the concentrations of mercury do not correlate with changes in the composition and diversity of foraminiferal assemblages due to its non-bioavailability. Intensified agricultural and maricultural activities in the first half of the 20th century caused slight nutrient enrichment and a minor increase in foraminiferal diversity. Intensified port and industrial activities in the second half of 20th century increased the normalized trace element concentrations and persistent organic pollutants (PAH, PCB) in the topmost part of the core. This increase caused only minor changes in the foraminiferal community because foraminifera in Panzano Bay have a long history of adaptation to elevated trace element concentrations. Our study underlines the importance of using an integrated, multidisciplinary approach in reconstructing the history of environmental and anthropogenic changes in marine systems. Given the prolonged human impacts in coastal areas like the Gulf of Trieste, such long-term baseline data are crucial for interpreting the present state of marine ecosystems.
Son, Hye Ok; Jung, Myung Chae
2011-01-01
This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1 M HCl, 0.5 M HCl, 1.0 M HCl, 3.0 M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP < SPLP < TCLP < 0.1 M HCl < 0.5 M HCl < 1.0 M HCl < 3.0 M HCl. In the same extraction method, the RER values for Cd and Zn were relatively higher than those for As, Cu, Ni and Pb. This may be due to differences in geochemical behaviour of each element, namely high solubility of Cd and Zn and low solubility of As, Cu, Ni and Pb in surface environment. Thus, the extraction results can give important information on the degree and extent of arsenic and heavy metal dispersion in the surface environment.
The uses of synchrotron radiation sources for elemental and chemical microanalysis
Chen, J.R.; Chao, E.C.T.; Minkin, J.A.; Back, J.M.; Jones, K.W.; Rivers, M.L.; Sutton, S.R.
1990-01-01
Synchrotron radiation sources offer important features for the analysis of a material. Among these features is the ability to determine both the elemental composition of the material and the chemical state of its elements. For microscopic analysis synchrotron X-ray fluorescence (SXRF) microprobes now offer spatial resolutions of 10 ??m with minimum detection limits in the 1-10 ppm range depending on the nature of the sample and the synchrotron source used. This paper describes the properties of synchrotron radiation and their importance for elemental analysis, existing synchrotron facilities and those under construction that are optimum for SXRF microanalysis, and a number of applications including the high energy excitation of the K lines of heavy elements, microtomography, and XANES and EXAFS spectroscopies. ?? 1990.
Mahmoudi, Shahram; Ghasemi, Fakhradin; Mohammadfam, Iraj; Soleimani, Esmaeil
2014-09-01
Construction industry is among the most hazardous industries, and needs a comprehensive and simple-to-administer tool to continuously assess and promote its health and safety performance. Through the study of various standard systems (mainly Health, Safety, and Environment Management System; Occupational Health and Safety Assessment Series 180001; and British Standard, occupational health and safety management systems-Guide 8800), seven main elements were determined for the desired framework, and then, by reviewing literature, factors affecting these main elements were determined. The relative importance of each element and its related factors was calculated at organizational and project levels. The provided framework was then implemented in three construction companies, and results were compared together. THE RESULTS OF THE STUDY SHOW THAT THE RELATIVE IMPORTANCE OF THE MAIN ELEMENTS AND THEIR RELATED FACTORS DIFFER BETWEEN ORGANIZATIONAL AND PROJECT LEVELS: leadership and commitment are the most important elements at the organization level, whereas risk assessment and management are most important at the project level. The present study demonstrated that the framework is easy to administer, and by interpreting the results, the main factors leading to the present condition of companies can be determined.
You, John J.; Dodek, Peter; Lamontagne, Francois; Downar, James; Sinuff, Tasnim; Jiang, Xuran; Day, Andrew G.; Heyland, Daren K.
2014-01-01
Background: The guideline-recommended elements to include in discussions about goals of care with patients with serious illness are mostly based on expert opinion. We sought to identify which elements are most important to patients and their families. Methods: We used a cross-sectional study design involving patients from 9 Canadian hospitals. We asked older adult patients with serious illness and their family members about the occurrence and importance of 11 guideline-recommended elements of goals-of-care discussions. In addition, we assessed concordance between prescribed goals of care and patient preferences, and we measured patient satisfaction with goals-of-care discussions using the Canadian Health Care Evaluation Project (CANHELP) questionnaire. Results: Our study participants included 233 patients (mean age 81.2 yr) and 205 family members (mean age 60.2 yr). Participants reported that clinical teams had addressed individual elements of goals-of-care discussions infrequently (range 1.4%–31.7%). Patients and family members identified the same 5 elements as being the most important to address: preferences for care in the event of life-threatening illness, values, prognosis, fears or concerns, and questions about goals of care. Addressing more elements was associated with both greater concordance between patients’ preferences and prescribed goals of care, and greater patient satisfaction. Interpretation: We identified elements of goals-of-care discussions that are most important to older adult patients in hospital with serious illness and their family members. We found that guideline-recommended elements of goals-of-care discussions are not often addressed by health care providers. Our results can inform interventions to improve the determination of goals of care in the hospital setting. PMID:25367427
Li, Kui-Peng; Sun, Xiao-Mei; Han, Hua; Zhang, Shou-Gong
2014-11-10
The full-length cDNA and genomic sequences of the BABY BOOM (BBM) gene, designated LkBBM, were isolated from Larix kaempferi × Larix olgensis. The 3324 bp cDNA was cloned and its open reading frame (ORF) consists of 2370 nucleotides. The deduced 789 amino acid protein contains two AP2 domains and a BBM specific motif. Four conserved motifs between BBM and PLT were identified, which may be conducive to the similar function of BBM and PLT. The three dimensional (3D) structure of LkBBM was predicted and β-sheets in the AP2-R2 domain of LkBBM might recognize the specific base pairs in the major groove. Analysis of the LkBBM gene structure indicates that the gene has eight introns and nine exons. In the 5'-flanking promoter region of LkBBM, many important potential cis-acting elements were identified, such as the TATABOX5 element (a functional TATA element), ROOTMOTIFTAPOX1 element (element of root specificity), AUXREPSIAA4 element (element involved in auxin responsiveness and gene expression in root meristem), MYB1AT element (element involved in MYB recognition), ARR1AT element (element involved in cytokinin responsiveness), GARE1OSREP1 element (element involved in gibberellin responsiveness) and PYRIMIDINEBOXHVEPB1 element (element involved in abscisic acid responsiveness), which all suggested that the expression of LkBBM is highly regulated. Compared with gene expression levels in the stem, stem tip and leaf, LkBBM shows a specific expression in the root, which indicates that LkBBM plays a key role in regulating the development and growth of root in larch. In the processing of larch adventitious root formation, LkBBM started to express on the eighth day after rooting treatment and its transcript level increased continuously afterwards. According to the gene characteristics, LkBBM is proposed as a molecular marker for root primordia of larch, and the initial period of LkBBM expression may be the formation period of root primordia in the processing of adventitious rooting of larch. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez, M.; Gallegos, A.
1985-01-01
The conditions for establishment of charge transfer during acceleration of nuclei up to Fe, for typical conditions of solar flare regions T = 5 x 10 to the 3rd power to 2.5 x 10 to the 8th power degrees K were explored. Results show that such conditions are widely assorted, depending on the acceleration mechanism, the kind of projections and their velocity, the target elements, the source temperature and consequently on the degree of ionization of matter and the local charge state of the accelerated ions. Nevertheless, in spite of that assorted behavior, there are some general tendencies that can be summarized as follows. In atomic H electron capture is systematically established from thermal energies up to high energies, whatever the element and for both acceleration process. For a given element and fixed temperature (T), the probability and energy domain of electron capture and loss with Fermi are higher than with Betatron acceleration. For a given acceleration process the heavier the ion the higher the probability and the wider the energy range for electron capture and loss. For given acceleration mechanism and fixed element the importance and energy domain of capture and loss increase with T: for those reasons, the energy range of charge equilibrium (illustrated with solid lines on the next figs.) is wider with Fermi and increases with temperature and atomic number of projectiles. For the same reasons, electron loss is smaller while the lighter the element, the lower the temperature and the Betatron process, such that there are conditions for which electron loss is not allowed at low energies, but only electron capture is established.
Ultrasonic Evaluation of the Pull-Off Adhesion between Added Repair Layer and a Concrete Substrate
NASA Astrophysics Data System (ADS)
Czarnecki, Slawomir
2017-10-01
This paper concerns the evaluation of the pull-off adhesion between a concrete added repair layer with variable thickness and a concrete substrate, based on parameters assessed using ultrasonic pulse velocity (UPV) method. In construction practice, the experimental determination of pull-off adhesion f b, between added repair layer and a concrete substrate is necessary to assess the quality of repair. This is usually carried out with the use of pull-off method which results in local damage of the added concrete layer in all the testing areas. Bearing this in mind, it is important to describe the method without these disadvantages. The prediction of the pull-off adhesion of the two-layer concrete elements with variable thickness of each layer might be provided by means of UPV method with two-sided access to the investigated element. For this purpose, two-layered cylindrical specimens were obtained by drilling the borehole from a large size specially prepared concrete element. Those two-layer elements were made out of concrete substrate layer and Polymer Cement Concrete (PCC) mortar as an added repair layer. The values of pull-off adhesion f b of the elements were determined before obtaining the samples by using the semi-destructive pull-off method. The ultrasonic wave velocity was determined in samples with variable thickness of each layer and was then compared to theoretical ultrasonic wave velocity predicted for those specimens. The regression curve for the dependence of velocity and pull-off adhesion, determined by the pulloff method, was made. It has been proved that together with an increase of ratio of investigated ultrasonic wave velocity divided by theoretical ultrasonic wave velocity, the pull-off adhesion value f b between added repair layer with variable thickness and a substrate layer also increases.
Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower
NASA Astrophysics Data System (ADS)
Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Bamashmos, Khaled H.
2016-03-01
Transmission towers are tall structures, usually a steel lattice tower, used to support an overhead power line. Usually, transmission towers are analyzed as frame-truss systems and the members are assumed to be pin-connected without explicitly considering the effects of joints on the tower behavior. In this research, an engineering example of joint will be analyzed with the consideration of the joint detailing to investigate how it will affect the tower analysis. A static analysis using STAAD Pro was conducted to indicate the joint with the maximum stress. This joint will then be explicitly analyzed in ANSYS using the Finite Element Method. Three approaches were used in the software which are the simple plate model, bonded contact with no bolts, and beam element bolts. Results from the joint analysis show that stress values increased with joint details consideration. This proves that joints and connections play an important role in the distribution of stress within the transmission tower.
A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea, Croatia.
Cukrov, Neven; Frančišković-Bilinski, Stanislav; Hlača, Bojan; Barišić, Delko
2011-01-01
We studied metal pollution in the sediments of Rijeka harbor, including anthropogenic influence during recent decades and at the present time. Sediment profiles were collected at ten sampling points. The concentrations of 63 elements in bulk sediment were obtained using ICP-MS, and the concentrations of selected elements were evaluated by statistical factor analyses. We also calculated metal-enrichment factors and geoaccumulation indices and constructed spatial-distribution maps. Mercury (Hg) was the heaviest pollutant, with concentrations exceeding 4 mg/kg. Silver (Ag) was the second most important pollutant, with constantly increasing values. The average concentrations of the most toxic elements were comparable to those found in sediments of other ports throughout the world, and their toxicity ranged from threshold values [chromium (Cr), arsenic (As)] and midrange-effect values [cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni)] to extreme-effect values (Hg). Metal pollution has decreased during recent decades, except for Ag and barium (Ba). Copyright © 2010 Elsevier Ltd. All rights reserved.
Leaves of Phragmites australis as potential atmospheric biomonitors of Platinum Group Elements.
Bonanno, Giuseppe; Pavone, Pietro
2015-04-01
The increasing emissions of Platinum Group Elements (PGEs), namely Pt, Pd and Rh, may pose a significant risk to ecosystem processes and human health. A periodic assessment of PGEs distribution in the environment is thus of the utmost importance for the implementation of timely measures of mitigation. Although several studies have quantified PGEs in different life forms such as mammals, birds, fish, crustaceans, algae, mosses and even human beings, data about vascular plants need further surveys. This study aimed to test the suitability of the grass Phragmites australis (common reed) as a biomonitor of PGEs atmospheric pollution. The results showed that Pd and Pt concentrations in leaves are significantly higher in urban areas. In particular, Pd showed the highest range of values in line with current studies that consider palladium as the main element of traffic-related pollution. Overall, the leaves of Phragmites australis reflected the different gradient of PGEs emissions, and may thus be considered as potential biomonitors of atmospheric pollution. Copyright © 2015 Elsevier Inc. All rights reserved.
Buman, Matthew P; Bertmann, Farryl; Hekler, Eric B; Winter, Sandra J; Sheats, Jylana L; King, Abby C; Wharton, Christopher M
2015-01-01
Objective To understand factors which enhance or detract from farmers’ market shopper experiences to inform targeted interventions to increase farmers’ market utilization, community-building and social marketing strategies. Design A consumer-intercept study using the Stanford Healthy Neighborhood Discovery Tool to capture real-time perceptions via photographs and audio narratives. Setting An urban farmers’ market in a large metropolitan US city. Participants Thirty-eight farmers’ market shoppers, who recorded 748 unique coded elements through community-based participatory research methods. Results Shoppers were primarily women (65 %), 18–35 years of age (54 %), non-Hispanic (81 %) and white (73 %). Shoppers captured 291 photographs (7·9 (SD 6·3) per shopper), 171 audio narratives (5·3 (SD 4·7) per shopper), and ninety-one linked photograph + audio narrative pairs (3·8 (SD 2·8) per shopper). A systematic content analysis of the photographs and audio narratives was conducted by eight independent coders. In total, nine common elements emerged from the data that enhanced the farmers’ market experience (61·8 %), detracted from the experience (5·7 %) or were neutral (32·4 %). The most frequently noted elements were freshness/abundance of produce (23·3 %), product presentation (12·8 %), social interactions (12·4 %) and farmers’ market attractions (e.g. live entertainment, dining offerings; 10·3 %). Conclusions While produce quality (i.e. freshness/abundance) was of primary importance, other contextual factors also appeared important to the shoppers’ experiences. These results may inform social marketing strategies to increase farmers’ market utilization and community-building efforts that target market venues. PMID:24956064
Simulating Fatigue Crack Growth in Spiral Bevel Pinion
NASA Technical Reports Server (NTRS)
Ural, Ani; Wawrzynek, Paul A.; Ingraffe, Anthony R.
2003-01-01
This project investigates computational modeling of fatigue crack growth in spiral bevel gears. Current work is a continuation of the previous efforts made to use the Boundary Element Method (BEM) to simulate tooth-bending fatigue failure in spiral bevel gears. This report summarizes new results predicting crack trajectory and fatigue life for a spiral bevel pinion using the Finite Element Method (FEM). Predicting crack trajectories is important in determining the failure mode of a gear. Cracks propagating through the rim may result in catastrophic failure, whereas the gear may remain intact if one tooth fails and this may allow for early detection of failure. Being able to predict crack trajectories is insightful for the designer. However, predicting growth of three-dimensional arbitrary cracks is complicated due to the difficulty of creating three-dimensional models, the computing power required, and absence of closed- form solutions of the problem. Another focus of this project was performing three-dimensional contact analysis of a spiral bevel gear set incorporating cracks. These analyses were significant in determining the influence of change of tooth flexibility due to crack growth on the magnitude and location of contact loads. This is an important concern since change in contact loads might lead to differences in SIFs and therefore result in alteration of the crack trajectory. Contact analyses performed in this report showed the expected trend of decreasing tooth loads carried by the cracked tooth with increasing crack length. Decrease in tooth loads lead to differences between SIFs extracted from finite element contact analysis and finite element analysis with Hertz contact loads. This effect became more pronounced as the crack grew.
Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks.
Alves, Renato I S; Sampaio, Carolina F; Nadal, Martí; Schuhmacher, Marta; Domingo, José L; Segura-Muñoz, Susana I
2014-08-01
Pardo River (Brazil) is suffering from an important anthropogenic impact due to the pressure of highly populated areas and the influence of sugarcane cultivation. The objective of the present study was to determine the levels of 13 trace elements (As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V and Zn) in samples of surface water and sediments from the Pardo River. Furthermore, the human health risks associated with exposure to those metals through oral intake and dermal absorption were also evaluated. Spatial and seasonal trends of the data were closely analyzed from a probabilistic approach. Manganese showed the highest mean concentrations in both water and sediments, remarking the incidence of the agricultural activity and the geological characteristics within the basin. Thallium and arsenic were identified as two priority pollutants, being the most important contributors to the Hazard Index (HI). Since non-carcinogenic risks due to thallium exposure slightly exceeded international guidelines (HI>1), a special effort should be made on this trace element. However, the current concentrations of arsenic, a carcinogenic element, were in accordance to acceptable lifetime risks. Nowadays, there is a clear increasing growth in human population and economic activities in the Pardo River, whose waters have become a serious strategic alternative for the potential supply of drinking water. Therefore, environmental monitoring studies are required not only to assure that the current state of pollution of Pardo River does not mean a risk for the riverside population, but also to assess the potential trends in the environmental levels of those elements. Copyright © 2014 Elsevier Inc. All rights reserved.
Atomic oxygen dosimetry measurements made on STS-46 by CONCAP 2
NASA Technical Reports Server (NTRS)
Gregory, J. C.; Miller, G. P.; Pettigrew, P. J.; Raikar, G. N.; Cross, Jon B.; Lan, E.; Renschler, C. L.; Sutherland, W. T.
1995-01-01
With increasing flight duration and the possibility of a permanent facility in space, long-term monitoring of material degradation due to atomic oxygen is increasing in importance. Reliance on models to determine the fluence of atomic oxygen is not only necessarily complex but also imprecise due to the strong dependence of oxygen concentration on day/night, latitude and solar activity. Mass-spectroscopy, the traditional method for determining the gas phase species densities at low pressure, is not only expensive but is limited in the area that it can monitor. Our group has developed a simple and inexpensive dosimeter to measure the atomic oxygen fluence via the change in resistance as the sensor element is gradually oxidized. The sensors consisted of thin-film circuit elements deposited on a suitable substrate. Four-point resistance measurements were used to monitor the change in resistance. Results obtained using silver and carbon dosimeters flown on STS-46 (CONCAP 2-01) will be discussed.
Kim, Min Jun; Choi, Mee Young; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Wan Sung
2018-01-12
O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G 0 /G 1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.
NASA Technical Reports Server (NTRS)
Kornacki, Alan S.; Fegley, Bruce, Jr.
1986-01-01
The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.
Bioleaching of rare earth elements from waste phosphors and cracking catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, David W.; Fujita, Yoshiko; Daubaras, Dayna L.
Four microbial cultures were evaluated for organic acid production and their potential utility for leaching of rare earth elements (REE) from retorted phosphor powder (RPP) and spent fluidized cracking catalyst (FCC). Three of the cultures (2 bacterial, 1 fungal) were isolated from environmental and industrial materials known to contain rare earth elements. The other was the well-known and industrially important bacterium Gluconobacter oxydans. Gluconic acid was the predominant identified organic acid produced by all of the cultures; citric and acetic acid were among the other acids detected. There was also maximum REE leaching by cell free culture supernatants obtained withmore » Gluconobacter and the FCC; 49% of total REE was recovered, with preferential recovery of lanthanum over cerium. The phosphor powder was more difficult to leach; only ~2 % total REE was leached from RPP with Gluconobacter. Tests with the RPP indicated that the extent of REE solubilization was similar whether whole cell cultures or cell-free supernatants were used. However, Gluconobacter cell-free culture supernatants with 10-15 mM gluconic acid outperformed abiotically prepared leaching solutions with 30 mM gluconic acid concentrations. Abiotic tests showed that increasing gluconic acid concentrations increased leaching efficiency; for example, total REE leaching from FCC increased from 24 to 36 to 45% when gluconic acid was increased from 10 to 30 to 90 mM. Our research shows that utilizing microorganisms that produce gluconic acid can result in effective leaching of REE from waste materials, and optimizing gluconic acid production will improve recovery.« less
Bioleaching of rare earth elements from waste phosphors and cracking catalysts
Reed, David W.; Fujita, Yoshiko; Daubaras, Dayna L.; ...
2016-08-22
Four microbial cultures were evaluated for organic acid production and their potential utility for leaching of rare earth elements (REE) from retorted phosphor powder (RPP) and spent fluidized cracking catalyst (FCC). Three of the cultures (2 bacterial, 1 fungal) were isolated from environmental and industrial materials known to contain rare earth elements. The other was the well-known and industrially important bacterium Gluconobacter oxydans. Gluconic acid was the predominant identified organic acid produced by all of the cultures; citric and acetic acid were among the other acids detected. There was also maximum REE leaching by cell free culture supernatants obtained withmore » Gluconobacter and the FCC; 49% of total REE was recovered, with preferential recovery of lanthanum over cerium. The phosphor powder was more difficult to leach; only ~2 % total REE was leached from RPP with Gluconobacter. Tests with the RPP indicated that the extent of REE solubilization was similar whether whole cell cultures or cell-free supernatants were used. However, Gluconobacter cell-free culture supernatants with 10-15 mM gluconic acid outperformed abiotically prepared leaching solutions with 30 mM gluconic acid concentrations. Abiotic tests showed that increasing gluconic acid concentrations increased leaching efficiency; for example, total REE leaching from FCC increased from 24 to 36 to 45% when gluconic acid was increased from 10 to 30 to 90 mM. Our research shows that utilizing microorganisms that produce gluconic acid can result in effective leaching of REE from waste materials, and optimizing gluconic acid production will improve recovery.« less
Feeney, Oliver; Borry, Pascal; Felzmann, Heike; Galvagni, Lucia; Haukkala, Ari; Loi, Michele; Nordal, Salvör; Rakic, Vojin; Riso, Brígida; Sterckx, Sigrid; Vears, Danya
2018-04-01
The introduction of Web 2.0 technology, along with a population increasingly proficient in Information and Communications Technology (ICT), coupled with the rapid advancements in genetic testing methods, has seen an increase in the presence of participant-centred research initiatives. Such initiatives, aided by the centrality of ICT interconnections, and the ethos they propound seem to further embody the ideal of increasing the participatory nature of research, beyond what might be possible in non-ICT contexts alone. However, the majority of such research seems to actualise a much narrower definition of 'participation'-where it is merely the case that such research initiatives have increased contact with participants through ICT but are otherwise non-participatory in any important normative sense. Furthermore, the rhetoric of participant-centred initiatives tends to inflate this minimalist form of participation into something that it is not, i.e. something genuinely participatory, with greater connections with both the ICT-facilitated political contexts and the largely non-ICT participatory initiatives that have expanded in contemporary health and research contexts. In this paper, we highlight that genuine (ICT-based) 'participation' should enable a reasonable minimum threshold of participatory engagement through, at least, three central participatory elements: educative, sense of being involved and degree of control. While we agree with criticisms that, at present, genuine participation seems more rhetoric than reality, we believe that there is clear potential for a greater ICT-facilitated participatory engagement on all three participatory elements. We outline some practical steps such initiatives could take to further develop these elements and thereby their level of ICT-facilitated participatory engagement.
Tian, Shengke; Lu, Lingli; Xie, Ruohan; ...
2015-01-21
Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower ( Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower ( H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualizemore » Zn within the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO₄ alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower.« less
Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis
NASA Astrophysics Data System (ADS)
Zaharescu, Dragos G.; Burghelea, Carmen I.; Dontsova, Katerina; Presler, Jennifer K.; Maier, Raina M.; Huxman, Travis; Domanik, Kenneth J.; Hunt, Edward A.; Amistadi, Mary K.; Gaddis, Emily E.; Palacios-Menendez, Maria A.; Vaquera-Ibarra, Maria O.; Chorover, Jon
2017-02-01
The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake.
Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.
Maes, Synthia; Zhuang, Wei-Qin; Rabaey, Korneel; Alvarez-Cohen, Lisa; Hennebel, Tom
2017-02-07
Rare earth elements (REEs) have become increasingly important in modern day technologies. Unfortunately, their recycling is currently limited, and the conventional technologies for their extraction and purification are exceedingly energy and chemical intensive. New sustainable technologies for REE extraction from both primary and secondary resources would be extremely beneficial. This research investigated a two-stage recovery strategy focused on the recovery of neodymium (Nd) and lanthanum (La) from monazite ore that combines microbially based leaching (using citric acid and spent fungal supernatant) with electrochemical extraction. Pretreating the phosphate-based monazite rock (via roasting) dramatically increased the microbial REE leaching efficiency. Batch experiments demonstrated the effective and continued leaching of REEs by recycled citric acid, with up to 392 mg of Nd L -1 and 281 mg of La L -1 leached during seven consecutive 24 h cycles. Neodymium was further extracted in the catholyte of a three-compartment electrochemical system, with up to 880 mg of Nd L -1 achieved within 4 days (at 40 A m -2 ). Meanwhile, the radioactive element thorium and counterions phosphate and citrate were separated effectively from the REEs in the anolyte, favoring REE extraction and allowing sustainable reuse of the leaching agent. This study shows a promising technology that is suitable for primary ores and can further be optimized for secondary resources.
Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis
Zaharescu, Dragos G.; Burghelea, Carmen I.; Dontsova, Katerina; Presler, Jennifer K.; Maier, Raina M.; Huxman, Travis; Domanik, Kenneth J.; Hunt, Edward A.; Amistadi, Mary K.; Gaddis, Emily E.; Palacios-Menendez, Maria A.; Vaquera-Ibarra, Maria O.; Chorover, Jon
2017-01-01
The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake. PMID:28230202
Supernova Remnant Science with AXIS
NASA Astrophysics Data System (ADS)
Williams, Brian J.; Yamaguchi, Hiroya; AXIS Science Team
2018-01-01
We present an overview of the supernova remnant (SNR) science that will be achieved with the Advanced X-ray Imaging Satellite (AXIS). AXIS follows in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10 keV band. These capabilities enable major advances in several areas of SNR science. These include, but are not limited to: 1) a more thorough spatial mapping of the ejecta products of both intermediate-mass and iron-group elements in core-collapse and Type Ia SNRs, particularly in remnants with a small diameter. The iron-group elements, specifically Cr, Mn, and Ni, are extremely important for constraining the explosion mechanism for SNe, but are generally weak and difficult to detect with Chandra, XMM-Newton, and Suzaku. 2) Studying the interface of a shock wave with the ambient ISM/CSM to constrain the degree of particle heating and acceleration at shock fronts. Chandra has only provided upper limits on shock precursor emission, and a detailed study of the thermal and nonthermal emission at the shock with greatly increased photon count rates will constrain the properties of the immediate post-shock plasma. 3) A high spatial resolution X-ray observatory will continue to build on the legacy begun by Chandra of studying the proper motion of young remnants. Directly measuring the dynamics of an SNR's evolution is crucial for understanding the explosion mechanism, and with the order of magnitude increase collecting area, we can measure the expansion of individual elemental species in the ejecta. 4) We will greatly increase the statistics of SNRs in nearby galaxies, going much faster and deeper than Chandra's observations. The increased depth of coverage would allow us to do spectroscopy in places where it was previously possible only to do rudimentary statistics. We can compare the local SNR population with the local star-formation rates for galaxies, important for supernova progenitor models. Finally, there is significant ancillary science that can be achieved by surveying nearby galaxies.
Atomic weights of the elements--Review 2000 (IUPAC Technical Report)
de Laeter, John R.; Böhlke, John Karl; De Bièvre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.
2003-01-01
A consistent set of internationally accepted atomic weights has long been an essential aim of the scientific community because of the relevance of these values to science and technology, as well as to trade and commerce subject to ethical, legal, and international standards. The standard atomic weights of the elements are regularly evaluated, recommended, and published in updated tables by the Commission on Atomic Weights and Isotopic Abundances (CAWIA) of the International Union of Pure and Applied Chemistry (IUPAC). These values are invariably associated with carefully evaluated uncertainties. Atomic weights were originally determined by mass ratio measurements coupled with an understanding of chemical stoichiometry, but are now based almost exclusively on knowledge of the isotopic composition (derived from isotope-abundance ratio measurements) and the atomic masses of the isotopes of the elements. Atomic weights and atomic masses are now scaled to a numerical value of exactly 12 for the mass of the carbon isotope of mass number 12. Technological advances in mass spectrometry and nuclear-reaction energies have enabled atomic masses to be determined with a relative uncertainty of better than 1 ×10−7 . Isotope abundances for an increasing number of elements can be measured to better than 1 ×10−3 . The excellent precision of such measurements led to the discovery that many elements, in different specimens, display significant variations in their isotope-abundance ratios, caused by a variety of natural and industrial physicochemical processes. While such variations increasingly place a constraint on the uncertainties with which some standard atomic weights can be stated, they provide numerous opportunities for investigating a range of important phenomena in physical, chemical, cosmological, biological, and industrial processes. This review reflects the current and increasing interest of science in the measured differences between source-specific and even sample-specific atomic weights. These relative comparisons can often be made with a smaller uncertainty than is achieved in the best calibrated “absolute ” (=SI-traceable) atomic-weight determinations. Accurate determinations of the atomic weights of certain elements also influence the values of fundamental constants such as the Avogadro, Faraday, and universal gas constants. This review is in two parts: the first summarizes the development of the science of atomic-weight determinations during the 20th century; the second summarizes the changes and variations that have been recognized in the values and uncertainties of atomic weights, on an element-by-element basis, in the latter part of the 20th century.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 2 2012-04-01 2012-04-01 false Data elements. 149.3 Section 149.3 Customs Duties... (CONTINUED) IMPORTER SECURITY FILING § 149.3 Data elements. (a) Shipments intended to be entered into the... provided for in paragraph (b) of this section, the following elements must be provided for each good listed...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 2 2014-04-01 2014-04-01 false Data elements. 149.3 Section 149.3 Customs Duties... (CONTINUED) IMPORTER SECURITY FILING § 149.3 Data elements. (a) Shipments intended to be entered into the... provided for in paragraph (b) of this section, the following elements must be provided for each good listed...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 2 2013-04-01 2013-04-01 false Data elements. 149.3 Section 149.3 Customs Duties... (CONTINUED) IMPORTER SECURITY FILING § 149.3 Data elements. (a) Shipments intended to be entered into the... provided for in paragraph (b) of this section, the following elements must be provided for each good listed...
NASA Astrophysics Data System (ADS)
Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.
2017-12-01
Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.
The GRIDView Visualization Package
NASA Astrophysics Data System (ADS)
Kent, B. R.
2011-07-01
Large three-dimensional data cubes, catalogs, and spectral line archives are increasingly important elements of the data discovery process in astronomy. Visualization of large data volumes is of vital importance for the success of large spectral line surveys. Examples of data reduction utilizing the GRIDView software package are shown. The package allows users to manipulate data cubes, extract spectral profiles, and measure line properties. The package and included graphical user interfaces (GUIs) are designed with pipeline infrastructure in mind. The software has been used with great success analyzing spectral line and continuum data sets obtained from large radio survey collaborations. The tools are also important for multi-wavelength cross-correlation studies and incorporate Virtual Observatory client applications for overlaying database information in real time as cubes are examined by users.
Li, Jianfeng; Zhao, Xia; Hu, Xiaojie; Tao, Chunjing; Ji, Run
2018-03-01
The unilateral external fixator has become a quick and easy application for fracture stabilization of the extremities; the main value for evaluation of mechanical stability of the external fixator is stiffness. The stiffness property of the external fixator affects the local biomechanical environment of fractured bone. In this study, a theoretical model with changing Young's modulus of the callus is established by using the Castigliano's theory, investigating compression stiffness, torsional stiffness and bending stiffness of the fixator-bone system during the healing process. The effects of pin deviation angle on three stiffness methods are also investigated. In addition, finite element simulation is discussed regarding the stress distribution between the fixator and bone. The results reveal the three stiffness evaluation methods are similar for the fixator-bone system. Finite element simulation shows that with increased healing time, the transmission of the load between the fixator and bone are different. In addition, the finite element analyses verify the conclusions obtained from the theoretical model. This work helps orthopedic doctors to monitor the progression of fracture healing and determine the appropriate time for removal of a fixation device and provide important theoretical methodology.
Gupta, Diksha; Singh, Bani
2014-01-01
The objective of this investigation is to analyze the effect of unsteadiness on the mixed convection boundary layer flow of micropolar fluid over a permeable shrinking sheet in the presence of viscous dissipation. At the sheet a variable distribution of suction is assumed. The unsteadiness in the flow and temperature fields is caused by the time dependence of the shrinking velocity and surface temperature. With the aid of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations, which are solved numerically, using variational finite element method. The influence of important physical parameters, namely, suction parameter, unsteadiness parameter, buoyancy parameter and Eckert number on the velocity, microrotation, and temperature functions is investigated and analyzed with the help of their graphical representations. Additionally skin friction and the rate of heat transfer have also been computed. Under special conditions, an exact solution for the flow velocity is compared with the numerical results obtained by finite element method. An excellent agreement is observed for the two sets of solutions. Furthermore, to verify the convergence of numerical results, calculations are conducted with increasing number of elements. PMID:24672310
Chemistry of berkelium: A review
NASA Astrophysics Data System (ADS)
Hobart, D. E.; Peterson, J. R.
Element 97 was first produced in December 1949, by the bombardment of americium-241 with accelerated alpha particles. This new element was named berkelium (Bk) after Berkeley, California, the city of its discovery. In the 36 years since the discovery of Bk, a substantial amount of knowledge concerning the physicochemical properties of this relatively scarce transplutonium element was acquired. All of the Bk isotopes of mass numbers 240 and 242 through 251 are presently known, but only berkelium-249 is available in sufficient quantities for bulk chemical studies. About 0.7 gram of this isotope was isolated at the HFIR/TRU Complex in Oak Ridge, Tennessee in the last 18 years. Over the same time period, the scale of experimental work using berkelium-249 has increased from the tracer level to bulk studies at the microgram level to solution and solid state investigations with milligram quantities. Extended knowledge of the physicochemical behavior of berkelium is important in its own right, because Bk is the first member of the second half of the actinide series. In addition, such information should enable more accurate extrapolations to the predicted behavior of heavier elements for which experimental studies are severely limited by lack of material and/or by intense radioactivity.
Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.
Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K
2007-07-07
Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.
Su, Ming; Lee, Daniel; Ganss, Bernhard; Sodek, Jaro
2006-04-14
Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.
Uprising of Creation in Education
ERIC Educational Resources Information Center
Hatamleh, Habes Mohamed
2015-01-01
This research (Uprising of Creation in Education) aims at defining the importance of creativity in education, and its reflection on the elements of the educational process. Creativity is regarded an important element in the nations progress, which depends on the minds of their sons. Creativity became the language of the present age, after the…
Effects of soil lanthanum on growth and elemental composition of plants
NASA Astrophysics Data System (ADS)
Fastovets, Ilya; Kotelnikova, Anna; Olga, Rogova; Nikolai, Sushkov; Elena, Pashkevich
2017-04-01
Effects of soil lanthanum on growth and elemental composition of plants In recent years, lanthanum (La) has been found effective in increasing crop productivity. This results in its growing application in agriculture. However, it is controversial whether lanthanum has beneficial or negative impact on plants (Kabata-Pendias, 2011). In the present study we carried out a pot experiment to understand how soil La affects barley (Hordeum vulgare L., 'Mikhaylovsky' cv.) growth and elemental composition. The pot experiment was conducted in a growbox under artificial light in sod-podzolic soil. The soil was sprayed with LaCl3 solutions to achieve the following concentrations of exogenous La: 0 (control), 10, 20, 50, 100, and 200 mg/kg. The plants were grown for 40 days in 2-litre pots, 6 plants in each pot, with 4 replications per group (24 pots total), and were irrigated with distilled water. Fresh aboveground biomass was weighed, chlorophylls α and β and carotenoids were measured in fresh leaves. Dry leaves, stems and soil were subject to atomic emission (ICP-AES) elemental analysis. Statistical computations involved simulated Kruskal-Wallis and Jonckheere-Terpstra tests as well as Gao modification of Campbell-Skillings test for nonparametric multiple comparisons. Multiple regression and correlation analyzes were also performed. All differences were considered significant at α=0.05. Our results indicate that both leaves and stems of barley readily accumulate La. Leaves accumulate up to 1.2% of soil La concentration, and significantly more La than stems. Significant accumulation of La by stems and leaves was observed in pots with La soil concentrations higher than 50 and 20 mg/kg, respectively. Plant biomass uniformly increases up to 13.5 % compared to the control, and significant increase in plant biomass was observed at concentrations 100 and 200 mg/kg La. Chlorophyll α and β and carotenoid content decrease significantly at 100 mg/kg La compared to the control group by 27.5, 41.5, and 18.9 %, respectively. Correlation and multiple regression analyses suggest that increased concentration of La in leaves is significantly associated with decreased concentrations of P, K, Mg, Cu, and Fe in leaves and increased concentrations of Ca in leaves and Si in stems. Increased Ca level in leaves suggests that imbalance of hormonal (auxin) regulation may be involved in the observed effects. However, we assume that a decrease in P content in plants most likely takes place due to P binding by La in soil. We conclude that the effects of La on plants are contradictory. On the one hand, La increases plant biomass and possibly improves plant resistance to pathogens due to increased Si accumulation in stems. On the other hand, La disrupts photosynthesis, reduces content of important elements, and accumulates in plants. Reference Kabata-Pendias, A. (2011). Trace elements in soils and plants: CRC press.
Trace Elements in River Waters
NASA Astrophysics Data System (ADS)
Gaillardet, J.; Viers, J.; Dupré, B.
2003-12-01
Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution impact studies require knowledge of the natural background concentrations and knowledge of pollutant behavior. For example, it is generally accepted that rare earth elements (REEs) in waters behave as good analogues for the actinides, whose natural levels are quite low and rarely measured. Water quality investigations have clearly been a stimulus for measurement of toxic heavy metals in order to understand their behavior in natural systems.From a more fundamental point of view, it is crucial to understand the behavior of trace elements in geological processes, in particular during chemical weathering and transport by waters. Trace elements are much more fractionated by weathering and transport processes than major elements, and these fractionations give clues for understanding the nature and intensity of the weathering+transport processes. This has not only applications for weathering studies or for the past mobilization and transport of elements to the ocean (potentially recorded in the sediments), but also for the possibility of better utilization of trace elements in the aqueous environment as an exploration tool.In this chapter, we have tried to review the recent literature on trace elements in rivers, in particular by incorporating the results derived from recent ICP-MS measurements. We have favored a "field approach" by focusing on studies of natural hydrosystems. The basic questions which we want to address are the following: What are the trace element levels in river waters? What controls their abundance in rivers and fractionation in the weathering+transport system? Are trace elements, like major elements in rivers, essentially controlled by source-rock abundances? What do we know about the chemical speciation of trace elements in water? To what extent do colloids and interaction with solids regulate processes of trace elements in river waters? Can we relate the geochemistry of trace elements in aquatic systems to the periodic table? And finally, are we able to satisfactorily model and predict the behavior of most of the trace elements in hydrosystems?An impressive literature has dealt with experimental works on aqueous complexation, uptake of trace elements by surface complexation (inorganic and organic), uptake by living organisms (bioaccumulation) that we have not reported here, except when the results of such studies directly explain natural data. As continental waters encompass a greater range of physical and chemical conditions, we focus on river waters and do not discuss trace elements in groundwaters, lakes, and the ocean. In lakes and in the ocean, the great importance of life processes in regulating trace elements is probably the major difference from rivers.Section 5.09.2 of this chapter reports data. We will review the present-day literature on trace elements in rivers to show that our knowledge is still poor. By comparing with the continental abundances, a global mobility index is calculated for each trace element. The spatial and temporal variability of trace-element concentrations in rivers will be shown to be important. In Section 5.09.3, sources of trace elements in river waters are indicated. We will point out the great diversity of sources and the importance of global anthropogenic contamination for a number of elements. The question of inorganic and organic speciation of trace elements in river water will then be addressed in Section 5.09.4, considering some general relationships between speciation and placement in the periodic table. In Section 5.09.5, we will show that studies on organic-rich rivers have led to an exploration of the "colloidal world" in rivers. Colloids are small particles, passing through the conventional filters used to separate dissolved and suspended loads in rivers. They appear as major carriers of trace elements in rivers and considerably complicate aqueous-speciation calculation. Finally, in Section 5.09.6, the significance of interactions between solutes and solid surfaces in river waters will be reviewed. Regulation by surfaces is of major importance for a great range of elements. Although for both colloids and surface interactions, some progress has been made, we are still far from a unified model that can accurately predict trace-element concentrations in natural water systems. This is mainly due to our poor physical description of natural colloids, surface site complexation, and their interaction with solutes.
Are Some Elements More Equal than Others?
ERIC Educational Resources Information Center
Rich, Ronald L.
2005-01-01
Squeezing of elements 57-71 and 89-103 into one box each something like footnotes is done. A periodic chart is needed that does not treat the f elements as mere footnotes, partly because some like Uranium are quite important.
Álvarez-Vázquez, Miguel Ángel; Prego, Ricardo; Caetano, Miguel; De Uña-Álvarez, Elena; Doval, Maryló; Calvo, Susana; Vale, Carlos
2017-07-01
Trace element contributions from small rivers to estuaries is an issue barely addressed in the literature. In this work, freshwater flowing into the Ria of Cedeira (NW Iberian Peninsula) was studied during a hydrological year through the input from three rivers, one considered uncontaminated (the Das-Mestas River), a second affected by urban treated wastewater discharges (the Condomiñas River), and the third containing a water reservoir for urban supply (the Forcadas River). With the objective of assessing the possible influence of human pressure, the annual yields for selected trace elements (Al, Fe, As, Cd, Co, Cr, Cu, Mn, Mo, Ni and Pb) were estimated and compared by normalizing by basin surface. Both dissolved and particulate transported elements were considered. After the data treatment and analysis it can be highlighted that: (i) the Das Mestas River is suitable to be included between the short European pristine baseline of small rivers, at least regarding the transported trace elements; (ii) natural enrichments were identified associated to the lithology of the basin in the Das-Mestas River (i.e. As) and in the Condomiñas River (i.e. Co, Cr and Ni); this fact highlights the importance of considering the local background for a proper assessment; (iii) the impoundment in the Forcadas River is related with a general decrease, even depletion, of the particulate and dissolved transported trace elements, except Mn; (iv) the discharge of sewage to the Condomiñas River is increasing the inputs to the ria of some trace elements in the particulate phase (i.e. Al, Cu and Pb). Both observed human-induced changes can be regarded as typical disturbances of trace element contributions from small rivers to estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John
2014-07-01
Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.
2013-01-01
Background Anthropogenic activities introduce materials increasing levels of many dangerous substances for the environmental quality and being hazardous to human health. Major attention has been given to those elements able to alter the environment and endanger human health. The airborne particulate matter pollutant is considered one of the most difficult task in environmental chemistry for its complex composition and implications complicating notably the behavior comprehension. So, for investigating deeply the elemental composition we used two nuclear techniques, Neutron Activation Analysis and Photon Activation Analysis, characterized by high sensitivity, precision and accuracy. An important task has been devoted to the investigation of Quality Control (QC) and Quality Assurance (QA) of the methodology used in this study. This study was therefore extended as far back as possible in time (from 1965 until 2000) in order to analyze the trend of airborne concentration of pollutant elements in connection with the industrial and lifestyle growth during the entire period. Results Almost all the elements may be attributed to long-range transport phenomena from other natural and/or anthropogenic sources: this behavior is common to all the periods studied even if a very light decreasing trend can be evidenced from 1970 to 2002. Finally, in order to investigate a retrospective study of elements in PM10 and their evolution in relationship with the natural or anthropogenic origins, we have investigated the Enrichment Factors. The study shows the EF trends for some elements in PM10 during four decades. Conclusions The two nuclear techniques have allowed to reach elevated sensibility/accuracy levels for determining elements at very low concentrations (trace and ultra-trace levels). The element concentrations determined in this study do not basically show a significant level of attention from a toxicological point of view. PMID:24196275
Wakisaka, Keiko Tsuji; Ichiyanagi, Kenji; Ohno, Seiko; Itoh, Masanobu
2018-01-01
P -element transposition in the genome causes P-M hybrid dysgenesis in Drosophila melanogaster . Maternally deposited piRNAs suppress P -element transposition in the progeny, linking them to P-M phenotypes; however, the role of zygotic piRNAs derived from paternal P elements is poorly understood. To elucidate the molecular basis of P -element suppression by zygotic factors, we investigated the genomic constitution and P -element piRNA production derived from fathers. As a result, we characterized males of naturally derived Q, M' and P strains, which show different capacities for the P -element mobilizations introduced after hybridizations with M-strain females. The amounts of piRNAs produced in ovaries of F1 hybrids varied among the strains and were influenced by the characteristics of the piRNA clusters that harbored the P elements. Importantly, while both the Q- and M'-strain fathers restrict the P -element mobilization in ovaries of their daughters, the Q-strain fathers supported the production of the highest piRNA expression in the ovaries of their daughters, and the M' strain carries KP elements in transcriptionally active regions directing the highest expression of KP elements in their daughters. Interestingly, the zygotic P -element piRNAs, but not the KP element mRNA, contributed to the variations in P transposition immunity in the granddaughters. The piRNA-cluster-embedded P elements and the transcriptionally active KP elements from the paternal genome are both important suppressors of P element activities that are co-inherited by the progeny. Expression levels of the P -element piRNA and KP -element mRNA vary among F1 progeny due to the constitution of the paternal genome, and are involved in phenotypic variation in the subsequent generation.
Developing an indigenous surgical workforce for Australasia.
Aramoana, Jaclyn; Alley, Patrick; Koea, Jonathan B
2013-12-01
Progress has been made in Australia and New Zealand to increase the numbers of indigenous students (Aboriginal, Torres Strait Islander and Maori) entering primary medical qualification courses. In New Zealand, up to 20 Maori are graduating annually, with similar numbers possible in Australia, creating a potential opportunity to develop an indigenous surgical workforce. A literature review identified factors utilized by medical schools to attract indigenous students into medical careers and the interventions necessary to ensure successful graduation. A further search identified those factors important in encouraging indigenous medical graduates to enter specialist training programmes and achieve faculty appointments. All medical schools have utilized elements of a 'pipeline approach' encompassing contact with students at secondary school level to encourage aspirational goals and assist with suitable subject selection. Bridging courses can ensure students leaving school have appropriate skill sets before entering medical degree courses. Extensive practical help is available during primary medical qualification study. The elements necessary for primary medical qualification success - dedicated and focused study, developing appropriate skill sets, mentoring, support, and an institutional and collegial commitment to success - are also the elements required for postgraduate achievement. The Royal Australasian College of Surgeons (RACS) is primarily involved in training rather than service provision. The increasing numbers of indigenous medical graduates in both Australia and New Zealand represent an opportunity for the College to contribute to improving indigenous health status by implementing specific measures to increase numbers of indigenous surgeons. © 2013 Royal Australasian College of Surgeons.
Multi-scale Finite Element Modeling of Eustachian Tube Function: Influence of Mucosal Adhesion
Malik, J.E.; Swarts, J.D.; Ghadiali, S. N.
2017-01-01
The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. PMID:26891171
NASA Astrophysics Data System (ADS)
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan
2017-05-01
The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this paper, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that the (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.
Progress in immunization information systems--United States, 2011.
2013-01-25
Immunization information systems (IIS) are confidential, computerized, population-based systems that collect and consolidate vaccination data from vaccination providers and provide important tools for designing and sustaining effective immunization strategies. A Healthy People 2020 objective (IID-18) is to increase to 95% the proportion of children aged <6 years whose immunization records are in fully operational, population-based IIS. The National Vaccine Advisory Committee (NVAC) has published goals for IIS, including required and optional core data elements for which IIS should collect information. Two of the required core data elements are vaccine manufacturer and vaccine lot number. To monitor progress toward achieving these and other program goals, CDC annually surveys 56 immunization program grantees using the IIS Annual Report (IISAR). Results from the 2011 IISAR (completed by 54 grantees) indicate that 84% (19.2 million) of U.S. children aged <6 years participated in IIS, as defined by having at least two recorded vaccinations, an increase from 82% (18.8 million) in 2010. Grantees reported that an average of 63% of vaccination records for these children contained data in the field for vaccine manufacturer and 60% contained data in the field for lot number. A new project under way to capture vaccine product information, expiration date, and lot number on two-dimensional (2D) barcodes on vaccine vials might increase completeness, accuracy, and availability of these data elements in patient medical records and IIS, which in turn might enhance vaccine safety and support vaccine inventory management.
Zhou, Li; Collins, Sarah; Morgan, Stephen J.; Zafar, Neelam; Gesner, Emily J.; Fehrenbach, Martin; Rocha, Roberto A.
2016-01-01
Structured clinical documentation is an important component of electronic health records (EHRs) and plays an important role in clinical care, administrative functions, and research activities. Clinical data elements serve as basic building blocks for composing the templates used for generating clinical documents (such as notes and forms). We present our experience in creating and maintaining data elements for three different EHRs (one home-grown and two commercial systems) across different clinical settings, using flowsheet data elements as examples in our case studies. We identified basic but important challenges (including naming convention, links to standard terminologies, and versioning and change management) and possible solutions to address them. We also discussed more complicated challenges regarding governance, documentation vs. structured data capture, pre-coordination vs. post-coordination, reference information models, as well as monitoring, communication and training. PMID:28269927
Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
SummaryMineral commodities are vital for economic growth, improving the quality of life, providing for national defense, and the overall functioning of modern society. Minerals are being used in larger quantities than ever before and in an increasingly diverse range of applications. With the increasing demand for a considerably more diverse suite of mineral commodities has come renewed recognition that competition and conflict over mineral resources can pose significant risks to the manufacturing industries that depend on them. In addition, production of many mineral commodities has become concentrated in relatively few countries (for example, tungsten, rare-earth elements, and antimony in China; niobium in Brazil; and platinum-group elements in South Africa and Russia), thus increasing the risk for supply disruption owing to political, social, or other factors. At the same time, an increasing awareness of and sensitivity to potential environmental and health issues caused by the mining and processing of many mineral commodities may place additional restrictions on mineral supplies. These factors have led a number of Governments, including the Government of the United States, to attempt to identify those mineral commodities that are viewed as most “critical” to the national economy and (or) security if supplies should be curtailed.This book presents resource and geologic information on the following 23 mineral commodities currently among those viewed as important to the national economy and national security of the United States: antimony (Sb), barite (barium, Ba), beryllium (Be), cobalt (Co), fluorite or fluorspar (fluorine, F), gallium (Ga), germanium (Ge), graphite (carbon, C), hafnium (Hf), indium (In), lithium (Li), manganese (Mn), niobium (Nb), platinum-group elements (PGE), rare-earth elements (REE), rhenium (Re), selenium (Se), tantalum (Ta), tellurium (Te), tin (Sn), titanium (Ti), vanadium (V), and zirconium (Zr). For a number of these commodities—for example, graphite, manganese, niobium, and tantalum—the United States is currently wholly dependent on imports to meet its needs. The first two chapters (A and B) deal with general information pertinent to the study of mineral resources. Chapters C through V describe individual mineral commodities and include an overview of current uses of the commodity, identified resources and their distribution nationally and globally, the state of current geologic knowledge, the potential for finding additional deposits nationally and globally, and geoenvironmental issues that may be related to the production and uses of the commodity. These chapters are updates of the commodity chapters published in 1973 in U.S. Geological Survey Professional Paper 820, “United States Mineral Resources.”
Nordløkken, Marit; Berg, Torunn; Flaten, Trond Peder; Steinnes, Eiliv
2015-01-01
Concentrations of essential and non-essential elements in five widespread species of natural boreal vegetation were studied with respect to seasonal variation and contribution from different sources. The plant species included in the study were Betula pubescens, Sorbus aucuparia, Vaccinium myrtillus, Vaccinium uliginosum, Calluna vulgaris and Deschampsia flexuosa. Concentrations of elements essential to plants remained essentially constant or decreased slightly throughout the growing season. Concentrations of most non-essential elements increased or tended to increase on a dry mass basis from June to July as well as from July to September. The increasing trend for these elements was observed for all species except C. vulgaris. Principal component analysis (PCA) of the material indicated a common source for many of the non-essential elements; Sc, Ti, V, Ga, As, Y, Sb, lanthanides, Pb, Bi, and U, i.e. both elements presumably of geogenic origin and elements associated with trans-boundary air pollution. Uptake by plant roots appeared to be the main source of nutrient elements as well as some non-essential elements. Copyright © 2014 Elsevier B.V. All rights reserved.
Stephens, Ina
2017-01-01
Medical yoga is defined as the use of yoga practices for the prevention and treatment of medical conditions. Beyond the physical elements of yoga, which are important and effective for strengthening the body, medical yoga also incorporates appropriate breathing techniques, mindfulness, and meditation in order to achieve the maximum benefits. Multiple studies have shown that yoga can positively impact the body in many ways, including helping to regulate blood glucose levels, improve musculoskeletal ailments and keeping the cardiovascular system in tune. It also has been shown to have important psychological benefits, as the practice of yoga can help to increase mental energy and positive feelings, and decrease negative feelings of aggressiveness, depression and anxiety. PMID:28208599
Ceccarelli, Daniela; van Essen-Zandbergen, Alieda; Veldman, Kees T; Tafro, Nedzib; Haenen, Olga; Mevius, Dik J
2017-02-01
Carbapenems are considered last-resort antibiotics in health care. Increasing reports of carbapenemase-producing bacteria in food-producing animals and in the environment indicate the importance of this phenomenon in public health. Surveillance for carbapenemase genes and carbapenemase-producing bacteria in Dutch food-producing animals, environmental freshwater, and imported ornamental fish revealed several chromosome-based bla OXA-48 -like variants in Shewanella spp., including two new alleles, bla OXA-514 and bla OXA-515 Carbapenemase genes were not associated with mobile genetic elements or Enterobacteriaceae. Copyright © 2017 American Society for Microbiology.
Continuous quality improvement for the clinical decision unit.
Mace, Sharon E
2004-01-01
Clinical decision units (CDUs) are a relatively new and growing area of medicine in which patients undergo rapid evaluation and treatment. Continuous quality improvement (CQI) is important for the establishment and functioning of CDUs. CQI in CDUs has many advantages: better CDU functioning, fulfillment of Joint Commission on Accreditation of Healthcare Organizations mandates, greater efficiency/productivity, increased job satisfaction, better performance improvement, data availability, and benchmarking. Key elements include a database with volume indicators, operational policies, clinical practice protocols (diagnosis specific/condition specific), monitors, benchmarks, and clinical pathways. Examples of these important parameters are given. The CQI process should be individualized for each CDU and hospital.
Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen
2015-04-01
The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site.
Horizontal transfer of transposons between and within crustaceans and insects
2014-01-01
Background Horizontal transfer of transposable elements (HTT) is increasingly appreciated as an important source of genome and species evolution in eukaryotes. However, our understanding of HTT dynamics is still poor in eukaryotes because the diversity of species for which whole genome sequences are available is biased and does not reflect the global eukaryote diversity. Results In this study we characterized two Mariner transposable elements (TEs) in the genome of several terrestrial crustacean isopods, a group of animals particularly underrepresented in genome databases. The two elements have a patchy distribution in the arthropod tree and they are highly similar (>93% over the entire length of the element) to insect TEs (Diptera and Hymenoptera), some of which were previously described in Ceratitis rosa (Crmar2) and Drosophila biarmipes (Mariner-5_Dbi). In addition, phylogenetic analyses and comparisons of TE versus orthologous gene distances at various phylogenetic levels revealed that the taxonomic distribution of the two elements is incompatible with vertical inheritance. Conclusions We conclude that the two Mariner TEs each underwent at least three HTT events. Both elements were transferred once between isopod crustaceans and insects and at least once between isopod crustacean species. Crmar2 was also transferred between tephritid and drosophilid flies and Mariner-5 underwent HT between hymenopterans and dipterans. We demonstrate that these various HTTs took place recently (most likely within the last 3 million years), and propose iridoviruses and/or Wolbachia endosymbionts as potential vectors of these transfers. PMID:24472097
Horizontal transfer of transposons between and within crustaceans and insects.
Dupeyron, Mathilde; Leclercq, Sébastien; Cerveau, Nicolas; Bouchon, Didier; Gilbert, Clément
2014-01-29
Horizontal transfer of transposable elements (HTT) is increasingly appreciated as an important source of genome and species evolution in eukaryotes. However, our understanding of HTT dynamics is still poor in eukaryotes because the diversity of species for which whole genome sequences are available is biased and does not reflect the global eukaryote diversity. In this study we characterized two Mariner transposable elements (TEs) in the genome of several terrestrial crustacean isopods, a group of animals particularly underrepresented in genome databases. The two elements have a patchy distribution in the arthropod tree and they are highly similar (>93% over the entire length of the element) to insect TEs (Diptera and Hymenoptera), some of which were previously described in Ceratitis rosa (Crmar2) and Drosophila biarmipes (Mariner-5_Dbi). In addition, phylogenetic analyses and comparisons of TE versus orthologous gene distances at various phylogenetic levels revealed that the taxonomic distribution of the two elements is incompatible with vertical inheritance. We conclude that the two Mariner TEs each underwent at least three HTT events. Both elements were transferred once between isopod crustaceans and insects and at least once between isopod crustacean species. Crmar2 was also transferred between tephritid and drosophilid flies and Mariner-5 underwent HT between hymenopterans and dipterans. We demonstrate that these various HTTs took place recently (most likely within the last 3 million years), and propose iridoviruses and/or Wolbachia endosymbionts as potential vectors of these transfers.
Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways
NASA Astrophysics Data System (ADS)
Hasegawa, Tomoko; Fujimori, Shinichiro; Takahashi, Kiyoshi; Masui, Toshihiko
2015-01-01
Shared socioeconomic pathways (SSPs) are being developed internationally for cross-sectoral assessments of climate change impacts, adaptation, and mitigation. These are five scenarios that include both qualitative and quantitative information for mitigation and adaptation challenges to climate change. In this study, we quantified scenarios for the risk of hunger in the 21st century using SSPs, and clarified elements that influence future hunger risk. There were two primary findings: (1) risk of hunger in the 21st-century greatly differed among five SSPs; and (2) population growth, improvement in the equality of food distribution within a country, and increases in food consumption mainly driven by income growth greatly influenced future hunger risk and were important elements in its long-term assessment.
Aufderheide, Helge; Rudolf, Lars; Gross, Thilo; Lafferty, Kevin D.
2013-01-01
Recent attempts to predict the response of large food webs to perturbations have revealed that in larger systems increasingly precise information on the elements of the system is required. Thus, the effort needed for good predictions grows quickly with the system's complexity. Here, we show that not all elements need to be measured equally well, suggesting that a more efficient allocation of effort is possible. We develop an iterative technique for determining an efficient measurement strategy. In model food webs, we find that it is most important to precisely measure the mortality and predation rates of long-lived, generalist, top predators. Prioritizing the study of such species will make it easier to understand the response of complex food webs to perturbations.
Kim, Dong-Hun; Kanaly, Robert A; Hur, Hor-Gil
2012-12-01
The dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, reduced tellurite (Te(IV), TeO(3)(2-)) to elemental tellurium under anaerobic conditions resulting in the intracellular accumulation of needle shaped crystalline Te(0) nanorods. Fatty acid analyses showed that toxic Te(IV) increased the unsaturated fatty acid composition of the lipid components of the cell membrane, implying a deconstruction of the integrity of the cellular membrane structure. The current results suggest that dissimilatory metal reducing bacteria such as S. oneidensis MR-1 may play an important role in recycling toxic tellurium elements, and may be applied as a novel selective biological filter via the accumulation of industry-applicable rare materials, Te(0) nanorods, in the cell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Di Giacomo, Daniela; Gaildrat, Pascaline; Abuli, Anna; Abdat, Julie; Frébourg, Thierry; Tosi, Mario; Martins, Alexandra
2013-11-01
Exonic variants can alter pre-mRNA splicing either by changing splice sites or by modifying splicing regulatory elements. Often these effects are difficult to predict and are only detected by performing RNA analyses. Here, we analyzed, in a minigene assay, 26 variants identified in the exon 7 of BRCA2, a cancer predisposition gene. Our results revealed eight new exon skipping mutations in this exon: one directly altering the 5' splice site and seven affecting potential regulatory elements. This brings the number of splicing regulatory mutations detected in BRCA2 exon 7 to a total of 11, a remarkably high number considering the total number of variants reported in this exon (n = 36), all tested in our minigene assay. We then exploited this large set of splicing data to test the predictive value of splicing regulator hexamers' scores recently established by Ke et al. (). Comparisons of hexamer-based predictions with our experimental data revealed high sensitivity in detecting variants that increased exon skipping, an important feature for prescreening variants before RNA analysis. In conclusion, hexamer scores represent a promising tool for predicting the biological consequences of exonic variants and may have important applications for the interpretation of variants detected by high-throughput sequencing. © 2013 WILEY PERIODICALS, INC.
Radiation effect of neutrons produced by D-D side reactions on a D-3He fusion reactor
NASA Astrophysics Data System (ADS)
Bahmani, J.
2017-04-01
One of the most important characteristics in D-3He fusion reactors is neutron production via D-D side reactions. The neutrons can activate structural material, degrading them and ultimately converting them into high-level radioactive waste, while it is really costly and difficult to remove them. The neutrons from a fusion reactor could also be used to make weapons-grade nuclear material, rendering such types of fusion reactors a serious proliferation hazard. A related problem is the presence of radioactive elements such as tritium in D-3He plasma, either as fuel for or as products of the nuclear reactions; substantial quantities of radioactive elements would not only pose a general health risk, but tritium in particular would also be another proliferation hazard. The problems of neutron radiation and radioactive element production are especially interconnected because both would result from the D-D side reaction. Therefore, the presentation approach for reducing neutrons via D-D nuclear side reactions in a D-3He fusion reactor is very important. For doing this research, energy losses and neutron power fraction in D-3He fusion reactors are investigated. Calculations show neutrons produced by the D-D nuclear side reaction could be reduced by changing to a more 3He-rich fuel mixture, but then the bremsstrahlung power loss fraction would increase in the D-3He fusion reactor.
Investigation of proton induced reactions on niobium at low and medium energies
NASA Astrophysics Data System (ADS)
Ditrói, F.; Hermanne, A.; Corniani, E.; Takács, S.; Tárkányi, F.; Csikai, J.; Shubin, Yu. N.
2009-10-01
Niobium is a metal with important technological applications: use as alloying element to increase strength of super alloys, as thin layer for tribological applications, as superconductive material, in high temperature engineering systems, etc. In the frame of a systematic study of activation cross-sections of charged particle induced reactions on structural materials proton induced excitation functions on Nb targets were determined with the aim of applications in accelerator and reactor technology and for thin layer activation (TLA). The charged particle activation cross-sections on this element are also important for yield calculation of medical isotope production ( 88,89Zr, 86,87,88Y) and for dose estimation in PET targetry. As niobium is a monoisotopic element it is an ideal target material to test nuclear reaction theories. We present here the experimental excitation functions of 93Nb(p,x) 90,93mMo, 92m,91m,90Nb, 88,89Zr and 88Y in the energy range 0-37 MeV. The results were compared with the theoretical cross-sections calculated by means of the code ALICE-IPPE, EMPIRE-3, TALYS and with the literature data. The theory reproduces the shape of the measured results well and magnitude is also acceptable. Thick target yields calculated from our fitted cross-section give reliable estimations for production of medically relevant radioisotopes and for dose estimation in accelerator technology.
Montaña, C G; Schalk, C M
2018-04-01
The isotopic (δ 13 C and δ 15 N) and stoichiometric (C:N:P) compositions of four fish species (Family Centrarchidae: Lepomis auritus, Lepomis cyanellus; Family Cyprinidae: Nocomis leptocephalus, Semotilus atromaculatus) were examined across four North Carolina Piedmont streams arrayed along an urbanization gradient. Both isotopic and stoichiometric composition of fishes appeared to track changes occurring in basal resource availability. Values of δ 13 C of basal resources and consumers were more enriched at the most urbanized streams. Similarly, basal resources and consumers were δ 15 N-enriched at more urbanized streams. Basal resource stoichiometry varied across streams, with periphyton being the most variable. Primary consumers stoichiometry also differed across streams. Intraspecific variation in fish stoichiometry correlated with the degree of urbanization, as the two cyprinids had higher N content and L. cyanellus had higher P content in more urbanized streams, probably due to enrichment of basal resources. Intrinsic factors, specifically species identity and body size also affected stoichiometric variation. Phosphorus (P) content increased significantly with body size in centrarchids, but not in cyprinids. These results suggest that although species identity and body size are important predictors of elemental stoichiometry, the complex nature of altered urban streams may yield imbalances in the elemental composition of consumers via their food resources. © 2018 The Fisheries Society of the British Isles.
Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phongikaroon, Supathorn
The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantagesmore » of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.« less
ERIC Educational Resources Information Center
Amory, Alan; Naicker, Kevin; Vincent, Jacky; Adams, Claudia
1999-01-01
Describes research with college students that investigated commercial game types and game elements to determine what would be suitable for education. Students rated logic, memory, visualization, and problem solving as important game elements that are used to develop a model that links pedagogical issues with game elements. (Author/LRW)
Selenium uptake through cystine transporter mediated by glutathione conjugation.
Tobe, Takao; Ueda, Koji; Aoki, Akira; Okamoto, Yoshinori; Kojima, Nakao; Jinno, Hideto
2017-01-01
Selenium (Se) is an essential trace element and is regarded as a protective agent against cancer. In particular, antioxidant effects of selenoenzymes contribute to cancer prevention. Se can also produce reactive oxygen species and, thereby, exert cancer-selective cytotoxicity. Selenodiglutathione (SDG) is a primary Se metabolite conjugated to two glutathione (GSH) moieties. SDG increases intracellular Se accumulation and is more toxic than selenous acid (H 2 SeO 3 ), but the mechanisms for importing Se compounds into cells are not fully understood. Here, we propose a novel mechanism for importing Se, in the form of SDG. Cellular intake of Se compounds was assessed based on Se accumulation, as detected by ICP-MS. SDG incorporation was decreased in the presence of thiols (GSH, cysteine or their oxidized forms, GSSG and cystine), whereas H 2 SeO 3 uptake was increased by addition of GSH or cysteine. Cellular SDG uptake was decreased by pretreatment with specific inhibitors against gamma-glutamyl transpeptidase (GGT) or the cystine/glutamate antiporter (system x c - ). Furthermore, siRNA against xCT, which is the light chain component of system x c - , significantly decreased SDG incorporation. These data suggest an involvement of SDG in Se incorporation, with SDG processed at the cell surface by GGT, leading to formation of selenodicysteine which, in turn, is likely to be imported via xCT. Because GGT and xCT are highly expressed in cancer cells, these mechanisms mediated by the cystine transporter might underlie the cancer-selective toxicity of Se. In addition, the system described in our study appears to represent a physiological transport mechanism for the essential element Se.
A technical framework for costing health workforce retention schemes in remote and rural areas
2011-01-01
Background Increasing the availability of health workers in remote and rural areas through improved health workforce recruitment and retention is crucial to population health. However, information about the costs of such policy interventions often appears incomplete, fragmented or missing, despite its importance for the sound selection, planning, implementation and evaluation of these policies. This lack of a systematic approach to costing poses a serious challenge for strong health policy decisions. Methods This paper proposes a framework for carrying out a costing analysis of interventions to increase the availability of health workers in rural and remote areas with the aim to help policy decision makers. It also underlines the importance of identifying key sources of financing and of assessing financial sustainability. The paper reviews the evidence on costing interventions to improve health workforce recruitment and retention in remote and rural areas, provides guidance to undertake a costing evaluation of such interventions and investigates the role and importance of costing to inform the broader assessment of how to improve health workforce planning and management. Results We show that while the debate on the effectiveness of policies and strategies to improve health workforce retention is gaining impetus and attention, there is still a significant lack of knowledge and evidence about the associated costs. To address the concerns stemming from this situation, key elements of a framework to undertake a cost analysis are proposed and discussed. Conclusions These key elements should help policy makers gain insight into the costs of policy interventions, to clearly identify and understand their financing sources and mechanisms, and to ensure their sustainability. PMID:21470420
Soil conservation in Central America and Panama: current problems.
Popenoe, H
1976-06-01
Soil conservation measures in Central America go back to the Maya civilization, in which terracing was employed. After the Spanish conquest, plowing, livestock raising, and the succession of social and political changes all contributed to accelerate erosion. Through the past few decades, awareness of the need for soil conservation has again increased; El Salvador and Costa Rica began efforts in that direction in 1943. For sometime, the use of machinery and chemical fertilizers has masked the loss of topsoil, but under recent increases in population pressures, soil conservation measures are gaining in importance. Important agents of erosion in the tropics are heavy seasonal rains at high elevations, alternating with long dry seasons; wind erosion; and landslides after saturation of the soil during prolonged rains. Modern machinery often hastens soil removal, as do also overgrazing, deforestation and vertical crop rows. Under the present energy crisis, human labor is becoming again a significant element in crop production, and soil conservation becomes thereby more feasible and more important.
Feeding ecology of Coryphaenoides rupestris from the mid-Atlantic Ridge.
Bergstad, Odd Aksel; Gjelsvik, Guro; Schander, Christoffer; Høines, Age S
2010-05-03
The Macrourid fish roundnose grenadier, Coryphaenoides rupestris, is one of the most common benthopelagic fishes on the northern mid-Atlantic Ridge. The ecology of the species is comparatively well studied in continental slope waters of the North Atlantic, but not on the mid-Atlantic Ridge, which is a central mid-ocean area of its distribution. In total, 166 specimens from the RV G.O. Sars cruise in July 2004 were examined. The diet mainly comprised cephalopods, pelagic shrimps and fish. Pelagic and benthopelagic copepods were the most numerous prey, but did not contribute much on a weight basis. Cephalopods were by far the most important prey of the small grenadiers, while shrimps and fish became increasingly significant with increasing size. Previous studies from other areas have also found pelagic prey to be important, but in contrast to this study, cephalopods were generally of less importance. The study was an element of more wide-ranging food-web studies of the mid-Atlantic Ridge macro- and megafauna communities within the international MAR-ECO project.
Brouxel, M.
1991-01-01
A clinopyroxene-rich dike of the Trinity ophiolite sheeted-dike complex shows three different magmatic pulses, probably injected in a short period of time (no well developed chilled margin) and important variations of the clinopyroxene and plagioclase percentages between its core (highly porphyritic) and margins (aphyric). This variation, interpreted as related to a flow differentiation phenomenon (mechanical phenocryst redistribution), has important geochemical consequences. It produces increases in the FeO, MgO, CaO, Cr and Ni contents from the margin to the core, together with increases in the clinopyroxene percentage, and decreases in the SiO2, Zr, Y, Nb and REE contents together with a decrease in the percentage of the fine-grained groundmass toward the core of the dike. This mineralogical redistribution, which also affects the incompatible trace element ratios because of the difference in plagioclase and clinopyroxene mineral/liquid partition coefficients, illustrate the importance of fractionation processes outside of a magma chamber. ?? 1991.
The future of digital games for HIV prevention and care.
Hightow-Weidman, Lisa B; Muessig, Kathryn E; Bauermeister, José A; LeGrand, Sara; Fiellin, Lynn E
2017-09-01
Although there has been a significant increase in mHealth interventions addressing the HIV prevention and care continuum, interventions using game mechanics have been less explored. Digital games are rapidly becoming an important tool for improving health behaviors and supporting the delivery of care and education. The purpose of this review is to provide a historical context for the use of gamification and videogames (including those using virtual reality) used in technology-based HIV interventions and to review new research in the field. A review of recently published (1 January 2016-31 March 2017) or presented abstracts (2016) identified a paucity of technology-based interventions that included gamification elements or any terms associated with videogames or gameplay. A larger portfolio of digital gaming interventions is in the pipeline. Use of digital games that include elements of gamification or consist of standalone videogames or virtual-reality-based games, represent a promising intervention strategy to address the HIV prevention and care continuum, especially among youth. Our review demonstrates that there is significant room for growth in this area in designing, developing, testing and most importantly, implementation and dissemination these novel interventions.
Establishing lunar resource viability
NASA Astrophysics Data System (ADS)
Carpenter, J.; Fisackerly, R.; Houdou, B.
2016-11-01
Recent research has highlighted the potential of lunar resources as an important element of space exploration but their viability has not been demonstrated. Establishing whether or not they can be considered in future plans is a multidisciplinary effort, requiring scientific expertise and delivering scientific results. To this end various space agencies and private entities are looking to lunar resources, extracted and processed in situ, as a potentially game changing element in future space architectures, with the potential to increase scale and reduce cost. However, before any decisions can be made on the inclusion of resources in exploration roadmaps or future scenarios some big questions need to be answered about the viability of different resource deposits and the processes for extraction and utilisation. The missions and measurements that will be required to answer these questions, and which are being prepared by agencies and others, can only be performed through the engagement and support of the science community. In answering questions about resources, data and knowledge will be generated that is of fundamental scientific importance. In supporting resource prospecting missions the science community will de facto generate new scientific knowledge. Science enables exploration and exploration enables science.
Mechanics of microtubules: effects of protofilament orientation.
Donhauser, Zachary J; Jobs, William B; Binka, Edem C
2010-09-08
Microtubules are hollow cylindrical polymers of the protein tubulin that play a number of important dynamic and structural roles in eukaryotic cells. Both in vivo and in vitro microtubules can exist in several possible configurations, differing in the number of protofilaments, helical rise of tubulin dimers, and protofilament skew angle with respect to the main tube axis. Here, finite element modeling is applied to examine the mechanical response of several known microtubule types when subjected to radial deformation. The data presented here provide an important insight into microtubule stiffness and reveal that protofilament orientation does not affect radial stiffness. Rather, stiffness is primarily dependent on the effective Young's modulus of the polymerized material and the effective radius of the microtubule. These results are also directly correlated to atomic force microscopy nanoindentation measurements to allow a more detailed interpretation of previous experiments. When combined with experimental data that show a significant difference between microtubules stabilized with a slowly hydrolyzable GTP analog and microtubules stabilized with paclitaxel, the finite element data suggest that paclitaxel increases the overall radial flexibility of the microtubule wall. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mechanics of Microtubules: Effects of Protofilament Orientation
Donhauser, Zachary J.; Jobs, William B.; Binka, Edem C.
2010-01-01
Microtubules are hollow cylindrical polymers of the protein tubulin that play a number of important dynamic and structural roles in eukaryotic cells. Both in vivo and in vitro microtubules can exist in several possible configurations, differing in the number of protofilaments, helical rise of tubulin dimers, and protofilament skew angle with respect to the main tube axis. Here, finite element modeling is applied to examine the mechanical response of several known microtubule types when subjected to radial deformation. The data presented here provide an important insight into microtubule stiffness and reveal that protofilament orientation does not affect radial stiffness. Rather, stiffness is primarily dependent on the effective Young's modulus of the polymerized material and the effective radius of the microtubule. These results are also directly correlated to atomic force microscopy nanoindentation measurements to allow a more detailed interpretation of previous experiments. When combined with experimental data that show a significant difference between microtubules stabilized with a slowly hydrolyzable GTP analog and microtubules stabilized with paclitaxel, the finite element data suggest that paclitaxel increases the overall radial flexibility of the microtubule wall. PMID:20816081
Single element injector cold flow testing for STME swirl coaxial injector element design
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.
1993-01-01
An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.
Origin of the biologically important elements.
Trimble, V
1997-06-01
The chemical elements most widely distributed in terrestrial living creatures are the ones (apart from inert helium and neon) that are commonest in the Universe--hydrogen, oxygen, carbon, and nitrogen. A chemically different Universe would clearly have different biology, if any. We explore here the nuclear processes in stars, the early Universe, and elsewhere that have produced these common elements, and, while we are at it, also encounter the production of lithium, gold, uranium, and other elements of sociological, if not biological, importance. The relevant processes are, for the most part, well understood. Much less well understood is the overall history of chemical evolution of the Galaxy, from pure hydrogen and helium to the mix of elements we see today. One implication is that we cannot do a very good job of estimating how many stars and which ones might be orbited by habitable planets.
NEUTRONIC REACTOR CONTROL ELEMENT
Newson, H.W.
1960-09-13
A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.
Samborski, Paweł; Grzymisławski, Marian
2015-01-01
Heat shock proteins (HSPs) represent an important element in the body's defense against various damaging factors. The probably also play an important role in the pathogenesis and treatment of several diseases, including autoimmune pathology and neoplasms. Recently, several investigators have focused their attention on the involvement of the HSP70 protein family in the morbid process of inflammatory bowel diseases (IBD). The HSP70 family of is represented by two distinct forms of protein, the HSP72 protein (also known as the HSP70.1 protein), the expression of which is clearly increased in conditions of stress; and the HSP73 (or HSC73) protein, which manifests stable expression. HSP70 proteins are present in the colorectal epithelium. In patients with inflammatory bowel diseases, their expression in significantly increased during the active stage of the disease. In experimental studies, overexpression of HSP70 was found to prevent the development of inflammatory process in the large intestinal mucosa provoked by various damaging factors. In physiological conditions, various mechanisms are considered to be responsible for an increased expression of HSP70. One of them involves lymphocyte activity and the production of cytokines (mainly IL-2). Another suggested mechanism involves the presence of bacteria in the large intestine, including both physiological flora (Lactobacillus GG, Bacteroides fragilis) and pathogenic bacteria (Salmonella, Escherichia coli). HSP70 expression is probably also increased by physical activity. There is also a potential for pharmacological stimulation of HSP70 expression, linked (for example) to geranylgeranylacetone, polaprezinc and mesalazine. Thus, augmentation of HSP70 expression may become a new element in IBD therapy.
ERIC Educational Resources Information Center
National Student Clearinghouse, 2013
2013-01-01
In late 2007, the National Student Clearinghouse (NSC) expanded its Enrollment Reporting service to include several additional data elements (commonly referred to as the "A2" or "expanded" data elements). One of these expanded data elements is student gender. Although gender is potentially important to a number of research…
NASA Astrophysics Data System (ADS)
Languirand, Eric Robert
Chemical imaging is an important tool for providing insight into function, role, and spatial distribution of analytes. This thesis describes the use of imaging fiber bundles (IFB) for super-resolution reconstruction using surface enhanced Raman scattering (SERS) showing improvement in resolution with arrayed bundles for the first time. Additionally this thesis describes characteristics of the IFB with regards to cross-talk as a function of aperture size. The first part of this thesis characterizes the IFB for both tapered and untapered bundles in terms of cross-talk. Cross-talk is defined as the amount of light leaking from a central fiber element in the imaging fiber bundle to surrounding fiber elements. To make this measurement ubiquitous for all imaging bundles, quantum dots were employed. Untapered and tapered IFB possess cross-talk of 2% or less, with fiber elements down to 32nm. The second part of this thesis employs a super resolution reconstruction algorithm using projection onto convex sets for resolution improvement. When using IFB arrays, the point spread function (PSF) of the array can be known accurately if the fiber elements over fill the pixel detector array. Therefore, the use of the known PSF compared to a general blurring kernel was evaluated. Relative increases in resolution of 12% and 2% at the 95% confidence level are found, when compared to a reference image, for the general blurring kernel and PSF, respectively. The third part of this thesis shows for the first time the use of SERS with a dithered IFB array coupled with super-resolution reconstruction. The resolution improvement across a step-edge is shown to be approximately 20% when compared to a reference image. This provides an additional means of increasing the resolution of fiber bundles beyond that of just tapering. Furthermore, this provides a new avenue for nanoscale imaging using these bundles. Lastly, synthetic data with varying degrees of signal-to-noise (S/N) were employed to explore the relationship S/N has with the reconstruction process. It is generally shown that increasing the number images used in the reconstruction process and increasing the S/N will improve the reconstruction providing larger increases in resolution.
Orbital elements of Charon from speckle interferometry
NASA Technical Reports Server (NTRS)
Beletic, J. W.; Goody, R. M.; Tholen, D. J.
1989-01-01
The semimajor axis and the inclination are the two most important quantities presently determined from 56 well-calibrated speckle-interferometric observations of the position of Charon, which are presented in conjunction with an orbit solution that incorporates them. Both values in the best solution obtained are noted to significantly differ from earlier determinations. The new value for the semimajor axis represents a 2.7 percent increase over the previously accepted value; the mean density of the system, however, remains unaltered.
Wildlife as Source of Zoonotic Infections
Kirkemo, Anne-Mette; Handeland, Kjell
2004-01-01
Zoonoses with a wildlife reservoir represent a major public health problem, affecting all continents. Hundreds of pathogens and many different transmission modes are involved, and many factors influence the epidemiology of the various zoonoses. The importance and recognition of wildlife as a reservoir of zoonoses are increasing. Cost-effective prevention and control of these zoonoses necessitate an interdisciplinary and holistic approach and international cooperation. Surveillance, laboratory capability, research, training and education, and communication are key elements. PMID:15663840
NASA Astrophysics Data System (ADS)
Aydin, Isil; Fidan, Celal; Kavak, Orhan; Erek, Figen; Aydin, Firat
2017-12-01
Asphaltite is one of the naturally occurring black, solid bitumen’s, which are soluble at heating in carbon disulphide band fuse. Asphaltite is also a solidified hydro carbon compound derived from petroleum [1]. According to the World Energy Council, Turkish National Committee (1998), the total reserve of the asphaltic substances that are found in south eastern Turkey is about 82 million tons, with Silopi and Sirnak reserves to get her comprising the major part of the Asphaltite deposits. Selenium and Nickel are very important elements both environmental and health. Selenium plays an important role in the formation of the enzyme antioxidant effect in the cell. The need for Selenium increases in situations such as pregnancy, menopause, grow than development, air pollution. Nickel is used for preventing iron-poor blood, increasing iron absorption, and treating weak bones. In this study, asphaltites were taken from Milli vein from Sirnak deposit in SE Anatolia of Turkey. A total of 6.500.000 tons of Asphaltite reserves have been identified as asphaltites in Milli (Sirnak). The sample preparation method was developed in Asphaltite by spectroanalytical techniques, wet acid digestion. MW-AD followed by ICP-OES were used for the determination of Selenium and Nickel in Asphaltite. Proximate analysis of Asphaltite fly ash samples was made. It also, Selenium and Nickel element analysis in Asphaltite were made.
Horizontal Transfer Can Drive a Greater Transposable Element Load in Large Populations.
Groth, Sam B; Blumenstiel, Justin P
2017-01-01
Genomes are comprised of contrasting domains of euchromatin and heterochromatin, and transposable elements (TEs) play an important role in defining these genomic regions. Therefore, understanding the forces that control TE abundance can help us understand the chromatin landscape of the genome. What determines the burden of TEs in populations? Some have proposed that drift plays a determining role. In small populations, mildly deleterious TE insertion alleles are allowed to fix, leading to increased copy number. However, it is not clear how the rate of exposure to new TE families, via horizontal transfer (HT), can contribute to broader patterns of genomic TE abundance. Here, using simulation and analytical approaches, we show that when the effects of drift are weak, exposure rate to new TE families via HT can be an important determinant of genomic copy number. If population exposure rate is proportional to population size, larger populations are expected to have a higher rate of exposure to rare HT events. This leads to the counterintuitive prediction that larger populations may carry a higher TE load. We also find that increased rates of recombination can lead to greater probabilities of TE establishment. This work has implications for our understanding of the evolution of chromatin landscapes, genome defense by RNA silencing, and recombination rates. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Accelerated exploration of multi-principal element alloys with solid solution phases
Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C.
2015-01-01
Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction. PMID:25739749
Aldosterone alters the chromatin structure of the murine endothelin-1 gene.
Welch, Amanda K; Jeanette Lynch, I; Gumz, Michelle L; Cain, Brian D; Wingo, Charles S
2016-08-15
Aldosterone increases sodium reabsorption in the renal collecting duct and systemic blood pressure. Paradoxically, aldosterone also induces transcription of the endothelin-1 (Edn1) gene to increase protein (ET-1) levels, which inhibits sodium reabsorption. Here we investigated changes in the chromatin structure of the Edn1 gene of collecting duct cell lines in response to aldosterone treatment. The Edn1 gene has a CpG island that encompasses the transcription start site and four sites in the 5' regulatory region previously linked to transcriptional regulation. The chromatin structure of the Edn1 gene was investigated using a quantitative PCR-based DNaseI hypersensitivity assay in murine hepatocyte (AML12), renal cortical collecting duct (mpkCCDC14), outer medullary collecting duct1 (OMCD1), and inner medullary collecting duct-3 (IMCD-3) cell lines. The CpG island was uniformly accessible. One calcium-responsive NFAT element remained at low chromatin accessibility in all cell lines under all conditions tested. However, the second calcium responsive NFAT element located at -1563bp upstream became markedly more accessible in IMCD-3 cells exposed to aldosterone. Importantly, one established aldosterone hormone response element HRE at -671bp relative to the transcription start site was highly accessible, and another HRE (-551bp) became more accessible in aldosterone-treated IMCD-3 and OMCD1 cells. The evidence supports a model in which aldosterone activation of the mineralocorticoid receptor (MR) results in the MR-hormone complex binding at HRE at -671bp to open chromatin structure around other regulatory elements in the Edn1 gene. Published by Elsevier Inc.
Harmful potential toxic elements in greenhouse soils under long-term cultivation in Almería (Spain)
NASA Astrophysics Data System (ADS)
Joaquin Ramos-Miras, Jose; Rodríguez Martín, Jose Antonio; Boluda, Rafael; Bech, Jaume; Gil, Carlos
2014-05-01
Heavy metals (HM) are considered highly significant environmental contaminants and are the object of many scientific research works into the soil environment. Activities like agriculture or industry can increase the concentration of these contaminants in soils and waters, which can affect the food chain. Intensification of certain agricultural practices, constant and excessive use of fertilizers and phytosanitary products, and using machinery, increase the HM content in agricultural soils. Many studies have dealt with HM accumulation over time. Despite these works, the influence of long periods of time on these contents, the dynamics and evolution of these elements in agricultural soils, especially soils used for intensive farming purposes under greenhouse conditions, remain unknown to a certain extent. The western Almería region (Spain) is a very important area from both the socio-economic and agricultural viewpoints. A common practice in greenhouse agriculture is the addition of agrochemicals to soils and crops to improve nutrient supply or crop protection and disease control. Such intense agricultural activity has a strong impact, which may have negative repercussions on both these greenhouse soils and the environment. A research has been carried out to determine the total and available levels of six harmful potentially toxic elements (Cd, Cu, Pb, Ni, Zn and Co), and to assess long-term variations in the greenhouse soils of western Almeria. The results indicate that managing soils in the greenhouse preparation stage determines major changes in total and available HM contents. Furthermore, Cd, Cu and Pb enrichment in soil was observed depending on the element and years of growth.
Schofield, Robert M. S.; Niedbala, Jack C.; Nesson, Michael H.; Tao, Ye; Shokes, Jacob E.; Scott, Robert A.; Latimer, Matthew J.
2009-01-01
We find that the spoon-like tips of the chelipeds (large claws) of the crab Pachygrapsus crassipes differ from the rest of the claw in that they are not calcified, but instead contain about 1% bromine – thus they represent a new example of a class of structural biomaterials that contain heavy elements such as Zn, Mn, Fe, Cu, and Br bound in an organic matrix. X-ray absorption spectroscopy data suggest that the bromine is bound to phenyl rings, possibly in tyrosine. We measure a broad array of mechanical properties of a heavy-element biomaterial (abrasion resistance, coefficient of kinetic friction, energy of fracture, hardness, modulus of elasticity and dynamic mechanical properties) for the first time, and we make a direct comparison with a mineralized tissue. Our results suggest that the greatest advantage of bromine-rich cuticle over calcified cuticle is resistance to fracture (the energy of fracture is about an order of magnitude greater than for calcified cuticle). The greatest advantage relative to unenriched cuticle, represented by ant mandible cuticle, is a factor of about 1.5 greater hardness and modulus of elasticity. The spoon-like tips gain increased fracture resistance from the orientation of the constituent laminae and from the viscoelasticity of the materials. We suggest that fracture resistance is of greater importance in smaller organisms, and we speculate that one function of heavy elements in mechanical biomaterials is to reduce molecular resonant frequencies and thereby increase absorption of energy from impacts. PMID:19422071
Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P; Boada, Luis D; Carranza, Cristina; Pérez Arellano, José Luis; González-Antuña, Ana; Almeida-González, Maira; Barry-Rodríguez, Carlos; Zumbado, Manuel; Camacho, María
2017-11-01
Africa's economy is growing faster than any other continent and it has been estimated that the middle class in Africa now exceeds 350 million people. This has meant a parallel increase in the importation of consumer goods and in the implementation of communication and information technologies (ICT), but also in the generation of large quantities of e-waste. However, inadequate infrastructure development remains a major constraint to the continent's economic growth and these highly toxic residues are not always adequately managed. Few studies have been conducted to date assessing the possible association between socioeconomic development factors, including e-waste generation, and blood levels of inorganic elements in African population. To disclose the role of geographical, anthropogenic, and socioeconomic development determinants on the blood levels of Ag, Al, As, Be, Cd, Co, Cr, Hg, Ni, Pb, Sb, and V -all of them frequently found in e-waste-, an immigrant population-based study was made including a total of 245 subjects from 16 countries recently arrived to the Canary Islands (Spain). Women presented higher levels of blood elements than men, and Northern Africans (Moroccans) were the most contaminated. People from low-income countries exhibited significantly lower blood levels of inorganic elements than those from middle-income countries. We found a significant association between the use of motor vehicles and the implementation of information and communication technologies (ICT) and the level of contamination. Immigrants from the countries with a high volume of imports of second-hand electronic equipment, telephone and internet use had higher levels of inorganic elements. In general terms, the higher level of economic development the higher the blood levels of inorganic pollutants, suggesting that the economic development of Africa, in parallel to e-waste generation and the existence of informal recycling sites, have directly affected the level of contamination of the population of the continent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hili Inhibits HIV Replication in Activated T Cells.
Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh
2017-06-01
P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4 + T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNA Arg (UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements. IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4 + T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements. Copyright © 2017 American Society for Microbiology.
Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.
Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James
2008-04-11
The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.
Dowrick, Christopher; Bower, Peter; Chew-Graham, Carolyn; Lovell, Karina; Edwards, Suzanne; Lamb, Jonathan; Bristow, Katie; Gabbay, Mark; Burroughs, Heather; Beatty, Susan; Waheed, Waquas; Hann, Mark; Gask, Linda
2016-02-17
Many people with mental distress are disadvantaged because care is not available or does not address their needs. In order to increase access to high quality primary mental health care for under-served groups, we created a model of care with three discrete elements: community engagement, primary care training and tailored wellbeing interventions. We have previously demonstrated the individual impact of each element of the model. Here we assess the effectiveness of the combined model in increasing access to and improving the quality of primary mental health care. We test the assumptions that access to the wellbeing interventions is increased by the presence of community engagement and primary care training; and that quality of primary mental health care is increased by the presence of community engagement and the wellbeing interventions. We implemented the model in four under-served localities in North-West England, focusing on older people and minority ethnic populations. Using a quasi-experimental design with no-intervention comparators, we gathered a combination of quantitative and qualitative information. Quantitative information, including referral and recruitment rates for the wellbeing interventions, and practice referrals to mental health services, was analysed descriptively. Qualitative information derived from interview and focus group responses to topic guides from more than 110 participants. Framework analysis was used to generate findings from the qualitative data. Access to the wellbeing interventions was associated with the presence of the community engagement and the primary care training elements. Referrals to the wellbeing interventions were associated with community engagement, while recruitment was associated with primary care training. Qualitative data suggested that the mechanisms underlying these associations were increased awareness and sense of agency. The quality of primary mental health care was enhanced by information gained from our community mapping activities, and by the offer of access to the wellbeing interventions. There were variable benefits from health practitioner participation in community consultative groups. We also found that participation in the wellbeing interventions led to increased community engagement. We explored the interactions between elements of a multilevel intervention and identified important associations and underlying mechanisms. Further research is needed to test the generalisability of the model. Current Controlled Trials, reference ISRCTN68572159 . Registered 25 February 2013.
Na, Okpin; Cai, Xiao-Chuan; Xi, Yunping
2017-01-01
The prediction of the chloride-induced corrosion is very important because of the durable life of concrete structure. To simulate more realistic durability performance of concrete structures, complex scientific methods and more accurate material models are needed. In order to predict the robust results of corrosion initiation time and to describe the thin layer from concrete surface to reinforcement, a large number of fine meshes are also used. The purpose of this study is to suggest more realistic physical model regarding coupled hygro-chemo transport and to implement the model with parallel finite element algorithm. Furthermore, microclimate model with environmental humidity and seasonal temperature is adopted. As a result, the prediction model of chloride diffusion under unsaturated condition was developed with parallel algorithms and was applied to the existing bridge to validate the model with multi-boundary condition. As the number of processors increased, the computational time decreased until the number of processors became optimized. Then, the computational time increased because the communication time between the processors increased. The framework of present model can be extended to simulate the multi-species de-icing salts ingress into non-saturated concrete structures in future work. PMID:28772714
Kong, Liang; Gu, Zexu; Li, Tao; Wu, Junjie; Hu, Kaijin; Liu, Yanpu; Zhou, Hongzhi; Liu, Baolin
2009-01-01
A nonlinear finite element method was applied to examine the effects of implant diameter and length on the maximum von Mises stresses in the jaw, and to evaluate the maximum displacement of the implant-abutment complex in immediate-loading models. The implant diameter (D) ranged from 3.0 to 5.0 mm and implant length (L) ranged from 6.0 to 16.0 mm. The results showed that the maximum von Mises stress in cortical bone was decreased by 65.8% under a buccolingual load with an increase in D. In cancellous bone, it was decreased by 71.5% under an axial load with an increase in L. The maximum displacement in the implant-abutment complex decreased by 64.8% under a buccolingual load with an increase in D. The implant was found to be more sensitive to L than to D under axial loads, while D played a more important role in enhancing its stability under buccolingual loads. When D exceeded 4.0 mm and L exceeded 11.0 mm, both minimum stress and displacement were obtained. Therefore, these dimensions were the optimal biomechanical selections for immediate-loading implants in type B/2 bone.
Research on Hygiene Based on Fieldwork and Experimental Studies.
Yajima, Ichiro
2017-01-01
Several experimental studies on hygiene have recently been performed and fieldwork studies are also important and essential tools. However, the implementation of experimental studies is insufficient compared with that of fieldwork studies on hygiene. Here, we show our well-balanced implementation of both fieldwork and experimental studies of toxic-element-mediated diseases including skin cancer and hearing loss. Since the pollution of drinking well water by toxic elements induces various diseases including skin cancer, we performed both fieldwork and experimental studies to determine the levels of toxic elements and the mechanisms behind the development of toxic-element-related diseases and to develop a novel remediation system. Our fieldwork studies in several countries including Bangladesh, Vietnam and Malaysia demonstrated that drinking well water was polluted with high concentrations of several toxic elements including arsenic, barium, iron and manganese. Our experimental studies using the data from our fieldwork studies demonstrated that these toxic elements caused skin cancer and hearing loss. Further experimental studies resulted in the development of a novel remediation system that adsorbs toxic elements from polluted drinking water. A well-balanced implementation of both fieldwork and experimental studies is important for the prediction, prevention and therapy of toxic-element-mediated diseases.
Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa
NASA Astrophysics Data System (ADS)
Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika
2015-02-01
Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Jing, Z.; Wang, Y.; Kono, Y.; Yu, T.; Sakamaki, T.; Park, C.; Rivers, M. L.; Sutton, S. R.; Shen, G.
2013-12-01
Geophysical observations based on lunar seismology and laser ranging strongly suggest that the Moon's iron core is partially molten. Similar to Earth and other terrestrial planets, light elements, such as sulfur, silicon, carbon, and oxygen, are likely present in the lunar core. Determining the light element concentration in the outer core is of vital importance to the understanding of the structure, dynamics, and chemical evolution of the Moon, as well as the enigmatic history of the lunar dynamo. Among the candidate elements, sulfur is the preferred major light element in the lunar outer due to its high abundance in the parent bodies of iron meteorites, its high solubility in liquid Fe at the lunar core pressure (~5 GPa), and its strong effects on reducing the density, velocity, and freezing temperature of the core. In this study, we conducted in-situ sound velocity measurements on liquid samples of four different compositions, including pure Fe, Fe-10wt%S, Fe-20wt%S, and Fe-27wt%S, at pressure and temperature conditions up to 8 GPa and 1973 K (encompassing the entire lunar depth range), using the Kawai-type multi-anvil device at the GSECARS beamline 13-ID-D and the Paris-Edinburgh cell at HPCAT beamline 16-BM-B. Our results show that the velocity of Fe-rich liquids increases upon compression, decreases with increasing sulfur content, and is nearly independent of temperature. Compared to the seismic velocity of the outer core, our velocity data constrain the sulfur content at 4×2 wt%, indicating a significantly denser (6.4×0.4 g/cm3) and hotter (1860×60 K) outer core than previously estimated. A new lunar structure model incorporating available geophysical observations points to a smaller core radius. Our model also suggests a top-down solidification scenario for the evolution of the lunar core. Such an 'iron snow' process may have been an important mechanism for the growth of the inner core.
Finite element modeling of superelastic nickel-titanium orthodontic wires.
Naceur, Ines Ben; Charfi, Amin; Bouraoui, Tarak; Elleuch, Khaled
2014-11-28
Thanks to its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic treatment. Therefore, it is important to quantify and evaluate the level of orthodontic force applied to the bracket and teeth in order to achieve tooth movement. In this study, three dimensional finite element models with a Gibbs-potential-based-formulation and thermodynamic principles were used. The aim was to evaluate the influence of possible intraoral temperature differences on the forces exerted by NiTi orthodontic arch wires with different cross sectional shapes and sizes. The prediction made by this phenomenological model, for superelastic tensile and bending tests, shows good agreement with the experimental data. A bending test is simulated to study the force variation of an orthodontic NiTi arch wire when it loaded up to the deflection of 3 mm, for this task one half of the arch wire and the 3 adjacent brackets were modeled. The results showed that the stress required for the martensite transformation increases with the increase of cross-sectional dimensions and temperature. Associated with this increase in stress, the plateau of this transformation becomes steeper. In addition, the area of the mechanical hysteresis, measured as the difference between the forces of the upper and lower plateau, increases.
Mode I stress intensity factors of slanted cracks in plates
NASA Astrophysics Data System (ADS)
Ismail, Al Emran; Ghazali, Mohd Zubir Mohd; Nor, Nik Hisyamudin Muhd
2017-01-01
This paper presents the roles of slanted cracks on the stress intensity factors (SIF) under mode I tension and bending loading. Based on the literature survey, lack of solution of SIFs of slanted cracks in plain strain plates are available. In this work, the cracks are modelled numerically using ANSYS finite element program. There are two important parameters such as slanted angles and relative crack length. SIFs at the crack tips are calculated according to domain integral method. Before the model is further used, it is validated with the existing model. It is found that the present model is well agreed with the previous model. According to finite element analysis, there are not only mode I SIFs produced but also mode II. As expected the SIFs increased as the relative crack length increased. However, when slanted angles are introduced (slightly higher than normal crack), the SIFs increased. Once the angles are further increased, the SIFs decreased gradually however they are still higher than the SIFs of normal cracks. For mode II SIFs, higher the slanted angels higher the SIFs. This is due to the fact that when the cracks are slanted, the cracked plates are not only failed due to mode I but a combination between both modes I and II.
Heavy metals pollution status in surface sediments (rivers and artifical lakes, Serbia)
NASA Astrophysics Data System (ADS)
Sakan, Sanja; Đorđević, Dragana
2017-04-01
Potentially hazardous trace elements, often in literature referred as "heavy metals", are deemed serious pollutants due to their toxicity, persistence and non-degradability in the environment. These elements play an important role in extent of water pollution and threaten the health of populations and ecosystems. As the sink of heavy metals, sediment beds adsorb metals in quantities that are many times higher than those found in the water column in the long-term polluted water environment. It is believed that most of the metal content, as much as 90% in aquatic sediments is bound to sediments. Metal contamination in these sediments could be directly affect the river water quality, resulting in potential consequences to the sensitive lowest levels of the food chain and ultimately to human health. The objective of this research was the evaluation of heavy metal contamination level in sediments of the most important rivers and artificial lakes in Serbia. The heavy metal enrichment in studied sediments was conducted by using: determination of total metal content, sequential extraction procedure for the fractionation of studied elements, quantification of the metal enrichment degree in the sediments by calculating geo-accumulation indices, determination of actual and potential element availability and application of BRAI index for the assessment of heavy metal bioavailability. The sediments were found to be contaminated by heavy metals to various extents, mostly with Cd, Cu, and Zn. The significant variation in heavy metal distribution among samples collected in this large region, encompassing all Serbian watersheds, suggests the selective contamination of sediments by heavy metals. Elevated concentrations of elements in most cases were detected in samples of river sediments, since artificial lake reservoirs are usually built in rural areas, where the less anthropogenic pollution. Rivers often flow through the towns and these water basins less or more loaded micronutrients, toxic substances, organic or inorganic, waste materials, depending on the species and type of industrial processes that are often without the necessary technological and mandatory treatment directly discharged into them. Due to the potential risk of heavy metal pollution in studied sediments, pollution prevention and control measurements seems necessary, especially in areas where we found increased levels of these elements.
Davy, Carol; Bleasel, Jonathan; Liu, Hueiming; Tchan, Maria; Ponniah, Sharon; Brown, Alex
2015-05-10
The increasing prevalence of chronic disease and even multiple chronic diseases faced by both developed and developing countries is of considerable concern. Many of the interventions to address this within primary healthcare settings are based on a chronic care model first developed by MacColl Institute for Healthcare Innovation at Group Health Cooperative. This systematic literature review aimed to identify and synthesise international evidence on the effectiveness of elements that have been included in a chronic care model for improving healthcare practices and health outcomes within primary healthcare settings. The review broadens the work of other similar reviews by focusing on effectiveness of healthcare practice as well as health outcomes associated with implementing a chronic care model. In addition, relevant case series and case studies were also included. Of the 77 papers which met the inclusion criteria, all but two reported improvements to healthcare practice or health outcomes for people living with chronic disease. While the most commonly used elements of a chronic care model were self-management support and delivery system design, there were considerable variations between studies regarding what combination of elements were included as well as the way in which chronic care model elements were implemented. This meant that it was impossible to clearly identify any optimal combination of chronic care model elements that led to the reported improvements. While the main argument for excluding papers reporting case studies and case series in systematic literature reviews is that they are not of sufficient quality or generalizability, we found that they provided a more detailed account of how various chronic care models were developed and implemented. In particular, these papers suggested that several factors including supporting reflective healthcare practice, sending clear messages about the importance of chronic disease care and ensuring that leaders support the implementation and sustainability of interventions may have been just as important as a chronic care model's elements in contributing to the improvements in healthcare practice or health outcomes for people living with chronic disease.
Giant moving vortex mass in thick magnetic nanodots
Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.
2015-01-01
Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430
Giant moving vortex mass in thick magnetic nanodots.
Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O
2015-09-10
Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.
Ahmad, Parvaiz; Sarwat, Maryam; Bhat, Nazir Ahmad; Wani, Mohd Rafiq; Kazi, Alvina Gul; Tran, Lam-Son Phan
2015-01-01
Calcium (Ca) plays important role in plant development and response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effect of Ca (50 mM) in controlling cadmium (Cd) uptake in mustard (Brassica juncea L.) plants exposed to toxic levels of Cd (200 mg L(-1) and 300 mg L(-1)). The Cd treatment showed substantial decrease in plant height, root length, dry weight, pigments and protein content. Application of Ca improved the growth and biomass yield of the Cd-stressed mustard seedlings. More importantly, the oil content of mustard seeds of Cd-stressed plants was also enhanced with Ca treatment. Proline was significantly increased in mustard plants under Cd stress, and exogenously sprayed Ca was found to have a positive impact on proline content in Cd-stressed plants. Different concentrations of Cd increased lipid peroxidation but the application of Ca minimized it to appreciable level in Cd-treated plants. Excessive Cd treatment enhanced the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase and glutathione reductase, which were further enhanced by the addition of Ca. Additionally, Cd stress caused reduced uptake of essential elements and increased Cd accumulation in roots and shoots. However, application of Ca enhanced the concentration of essential elements and decreased Cd accumulation in Cd-stressed plants. Our results indicated that application of Ca enables mustard plant to withstand the deleterious effect of Cd, resulting in improved growth and seed quality of mustard plants.
Rowe, Annette R; Chellamuthu, Prithiviraj; Lam, Bonita; Okamoto, Akihiro; Nealson, Kenneth H
2014-01-01
Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we constructed sediment microcosms and incubated electrodes at various controlled redox potentials. Negative current production was observed in incubations and increased as redox potential decreased (tested -50 to -400 mV vs. Ag/AgCl). Electrode-associated biomass responded to the addition of nitrate and ferric iron as terminal electron acceptors in secondary sediment-free enrichments. Elemental sulfur, elemental iron and amorphous iron sulfide enrichments derived from electrode biomass demonstrated products indicative of sulfur or iron oxidation. The microbes isolated from these enrichments belong to the genera Halomonas, Idiomarina, Marinobacter, and Pseudomonas of the Gammaproteobacteria, and Thalassospira and Thioclava from the Alphaproteobacteria. Chronoamperometry data demonstrates sustained electrode oxidation from these isolates in the absence of alternate electron sources. Cyclic voltammetry demonstrated the variability in dominant electron transfer modes or interactions with electrodes (i.e., biofilm, planktonic or mediator facilitated) and the wide range of midpoint potentials observed for each microbe (from 8 to -295 mV vs. Ag/AgCl). The diversity of extracellular electron transfer mechanisms observed in one sediment and one redox condition, illustrates the potential importance and abundance of these interactions. This approach has promise for increasing our understanding the extent and diversity of microbe mineral interactions, as well as increasing the repository of microbes available for electrochemical applications.
ERIC Educational Resources Information Center
Herman, William E.
2005-01-01
Consider the following important questions: Should values be transmitted or developed? As children grow up, what, if anything, should change in values acquisition? How important are locus of control issues in moral development? and Why might process versus product elements be crucial in the development of values? One key element missing in the…
Finite Element Analysis of Patella Alta: A Patellofemoral Instability Model.
Watson, Nicole A; Duchman, Kyle R; Grosland, Nicole M; Bollier, Matthew J
2017-01-01
This study aims to provide biomechanical data on the effect of patella height in the setting of medial patellofemoral ligament (MPFL) reconstruction using finite element analysis. The study will also examine patellofemoral joint biomechanics using variable femoral insertion sites for MPFL reconstruction. A previously validated finite element knee model was modified to study patella alta and baja by translating the patella a given distance to achieve each patella height ratio. Additionally, the models were modified to study various femoral insertion sites of the MPFL (anatomic, anterior, proximal, and distal) for each patella height model, resulting in 32 unique scenarios available for investigation. In the setting of patella alta, the patellofemoral contact area decreased, resulting in a subsequent increase in maximum patellofemoral contact pressures as compared to the scenarios with normal patellar height. Additionally, patella alta resulted in decreased lateral restraining forces in the native knee scenario as well as following MPFL reconstruction. Changing femoral insertion sites had a variable effect on patellofemoral contact pressures; however, distal and anterior femoral tunnel malpositioning in the setting of patella alta resulted in grossly elevated maximum patellofemoral contact pressures as compared to other scenarios. Patella alta after MPFL reconstruction results in decreased lateral restraining forces and patellofemoral contact area and increased maximum patellofemoral contact pressures. When the femoral MPFL tunnel is malpositioned anteriorly or distally on the femur, the maximum patellofemoral contact pressures increase with severity of patella alta. When evaluating patients with patellofemoral instability, it is important to recognize patella alta as a potential aggravating factor. Failure to address patella alta in the setting of MPFL femoral tunnel malposition may result in even further increases in patellofemoral contact pressures, making it essential to optimize intraoperative techniques to confirm anatomic MPFL femoral tunnel positioning.
Finite Element Analysis of Patella Alta: A Patellofemoral Instability Model
Duchman, Kyle R.; Grosland, Nicole M.; Bollier, Matthew J.
2017-01-01
Abstract Background: This study aims to provide biomechanical data on the effect of patella height in the setting of medial patellofemoral ligament (MPFL) reconstruction using finite element analysis. The study will also examine patellofemoral joint biomechanics using variable femoral insertion sites for MPFL reconstruction. Methods: A previously validated finite element knee model was modified to study patella alta and baja by translating the patella a given distance to achieve each patella height ratio. Additionally, the models were modified to study various femoral insertion sites of the MPFL (anatomic, anterior, proximal, and distal) for each patella height model, resulting in 32 unique scenarios available for investigation. Results: In the setting of patella alta, the patellofemoral contact area decreased, resulting in a subsequent increase in maximum patellofemoral contact pressures as compared to the scenarios with normal patellar height. Additionally, patella alta resulted in decreased lateral restraining forces in the native knee scenario as well as following MPFL reconstruction. Changing femoral insertion sites had a variable effect on patellofemoral contact pressures; however, distal and anterior femoral tunnel malpositioning in the setting of patella alta resulted in grossly elevated maximum patellofemoral contact pressures as compared to other scenarios. Conclusions: Patella alta after MPFL reconstruction results in decreased lateral restraining forces and patellofemoral contact area and increased maximum patellofemoral contact pressures. When the femoral MPFL tunnel is malpositioned anteriorly or distally on the femur, the maximum patellofemoral contact pressures increase with severity of patella alta. Clinical Relevance: When evaluating patients with patellofemoral instability, it is important to recognize patella alta as a potential aggravating factor. Failure to address patella alta in the setting of MPFL femoral tunnel malposition may result in even further increases in patellofemoral contact pressures, making it essential to optimize intraoperative techniques to confirm anatomic MPFL femoral tunnel positioning. PMID:28852343
Kısa, Dursun; Öztürk, Lokman; Doker, Serhat; Gökçe, İsa
2017-04-01
Heavy metals are considered to be the most important pollutants in the contamination of soils; they adversely affect plant growth and development and cause some physiological and molecular changes. The contamination of agricultural soils by heavy metals has changed the mineral element content of vegetables. Plant metallothioneins (MTs) are thought to have the functional role in heavy metal homeostasis, and they are used as the biomarkers for evaluating environmental pollution. We aimed to evaluate the expression of MT isoforms (MT1, 2, 3 and 4) and some mineral element composition of tomato roots, leaves and fruits exposed to copper and lead. Heavy metal applications increased MT1 and MT2 gene expressions compared to the control in the tissues of tomato. The highest level of MT1 and MT2 transcripts was found in roots and leaves, respectively. The expression of MT3 is induced in roots, leaves and fruits except for Pb treatment in roots. MT4 expression increased in fruits; however, other tissues did not show a clear change. Our results indicated that Cu content was higher than Pb in all tissues of tomato. The lower doses of Cu (10 ppm) increased the content of Mg, Fe, Ca and Mn in roots. Pb generally increased the level of minerals in leaves and fruits, but it decreased Mg, Mn and Fe contents in roots. Both heavy metals not only moved to aerial parts but also caused alterations to mineral element levels. These results show that MT transcripts are regulated by Cu and Pb, and expression pattern changes to MT isoforms and tissue types. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Kubo, E; Fatma, N; Sharma, P; Shinohara, T; Chylack, L T; Akagi, Y; Singh, D P
2002-07-26
Human involucrin (hINV), first appears in the cytosol of keratinocytes and ultimately cross-linked to membrane proteins via transglutaminase and forms a protective barrier as an insoluble envelope beneath the plasma membrane. Although the function and evolution of involucrin is known, the regulation of its gene expression is not well understood. An analysis of the hINV gene sequence, upstream of the transcription start site (-534 to +1 nt) revealed the presence of potential sites for binding of lens epithelium-derived growth factor (LEDGF); stress response element (STRE; A/TGGGGA/T) and heat shock element (HSE; nGAAn). We reported earlier that LEDGF activates stress-associated genes by binding to these elements and elevates cellular resistance to various stresses. Here, gel-shift and super-shift assays confirm the binding of LEDGF to the DNA fragments containing HSEs and STREs that are present in the involucrin gene promoter. Furthermore, hINV promoter linked to CAT reporter gene, cotransfected in human corneal simian virus 40-transformed keratinocytes (HCK), was transactivated by LEDGF significantly. In contrast, the activity of hINV promoter bearing mutations at the WT1 (containing HSE and STRE), WT2 (containing STRE) and WT3 (containing STRE) binding sites was diminished. In addition, in HCK cell over-expressing LEDGF, the levels of hINV mRNA and hINV protein are increased by four to five-fold. LEDGF is inducible to oxidants. Cells treated with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate production of H(2)O(2), showed higher levels of LEDGF mRNA. Furthermore, our immunohistochemical studies revealed that hINV protein is found in the cytoplasm of HCK cells over-expressing LEDGF, but not detectable in the normal HCK cells or HCK cells transfected with vector. This regulation appears to be physiologically important, as over-expression of HCK with LEDGF increases the expression of the endogenous hINV gene and may provide new insight to understand the molecular mechanism of transcriptional regulation of this gene. LEDGF may play an important role in establishing an important barrier in corneal keratinocytes by maintaining epidermal turn-over rate, and protecting HCKs against stress.
Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid
NASA Astrophysics Data System (ADS)
Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo
2016-07-01
The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR01351A
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Hansman, R. John
1994-01-01
Current Air Traffic Control communications use shared very high frequency (VHF) voice frequencies from which pilots can obtain 'Party Line' Information (PLI) by overhearing communications addressed to other aircraft. A prior study has shown pilots perceive this PLI to be important. There is concern that some critical PLI may be lost in the proposed datalink environment where communications will be discretely addressed. Different types of flight operations will be, equipped with datalink equipment at different times, generating a 'mixed environment' where some pilots may rely on PLI while others will receive their information by datalink. To research the importance, availability and accuracy of PLI and to query pilots on the information they feel is necessary, a survey was distributed to pilots. The pilots were selected from four flight operation groups to study the variations in PLI requirements in the mixed datalink environment. Pilots perceived PLI to be important overall. Specific information elements pertaining to traffic and weather information were identified as Critical. Most PLI elements followed a pattern of higher perceived importance during terminal area operations, final approach and landing. Pilots from the different flight operation groups identified some elements as particularly important. Pilots perceived PLI to be only moderately available and accurate overall. Several PLI elements received very low availability and accuracy ratings but are perceived as important. In a free response question designed to find the information requirements for global situation awareness, pilots frequently indicated a need for traffic and weather information. These elements were also frequently cited by them as information that could be presented by a datalink system. The results of this survey identify specific concerns to be addressed when implementing datalink communications.
NASA Astrophysics Data System (ADS)
Feng, Yuanyuan; Roleda, Michael Y.; Armstrong, Evelyn; Law, Cliff S.; Boyd, Philip W.; Hurd, Catriona L.
2018-01-01
A series of semi-continuous incubation experiments were conducted with the coccolithophore Emiliania huxleyi strain NIWA1108 (Southern Ocean isolate) to examine the effects of five environmental drivers (nitrate and phosphate concentrations, irradiance, temperature, and partial pressure of CO2 (pCO2)) on both the physiological rates and elemental composition of the coccolithophore. Here, we report the alteration of the elemental composition of E. huxleyi in response to the changes in these environmental drivers. A series of dose-response curves for the cellular elemental composition of E. huxleyi were fitted for each of the five drivers across an environmentally representative gradient. The importance of each driver in regulating the elemental composition of E. huxleyi was ranked using a semi-quantitative approach. The percentage variations in elemental composition arising from the change in each driver between present-day and model-projected conditions for the year 2100 were calculated. Temperature was the most important driver controlling both cellular particulate organic and inorganic carbon content, whereas nutrient concentrations were the most important regulator of cellular particulate nitrogen and phosphorus of E. huxleyi. In contrast, elevated pCO2 had the greatest influence on cellular particulate inorganic carbon to organic carbon ratio, resulting in a decrease in the ratio. Our results indicate that the different environmental drivers play specific roles in regulating the elemental composition of E. huxleyi with wide-reaching implications for coccolithophore-related marine biogeochemical cycles, as a consequence of the regulation of E. huxleyi physiological processes.
Quantitative Analysis of Trace Element Impurity Levels in Some Gem-Quality Diamonds
NASA Astrophysics Data System (ADS)
McNeill, J. C.; Klein-Bendavid, O.; Pearson, D. G.; Nowell, G. M.; Ottley, C. J.; Chinn, I.; Malarkey, J.
2009-05-01
Perhaps the most important information required to understand the origin of diamonds is the nature of the fluid that they crystallise from. Constraining the identity of the diamond-forming fluid for high purity gem diamonds is hampered by analytical challenges because of the very low analyte levels involved. Here we use a new ultra- low blank 'off-line' laser ablation method coupled to sector-field ICPMS for the quantitative analysis of fluid-poor gem diamonds. Ten diamonds comprised of both E- and P-type parageneses, from the Premier Mine, South Africa, were analysed for trace element abundances. We assume that the elemental signatures arise from low densities of sub-microscopic fluid inclusions that are analogous to the much higher densities of fluid inclusions commonly found within fluid-rich diamonds exhibiting fibrous growth. Repeatability of multiple (>20) blanks yielded consistently low values so that using the current procedure our limits of quantitation (10-ã blank) are <1pg for most trace elements, except for Sr, Zr, Ba, from 2-9pg and Pb ~30pg. Trace element patterns of the Premier diamond suite show enrichment of LREE over HREE. Abundances broadly decrease with increasing elemental compatibility. As a suite the chondrite normalised diamond patterns show negative Sr, Zr, Ti and Y anomalies and positive U, and Pb anomalies. All sample abundances are very depleted relative to chondrites (0.1 to 0.001X ch). HREE range from 0.1 to 1ppb as do Y, Nb, Cs. Other lighter elements vary from 2-30ppb. Pb reaches several ppb and Ti ranges from ppb values up to 2ppm. No significant difference were observed between the trace element systematics of the eclogitic and peridotitic diamonds. Overall, these initial data have inter-element fractionation patterns similar to those evident from fluid-rich fibrous diamonds and can be sued to infer that both types of diamond-forming fluids share a common origin.
Evolution of Hsp70 Gene Expression: A Role for Changes in AT-Richness within Promoters
Ma, Ronghui; Zhang, Bo; Kang, Le
2011-01-01
In disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyza sativae that are absent in the congeneric species, Liriomyza huidobrensis, have marked cis-regulatory consequences. We studied the cis-regulatory consequences of these elements (called ATRS1 and ATRS2) by measuring the constitutive and heat-shock-induced luciferase luminescence that they drive in cells transfected with constructs carrying them modified, deleted, or intact, in the hsp70 promoter fused to the luciferase gene. The elements affected expression level markedly and in different ways: Deleting ATRS1 augmented both the constitutive and the heat-shock-induced luminescence, suggesting that this element represses transcription. Interestingly, replacing the element with random sequences of the same length and A+T content delivered the wild-type luminescence pattern, proving that the element's high A+T content is crucial for its effects. Deleting ATRS2 decreased luminescence dramatically and almost abolished heat-shock inducibility and so did replacing the element with random sequences matching the element's length and A+T content, suggesting that ATRS2's effects on transcription and heat-shock inducibility involve a common mechanism requiring at least in part the element's specific primary structure. Finally, constitutive and heat-shock luminescence were reduced strongly when two putative binding sites for the Zeste transcription factor identified within ATRS2 were altered through site-directed mutagenesis, and the heat-shock-induced luminescence increased when Zeste was over-expressed, indicating that Zeste participates in the effects mapped to ATRS2 at least in part. AT-rich sequences are common in promoters and our results suggest that they should play important roles in regulatory evolution since they can affect expression markedly and constrain promoter DNA in at least two different ways. PMID:21655251
Kang-Sheng, Liu; Xiao-Dong, Mao; Juan, Shi; Chun-Fan, Dai; Pingqing, Gu
2015-06-01
Minerals such as zinc, copper, selenium, calcium, and magnesium are essential for normal human development and functioning of the body. They have been found to play important roles in immuno-physiologic functions. The study is to evaluate the distribution and correlation of nonessential (lead) and essential elements in whole blood from 1- to 72-month old children. The cross-sectional study was performed in 1551 children. Six element concentrations, including copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg), iron (Fe) and lead (Pb) in the blood were determined by atomic absorption spectrometry. Distributions and correlations of trace elements in different age groups were analyzed and compared. A Pearson correlation controlled for age and gender was used to assess the relationship of non essential (lead) and essential elements. Levels of copper and magnesium were 18.09 ± 4.42 µmol/L and 1.42 ± 0.12 mmol/L, respectively. 6.04% of all children showed copper levels below the normal threshold, the levels of Magnesium were stable in different age groups. Though the overall mean blood zinc and iron concentrations (61.19 ± 11.30 µmol/L and 8.24 ± 0.59 mmol/L, respectively) gradually increased with age and the overall deficiency levels (24.1% and 36.0%, respectively) decreased with age, zinc and iron deficiencies were still very stable. Controlling for gender and age, significant positive correlations were found when comparing copper to zinc, calcium, magnesium, and iron ((r = 0.333, 0.241, 0.417, 0.314 ,p < 0.01); zinc to magnesium and iron (r = 0.440, 0.497p < 0.01); and magnesium to Calcium and iron (r = 0.349, 0.645, p < 0.01). The overall mean blood lead levels (41.16 ± 16.10) were relatively unstable among different age groups. The prevalence of lead intoxication in all children was 1.3% .Calcium levels decreased gradually with age, with an overall concentration of 1.78 ± 0.13 mmol/L. Significant negative correlations were also noted between Pb and Zn, Fe (r = -0.179, -0.124.p < 0.01) .The importance of calcium deficiency and supplementation is well realized, but the severity of iron and zinc deficiency is not well recorded. The degree of lead intoxication in all the children studied was low; The established reference intervals for Cu, Zn, Ca and Mg provide an important guidance for the reasonable supplementation of essential elements during different age groups.
Tabassum, Arshia; Zaidi, Syeda Nuzhat Fatima; Yasmeen, Kausar; Mahboob, Tabassum
2018-07-15
Electrolytes and trace elements dysregulation play an important role in the progression of obesity and diabetes complications. The present study was designed to evaluate the insulin sensitizing effects of peroxisomes proliferators activated receptor gamma (PPAR-γ) agonist on trace elements in obesity induced type 2 diabetes mellitus and correlate with serum visfatin. Wistar rats were categorized into five groups. Group I served as control; Group II fed on high fat diet (HFD); Group III fed on HFD and treated with rosiglitazone (3 mg/kg) for 7 days; Group IV were T2DM rats induce by HFD and low dose of streptozotocin (i.p. 35 mg/kg); Group V was T2DM rats treated with rosiglitazone (3 mg/kg) for 7 days. Serum and tissues electrolytes levels and renal, hepatic and cardiac tissues trace elements were estimated by flame photometer and atomic absorption spectroscopy. Serum visfatin was estimated by ELISA. Pearson correlations were analyzed among fasting blood glucose (FBG), serum visfatin and tissues trace elements. Results of the current study showed hyponatremia, hyperkalemia, hypomagnesemia and hypercalcemia in HFD and T2DM groups. HFD and T2DM also showed elevated copper and iron levels; however, zinc and selenium levels were decreased. Rosiglitazone treatment increased the insulin sensitization and altered these changes. A Strong association was observed among FBG, serum visfatin and trace elements levels of HFD and T2DM. Obesity and diabetes mellitus disturbed visfatin, electrolytes and trace elements homeostasis. Rosiglitazone treatment restored these changes. The results of the study could serve as a basis for further studies for the prevention of diabetic complications. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Suilou; Rahn, Kenneth A.; Arimoto, Richard
During the Atmosphere/Ocean Chemistry Experiment (AEROCE), field blanks of certain elements in aerosol samples occasionally increased abruptly, always during periods of unusually high atmospheric concentrations. We hypothesized that the anomalous blanks were created by coarse aerosol entering the sampling shelters and depositing onto the blank filters. If so, samples taken nearby should have been similarly affected. To test this hypothesis, we developed a simple graphical method in which elemental masses in field blanks are plotted against elemental masses in pumped samples, and zones of proportionality between the two are sought. Data from Bermuda and Mace Head (coastal western Ireland) confirmed that depositional zones did indeed appear, but only for coarse-particle elements and only under certain conditions. Actual increases of crustal and pollution-derived elements agreed well with values predicted from settling velocities and sampling rates: blanks increased up to an order of magnitude or more but samples by less than 1%. Marine elements behaved like crustal elements in most samples but occasionally were much more enriched: blanks increased up to 30-fold and samples up to about 3%. It thus appears that when coarse-particle elements are present in high concentrations, their field blanks and samples may be measurably affected by dry deposition. Depending on the elements of interest, this dry deposition may have to be measured and the concentrations corrected.
Loading rate effect on mechanical properties of cervical spine ligaments.
Trajkovski, Ana; Omerovic, Senad; Krasna, Simon; Prebil, Ivan
2014-01-01
Mechanical properties of cervical spine ligaments are of great importance for an accurate finite element model when analyzing the injury mechanism. However, there is still little experimental data in literature regarding fresh human cervical spine ligaments under physiological conditions. The focus of the present study is placed on three cervical spine ligaments that stabilize the spine and protect the spinal cord: the anterior longitudinal ligament, the posterior longitudinal ligament and the ligamentum flavum. The ligaments were tested within 24-48 hours after death, under two different loading rates. An increase trend in failure load, failure stress, stiffness and modulus was observed, but proved not to be significant for all ligament types. The loading rate had the highest impact on failure forces for all three ligaments (a 39.1% average increase was found). The observed increase trend, compared to the existing increase trends reported in literature, indicates the importance of carefully applying the existing experimental data, especially when creating scaling factors. A better understanding of the loading rate effect on ligaments properties would enable better case-specific human modelling.
Atom-scale depth localization of biologically important chemical elements in molecular layers.
Schneck, Emanuel; Scoppola, Ernesto; Drnec, Jakub; Mocuta, Cristian; Felici, Roberto; Novikov, Dmitri; Fragneto, Giovanna; Daillant, Jean
2016-08-23
In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers' global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces.
Initial versus ongoing education: Perspectives of people with type 1 diabetes in 13 countries.
Beran, David; Golay, Alain
2017-05-01
To understand the perspectives of people with type 1 diabetes with regards to the diabetes education they receive within the health system. Grounded Theory was used for the collection and analysis of data from interviews with 101 people with type 1 diabetes from 13 countries. There are two aspects to education, namely initial education received when diagnosed and the ongoing education people continue to receive. Within these two categories content and process of diabetes education are important as are factors linked to the healthcare worker and setting. Tangible elements are the "what" that is delivered and are the different skills and information needed for people to manage their diabetes. Process elements are the "how" this is delivered. Finally intangible elements are those, which were found to be specific to certain contexts and health professionals. These could be the hardest to replicate, but possibly the most important. Health systems can provide the tangible elements and organize themselves to have processes in place to deliver education. The challenge is how can the intangible elements be seen as important and developed and delivered to improve management, but also meet the needs of people with diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Atom-scale depth localization of biologically important chemical elements in molecular layers
Schneck, Emanuel; Scoppola, Ernesto; Drnec, Jakub; Mocuta, Cristian; Felici, Roberto; Novikov, Dmitri; Fragneto, Giovanna; Daillant, Jean
2016-01-01
In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers’ global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces. PMID:27503887
NASA Astrophysics Data System (ADS)
Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.
2012-12-01
Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.
A comparative analysis of tellurite detoxification by members of the genus Shewanella.
Valdivia-González, M A; Díaz-Vásquez, W A; Ruiz-León, D; Becerra, A A; Aguayo, D R; Pérez-Donoso, J M; Vásquez, C C
2018-03-01
The increasing industrial utilization of tellurium has resulted in an important environmental pollution with the soluble, extremely toxic oxyanion tellurite. In this context, the use of microorganisms for detoxifying tellurite or tellurium biorecovery has gained great interest. The ability of different Shewanella strains to reduce tellurite to elemental tellurium was assessed; the results showed that the reduction process is dependent on electron transport and the ∆pH gradient. While S. baltica OS155 showed the highest tellurite resistance, S. putrefaciens was the most efficient in reducing tellurite. Moreover, pH-dependent tellurite transformation was associated with tellurium precipitation as tellurium dioxide. In summary, this work highlights the high tellurite reduction/detoxification ability exhibited by a number of Shewanella species, which could represent the starting point to develop friendly methods for the recovery of elemental tellurium (or tellurium dioxide).
NASA Astrophysics Data System (ADS)
Siarto, J.
2014-12-01
As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.
Fabrication, characterization, and modeling of piezoelectric fiber composites
NASA Astrophysics Data System (ADS)
Lin, Xiujuan; Zhou, Kechao; Button, Tim W.; Zhang, Dou
2013-07-01
Piezoelectric fiber composites (PFCs) with interdigitated electrodes have attracted increasing interest in a variety of industrial, commercial, and aerospace markets due to their unique flexibility, adaptability, and improved transverse actuation performance. Viscous plastic processing technique was utilized for the fabrication of PFCs with customized feature sizes. The assembly parameters showed great influence on the performance of PFCs, which was verified by the finite element analysis. The cracks were identified in the fibers underneath the electrode finger after several millions cycles due to the stress and electric field concentration. The electrode finger width was an important structural parameter and showed great influence on the actuation performance and the stress distribution in the PFCs. The finite element analysis revealed that wider electrode finger would be beneficial for reducing the risk of materials failure with slight influence on the actuation performance.
NASA Astrophysics Data System (ADS)
Sakai, Hirotaka; Urakawa, Fumihiro; Aikawa, Akira; Namura, Akira
The vibration of concrete sleepers is an important factor engendering track deterioration. In this paper, we created a three-dimensional finite element model to reproduce a prestressed concrete (PC) sleeper in detail, expressing influence of ballast layers with a 3D spring series and dampers to reproduce their vibration and dynamic characteristics. Determination of these parameters bases on the experimental modal analysis using an impact excitation technique for PC sleepers by adjusting the accelerance between the analytical results and experimental results. Furthermore, we compared the difference of these characteristics between normal sleepers and those with some structural modifications. Analytical results clarified that such means as sleeper width extension and increased sleeper thickness will influence the reduction of ballasted track vibration as improvements of PC sleepers.